
Communication-efficient Distributed Multi-resource
Allocation

Syed Eqbal Alam

A Thesis

in

The Department

of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Information and Systems Engineering) at

Concordia University

Montréal, Québec, Canada

November 2021

© Syed Eqbal Alam, 2021

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mr. Syed Eqbal Alam

Entitled: Communication-efficient Distributed Multi-resource Allocation

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

Chair
Dr. John Xiupu Zhang

External Examiner
Dr. George Atia

Examiner to Program
Dr. Luis Rodrigues

Examiner
Dr. Chadi Assi

Examiner
Dr. Walter Lucia

Supervisor
Dr. Jia Yuan Yu

Co-supervisor
Dr. Robert Shorten

Approved by

Dr. Abdessamad Ben Hamza, Chair
Concordia Institute for Information Systems Engineering

October 5, 2021
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Communication-efficient Distributed Multi-resource Allocation

Syed Eqbal Alam, Ph.D.

Concordia University, 2021

Distributed resource allocation arises in many application domains such as smart cities, intel-

ligent transportation systems, sharing economy, cloud computing, edge-computing, power systems,

etcetera. In several scenarios, the agents such as Internet of Things (IoT) devices may require

multiple shared resources to achieve social optimum values; furthermore, they may have heteroge-

neous resource demands. Such distributed resource allocation problems are challenging to solve,

especially when the agents are constrained through communication infrastructure, computational

capabilities or do not wish to communicate with other agents in the network due to privacy reasons.

Additionally, when the cost functions of agents are non-separable and are coupled through the allo-

cation of multiple resources, in such cases, the single resource allocation algorithms are not efficient

and provide suboptimal solutions.

In the available distributed solutions for multiple resources, best to my knowledge, agents ex-

change their information with at least one neighboring agent that may incur communication over-

head or compromise agents’ privacy. We develop several solutions to solve such problems for

multiple divisible and multiple indivisible resources wherein no inter-agent communication is re-

quired. Moreover, we assume that each agent has private cost functions coupled with multiple

resources; these functions are strictly convex, twice continuously differentiable, and increasing in

each variable. Our first contribution is the stochastic distributed algorithm that solves multi-resource

allocation problems with no direct agent-to-agent communication for divisible resources; moreover,

it achieves social-optimum values. In the algorithms, each agent decides its resource demands

locally, and an agent is unaware of the resource allocations of other agents. We solve the divis-

ible multi-resource allocation problem by extending the additive-increase multiplicative-decrease

iii

(AIMD) algorithm for single resource allocation by Wirth and co-authors. In the algorithm, the

agents keep increasing the demands for a resource linearly until they receive a one-bit signal from

a central agency. The central agency broadcasts the signal whenever one of the allocated resources

reaches its capacity. Agents then respond to this signal in a probabilistic manner to decrease the

resource demand. By doing so, the social optimum is achieved in long-term averages.

Our second contribution is a derandomized AIMD algorithm to solve a class of distributed opti-

mization problems for multiple divisible shared resources. The algorithm is a derandomized version

of the stochastic additive-increase and multiplicative-decrease (AIMD) algorithm. The developed

solution uses a one-bit feedback signal for each resource between the system and the agents, and

it does not require inter-agent communication. We show empirically that the long-term average

allocations of multiple shared resources converge to optimal allocations, and the system achieves

minimum social cost. Furthermore, we show that the derandomized AIMD algorithm converges

faster than the stochastic AIMD algorithm, and both approaches provide approximately the same

solutions.

Our third contribution is the stochastic algorithm for multiple indivisible (unit-demand) re-

sources, inspired by classical stochastic approximation techniques. Each agent’s consumption is

modeled as a Bernoulli random variable in the solution, and no inter-agent communication is re-

quired. Moreover, we provide fundamental guarantees of convergence. Additionally, we present an

example illustrating the performance of the algorithm.

Finally, we study the development of Internet-of-Things (IoT) enabled sharing economy appli-

cations. In many sharing economy scenarios, agents both produce as well as consume a resource; we

call them prosumers. A community of prosumers agrees to sell excess resources to another commu-

nity in a prosumer market. We propose a stochastic algorithm to regulate the number of prosumers

in a prosumer community; each prosumer has a cost function coupled through its time-averaged

production and consumption of the resource. Furthermore, each prosumer runs its distributed al-

gorithm and takes (binary) decisions in a probabilistic way, whether to produce one unit of the

resource or not and to consume one resource unit or not. In the developed approach, prosumers do

not explicitly exchange information with each other due to privacy reasons but little with a central

agency. Additionally, prosumers achieve the optimal values asymptotically.

iv

Dedication

I dedicate this thesis to my parents Dr. Syed Izhar Alam and Mrs. Razia Khatoon.

v

Acknowledgments

For the last several years, many people have supported me in my academic journey to a Ph.D.

They made this journey exciting and enjoyable; I am indebted for their support.

I would first like to express my deepest gratitude to my supervisor Dr. Jia Yuan Yu, and co-

supervisor Dr. Robert Shorten, for their guidance and encouragement. They provided me the oppor-

tunity to explore several research directions during my Ph.D. program. In addition, their insightful

discussions and feedback were invaluable and helped me complete this thesis. I am thankful to

Bob for hosting me several times at Imperial College London, UK, and University College Dublin,

Ireland.

I would also like to thank Dr. Fabian Wirth for his guidance and support during my Ph.D.

journey. I also thank him for hosting me at the University of Passau, Germany. It was great working

with you, Fabian. I spent wonderful days in Passau.

I express my heartfelt gratitude to Dr. George Atia for serving as an external examiner on my

thesis committee. I am also grateful to Dr. Chadi Assi, Dr. Luis Rodrigues, and Dr. Walter Lucia for

serving on my thesis committee. I want to thank them for their insightful suggestions and feedback

to improve the thesis.

Furthermore, I would like to thank my master’s thesis supervisor at IIIT-Bangalore, Dr. Shrisha

Rao, for his guidance and encouragement to continue my research journey towards a Ph.D. I would

also like to thank my collaborators Dr. Jakub Marecek and Ramen Ghosh, for their discussions and

feedback. Thanks also to my friends and colleagues Dr. Rashid Hussain Khokhar, Dr. Nadeem

Ashraf, Dr. Hesham Maghrabie, and Dr. Soroosh Shahtalebi, for brainstorming over coffee. I thank

Innovai group members at Concordia University for arranging reading sessions. Particularly Dr.

vi

Shaui Ma, Hamid Nabati, Viral Thakar, Denis Ergashbaev, Farshid Faal, Victor Deleau, and Mehdi

Merai. I also thank Roman Overko at University College Dublin, Dr. Pietro Ferraro and Andrew

Cullen at Imperial College London, and Dr. Andrii Mironchenko at the University of Passau, for

their help and logistics support during my visits.

I acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC),

Mitacs, Concordia University, Capbeast, Dataperformers, and Science Foundation Ireland, for their

financial assistance in completing part of the work.

I express my heartfelt gratitude to my family members and friends for their support and en-

couragement during this challenging journey. Finally and most importantly, I thank my wife and

soul-mate, Asfia Fathima, and daughter Hafsa for their unconditional love and support during this

journey. Without your support, I would not have made it this far.

vii

Contents

List of Figures xii

List of Tables xviii

1 Introduction 1

1.1 Problem formulation . 3

1.2 A motivating example . 4

1.3 Objectives . 5

1.3.1 AIMD based distributed multi-resource allocation for divisible resources . 7

1.3.2 Distributed multi-resource allocation for indivisible resources 8

1.4 Background and literature review . 9

1.4.1 Computational social choice theory . 9

1.4.2 Distributed optimization . 11

1.4.3 Federated optimization . 16

1.4.4 Sharing economy . 17

1.4.5 Optimality conditions for multiple resources 18

1.5 Contributions . 20

1.5.1 Stochastic algorithm for distributed multi-resource allocation for divisible

resources . 21

1.5.2 Deterministic algorithm for distributed multi-resource allocation for divisi-

ble resources . 22

viii

1.5.3 Stochastic algorithm for distributed multi-resource allocation for indivisible

resources . 23

1.5.4 Stochastic algorithm for regulating prosumers in a prosumer market 23

1.6 Contribution as publications . 25

1.7 Thesis organization . 26

2 Stochastic Distributed Algorithm for Divisible Multi-resource Allocation 28

2.1 Introduction . 29

2.1.1 Optimzation problem formulations . 31

2.1.2 Contributions and the structure of the chapter 33

2.2 AIMD based optimization . 33

2.2.1 AIMD based optimization for a single resource 33

2.2.2 AIMD-based optimization for multiple resources 37

2.2.3 Notations and conventions . 42

2.3 AIMD matrix model . 44

2.3.1 AIMD matrix model for a single resource 44

2.3.2 AIMD matrix model for multiple resources 46

2.4 Convergence of accumulative averaging . 51

2.4.1 Results on deterministic systems . 55

2.4.2 Results on stochastic systems . 64

2.4.3 Proof of Theorem 2.4.1 (convergence of average allocation to the KKT point) 72

2.5 Numerical results . 75

2.5.1 Analysis 1 . 76

2.5.2 Analysis 2 . 80

2.5.3 Analysis 3 . 82

2.6 Conclusion . 85

2.7 Appendix: Analysis of the total instantaneous demands 87

2.8 Appendix: Comparison of numerical results of single resource and multiple re-

source cases . 89

ix

2.8.1 Separable cost function . 90

2.8.2 Non-separable cost function . 95

3 AIMD based Derandomized Distributed Algorithm for Divisible Multi-resource Allo-

cation 99

3.1 Introduction . 100

3.2 Problem formulation . 103

3.3 Algorithm . 105

3.4 Experiments . 110

3.5 Conclusion . 117

4 Stochastic Distributed Algorithm for Unit-demand Resource Allocation 119

4.1 Introduction . 119

4.2 Preliminaries . 122

4.2.1 Optimality conditions . 123

4.3 Allocating a single unit-demand resource . 124

4.4 Allocating multiple unit-demand resources . 130

4.4.1 Proof of convergence of average allocations for multiple resources 132

4.5 Application to electric vehicle charging . 134

4.6 Conclusion . 139

5 Distributed Algorithms for Prosumer Markets 141

5.1 Introduction . 142

5.2 Prosumer markets and communities . 144

5.2.1 Contribution . 148

5.3 Problem statement . 149

5.4 Algorithms for community-based prosumer markets 153

5.4.1 Optimality conditions . 154

5.4.2 Algorithm for consumption . 155

5.4.3 Algorithm for coupled prosumption . 157

x

5.5 Use cases . 161

5.5.1 Community-based car-sharing . 161

5.5.2 Collaborative energy storage . 163

5.6 Numerical results . 164

5.7 Conclusion . 170

6 Conclusion and Future Directions 172

6.1 Conclusion . 172

6.2 Future directions . 175

Appendix A An Overview of Notations 177

A.1 Basic notations . 177

A.2 Notations used in Chapter 2 . 178

A.3 Notations used in Chapter 3 . 184

A.4 Notations used in Chapter 4 . 185

A.5 Notations used in Chapter 5 . 187

Bibliography 188

xi

List of Figures

Figure 1.1 Multi-camera coordination system. 5

Figure 1.2 System diagram: Distributed multi-resource allocation with no inter-agent

communication; the agents demand the resources based on local computation. The

central server keeps track of aggregate resource demands and occasionally sends

capacity constraints notifications to agents in the network. 6

Figure 1.3 Structure of the thesis. 27

Figure 2.1 The cost functions used in numerical Analysis 1 to plot Figures 2.3,2.4, 2.5,

2.6. 76

Figure 2.2 The cost functions used in Analysis 2 to plot Figure 2.8. 77

Figure 2.3 Evolution of the average allocations: (a) of resource 1, (b) of resource 2, for

five randomly chosen agents, for Analysis 1. The cost functions used in Analysis 1

is presented in Equation (2.114). 77

Figure 2.4 Histogram of the absolute difference between the average allocations and the

solver’s optimal values at the last capacity event of (a) resource 1 and (b) resource

2, for Analysis 1. 78

Figure 2.5 Evolution of partial derivatives of the cost functions: (a) for resource 1, (b)

for resource 2. Error bars are over the mean of partial derivatives of all agents and

the error of one standard deviation, for Analysis 1. 79

Figure 2.6 (a) Evolution of the ratio of cost over average allocations and the solver’s

optimal cost; error bar is over the mean of the ratio of cost of all agents and the

error of one standard deviation, for Analysis 1. 79

xii

Figure 2.7 (a) Evolution of aggregate instantaneous allocations of resources, (b) evolu-

tion of aggregate average allocations of resources, capacities are C1 = 5 and C2 = 6,

for Analysis 1. 80

Figure 2.8 Evolution of the ratio of total cost over average allocations and the solver’s

total optimal cost: (a) with different values of Γ1, Γ2, (b) with different values of

mean, and (c) with different values of variance, of the random variables, for nu-

merical Analysis 2. The cost functions are listed in Equation (2.115). µa denotes

the mean of the random variables (vector) a = (a1, . . . , a6); µc denotes the mean

of the random variables c = (c1, . . . , c6), with folded normal distribution. In the

folded normal distribution, the absolute values of the random variables are consid-

ered. Moreover, σ2
a denotes the variance of the random variables a, and σc denotes

the variance of the random variables c. Subfigure (a) is based on µa = 1500,

σ2
a = 600, µc = 10, and σ2

c = 4. The cost functions used in Analysis 2 is presented

in Equation (2.115). 81

Figure 2.9 (a) Evolution of the ratio of total cost over average allocations and the

solver’s total optimal cost, (b) evolution of Ω(k), for Analysis 3. 82

Figure 2.10 The cost functions for allocating resource 1. 90

Figure 2.11 The cost functions for allocating resource 2. 91

Figure 2.12 The cost functions for allocating resources 1 and 2. 91

Figure 2.13 (a) Evolution of the total cost over average allocations by single resource al-

gorithm for resource 1, single resource algorithm for resource 2, and multi-resource

algorithm for resources 1 and 2, (b) evolution of the sum of the total costs by single

resource algorithms for resource 1 and resource 2, and evolution of the total cost by

the multi-resource algorithm for resources 1 and 2. 92

Figure 2.14 Evolution of the total cost over average allocations by single resource algo-

rithm for resource 1 and multi-resource allocation algorithm with C2 = 0. 92

xiii

Figure 2.15 Single resource allocation for resource 1 with capacity C1 = 5: (a) Evo-

lution of aggregate instantaneous allocations, (b) evolution of aggregate average

allocations. Multi-resource allocation with capacities C1 = 5 and C2 = 0: (c) Evo-

lution of aggregate instantaneous allocations of resources, (d) evolution of aggregate

average allocations of resources. 93

Figure 2.16 Evolution of the total cost over average allocations by single resource algo-

rithm for resource 2 and multi-resource allocation algorithm with C1 = 0. 94

Figure 2.17 Single resource allocation for resource 2 with capacity C2 = 6: (a) Evo-

lution of aggregate instantaneous allocations, (b) evolution of aggregate average

allocations. Multi-resource allocation with capacities C1 = 0 and C2 = 6: (c) Evo-

lution of aggregate instantaneous allocations, (d) evolution of aggregate average

allocations of resources. 95

Figure 2.18 The cost functions for allocating resources 1 and 2, non-separable cost func-

tions for coupled analysis. 96

Figure 2.19 (a) Evolution of the total cost over average allocations by single resource al-

gorithm for resource 1, single resource algorithm for resource 2, and multi-resource

algorithm for resources 1 and 2, (b) evolution of the sum of the total costs by sin-

gle resource algorithms for resource 1 and resource 2, and evolution of the total

cost by the multi-resource algorithm for resources 1 and 2. The dotted line shows

the optimal cost by the solver. The multi-resource algorithm and the solver use the

non-separable cost functions listed in Equation (2.125). Furthermore, the single re-

source algorithms use the cost functions listed in Equations (2.122) and (2.123) for

resource 1 and resource 2, respectively. 97

Figure 2.20 (a) Evolution of aggregate instantaneous allocations, (b) evolution of aggre-

gate average allocations of resources, capacities C1 = 5 and C2 = 6 for multi-

resource allocation with the non-separable cost functions listed in Equation (2.125). 98

xiv

Figure 3.1 A three-tier architecture of IoT devices — Cloudlets — Cloud: IoT devices

offload their tasks on Cloudlets. They receive computing resources such as CPU,

memory, storage, etc., from Cloudlets with little latency. Larger and latency tolerant

tasks can be offloaded on Cloud. Here ICD denotes an IoT device. 101

Figure 3.2 Block diagram of the multi-resource allocation deterministic AIMD model. 106

