
A DEEP LEARNING MODEL TO IMPUTE MISSING

DATA IN TIME SERIES

Wenjie Du

A thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science

Concordia University

Montréal, Québec, Canada

November 2021

c© Wenjie Du, 2021

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By:

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

Approved by __
Dr. Yousef Shayan, Chair
Department of Electrical and Computer Engineering

Date

Dr. Mourad Debbabi, Dean

Faculty of Engineering and Computer Science

__

______________________________________ Chair

 ______________________________________ Examiner

 ______________________________________ Examiner

______________________________________ Thesis Supervisor(s)

______________________________________ Thesis Supervisor(s)

Abstract

A Deep Learning Model to Impute Missing Data in Time Series

Wenjie Du

Missing data in time series is a pervasive problem that puts obstacles in the way of

advanced analysis. A popular solution is imputation, where the fundamental chal-

lenge is to determine what values should be filled in. In this thesis, we study imputing

missing data in time series with deep learning. We first present a concrete case in

telecommunication domain, where we use machine learning models to handle missing

data and forecast Imminent Loss of Signal (ILOS) that is going to occur in opti-

cal networks. Subsequently, we further propose a novel model, called SAITS (Self-

Attention-based Imputation for Time Series), to impute missing values in multivariate

time series. SAITS uses a joint-optimization training approach to learn missing val-

ues from a weighted combination of two diagonally-masked self-attention (DMSA)

blocks. DMSA explicitly captures both the temporal dependencies and feature corre-

lations between time steps, which improves imputation accuracy and training speed.

The contributions of this thesis are 1) In the motivation case, we develop a deep

learning methodology based on BRITS to learn a good representation from data with

massive missing values and forecast 3% ILOS with 65% precision; 2) We design a

joint-optimization training approach to train self-attention models on the imputation

task. Trained by this approach, Transformer achieves up to 25% smaller mean ab-

solute error than BRITS; 3) We propose SAITS, a new imputation model based on

self-attention, specifically for the time-series imputation task. Compared to the state-

of-the-art (SOTA) model BRITS, SAITS obtains 12%∼38% smaller mean absolute

error and 2.0∼2.6 times faster training speed. Experimental results demonstrate that

SAITS achieves the new SOTA position on the time-series imputation task.

iii

Acknowledgments

I am enormously grateful to be supervised by Dr. Yan Liu, whose academic guidance

and advice are invaluable to me. I also appreciate my internship mentor Dr. David

Côté at Ciena, whose technical insights provided us fruitful discussions.

I would like to thank my parents for their unconditional love and support in my

life. They are my heroes.

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Related Work 4

3 A Motivation Case 6

3.1 Problem Statement . 6

3.2 Background . 10

3.2.1 Handling Missing Values . 10

3.2.2 Detecting and Forecasting Anomalies in Optical Networks . . 11

3.2.3 Applying Transfer Learning to Optical Networking 12

3.3 The Learning Method . 12

3.3.1 Data Pre-processing . 13

3.3.2 Model Details and Implementation 16

3.3.3 Transfer Learning . 21

3.4 Experiments . 22

3.4.1 Evaluation Metric . 23

3.4.2 Experiment Settings . 23

3.4.3 Experiment Results . 25

3.5 Summary . 30

4 Methodology: Developing Self-Attention-based Imputation for Time

Series 32

4.1 Joint-optimization Training Approach 32

v

4.2 Self-Attention-based Imputation Model 36

4.2.1 Diagonally-Masked Self-Attention 36

4.2.2 Positional Encoding and Feed-Forward Network 37

4.2.3 The First DMSA Block . 38

4.2.4 The Second DMSA Block . 39

4.2.5 The Weighted Combination Block 39

4.2.6 Loss Functions of Learning Tasks 40

5 Evaluation 42

5.1 Dataset Details . 42

5.2 Baseline Methods . 44

5.3 Evaluation Metrics of Imputation Performance 45

5.4 Experimental Setup . 45

5.5 Result Analysis . 46

5.5.1 Imputation Performance Comparison 46

5.5.2 Downstream Classification Task 48

5.6 BRITS Trained by the joint-optimization approach 50

5.7 Ablation Experiments . 51

5.7.1 Ablation Study of the Diagonal Mask in Self-Attention 51

5.7.2 Ablation Study of the Weighted Combination 52

5.7.3 Ablation Study of the Third DMSA Block 53

6 Threats to Validity 55

6.1 Datasets . 55

6.2 Modeling . 55

6.3 Experiments . 56

7 Conclusion 57

vi

List of Figures

1 A typical example of predictable Imminent Loss of Signal (ILOS) from

a production network. Figures 1(a) and 1(b) show signal quality (QAVG)

and stability (QSTDEV), respectively, over a time period ranging from

September 2019 to May 2020. Here Q is a factor representing the signal

quality. QAVG is the average value of Q on that day and QSTDEV is

the standard deviation of Q value on that day. Orange vertical lines in-

dicate days with transient LOS occurring during a few seconds (HCCS

∈ [1, 60] sec). The red vertical line indicates an outage where the LOS

lasted over an hour (UAS > 3600 sec). This LOS event could have

been predicted beforehand given these PMs. 8

2 Overview of a qualified complete sample and labeling method. 14

3 Structure overview of the Recurrent Imputation for Time Series (RITS)

neural network model. 19

4 Detailed processing steps of the RITS NN architecture from the forward

direction (from X1 to X7). For the backward RITS, data flows from

X7 to X1. 20

5 Overview of our transfer learning methodology. Combining all six net-

work datasets, our ”mega-dataset” has 125 features for each of the

past 7 days. Taking the datasets for Network1 and Network6 as an

example, some features in Network1 may not exist in Network6, and

vice versa (white/blank columns in the figure). Our model is initially

pre-trained on the mega-training set and subsequently fine-tuned on

network-specific samples to generate fine-tuned models for each net-

work, resulting in a total of 6 models. 22

vii

6 Performance as a function of recall for various models in this study.

We apply log scaling on the recall axis. In subfigure 6(a), we compare

the performance of BRITS models evaluated on data from Network1

only. The model is pretrained on the mega-dataset and fine-tuned on

Network1. In subfigure 6(b), we compare the performance of Random

Forest (zero imputation), XGBoost and BRITS (pre-trained only)(see

Table 3), evaluated on the mega-test set. 27

7 Precision as a function of recall for the model BRITS (pre-trained only)

in Table 3 evaluated on on all facility types (green) the 100G line-side

facilities (orange) and 10G Ethernet client-side facilities (red). 29

8 Structure of Transformer used in our work. The whole Transformer [1]

is an auto-encoder, which is a generative model consisting of an en-

coder and a decoder. Here we only need the encoder part because the

imputation task in our work is not taken as a generative task. 33

9 Imputation MAE and reconstruction MAE in the validation stage.

Three models are trained on the same data. BRITS is trained with

ORT, namely in the same way as the original paper [2]. Transformer

(ORT) is trained with only ORT as well, namely without MIT. Trans-

former (MIT) is trained on only MIT. Transformer (ORT+MIT) is

trained with the joint-optimization approach, namely with both ORT

and MIT. 35

10 The SAITS model architecture. 36

11 Structure illustrations of SAITS with three DMSA blocks. 54

viii

List of Tables

1 Details of the six network datasets used in this work, sorted by positive

sample rate in ascending order from left to right. Each dataset includes

all 12 facility types of layer-1 and layer-2 ports. The right-most col-

umn summarized the ”mega-dataset”, which is a combination of all six

network datasets. The missing rate of the mega-dataset is the largest

due to the fact that some networks have features that do not exist in

others, resulting in nearly empty columns when merging the network

datasets into the mega-dataset. 14

2 Performance comparison across models trained on single-network datasets.

The assessment metric used is PR-AUC to recall 0.1, defined in Sub-

section 3.4.1. The rightmost column shows each model’s scores av-

eraged over the mega-datasets that represent models’ overall perfor-

mance. The average scores are weighted by the number of samples in

each test dataset. The best result of each column is highlighted in bold. 26

3 Performance comparison across models trained on mega-datasets. The

assessment metric used is PR-AUC to recall 0.1. The rightmost column

shows each model’s scores averaged over the mega-datasets that rep-

resent models’ overall performance. The average scores are weighted

by the number of samples in each test dataset. The best result of each

column is highlighted in bold. 26

ix

4 Comparison of model performance on two important use-cases. Models

presented in this table are all trained on the mega-dataset, but on

different subsets of the 12 facilities. For example, XGBoost trained on

100G OTN line cards is trained on samples collected from only line-

facing ports of 100G OTN line cards. The evaluation metric used is

PR-AUC to recall 0.1. Models trained on 12 facility types obtain close

performance with models specifically trained on 100G lines or ETH10G

clients. 28

5 General information of three datasets used in this work. 43

6 Performance comparison between methods on three datasets. 10% ob-

servations in the test set are held out for evaluation. Metrics are re-

ported in the order of MAE / RMSE / MRE. The lower, the better.

Bold font indicates the best performance. GRUI-GAN and E2GAN

have no results on Electricity because they fail in the training due to

loss explosion . 46

7 Models’ parameter number (in million) and training time of each epoch

(in seconds) on datasets PhysioNet-2012, Air-Quality, and Electricity

are listed from left to right. GRUI-GAN and E2GAN have no results

for dataset Electricity because they fail on this dataset due to loss

explosion. 47

8 Performance comparison between methods on dataset Electricity across

different missing rates from 20%∼90%. Metrics are reported in the or-

der of MAE / RMSE / MRE. 49

9 Results of the downstream classification task on dataset PhysioNet-

2012. Performance metrics of methods are calculated by five indepen-

dent runs. The reported values are means ± standard deviations. The

higher, the better. Values in bold font are the best. 50

10 Performance comparison between BRITS trained without MIT and

with MIT. 50

11 Ablation experiment results of the diagonal mask in self-attention.

SAITS (base, w/o) is the exact same with SAITS (base), except it

is without the diagonal masks in self-attention layers. 51

x

12 Ablation experiment results of the weighted combination. SAITS (base,

with only 1 block) does not have the second DMSA block nor the

weighted-combination block, and its final representation is directly

from the only DMSA block. SAITS (base, R2) directly takes Learned

Representation 2 as the final representation, namely, it has no com-

bination of representations. SAITS (base, Res) applies a residual con-

nection to combine Learned Representation 1 and 2. 52

13 Ablation experiment results of the third DMSA block. Results of

SAITS here are from Table 6 in this thesis. Both SAITS with three

DMSA blocks (residual connected) and SAITS with three DMSA blocks

(cascade weighted) apply the same hyper-parameters with SAITS. . . 53

xi

Chapter 1

Introduction

Multivariate time-series data is ubiquitous in many application domains, for instance,

transportation [3, 4], economics [5, 6], healthcare [7, 8, 9], and meteorology [10, 11, 12].

Due to all kinds of reasons, including failure of collection sensors, communication

error, and unexpected malfunction, missing values are common to see in time series.

They impair the interpretability of data and pose challenges for advanced analysis

and downstream applications, such as classification and forecasting.

Traditional missing value processing methods fall into two categories. One is

deletion, which removes samples or features that are partially observed. However,

deletion makes data incomplete and can yield biased parameter estimates [13]. The

other one is data imputation that estimates missing data from observed values [14].

The problem of imputation is what values should be filled in. Amounts of prior work

are proposed to solve this problem with statistics and machine learning methods [4, 15,

16, 17, 18, 19]. However, most of them require strong assumptions on missing data [2].

Recently, much literature utilizes deep learning to solve this imputation problem

and achieves state-of-the-art (SOTA) results. Non-time series imputation models,

which are not in the scope of this thesis, can be referred to [20, 21, 22, 23, 24, 25].

We give a more detailed description of time-series imputation models in Section 2,

including [2, 26, 27, 28, 29, 30, 31, 32, 33, 34].

In Chapter 3, we start from a motivation case in telecommunication to show

the importance of handling missing values. In the motivation case, our goal is to

forecast loss of signal (LOS). LOS represents a significant cost for operators of optical

networks. Forecasting LOS accurately and taking maintenance measures in advance

1

can prevent network service outrages. However, high missing rate (>70%) in collected

data stops us from the goal of forecasting. In our work, we leverage BRITS [2], a

state-of-the-art (SOTA) deep learning model on the time series imputation task, to

handle missing data firstly and then do LOS forecasting. By studying large sets of

real-world Performance Monitoring (PM) data collected from six international optical

networks, we find that it is possible to forecast LOS events with good precision 1-

7 days before they occur, albeit at relatively low recall, with supervised learning.

Our study covers twelve facility types, including 100G lines and ETH10G clients.

We show that the precision for a given network improves when training on multiple

networks simultaneously relative to training on an individual network. Furthermore,

we show that it is possible to forecast LOS from all facility types and all networks

with a single model, whereas fine-tuning for a particular facility or network only

brings modest improvements. Hence our machine learning models remain effective

for optical networks previously unknown to the model, which makes them usable for

commercial applications.

In Chapter 4, we propose a self-attention-based model called SAITS to learn miss-

ing values by a joint-optimization training approach of imputation and reconstruction.

This training approach consists of two learning tasks corresponding to an imputation

loss and a reconstruction loss. The self-attention mechanism is now widely applied,

whereas its application on time-series imputation is still limited. Previous SOTA

time-series imputation models are mostly based on recurrent neural networks (RNN),

such as [2, 26, 27, 28, 29]. Among them, [2, 26, 27, 28] are autoregressive models that

are highly susceptible to compounding error [29]. Although [29] is not autoregressive,

the multi-resolution imputation algorithm it proposed consists of a loop, which can

greatly slow the imputation speed. The self-attention mechanism, which overcomes

RNNs’ drawbacks of slow speed and memory constraints and is non-autoregressive,

can avoid compounding error and be helpful to achieve better imputation performance

and speed. In this work, we make the following contributions:

I. We develop a deep learning methodology based on BRITS in the motivation

case, which can learn a good representation from data with missing values and

use it to forecast 3% ILOS 1-7 days before they occur in commercial optical

networks with 65% precision.

2

II. We design a joint-optimization training approach of imputation and reconstruc-

tion for self-attention models to perform missing value imputation for multi-

variate time series. Transformer trained with this approach achieves up to 25%

smaller mean absolute error than BRITS.

III. We design a novel model called SAITS, which consists of a weighted combina-

tion of two diagonally-masked self-attention (DMSA) blocks. DMSA mechanism

emancipates SAITS from RNN and enables SAITS to capture temporal depen-

dencies and feature correlations between time steps explicitly. Compared to

BRITS [2] on three real-world public datasets, SATIS demonstrates 12%∼38%

improvement in imputation performance (in terms of mean absolute error) and

2.0∼2.6 times faster training speed. Furthermore, experimental results show

that SAITS outperforms Transformer and achieves the new SOTA position.

We start by reviewing related work in Chapter 2, give a motivation case from

telecommunication in Chapter 3, introduce our joint-optimization training approach

and the SAITS model in Chapter 4. Experiments, limitations and conclusions are

presented in Chapter 5, Chapter 6 and 7, respectively.

3

Chapter 2

Related Work

We review prior related work of time-series imputation in the following four categories:

RNN-based Che et al. [35] propose GRU-D, a gated recurrent unit (GRU) variant,

to handle missing data in time series classification problems. The concept of time

decay on the last observation is firstly proposed by [35] and continues to be used in [2,

26, 27, 28]. M-RNN [26] and BRITS [2] impute missing values according to hidden

states from bidirectional RNN. However, M-RNN treats missing values as constants,

while BRITS treats missing values as variables of the RNN graph. Furthermore,

BRITS takes correlations among features into consideration while M-RNN does not.

GAN-based Models in [27, 28, 29] are also RNN-based. However, considering they

adopt the generative adversarial network (GAN) structure, we list them separately as

GAN-based. Luo et al. [27] propose GRUI (GRU for Imputation) to model temporal

information of incomplete time series. Both the generator and the discriminator in

their GAN model are based on GRUI. Moreover, based on [27], Luo et al. [28] propose

E2GAN, which is an end-to-end method, comparing to the method in [27] having two

stages. E2GAN adopts an auto-encoder based on GRUI to form its generator to ease

the difficulty of model training and improve imputation performance. Liu et al. [29]

propose a non-autoregressive model called NAOMI for spatiotemporal sequence im-

putation, which consists of a bidirectional encoder and a multiresolution decoder.

NAOMI is further enhanced by adversarial training.