Figure 3.3 Results of deterministic AIMD: Evolution of the profile of derivatives of cost

functions ∂
∂x
fi(.) of all IoT devices of a single simulation. 112

Figure 3.4 Results of deterministic AIMD: (a) evolution of average allocation xji (k)

of resources, (b) evolution of absolute difference of average allocation and optimal

allocation. 112

Figure 3.5 Results of deterministic AIMD: Ratio of the sum of cost functions to the sum

of optimal cost functions. 113

Figure 3.6 Results of deterministic AIMD: (a) total allocation of resources for last 50

time steps, (b) evolution of sum of average allocation of resources, the capacities

are C1 = 32 GB, C2 = 20 GHz, and C3 = 25 GBD. 113

Figure 3.7 Evolution of the profile of derivatives of cost functions ∂
∂x
fi(.) of all IoT

devices of a single simulation of D-AIMD and S-AIMD algorithms with respect to

— (a) resource 1, (b) resource 2, and (c) resource 3. Legends: S-AIMD represents

the stochastic AIMD and D-AIMD represents the deterministic AIMD. 114

Figure 3.8 Evolution of average allocation of resources of IoT device 42 of D-AIMD

and S-AIMD algorithms — (a) resource 1, (b) resource 2, and (c) resource 3. . . . 115

Figure 3.9 (a) Evolution of absolute difference of average allocations obtained from D-

AIMD and S-AIMD, (b) absolute difference of average allocations obtained from

D-AIMD and S-AIMD at time step 30000. 116

Figure 3.10 Evolution of sum of cost functions over the average allocation of S-AIMD

and D-AIMD. 116

Figure 4.1 Evolution of average allocations of charging points. 137

xv

Figure 4.2 (a) evolution of the profile of derivatives of cost functions gi of all the electric

cars in the network with respect to level 1 chargers, (b) evolution of the profile of

derivatives of cost functions gi of all the electric cars in the network with respect to

level 2 chargers. 138

Figure 4.3 (a) Evolution of the sum of average allocations of charging points, (b) uti-

lization of charging points over the last 60 time steps, capacities of level 1 and level

2 chargers are C1 = 400 and C2 = 500, respectively. 139

Figure 4.4 Evolution of price signals Ω1(k) and Ω2(k), defined in (4.16). 139

Figure 5.1 Prosumer-to-prosumer model. Here p represents a prosumer. 145

Figure 5.2 Prosumer-to-firm models—(a) prosumer-to-interconnected-firm model, (b)

prosumer-to-isolated-firm model. 146

Figure 5.3 Community-based prosumer model. 147

Figure 5.4 (a) Evolution of time-averaged consumption of the resource, and (b) evolu-

tion of time-averaged production of the resource. 165

Figure 5.5 At time index K = 200—(a) average consumption xi(K) by prosumers of

Community 1, (b) average consumption xi(K) by prosumers of Community 2. . . 166

Figure 5.6 At time index K = 200—(a) average production yi(K) by prosumers of

Community 1, and (b) average production yi(K) by prosumers of Community 2. . 166

Figure 5.7 Evolution of absolute difference between desired value of utilization Ti and

actual utilization of the resource xi(k) + yi(k) of individual prosumers. 167

Figure 5.8 (a) Absolute difference between desired value of utilization and actual uti-

lization |xi(K) + yi(K)− T1| of prosumers of Community 1, here T1 = 1.74, and

(b) absolute difference between desired value of utilization and actual utilization

|xi(K) + yi(K) − T2| of prosumers of Community 2, here T2 = 1.725 and time

index K = 200. 167

Figure 5.9 (a) Evolution of derivatives of gi(·) w. r. t. x for prosumers of Community

1, and (b) evolution of derivatives of gi(·) w. r. t. x for prosumers of Community 2. 168

xvi

Figure 5.10 Aggregate prosumption for last 40 time instants—(a) aggregate consumption
∑N

i=1 xi(k), (b) aggregate production
∑N

i=1 yi(k), and (c) evolution of sum of time-

averaged prosumption. 169

Figure 5.11 Frequency of prosumption—(a) frequency of aggregate consumption, (b)

frequency of aggregate production for last 200 time instants. 170

Figure 5.12 Evolution of feedback signals Ωx(k) and Ωy(k). 170

xvii

List of Tables

Table 2.1 Cost functions used in Analysis 3, these are special cases of cost functions in

(2.114). 83

Table 2.2 Parameters for Analysis 3, and the legends used in Figure 2.9. 83

Table 2.3 Parameters for Analysis 3, and the legends used in Figure 2.9. 84

Table 2.4 Parameters for Analysis 3, and the legends used in Figure 2.9. 85

Table 3.1 The simulation is run on Intel Core i5-6500, CPU 3.2 GHz, 8 GB RAM. The

execution time of each simulation and the corresponding number of capacity events

broadcast by the control unit are presented here. 117

Table 4.1 Amount of CO2 emissions in generation and distribution of electricity for

level 1 and level 2 chargers in four-hours duration. 136

xviii

Chapter 1

Introduction

Distributed multi-resource allocation is a fundamental and important problem that arises in

many application domains such as smart cities, intelligent transportation systems, sharing economy,

cloud computing, edge-computing, peer-to-peer energy trading, to name a few. In many scenar-

ios, agents such as cameras, wearable devices, energy consumers or producers, cars, etcetera in

a network may require multiple shared divisible or indivisible resources to complete their tasks.

The divisible resources are the resources that can be allocated as a fraction, such as random access

memory, disk storage, network bandwidth, CPU cycles, etc. Furthermore, the indivisible resources

or unit-demand resources are the resources that can either be allocated one unit or zero units, for

example, parking slots. Moreover, the agents may have heterogeneous resource demands and may

aim to minimize the social cost over the network. However, such distributed multi-resource allo-

cation problems are challenging to solve than the single distributed resource allocation problems.

Mainly when the cost of an agent is coupled through the allocation of multiple resources or the

agents are constrained through communication infrastructure, computational capabilities. In addi-

tion, they may demand the resources based on local computation, and they do not want to exchange

information with other agents in the network due to privacy reasons.

Distributed multi-resource allocation problems are studied in two research directions; the first

is the computational social choice theory, wherein a group of agents makes collective decisions

to maximize the sum of their utilities and achieve the group’s social welfare. Therein fair alloca-

tion of resources is studied, such as envy-freeness, maximin, proportionality, strategy-proofness,

1

Pareto-optimality, sharing incentive, etc., (Endriss, 2014), (W. Wang, Liang, & Li, 2015), (Conitzer,

Freeman, Shah, & Vaughan, 2019), (Benadè, Procaccia, & Qiao, 2019), (Benabbou, Chakraborty,

Elkind, & Zick, 2019), (Aziz & Rey, 2020), (Bei, Li, Liu, Liu, & Lu, 2021), (Aziz, Caragiannis,

Igarashi, & Walsh, 2022), (Halpern & Shah, 2021). In the second direction, the resource allocation

problems are formulated as distributed optimization problems wherein agents in a network collab-

orate to access multiple shared resources and aim to minimize the sum of agents’ cost functions

to obtain social optimum value. In this thesis, we formulate multi-resource allocation problems as

distributed optimization problems. Moreover, we develop several distributed iterative algorithms

to solve the resource allocation problems for multiple-divisible and multiple-indivisible resources

wherein several agents in a network collaborate to access the shared resources and minimize the

total cost over the network. Roughly speaking, in the existing literature, the agents achieve optimal

allocation of resources through regular communication by exchanging their gradients of the cost

functions (Nedic & Ozdaglar, 2009), (Lee, Nedic, & Raginsky, 2018), (J. Zhang, Uribe, Mokhtari,

& Jadbabaie, 2019), (Pu, Shi, Xu, & Nedic, 2021), (Pu & Nedic, 2021) or sharing the Lagrange

multipliers (Boyd, Parikh, Chu, Peleato, & Eckstein, 2011), (Carli & Dotoli, 2020), (Shang et al.,

2021) with at least one of their neighbors, which may lead the agents to reveal their private informa-

tion. Moreover, sharing information may also increase the communication overhead on the system.

As noted in (G. Lan, Lee, & Zhou, 2018), (Léauté & Faltings, 2013), (B. Li, Cen, Chen, & Chi,

2020), (Elgabli et al., 2021), communication and privacy are two of the major issues in distributed

optimization.

It is challenging to solve distributed optimization problems for multiple resources for many

reasons. The first is when the agents demand resources based on local computation and do not want

to communicate with other agents in the network due to privacy reasons. Second, such systems

can be dynamic, and the number of participating agents may change over time. Third, the agents

may not know the capacity constraints and the total number of agents in the network. Finally, when

the allocation of one resource depends on other resources, and the agents use non-separable cost

functions coupled through the allocation of multiple resources. We call a function non-separable

if it can not be split into independent cost functions, as in the case of separable cost functions.

Moreover, the single resource allocation algorithms are not efficient for such scenarios and provide

2

suboptimal solutions. Thus, we need algorithms that are efficient and provide optimal solutions

for such scenarios and incur little communication overhead. In this thesis, we develop distributed

iterative algorithms that address these.

1.1 Problem formulation

Let us consider that n agents in a network collaborate to accessm shared resources. Let C1 ≥ 0,

C2 ≥ 0, and Cm ≥ 0 be the capacities of resources, respectively. Moreover, agent i has allocation

states xji ∈ [0, Cj] for resource j; they represent the amount of resource j allocated to agent i, for

i = 1, 2, . . . , n and j = 1, 2, . . . ,m. We assume that agent i has a strictly convex, continuously

differentiable cost function fi : Rm+ → R+, for i = 1, 2, . . . , n. Let t0 < t1 < t2 < . . ., be discrete

time instants. Furthermore, let xji(tk) ∈ [0, Cj] denote the amount of resource j allocated to agent i

at time instant tk, for i = 1, 2, . . . , n, j = 1, 2, . . . ,m, and k ∈ N. We formulate the multi-resource

allocation problems as the following optimization problem and aim to solve it in a distributed way:

min
x11,...,xmn

n∑

i=1

fi(x1i, x2i, . . . , xmi),

subject to

n∑

i=1

x1i = C1,

...
n∑

i=1

xmi = Cm,

xji ≥ 0, for i = 1, . . . , n and j = 1, 2, . . . ,m.

(1.1)

We define the time-averaged allocation xji(tk) , 1
k+1

∑k
`=0 xji(t`) of agent i for resource j, for

i = 1, . . . , n and j = 1, 2, . . . ,m. Let x∗ = (x∗11, . . . , x
∗
mn) ∈ (Rn+)m be the optimal point.

We aim to develop distributed iterative algorithms that determine the values of xji(tk) at each

time instant tk with no inter-agent communication; however, a little with a central server, and obtain

optimal allocations in long-term averages:

lim
k→∞

xji(tk) = x∗ji, for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. (1.2)

3

Note that we use central server, central agent, or control unit interchangeably.

For the indivisible resource allocation cases, the allocation states of agent i is updated with

xji ∈ {0, 1} for resource j, for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Additionally, the amount of

resource j allocated to agent i at time instant tk is updated with xji(tk) ∈ {0, 1}, for i = 1, 2, . . . , n

and j = 1, 2, . . . ,m.

1.2 A motivating example

Suppose that a smart city deploys a multi-camera coordination system, in which several cam-

eras work together for the surveillance of the city; the system diagram is illustrated in Figure 1.1.

Moreover, suppose that the cameras are deployed at different locations. If a camera observes any

unusual activities, it should demand the required amount of resources with a higher probability than

other cameras to notify the observed activities immediately. Suppose that there are servers set up by

the city agency, which store and process the videos sent by all cameras. One of the servers acts as a

central server. The central server keeps track of the aggregate demand of the resources at each time

step and sends a notification in the network when the aggregate demand exceeds resource capac-

ity. Each camera requires a different amount of network bandwidth, CPU cycles, memory (RAM),

and storage to transmit, process, and store the videos on the servers. Each camera has a private

cost function which is coupled through the allocation of multiple resources. Allocating resources

to cameras incurs some cost captured by the camera’s cost function. Assume that a camera decides

its demands based on its cost function and its average allocations. Moreover, the cameras should

receive optimal allocations, and the network achieves social optimum cost over time.

4

Camera 1 Camera 2 Camera n

Server
(CPU, RAM, Storage)

. . .

Figure 1.1: Multi-camera coordination system.

1.3 Objectives

This thesis aims to develop distributed algorithms to solve multi-resource allocation problems

with no inter-agent communication but a little with a central server that keeps track of the aggregate

demands. Precisely, my goal is to achieve the following objectives.

(1.) To extend the distributed iterative single resource allocation algorithms (Wirth, Stüdli, Yu,

Corless, & Shorten, 2019) to multi-resource allocation algorithms with no inter-agent com-

munication.

(2.) To extend the distributed iterative algorithm to regulate the number of consumers (Griggs,

Yu, Wirth, Hausler, & Shorten, 2016) to an algorithm that regulates the number of prosumers

(prosumers are agents that act as both consumers and producers) in a sharing economy setting

with no prosumer to prosumer communication.

(3.) To show the convergence of the proposed multi-resource allocation algorithms.

To achieve these objectives, we developed several distributed iterative algorithms for multiple-

divisible, and multiple-indivisible resources wherein agents in a network collaborate to access the

shared resources and minimize the total cost over the network. The cost functions of the agents

are coupled through the allocation of multiple resources. We consider a central server that works

as a coordinator—aggregates resource demands by agents and occasionally sends feedback signals

5

in the network. Agents in the network perform local computation and demand resources; however,

they do not share their cost function, partial derivatives of the cost function, or allocation history

with other agents or the central server. Figure 1.2 presents the system diagram. Therein, agents such

as mobile phones, surveillance cameras, smartwatches perform the local computation to demand the

resources. The central server aggregates the demands. If the demands exceed the capacity of the

resource, it sends a capacity constraint notification to agents to reduce their resource demands in the

next step.

Central server Notification

f2

f1

fn

Local computation

Local computation

Local computation

+
Resource demands

...

Res
ou

rc
e

de
m

an
ds

Aggregate demands

Resource demands

Figure 1.2: System diagram: Distributed multi-resource allocation with no inter-agent communica-
tion; the agents demand the resources based on local computation. The central server keeps track
of aggregate resource demands and occasionally sends capacity constraints notifications to agents
in the network.

Recently, such settings have been extensively studied by the machine learning community as

federated learning. Federated learning is a distributed machine learning technique in which sev-

eral agents (clients) collaborate to train a global model without sharing their local on-device data.

Each agent updates the global model with their local dataset and parameters and shares the updates

with the central server. The central server aggregates the updates by agents and updates the global

6

model (McMahan, Moore, Ramage, Hampson, & Arcas, 2017), (Konecny, McMahan, Ramage,

& Richtarik, 2016), (Bonawitz et al., 2019), (Kairouz et al., 2021). The optimization techniques

are called federated optimization (Reddi et al., 2021), (T. Li et al., 2020), (Konecny, McMahan, &

Ramage, 2015), (J. Wang, Liu, Liang, Joshi, & Poor, 2020).

Our algorithms for divisible multi-resource allocations are based on the additive increase multi-

plicative decrease (AIMD) algorithm, discussed briefly in Section 1.3.1. Furthermore, the indivisi-

ble multi-resource allocation algorithms are an extension of Griggs and co-authors’ single resource

allocation algorithm (Griggs et al., 2016), based on the ideas from stochastic approximation tech-

niques (Robbins & Monro, 1951), (Borkar, 2008).

1.3.1 AIMD based distributed multi-resource allocation for divisible resources

The additive increase multiplicative decrease (AIMD) algorithm was developed for congestion

avoidance in transmission control protocol (TCP) (Chiu & Jain, 1989), (Jacobson, 1988), which is

studied extensively in many areas (Wirth et al., 2019), (Crisostomi, Shorten, Studli, & Wirth, 2017),

(Avrachenkov, Borkar, & Pattathil, 2017), (Shah, Incremona, Bolzern, & Colaneri, 2019), (Leung,

Lai, & Ding, 2021). We now present the simplest version of the AIMD algorithm. Interested

readers can refer to (Corless, King, Shorten, & Wirth, 2016) for a detailed discussion of the AIMD

algorithms. Briefly, the AIMD algorithm has two phases: Additive increase and multiplicative

decrease. In the additive increase (AI) phase, an agent keeps increasing its resource demands

linearly by a constant value αi > 0 until it receives a one-bit signal called capacity event from the

central server. The central server broadcasts the one-bit capacity event signal when the aggregate

resource demand reaches the capacity of the resource. After receiving the capacity event signal,

agents respond and reduce their demands multiplicatively by a constant 0 ≤ βi ≤ 1; this phase is

called the multiplicative decrease (MD). After the MD phase, agents enter the AI phase again until

they receive the next capacity event signal. This process repeats over time.

Consider n agents collaborate to access a shared resource, and let xi(t) ≥ 0 denote the amount

of the resource demand by agent i at time t. Let C denote the capacity of the resource. Let tk, k ∈ N

denote the time at which capacity events occur, that is, the time at which the total demand reaches

the capacity,
∑n

i=1 xi(tk) = C. When capacity is reached, agents decrease their resource demands.

7

The instantaneous decrease of the resource demand by agent i is defined as:

xi(t
+
k) , βixi(tk). (1.3)

Moreover, in the AI phase, agents increase their shares at a constant rate, defined as:

xi(t) = βixi(tk) + αi(t− tk), tk < t ≤ tk+1. (1.4)

Wirth and co-authors (Wirth et al., 2019) introduced probabilistic intent with which an agent re-

sponds to the capacity event to solve the distributed optimization problem in a stochastic and dis-

tributed way for a single resource. We extend this to develop a stochastic distributed algorithm for

divisible multi-resource allocation in Chapter 2. Additionally, in Chapter 3, we proposed a determin-

istic distributed AIMD algorithm wherein agents demand the resources in a deterministic manner

to achieve a social optimum cost for the network. The algorithms incur very little communication

overhead. Chapter 2 achieves Objectives 1 and 3, and Chapter 3 achieves Objective 1.

1.3.2 Distributed multi-resource allocation for indivisible resources

We develop a stochastic distributed algorithm in Chapter 4 wherein agents in a network col-

laborate to access multiple indivisible shared resources. It extends the single indivisible resource

allocation algorithm by Griggs and co-authors (Griggs et al., 2016) to multiple indivisible resources.

Chapter 4 achieves Objectives 1 and 3. Furthermore, Chapter 5 presents stochastic distributed al-

gorithms for community-based prosumer markets; prosumers are the agents that both produce and

consume a resource. It regulates the number of prosumers participating in the prosumer community

to achieve social optimum cost. Chapter 5 achieves Objective 2.

We discuss the contributions of the thesis in detail in Section 1.5. Moreover, the following

section presents the background and literature review relevant to the thesis.

8

1.4 Background and literature review

This section briefly presents the background and related work on distributed resource allocation

(as a computational social choice), distributed optimization, federated optimization, and sharing

economy. We also discuss optimality conditions for multiple resources.

1.4.1 Computational social choice theory

In one research direction, distributed resource allocation problems are studied as a computa-

tional social choice problem, wherein multiple agents coordinate to maximize social welfare. It

has attracted significant attention from artificial intelligence researchers (Endriss, 2014), (Brandt,

Conitzer, Endriss, Lang, & Procaccia, 2016), (Freeman, Zahedi, & Conitzer, 2017), (Benadè et al.,

2019), (Bei et al., 2021), (Aziz et al., 2022), (Halpern & Shah, 2021). In this setting, the notion of

fairness—such as envy freeness, Pareto optimality, strategy proofness, etcetera, are studied.

There are two types of resources—divisible and indivisible. Divisible resources can be allocated

as a fraction, for example, CPU time, memory, storage, network bandwidth, etcetera. Furthermore,

an indivisible resource can either be allocated one unit to an agent or not allocated. Single resource

allocation models are studied extensively, but multi-resource allocation is not well studied. In many

cases, single resource allocation strategies are applied to allocate multiple resources, which may be

inefficient. In the resource allocation literature, generally, fairness and efficiency of allocations are

studied (Ghodsi et al., 2011), (Joe-Wong, Sen, Lan, & Chiang, 2013). Two popular multi-resource

allocation strategies are maximin and proportional fairness (Poullie, Bocek, & Stiller, 2018). Gen-

erally speaking, social welfare is classified into the following three categories based on the utility

functions used.

(i) Utilitarian social welfare: In this model, the sum of utilities of all the agents in the group is

maximized.

(ii) Egalitarian social welfare: In this model, the utility of the agent, which receives the minimum

allocation (worst-off agent), is maximized.

9

(iii) Nash product social welfare: In this model, the product of utilities of all the agents is maxi-

mized.

Further details of these classes and utility functions can be found at (Chevaleyre et al., 2006),

(T. T. Nguyen, Roos, & Rothe, 2013), and (Poullie et al., 2018). In this thesis, we take the util-

itarian viewpoint (Boutilier et al., 2012) in which multiple agents coordinate to minimize the sum

of their cost functions subject to capacity constraints of the resources.

Divisible resources

Divisible resource allocations are studied by Ghodsi et al. (Ghodsi et al., 2011), they propose a

dominant resource fairness algorithm for multiple divisible resource allocations. Recently, Nguyen

et al. (D. T. Nguyen, Le, & Bhargava, 2019) proposed a market-based algorithm to allocate mul-

tiple resources in fog computing. Furthermore, Fossati et al. (Fossati, Moretti, Perny, & Secci,

2020) proposed a multi-resource allocation for network slicing in the context of 5G networks. The

distributed resource allocation for 5G-vehicle to vehicle communication was proposed by Alperen

et al. (Gündoğan, Gürsu, Pauli, & Kellerer, 2020); and an envy-free fair allocation mechanism is

proposed in (Khamse-Ashari, Lambadaris, Kesidis, Urgaonkar, & Zhao, 2019) for allocating multi-

ple computing resources of servers. A survey on the allocation of multiple resources can be found

at (Poullie et al., 2018).

Indivisible resources

Matt and Toni in (Matt & Toni, 2006) developed a mechanism to compute egalitarian allocations

of indivisible resources. Furthermore, group fairness for indivisible goods is studied in (Aziz & Rey,

2020), (Conitzer et al., 2019), (Freeman, Sikdar, Vaish, & Xia, 2019). In (Aziz et al., 2022), the

authors propose fair allocation algorithms for a general setting wherein agents may have positive

utility (as in goods) or negative utility (as in chores) for each item. A fair allocation mechanism

for multiple indivisible goods is proposed in (Dogan, 2021). Moreover, interested readers can refer

to (Ohseto, 2021), (Chakraborty, Igarashi, Suksompong, & Zick, 2021), (Kawase & Sumita, 2020),

(Murhekar & Garg, 2021), (Baklanov, Garimidi, Gkatzelis, & Schoepflin, 2021), (Oh, Procaccia, &

10

Suksompong, 2021) for some of the recent works on fair allocation of indivisible goods.

In a recent work (Bei et al., 2021), Bei and co-authors presented mechanisms for fair allocation

of mixed resources, divisible and indivisible. In addition, optimality in computational social choice

is studied in (Boutilier et al., 2015), (Elkind, Faliszewski, & Slinko, 2009). We can think of our

optimization problems as budgeted social choice problems (T. Lu & Boutilier, 2011), where the

capacity of a resource represents the budget.

1.4.2 Distributed optimization

Tsitsiklis and co-authors proposed the distributed optimization problem in their seminal work

(Tsitsiklis, Bertsekas, & Athans, 1986; Tsitsiklis, 1984). We discuss some of the existing distributed

optimization methods here.

Consensus-based methods

Let us consider n agents in a network, let x ∈ Rn be the decision vector, and fi : Rn → R be

convex and smooth cost functions. Tsitsiklis et al. (Tsitsiklis et al., 1986; Tsitsiklis, 1984) in their

seminal work, proposed a consensus-based distributed iterative computational model to minimize

the global objective function f(x). The optimization problem is formulated as follows:

min
x∈Rn

f(x) =

n∑

i=1

fi(x).

To solve this unconstrained optimization problem, the decision vector x is distributed among n

agents; the agents exchange their local information with their neighbors to find an approximate

solution. After this seminal work, distributed optimization is studied extensively. We present some

of the consensus-based distributed optimization approaches as follows.

(i) Sub-gradient methods: Nedic and Ozdaglar (Nedic & Ozdaglar, 2009) proposed a dis-

tributed sub-gradient method to solve an unconstrained distributed optimization problem in

which they minimize the sum of convex cost functions
∑n

i=1 fi(x) of the agents in the net-

work, where fi(·) is the private cost function of the agent i, for i = 1, 2, . . . , n. In this method,

an agent updates its information state at a discrete-time based on the sub-gradient of its cost

11

function and exchanges it with its neighbors. The communication is asynchronous; that is, the

agents are not required to communicate at the same time. Additionally, the number of agents

in the network may vary with time. Following this, information states of agents make con-

sensus, and the agents achieve social optimal value. Yuan et al. (K. Yuan, Ling, & Yin, 2016)

propose a distributed model to solve the unconstrained optimization problem based on a sub-

gradient method with a constant step-size, in which an agent communicates with its neighbors

to update its local variables. Interested readers can refer to (Romao, Margellos, Notarstefano,

& Papachristodoulou, 2021), (Liu, Qiu, & Xie, 2017), (Nedic, Ozdaglar, & Parrilo, 2010),

(C. Li, Chen, Li, & Wang, 2019) for other works based on sub-gradient methods.

(ii) Gossip algorithm for distributed averaging: The aim here is to solve the following opti-

mization problem.

min
x

1

n

n∑

i=1

fi(x), where x ∈ Rn.

In this method, each agent exchanges its information with a randomly chosen neighbor at each

iteration. Because the neighbors are chosen randomly, the algorithm is called a gossip algo-

rithm (Boyd, Ghosh, Prabhakar, & Shah, 2006). The authors in (Boyd et al., 2006) consider

a network in which agents can join and leave any time. They calculate the optimal averag-

ing based on semidefinite programs, which is further solved by the sub-gradient method to

obtain an approximately optimal solution without the need for complete knowledge of the

network’s topology, which is generally needed to solve the semidefinite programs. Gradient-

based methods for distributed optimization were developed in (Pu et al., 2021), (Pu & Nedic,

2021), wherein an agent maintains an estimate of decision variables as well as an estimate of

the gradients of the cost functions. The estimate of the gradients is pushed to the neighboring

agents, whereas the estimates of the decision variables is pulled from the neighboring agents.

Additionally, the settings work for synchronous and asynchronous random gossip.

(iii) Dual averaging: Suppose there are n agents in a network. Let fi : Rn → R be a convex

cost function of the agent i and x be in the compact set X . Duchi et al. (Duchi, Agarwal, &

12

Wainwright, 2012) proposed a dual averaging sub-gradient algorithm to solve the following

constrained optimization problem.

min
x

1

n

n∑

i=1

fi(x), subject to x ∈ X.

In this algorithm, at each iteration k = 0, 1, 2, . . ., the agent i keeps track of two parame-

ters xi(k) and yi(k), where xi(k) is the estimate of its local decision variable and yi(k) is

the dual parameter. Dual parameter yi(k) is updated using the weighted or probabilistic es-

timates of the neighbors of agent i and the sub-gradient of the cost function fi. Here, the

neighbors of agent i are the agents directly connected to the agent i. After the dual update,

agent i updates its local parameter xi(k) based on a projection criteria which uses dual pa-

rameter yi(k) and γ(k) > 0 a non-increasing step size. They show that the time-averaged se-

quence
{
xi(k) , 1

k+1

∑k
`=0 xi(`)

}
converges to optimal value asymptotically. Tsianos et al.

(Tsianos, Lawlor, & Rabbat, 2012) extended this work to propose Push-Sum distributed dual

averaging and provide the guaranteed convergence to optimal values. Furthermore, Chang

et al. (Chang, Nedic, & Scaglione, 2014) propose a consensus-based distributed primal-

dual perturbation algorithm to minimize the sum of objective functions of agents, subject to

inequality constraint. In a recent work, a privacy-preserving dual averaging algorithm for

distributed optimization is proposed in (D. Han, Liu, Sandberg, Chai, & Xia, 2021). Addi-

tionally, (Uribe, Lee, Gasnikov, & Nedic, 2021) studied dual-based methods for distributed

optimization. Interested readers can refer to (Lee et al., 2018), (Liu, Chen, & Hero, 2018) and

the papers cited there for dual-averaging based distributed optimization techniques.

(iv) Broadcast-based approach: Nedic (Nedic, 2011) proposed a broadcast-based algorithm.

They consider asynchronous communication between agents; in their solution, the failure

of a link does not affect the solution. Let n be the number of agents in a network. Let

fi : Rm → R be a convex private cost function of the agent i and x be in the compact set X .

13

The optimization problem is formulated as follows.

min
x

n∑

i=1

fi(x) subject to x ∈ X.

Furthermore, each agent has a clock that is independent of the clocks of other agents, the

clock of an agent ticks based on the Poisson rate of 1. When the clock of an agent ticks,

then the agent becomes active and broadcasts its estimated parameter to its neighbors. If a

neighbor receives the broadcast, it updates its parameter using the received parameter, the sub-

gradient of its cost function, and step size. Because the communication link may fail, some

of the neighbors may not receive the broadcast message. The authors consider two step-sizes;

they show almost sure convergence for decreasing step-size and convergence in attraction

for constant step-size. Interested readers can refer to broadcast-based gossip algorithms at

(Aysal, Yildiz, Sarwate, & Scaglione, 2009; Lee & Nedic, 2016; Salehisadaghiani & Pavel,

2016; Silvestre, Hespanha, & Silvestre, 2019).

Berahas et al. (Berahas, Bollapragada, Keskar, & Wei, 2019) propose an adaptive framework for

unconstrained distributed optimization problems that aim to minimize the sum of cost functions

of agents in a network. The framework balances the communication and computation cost of an

algorithm depending upon the application considered. Koloskova et al. (Koloskova, Stich, & Jaggi,

2019) propose algorithms to solve unconstrained distributed convex optimization problems based

on the gossip algorithm. Using gradient compression, they reduce the communication overhead

by two orders of magnitude. Furthermore, Lan et al. (G. Lan et al., 2018) propose primal–dual

type distributed algorithms which skip some of the inter-agent communication rounds in solving

primal subproblems to reduce communication overhead. Recently, privacy-preserving distributed

optimization has been studied in several papers; a few are listed as (D. Han et al., 2021), Xiong2020,

(Huo & Liu, 2022). Moreover, in (Tallapragada & Cortes, 2020), the authors proposed distributed

algorithms for coordinating vehicular traffic at an intersection to minimize travel time and energy

consumption as an application to intelligent transportation systems.

14

Alternating direction method of multipliers

One of the most famous approaches to solve distributed convex optimization problems is the

alternating direction method of multipliers (ADMM) (Boyd et al., 2011). The ADMM algorithm

decomposes a problem into two subproblems and then sequentially solves them. At each iteration,

the Lagrangian multipliers are updated.

In this algorithm also, agents coordinate to solve a large global problem. Now, let f : Rn → R

and g : Rm → R be the convex cost functions, and let x ∈ Rn and z ∈ Rm be the decision

variables. Additionally, let A ∈ Rp×n and B ∈ Rp×m be the matrices and c ∈ Rp be a constant.

Then, we write the following optimization problem

min
x,z

f(x) + g(z) subject to Ax +Bz = c. (1.5)

Let δ > 0 be a constant called penalty parameter; furthermore, let Lδ : Rn ×Rm ×Rp → R be the

Lagrangian and µ ∈ Rp be the Lagrangian multipliers, then the augmented Lagrangian of (1.5) is

obtained as follows,

Lδ(x, z, µ) = f(x) + g(z) + µ>(Ax +Bz− c) + (δ/2) ‖Ax +Bz− c‖22 .

Then by fixing one of x(k+ 1) and z(k+ 1), the minimum value of Lδ(·) is found and value of the

other is updated. Further, using these values, µ(k + 1) is updated.

In this solution, the regularization variables ‖xi − z(k)‖22 are updated in such a way that the

social optimum value is achieved (Boyd, Parikh, Chu, Peleato, & Eckstein, 2010). Wei et al. (Wei

& Ozdaglar, 2012) extend ADMM in which each agent in the network solves a subproblem using

its local cost functions and information exchanged with its neighbors. Zhang and Kwok (R. Zhang

& Kwok, 2014) propose an asynchronous distributed ADMM algorithm; furthermore, a broadcast-

based distributed ADMM algorithm is proposed in (Makhdoumi & Ozdaglar, 2014). Recently,

distributed ADMM is studied in (Carli & Dotoli, 2020), and a quantized group ADMM is studied

in (Elgabli et al., 2021) wherein an agent communicates with its two neighbors to reduce commu-

nication overhead. Additionally, ADMM is used in many application areas, for example, electric

15

vehicle charging (Vaya, Andersson, & Boyd, 2014), (Rivera, Goebel, & Jacobsen, 2017), smart grid

(Liu & Han, 2015), machine learning (Boyd et al., 2011), (Shang et al., 2021), to name a few. A

detailed survey on distributed optimization can be found at (Nedic, Pang, Scutari, & Sun, 2018),

(Yang et al., 2019).

In all the above methods, the agents communicate with at least one neighboring agent. However,

in our developed algorithms, the agents do not exchange information with other agents in the net-

work; however, a little with a central server that keeps track of the aggregate demands and broadcast

feedback signals in the network.

1.4.3 Federated optimization

Federated learning is a distributed machine learning technique in which several agents (clients)

collaborate to train a global model without sharing their local on-device data. Each agent updates the

global model with their local dataset and parameters and shares the updates with the central server.