4

VAE-based Inspired by GPPVAE [36] and the non-time-series imputation model

HI-VAE [23], Fortuin et al. [32] propose GP-VAE, a variational auto-encoder (VAE)

architecture for time series imputation with a Gaussian process (GP) prior in the

latent space. The GP-prior is used to help embed the data into a smoother and more

explainable representation. L-VAE [33] uses an additive multi-output GP-prior to

accommodate auxiliary covariate information other than time. To support sparse GP

approximations based on inducing points and handle missing values in spatiotemporal

datasets, Ashman et al. [34] propose SGP-VAE.

Self-Attention-based Ma et al. [30] apply self-attention jointly from three dimen-

sions (time, location, and measurement) to impute missing values in geo-tagged data,

namely spatiotemporal datasets. Bansal et al. [31] propose DeepMVI for missing value

imputation in multidimensional time-series data. Their model includes a Transformer

with a convolutional window feature and a kernel regression. Related work of self-

attention-based models for time-series imputation is very limited. There are some

non-time series imputation models based on self-attention, such as AimNet [24] and

MAIN [25].

5

Chapter 3

A Motivation Case

3.1 Problem Statement

Optical networks form the backbone of the global information and communication

infrastructure, which supports a huge ecosystem of technologies and services. Thus,

the high availability of the network infrastructure is critical both economically and

socially. Although today’s networks are remarkably reliable, Loss of Signal (LOS)

still occurs. When it happens, either (1) the network protects itself automatically or

(2) the LOS propagates to cause signal interruption. This latter situation degrades

service quality for end-users, incurs labor and maintenance costs for the network

operator and can even have catastrophic effects. For instance, in 2016, Southwest

Airline canceled more than 2,000 flights and lost tens of millions of dollars due to a

massive network system failure caused by a faulty router [37, 38]. Predicting LOS

events before they occur enables proactive actions to prevent such network outages.

Autonomous networking is the vision pursued by world-leading network technol-

ogy companies, including the Adaptive Network [39] proposed by Ciena, the Au-

tonomous Driving Network proposed [40] by Huawei, the Digital Network Architec-

ture proposed [41] by Cisco, the self-driving network proposed by Juniper [42], and

the Zero-Touch Network [43] proposed by Ericsson. This activity is largely focused

on automating reactive processes, but a few applications such as Ciena’s Network

Health Predictor (NHP) [44] and Juniper’s HealthBot [45] can also forecast network

events before they occur to strengthen service reliability.

6

In optical networks, service-impacting LOS often comes from intrinsically unpre-

dictable fiber cuts. But other root-causes like equipment aging, loose connectors, or

system mis-configuration can create predictable LOS events. Hence it is possible to

forecast some LOS in advance, though not all of them. Figure 1 shows one compelling

example of predictable LOS reported from the 100G line receiver port of a Ciena 6500

device in a production network. In the left-most part of the graph, the signal quality

is good (high QAVG) and stable (low QSTDEV). Here Q is a factor representing the

signal quality. QAVG is the average score of Q (reflecting the signal quality) and

QSTDEV is the standard deviation of Q (reflecting the signal stability). Then, over

a period of several months, the signal quality becomes incrementally unstable and

degraded. In March 2020, orange lines indicate that the port experiences transient

LOS for a few seconds. Finally, a red vertical line indicates an outage where the LOS

lasts over an hour before the issue gets fixed and the ports re-start reporting good and

stable signal quality again. From these findings, we speculate that machine learning

(ML) models may be able to forecast Imminent Loss of Signal (ILOS) from receiver

ports in multi-vendor packet-optical networks that report similar data.

Recently, ML has been applied in solving telecommunication problems. The ex-

ploratory experiments by Côté in [46] validated the speculation that the random forest

model is applicable to abnormal element detection in optical networks. However, it

used laboratory data and it lacked the ability to predicate ILOS for 1 to 7 days in

the future. In this work, we focus on six sets of real-world data collected from large

commercial optical networks geographically distributed around the world.

Other researchers have reported success in using ML to reduce nonlinear phase

noise [47, 48], estimate quality of transmission [49, 50, 51], detect anomalies [52, 53,

54], forecast equipment failures [55, 56, 57, 58, 59], and enable AI-based routing [60]

or self-optimizing networks [61, 62]. Building on this valuable work, we aim to de-

velop a general engineering framework that can handle telecommunication data for

production-grade applications. This real-world data comes with practical challenges

for ML best practices today, notably: (1) it is unlabeled, (2) it has imperfect data-

quality, and (3) it is not readily available in large sets.

To overcome these challenges, we have developed a framework that can:

I. Encode domain knowledge

7

Sep 2019 Oct 2019 Nov 2019 Dec 2019 Jan 2020 Feb 2020 Mar 2020 Apr 2020 May 2020 Jun 2020
Date

6

8

10

12

Q
A

V
G HCCS > 0

UAS > 0

(a) Time series trend of PM QAVG

Sep 2019 Oct 2019 Nov 2019 Dec 2019 Jan 2020 Feb 2020 Mar 2020 Apr 2020 May 2020 Jun 2020

Date

0.05

0.10

0.15

0.20

Q
S

T
D

E
V

HCCS > 0

UAS > 0

(b) Time series trend of PM QSTDEV

Figure 1: A typical example of predictable Imminent Loss of Signal (ILOS) from a
production network. Figures 1(a) and 1(b) show signal quality (QAVG) and stability
(QSTDEV), respectively, over a time period ranging from September 2019 to May
2020. Here Q is a factor representing the signal quality. QAVG is the average value of
Q on that day and QSTDEV is the standard deviation of Q value on that day. Orange
vertical lines indicate days with transient LOS occurring during a few seconds (HCCS
∈ [1, 60] sec). The red vertical line indicates an outage where the LOS lasted over an
hour (UAS > 3600 sec). This LOS event could have been predicted beforehand given
these PMs.

8

Automatic rules developed by experts can identify problematic network ele-

ments (NE) from performance monitoring (PM) data after the fact. We use

these rules to process historical datasets and label the status of each NE over

time. Then we use labeled data samples to train supervised ML models that

predict good → bad transitions before they occur.

II. Handle imperfect data quality

Our input data is not always continuous and homogeneous. While not ideal,

this is beyond our control and we have to be pragmatic about it. Notably, we

can miss data because of zero-suppression, because of error conditions, or be-

cause the data was never collected. As a result, our overall matrix of features

has a sparse structure with a high missing rate (>70%). Traditional imputation

methods do not perform well in this situation, which led us to develop sophisti-

cated methods to learn from the data present without being biased by the data

missing.

III. Combine datasets from diverse sources

Deep learning methods generally benefit from the largest possible data samples,

especially for solving needle-in-the-haystack problems like predicting optical

network outages. Nevertheless, Network Management Systems in production

typically keep data for only a few days or weeks. Hence we have collected data

multiple times from multiple networks to accumulate big datasets. However,

commercial optical networks are complex and diverse, hence we put in place

a substantial machinery to combine data from all sources into a single mega-

dataset.

Equipped with the above, we have been able to train supervised ML models that

can predict ILOS 1-7 days before they occur in commercial optical networks. Fur-

thermore, we show that this task can conveniently be accomplished with a single ML

model that covers all Layer 1 and 2 devices across a full packet-optical network.

In Section 3.2, we review the prior work related to this topic. In Section 3.3, we

describe our data pre-processing and ML methodology. In Section 3.4, we describe

the various ML experiments that we performed during our analysis, and in the same

section, we present our final results. Finally, in Section 3.5, we summarize our main

conclusions and give an outlook on the next steps.

9

3.2 Background

3.2.1 Handling Missing Values

Missing values are ubiquitous in time series datasets because of communication in-

terruption or sensor malfunction during data collection, especially for industry data.

Imputing missing values with mean, median or fixed values such as 0 are basic meth-

ods to process missing data. Most of such simple imputation methods impose strong

assumptions on missing data. For example, zero imputation presumes missing values

are zero suppression. However, a high missing rate makes it very challenging for these

conventional imputation methods to be effective because a high missing rate results

in diverse missing patterns, making these assumptions hard to meet [2].

In recent years, some researchers attempted to solve this problem of missing values

with ML. XGBoost proposed by Chen et al. [63] can directly process input with

missing values. As a tree-based algorithm, XGBoost has a learning mechanism called

sparsity-aware split finding to assign a default direction to each tree. When XGBoost

encounters missing values, the branch takes the default direction to continue the

decision path. Marek Smieja et al. [64] model the uncertainty on missing attributes

by probability density functions using the Gaussian mixture model (GMM), then

replace the typical neuron’s response in the first hidden layer by its expected value.

Recurrent neural networks (RNN) are always popular in the time series topic, and

this missing value problem is not an exception. Che et al. [35] propose GRU-D, which

introduces a decay mechanism into a GRU so that the influence of input variables is

decayed over time if the variable has been missing for a while. Luo et al. [27] propose

the Gated Recurrent Unit for data Imputation (GRUI) to model the incomplete time

series and integrate the GRUI into a generative adversarial network (GAN) to treat

imputation as a data generating task. BRITS (Bidirectional Recurrent Imputation for

Time Series) proposed by Cao et al. [2] directly learns missing values in a bidirectional

recurrent dynamical model, where imputed values are treated as variables of RNN.

At the time of writing, BRITS achieves the state-of-the-art (SOTA) performance on

the PhysioNet Challenge 2012 dataset [7], a time-series health-care dataset with 78%

of the values missing [2]. Hence BRITS is the neural network model we apply to solve

missing data problem in this work.

10

3.2.2 Detecting and Forecasting Anomalies in Optical Net-

works

Recently, ML has been utilized for anomaly detection and forecasting in optical net-

works. To detect anomaly, Chen et al. [53] employ an unsupervised density-based

clustering algorithm to analyze monitoring data patterns and then utilize a self-taught

mechanism to transfer learned patterns to a supervised data regression and classifi-

cation module. Rafique et al. [54] build a proactive fault detection (PFD) engine for

autonomous anomaly detection. The PFD engine firstly use the generalized extreme

studentized deviate (ESD) test to identify all potential faults and then send them into

a neural network to classify true anomalies. Shahkarami et al. [52] define a detection

framework for Bit Error Rate anomaly and propose a ML method to discriminate

different sources of soft failure. To predict the risk of an equipment failure, Zhilong

Wang et al. [57] propose a performance monitoring and failure prediction method

based on support vector machine (SVM) and double exponential smoothing (DES).

They use DES to converge values of features indicating the status of equipment and

then predict future values sent into the SVM model to classify if the facility will fail

in the near future. With regards to labeling, they apply a threshold on the indicator

’Unusable Time’ and assume equipment has failed if this indicator’s value exceeds

the threshold. The ORCHESTRA network presented in [58] is developed to predict,

detect, and diagnose health issues automatically, for example, soft failures like qual-

ity of transmission (QoT) degradation. Self-Optimizing Optical Networks (SOON)

proposed by Zhao et al. [61] is a network architecture based on software-defined net-

working with ML for applications with tidal traffic forecasting, alarm prediction, and

anomaly action detection. Due to inferior data quality, Zhuang et al. [56] leverage a

GAN to augment their dataset and train a neural network on the augmented data to

predict alarm in optical networks.

The above methods do not specifically focus on handling missing data, the small

size of data samples, or combining imputation with ML. For example, in Zhilong

Wang’s experiments [57], their dataset has only 15 features and 14,080 samples with-

out missing data, and sample classes also get balanced intentionally. There is even

no need to distinguish facility types in their data. In the research of Yan et al. [55],

they demonstrate a dirty-data-based alarm prediction method for their specific net-

work structure based on SOON. Data is collected from commercial large-scale optical

11

networks and has characteristics similar to the data used here, such as imbalanced

classes and missing data. However, their work is based on the SOON architecture,

not generally applicable to other networks. Additionally, they work on short-term

prediction, which takes in data collected from the past 3 hours to predict alarms in

the future 15 minutes. Such short-term prediction does not leave enough time for

operators to respond and perform maintenance.

3.2.3 Applying Transfer Learning to Optical Networking

Transfer learning transfers the learned knowledge from the source domain to the

target domain. It emerges to tackle the problem of building deep learning models in

the domain of interest by leveraging the sufficient data in another related domain [65].

In the work of Yu et al. [66], transfer learning is adopted to enable applying their

neural network models to different optical systems with only a small size of new

training samples. Xia et al. [67] propose a deep neural network to estimate optical-

signal-to-noise ratio (OSNR). They leverage transfer learning to remodeling if system

parameters change. Their method is able to reduce the training time by a factor of

four and requires only one-fifth the training set size without any performance loss.

To detect new cyber-attack behaviors in a network, Zhao et al. [68] propose a transfer

learning-enhanced approach called CeHTL to find out relations between new attacks

and known attacks. Azzimonti et al. [69] utilize Gaussian process to estimate bit

error rate in an unestablished lightpath. In their work, transfer learning is adopted

to further optimize the accuracy on small-sized datasets.

3.3 The Learning Method

Our methodology consists of three aspects: (1) data pre-processing and labeling, (2)

core modeling with missing data handling embedded into the learning model, and

(3) transfer learning across networks. For data pre-processing, we produce port-level

time-series datasets to represent the status of one port on one day. The labels of

data samples are generated by our rule-based method. For modeling, we formalize

the ILOS prediction problem into a binary classification modeling task solved with

supervised ML. Furthermore, we compare classifier algorithms with three different

approaches to missing data: random forest [70], XGBoost [63] and BRITS [2].

12

For transfer learning, we seek to improve the learning performance on small

datasets that lack sufficient training data by leveraging a well trained model with

a similar feature space. Our solution is to combine all datasets from six networks into

one mega-dataset. The mega-dataset enables these networks to share feature space

across all datasets. Models pre-trained on the mega-dataset learn the general feature

representation of ILOS signatures from all datasets, akin to knowledge sharing. Our

experiments observe that such general ILOS representation improves the performance

up to 36.4% as compared to the deep learning model on networks with small datasets

and up to 75.8% as compared to XGBoost.

3.3.1 Data Pre-processing

In our data pre-processing methodology, we first introduce properties of our collected

data and then illustrate our six pre-processing steps in details.

Dataset Description

The datasets used for this research consist of daily-binned Performance Monitoring

metrics (PMs) collected from equipment in production network environments, span-

ning layers 1 and 2. Each device typically has multiple ports, where each port reports

PMs for some facility, where, in turn, a facility is a low-level object mapping to a

physical or virtual component or service of the Optical Transport Network (OTN)

such as e.g. Ethernet (ETH) or Optical Transport Module (OTM).

Our analysis uses every PM reported by the port as a feature input to the model.

These PMs report a wide variety of information related to the signal quality, describ-

ing e.g. the number of input and output frames, number of code violations, optical

power, delay measurements, number of errored seconds, failure counts, number of

forward error corrections, signal quality (”Q”) and other metrics related to low-level

errors in the signal.

An overview of our datasets is shown in Table 1, where datasets for Network1 to

Network6 are sorted by values of positive sample rate in incremental order from left

to right. The mega-dataset is the one combining all 6 datasets for transfer learning.

It is worth noting that classes in our datasets are imbalanced. The overall positive

sample rate in the mega-dataset is around 10%. In Network1, the positive sample rate

13

is less than 5%. A small number of positive samples is consistent with the observation

mentioned above that equipment failures are rare in optical networks.

As summarized in Table 1, we consider twelve facility types and nine protocols to

characterize the state and performance of the entire network, from physical equipment

(layer-0) to optical (layer-1) and Ethernet (layer-2) signals.

Table 1: Details of the six network datasets used in this work, sorted by positive
sample rate in ascending order from left to right. Each dataset includes all 12 facility
types of layer-1 and layer-2 ports. The right-most column summarized the ”mega-
dataset”, which is a combination of all six network datasets. The missing rate of the
mega-dataset is the largest due to the fact that some networks have features that
do not exist in others, resulting in nearly empty columns when merging the network
datasets into the mega-dataset.

Network1 Network2 Network3 Network4 Network5 Network6 Mega-dataset
Number of protocol types 6 9 8 6 8 8 9

Time range (days) 139 222 204 299 301 208 1,373
Number of ports 3,000 19,000 5,000 35,000 16,000 16,000 94,000

Number of samples 394,158 3,540,472 762,268 6,140,585 3,140,132 2,478,716 16,456,331
Number of features 76 83 113 72 115 91 125

Missing rate 75.2% 72.4% 79.2% 70.1% 77.6% 79.8% 82.2%
Positive sample rate 4.3% 5.7% 5.9% 8.6% 15.8% 17.0% 10.4%

Pre-processing Steps

...... 0 0

...... 0 0

...... 0 41

...... 0 37

...... 52 0

...... 71 53

...... 0 0

Other features

......

......

......

......

......

......

...... 0 0

The past 6 days

Data from the future 7 days
is for label generation.