The central server aggregates the updates by agents and updates the global model (McMahan et al.,

2017), (Konecny et al., 2016), (Bonawitz et al., 2019), (Kairouz et al., 2021). The optimization

techniques are called federated optimization (Reddi et al., 2021), (T. Li et al., 2020), (Konecny et

al., 2015), (J. Wang et al., 2020).

One of the most popular and widely used federated optimization techniques is FederatedAv-

eraging (FedAvg) by McMahan and co-authors (McMahan et al., 2017). It is based on stochastic

gradient descent. In the algorithm, a fixed number of agents are selected randomly from agents in

the network at each iteration. Each selected agent performs the stochastic gradient descent on its

local data using the global model for a certain number of epochs. Moreover, each agent performs

the local updates for the same number of epochs. Finally, it communicates the averaged gradients

to the central server. The central server then takes a weighted average of the gradients by agents and

updates the global model. The process is repeated until the model is trained.

Another federated optimization technique is FedProx (T. Li et al., 2020), which is a generaliza-

tion of the FedAvg. In FedProx, the number of epochs is not fixed for each iteration, as in FedAvg;

however, it varies, and partial updates by agents are averaged to update the global model. It is

16

proposed for heterogeneous devices and datasets, data that are not independent and identically dis-

tributed (non-IID). In addition, the authors provide convergence guarantees. Sattler and co-authors

(Sattler, Wiedemann, Muller, & Samek, 2020) also proposed a federated optimization technique for

non-IID data. We list a few other federated optimization techniques such as FedNova (J. Wang et al.,

2020), SCAFFOLD (Karimireddy et al., 2020), Overlap-FedAvg (Zhou, Ye, & Lv, 2022), federated

composite optimization (H. Yuan, Zaheer, & Reddi, 2021), federated adaptive optimization (Reddi

et al., 2021). Besides, interested readers can refer to (Kairouz et al., 2021), (Yin, Zhu, & Hu, 2021)

and the papers cited therein for a detailed discussion on advances in federated learning and future

research directions.

1.4.4 Sharing economy

Recently, consumers in several sectors have adopted shared ownership of resources and services

with guaranteed access. They want to do so due to the need to reduce wastage, environmental

concerns, or monetary benefits.

The analytics work on sharing economy has primarily followed two directions; (i) market de-

sign and equilibria, and (ii) optimal allocation of resources. Here, we give a very brief picture of

some of the most recent work. In (Georgiadis, Iosifidis, & Tassiulas, 2020), Georgiadis et al. pro-

pose three types of resource allocation mechanisms; centralized, coalition-based (game-theoretic

approach), and peer-to-peer. In (Gkatzikis, Iosifidis, Koutsopoulos, & Tassiulas, 2014), Gkatzikis

et al. propose a collaborative consumption mechanism to minimize the electricity cost of a commu-

nity, and in (Tushar et al., 2018), Tushar et al. developed a game-theoretic model for peer-to-peer

energy trading. Furthermore, in (Moret & Pinson, 2018), Moret et al. design a community-based

distributed energy collective market model that helps energy prosumers to optimize their energy

resources and to achieve the social welfare of the community. Iosifidis and Tassiulas (Iosifidis &

Tassiulas, 2017) propose optimization techniques for resource exchange and production scheduling

for cooperative systems. Courcoubetis and Weber (Courcoubetis & Weber, 2012) propose mech-

anisms for the optimal allocation of shared computing resources. In (Hasan, Hentenryck, Budak,

Chen, & Chaudhry, 2018), Hasan et al. propose a community-based car-sharing model to max-

imize trip sharing. To do so, they use mixed-integer programming, graph theory, and clustering

17

techniques. In (C. Zhang, Wu, Zhou, Cheng, & Long, 2018), Zhang et al. propose a game-theoretic

peer-to-peer energy trading model between local prosumers and distributed energy resources. They

show that the model gives rise to an equilibrium between energy production and consumption. In

addition to these works, a peer-to-peer equilibrium model for collaborative consumption is proposed

by Benjaafar et al. in (Benjaafar, Kong, Li, & Courcoubetis, 2018). Furthermore, in (D. H. Nguyen,

2021), authors propose decentralized optimization techniques based on alternating direction method

of multipliers (ADMM) for peer-to-peer energy trading.

Recently, peer-to-peer energy systems for connected communities have been studied in (Tushar

et al., 2021). We refer interested readers to a recent review paper, which covers market design,

optimization techniques, and interesting future directions at (Sousa et al., 2019). Interested readers

can also refer to (Tushar, Saha, Yuen, Smith, & Poor, 2020), (Sampath, Paudel, Nguyen, Foo, &

Gooi, 2021), (Umer, Huang, Khorasany, Afzal, & Amin, 2021) for works on peer-to-peer energy

trading.

1.4.5 Optimality conditions for multiple resources

Let us consider n agents that collaborate to access two shared resources. We consider two

resources here; however, it can easily be extended for more than two resources. Let C1 ≥ 0 and C2 ≥

0 be the capacities of resource 1 and resource 2, respectively. Let the cost function fi : R2
+ → R+

be strictly convex, increasing in each variable, and continuously differentiable, for i = 1, 2, . . . , n.

We formulate the following optimization problem (cf. (1.1)).

min
x11,...,x1n,x21,...,x2n

n∑

i=1

fi(x1i, x2i),

subject to
n∑

i=1

x1i = C1,

n∑

i=1

x2i = C2,

x1i ≥ 0, x2i ≥ 0, for i = 1, . . . , n.

(1.6)

18

Let (x∗1i, x
∗
2i) ∈ R2

+ be the optimal point, for i = 1, . . . , n. Let x1 = (x11, . . . , x1n) ∈ Rn+ and

x2 = (x21, . . . , x2n) ∈ Rn+. Let the vectors µ = (µ1, µ2) ∈ R2, and s = (s1, s2, . . . , sn) ∈ Rn and

r = (r1, r2, . . . , rn) ∈ Rn be Lagrange multipliers of optimization problem (1.6) corresponding to

the equalities and the inequalities, respectively. Let us now consider the Lagrangian of (1.6), we

obtain

H(x1,x2,µ, s, r) =
n∑

i=1

fi(x1i, x2i) + µ1

n∑

i=1

(x1i − C1)

+ µ2

n∑

i=1

(x2i − C2)−
n∑

i=1

six1i −
n∑

i=1

rix2i.

(1.7)

Let x∗ = (x∗1,x
∗
2) ∈ (Rn+)2 minimize H(x1,x2,µ, s, r). We write the KKT conditions (Chapter

5.5.3) (Boyd & Vandenberghe, 2004) of Problem 1.6 as:

(i) Stationary: We have

∂

∂x1i
H(x1,x2,µ, s, r)

∣∣∣
x=x∗

= 0, for i = 1, 2, . . . , n. (1.8)

Analogously, we have

∂

∂x2i
H(x1,x2,µ, s, r)

∣∣∣
x=x∗

= 0, for i = 1, 2, . . . , n. (1.9)

(ii) Complementary slackness:

six1i = 0, and rix2i = 0, for i = 1, 2, . . . , n. (1.10)

(iii) Primal feasibility:

x∗ji ≥ 0, for i = 1, 2, . . . , n, j = 1, 2, and
n∑

i=1

x∗ji − Cj = 0, for j = 1, 2.

(iv) Dual feasibility:

si ≥ 0, and ri ≥ 0, for i = 1, 2, . . . , n.

19

Let solution x∗ ∈ (Rn+)2 to problem (1.6) be strictly positive (each entry of the vector is strictly

positive). From Equation (1.10), we obtain si = 0 and ri = 0, for i = 1, 2, . . . , n. Then the last

term of Equation (2.13) is not active; thus, we obtain

∂

∂x1i
H(x1,x2,µ, s, r) =

∂

∂x1i
fi(x1i, x2i)

∣∣∣
x=x∗

+ µ1, for i = 1, 2, . . . , n. (1.11)

And

∂

∂x2i
H(x1,x2,µ, s, r) =

∂

∂x2i
fi(x1i, x2i)

∣∣∣
x=x∗

+ µ2, for i = 1, 2, . . . , n. (1.12)

Thus, for strictly positive optimal solution x∗ ∈ (Rn+)2 of problem (1.6), the Karush-Kuhn-

Tucker (KKT) conditions yield the following conditions for optimality:

∂

∂x1i
fi(x1i, x2i) =

∂

∂x1u
fu(x1u, x2u)

∣∣∣
x=x∗

, for i, u = 1, 2, . . . , n. (1.13)

Analogously, we obtain

∂

∂x2i
fi(x1i, x2i) =

∂

∂x2u
fu(x1u, x2u)

∣∣∣
x=x∗

for i, u = 1, 2, . . . , n. (1.14)

The partial derivatives of cost functions of all agents competing for a particular resource should

be in consensus to achieve the necessary and sufficient conditions of optimality.

Thus, the KKT conditions are satisfied by the consensus of derivatives of the cost functions that are

necessary and sufficient conditions of optimality of the optimization Problem (1.6); readers can find

further details of the KKT conditions in Chapter 5.5.3 (Boyd & Vandenberghe, 2004). We use this

principle to show that the proposed algorithms reach optimal values asymptotically. Note that for

ease of readability of the chapters, we presented the optimality results there also.

1.5 Contributions

This thesis aims to develop distributed algorithms to solve multi-resource allocation problems

with no inter-agent communication but a little with a central server that keeps track of the aggregate

20

demands. We now briefly present the contributions of this thesis.

1.5.1 Stochastic algorithm for distributed multi-resource allocation for divisible re-

sources

We develop a distributed stochastic algorithm for divisible multi-resource allocation, described

in Chapter 2. It achieves Objectives 1 and 3. The algorithm is based on the additive-increase

multiplicative-decrease (AIMD) algorithm. Our contribution in this chapter is to extend the single

resource allocation algorithm by Wirth and co-authors (Wirth et al., 2019) to a much broader and

useful class of distributed optimization problems that involve multiple resources. The developed

algorithm can be useful in smart cities, smart grids, edge computing, and other application domains.

The algorithm uses probabilistic responses of agents that depend on average allocations of multiple

divisible resources; the cost functions are coupled through the average allocations of these shared

resources. Briefly, the developed algorithm works as follows: An agent continuously demands an

increasing amount of a shared divisible resource until it receives a one-bit capacity event signal from

the controller or central server; this phase is called the additive increase phase. The central server

broadcasts the one-bit capacity event signal when the aggregate resource demand of agents reaches

the capacity of the resource. After receiving this signal, agents respond in a probabilistic manner

to reduce their demands; this phase is called the multiplicative decrease phase. We introduced a

probabilistic way in which agents respond to the capacity events to solve a portfolio of optimization

problems in a stochastic and distributed manner for multiple resources.

Furthermore, we present AIMD matrices for multiple resources. We model the system as a non-

homogeneous Markov chain with place-dependent probabilities. Then we present the results on a

deterministic system with fixed probabilities, and we present a perturbation analysis to develop the

main result on almost sure convergence of the accumulative average (long-term average) allocation

to the KKT point.

Additionally, we present the numerical results and compare the optimal values obtained by the

developed algorithm and the optimization problem solved in a centralized way (by a solver). We

observe that the results of the distributed algorithms are very close to the solver’s optimal values.

We also present an analysis on the number of iterations required for the convergence that depends on

21

the number of agents, their characteristic cost functions, additive-increase parameters. Furthermore,

we compare the experimental results obtained by the single resource allocation algorithm and the

proposed multi-resource allocation algorithm with separable and non-separable cost functions. We

observe that for the separable cost function, the sum of the total costs obtained by the single resource

algorithms and the total cost by the multi-resource algorithm converges to the same value. However,

with non-separable cost functions, the results with the multi-resource allocation algorithms provide

close to optimal values. In contrast, the single resource allocation algorithms provide suboptimal

solutions.

1.5.2 Deterministic algorithm for distributed multi-resource allocation for divisible

resources

We develop a deterministic AIMD based distributed divisible multi-resource allocation algo-

rithm, described in Chapter 3. Wherein agents demand the resources in a deterministic manner to

achieve a social optimum cost over the network. It achieves Objective 1. The algorithm is a de-

randomized version of the stochastic AIMD algorithm. Similar to the stochastic AIMD algorithm,

the deterministic algorithm also has two phases: Additive increase and multiplicative decrease. The

algorithm uses a deterministic approach, and the agents respond to the capacity event signal in a

deterministic manner. In brief, the additive increase phase is the same as the stochastic AIMD algo-

rithm, wherein an agent continuously demands an increasing amount of a shared divisible resource

until it receives a one-bit capacity event signal from the central server. The central server broadcasts

the one-bit capacity event signal when the aggregate resource demand reaches the capacity of the

resource. After receiving this signal, that is, in the multiplicative decrease phase, agents multiplica-

tively decrease their demands in a deterministic way. The deterministic response depends on an

agent’s average resource allocation and the derivative of its cost functions. Moreover, the agent’s

cost function is coupled through its average allocations of multiple divisible shared resources.

In addition, we present a use case of a tourist attraction center, where we assume heterogeneous

IoT devices, such as a set of wearable devices, surveillance cameras, etcetera. These IoT devices

receive on-demand shared resources from the Cloudlets for task offloading. Such facilities can be

helpful in realizing the potential of IoT devices in emerging applications such as assisting tourists

22

with a physical disability, uploading pictures of scenes on social media, getting detailed real-time

information about a painting in a museum, real-time foreign language translation, etcetera. Finally,

we present numerical results to verify the algorithm’s efficacy; we also compare the results with the

stochastic AIMD algorithm.

1.5.3 Stochastic algorithm for distributed multi-resource allocation for indivisible

resources

We develop a stochastic algorithm for indivisible multi-resource allocation, described in Chapter

4. The cost functions of agents are coupled through the average allocations of multiple unit-demand

(indivisible) shared resources. The algorithm extends the single unit-demand resource allocation

algorithm by Griggs et al. (Griggs et al., 2016) to multiple unit-demand resources. The chapter

achieves Objectives 1 and 3. Each agent in the algorithm demands the unit-demand (indivisible)

shared resources in a probabilistic way based on its cost function and its average allocations. More-

over, each agent’s consumption is modeled as a Bernoulli random variable. We consider a central

agency (server) that keeps track of the aggregate demand of resources. Based on the aggregate

demand and resource capacity, the central agency calculates and updates a feedback signal and

broadcasts it in the network at each time step. After receiving this signal, agents respond in a prob-

abilistic way whether to demand one unit of the resource or not. By doing so, the agents receive

optimal allocations in the long-term averages.

In addition, we derive the results on convergence for networks with a single resource based

on the classical results of stochastic approximation techniques. We extend the results to multiple

resources. Finally, to check the efficacy of our algorithm, we present a use case for regulating the

number of electric vehicles that share a limited number of level 1 and level 2 charging points.

1.5.4 Stochastic algorithm for regulating prosumers in a prosumer market

We develop distributed control algorithms to solve regulation problems with optimality con-

straints for the community-based prosumer market, described in Chapter 5. It achieves Objective

2. Recall that prosumers are agents that both produce and consume a resource. The algorithm is

23

based on ideas from stochastic approximation but formulated in a control-theoretic setting. The al-

gorithm reaches optimality asymptotically while simultaneously regulating instantaneous capacity

constraints. To do so, the algorithm does not require communication between prosumers but little

communication with the sharing platform. The algorithm is suitable for situations where prosumer

communities come together to purchase and sell related commodities. Such systems arise, for ex-

ample, in energy systems where agents (prosumers) both produce and consume energy. Specifically,

the distributed algorithm can be deployed on IoT platforms and can be used to support distributed

community-wide buying and selling of resources. In sharing economy settings, a user may not know

how many prosumers are participating in the sharing scheme, whether prosumers can or are willing

to communicate with each other due to privacy considerations, and whether enough computational

power is available to the whole network to allocate resources in real-time optimally. The developed

algorithm places only modest demands on infrastructure and can be used to implement complex

policies in the face of the uncertainties mentioned above.

Additionally, we present two use cases—community-based car-sharing and collaborative energy

storage for prosumer markets. Finally, we present numerical results to check the efficacy of the

algorithms.

Notice that because our models consider a central server that keeps track of aggregate demands

and sends feedback signals in the network, the system may fail if the central server stops working.

However, we can fix this by adding a backup server that keeps all the information as the central

server and receives feedback signals from the central server. When the central server stops sending

the feedback signals, the backup server takes charge and works as the central server until the central

server comes live. As described in federated optimization Section 1.4.3, such settings are explored

extensively by the machine learning community as federated learning. Wherein several agents col-

laborate to train a global model without sharing their local on-device data. Each agent updates the

global model with their local dataset and parameters and shares the updates with the central server.

The central server aggregates the updates by agents and updates the global model (McMahan et al.,

2017), (Konecny et al., 2016), (Bonawitz et al., 2019), (Kairouz et al., 2021). The optimization

techniques are called federated optimization (Reddi et al., 2021), (T. Li et al., 2020), (Konecny et

al., 2015), (J. Wang et al., 2020). Because all the algorithms involve a central server that keeps track

24

of aggregate demands and broadcasts feedback signals, for clarity, we restate the above statement

in each chapter in the thesis.