Data from these 7 days
is for model input.

14 days
Normal

Normal

Normal

Abnormal

Abnormal

Abnormal

Abnormal

This is a positive sample
because it contains days
with UAS or HCCS > 0.

Otherwise, it would be a
negative sample.

UAS HCCS

Normal Qualified samples have
no LOS on the present day.

No need to pay attention to UAS or HCCS
in the past days during preprocessing.

The present day

Figure 2: Overview of a qualified complete sample and labeling method.

There are six steps to pre-process our data, listed as follows:

1. Re-organize samples to port-level. Considering that our experiments need

port-level datasets, raw data needs to be re-organized into port-level. Facility-level

14

samples are grouped by their port IDs and the collection timestamps. This means

these facility samples are collected from the same port on the same day. These facility-

level samples are merged into one line to compose port-level samples. In the merging

operation, only maximum values are kept if one feature has multiple values because of

more than one facility in the port. Facility types are converted into one-hot encoding.

As a result, each sample in the datasets can represent the status of one port on one

day.

2. Produce time-series data for deep learning. To generate time-series

datasets for deep learning, samples of each port are sorted by collection timestamps

firstly. Considering that the collection process may be interrupted for different rea-

sons, missing days are first filled, with all PM values as NaN, so that all samples

of one port are time-continuous without interruption. As a result, a 14-day window

slides on the chronological data of each port to produce time-series samples. Each

produced sample contains data collected from one port in 14 consecutive days. The

generated samples contain some days that are filled artificially as NaN.

Each sample is of a 14-day span that is further divided into three parts, namely:

(1) the present day as the seventh record; (2) the past six days as the first six records;

(3) future seven days as the last seven records. The first seven days of all the samples

are used for model training, while the future days of all the samples are used for

labeling. The labels indicate whether the port encounters an ILOS on each day of

the last seven days. The model learns the features in the first seven days about the

status of the port and then predicts if an ILOS may occur on the port in the next 7

days.

3. Generate labels. We rely on data labels to interpret PM values into binary

category positive (with ILOS) or negative (without ILOS), which is necessary for

status analysis of facilities or ports. However, accurate labels are difficult to obtain in

large telecommunication network datasets because of the specialized domain expertise

that is required [46]. In this work, we have used rules provided by optical network

experts to label historical data automatically. The labeling logic uses the fact that

a port is generally suffering from LOS when it experiences errors for a sufficient

period of time. For our 6500 devices, this error metric is well-represented by two

PMs: Unavailable Seconds (UAS) and High Correction Count Seconds (HCCS). UAS

counts the number of seconds during which a facility was unavailable and unable

15

to perform its task, while HCCS counts the number of seconds per day where the

number of errors to be corrected by ”forward error correction” techniques exceeds

some threshold. Indeed, for a smaller dataset for which alarm data was available, we

have verified empirically that these two PMs are highly correlated with LOS alarms

emitted by the devices. Thus, if a sample contains UAS or HCCS larger than zero on

any of its future 7 days, we label the sample as positive, indicating there is a LOS in

the future. We plot Figure 2 to further show a concrete example of how our labeling

method works.

4. Filter out defective samples. Samples that meet the following conditions

are filtered: (1) not carrying traffic in the present day. There are protocol features

in PMs indicating whether the port is carrying traffic. If it is not, we assert this

port is not working and filter such a sample; (2) having LOS in the present day may

already trigger maintenance operations. Therefore predicting ILOS for such samples

is a special case. To focus on the prediction of ILOS in general, we filter out the data

samples with LOS in the present day; (3) no data for all of the first 7 days or future

7 days. In this extreme case with no data for all of the first and last 7 days, rather

than filling in data, we filter out such samples.

5. Split into different parts. We split our datasets into 3 parts, including

the training set, the validation set, and the test set. Samples in datasets are sorted

according to date timestamps. Then the partition of the datasets is approximately

training set 70%, validation set 10%, and test set 20%.

6. Normalize data. For neural network models depending on gradient descent,

feature normalization is necessary. We apply Z-score normalization to feature vectors.

3.3.2 Model Details and Implementation

The core principle of our solution is to augment ML models with missing data han-

dling. We examine and expand each representing model as follows. Random forest

is a classical boosting tree algorithm that does not have a default mechanism for

handling missing data. Hence we apply two conventional imputation methods of zero

imputation and median value imputation to process missing values. XGBoost, on the

other hand, can handle missing data by default. BRITS is an RNN-based deep learn-

ing algorithm. Missing values in feature vectors are located by missing masks and

then get imputed by zeros. Concatenations of imputed feature vectors and missing

16

masks are input into BRITS to let BRITS learn missing values by itself.

Random Forest as the Baseline Model

Random forest is adopted in the work of Côté [46] to discriminate states of network el-

ements as being ’Normal’ or ’Abnormal’. For simplicity, random forest is also adopted

in our methodology to observe the learning effects of our proposed models. In addi-

tion, we expand the random forest model with two conventional imputation methods

to process missing values in the input data. One method uses fixed value (0) impu-

tation and the other method adopts the median value imputation. The comparison

between these two variants to the random forest model shows how selecting different

traditional imputation methods can affect model performance on our datasets. Con-

sidering that random forest is not a time-series model, each sample containing 7-day

sequence data (namely 7 rows) is expanded into 1 row before being input into the

model.

Random forest in our experiments is the implementation in the python library

scikit-learn [71]. For this tree-based model, we find that the parameter number of

trees has the greatest impact on our results. Therefore, we search for the most

appropriate parameter value in a range from 100 to 3,000 in intervals of 100 and

validate each one’s performance on the validation set to pick out the best.

XGBoost

XGBoost is a scalable end-to-end tree boosting system. XGBoost has a wide range of

applications in ML challenges and has achieved strong results effectively. We consider

XGBoost because it is a sparsity-aware algorithm [63]. As discussed in Section 3.2,

XGBoost assigns missing values to the default direction to continue the decision

path. Moreover, the optimal default direction is found by trying both directions in

a splitting node so that XGBoost can minimize the training loss. Therefore, missing

values in the input of XGBoost can just be left as NaN for XGBoost to handle by

itself. The input of XGBoost also needs to be reshaped into 1 row.

In our work, the implementation of XGBoost is from the open-source package men-

tioned in the original paper [63]. For XGBoost, we also perform parameter searching

on number of trees to optimize the performance.

17

BRITS: Bidirectional Recurrent Imputation for Time Series

BRITS model is proposed by Cao et al. [2] to handle missing values in multivariate

time series data. BRITS learns missing values in its bidirectional neural network

system without imposing any specific assumptions on the data generating process,

which means it is generally applicable to time series imputation tasks. As a multi-task

learning model, BRITS is trained on both the imputation task and the classification

task. BRITS is able to make imputations for missing values and solve classification

at the same time.

BRITS model structure. BRITS model is a bidirectional model. It consists of 2

RITS (Recurrent Imputation for Time Series) models. One RITS takes in data in the

forward direction and the other RITS takes in data reversed, namely in the backward

direction. In the training period, both models’ outputs should agree with each other

after the backward one’s output gets reversed, or the model gets a penalty that is the

consistency loss. The consistency loss is the discrepancy between imputations from 2

models, which is measured by mean absolute error (MAE).

As shown in Figure 3, each RITS model is made of 2 parts. One part of a

RITS is the imputer, which consists of a LSTM [72] layer and regression layers to

learn the representation of features across time and correlation between features. An

imputation task matches observed feature values with imputations generated by the

imputer and calculates MAE between them to generate the estimation loss. The

other part of a RITS is the classifier that has a fully connected layer. This fully

connected layer takes the last hidden state output from the LSTM layer in the imputer

to produce logits. Then the sigmoid function converts the logits into classification

probabilities. Errors made by the classifier result in the classification loss. Considering

that BRITS consists of 2 RITS models and each model has its results for losses,

imputations, and classification probabilities, the results that BRITS finally yields are

averaged values of each RITS model. The total loss in BRITS is the sum of the above

mentioned consistency loss, estimation loss and classification loss.

BRITS data input. Data input into BRITS consists of 4 parts: feature vectors,

missing masks, time gap vectors, and classification labels. It is worth mentioning that

in the original work of Cao et al. [2], they randomly masked out an extra 10% data

in their datasets that was held out for comparing BRITS’ imputation ability with

other models in the test period. In this work, BRITS is utilized to help us handle

18

Fully connected layer

LSTM layer

History-based regression layer

Feature-based regression layer

Classifier

Imputer

Imputation

Time series data Classification labels

Calculate classification loss

The last hidden state

Calculate estimation loss

Sigmoid Function

Classification probabilit ies

Figure 3: Structure overview of the Recurrent Imputation for Time Series (RITS)
neural network model.

missing data, hence such extra-masked data do not exist in our input. Feature vectors

contain all processed feature values. Missing masks indicate missing values in feature

vectors. As shown in Equation 1, if xdt is missing that means feature d is missing at

time t, then md
t , the mask value of feature d at time t, is set as 0. If xdt is observed,

md
t is set as 1. Time gap vectors contain each feature’s time gap from the last

observation to the current timestamp. They are calculated from missing masks and

are used to generate temporal decay factors to decay hidden states in the LSTM layer.

Equation 2 illustrates the calculation of time gap vectors δt from the last observation

to the current timestamp st in detail. The working principle of temporal decay

factors is that if values are missing for a long time, then the last observations have

less correlation with values at the current time step. As a consequence, corresponding

hidden states are expected to be decayed more.

md
t =

0 xdt is missing

1 xdt is observed
(1)

19

δt =

st−st−1+δdt−1 t > 1,md

t−1 = 0

st−st−1 t > 1,md
t−1 = 1

0 t = 0

(2)

Copyright © Ciena Corporation 2019. All rights reserved. Confidential & Proprietary. 1

X1 X2 X3 X4 X5 X6 X7

X1c X2c X3c X4c X5c X6c X7c

X1’ X2’ X3’ X4’ X5’ X6’ X7’

missing data

Estimated variable

Feature-based regression layer

History-based regression layer

LSTM layer

Complement variable

Input values

H0 H1 H2 H3 H4 H5 H6 H7 Classifier

Figure 4: Detailed processing steps of the RITS NN architecture from the forward
direction (from X1 to X7). For the backward RITS, data flows from X7 to X1.

BRITS processing flow. We plot Figure 4 to display detailed processing steps

in the forward RITS that takes in data in the order from X1 to X7. Likewise, the

backward RITS processes data in the order from X7 to X1. For each step of data, its

hidden state is sent into the history-based regression layer to produce the estimation

of missing values based on history values. The first step has no hidden states before

it, hence H0 here is initialized as a 0 vector. The output of the history-based layer is

sent into the feature-based regression layer to produce the feature-based estimation.

When calculating the estimation of missing values in one feature, the feature-based re-

gression layer takes the correlation between this feature and others into consideration.

Subsequently, the model combines the history-based estimation and the feature-based

estimation by learned weights to form estimated variable X ′. X ′ is used to impute

missing values in X to form the complement variable Xc. The LSTM layer takes

Xc to process temporal information and produce a hidden state for the next step.

Such a cycle repeats for the whole time series. Finally, the classifier takes the last

hidden state to produce the probability of ILOS. Our BRITS implementation is from

the open-source code repository in the original paper [2]. We make modifications to

20

fit our datasets. In our experiments, BRITS obtains the best performance when the

RNN hidden size equals 256. Therefore, we fix this most important hyper-parameter

as 256 for all BRITS models used in this work.

3.3.3 Transfer Learning

Transfer learning is adopted in our work to help our models obtain better performance

on small datasets. We design the transfer learning with two stages: pre-training and

fine-tuning. In practice, the whole transfer learning methodology is usually applied on

neural networks only, such as BRITS. Although random forest and XGBoost have no

way to get tuned like BRITS, they still can be pre-trained to learn general knowledge

across our network datasets. Therefore, pre-training here can also be considered as

knowledge sharing, which shares the general representation of ILOS signatures across

networks.

To collect the general representation of data, we merge six datasets into one, called

the mega-dataset. Training sets, validation sets, and test sets from each network

dataset are merged into the corresponding mega-training set, the mega-validation

set, and the mega-test set. For features that are different between networks, we take

the union of these features. Consequently, the feature number of the mega-dataset is

125, as shown in Table 1. We also keep a column to record which network the sample

belongs to. This column is not a feature and not visible to models, which is only used

to filter out other networks’ data while fine-tuning models on the network-specific

dataset.

As shown in Figure 5, BRITS is firstly pre-trained on the mega-dataset to learn

general representation and then fine-tuned on single-network datasets to learn network-

specific knowledge. In pre-training, BRITS is just trained on the mega-dataset rather

than single-network datasets, and the learning rate is set as 10−3.

Fine-tuning is only to keep a specific network’s data and let pre-trained BRITS

adjust its parameters on these network-specific samples. The learning rate in the fine-

tuning stage is halved to 5× 10−4. The general practice of fine-tuning is to tune the

classifier but keep other parts frozen. In our case, this means freezing parameters in

the imputer and only retraining the classifier of BRITS on network-specific datasets.

In another strategy, we also expand the fine-tuning to the imputer, which means

parameters of the entire BRITS model are adjusted on network-specific data during

21

the fine-tuning stage. For random forest and XGBoost, these two models only have

the pre-training stage without the fine-tuning stage.

7 days

125 features

Pre-training Pre-trained model

......

......

......

......

......

......

......

......

......

......

......

......

......

......

The mega-dataset

Network1 samples

......

......

......

......

......

......

......

Network6 samples

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

Fine-tuned model for Network1

Sample filtering

Sample filtering

Fine-tuning

Fine-tuning

Fine-tuned model for Network6

Each fine-tuned model
for every network

125 features

125 features

7 days

7 days

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

Figure 5: Overview of our transfer learning methodology. Combining all six network
datasets, our ”mega-dataset” has 125 features for each of the past 7 days. Taking
the datasets for Network1 and Network6 as an example, some features in Network1
may not exist in Network6, and vice versa (white/blank columns in the figure). Our
model is initially pre-trained on the mega-training set and subsequently fine-tuned
on network-specific samples to generate fine-tuned models for each network, resulting
in a total of 6 models.

3.4 Experiments

In this section, we design three experiments to validate our methodology. First we

compare across models trained on individual datasets. Second, we discuss the feasi-

bility of transferring the general representation of ILOS signatures across networks.

In particular, we observe how much improvement transfer learning can bring to our

models on small datasets. Third, we benchmark the performance of our models on

the two main commercial use-cases of NHP to show our work is valuable in practical

applications.

It is worthwhile to mention that, in this section, models mentioned in italic font

represent models produced in our experiments, such as BRITS (zero imputation).

22

3.4.1 Evaluation Metric

As mentioned before, our real-world data has data quality issues, notably, missing

data and rare positive samples. Moreover, in collected positive samples, some of them

are intrinsically unpredictable, such as fiber cuts. All of these factors result in our

predictions having low recalls.

Considering our imbalanced datasets, we select Area Under Precision-Recall Curve

(PR-AUC) as the metric, which is not sensitive to the number of samples. Formal

definitions of precision and recall are displayed in Equation 3. From another aspect,

we weigh precision more than recall, thus targeting high precision at the expense of

low recall. Therefore, we focus on the PR-AUC to recall 0.1, and consequently, the

full score of our evaluation metric is 0.1. As formulated in Equation 4, we define our

evaluation metric as an integral of area under the curve, where D is our evaluation

metric, namely the area under PR curve to recall 0.1, axis x is the recall, axis y is

the precision, and f(x) represents the PR curve. Our evaluation metric is used for

model selection and model evaluation.

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

(3)

D =

∫ 0.1

0

dx

∫ f(x)

0

xydy (4)

3.4.2 Experiment Settings

Comparison of Models on Individual Datasets

Missing data processing. We apply zero-imputation and median-imputation sep-

arately on datasets for random forest. For XGBoost and BRITS, we also use zero-

imputation on their inputs to make a fair comparison to random forest. Furthermore,

XBoost and BRITS both have designed mechanisms to handle missing values, so we

let them process missing data by themselves to show how much improvement these

two mechanisms can bring.

Hyper-parameter searching. For tree-based algorithms random forest and XG-

Boost, we run parameter searching for the hyper-parameter number of trees on both

of them. The value range of number of trees is from 100 to 3,000 in intervals of 100

23

and a total of 30 values. For each value, we train random forest and XGBoost on the

training set. After that, we use the validation set to pick out the best model and run

on the test set to generate test scores.

In the training of BRITS, we first train it only on the imputation task until the

estimation loss on the validation set tends to be steady. Next, we continue optimizing

the model on both the imputation task and classification task. BRITS is trained on

each network dataset by an Adam optimizer with the learning rate as 10−3 and batch

size as 1, 024.