1.6 Contribution as publications

(i) S. E. Alam, R. Shorten, F. Wirth, and J. Y. Yu, “Distributed algorithms for Internet-of-things

enabled prosumer markets: A control-theoretic perspective,” Analytics for the Sharing Econ-

omy: Mathematics, Engineering and Business perspectives, Springer, pages 125–149, March

2020, ISBN-978-3030350314. Chapter 5 is based on this work.

(ii) S. E. Alam, R. Shorten, F. Wirth, and J. Y. Yu, “Derandomized distributed multi-resource al-

location with little communication overhead,” Allerton Conference on Communication, Con-

trol, and Computing, Urbana, pp. 84–91, October 2018. Chapter 3 is based on this work.

(iii) S. E. Alam, R. Shorten, F. Wirth, and J. Y. Yu, “Communication-efficient distributed multi-

resource allocation,” IEEE International Smart Cities Conference (ISC2 2018), Kansas City,

pp. 1–8, September 2018, (finalist for the best paper award). A part of Chapter 2 is based on

this work.

Working/under-review articles:

(i) S. E. Alam, F. Wirth, J. Y. Yu, R. Ghosh, J. Marecek, and R. Shorten, “Multi-resource alloca-

tion for federated settings: A non-homogeneous Markov chain model,” September 2021, (a

journal article, we plan to submit it to Automatica). A part of Chapter 2 is based on this work.

(ii) S. E. Alam, R. Shorten, F. Wirth, and J. Y. Yu, “On the control of agents coupled through

shared unit-demand resources,” arXiv:1803.10386 [cs.SY], October 2019, (we plan to submit

it to IEEE Systems journal or IEEE Transactions on Control of Network Systems). Chapter 4

is based on this work.

(iii) S. E. Alam, J. Y. Yu, R. Shorten, and S. Rao, “Local differential privacy for distributed opti-

mization”, November 2021, (we plan to submit it to IEEE Access).

25

(iv) “On unique ergodicity of coupled AIMD flows,” with F. Wirth, J. Marecek, J. Y. Yu, P. Fer-

raro, R. Ghosh, R. Shorten, and S. E. Alam, 2021, (a journal article, co-authors are listed in

the order of first names).

(v) S. E. Alam, F. Wirth, J. Y. Yu, and R. Shorten, The convergence of finite-averaging of AIMD

for distributed heterogeneous resource allocations, arXiv:2001.08083 [math.OC], January,

2020.

1.7 Thesis organization

The rest of the thesis is organized as follows. Chapter 2 presents the distributed stochastic

algorithm for divisible multi-resource allocation. The algorithm is based on the additive-increase

multiplicative-decrease (AIMD) algorithm. Next, Chapter 3 introduces distributed de-randomized

algorithm for divisible multi-resource allocation. Again, the algorithm is based on the AIMD al-

gorithm; however, agents demand the resources in a deterministic manner to achieve a social opti-

mum cost for the network. Furthermore, Chapter 4 presents a distributed stochastic algorithm for

multiple indivisible resource allocations. Chapter 5 presents stochastic distributed algorithms for

community-based prosumer markets. Finally, Chapter 6 concludes the thesis and also discusses the

future research directions. The thesis structure is illustrated in Figure 1.3.

Divisible resources

Chapter 1: Introduction

Chapter 6
Conclusion and
future directions

Indivisible resources

Chapter 2
Stochastic algorithm
for divisible resources

Chapter 4
Stochastic algorithm

for unit-demand resources

Chapter 3
Derandomized algorithm
for divisible resources

Chapter 5
Stochastic algorithm
for prosumer markets

Figure 1.3: Structure of the thesis.

26

Chapter 2

Stochastic Distributed Algorithm for

Divisible Multi-resource Allocation

In this chapter, we extend the AIMD-based single resource allocation algorithm by Wirth and co-

authors (Wirth et al., 2019) to multi-resource allocation. The chapter addresses Objectives 1 and 3.

Wirth and his co-authors describe how the basic additive-increase multiplicative-decrease (AIMD)

algorithm can be modified in a straightforward manner to solve a class of distributed optimization

problems for a single shared resource with no inter-agent communication. The AIMD algorithm is

one of the most successful distributed resource allocation algorithms currently deployed in practice.

It is best known as the backbone of the Internet and is also widely explored in other application

areas. We extend the single-resource algorithm to multiple heterogeneous shared resources that

emerge in smart cities, sharing economy, and many other applications. Our main results show

the convergence of the average allocations to the optimal values. We model the system as a non-

homogeneous Markov chain with place-dependent probabilities. Furthermore, numerical results are

presented to demonstrate the efficacy of the algorithms and to highlight the main features of our

analysis.

27

2.1 Introduction

Smart cities are built on smart infrastructures like intelligent transportation systems, smart se-

curity systems, smart grids, smart hospitals, smart waste management systems, etc., (Harrison et

al., 2010; Zanella, Bui, Castellani, Vangelista, & Zorzi, 2014), (Alam, Shorten, Wirth, & Yu,

2018a). Internet of things (IoT) are the essential building blocks to develop such smart infras-

tructures (Hernandez-Munoz et al., 2011; Mohanty, Choppali, & Kougianos, 2016), we call these

devices as Internet of things (IoT) devices. In this chapter, we use the words agents and IoT-devices

interchangeably. In several smart city applications, multiple shared resources must be allocated

among agents that are coupled through multiple resources. Generally speaking, such problems are

more difficult to solve than those with a single resource. This is particularly true when agents are

constrained—either through limitations of communication infrastructure or due to privacy consid-

erations. The recent literature is rich with algorithms that are designed for distributed control and

optimization applications. While this body of work is too numerous to enumerate, we point the

interested readers to (Pu et al., 2021), (Uribe et al., 2021), (Kia, Cortes, & Martinez, 2015), (Tal-

lapragada & Cortes, 2020), (J. Zhang et al., 2019), (S. Han, Topcu, & Pappas, 2017), (Wirth et al.,

2019), for recent contributions. Interested readers can also refer to survey articles (Nedic et al.,

2018), (Yang et al., 2019) and the papers cited therein.

In many instances in smart cities and other areas, a network of agents achieve optimal allocation

of resources through regular communication with each other and/or with a central agent. Motivated

by such scenarios, we develop an algorithm that is tailored for these but does not require inter-agent

communication due to privacy considerations. The developed solution is based on the generalization

of stochastic additive-increase and multiplicative-decrease (AIMD) algorithm (Wirth et al., 2019).

By way of background, the AIMD algorithm was developed in the context of congestion avoid-

ance in transmission control protocol (TCP) (Chiu & Jain, 1989). The AIMD algorithm is further

explored and used in several application domains for example, (Leung et al., 2021), micro-grids

(Crisostomi, Liu, Raugi, & Shorten, 2014), multimedia (Cai, Shen, Pan, & Mark, 2005), electric ve-

hicle (EV) charging (Studli, Crisostomi, Middleton, & Shorten, 2012), (Shah et al., 2019), resource

allocation (Avrachenkov et al., 2017), etc. Interested readers can refer to the book (Corless et al.,

28

2016) for an overview of some of the applications. The authors of (Wirth et al., 2019) demonstrate

that simple algorithms from Internet congestion control can be used to solve certain optimization

problems. Wirth et al. (Wirth et al., 2019) modified the basic AIMD algorithm to solve a class of

optimization problems for a single shared resource with no inter-agent communication but a little

with a central agent; the central agent keeps track of the aggregate allocations.

Recently, such settings have been extensively studied by the machine learning community as

federated learning. Federated learning is a distributed machine learning technique in which several

agents (clients) collaborate to train a global model without sharing their local on-device data. Each

agent updates the global model with their local dataset and parameters and shares the updates with

the central server or central agent. The central server aggregates the updates by agents and updates

the global model (McMahan et al., 2017), (Konecny et al., 2016), (Bonawitz et al., 2019), (Kairouz

et al., 2021). The optimization techniques are called federated optimization (Reddi et al., 2021),

(T. Li et al., 2020), (Konecny et al., 2015), (J. Wang et al., 2020).

Roughly speaking, in (Wirth et al., 2019), the iterative distributed optimization algorithm works

as follows. Agents continuously acquire an increasing share of the shared resource; this phase is

called the additive increase phase. When the aggregate resource demand of agents exceeds the total

capacity of the resource, then the central agent broadcasts a one-bit capacity event notification to all

competing agents. The agents respond in a probabilistic manner to reduce the demand; this phase is

called the multiplicative decrease phase. By judiciously selecting the probabilistic manner in which

agents respond, a portfolio of optimization problems can be solved in a stochastic and distributed

way.

Our contribution in this chapter is to demonstrate that the ideas of the single resource allocation

of (Wirth et al., 2019) extend to a much broader and more useful class of optimization problems

that can be used in many application domains of smart cities and other areas. Our algorithm builds

on the choice of probabilistic response strategies described therein but is different in the sense that

we generalize the approach to deal with multiple resource constraints and the cost functions are

coupled through multiple resources. Furthermore, we show that the optimal value obtained by the

algorithm is the same as if the optimization problem is solved in a centralized way. We model the

system as a non-homogeneous Markov chain with place-dependent probabilities. Our algorithm for

29

multiple heterogeneous resources allows for the almost sure convergence to optimal allocations. For

ease of discussion, we first present the single resource allocation model of Wirth et al. (Wirth et al.,

2019) followed by the model for two resources in the following subsection.

2.1.1 Optimzation problem formulations

Consider a network of n agents that collaborate to access a single shared resource. Agent i has a

state xi ≥ 0, for i = 1, 2, . . . , n, representing the amount of the allocated resource. The allocations

are updated at discrete time instants t0 < t1 < t2 < The agents keep track of their average

allocations

xi(tk) ,
1

k + 1

k∑

`=0

xi(t`) . (2.1)

For convenience, we index time instants tk using k = 0, 1, 2, . . .; for example, we denote xi(tk)

by xi(k) and xi(tk) by xi(k). We assume that the resource has capacity C ≥ 0, referred to as a

capacity constraint. We also assume that agent i has a continuously differentiable cost function

fi : [0, C] → R+, for i = 1, 2, . . . , n. In this simple model, the problem of network-wide optimal

allocation is stated as

min
x1,...,xn

n∑

i=1

fi(xi)

subject to
n∑

i=1

xi = C, xi ≥ 0, for i = 1, . . . , n.

(2.2)

Under strict convexity assumptions, this optimization problem is known to have a unique opti-

mal point x∗ = (x∗1, x
∗
2, . . . , x

∗
n) ∈ riΣ, and we are looking for a distributed algorithm where the

average values xi(k) converge to this point, that is

lim
k→∞

xi(k) = x∗i , for i = 1, . . . , n.

Wirth et al. (Wirth et al., 2019) show that this convergence can be achieved using the AIMD

algorithm.

30

Let us now consider a more complicated example, where n agents collaborate to access two

shared resources. Let C1 ≥ 0 and C2 ≥ 0 be the capacities of resource 1 and resource 2, respectively.

Furthermore, let x1i(k) ∈ [0, C1] denote the amount of resource 1 allocated to agent i at time instant

k; analogously, x2i(k) ∈ [0, C2] is defined, for i = 1, 2, . . . , n. Let the cost function fi : R2
+ → R+

be continuously differentiable, for i = 1, 2, . . . , n. We wish to solve the following optimization

problem in a distributed way:

min
x11,...,x1n,x21,...,x2n

n∑

i=1

fi(x1i, x2i),

subject to

n∑

i=1

x1i = C1,

n∑

i=1

x2i = C2,

x1i ≥ 0, x2i ≥ 0, for i = 1, . . . , n.

(2.3)

To formulate this as a long-term requirement, we define the time-averaged allocation x1i(k) of

resource 1 as in (2.1); analogously, we define x2i(k) of resource 2. Let x∗1i, x
∗
2i > 0 be the optimal

point, for i = 1, . . . , n. Under strict convexity assumptions, we wish to develop an iterative and

distributed algorithm determining values of x1i(k) and x2i(k) at each time instant k such that for

the long-term (accumulative) averages, for i = 1, 2, . . . , n, we obtain:

lim
k→∞

x1i(k) = x∗1i; lim
k→∞

x2i(k) = x∗2i. (2.4)

The AIMD based solution to these problems is practically important for several reasons. First,

agents are not required to reveal their cost functions or their current allocations of the resource.

Second, inter-agent communication is not necessary. Finally, agents can infer that the capacity con-

straint is violated by information made available intermittently by an entity that monitors the overall

resource consumption; we call this entity the central agent. Note that we use central agent, control

unit, or central server interchangeably. Together, these properties make AIMD based optimization

an extremely useful tool to realize a distributed optimization algorithm for problems in which the

decision variables are coordinate-wise strictly positive.

31

2.1.2 Contributions and the structure of the chapter

In Section 2.2, we introduce the AIMD algorithms and briefly describe AIMD based optimiza-

tion for a single resource and two resources. Then in Section 2.3, we present the AIMD matrix

model for a single divisible resource and introduce a novel matrix model for multiple heteroge-

neous divisible resources in Subsection 2.3.2. In Section 2.4, we present the convergence results

on accumulative averaging of allocations, we also call it long-term average allocations. In this

section, we model the system as a non-homogeneous Markov chain with place-dependent probabil-

ities. Furthermore, we present the results on an approximate system with fixed probabilities; using

these results, we present the perturbed version of the system to develop the main result on almost

sure convergence of the accumulative average to a unique fixed point. Section 2.5 corroborates our

analysis with numerical results. Finally, Section 2.6 concludes the chapter.

2.2 AIMD based optimization

We present a brief overview of the AIMD algorithm that is necessary for the discussion in this

chapter. The AIMD algorithm is described in great detail in many publications (Wirth et al., 2019),

(Corless et al., 2016).

2.2.1 AIMD based optimization for a single resource

In the AIMD algorithm, agents probe for an available resource at a rate that increases linearly

by α ∈ (0, C], the additive-increase parameter. When the total requested resource demand exceeds

the capacity, a signal is sent to all or some of the agents to request that agents reduce the amount

of resource demanded. We call these signals capacity events. Agents then respond by scaling

back their request by a multiplicative factor β ∈ [0, 1), the multiplicative-decrease parameter. We

assume that an agent updates its AIMD algorithm every ϕ seconds. We denote these time instances

by tν , where ν ∈ N indexes the ν’th time instant. For i = 1, 2, . . . , n, let λi be a probabilistic rule

determining whether or not an agent responds to a capacity event. By designing these functions, we

32

shall see that the AIMD algorithm can be re-purposed to implement different optimization policies.

Moreover, a parameter Γ is broadcast by the central agent to all agents in the network which ensures

that 0 ≤ λi ≤ 1 (defined in (2.9)).

The intuition underpinning AIMD based optimization is straightforward and is described in

(Wirth et al., 2019), (Corless et al., 2016). For convenience, we describe the basic ideas here again.

Lemma 2.2.1. (Wirth et al., 2019, Lemma 3.1) For i = 1, 2, . . . , n, let fi : [0,C]→ R+ be strictly

convex and continuously differentiable, let f ′i denote the derivative of fi. Let there exists a constant

Γ > 0 such that for all xi ∈ [0, C] and i = 1, 2, . . . , n, we have

0 ≤ Γ
f ′i(xi)

xi
≤ 1. (2.5)

For xi = 0, Equation (2.5) holds for the continuous extension of f
′
i(xi)
xi

at xi = 0, i = 1, 2, . . . , n.

Then

(i) There exists a unique optimal point x∗ = (x∗1, . . . , x
∗
n) ∈ Rn+ for the optimization problem

(2.2).

(ii) The optimal point x∗i is strictly positive, for i = 1, 2, . . . , n.

The following is an excerpt from (Wirth et al., 2019). Let x = (x1, . . . , xn). We introduce the

Lagrange multiplier µ ∈ R and consider the Lagrangian of (2.2) as:

H(x, µ) =
n∑

i=1

fi(xi)− µ
(

n∑

i=1

xi − C
)
. (2.6)

Under the assumption of strict convexity, from the Karush-Kuhn-Tucker (KKT) conditions (Boyd

& Vandenberghe, 2004, Section 5.5.3), the necessary and sufficient conditions for optimality are

obtained by setting all partial derivatives to zero. As the optimal point x∗ = (x∗1, . . . , x
∗
n) has

strictly positive entries; thus, the inequality constraints xi are not active. So under the assumption

µ∗ ∈ R and strict positivity of the optimal point x∗, we have

µ∗ = f ′i(xi)
∣∣
x=x∗

, for i = 1, . . . , n. (2.7)

33

In other words, the system is at optimality when the derivatives of the cost functions are in

consensus. For Markovian models of the AIMD, weak assumptions guarantee ergodicity (Shorten,

King, Wirth, & Leith, 2007). It is then known that almost surely, we have

lim
k→∞

1

k + 1

k∑

`=0

xi(`) =
Θ

λi
, (2.8)

where this average is calculated over all capacity events; moreover, Θ is a network-specific constant,

and λi is the steady-state probability that the i’th agent responds to a notification of a capacity

event. Thus, we can now aim to choose the probability λi so that the steady-state behavior (2.8) is

equivalent to the KKT condition (2.7). With this in mind, suppose each agent responds to a capacity

event with probability

λi(xi(k)) = Γ
f ′i(xi(k))

xi(k)
, (2.9)

where k denotes the k’th capacity event.