Transfer Learning

Transfer learning’s first stage, namely pre-training, is applicable to all models on the

mega-dataset. After the pre-training finishes, we begin to fine-tune the pre-trained

model on network-specific samples. In the fine-tuning period, we lower the learning

rate to 5 × 10−4. Generally, we only allow the last few layers in the neural network

to update parameters during fine-tuning. For instance, in classification tasks, only

the classifier should be fine-tuned but with other parts frozen to keep the learned

representation fixed and only adjust the classification border in the classifier. This

is how the model BRITS (fine-tune the classifier only) is fine-tuned. In addition, we

have another fine-tuning model, BRITS (fine-tune the entirety) that fine-tunes the

entire BRITS model to observe whether adjusting the learned representation together

with the classification can help obtain more improvement.

Performance on Main Use-cases

NHP has been applied on two important commercial use-cases, namely 100G OTN

line cards and 10G Ethernet clients. To test our model performance on both use-cases,

we extract their respective samples in the mega-test dataset and run trained models

of XGBoost and BRITS to obtain test scores. Furthermore, we train XGBoost and

BRITS separately on 100G OTN line cards and 10G Ethernet clients. The purpose is

to compare the learning performance between models trained on single facility type

and all 12 facility types.

24

3.4.3 Experiment Results

Our model performance results on each single-network dataset are listed in Table 2.

Table 3 contains the results of transfer learning across networks. Table 4 lists model

performance on two main use-cases in NHP: 100G OTN line cards and 10G Ethernet

clients. In all tables, bold values are the best results on the dataset.

Comparison Across Models Trained on Individual Datasets

The results in Table 2 show that Random Forest (zero imputation) and Random Forest

(median imputation) achieve comparable results on datasets Network1, Network2, and

Network5. On Network3, Network4, and Network6, we observe that Random Forest

(median imputation) is inferior to Random Forest (zero imputation) by 61.1% of the

weighted average score. The results indicate that (1) imputation methods can affect

model performance significantly for random forest on our datasets; (2) the median

imputation works on some of features, but not on the others since our datasets from

different networks have different distributions in the feature space.

Models of XGBoost and BRITS all produce higher learning accuracy than random

forest. Both XGBoost and BRITS deomstrate a 72.4% performance improvement

over baseline Random Forest (zero imputation) on the weighted average score. It is

observed that XGBoost (zero imputation) produces the same learning accuracy as

BRITS (zero imputation) in terms of the weighted average score. Likewise, XGBoost

and BRITS have the same overall performance. Furthermore, missing data han-

dling mechanisms of XGBoost and BRITS can bring further improvement (with 4.2%

improvement on the weighted average score). Overall, XGBoost and BRITS have

comparable learning performance on datasets Network3, Network4, and Network5.

On Network2, BRITS is 11.5% better than XGBoost. On Network6, XGBoost out-

performs BRITS by 7.1%.

We further observe the model performance on individual networks with small

datasets, in particular on Network1. Network1 has the least number of samples and

the least number of positive samples, leading to least ratio of positive samples. Both

models of BRITS outperform XGBoost and random forest. XGBoost’s performance

on this small dataset and a low ratio of positive samples is close to baseline models.

This also indicates BRITS is a more suitable solution to address the challenge of low

positive data ratio and the small sample size. The result of BRITS (zero imputation)

25

is 13.6% better than BRITS, indicating zero-imputation is more effective than BRITS’

missing data processing mechanism on dataset Network1. Moreover, BRITS (zero

imputation) gains 38.9% improvement than the baseline model of Random Forest

(zero imputation). It also outperforms XGBoost (zero imputation) by 47.1%. As

the size of data samples increases, the performances of XGBoost and BRITS become

comparable.

Table 2: Performance comparison across models trained on single-network datasets.
The assessment metric used is PR-AUC to recall 0.1, defined in Subsection 3.4.1.
The rightmost column shows each model’s scores averaged over the mega-datasets
that represent models’ overall performance. The average scores are weighted by the
number of samples in each test dataset. The best result of each column is highlighted
in bold.

Model Network1 Network2 Network3 Network4 Network5 Network6 Weighted Avg.
Random Forest (zero imputation) 0.036 0.010 0.018 0.023 0.046 0.042 0.029

Random Forest (median imputation) 0.035 0.007 0.003 0.012 0.049 0.005 0.018
XGBoost (zero imputation) 0.034 0.023 0.087 0.039 0.066 0.056 0.048
BRITS (zero imputation) 0.050 0.026 0.078 0.039 0.065 0.053 0.048

XGBoost 0.033 0.026 0.087 0.041 0.066 0.060 0.050
BRITS 0.044 0.029 0.087 0.040 0.067 0.056 0.050

Table 3: Performance comparison across models trained on mega-datasets. The as-
sessment metric used is PR-AUC to recall 0.1. The rightmost column shows each
model’s scores averaged over the mega-datasets that represent models’ overall per-
formance. The average scores are weighted by the number of samples in each test
dataset. The best result of each column is highlighted in bold.

Model Network1 Network2 Network3 Network4 Network5 Network6 Weighted Avg.
Random Forest (zero imputation) 0.024 0.009 0.009 0.022 0.044 0.028 0.024

XGBoost 0.058 0.023 0.089 0.040 0.064 0.055 0.048
BRITS (pre-trained only) 0.056 0.026 0.088 0.038 0.066 0.056 0.049

BRITS (fine-tune the classifier only) 0.060 0.026 0.085 0.038 0.068 0.056 0.050
BRITS (fine-tune the entirety) 0.055 0.030 0.087 0.040 0.068 0.057 0.052

Transfer Learning

Transfer learning is adopted to improve the learning performance on networks with

insufficient data samples. Transfer learning normally consists of two stages, namely

pre-training and fine-tuning. Models of Random Forest (zero imputation) and XG-

Boost only have the pre-training stage without the fine-tuning stage. We can consider

pre-training on mega-datasets as the knowledge sharing of six networks. As shown in

Table 3, knowledge sharing through pre-training on mega-datasets allows XGBoost

to improve the learning performance on Network1 by 75.8% compared to Table 2.

26

0.01 0.1 1
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

BRITS trained on Network1

BRITS (pre-trained only)

BRITS (fine-tune the classifier only)

(a) BRITS performance comparison on sam-
ples from Network1

0.01 0.1 1
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Random Forest (zero imputation)

XGBoost

BRITS (pre-trained only)

(b) Model performance comparison on the
overall mega-test set

Figure 6: Performance as a function of recall for various models in this study. We
apply log scaling on the recall axis. In subfigure 6(a), we compare the performance
of BRITS models evaluated on data from Network1 only. The model is pretrained
on the mega-dataset and fine-tuned on Network1. In subfigure 6(b), we compare the
performance of Random Forest (zero imputation), XGBoost and BRITS (pre-trained
only)(see Table 3), evaluated on the mega-test set.

The Random Forest Model does not benefit from the knowledge sharing practices

with even degraded results. One possible reason is the increased missing rate in the

mega-dataset. As shown in Table 1, the mega-dataset’s missing rate is the highest as

a result of merging 125 feature columns from six network datasets.

BRITS (pre-trained only) is pre-trained on the mega-dataset but not fine-tuned

on any network-specific samples. Meanwhile, the second variation of the transfer

learning model is BRITS (fine-tune the classifier only) that has its imputer frozen

and its classifier fine-tuned on corresponding network-specific data samples. This

means the representation learned from the mega-dataset is fixed while the classifier

is fine-tuned. The third variation of the transfer learning model on BRITS is BRITS

(fine-tune the entirety) with both its imputer and classifier being fine-tuned.

In the case of Network1 with the smallest dataset, BRITS (pre-trained only)

achieves 27.3% improvement in Table 3 compared with BRITS trained only singular

networks in Table 2. This indicates that transfer learning from mega-dataset to singu-

lar network is effective with relatively small statistics. BRITS (fine-tune the classifier

only) further improves learning performance by 36.4%. However, the performance of

BRITS (fine-tune the entirety) degrades compared to BRITS (pre-trained only). This

indicates that fine-tuning for Network1 helps the classifier but not the imputer of the

27

BRITS model. We plot Precision-Recall curves in Figure 6(a) to demonstrate the

learning performance improvements.

In contrast, on Network2/3/4/5/6 with larger datasets, all the models produce

comparable learning performances in Table 2 vs Table 3. This illustrates that knowl-

edge transfer from the mega-dataset to a singular network stops improving the models’

accuracy with sufficiently large statistics. However, the models’ performance does not

degrade either, which indicates that a single pre-training from the mega-dataset can

produce ML models usable for all networks at once.

To demonstrate the model performance on the overall mega-dataset, Precision-

Recall curves plotted in Figure 6(b) display a comparison between Random Forest

(zero imputation), XGBoost, and BRITS (pre-trained only). XGBoost and BRITS

(pre-trained only) both outperform Random Forest (zero imputation). In comparison,

BRITS (pre-trained only) has comparable learning performance to XGBoost.

Performance on Main Use-cases

Table 4: Comparison of model performance on two important use-cases. Models
presented in this table are all trained on the mega-dataset, but on different subsets of
the 12 facilities. For example, XGBoost trained on 100G OTN line cards is trained on
samples collected from only line-facing ports of 100G OTN line cards. The evaluation
metric used is PR-AUC to recall 0.1. Models trained on 12 facility types obtain close
performance with models specifically trained on 100G lines or ETH10G clients.

Model 100G OTN line cards 10G Ethernet clients
XGBoost trained on 100G OTN line cards 0.049 /
XGBoost trained on 10G Ethernet clients / 0.047
XGBoost trained on all 12 facility types 0.049 0.053
BRITS trained on 100G OTN line cards 0.054 /
BRITS trained on 10G Ethernet clients / 0.050
BRITS trained on all 12 facility types 0.055 0.052

To validate XGBoost and BRITS’ performance on two main commercial use-cases,

we compare models trained on all 12 facility types with models trained on only 100G

lines or ETH10G clients. As the results show in Table 4, for both XGBoost or

BRITS, models trained on 12 facility types produce comparable results with models

specifically trained on 100G lines or ETH10G clients. Model XGBoost trained on

all 12 facility types in Table 4 is equivalent to XGBoost in Table 3; and BRITS

trained on all 12 facility types in Table 4 is equivalent to BRITS (pre-trained only)

28

0.01 0.1 1
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

BRITS tested on all facility types

BRITS tested on 100G OTN line cards

BRITS tested on 10G Ethernet clients

Figure 7: Precision as a function of recall for the model BRITS (pre-trained only) in
Table 3 evaluated on on all facility types (green) the 100G line-side facilities (orange)
and 10G Ethernet client-side facilities (red).

in Table 3. XGBoost and BRITS achieve comparable learning performance on the

use case of ETH10G clients. On the use case of 100G lines, BRITS models perform

approximately 10% better than XGBoost models.

Figure 7 contains PR curves of BRITS (pre-trained only) tested separately on

samples of all 12 facility types, 100G lines, and ETH10G clients. Over all facility

types, our model achieves 1% recall at 65% precision. For 100G lines, the precision can

go above 80% at low recall. As a result, 3% of network outages are reported at least

once 1-7 days before they occur. In practical large-scale networks, this corresponds

to roughly a dozen alerts per day. Given the limited resources that network operators

have to investigate forecasted failures, as opposed to managing current actual failures,

this is a practicable number. Operators benefit from receiving a relatively small

number of forecasted alerts, which have a high probability of being correct, rather

than being flooded with a large number of alerts, which would require many resources

to investigate.

29

Discussion

Our rule-based labeling method encodes the domain knowledge to identify ILOS

events automatically. The generated datasets with ILOS labels enable our super-

vised ML methodology for forecasting. XGBoost is an out-of-box model on the ILOS

prediction task with the benefit of easy and fast training. As a deep learning model,

BRITS obtains similar results to XGBoost and performs better on small datasets.

With transfer learning, BRITS obtains the best weighted average score. Further-

more, knowledge sharing further improves XGBoost’s performance on small datasets

as well. To address the missing data problem, zero-imputation works relatively well

on our datasets because zero-suppression is the dominating factor for missing data

in counter PMs. However, we observe that more sophisticated missing-data handling

in XGBoost and BRITS brings additional improvements and produces the optimal

learning performance. Last but not least, the singular model of XGBoost or BRITS

trained on mega-datasets can handle all 12 facility types from all six networks without

the need of training the model for each facility type or each network specifically.

3.5 Summary

This work has developed a supervised ML methodology to forecast Imminent Loss

of Signal (ILOS) in the long term, 1-7 days before they occur in optical networks.

To achieve this goal, we have developed ML best practices tailored for real-world

telecommunications data. We have analyzed PM data collected from optical network

equipment in six commercial networks of different sizes, totalling 1,373 days and

16,456,331 data samples. As expected, we discover that the general robustness of

optical networks and the prevalence of unpredictable events such as fiber cuts in the

field make LOS events relatively rare and unpredictable. Still, our models are able to

forecast 3% of ILOS events from all receiver ports of the optical network with 65%

precision per prediction. For 100G OTN lines, our precision reaches over 80%, albeit

at low recall. Furthermore, we achieve nearly optimal results with a single ML model

for all facilities and all networks, making it usable for commercial products that work

out-of-the-box. Hence this work enables preventive actions by network operators to

avoid network outages.

The suppression of zero values and the diversity of metrics reported by ports on

30

these networks result in extremely sparse input datasets to our ML models, of which

70%∼80% are null values. To overcome this obstacle, we have experimented with XG-

Boost and BRITS ML architectures, which both can handle null input values. With

all missing values imputed with 0, we find that our XGBoost and BRITS models

both outperform the baseline random forest model significantly. Furthermore, letting

XGBoost and BRITS handle missing data by themselves can further obtain a small

improvement. Without transfer learning, BRITS obtains similar results to XGBoost.

While XGBoost is easy to use and fast to train, the ability of the BRITS architecture

to impute missing values enables other application scenarios, such as generating com-

plete data for other tasks. With the help of transfer learning, BRITS (fine-tune the

entirety) achieves the best results on our datasets. For network datasets with insuffi-

cient data to train a robust ML model, knowledge sharing across all six networks can

improve the model performance significantly (XGBoost improved by 75.8%, BRITS

(fine-tune the classifier only) improved by 36.4%). Fine-tuning on BRITS deliver im-

provement, but not as much as knowledge sharing that shares general representation

of ILOS signatures across networks.

In future work, we plan to improve our ML methodology by considering multiple

prediction classes corresponding to different root-causes and failure modes in optical

networks. This will enable better separation of intrinsically unpredictable events

from predictable ILOS and better optimization of the ML training for the latter. We

will also leverage data with higher time-resolution and loosen the strict distinction

between future-tense forecasting vs present-tense assurance, which will increase the

recall and multiply the added value of the application for network operation centers.

Finally, we plan to extend our analysis to multi-vendor equipment, as we expect

our methodology to apply qualitatively to any optical network from which similar

performance monitoring data can be obtained.

31

Chapter 4

Methodology: Developing

Self-Attention-based Imputation

for Time Series

Our methodology is made up of two parts: (1). the joint-optimization training ap-

proach of imputation and reconstruction; (2). the SAITS model, a weighted combi-

nation of two DMSA blocks.

4.1 Joint-optimization Training Approach

We first present the definition of multivariate time series data as:

Definition of Multivariate Time Series Data Given a collection of mul-

tivariate time series with T time steps and D dimensions, we denote it as X =

{x1, x2, ..., xt, ..., xT} ∈ RT×D, where the t-th observation xt = {x1
t , x

2
t , ..., x

d
t , ..., x

D
t }.

Therefore, we use Xd
t to represent the d-th dimension variable of the t-th step obser-

vation in X. To represent the missing variables in X, we introduce the missing mask

vector M ∈ RT×D, where

Md
t =

{
1 if Xd

t is observed

0 if Xd
t is missing

To well train self-attention-based imputation models (such as Transformer shown

in Figure 8) on the above defined multivariate time-series data, we design a joint-

optimization training approach of imputation and reconstruction. This approach

32

Linear

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Replace

Positional
Encoding

Linear

Concatenate

Learned Representation

Imputed Data

Feature Vectors Missing Masks

Figure 8: Structure of Transformer used in our work. The whole Transformer [1] is
an auto-encoder, which is a generative model consisting of an encoder and a decoder.
Here we only need the encoder part because the imputation task in our work is not
taken as a generative task.

consists of two learning tasks: Masked Imputation Task (MIT) and Observed Recon-

struction Task (ORT). Correspondingly, the training loss is accumulated from two

losses: the imputation loss of MIT and the reconstruction loss of ORT. The details

are as follows:

Task #1: Masked Imputation Task (MIT) MIT is a prediction task on

artificially-masked values, which explicitly forces the model to predict missing values.

In this task, for every batch input into the model, we artificially mask some percentage

(such as 20% in our work) of observed values at random. These values are not visible

to the model, namely, missing to the model. After the model imputes all missing

values, the imputation loss is calculated between these artificially-masked values and

respective imputations. We use the mean absolute error (MAE) as the imputation

loss.

After artificially masking, the actual input feature vector is denoted as X̂, and its

33

corresponding missing mask vector is M̂ . To distinguish artificially-missing values and

originally-missing values, we introduce the indicating mask vector I. Math definitions

of M̂ and I are:

M̂d
t =

{
1 if X̂d

t is observed

0 if X̂d
t is missing

, Idt =

{
1 if X̂d

t is artificially masked

0 otherwise

Note that learning tasks similar to MIT, which mask some objects and then predict

them, are commonly used to train models in NLP (Natural Language Processing)

field, such as the Cloze task [73], and the Masked Language Modeling (MLM) used

to pre-train BERT [74]. MIT is inspired by MLM, but the differences are: (1). MLM

is an unsupervised task, while MIT is supervised; (2) MLM predicts missing tokens

(time steps), while MIT predicts missing values in time steps; (3). One disadvantage

of MLM is that it causes pretrain-finetune discrepancy because masking symbols used

during pretraining are absent from real data in finetuning [75]. However, the original

objective of imputation is to predict missing or masked values. Therefore, MIT does

not cause such discrepancies.

Task #2: Observed Reconstruction Task (ORT) ORT is a reconstruction

task on the observed values. It is widely applied in the training of imputation models

for both time-series and non-time series [2, 27, 28, 32, 20, 21]. After model processing,

observed values in the output are different from their original values, and they are

called reconstructions. In our work, the reconstruction loss is MAE between the

observed values and their respective reconstructions.

In our training approach, MIT and ORT are integral. MIT is utilized to force

the model to predict missing values as accurately as possible, and ORT is leveraged

to ensure the model converging to the distribution of observed data. To further il-

lustrate the effects, we take BRITS [2] as a baseline to compare with Transformer

on the imputation MAE and the reconstruction MAE in two cases: Transformer

(ORT) and Transformer (MIT+ORT). Figure 9(a) shows that the imputation MAE

of Transformer (ORT) goes up from the beginning and is much larger than BRITS’.

However, in Figure 9(b), Transformer (ORT)’s reconstruction MAE is much smaller

than BRITS’. We notice ORT can only ensure that models get well trained on ob-

served values. In other words, there is no guarantee that models can predict missing

values accurately. This explains why Transformer (ORT) performs greatly on the

reconstruction task but poorly on the imputation task. After appending MIT into

34

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

Im
p

u
ta

ti
on

M
A

E

BRITS

Transformer (ORT)

Transformer (MIT)

Transformer (ORT+MIT)

(a) Imputation MAE

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

on
st

ru
ct

io
n

M
A

E

BRITS

Transformer (ORT)

Transformer (MIT)

Transformer (ORT+MIT)

(b) Reconstruction MAE

Figure 9: Imputation MAE and reconstruction MAE in the validation stage. Three
models are trained on the same data. BRITS is trained with ORT, namely in the
same way as the original paper [2]. Transformer (ORT) is trained with only ORT as
well, namely without MIT. Transformer (MIT) is trained on only MIT. Transformer
(ORT+MIT) is trained with the joint-optimization approach, namely with both ORT
and MIT.

the training of Transformer, the imputation loss of MIT becomes the guarantee.

As shown in Figure 9(a), the imputation MAE of Transformer (ORT+MIT) drops

steadily. Taking a look at Transformer (MIT), we can find that MIT makes the

main contribution to decreasing the imputation MAE. Comparing with Transformer

(MIT+ORT), Transformer (MIT) has a slightly higher imputation MAE. This also

proves that ORT can help models further optimize performance on the imputation

task. On the reconstruction MAE, Transformer (MIT) climes up because it is not

required to converge on the observed data. Furthermore, in the aspect of the re-

construction MAE in Figure 9(b), Transformer (ORT+MIT) is slightly higher than

Transformer (ORT) because the gradient of the reconstruction loss gets influenced by

the imputation loss. This is another evidence that our joint-optimization approach

works. We also discuss applying our joint-optimization approach in the training of

BRITS in Section 5.6.

35

Linear

DiagMasked
MHA

Add & Norm

Feed
Forward

Add & Norm

Replace

Positional
Encoding

Linear

Positional
Encoding

DiagMasked
MHA

Feed
Forward

Add & Norm

Add & Norm

Attention Weights

Concatenate

Linear

Concatenate

Linear

ReLU

Concatenate

Linear

Linear

Sigmoid

Combining Weights

Learned Representation 2

Weighted Combine

Replace

Imputed Data

Imputed Data

Feature Vectors Missing Masks

Learned Representation 3

The 1st DMSA block

The 2nd DMSA block

The weighted combination block

Learned Representation 1

Figure 10: The SAITS model architecture.

4.2 Self-Attention-based Imputation Model

As illustrated in Figure 10, SAITS (Self-Attention-based Imputation for Time Series)

is composed of two diagonally-masked self-attention (DMSA) blocks and a weighted

combination. We first introduce some fundamental components of SAITS in Sub-

section 4.2.1 and 4.2.2. Then we illustrate SAITS’ three-part structure in Subsec-

tion 4.2.3, 4.2.4, and 4.2.5, respectively. Finally, we discuss the loss functions of

learning tasks in Subsection 4.2.6.

4.2.1 Diagonally-Masked Self-Attention

The conventional self-attention mechanism is proposed by Vaswani et al. [1] to solve

the language translation task. Now it is widely applied in sequence modeling. A

given sequence is mapped into a query vector Q of dimension dk, a key vector K

of dimension dk and a value vector V of dimension dv. The scaled dot-product can

effectively calculate attention scores (or the attention map) between Q and K. After

that, a softmax function is applied to obtain attention weights. The final output is

36

attention-weighted V . The whole process is as shown in Eq. 5 below:

SelfAttention (Q,K, V) = Softmax

(
QKT

√
dk

)
V (5)

To enhance SAITS’ imputation ability, we apply diagonal masks inside the self-

attention. As formulated in Eq. 6 and 7, we set diagonal entries of the attention

map (∈ RT×T) as −∞ (set as −1 × 109 in practice) so that after the softmax func-

tion, the diagonal attention weights approach 0.

[DiagMask (x)] (i, j) =

{
−∞ i = j

x (i, j) i 6= j
(6)

DiagMaskedSelfAttention (Q,K, V) = Softmax

(
DiagMask

(
QKT

√
dk

))
V

= AV

where A is attention weights

(7)

Therefore, input values at the t-th step can not see themselves and are prohibited from

contributing to their own estimations. Consequently, their estimations depend only

on input values from other (T − 1) steps. This is the reason why diagonally-masked

self-attention (DMSA) can explicitly capture both the temporal dependencies and

feature correlations between time steps. Subsequently, the diagonally-masked multi-

head attention (DiagMaskedMHA) is formulated:

DiagMaskedMHA (x) = Concat (head1, head2, ..., headi, ..., headh)W
O

where headi = DiagMaskedSelfAttention
(
xWQ

i , xW
K
i , xW

V
i

)
,

and h is the number of heads,

parameters WQ
i ∈ Rdmodel ×dk ,WK

i ∈ Rdmodel ×dk ,W V
i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel

(8)

To prove the effectiveness of DMSA, we conduct an ablation study in Appendix 5.7.1.

Note that attention masks are widely applied in self-attention modeling, especially in

NLP field, including the diagonal masks used here, for example [76, 75, 77].

4.2.2 Positional Encoding and Feed-Forward Network

In Transformer, Vaswani et al. [1] apply the positional encoding to make use of the

sequence order because there is no notion of sequence order in the original Transformer

37

architecture. Additionally, there is a fully-connected feed-forward network applied

behind each attention layer. In SAITS, we keep both the positional encoding and the

feed-forward network.

The positional encoding consists of sine and cosine functions, which is formulated

as Eq. 9 below. Note that we use p to refer to the positional encoding in the following

equations for brevity.

PosEnc(pos, 2i) = sin

(
pos

10000
2i

dmodel

)
, PosEnc(pos, 2i+ 1) = cos

(
pos

10000
2i

dmodel

)
where pos is the time-step position, i is the dimension

(9)

The feed-forward network has two linear transformations with a ReLU activation

function between them, as shown in Eq. 10:

FFN (x) = ReLU (xW1 + b1)W2 + b2

where W1 ∈ Rdmodel×dffn , b1 ∈ Rdffn ,W2 ∈ Rdffn×dmodel , b2 ∈ Rdmodel

(10)

4.2.3 The First DMSA Block

e =
[
Concat

(
X̂, M̂

)
We + be

]
+ p (11)

z = {FFN(DiagMaskedMHA (e))}N (12)

X̃1 = zWz + bz (13)

X̂ ′ = M̂ � X̂ +
(

1− M̂
)
� X̃1 (14)

In the first DMSA block, we concatenate the actual input feature vector X̂ and its

missing mask vector M̂ as input. Eq. 11 projects the input to dmodel dimensions

and adds up with the positional encoding p to produce e. We and be are parameters

(We ∈ RD×dmodel , be ∈ Rdmodel). Operation {}N in Eq. 12 means stacking N layers.

Eq. 12 transfers e to z with N stacked layers of the diagonally-masked multi-head

attention and the feed-forward network 1. Eq. 13 reduces z from dmodel dimensions

to D dimensions and produces X̃1 (Learned Representation 1). Parameter Wz ∈
Rdmodel×D and bz ∈ RD. In Eq. 14, we replace missing values in X̂ with corresponding

1Note that the layer normalization [78] and residual connection [79] are applied after each at-
tention layer and feed-forward layer in the same way as [1]. Fig. 10 shows these details. They are
suppressed here for simplicity.

38

values in X̃1 and obtain the completed feature vector X̂ ′ with the observed part in

X̂ kept intact. Here, � is the element-wise product.

4.2.4 The Second DMSA Block

α =
[
Concat

(
X̂ ′, M̂

)
Wα + bα

]
+ p (15)

β = {FFN (DiagMaskedMHA (α))}N (16)

X̃2 = ReLU (βWβ + bβ)Wγ + bγ (17)

The second DMSA block takes the output X̂ ′ of the first DMSA block and continues

learning. Similar to Eq. 11, Eq. 15 projects the concatenation of X̂ ′ and M̂ from D

dimensions to dmodel dimensions and then adds the result together with p to generate

α. Parameter Wα ∈ RD×dmodel , bα ∈ Rdmodel . Eq. 16 performs N times of nested

attention functions and feed-forward networks on α and outputs β. In Eq. 17, to ob-

tain X̃2 (Learned Representation 2), we apply two linear projections on β with a

ReLU activation in between, where parameter Wβ ∈ Rdmodel×D, bβ ∈ RD, Wγ ∈ RD×D,

bγ ∈ RD. We find such operation can help achieve better performance than applying a

single linear projection here. We do not apply the same transformation to obtain X̃1

because the learnable parameters in the following weighted combination can dynami-

cally adjust the weights for X̃1 and X̃2 to form better X̃3 (Learned Representation

3). Moreover, in practice, we find that applying the same transformation to obtain

X̃1 does not help achieve better results. It validates the effectiveness of our weighted

combination, described as below.

4.2.5 The Weighted Combination Block

Â =
1

h

h∑
i

Ai (18)

η = Sigmoid
(

Concat
(
Â, M̂

)
Wη + bη

)
(19)

X̃3 = (1− η)� X̃1 + η � X̃2 (20)

X̂c = M̂ � X̂ +
(

1− M̂
)
� X̃3 (21)

39

To obtain better X̃3, the weighted combination block is designed to dynamically

weigh X̃1 and X̃2 according to temporal dependencies and missingness information.

Â (∈ RT×T) in Eq. 18 is averaged from attention weights A output by multi heads in

the last layer of the second DMSA block. Eq. 19 takes averaged attention weights Â

and missing masks M̂ as references to produce the combining weights η (∈ (0, 1)T×D)

with the learnable parameters Wη (∈ R(T+D)×D) and bη (∈ RD). Eq. 20 combines X̃1

and X̃2 by weights η to form X̃3. We replace missing values in X̂ with corresponding

values in X̃3 to produce the complement vector X̂c, namely the imputed data. To

further discuss the rationality of the weighted combination, we perform an ablation

experiment in Section 5.7.2.

Moreover, the second DMSA block and the weighted combination block are added

to increase our network’s depth and to obtain better performance. We do not apply

more than two DMSA blocks because the benefit brought is marginal. Experiments

and analysis are conducted to prove our points here in Section 5.7.3.

4.2.6 Loss Functions of Learning Tasks

`MAE (estimation, target,mask) =

∑D
d

∑T
t |(estimation− target)�mask|dt∑D

d

∑T
t mask

d
t

(22)

LORT =
1

3

(
`MAE

(
X̃1, X̂, M̂

)
+ `MAE

(
X̃2, X̂, M̂

)
+ `MAE

(
X̃3, X̂, M̂

))
(23)

LMIT = `MAE

(
X̂c, X, I

)
(24)

L = LORT + LMIT (25)

We have two learning tasks in the model training: MIT and ORT. The imputation loss

of MIT (LMIT) and the reconstruction loss of ORT (LORT) are both calculated by the

MAE loss function (`MAE) defined in Eq. 22, which takes three inputs: estimation,

target, and mask (all of them ∈ RT×D). It calculates MAE between values indicated

by mask in estimation and target. target and mask of LORT in Eq. 23 are the

input feature vector X̂ and its missing mask vector M̂ . We let X̃1 and X̃2 directly

participate in the composition of X̃3. Therefore, here we make LORT accumulated

from three learned representations: X̃1, X̃2 and X̃3. We find such accumulated loss

can lead to faster convergence speed. To ensure LORT not too large to dominate the

40

direction of the gradient, it is reduced by a factor of three, namely averaged. Inputs

estimation, target and mask of LMIT in Eq. 24 are the complement feature vector X̂c,

the original feature vector X without artificially-masked values, and the indicating

mask vector I, respectively. At last, Eq. 25 adds LORT and LMIT together, and our

SAITS model is updated by minimizing the final loss L.

41

Chapter 5

Evaluation

To ensure the reproducibility of our results, we make our work available to the com-

munity. Our data preprocessing scripts, model implementations, as well as hyper-

parameter search configurations, are all available in the GitHub repository https:

//github.com/SAITS2021/SAITS.

5.1 Dataset Details

This section contains elaborated descriptions of three public datasets used in this

work and their preprocessing details. General information of all datasets is listed in

Table 5. Note that standardization is applied in the preprocessing of all datasets.

In order to benchmark the proposed SAITS model, we perform experiments on

three public real-world datasets from different domains: PhysioNet 2012 Mortality

Prediction Challenge 1 [7], Beijing Multi-Site Air-Quality 2 [80], and Electricity Load

Diagrams 3 [81]. We show details of dataset descriptions and preprocessing below.

PhysioNet 2012 Mortality Prediction Challenge (PhysioNet-2012) The

PhysioNet 2012 challenge dataset [7] contains 12,000 multivariate clinical time-series

samples collected from patients in ICU (Intensive Care Unit). Each sample is recorded

during the first 48 hours after admission to the ICU. Depending on the status of pa-

tients, there are up to 37 time-series variables measured, such as temperature, heart

1https://www.physionet.org/content/challenge-2012
2https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

42

https://github.com/SAITS2021/SAITS
https://github.com/SAITS2021/SAITS

Table 5: General information of three datasets used in this work.

PhysioNet-2012 Air-Quality Electricity

Number of total samples 11,988 1,461 1,400

Number of features 37 132 370

Sequence length 48 24 100

Original missing rate 80.0% 1.6% 0%

rate, blood pressure. Measurements might be collected at regular intervals (hourly

or daily), and also may be recorded at irregular intervals (only collected as required).

Not all variables are available in all samples. Note that this dataset is very sparse

and has 80% missing values in total. The dataset is firstly split into the training set

and the test set according to 80% and 20%. Then 20% of samples are split from the

training set as the validation set. We randomly eliminate 10% of observed values in

the validation set and the test set and use these values as ground truth to evaluate

the imputation performance of models. Following 12 samples are dropped because of

containing no time-series information at all: 147514, 142731, 145611, 140501, 155655,

143656, 156254, 150309, 140936, 141264, 150649, 142998.