Here, Γ is a network-wide constant chosen to ensure that 0 < λi ≤ 1. Suppose now that for

large k, we have xi(k) ≈ x∗i . Then we obtain λi(xi(k)) ≈ λ∗i . Provided that for this choice, (2.8)

holds, we obtain

λi(xi(k)) ≈ Γ
f ′i(xi(k))

Θ
λi(xi(k)), (2.10)

and so f ′i(xi(k)) ≈ Θ/Γ ≈ f ′u(xu(k)), for i, u = 1, 2, . . . , n and large k.

Let S(k) ∈ {0, 1} denote the capacity event signal. When a capacity event occurs then it is

updated with S(k) = 1. The algorithm of a central agent is presented in Algorithm 1. Additionally,

34

the algorithm for agent i for a single resource is presented in Algorithm 2.

Algorithm 1: Algorithm of central agent

1 Input: Capacity C.

2 Output: Capacity event signal S(k), for k ∈ N. Broadcast Γ for the agents in the network. It

is used by agent i to ensure that the response probability 0 ≤ λi ≤ 1, for all i.

3 Initialization: S(0)← 0, the counter for capacity event k ← 0;

4 while time step ν ∈ N do

5 if
∑n

i=1 xi(ν) ≥ C then

6 k ← k + 1;

7 S(k)← 1;

8 broadcast S(k);

9 end

10 end

Algorithm 2: The AIMD algorithm to demand a single shared resource.

1 Input: Capacity event signal S(k) and Γ received from the central agent.

2 Initialization: Agent i sets its state xi(0).We can initialize xi(0) with any value in [0, C]

such that
∑n

i=1 xi(0) ≤ C;

3 while time step ν ∈ N do

4 if S(k) = 1 then

5 xi(ν + 1)←

βxi(ν) w. p. λi(xi(k))

xi(ν) w. p. 1− λi(xi(k))
;

6 else

7 xi(ν + 1)← xi(ν) + α ;

8 end

9 end

35

2.2.2 AIMD-based optimization for multiple resources

For the sake of exposition, we consider two resources here. Moreover, we state the following

result on strict positivity of the optimal point.

Lemma 2.2.2. For i = 1, 2, . . . , n, let fi : R2
+ → R+ be strictly convex and continuously differen-

tiable, let ∂
∂x1i

fi(x1i, x2i), ∂
∂x2i

fi(x1i, x2i) be the partial derivatives of fi(x1i, x2i). Let there exists

constants Γ1,Γ2 > 0 such that for all x1i ∈ [0, C1] and x2i ∈ [0, C2], i = 1, 2, . . . , n, we have

0 ≤ Γ1

∂
∂x1i

fi(x1i, x2i)

x1i
≤ 1. (2.11)

And

0 ≤ Γ2

∂
∂x2i

fi(x1i, x2i)

x2i
≤ 1. (2.12)

For x1i = 0, Equation (2.11) holds for the continuous extension of
∂

∂x1i
fi(x1i,x2i)

x1i
at x1i = 0,

and for x2i = 0, Equation (2.12) holds for the continuous extension of
∂

∂x2i
fi(x1i,x2i)

x2i
at x2i = 0,

i = 1, 2, . . . , n. Then

(i) There exists a unique optimal point x∗ = (x∗11, . . . , x
∗
2n) ∈ (Rn+)2 for the optimization prob-

lem (2.3).

(ii) The optimal point x∗ji is strictly positive, for i = 1, 2, . . . , n, j = 1, 2.

Proof. It is similar to Lemma 3.1 of (Wirth et al., 2019).

Let x1 = (x11, . . . , x1n) ∈ Rn+ and x2 = (x21, . . . , x2n) ∈ Rn+. Let the vectors µ = (µ1, µ2) ∈

R2, and s = (s1, s2, . . . , sn) ∈ Rn and r = (r1, r2, . . . , rn) ∈ Rn be Lagrange multipliers of

optimization problem (2.3) corresponding to the equalities and the inequalities, respectively. We

36

obtain the Lagrangian of (2.3) as follows,

H(x1,x2,µ, s, r) =
n∑

i=1

fi(x1i, x2i) + µ1

n∑

i=1

(x1i − C1)

+ µ2

n∑

i=1

(x2i − C2)−
n∑

i=1

six1i −
n∑

i=1

rix2i. (2.13)

For strictly positive x∗1 = (x∗11, . . . , x
∗
1n),x∗2 = (x∗21, . . . , x

∗
2n), the KKT conditions yield the

following conditions for optimality:

∂

∂x1i
fi(x1i, x2i) =

∂

∂x1u
fu(x1u, x2u)

∣∣
x1=x∗1,x2=x∗2

for i, u = 1, 2, . . . , n. (2.14)

Analogously, we obtain

∂

∂x2i
fi(x1i, x2i) =

∂

∂x2u
fu(x1u, x2u)

∣∣
x1=x∗1,x2=x∗2

, for i, u = 1, 2, . . . , n. (2.15)

Thus, the partial derivatives of cost functions of all agents competing for a particular resource

should be in consensus to achieve the necessary and sufficient conditions of optimality. For ease of

readability of the chapter, we presented the optimality results; it is also found in Chapter 1.4.5.

To realize an algorithm to solve this optimization problem, we shall again use the AIMD algo-

rithm. This time, in contrast to the single resource case, we have two sets of capacity events, one

associated with resource 1 and another with resource 2. We index these events k1 = 1, 2, . . ., and

k2 = 1, 2, . . . , respectively. We also denote the times associated with these events as tk1 and tk2 .

As before, each agent keeps track of the allocation of each resource averaged over the respective

set of capacity events, denoted by x1i(k1) up to capacity event k1 of resource 1; analogously, by

x2i(k2) up to capacity event k2 of resource 2.

Similar to (2.1), the average x1i(k1) up to capacity event k1 is defined as:

x1i(k1) ,
1

k1 + 1

k1∑

`=0

x1i(`). (2.16)

37

In the sequel, x1i(`) means evaluation of resource 1 at the `’th capacity event. Analogously, we

define x2i(k2). Given this setting, we shall show that convergence to the optimum solution is guar-

anteed asymptotically, provided each agent responds to a capacity event as follows.

• Suppose that the k1’th capacity event associated with the resource 1 is communicated to all

agents. Then agent i responds to this notification by reducing the demand for resource 1, with

probability:

λ1i(tk1) = Γ1
1

x1i(tk1)

∂

∂x

∣∣∣∣∣
x=x1i(tk1)

fi(x1i(tk1), x2i(tk1)), (2.17)

where x2i(tk1) denotes the average allocation of agent i over the capacity events of resource

2 up to time instant tk1 .

• Suppose furthermore that the k2’th capacity event associated with the resource 2 is commu-

nicated to all agents. Then agent i responds to this notification by reducing the demand for

resource 2, with probability:

λ2i(tk2) = Γ2
1

x2i(tk2)

∂

∂y

∣∣∣∣∣
y=x2i(tk2)

fi(x1i(tk2), x2i(tk2)), (2.18)

where x1i(tk2) denotes the average allocation of agent i over the capacity events of resource

1 up to time instant tk2 .

Notice that for notational simplicity, we drop x1i and x2i in the definitions of λ1i and λ2i. As before,

Γ1,Γ2 are positive constants that are not dependent on network topology. They are chosen to ensure

that the probabilities λ1i, λ2i are in the valid range; however, the smaller the values of Γ1, Γ2 are,

the more number of iterations are required for the convergence.

Each agent runs its algorithm to demand resources. In the algorithm, we consider that each

agent updates its resource demand at discrete time steps denoted by ν ∈ N. Let S1(k1) ∈ {0, 1}

and S2(k2) ∈ {0, 1} denote the capacity event signals, for resource 1 and 2, respectively. When a

38

capacity event occurs then Sj is updated with Sj(kj) = 1, j = 1, 2. The algorithm of a central agent

is presented in Algorithm 3. Additionally, the algorithm for agent i for two resources is presented

in Algorithm 4.

Algorithm 3: Algorithm of central agent

1 Input: Capacities C1 and C2.

2 Output: Capacity event signals S1(k1) and S2(k2), for k1, k2 ∈ N. Broadcast Γ1 and Γ2 for

the agents in the network. They are used by agent i to ensure that the response probabilities

0 ≤ λji ≤ 1, for all i and j = 1, 2.

3 Initialization: S1(0)← 0 and S2(0)← 0, the counter for capacity events k1 ← 0 and

k2 ← 0;

4 while time step ν ∈ N do

5 if
∑n

i=1 x1i(ν) ≥ C1 then

6 k1 ← k1 + 1;

7 S1(k1)← 1;

8 broadcast S1(k1);

9 end

10 if
∑n

i=1 x2i(ν) ≥ C2 then

11 k2 ← k2 + 1;

12 S2(k2)← 1;

13 broadcast S2(k2);

14 end

15 end

39

Algorithm 4: The algorithm of agent i to demand two shared resources.

1 Input: Capacity event signals S1(k1) and S2(k2) and Γ1 and Γ2 received from the central

agent.

2 Output: Resource demands x1i(ν) and x2i(ν), for ν ∈ N.

3 Initialization: Agent i sets its states x1i(0) and x2i(0). We can initialize xji(0) with any

value in [0, Cj] such that
∑n

i=1 xji(0) ≤ Cj , for j = 1, 2.

4 while time step ν ∈ N do

5 if S1(k1) = 1 then

6 x1i(ν + 1)←

β1x1i(ν) w. p. λ1i(k1)

x1i(ν) w. p. 1− λ1i(k1)
;

7 else

8 x1i(ν + 1)← x1i(ν) + α1 ;

9 end

10 if S2(k2) = 1 then

11 x2i(ν + 1)←

β2x2i(ν) w. p. λ2i(k2)

x2i(ν) w. p. 1− λ2i(k2)
;

12 else

13 x2i(ν + 1)← x2i(ν) + α2 ;

14 end

15 end

Remark 2.2.3 (Communication overhead). For ν ∈ N and j = 1, 2, . . . ,m, let the capacity event

signal be denoted by Sj(ν) ∈ {0, 1}. Moreover, if
∑n

i=1 xji(ν) ≥ Cj then Sj(ν) = 1. Then, in

a network with m resources, the communication overhead will be
∑m

j=1 Sj(ν) bits at ν ∈ N time

step. In the worst case scenario, the communication overhead will be m bits per time step, which is

quite low. Additionally, the communication complexity is independent of the number of participating

agents in the network.

As we stated in Chapter 1, we restate that because our models consider a central server that

keeps track of aggregate demands and sends feedback signals in the network, the system may fail if

40

the central server stops working. However, we can fix this by adding a backup server that keeps all

the information as the central server and receives feedback signals from the central server. When

the central server stops sending the feedback signals, the backup server takes charge and works as

the central server until the central server comes live. Such settings are explored extensively by the

machine learning community as federated learning. Wherein several agents collaborate to train a

global model without sharing their local on-device data. Each agent updates the global model with

their local dataset and parameters and shares the updates with the central server. The central server

aggregates the updates by agents and updates the global model (McMahan et al., 2017), (Konecny

et al., 2016), (Bonawitz et al., 2019), (Kairouz et al., 2021). The optimization techniques are called

federated optimization (Reddi et al., 2021), (T. Li et al., 2020), (Konecny et al., 2015), (J. Wang et

al., 2020). For clarity, we restate it in each chapter in the thesis.

2.2.3 Notations and conventions

The vector space of real column vectors with n entries is denoted by Rn with elements x =[
x1 . . . xn

]>
, where x> denotes the transpose of x. For x,y ∈ Rn, we write x � (≥)y if

xν > (≥)yν for all ν = 1, . . . , n. The positive orthant is Rn+ , {x ∈ Rn;x ≥ 0}. We denote

e := [1 1 . . . 1]> ∈ Rn and the `’th standard basis vector by e`. The Hadamard product (or

componentwise product) on Rn is defined as

x� y ,

[
x1y1 . . . xnyn

]>
, x,y ∈ Rn. (2.19)

Moreover, the space of n×n matrices is denoted by Rn×n, and Rn×n+ is the set of non-negative

matrices. The identity matrix is denoted by I ∈ Rn×n, and to specify the dimension we denote

it by Ia ∈ Ra×a, a ∈ N. For X,Y ∈ Rn×n, the diagonal matrix
[
X 0; 0 Y

]
is denoted by

diag (X,Y). We denote the product of finite number of matrices Y ∈ Rn×n by ΠY . The convex

hull of a set X ⊂ Rn is denoted by convX; it may be defined as the smallest convex set containing

X . The norm we use on Rn is the 1-norm, defined by ‖x‖1 ,
∑n

i=1 |xi|. For a non-empty set

41

X ⊂ Rn, the distance of a point v to X with respect to the 1-norm is defined as

d1(v,X) , inf
{
‖v − x‖1 : x ∈ X

}
. (2.20)

Let the capacity of the resource be C = 1. The standard simplex Σ in Rn is defined by

Σ ,

{
x = (x1, x2, . . . , xn) ∈ Rn+ |

n∑

i=1

xi = 1

}
. (2.21)

We will write Σn if we want to make the dimension of the simplex explicit. The relative interior,

see (Rockafellar, 2015), of Σ is given by riΣ = {x ∈ Σ : x� 0}. The relative interior becomes a

complete metric space, if it is endowed with the Hilbert metric dH , see (Hartfiel, 2002), defined by

dH(x,y) , max
i=1,...,n

log

[
xi
yi

]
− min
u=1,...,n

log

[
xu
yu

]
, x,y ∈ riΣ. (2.22)

Associated with this metric, it is sometimes convenient to consider

exp(dH(x,y)) ,
max
i=1,...,n

[
xi
yi

]

min
u=1,...,n

[
xu
yu

] , x,y ∈ riΣ. (2.23)

Note that log denotes the natural logarithm in the chapter. Moreover, we denote the closed 1-norm

ball of radius δ and center 0 by B1(0, δ), and the closed ball with respect to the Hilbert metric by

BH(x, δ), for x ∈ Σ.

In the sequel, we will frequently deal with product spaces of the form (Rn)m, Σm, (riΣ)m. The

elements of such spaces are denoted by z =
[
z1
> z2

> . . . zm
>]> with z` ∈ Rn, ` = 1, . . . ,m, etc.

Note the distinction between bold entries in a vector (which are then subvectors of equal size) and

non-bold entries as in x =

[
x1 . . . xn

]>
∈ Rn; in the latter case, the entries are real numbers.

Note also that ri(Σm) = (riΣ)m.

Given our norm on Rn, resp. the Hilbert metric on riΣ; for ν ∈ N, j = 1, . . . ,m, let zj ∈ (Rn)ν

and z = (z1, . . . , zm) = (z11, . . . , z1ν , . . . , zm1, . . . , zmν). We will use the product structure to

42

define a norm/metric on the product space via

‖zj‖ , max
1≤`≤ν

‖zj`‖1 , resp. DH(x,y) , max
1≤`≤m

dH(x`,y`). (2.24)

2.3 AIMD matrix model

Much of what follows is based on a matrix representation of AIMD network dynamics (Wirth

et al., 2019), (Corless et al., 2016), and here we recall some important results from these references.

While the following material is known, the discussion of the allocation of multiple heterogeneous

resources introduces some notational issues. Thus, to aid our discussion, we introduce new nota-

tions to make the dependence on each resource clear.

2.3.1 AIMD matrix model for a single resource

We will first describe the evolution of the agents’ allocations of one resource and thus drop

the index j for the moment. There are two parameters associated with a resource, α ∈ (0, C], the

additive-increase parameter and 0 ≤ β < 1, the multiplicative decrease parameter. At a capacity

event, that is, at a time tk at which the total demand equals the available capacity C, agents reduce

their demand to xi(t+k) = βxi(tk) or do not change their demands. The choice is determined for

each agent in a probabilistic manner as described in (2.9). After this, each agent increases demand

with the constant rate α until the next capacity event occurs at time tk+1. We can compute the time

from tk to the next capacity event as

tk+1 − tk =
C −∑n

i=1 βi(k)xi(tk)

nα
, (2.25)

where βi(k) = β if agent i responds to the k’th capacity event, and βi(k) = 1 if it does not respond

to the capacity event. The evolution of the capacity usage of agent i is then

xi(tk+1) = βi(k)xi(tk) + (tk+1 − tk)α. (2.26)

43

Denoting β(k) :=

[
β1(k) . . . βn(k)

]>
, and using elementary arguments (see (Corless et

al., 2016)), it can be shown that the evolution from capacity event k to k + 1 is linear and of the

form

x(k + 1) = A(k)x(k), k ∈ N (2.27)

where

A(k) := diag (β(k)) +
1

n
e
(
e> − β(k)>

)
. (2.28)

It follows that the matrix A(k) ∈ Rn×n is drawn from a finite set of column stochastic matrices

determined by the manner in which agents respond to a capacity event. We denote this set of the

AIMD matrices by A. For n agents in the network, the set A consists of 2n AIMD matrices. Thus,

A , {A1, . . . , A2n} . Note that the set A includes the identity matrix, i.e. the possibility that no

agent responds to an event. This is to simplify the discussion. From a practical point, this would

just result in an immediate repeat of the capacity signal. The matrix corresponding to all agents

responding to a capacity event plays a special role in our discussion. We denote this matrix by A1,

where:

A1 = diag (β1, . . . , βn) +
1

n
e
(
e> − [β1 . . . βn]

)
. (2.29)

Clearly, in (2.28), we have A(k) ∈ A, for all capacity events k.

For the ease of reading, we now present a brief background on Perron eigenvalue and eigen-

vector. Let X ∈ Rn×n+ be a strictly positive matrix then Perron–Frobenius theorem states that

there exists a real and positive eigenvalue τ of X with strictly positive eigenvectors wp; that is,

Xwp = τwp. Furthermore, the magnitude of eigenvalue τ is the largest of all other eigenvalues of

X . The eigenvalue τ is called Perron eigenvalue and the eigenvector is called Perron eigenvector

(Corless et al., 2016). Moreover, if matrix X is strictly positive and column stochastic then Perron

eigenvalue τ = 1; thus, Xwp = wp, where e>wp = 1.

44

We now recall two elementary results from (Wirth et al., 2019). If the response of agents to ca-

pacity events is mutually independent and independent of the state, in an IID fashion, with response

probabilities 0 < λi ≤ 1, i = 1, . . . , n, then for all choices β = (β1, . . . ,βn), where βi ∈ {1, β},

we have

P
(
A(k) = diag (β) +

1

n
e
(
e> − β>

))
=
∏

βi=β

λi
∏

βi=1

(1− λi) , pβ. (2.30)

Moreover, the system in (2.27) with fixed probability in (2.30) constitute a Markov chain. For the

fixed response probability λi > 0, for i = 1, 2, . . . , n, (Wirth, Stanojevic, Shorten, & Leith, 2006),

(Corless et al., 2016), (Wirth et al., 2019) obtained that there exists a unique, invariant measure on

Σ for the Markov chain.

As A(k) and x(k) are independent, it follows that:

E[x(k + 1)] = E[A(k)x(k)] = E[A(k)]E[x(k)].

Here E[A(k)] is a column stochastic matrix that under mild assumptions is strictly positive with

right Perron eigenvector wp, given by

wp =
(n∑

i=1

1

λi

)−1[1

λ1

1

λ2
. . .

1

λn

]>
, (2.31)

where e>wp = 1.

2.3.2 AIMD matrix model for multiple resources

We now extend the matrix formulation of AIMD to the case of multiple heterogeneous re-

sources. The index indicating resource type is j = 1, 2, . . . ,m. We assume independent AIMD

algorithms for the resources, but eventually, we are interested in a coupling of the dynamics. This

coupling will occur by the response probability of the agents, which will depend, for each agent, on

the vector of its resource consumption.

To each resource, we associate AIMD parameters αj , βj , j = 1, . . . ,m, and define the corre-

sponding AIMD matrices, as in (2.28). For example, the set Aj denotes a set of AIMD matrices

45

associated with resource j, with Aj,q ∈ Aj denoting the q’th matrix in this set. Again, the matrix

Aj,1 ∈ Aj as in (2.29) is the matrix where all agents respond to a capacity event for resource j.

For the sake of simplicity, let us assume that there are two resources in the network, that is,

m = 2. The following arguments easily extended to the case m > 2. We denote by K = {tk|k ∈

N} ⊂ R+ the ordered set of all capacity events and the subsets Kj ⊂ K, j = 1, 2, of capacity

events associated to resource j. Define the index map

φ : N→ {1, 2}, (2.32)

where φ(k) = j, if tk ∈ Kj . We note that once the agents’ responses are fixed at a capacity event,

then the time to the next capacity event is determined by (2.34). In particular, φ(k) is a random

variable, which is also determined by the probabilities of choosing the matrices Aj,q.

For k ∈ N and j ∈ {1, 2}, we define the random variables counting the number of capacity

events for each resource by

kj := #{0 ≤ ` ≤ k|φ(`) = j}. (2.33)

For the sake of exposition, we state the following for resource j, j = 1, 2, . . . ,m. As in (2.25),

for resource j, we obtain the time difference between the kj’th capacity event and the kj + 1’th

capacity event, as follows

tkj+1 − tkj =
Cj −

∑n
i=1 βji(kj)xji(tkj)

nαj
, (2.34)

where βji(kj) = βj if agent i responds to the kj’th capacity event, and βji(kj) = 1 if it does not

respond to the capacity event, for j = 1, 2, . . . ,m.

Furthermore, as in (2.26), for resource j, we obtain the instantaneous demands of agent i at the

kj + 1’th capacity event as follows

xji(tkj+1) = βji(kj)xji(tkj) + (tkj+1 − tkj)αj . (2.35)

For resource j, denoting βj(kj) ,

[
βj1(kj) . . . βjn(kj)

]>
, we have the following AIMD

46

matrix (cf. (2.28)):

Aj(kj) = diag (βj(kj)) +
1

n
e
(
e> − βj(kj)>

)

=

βj1(kj) 0 . . . 0

0 βj2(kj) 0 . . . 0

...
...

...
. . .

...

0 . . . 0 βjn(kj)

+
1

n
e

[
1− βj1(kj) . . . 1− βjn(kj)

]
.

(2.36)

Now, to formulate the joint evolution of the resource allocation, we define

A(k) ,

diag (A1(k1), I) if φ(k) = 1,

diag (I,A2(k2)) if φ(k) = 2.

(2.37)

Note that Aj(kj) in (2.37) denotes the AIMD matrix of resource j over resource j’s capacity events

up to time instant tk, for j = 1, 2.

Thus, for x = (x1,x2) ∈ Σ2, we have the following time-varying dynamics for the overall

system:

x(k + 1) = A(k)x(k). (2.38)

We briefly discuss the easiest case, in which each agent responds to each capacity event with

an independent choice according to fixed response probabilities λji > 0, i = 1, 2, . . . , n, j =

1, 2, . . . ,m.

We now extend the results of (2.30) and (2.31) obtained for the single resource to multiple

resources. For resource j = 1, 2, . . . ,m, we have Aj(kj) ∈ Aj , for all capacity events kj . Similar

to the single resource case, if we consider that the response of agents to capacity events is mutually

independent and independent of the state, in an IID fashion, with response probabilities 0 < λji ≤ 1,

i = 1, . . . , n and j = 1, 2, . . . ,m. Then for a fixed j, and for all choices βj = (βj1, . . . ,βjn),

47

where βji ∈ {1, βj}, we obtain

P
(
Aj(kj) = diag (βj) +

1

n
e
(
e> − β>j

))
=

∏

βji=βj

λji
∏

βji=1

(1− λji) , pβj . (2.39)

Now, for a fixed j, Aj(kj) and xj(kj) are independent and it follows that:

E[xj(kj + 1)] = E[Aj(kj)xj(kj)] = E[Aj(kj)]E[xj(kj)].

Furthermore, E[Aj(kj)] is a column stochastic matrix that under mild assumptions is strictly posi-

tive with right Perron eigenvector wpj , given by

wpj =
(n∑

i=1

1

λji

)−1[1

λj1

1

λj2
. . .

1

λjn

]>
, (2.40)

where e>wpj = 1.

Define

Sj(kj) ,
1

kj + 1

kj∑

`=1

Aj(`− 1) . . .Aj(0) + I

 . (2.41)

Moreover, (for m = 2), let S(k) denote the diagonal matrix:

S(k) , diag (S1(k1),S2(k2)). (2.42)

Then, for x(0) ∈ Σ2, we obtain

x(k) = S(k)x(0). (2.43)

Let ‖·‖1 be the max column sum norm which for X ∈ Rn×n is easily seen to satisfy

‖X‖1 = max
x∈Σ
‖Xx‖1 = max

`=1,2,...,n
‖Xe`‖1 . (2.44)

48

Also, for j = 1, 2, . . . ,m, let Xj ∈ Rn×n, and Z , diag (X1, . . . , Xm), we have

‖Z‖1 = max
j=1,2,...,m

‖Xj‖1 . (2.45)

Lemma 2.3.1. Let the probabilities λ = (λ11, . . . , λmn) ∈ ((0, 1]n)m be fixed. Let S(k) be given

by (2.42) and the sequence of random variables {A(k)}k∈N be IID. Let Pλ be the probability

measure. Also, let wpj be right Perron eigenvector as defined in (2.40) for resource j. Moreover,

for m = 2, let wp , [w>p1 w>p2]>, and w , diag
(
wp1e

>,wp2e
>). Then for every ε, δ > 0, there

exists k0 such that for all k ≥ k0, we have

Pλ

(∥∥S(k)− w
∥∥

1
> δ
)
< ε. (2.46)

Proof. The proof is similar to (Wirth et al., 2019, Lemma 2.2). For the Markov chain defined in

(2.38), there exists a unique invariant measure on Σm. For a fixed j, from (Wirth et al., 2006),

(Wirth et al., 2019), we know that limk→∞ xj(k) = wpj almost surely. Furthermore, almost sure

convergence implies convergence in probability. That is, for all δ > 0 and xj(0) ∈ Σ, there exist k0

and ε′ > 0 such that for all kj ≥ k0, we have

Pλ

(∥∥xj(kj)−wpj

∥∥
1
> δ
)
< ε′. (2.47)

For xj(0) ∈ Σ, as e>xj(0) = 1, then from (2.43) and (2.47), we obtain

Pλ

(∥∥∥
(
Sj(kj)−wpje

>
)
xj(0)

∥∥∥
1
> δ
)
< ε′.

Recall that for ` = 1, 2, . . . , n, e` ∈ Rn is the `’th standard basis vector; now, let us choose kj`

such that for all kj ≥ kj` and ε′j` > 0. For a fixed ε, let
∑m

j=1

∑n
`=1 ε

′
j` = ε. Thus, from (2.44), we

obtain

Pλ

(∥∥∥
(
Sj(kj)−wpje

>
)
e`

∥∥∥
1
> δ
)
< ε′j`.

49

Notice that
∥∥(Sj(kj)−wpje

>) e`
∥∥

1
is the 1-norm of the `’th column of the matrix

(
Sj(kj)−wpje

>).

For ` = 1, . . . ,mn, let X` be an event; we know P(∪mn`=1X`) ≤
∑mn

`=1 P(X`).

Furthermore, let k0 = max
j=1,...,m;`=1,...,n

kj`; then, for all k ≥ k0, we obtain:

Pλ

(∥∥S(k)− w
∥∥

1
> δ
)

= Pλ

(
max

j=1,...,m;`=1,...,n

∥∥∥
(
Sj(kj)−wpje

>
)
e`

∥∥∥
1
> δ

)

≤
m∑

j=1

n∑

`=1

Pλ

(∥∥∥
(
Sj(kj)−wpje

>
)
e`

∥∥∥
1
> δ
)

<
m∑

j=1

n∑

`=1

ε′j` = ε.

For simplicity of notation, for m resources in the network, we define

[x]i , (x1i, . . . , xmi), i = 1, 2, . . . , n. (2.48)

Lemma 2.3.1 considers the case of fixed probabilities. We now turn to the question of state-

dependent probabilities and consider the map λ : Σm → ([0, 1]n)m (with component functions

λji(·)) which associates to each state in Σm the probabilities with which agents respond to capacity

events for the different resources. The following assumption will be crucial:

Assumption 2.3.2. (i) The map λ : Σm → ([0, 1]n)m is continuous.

(ii) The map R : Σm → ([0, 1]n)m, R(x) = x�λ(x) is the gradient of a strictly convex function

Q : Σm → R.

(iii) There exist λj,min > 0, j = 1, . . . ,m such that λji(·) ≥ λj,min, for i = 1, . . . , n and

j = 1, . . . ,m.

2.4 Convergence of accumulative averaging

In this section, we present the main result on the convergence of accumulative or long-term

average allocations. The probabilities for choosing the AIMD matrices depend on the accumulative

50

averages of the realization. We model the system as a non-homogeneous Markov chain with place-

dependent probabilities. To prove the convergence of accumulative average allocations, first we

present the results for an approximate system with fixed probabilities; we call it the deterministic

system, described in Section 2.4.1. Furthermore, a perturbed version of the system is presented in

Section 2.4.2 that uses results on the deterministic system to prove the main theorem on almost sure

convergence of the accumulative average to the unique fixed point. For k ∈ N, let ξ(k) be the state

vector for the resources, defined as

ξ(k) ,
[
x1(k)> x1(k)> . . . xm(k)> xm(k)>

]>
. (2.49)

Note that xj(k) denotes the state vector of resource j at time instant tk, for j = 1, 2, . . . ,m.

Similarly, xj(k) denotes the average allocation over the capacity events of resource j up to time

instant tk, for j = 1, 2, . . . ,m.

For a fixed j, we reformulate (2.16) as

xj(kj + 1) =
1

kj + 2
xj(kj + 1) +

kj + 1

kj + 2
xj(kj). (2.50)

Thus, we obtain

xj(kj + 1)

xj(kj + 1)

 =

Aj(kj) 0

1
kj+2Aj(kj)

kj+1
kj+2I

xj(kj)

xj(kj)

 . (2.51)

For the sake of simplicity, we consider two resources here. Recall that we denote by K = {tk|k ∈

N} ⊂ R+ the ordered set of all capacity events and the subsets Kj ⊂ K, j = 1, 2 of the capacity

events of resource j. Additionally, φ : N → {1, 2} is the index map, where φ(k) = j, if tk ∈ Kj .

51

Moreover, let V(k) ∈ R4n×4n denote the following matrix

V(k) ,

diag

A1(k1) 0

1
k1+2A1(k1) k1+1

k1+2I

 , I2n

 if φ(k) = 1,

diag

I2n,

A2(k2) 0

1
k2+2A2(k2) k2+1

k2+2I

 if φ(k) = 2.

(2.52)

Based on the occurrence of the capacity event of a particular resource, the matrix V(k) is chosen,

and the corresponding state vectors are updated, but the state vectors of other resources remain

unchanged. Moreover, for Aj,q ∈ Aj , let Vk denote the following matrix,

Vk =

diag

A1,q 0

1
k1+2A1,q

k1+1
k1+2I

 , I2n

 if φ(k) = 1,

diag

I2n,

A2,q 0

1
k2+2A2,q

k2+1
k2+2I

 if φ(k) = 2.

(2.53)

Let G(k) represent the set of all Vk matrices, for k ∈ N. We obtain the following non-homogeneous

Markov chain

ξ(k + 1) = V(k)ξ(k), for k ∈ N, (2.54)

with place-dependent probabilities

P (V(k) = Vk | x1(tk) = y1,x2(tk) = y2) = pV (y1,y2).

Recall that xj(tk) denotes the average allocation over the capacity events of resource j up to time

instant tk, for j = 1, 2. We now state the main result on the convergence of average allocations as

follows.

Theorem 2.4.1 (Convergence of average allocations). Suppose that Assumption 2.3.2 holds. Let

52

x∗ ∈ riΣm be the KKT point of Problem (2.3) as in Lemma 2.4.2. Let us consider the non-

homogeneous Markov chain (2.54). Then, for an initial value ξ(0) ∈ Σm × Σm, the following

holds almost surely,

x(k)→ x∗, when k →∞.

The proof of Theorem 2.4.1 is presented in Subsection 2.4.3.

Let W ∈ N denote a fixed time window and v ∈ N denote an averaging period; let v be very

small as compared to W . Our main intuition here is that in the long run, the accumulative average

x(W + `) is almost a constant for ` in the interval [W,W + v]. Thus, for j = 1, . . . ,m, the

probability of choosing an AIMD matrix Aj,q ∈ A is also almost a constant in this interval, here

A , ∪mj=1Aj . We obtain

x(W + v) =
W + 1

W + v + 1
x(W) +

v

W + v + 1

(
1

v

v∑

`=1

x(W + `)

)
. (2.55)

Using the results on AIMD with constant probabilities, we approximate the dynamics of the above

system. Let εv denote v
W+v+1 ; we reformulate (2.55) to obtain

x(W + v) = (1− εv)x(W) + εv

(
1

v

v∑

`=1

x(W + `)

)
. (2.56)

Let P : Σm → Σm, and P = (P1, . . . , Pm). For y ∈ Σm, Pj(y) denote the expectation of the

invariant measure of the AIMD model with fixed probabilitiesλj (y) = (λj1 ([y]1) , . . . , λjn ([y]n)).