Beijing Multi-Site Air-Quality (Air-Quality) This air-quality dataset [80] in-

cludes hourly air pollutants data from 12 monitoring sites in Beijing. Data is collected

from 2013/03/01 to 2017/02/28 (48 months in total). For each monitoring site, there

are 11 continuous time series variables measured (e.g. PM2.5, PM10, SO2). We ag-

gregate variables from 12 sites together so that this dataset has 132 features. There

are totally 1.6% missing values in this dataset. The test set takes data from the first

10 months (2013/03 - 2013/12). The validation set contains data from the following

10 months (2014/01 - 2014/10). The training set takes the left 28 months (2014/11 -

2017-02). To generate time series data samples, we select every 24 hours data, namely

every 24 consecutive steps, as one sample. Similar to dataset PhysioNet-2012, 10%

observed values in the validation set and test set are eliminated and held out as

ground-truth for evaluation.

Electricity Load Diagrams (Electricity) This is another widely-used public

dataset from UCI [81]. It contains electricity consumption data (in kWh) collected

43

from 370 clients every 15 minutes and has no missing data. The period of this dataset

is from 2011/01/01 to 2014/12/31 (48 months in total). Similar to processing Air-

Quality, we use the first 10 months of data (2011/01 - 2011/10) as the test set, the

following 10 months of data (2011/11 - 2012/08) as the validation set and the left

(2012/09 - 2014/12) as the training set. We select every 100 consecutive steps as a

sample to generate time-series data for model training. Due to this dataset having no

missing values, we vary artificial missing rate from 10%∼90% to eliminate observed

values in the training set, validation set, and test set. This can make the comparison

between our method and other SOTA models more comprehensive. Artificial missing

values in the validation and test set are held out for model evaluation. Experiment

results of 10% missing values are displayed in Table 6. Results of 20%∼90% missing

values are shown in Table 8.

5.2 Baseline Methods

To obtain a thorough comparison, we compare our method with two naive impu-

tation methods and five SOTA models: (1). Median: we fill missing values with

corresponding median values from the training set; (2). Last: in each sample, miss-

ing values are filled by the last previous observations of given features. If there is no

previous observation, 0 will be filled in; (3). GRUI-GAN [27]; (4). E2GAN [28];

(5). M-RNN [26]; (6). GP-VAE [32]; (7). BRITS [2]. These five SOTA models

have already been introduced in Chapter 2. Their open-source repositories are listed

below:

• GRUI-GAN [27]: https://github.com/Luoyonghong/Multivariate-Time

-Series-Imputation-with-Generative-Adversarial-Networks;

• E2GAN [28]: https://github.com/Luoyonghong/E2EGAN;

• M-RNN [26]: https://github.com/jsyoon0823/MRNN;

• GP-VAE [32]: https://github.com/ratschlab/GP-VAE;

• BRITS [2]: https://github.com/caow13/BRITS;

44

https://github.com/Luoyonghong/Multivariate-Time-Series-Imputation-with-Generative-Adversarial-Networks
https://github.com/Luoyonghong/Multivariate-Time-Series-Imputation-with-Generative-Adversarial-Networks
https://github.com/Luoyonghong/E2EGAN
https://github.com/jsyoon0823/MRNN
https://github.com/ratschlab/GP-VAE
https://github.com/caow13/BRITS

5.3 Evaluation Metrics of Imputation Performance

We use three metrics to evaluate the imputation performance of methods: MAE

(Mean Absolute Error), RMSE (Root Mean Square Error), and MRE (Mean Relative

Error). Math definitions of them are listed below. Note that errors are only computed

on the observed values, which are indicated by mask.

MAE (estimation, target,mask) =

∑D
d

∑T
t |(estimation− target)�mask|dt∑D

d

∑T
t mask

d
t

RMSE (estimation, target,mask) =

√√√√∑D
d

∑T
t

(
((estimation− target)�mask)2)d

t∑D
d

∑T
t mask

d
t

MRE (estimation, target,mask) =

∑D
d

∑T
t |(estimation− target)�mask|dt∑D

d

∑T
t |target�mask|dt

5.4 Experimental Setup

We fix the batch size as 128 and apply the early stopping strategy in the model

training. Training of models is stopped after 30 epochs without any decrease of

MAE. To permit a fair comparison between the models, we execute hyper-parameter

searches for every model on each dataset, except SAITS (base). For SAITS (base), we

fix its hyper-parameters to form a base model and observe its performance. SAITS

(base) is also applied in ablation experiments in Section 5.7. All models are trained

with the Adam optimizer [82] on Nvidia Quadro RTX 5000 GPUs. We implement

our models with PyTorch [83]. We expose further details of models’ hyper-parameter

searching as below.

General For all models, the learning rate is log-uniformly sampled between 1×10−4

and 1×10−2. If applicable, the dropout rate is sampled from the values (0.0, 0.1, 0.2,

0.3, 0.4, 0.5).

RNN-based models For all RNN-based models (GRUI-GAN, E2GAN, M-RNN,

and BRITS), the RNN hidden size is sampled from the values (32, 64, 128, 256, 512,

1024). For GRUI-GAN and E2GAN, the dimension of z is sampled from (32, 64, 128,

45

256, 512, 1024), the number of pretrain epochs is sampled from (5, 10, 15, 20). For

GRUI-GAN, λ is sampled from (0, 0.15, 0.3, 0.45). For E2GAN, λ is sampled from

(2, 4, 8, 16, 32, 64). set σ as 1.005.

Self-attention-based models For self-attention models (Transformer and SAITS),

we sample the number of layers N from (1, 2, 3, 4, 5, 6, 7, 8), dmodel from (64, 128,

256, 512, 1024), dffn from (128, 256, 512, 1024, 2048, 4096), dv from (32, 64, 128, 256,

512), the number of heads h from (2, 4, 8). dk is set as the value of dmodel divided by

h.

For model SAITS (base), we fix the learning rate = 0.001, the dropout rate = 0.1,

N = 2, dmodel = 256, dffn = 128, h = 4, dv = dk = 64.

5.5 Result Analysis

5.5.1 Imputation Performance Comparison

Table 6: Performance comparison between methods on three datasets. 10% observa-
tions in the test set are held out for evaluation. Metrics are reported in the order of
MAE / RMSE / MRE. The lower, the better. Bold font indicates the best perfor-
mance. GRUI-GAN and E2GAN have no results on Electricity because they fail in
the training due to loss explosion

Method PhysioNet-2012 Air-Quality Electricity

Median 0.726 / 0.988 / 103.5% 0.763 / 1.175 / 107.4% 2.056 / 2.732 / 110.1%

Last 0.862 / 1.207 / 123.0% 0.967 / 1.408 / 136.3% 1.006 / 1.533 / 53.9%

GRUI-GAN 0.765 / 1.040 / 109.1% 0.788 / 1.179 / 111.0% /

E2GAN 0.702 / 0.964 / 100.1% 0.750 / 1.126 / 105.6% /

M-RNN 0.533 / 0.776 / 76.0% 0.294 / 0.643 / 41.4% 1.244 / 1.867 / 66.6%

GP-VAE 0.398 / 0.630 / 56.7% 0.268 / 0.614 / 37.7% 1.094 / 1.565 / 58.6%

BRITS 0.256 / 0.767 / 36.5% 0.153 / 0.525 / 21.6% 0.847 / 1.322 / 45.3%

Transformer 0.190 / 0.445 / 26.9% 0.158 / 0.521 / 22.3% 0.823 / 1.301 / 44.0%

SAITS (base) 0.192 / 0.439 / 27.3% 0.146 / 0.521 / 20.6% 0.822 / 1.221 / 44.0%

SAITS 0.186 / 0.431 / 26.6% 0.137 / 0.518 / 19.3% 0.735 / 1.162 / 39.4%

Table 6 reports the imputation performance of models on three datasets in three

evaluation metrics (MAE / RMSE / MRE). On PhysioNet-2012 and Air-Quality,

46

GRUI-GAN achieves better results than Last, but is slightly inferior to Median.

E2GAN performs better than these three methods. On Electricity, GRUI-GAN and

E2GAN both fail because of loss explosion. We find this is caused by the long sequence

length. Dataset Electricity’s sequence length is 100. If we increase the sequence length

of dataset Air-Quality from 24 to 100, both GAN models will be confronted with loss

explosion and fail again. M-RNN outperforms both naive imputation methods a lot

on PhysioNet-2012 and Air-Quality but gets worse results than Last on Electricity.

GP-VAE and BRITS both perform much better than the methods mentioned above.

BRITS is the best one among baseline methods. When it comes to self-attention-based

models, Transformer surpasses BRITS obviously on PhysioNet-2012 and Electricity,

and obtains comparable results to BRITS on Air-Quality. SAITS (base) achieves

similar results to Transformer on all datasets. SAITS exceeds all baseline models

significantly on all metrics and all datasets, and outperforms Transformer and SAITS

(base) as well.

Table 7: Models’ parameter number (in million) and training time of each epoch (in
seconds) on datasets PhysioNet-2012, Air-Quality, and Electricity are listed from left
to right. GRUI-GAN and E2GAN have no results for dataset Electricity because they
fail on this dataset due to loss explosion.

Model # of param s/epoch

GRUI-GAN 0.16M 14.4

E2GAN 0.08M 22.8

M-RNN 0.07M 6.8

GP-VAE 0.15M 40.1

BRITS 0.73M 12.8

Transformer 4.36M 3.1

SAITS (base) 1.38M 2.7

SAITS 5.32M 5.0

of param s/epoch

2.32M 2.0

1.13M 2.2

1.09M 1.3

0.36M 8.7

11.25M 1.9

5.13M 0.9

1.56M 1.1

3.07M 0.9

of param s/epoch

/ /

/ /

18.63M 3.9

13.45M 106.0

7.00M 5.2

14.78M 2.6

2.20M 2.1

11.51M 2.6

To show further details of models, we list the parameter number and training speed

of models from Table 6 in Table 7. We can see that GP-VAE is the slowest model and

consumes the most seconds for each epoch training. RNN-based models are all slower

than self-attention-based models. Compared to BRITS that yields the best results

in baseline methods, SAITS takes half the training time or even less as BRITS on

each epoch. Compared to Transformer, SAITS (base) has only 15%∼30% parameters

47

of Transformer’s, but it still obtains comparable performance to Transformer. This

confirms that SAITS’ model structure is better than Transformer on the time-series

imputation task.

Table 8 shows imputation results of the experiment where we introduce missing

values into dataset Electricity at different rates between 20%∼90%. Results of 10%

missing rate have been displayed in Table 6. GRUI-GAN and E2GAN are omitted

because they fail on dataset Electricity due to loss explosion as we discussed above.

Baseline methods are all inferior to self-attention-based models in all cases. SAITS

achieves the best performance in eight out of nine cases. SAITS (base) performs

better than Transformer in cases of 20%, 30%, and 40%. However, its performance

becomes worse than Transformer’s in the left cases where missing rates become higher.

Compared to BRITS, Transformer and SAITS perform much better mainly be-

cause of two reasons: (1). self-attention has a much stronger ability than RNN to

capture long-term dependencies; (2). Transformer and SAITS are not auto-regressive,

so they avoid compounding error, which auto-regressive models (such as BRITS) are

highly susceptible to. SAITS outperforms Transformer is mainly due to its structure

design (DMSA and weighted-combination), which has been clarified in Section 4.2

and been validated in the ablation experiments in Section 5.7.

5.5.2 Downstream Classification Task

Similar to prior work [2, 27, 28, 32, 33], we design a downstream classification ex-

periment on dataset PhysioNet-2012 to further compare the imputation quality of

each method. In PhysioNet-2012, each sample has a label indicating if the patient

is deceased. There are 1,707 (14.2%) samples with the positive mortality label. We

first let each method impute the dataset and then train a classifier on each imputed

dataset to obtain classification results. Since this is a time-series dataset, we apply

a simple RNN classification model as the classifier. This RNN classifier consists of

a GRU layer followed by a fully connected layer. All hyper-parameters are fixed as

following: the learning rate (1 × 10−3), the batch size (128), the RNN hidden size

(128), the patience of the early stopping strategy (20). We keep the classifier and

the training procedure exactly the same for each imputed dataset. Considering that

classes in this dataset are imbalanced, we use ROC-AUC (Area Under ROC Curve),

48

Table 8: Performance comparison between methods on dataset Electricity across
different missing rates from 20%∼90%. Metrics are reported in the order of MAE /
RMSE / MRE.

Method 20% 30% 40%

Median 2.053 / 2.726 / 109.9% 2.055 / 2.732 / 110.0% 2.058 / 2.734 / 110.2%

Last 1.012 / 1.547 / 54.2% 1.018 / 1.559 / 54.5% 1.025 / 1.578 / 54.9%

M-RNN 1.242 / 1.854 / 66.5% 1.258 / 1.876 / 67.3% 1.269 / 1.884 / 68.0%

GP-VAE 1.124 / 1.502 / 60.2% 1.057 / 1.571 / 56.6% 1.090 / 1.578 / 58.4%

BRITS 0.928 / 1.395 / 49.7% 0.943 / 1.435 / 50.4% 0.996 / 1.504 / 53.4%

Transformer 0.843 / 1.318 / 45.1% 0.846 / 1.321 / 45.3% 0.876 / 1.387 / 46.9%

SAITS (base) 0.838 / 1.264 / 44.9% 0.845 / 1.247 / 45.2% 0.873 / 1.325 / 46.7%

SAITS 0.763 / 1.187 / 40.8% 0.790 / 1.223 / 42.3% 0.869 / 1.314 / 46.7%

Method 50% 60% 70%

Median 2.053 / 2.728 / 109.9% 2.057 / 2.734 / 110.2% 2.050 / 2.726 / 109.8%

Last 1.032 / 1.595 / 55.2% 1.040 / 1.615 / 55.7% 1.049 / 1.640 / 56.2%

M-RNN 1.283 / 1.902 / 68.7% 1.298 / 1.912 / 69.4% 1.305 / 1.928 / 69.9%

GP-VAE 1.097 / 1.572 / 58.8% 1.101 / 1.616 / 59.0% 1.037 / 1.598 / 55.6%

BRITS 1.037 / 1.538 / 55.5% 1.101 / 1.602 / 59.0% 1.090 / 1.617 / 58.4%

Transformer 0.895 / 1.410 / 47.9% 0.891 / 1.404 / 47.7% 0.920 / 1.437 / 49.3%

SAITS (base) 0.939 / 1.537 / 50.3% 0.969 / 1.565 / 51.9% 0.972 / 1.601 / 52.0%

SAITS 0.876 / 1.377 / 46.9% 0.892 / 1.328 / 47.9% 0.898 / 1.273 / 48.1%

Method 80% 90%

Mean 2.059 / 2.734 / 110.2% 2.056 / 2.723 / 110.1%

Last 1.059 / 1.663 / 56.7% 1.070 / 1.690 / 57.3%

M-RNN 1.318 / 1.951 / 70.5% 1.331 / 1.961 / 71.3%

GP-VAE 1.062 / 1.621 / 56.8% 1.004 / 1.622 / 53.7%

BRITS 1.138 / 1.665 / 61.0% 1.163 / 1.702 / 62.3%

Transformer 0.924 / 1.472 / 49.5% 0.934 / 1.491 / 49.8%

SAITS (base) 1.012 / 1.608 / 54.2% 1.001 / 1.630 / 53.6%

SAITS 0.908 / 1.327 / 48.6% 0.933 / 1.354 / 49.9%

49

PR-AUC (Area Under Precision-Recall Curve), and F1-score to measure the perfor-

mance. Experiment results are reported in Table 9. Method names annotate that

the dataset is imputed by which method. The classifier trained on data imputed by

SAITS achieves the best results on all evaluation metrics.

Table 9: Results of the downstream classification task on dataset PhysioNet-2012.
Performance metrics of methods are calculated by five independent runs. The re-
ported values are means ± standard deviations. The higher, the better. Values in
bold font are the best.

Method ROC-AUC PR-AUC F1-score

Median 0.834 ± 0.004 0.460 ± 0.006 0.385 ± 0.031

Last 0.828 ± 0.003 0.469 ± 0.004 0.395 ± 0.024

GRUI-GAN 0.830 ± 0.002 0.451 ± 0.007 0.388 ± 0.020

E2GAN 0.830 ± 0.002 0.455 ± 0.005 0.356 ± 0.020

M-RNN 0.822 ± 0.002 0.454 ± 0.006 0.388 ± 0.035

GP-VAE 0.834 ± 0.002 0.481 ± 0.007 0.409 ± 0.033

BRITS 0.835 ± 0.001 0.491 ± 0.004 0.413 ± 0.018

Transformer 0.843 ± 0.005 0.492 ± 0.014 0.412 ± 0.019

SAITS (base) 0.846 ± 0.002 0.498 ± 0.004 0.415 ± 0.020

SAITS 0.848 ± 0.002 0.510 ± 0.005 0.427 ± 0.028

5.6 BRITS Trained by the joint-optimization ap-

proach

Table 10: Performance comparison between BRITS trained without MIT and with
MIT.

Model PhysioNet-2012 Air-Quality Electricity

BRITS (w/o MIT) 0.256 / 0.767 / 36.5% 0.153 / 0.525 / 21.6% 0.847 / 1.322 / 45.3%

BRITS (w MIT) 0.251 / 0.691 / 35.8% 0.144 / 0.521 / 20.3% 0.910 / 1.363 / 48.7%

To discuss how our joint-optimization approach can influence the performance of

RNN-based models, we apply it in the training of model BRITS and show experi-

mental results in this section.

50

BRITS models from Table 6 are used here, namely, hyper-parameters are kept

exactly the same. The difference between the training way in the original paper [2]

and our joint-optimization approach is whether to apply MIT in training. Therefore,

we use suffix ”w/o MIT” to represent the original training way and suffix ”w MIT”

to represent our joint-optimization training approach.

As displayed in Table 10, BRITS (w MIT) outperforms BRITS (w/o MIT) on

datasets PhysioNet-2012 and Air-Quality, but achieves worse performance on dataset

Electricity. Therefore, applying MIT in the training of BRITS can bring further im-

provement on some datasets, but this is not necessary, and it depends on the dataset.

Note that despite BRITS (w MIT) obtains better results on datasets PhysioNet-2012

and Air-Quality, it is still inferior to Transformer and SAITS.

5.7 Ablation Experiments

In this section, we leverage three ablation experiments to discuss the rationality of

SAITS algorithm design. The first one in 5.7.1 is to validate the improvement brought

by the diagonally-masked self-attention (DMSA). The second one in 5.7.2 is to prove

the necessity of the weighted combination. The third one in 5.7.3 is to explain why

we do not apply more than two DMSA blocks.

5.7.1 Ablation Study of the Diagonal Mask in Self-Attention

Table 11: Ablation experiment results of the diagonal mask in self-attention. SAITS
(base, w/o) is the exact same with SAITS (base), except it is without the diagonal
masks in self-attention layers.

Model PhysioNet-2012 Air-Quality Electricity

SAITS (base, w/o) 0.200 / 0.446 / 28.5% 0.148 / 0.528 / 21.3% 0.898 / 1.504 / 48.1%

SAITS (base) 0.192 / 0.439 / 27.3% 0.146 / 0.521 / 20.6% 0.822 / 1.221 / 44.0%

To prove that DMSA has better imputation performance than the conventional

self-attention, we make a comparison between SAITS (base) and SAITS (base, w/o)

in Table 11. SAITS (base, w/o) is without the diagonal mask. SAITS (base) out-

performs SAITS (base, w/o) on all datasets. It demonstrates DMSA does improve

SAITS’ imputation ability.

51

5.7.2 Ablation Study of the Weighted Combination

Table 12: Ablation experiment results of the weighted combination. SAITS (base,
with only 1 block) does not have the second DMSA block nor the weighted-
combination block, and its final representation is directly from the only DMSA block.
SAITS (base, R2) directly takes Learned Representation 2 as the final represen-
tation, namely, it has no combination of representations. SAITS (base, Res) applies
a residual connection to combine Learned Representation 1 and 2.

Model PhysioNet-2012 Air-Quality Electricity

SAITS (base, with only 1 block) 0.204 / 0.496 / 29.2% 0.178 / 0.544 / 25.1% 0.876 / 1.381 / 46.9%

SAITS (base, R2) 0.199 / 0.451 / 28.4% 0.149 / 0.522 / 21.0% 0.906 / 1.456 / 48.5%

SAITS (base, Res) 0.200 / 0.477 / 28.5% 0.160 / 0.527 / 22.6% 0.819 / 1.223 / 43.7%

SAITS (base) 0.192 / 0.439 / 27.3% 0.146 / 0.521 / 20.6% 0.822 / 1.221 / 44.0%

After applying diagonal masks to self-attention, we continue to think about how to

enhance the imputation ability. Therefore, we add the second DMSA block to increase

our model’s depth and extend the learning process. Rather than simply raising the

layer number of the first DMSA block (which can also increase the network depth),

we employ the second DMSA block as the second learner to play a role of verification.

Different from the first DMSA block that can only make imputation from scratch,

the second DMSA block has its input containing the imputed data from the first

DMSA block. Therefore, its learning target is to verify these imputation values.

However, there is no guarantee that the second DMSA block can perform better than

the first DMSA block, namely, the imputations from the second DMSA block are not

necessarily better than those from the first DMSA block. For example, SAITS (base,

R2) achieves better performance than SAITS (base, with only 1 block) on datasets

PhysioNet-2012 and Air-Quality, but performs worse on dataset Electricity. Hence,

taking imputation from either block is not wise. Therefore, we let representations

from both blocks form the final imputation together, namely the way of the weighted

combination described in Section 4.2.5.

To discuss the rationality of the weighted combination, we compare the weighted

combination with other two designs to demonstrate the rationality of the weighted

combination. As shown in Table 12, one is no combination, directly taking Learned

Representation 2 as the final representation, referring to SAITS (base, R2). The

other is the residual combination, which combines Learned Representation 1 and

2 by a residual connection, referring to SAITS (base, Res).

52

With results in Table 12, we can see SAITS (base) obtains the best results on

both datasets PhysioNet-2012 and Air-Quality. On these two datasets, SAITS (base,

Res) is even inferior to SAITS (base, R2), namely, the residual combination makes

results worse. On dataset Electricity, SAITS (base) and SAITS (base, Res) achieve

comparable results, and both are better than SAITS (base, R2). In summary, our

weighted combination is the most practical design in all of the three.

5.7.3 Ablation Study of the Third DMSA Block

Table 13: Ablation experiment results of the third DMSA block. Results of SAITS
here are from Table 6 in this thesis. Both SAITS with three DMSA blocks (residual
connected) and SAITS with three DMSA blocks (cascade weighted) apply the same
hyper-parameters with SAITS.

Model PhysioNet-2012 Air-Quality Electricity

SAITS with three DMSA blocks (residual connected) 0.189 / 0.620 / 27.0% 0.158 / 0.509 / 22.2% 0.740 / 1.020 / 39.6%

SAITS with three DMSA blocks (cascade weighted) 0.185 / 0.418 / 26.4% 0.146 / 0.512 / 20.5% 0.800 / 1.147 / 42.8%

SAITS 0.186 / 0.431 / 26.6% 0.137 / 0.518 / 19.3% 0.735 / 1.162 / 39.4%

Similar to applying the second DMSA block to obtain better performance, theoret-

ically, we can apply more than two DMSA blocks. However, the benefit is marginal.

Taking three DMSA blocks as an example, we conduct experiments and obtain results

listed in Table 13 above.

Regarding how to combine representations from three DMSA blocks, we still have

two options: residual connection and weighted combination. Residual connection is

easy to implement, and SAITS with three DMSA blocks (residual connected) takes

this way. The weighted combination can only combine two blocks’ representation at a

time, so we use cascade-weighted combination here and implement SAITS with three

DMSA blocks (cascade weighted). The graphs in Figure 11 are plotted to clearly

illustrate both models’ structure.

With the results shown in Table 13, we can see, in general, SAITS with three

DMSA blocks (residual connected) and SAITS with three DMSA blocks (cascade

weighted) do not achieve obviously better results than SAITS, which means adding

one more block brings nothing but more parameters and computation resource waste.

53

Linear

DiagMasked
MHA

Add & Norm

Feed
Forward

Add & Norm

Replace

Positional
Encoding

Linear

Concatenate

Residual Connection

Replace

Imputed Data

Imputed Data

Feature Vectors Missing Masks

Learned Representation 4

The 1st DMSA block
Learned Representation 1

Positional
Encoding

DiagMasked
MHA

Feed
Forward

Add & Norm

Add & Norm

Linear

Concatenate

Linear

ReLU

Linear

Learned Representation 3

The 3rd DMSA block

Replace

Positional
Encoding

DiagMasked
MHA

Feed
Forward

Add & Norm

Add & Norm

Linear

Concatenate

Linear

ReLU

Linear

Learned Representation 2

The 2nd DMSA block

Imputed Data

(a) SAITS with three DMSA blocks (residual connected)

Linear

DiagMasked
MHA

Add & Norm

Feed
Forward

Add & Norm

Replace

Positional
Encoding

Linear

Concatenate

Replace

Imputed Data

Imputed Data

Feature Vectors Missing Masks

Learned Representation 3

The 1st DMSA block
Learned Representation 1

Positional
Encoding

DiagMasked
MHA

Feed
Forward

Add & Norm

Add & Norm

Linear

Concatenate

Linear

ReLU

Linear

Learned Representation 4

The 3rd DMSA block

Replace

Positional
Encoding

DiagMasked
MHA

Feed
Forward

Add & Norm

Add & Norm

Linear

Concatenate

Linear

ReLU

Linear

Learned Representation 2

The 2nd DMSA block

Imputed Data

Concatenate

Linear

Sigmoid

Combining Weights

Attention Weights

Weighted Combine

Attention Weights

Concatenate

Linear

Sigmoid

Combining Weights

The 2nd weighted combination block

The 1st weighted
combination

block

Weighted Combine

Learned Representation 5

(b) SAITS with three DMSA blocks (cascade weighted)

Figure 11: Structure illustrations of SAITS with three DMSA blocks.

54

Chapter 6

Threats to Validity

6.1 Datasets

To increase the robustness of our experimental results, three public real-world datasets

used to validate SAITS’ performance are selected from three different domains. Ad-

ditionally, we deliberately make their feature numbers (24, 48, 100) and sequence

lengths (37, 132, 370) clear different from each other. Even though, our datasets does

not cover all situations and can not represent all kinds of complicated application

scenarios in the real world. For example, we do not take spatial-temporal datasets

into consideration in this thesis. However, they are also a common form of time series

data.

6.2 Modeling

SAITS is based on the original self-attention mechanism proposed in [1]. Therefore,

SAITS uses O(n2) time and space with respect to the sequence length. If samples

from the dataset has too long sequence length, this may cause problems such as

consuming too much computational power or memory. Solutions proposed in [84, 85]

may be worthy of references.

55

6.3 Experiments

As discussed in Chapter 1, missing values in time series can be MCAR, MAR and

MNAR, and this work focuses on the MCAR case. Future work will investigate

SAITS’ performance in the cases of MAR and MNAR.

56

Chapter 7

Conclusion

In this thesis, firstly, we study a ILOS-forecasting case from the telecommunication

domain to present how to handle missing values with the present machine learning

methods. In this case, we develop a deep learning model based on BRITS to process

missing values and obtain representation for forecasting. However, we find BRITS’

imputation performance is susceptible to the problems of low training speed, mem-

ory constraints, and compounding error. To overcome these drawbacks, we propose

SAITS, a novel self-attention-based model to impute missing values in multivariate

time-series. Specifically, we design a joint-optimization training approach for self-

attention-based models to perform on the time-series imputation task. Transformer

trained by this approach achieves up to 25% better imputation accuracy to the state-

of-the-art (SOTA) models. Moreover, the experimental results in Table 6 show that,

compared to BRITS on three real-world datasets, SAITS reduces mean absolute er-

ror (MAE) by 12%∼38% and achieves 2.0∼2.6 times faster training speed. SAITS

obtains MAE 2%∼13% smaller than Transformer, with comparable training speed of

Transformer. Results in Table 8 and 9 further demonstrate that we achieve a new

SOTA.

57

Bibliography

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, editors, Advances in Neural Information Processing Systems,

volume 30. Curran Associates, Inc., 2017.

[2] Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. BRITS:

Bidirectional recurrent imputation for time series. In S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances

in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,

2018.

[3] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-

and short-term temporal patterns with deep neural networks. In The 41st In-

ternational ACM SIGIR Conference on Research & Development in Information

Retrieval, SIGIR ’18, page 95–104, New York, NY, USA, 2018. Association for

Computing Machinery.

[4] Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. Temporal regularized matrix

factorization for high-dimensional time series prediction. In D. Lee, M. Sugiyama,

U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 29. Curran Associates, Inc., 2016.

[5] Tsung-Jung Hsieh, Hsiao-Fen Hsiao, and Wei-Chang Yeh. Forecasting stock

markets using wavelet transforms and recurrent neural networks: An inte-

grated system based on artificial bee colony algorithm. Applied Soft Comput-

ing, 11(2):2510–2525, 2011. The Impact of Soft Computing for the Progress of

Artificial Intelligence.

58

[6] Stefan Bauer, Bernhard Schölkopf, and Jonas Peters. The arrow of time in

multivariate time series. In Maria Florina Balcan and Kilian Q. Weinberger,

editors, Proceedings of The 33rd International Conference on Machine Learning,

volume 48 of Proceedings of Machine Learning Research, pages 2043–2051, New

York, New York, USA, 20–22 Jun 2016. PMLR.

[7] Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark.

Predicting in-hospital mortality of icu patients: The physionet/computing in

cardiology challenge 2012. Computing in cardiology, 39:245, 2012.

[8] Edward Choi, Cao Xiao, Walter Stewart, and Jimeng Sun. Mime: Multilevel

medical embedding of electronic health records for predictive healthcare. In

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems, volume 31.

Curran Associates, Inc., 2018.

[9] Max Horn, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borg-

wardt. Set functions for time series. In Hal Daumé III and Aarti Singh, editors,

Proceedings of the 37th International Conference on Machine Learning, volume

119 of Proceedings of Machine Learning Research, pages 4353–4363. PMLR, 13–

18 Jul 2020.

[10] Xingjian SHI, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and

Wang-chun WOO. Convolutional lstm network: A machine learning approach

for precipitation nowcasting. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,

and R. Garnett, editors, Advances in Neural Information Processing Systems,

volume 28. Curran Associates, Inc., 2015.

[11] Xiuwen Yi, Yu Zheng, Junbo Zhang, and Tianrui Li. ST-MVL: Filling missing

values in geo-sensory time series data. In Proceedings of the 25th International

Joint Conference on Artificial Intelligence. IJCAI 2016, June 2016.

[12] Ruizhi Deng, Bo Chang, Marcus A Brubaker, Greg Mori, and Andreas

Lehrmann. Modeling continuous stochastic processes with dynamic normaliz-

ing flows. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,

editors, Advances in Neural Information Processing Systems, volume 33, pages

7805–7815. Curran Associates, Inc., 2020.

59

[13] J. Graham. Missing data analysis: making it work in the real world. Annual

review of psychology, 60:549–76, 2009.

[14] Donald B. Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

[15] Craig F. Ansley and Robert Kohn. On the estimation of arima models with

missing values. In Emanuel Parzen, editor, Time Series Analysis of Irregularly

Observed Data, pages 9–37, New York, NY, 1984. Springer New York.

[16] D. Kreindler and C. Lumsden. The effects of the irregular sample and missing

data in time series analysis. Nonlinear dynamics, psychology, and life sciences,

10 2:187–214, 2006.

[17] Jun Wang, Arjen P. de Vries, and Marcel J. T. Reinders. Unifying user-based

and item-based collaborative filtering approaches by similarity fusion. In Pro-

ceedings of the 29th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, SIGIR ’06, page 501–508, New York,

NY, USA, 2006. Association for Computing Machinery.

[18] D. S. Fung. Methods for the estimation of missing values in time series, 2006.

[19] Melissa J Azur, E. Stuart, C. Frangakis, and P. Leaf. Multiple imputation by

chained equations: what is it and how does it work? International Journal of

Methods in Psychiatric Research, 20, 2011.

[20] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GAIN: Missing data

imputation using generative adversarial nets. In Jennifer Dy and Andreas Krause,

editors, Proceedings of the 35th International Conference on Machine Learn-

ing, volume 80 of Proceedings of Machine Learning Research, pages 5689–5698.

PMLR, 10–15 Jul 2018.

[21] Steven Cheng-Xian Li, Bo Jiang, and Benjamin Marlin. MisGAN: Learning

from incomplete data with generative adversarial networks. In International

Conference on Learning Representations, 2019.

[22] Seongwook Yoon and Sanghoon Sull. GAMIN: Generative adversarial multiple

imputation network for highly missing data. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

60

[23] Alfredo Nazábal, Pablo M. Olmos, Zoubin Ghahramani, and Isabel Valera. Han-

dling incomplete heterogeneous data using vaes. Pattern Recognition, 107:107501,

2020.