From (2.40), we obtain

Pj(y) , wpj (y) =

(
n∑

i=1

1

λji ([y]i)

)−1 [
1

λj1 ([y]1)
. . .

1

λjn ([y]n)

]>
. (2.57)

Thus, we have

P (y) =
[
P1(y)> P2(y)> . . . Pm(y)>

]>
. (2.58)

53

Let the perturbation term associated with xj (see (2.56)) be denoted by ∆j ∈ Rn, and let ∆ =
[
∆>1 . . . ∆>m

]>. For a time window W , we denote the vector of the perturbation terms ∆(W) by

∆(W) =
[
∆1(W)> . . . ∆m(W)>

]>
. (2.59)

We reformulate (2.56) to obtain

x(W + v) = (1− εv)x(W) + εv (P (x(W)) + ∆(W)) . (2.60)

To understand the dynamics of the system presented in (2.60), we analyze the following system and

describe (2.60) as its perturbed version.

x(W + v) = (1− εv)x(W) + εv (P (x(W))) . (2.61)

In the following subsection, we analyze the system in (2.61) to obtain characterizations of its

unique fixed point; we call this system, a deterministic system. The system in (2.60) is the perturbed

version of (2.61).

2.4.1 Results on deterministic systems

Here, we discuss the discrete-time system

x(k + 1) = P (x(k)), (2.62)

where P : Σm → Σm is given by (2.58). From Assumption 2.3.2, for i = 1, . . . , n and j =

1, . . . ,m, as λji is continuous; therefore, P (Σm) ⊂ riΣm is compact. We choose a constant δ− > 0

sufficiently small such that the following holds:

P (Σm) +B1(0, δ−) ⊂ convP (Σm) +B1(0, 2δ−) ⊂ riΣm. (2.63)

54

For k ∈ N, let 0 < εk < 1, we consider the following system that performs successive convex

combination of x and P (x):

x(k + 1) = (1− εk)x(k) + εkP (x(k)). (2.64)

For the sake of simplicity of notation, let Rε : Σm → Σm, defined as

Rε(x) , (1− ε)x + εP (x), for 0 ≤ ε ≤ 1. (2.65)

Furthermore, for δ > 0, let Pco(δ) be defined as

Pco(δ) , convP (Σm) +B1(0, δ). (2.66)

Let δ+ be the constant defined as

δ+ , max
y∈Σm

{d1(y, P (Σm))} . (2.67)

Lemma 2.4.2 and its proof is by Fabian Wirth. The iteration in (2.64) has the following properties.

Lemma 2.4.2 (Existence and uniqueness of fixed points). Suppose that Assumption 2.3.2 holds. Let

P : Σm → Σm be given by (2.58). Then

(i) P (·) has a unique fixed point x∗ ∈ Σm such that, for i, u = 1, 2, . . . , n and j = 1, . . . ,m,

we have

λji([x]∗i)x
∗
ji = λju([x]∗u)x∗ju , γjF . (2.68)

(ii) For each 0 < ε ≤ 1, the fixed point x∗ ∈ Σm is the unique fixed point of the map

x 7→ (1− ε)x + εP (x).

55

(iii) For every initial state x(0) ∈ Σm and every sequence {εk}k∈N ⊂ (0, 1), the solution of

x(k + 1) = (1− εk)x(k) + εkP (x(k)),

is strictly positive for all k ≥ 1.

Proof. (i) As Σm is compact and convex, and P : Σm → Σm is a continuous map, it follows

from Brouwer’s fixed point theorem that P has a fixed point x∗ ∈ Σm. By the definition of

P , any fixed point x∗ ∈ Σm satisfies the following:

Pj(x
∗)i =

(
n∑

`=1

1

λj`([x]∗`)

)−1
1

λji([x]∗i)
= x∗ji,

for i = 1, . . . , n and j = 1, . . . ,m. Thus, we obtain

(
n∑

`=1

1

λj`([x]∗`)

)−1

= λji([x]∗i)x
∗
ji.

As the term on the left only depends on j, we obtain (2.68). Assume that P has two fixed

points x,y ∈ Σm, x 6= y. Consider the map

α 7→ xα := αx + (1− α)y, α ∈ [0, 1].

As x � λ(x) is the gradient of a strictly convex map Q, we have that Q2 : α 7→ Q(xα) is

strictly convex with derivative

d

dα
Q2(α) = 〈xα � λ(xα),x− y〉

=
m∑

j=1

〈xαj � λj(xα),xj − yj〉.

By strict convexity, this derivative is strictly increasing in α. On the other hand, we have from

(2.68) for the two fixed points x,y and for all j = 1, . . . ,m, that there are suitable constants

56

cj , dj such that

xj � λj(x) = cje, and yj � λj(y) = dje. (2.69)

Recall that e ∈ Rn is a vector of all ones. As xj ,yj ∈ Σ, it follows that

d

dα
Q2(1) =

m∑

j=1

〈xj � λj(x),xj − yj〉

=

m∑

j=1

cj〈e,xj − yj〉 = 0

=
m∑

j=1

dj〈e,xj − yj〉 =
d

dα
Q2(0).

This equation contradicts our previous observation that dQ2

dα is strictly increasing. This shows

the uniqueness of the fixed point.

(ii) As ε > 0, if x = (1− ε)x+ εP (x), it follows that x = P (x). By (i), x is equal to the unique

fixed point x∗ of P .

(iii) As λji ≥ λj,min > 0, for i = 1, . . . , n, j = 1, . . . ,m, we have P (Σm) ⊂ riΣm. Also, as x(k)

is the convex combination of a point in Σm and a point in riΣm, it follows that x(k) ∈ riΣm,

for k ∈ N.

Lemma 2.4.3. Let x ∈ Σm, and let δ− > 0 be a constant that satisfies (2.63). For all ε ∈ (0, 1]

and δ ∈ (0, δ−):

(i) For j = 1, 2, . . . ,m, let ∆j ∈ Rnsuch that e>∆j = 0; moreover, let ∆ = [∆>1 . . . ∆>m]>,

then for ‖∆j‖1 ≤ δ, we have

d1(Rε(x) + ε∆, Pco(δ)) ≤ (1− ε)d1(x, Pco(δ)).

(ii) Let δ+ be as in (2.67), then for all y ∈ Σm, we have

d1((1− ε)x + εy, Pco(δ)) ≤ (1− ε)d1(x, Pco(δ)) + εδ+.

57

(iii) Let there exist Cδ such that for all ε ∈ (0, 1) and δ ∈ (0, δ−), if d1(x, Pco(δ)) > δ, then we

have

d1((1− ε)x + εy, Pco(δ)) ≤ (1 + εCδ)d1(x, Pco(δ)).

Proof. Similar to the proof of (Wirth et al., 2019, Lemma B.2).

Lemma 2.4.4. Let x∗ ∈ Σm be the unique fixed point of P as described in Lemma 2.4.2. For a

fixed j, and every ζj > 0, there exist constants rj , Rj and εj , with 0 < rj < 1 < Rj and εj ∈ (0, 1)

such that, for all ε ∈ (0, εj) if we have dH(xj ,x
∗
j) > ζj , and i′, u′ are such that

exp(dH(Rε(x)j ,x
∗
j)) =

Rε(x)ji′/x
∗
ji′

Rε(x)ju′/x
∗
ju′
, (2.70)

then xji′ > Rjx
∗
ji′ and xju′ < rjx

∗
ju′ .

Proof. Similar to the proof of (Wirth et al., 2019, Lemma B.3).

Theorem 2.4.5. Let x = (x1,x2, . . . ,xm) ∈ Σm. Let x∗ ∈ Σm be the unique fixed point of P

as described in Lemma 2.4.2. Suppose that Assumption 2.3.2 holds. For every ζ > 0, there exists

0 < ε0 < 1 such that for all 0 < ε < ε0, we have

DH(x,x∗) > ζ =⇒ DH(Rε(x),x∗) < DH(x,x∗).

Corollary 2.4.6. (Wirth et al., 2019, Corollary B.5) Let x∗ ∈ Σm be the unique fixed point of P as

described in Lemma 2.4.2. Furthermore, let L1j < γjF < L2j and Cζj > 0 as in (2.71), then for

each ζ > 0 there exists 0 < ε0 < 1 such that for all 0 < ε < ε0, we have

dH(xj ,x
∗
j) ≥ ζ

=⇒ exp(dH(Rε(x)j ,x
∗
j)) < (1− εCζj) exp(dH(xj ,x

∗
j)),

58

where

Cζj = min
ε∈[0,1]

1
L1j
− 1

L2j(
(1− ε)∑n

`=1
1

λj`([x]`)
+ ε

L1j

) . (2.71)

Corollary 2.4.7. Let x∗ ∈ Σm be the unique fixed point of P as described in Lemma 2.4.2. Let

L1j < γjF < L2j , and let Cζj > 0 as in (2.71). Furthermore, let for each ζ > 0 there exist

0 < ε0 < 1 and a constant Cζ > 0 such that for all 0 < ε < ε0, we have

DH(x,x∗) ≥ ζ

=⇒ exp(DH(Rε(x),x∗)) < (1− εCζ) exp(DH(x,x∗)). (2.72)

Proof. From Corollary 2.4.6, we get the desired result:

max
j=1,...,m

{
exp(dH(Rε(x)j ,x

∗
j))
}
< max

j=1,...,m

{(
1− εCζj

)
exp (dH(xj ,x

∗
j))
}

= max
j=1,...,m

{(
1− εCζj

)}
max

j=1,...,m

{
exp (dH(xj ,x

∗
j))
}

= (1− εCζ) exp (DH(x,x∗)),

where

Cζ , min
j=1,...,m

min
ε∈[0,1]

1
L1j
− 1

L2j(
(1− ε)∑n

`=1
1

λj`([x]`)
+ ε

L1j

) > 0. (2.73)

We now assume that 0 < δ < δ−; thus, we have

convP (Σm) +B1(0, 2δ) ⊂ riΣm.

Moreover, for a fixed j, and i, u = 1, 2, . . . , n, let us choose agents’ indexes (i′, u′) such that the

59

following holds:

maxi{(Rε(x)ji + ε∆ji)/x
∗
ji}

minu{(Rε(x)ju + ε∆ju)/x∗ju}
−

maxi{Rε(x)ji/x
∗
ji}

minu{Rε(x)ju/x∗ju}

≤ εδ
(Rε(x)ji′ +Rε(x)ju′)/x

∗
ji′

(Rε(x)ju′ − εδ)Rε(x)ju′/x
∗
ju′
. (2.74)

We obtain the following results.

Lemma 2.4.8. Let x∗ ∈ Σm be the unique fixed point of P as described in Lemma 2.4.2. Let

δ− > 0 satisfy Equation (2.63). Then, for a fixed j, there exists$j > 0 such that for all δ ∈ (0, δ−),

ε ∈ (0, 1), x ∈ convP (Σm) + B1(0, δ), ∆j ∈ Rn with e>∆j = 0 and ‖∆j‖1 ≤ δ, we have the

following robustness result

exp(dH(Rε(x)j + ε∆j ,x
∗
j))− exp(dH(Rε(x)j ,x

∗
j)) ≤ εδ$j .

Proof. By assumption, convP (Σm) +B1(0, δ) is a compact subset of riΣm; therefore, each entry

of x and Rε(x) is bounded away from 0. For a fixed resource j and the agent’s index u′, from

(Wirth et al., 2019, Lemma B.6), we know that (Rε(x)ju′ − εδ) is bounded away from 0. Thus, as

the denominator of the right-hand side of (2.74) is bounded away from 0, it may be bounded by a

constant, $j .

Lemma 2.4.9. Let x∗ ∈ Σm be the unique fixed point of P as described in Lemma 2.4.2. Let

0 < ε < 1, and let δ− > 0 satisfy (2.63). For all j, let ∆j ∈ Rn be the perturbation term such that

e>∆j = 0. For δ > 0, let ‖∆j‖1 ≤ δ. Furthermore, let ∆ = [∆1
> . . . ∆m

>]>. Also, let there

exist a constant $ > 0 such that for all 0 < δ < δ− and x ∈ convP (Σm) +B1(0, δ), we have

exp(DH(Rε(x) + ε∆,x∗))− exp(DH(Rε(x),x∗)) ≤ εδ$. (2.75)

60

Proof. By Definition (2.23), we obtain

exp(DH(Rε(x) + ε∆,x∗))− exp(DH(Rε(x),x∗))

= max
j=1,...,m

{
exp(dH(Rε(x)j + ε∆j ,x

∗
j))− exp(dH(Rε(x)j ,x

∗
j))
}
.

Let us choose agents’ indexes (ij , uj) such that (2.74) holds for resource j, for j = 1, 2, . . . ,m. Let

j′ be a specific resource and (i′, u′) be chosen for j′ such that the maximum is attained for (2.74)

over all resources. Thus, for j = 1, . . . ,m, from Lemma 2.4.8, we obtain:

max
j

{
exp(dH(Rε(x)j + ε∆j ,x

∗
j))− exp(dH(Rε(x)j ,x

∗
j))
}

≤ εδmax
j

{
(Rε(x)jij +Rε(x)juj)/x

∗
jij

(Rε(x)juj − εδ)Rε(x)juj/x
∗
juj

}

≤ εδ
(Rε(x)j′i′ +Rε(x)j′u′)/x

∗
j′i′

(Rε(x)j′u′ − εδ)Rε(x)j′u′/x
∗
j′u′

= εδ$,

where

$ =
(Rε(x)j′i′ +Rε(x)j′u′)/x

∗
j′i′

(Rε(x)j′u′ − εδ)Rε(x)j′u′/x
∗
j′u′

. (2.76)

Lemma 2.4.10. (Wirth et al., 2019, Lemma B.8) For a fixed j, let x∗j ∈ Σ be the unique fixed point

of P . For every xj ∈ riΣ, yj ∈ Σ, let there exist x∗j,min such that max
i=1,...,n

{
1/x∗ji

}
= 1/x∗j,min, then

for each 0 ≤ ε < 1, we have

exp(dH((1− ε)xj + εyj ,x
∗
j)) ≤ exp (dH(xj ,x

∗
j))

(
1 +

ε

1− ε
1

x∗j,min

)
.

Corollary 2.4.11. Let x∗ ∈ Σm be the unique fixed point of P as in Lemma 2.4.2. For each ζ > 0,

there exists 0 < ε0 < 1 and the constant Cζ > 0 as in (2.73) such that for all 0 < ε < ε0, Equation

(2.72) holds. Let δ− > 0 satisfy (2.63) and $ > 0 be the constant as in Lemma 2.4.9. Furthermore,

61

let

δ∗ , min

{
Cζ exp (ζ)

2$
, δ−
}
. (2.77)

For all j, let ∆j ∈ Rn be the perturbation term such that e>∆j = 0. Also, let ∆ = [∆1
> . . . ∆m

>]>,

and let Pco(δ) be defined as in (2.66). Then for each 0 < δ < δ∗; 0 < ε < ε0; x ∈ convP (Σm) +

B1(0, δ); and ‖∆j‖1 ≤ δ, we have

Rε(x) + ε∆ ∈ Pco(δ), (2.78)

and

DH(x,x∗) ≥ ζ

=⇒ exp (DH(Rε(x) + ε∆,x∗)) <

(
1− εCζ

2

)
exp (DH(x,x∗)). (2.79)

Proof. Similar to the proof of (Wirth et al., 2019, Corollary B.7).

Lemma 2.4.12. Let x∗ ∈ Σm be the unique fixed point of P as described in Lemma 2.4.2, and let

there exist x∗min such that max
j=1,...,m

{
1

x∗j,min

}
= 1

x∗min
, then for every x ∈ riΣm, y ∈ Σm and for all

ε ∈ (0, 1), we have

exp(DH((1− ε)x + εy,x∗)) ≤ exp (DH(x,x∗))

(
1 +

ε

1− ε
1

x∗min

)
. (2.80)

We can also express it as

DH((1− ε)x + εy,x∗) ≤ DH(x,x∗) + log

(
1 +

ε

1− ε
1

x∗min

)
.

Specifically, for all ε0 ∈ (0, 1), there exists a constant C0 such that for all x ∈ riΣm, y ∈ Σm, and

62

0 < ε < ε0, we have

DH((1− ε)x + εy,x∗) ≤ DH(x,x∗) + εC0. (2.81)

Proof. From Lemma 2.4.10, for a fixed j, we have

exp(dH((1− ε)xj + εyj ,x
∗
j)) ≤ exp (dH(xj ,x

∗
j))

(
1 +

ε

1− ε
1

x