[24] Richard Wu, Aoqian Zhang, Ihab Ilyas, and Theodoros Rekatsinas. Attention-

based learning for missing data imputation in holoclean. In I. Dhillon, D. Pa-

pailiopoulos, and V. Sze, editors, Proceedings of Machine Learning and Systems,

volume 2, pages 307–325, 2020.

[25] Spyridon Mouselinos, Kyriakos Polymenakos, Antonis Nikitakis, and Konstanti-

nos Kyriakopoulos. MAIN: multihead-attention imputation networks. CoRR,

abs/2102.05428, 2021.

[26] Jinsung Yoon, William R. Zame, and Mihaela van der Schaar. Estimating missing

data in temporal data streams using multi-directional recurrent neural networks.

IEEE Transactions on Biomedical Engineering, 66(5):1477–1490, 2019.

[27] Yonghong Luo, Xiangrui Cai, Ying ZHANG, Jun Xu, and Yuan xiaojie. Multi-

variate time series imputation with generative adversarial networks. In S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, ed-

itors, Advances in Neural Information Processing Systems, volume 31. Curran

Associates, Inc., 2018.

[28] Yonghong Luo, Ying Zhang, Xiangrui Cai, and Xiaojie Yuan. E2GAN: End-

to-end generative adversarial network for multivariate time series imputation.

In Proceedings of the Twenty-Eighth International Joint Conference on Artifi-

cial Intelligence, IJCAI-19, pages 3094–3100. International Joint Conferences on

Artificial Intelligence Organization, 7 2019.

[29] Yukai Liu, Rose Yu, Stephan Zheng, Eric Zhan, and Yisong Yue. NAOMI:

Non-autoregressive multiresolution sequence imputation. In Advances in Neural

Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[30] Jiawei Ma, Zheng Shou, Alireza Zareian, Hassan Mansour, Anthony Vetro, and

Shih-Fu Chang. CDSA: cross-dimensional self-attention for multivariate, geo-

tagged time series imputation. CoRR, abs/1905.09904, 2019.

61

[31] Parikshit Bansal, Prathamesh Deshpande, and Sunita Sarawagi. Missing value

imputation on multidimensional time series. CoRR, abs/2103.01600, 2021.

[32] Vincent Fortuin, Dmitry Baranchuk, Gunnar Raetsch, and Stephan Mandt. GP-

VAE: Deep probabilistic time series imputation. In Silvia Chiappa and Roberto

Calandra, editors, Proceedings of the Twenty Third International Conference

on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine

Learning Research, pages 1651–1661. PMLR, 26–28 Aug 2020.

[33] Siddharth Ramchandran, Gleb Tikhonov, Kalle Kujanpää, Miika Koskinen, and

Harri Lähdesmäki. Longitudinal variational autoencoder. In Arindam Banerjee

and Kenji Fukumizu, editors, Proceedings of The 24th International Conference

on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine

Learning Research, pages 3898–3906. PMLR, 13–15 Apr 2021.

[34] M. Ashman, Jonathan So, Will Tebbutt, Vincent Fortuin, Michael Pearce, and

Richard E. Turner. Sparse gaussian process variational autoencoders. ArXiv,

abs/2010.10177, 2020.

[35] Zhengping Che, S. Purushotham, Kyunghyun Cho, D. Sontag, and Y. Liu. Re-

current neural networks for multivariate time series with missing values. Scien-

tific Reports, 8, 2018.

[36] Francesco Paolo Casale, Adrian Dalca, Luca Saglietti, Jennifer Listgarten, and

Nicolo Fusi. Gaussian process prior variational autoencoders. In S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, ed-

itors, Advances in Neural Information Processing Systems, volume 31. Curran

Associates, Inc., 2018.

[37] Mavis D. Boamah. Analysing crisis communication strategies of airline compa-

nies in United States: A case study of southwest airline 2016 power outage crisis.

Studies in Media and Communication, 7:7–16, 2019.

[38] Conor Shine. Cost of southwest’s tech outage climbs to at least $54 million.

https://www.dallasnews.com/business/local-companies/2016/08/10/cos

t-of-southwest-s-tech-outage-climbs-to-at-least-54-million, 2016.

62

https://www.dallasnews.com/business/local-companies/2016/08/10/cost-of-southwest-s-tech-outage-climbs-to-at-least-54-million
https://www.dallasnews.com/business/local-companies/2016/08/10/cost-of-southwest-s-tech-outage-climbs-to-at-least-54-million

[39] What is the Adaptive Network? https://www.ciena.com/insights/what-is

/What-Is-the-Adaptive-Network.html.

[40] Autonomous Driving Network. https://carrier.huawei.com/en/adn.

[41] Cisco Digital Network Architecture. https://www.cisco.com/c/en ca/soluti

ons/enterprise-networks/index.html.

[42] The Self-Driving Network. https://www.juniper.net/assets/us/en/local

/pdf/pov/3200053-en.pdf.

[43] Towards zero-touch network operations. https://www.ericsson.com/en/blog

/2018/9/towards-zero-touch-network-operations.

[44] Blue Planet Network Health Predictor. https://www.blueplanet.com/resou

rces/Blue-Planet-Network-Health-Predictor.html.

[45] HealthBot. https://www.juniper.net/us/en/products-services/sdn/cont

rail/contrail-healthbot/.

[46] David Côté. Using machine learning in communication networks. J. Opt. Com-

mun. Netw., 10(10):D100–D109, Oct 2018.

[47] Chunpo Pan, Henning Bülow, Wilfried Idler, Laurent Schmalen, and Frank R.

Kschischang. Optical nonlinear phase noise compensation for 9 × 32 -gbaud

poldm-16 QAM transmission using a code-aided expectation-maximization algo-

rithm. Journal of Lightwave Technology, 33(17):3679–3686, 2015.

[48] Qunbi Zhuge, Xiaobo Zeng, Huazhi Lun, Meng Cai, Xiaomin Liu, Lilin Yi, and

Weisheng Hu. Application of machine learning in fiber nonlinearity modeling

and monitoring for elastic optical networks. Journal of Lightwave Technology,

37(13):3055–3063, 2019.

[49] Takahito Tanimura, Takeshi Hoshida, Tomoyuki Kato, Shigeki Watanabe, and

Hiroyuki Morikawa. Convolutional neural network-based optical performance

monitoring for optical transport networks. J. Opt. Commun. Netw., 11(1):A52–

A59, Jan 2019.

63

https://www.ciena.com/insights/what-is/What-Is-the-Adaptive-Network.html
https://www.ciena.com/insights/what-is/What-Is-the-Adaptive-Network.html
https://carrier.huawei.com/en/adn
https://www.cisco.com/c/en_ca/solutions/enterprise-networks/index.html
https://www.cisco.com/c/en_ca/solutions/enterprise-networks/index.html
https://www.juniper.net/assets/us/en/local/pdf/pov/3200053-en.pdf
https://www.juniper.net/assets/us/en/local/pdf/pov/3200053-en.pdf
https://www.ericsson.com/en/blog/2018/9/towards-zero-touch-network-operations
https://www.ericsson.com/en/blog/2018/9/towards-zero-touch-network-operations
https://www.blueplanet.com/resources/Blue-Planet-Network-Health-Predictor.html
https://www.blueplanet.com/resources/Blue-Planet-Network-Health-Predictor.html
https://www.juniper.net/us/en/products-services/sdn/contrail/contrail-healthbot/
https://www.juniper.net/us/en/products-services/sdn/contrail/contrail-healthbot/

[50] Emmanuel Seve, Jelena Pesic, and Yvan Pointurier. Associating machine-

learning and analytical models for quality of transmission estimation: combining

the best of both worlds. J. Opt. Commun. Netw., 13(6):C21–C30, Jun 2021.

[51] Cristina Rottondi, Luca Barletta, Alessandro Giusti, and Massimo Tornatore.

Machine-learning method for quality of transmission prediction of unestablished

lightpaths. J. Opt. Commun. Netw., 10(2):A286–A297, Feb 2018.

[52] Shahin Shahkarami, Francesco Musumeci, Filippo Cugini, and Massimo Torna-

tore. Machine-learning-based soft-failure detection and identification in optical

networks. In Optical Fiber Communication Conference, page M3A.5. Optical

Society of America, 2018.

[53] Xiaoliang Chen, Baojia Li, Roberto Proietti, Zuqing Zhu, and S. J. Ben Yoo. Self-

taught anomaly detection with hybrid unsupervised/supervised machine learning

in optical networks. J. Lightwave Technol., 37(7):1742–1749, Apr 2019.

[54] Danish Rafique, Thomas Szyrkowiec, Helmut Grießer, Achim Autenrieth, and

Jörg-Peter Elbers. Cognitive assurance architecture for optical network fault

management. J. Lightwave Technol., 36(7):1443–1450, Apr 2018.

[55] Boyuan Yan, Yongli Zhao, Sabidur Rahman, Yajie Li, Xiaosong Yu, Dongmei

Liu, Yongqi He, and Jie Zhang. Dirty-data-based alarm prediction in self-

optimizing large-scale optical networks. Opt. Express, 27(8):10631–10643, Apr

2019.

[56] Haotao Zhuang, Yongli Zhao, Xiaosong Yu, Yajie Li, Ying Wang, and Jie Zhang.

Machine-learning-based alarm prediction with gans-based self-optimizing data

augmentation in large-scale optical transport networks. In 2020 International

Conference on Computing, Networking and Communications (ICNC), pages 294–

298, 2020.

[57] Zhilong Wang, Min Zhang, Danshi Wang, Chuang Song, Min Liu, Jin Li, Liqi

Lou, and Zhuo Liu. Failure prediction using machine learning and time series in

optical network. Opt. Express, 25(16):18553–18565, Aug 2017.

[58] K. Christodoulopoulos, C. Delezoide, N. Sambo, A. Kretsis, I. Sartzetakis,

A. Sgambelluri, N. Argyris, G. Kanakis, P. Giardina, G. Bernini, D. Roccato,

64

A. Percelsi, R. Morro, H. Avramopoulos, P. Castoldi, P. Layec, and S. Bigo.

Toward efficient, reliable, and autonomous optical networks: the ORCHESTRA

solution. J. Opt. Commun. Netw., 11(9):C10–C24, Sep 2019.

[59] Rui Morais. On the suitability, requisites, and challenges of machine learning

[invited]. J. Opt. Commun. Netw., 13(1):A1–A12, Oct 2020.

[60] Zhizhen Zhong, Nan Hua, Zhigang Yuan, Yanhe Li, and Xiaoping Zheng. Rout-

ing without routing algorithms: An AI-based routing paradigm for multi-domain

optical networks. In 2019 Optical Fiber Communications Conference and Exhi-

bition (OFC), pages 1–3, 2019.

[61] Yongli Zhao, Boyuan Yan, Dongmei Liu, Yongqi He, Dajiang Wang, and Jie

Zhang. SOON: self-optimizing optical networks with machine learning. Opt.

Express, 26(22):28713–28726, Oct 2018.

[62] Thierry Zami, Bruno Lavigne, Ivan Fernandez de Jauregui Ruiz, Marco Bertolini,

Yuan-Hua Claire Kao, Oriol Bertran Pardo, Mathieu Lefrançois, Florian Pulka,

Sethumadhavan Chandrasekhar, Junho Cho, Xi Chen, Di Che, Ellsworth Bur-

rows, Peter Winzer, Jelena Pesic, and Nicola Rossi. Simple self-optimization of

WDM networks based on probabilistic constellation shaping. J. Opt. Commun.

Netw., 12(1):A82–A94, Jan 2020.

[63] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system.

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Aug 2016.

[64] Marek Smieja, undefinedukasz Struski, Jacek Tabor, Bartosz Zieliński, and Prze-

mys law Spurek. Processing of missing data by neural networks. In Proceedings

of the 32nd International Conference on Neural Information Processing Systems,

NIPS’18, page 2724–2734, Red Hook, NY, USA, 2018. Curran Associates Inc.

[65] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on

Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[66] Jiakai Yu, Weiyang Mo, Yue-Kai Huang, Ezra Ip, and Daniel C. Kilper. Model

transfer of qot prediction in optical networks based on artificial neural networks.

J. Opt. Commun. Netw., 11(10):C48–C57, Oct 2019.

65

[67] Le Xia, Jing Zhang, Shaohua Hu, Mingyue Zhu, Yingxiong Song, and Kun Qiu.

Transfer learning assisted deep neural network for osnr estimation. Opt. Express,

27(14):19398–19406, Jul 2019.

[68] Juan Zhao, Sachin Shetty, J. Pan, C. Kamhoua, and K. Kwiat. Transfer learn-

ing for detecting unknown network attacks. EURASIP Journal on Information

Security, 2019:1–13, 2019.

[69] Dario Azzimonti, Cristina Rottondi, Alessandro Giusti, Massimo Tornatore, and

Andrea Bianco. Active vs transfer learning approaches for qot estimation with

small training datasets. In Optical Fiber Communication Conference (OFC)

2020, page M4E.1. Optical Society of America, 2020.

[70] L. Breiman. Random forests. Machine Learning, 45:5–32, 2004.

[71] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[72] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computa-

tion, 9:1735–1780, 1997.

[73] W. L. Taylor. Cloze Procedure: A new tool for measuring readability. Journalism

& Mass Communication Quarterly, 30:415 – 433, 1953.

[74] J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

Pre-training of deep bidirectional transformers for language understanding. In

NAACL-HLT, 2019.

[75] Z. Yang, Zihang Dai, Yiming Yang, J. Carbonell, R. Salakhutdinov, and Quoc V.

Le. XLNet: Generalized autoregressive pretraining for language understanding.

In NeurIPS, 2019.

[76] Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chengqi

Zhang. DISAN: Directional self-attention network for rnn/cnn-free language

understanding. In AAAI Conference on Artificial Intelligence, 2018.

66

[77] Joongbo Shin, Yoonhyung Lee, Seunghyun Yoon, and Kyomin Jung. Fast and

accurate deep bidirectional language representations for unsupervised learning.

In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, pages 823–835, Online, July 2020. Association for Computational

Linguistics.

[78] Jimmy Ba, J. Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv,

abs/1607.06450, 2016.

[79] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 770–778, 2016.

[80] Shuyi Zhang, Bin Guo, Anlan Dong, Jing He, Ziping Xu, and S. Chen. Caution-

ary tales on air-quality improvement in beijing. Proceedings of the Royal Society

A: Mathematical, Physical and Engineering Sciences, 473, 2017.

[81] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[82] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference

on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings, 2015.

[83] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,

and Soumith Chintala. Pytorch: An imperative style, high-performance deep

learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dtextquotesin-

gle Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information

Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[84] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer:

Self-attention with linear complexity. ArXiv, abs/2006.04768, 2020.

[85] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li.

Efficient attention: Attention with linear complexities. In WACV, 2021.

67

	List of Figures
	List of Tables
	Introduction
	Related Work
	A Motivation Case
	Problem Statement
	Background
	Handling Missing Values
	Detecting and Forecasting Anomalies in Optical Networks
	Applying Transfer Learning to Optical Networking

	The Learning Method
	Data Pre-processing
	Model Details and Implementation
	Transfer Learning

	Experiments
	Evaluation Metric
	Experiment Settings
	Experiment Results

	Summary

	Methodology: Developing Self-Attention-based Imputation for Time Series
	Joint-optimization Training Approach
	Self-Attention-based Imputation Model
	Diagonally-Masked Self-Attention
	Positional Encoding and Feed-Forward Network
	The First DMSA Block
	The Second DMSA Block
	The Weighted Combination Block
	Loss Functions of Learning Tasks

	Evaluation
	Dataset Details
	Baseline Methods
	Evaluation Metrics of Imputation Performance
	Experimental Setup
	Result Analysis
	Imputation Performance Comparison
	Downstream Classification Task

	BRITS Trained by the joint-optimization approach
	Ablation Experiments
	Ablation Study of the Diagonal Mask in Self-Attention
	Ablation Study of the Weighted Combination
	Ablation Study of the Third DMSA Block

	Threats to Validity
	Datasets
	Modeling
	Experiments

	Conclusion

	Chair: Dr. D. Qiu
	Examiner: Dr. R. Glitho (CIISE)
	Name: Wenjie Du
	Program: Master of Applied Science (Electrical and Computer Engineering)
	Thesis Title: A Deep Learning Model to Impute Missing Data in Time Series
	Date:
	Examiner 2: Dr. D. Qiu
	Supervisor: Dr. Y. Liu
	Co-supervisor:
	Co-Supervisor:

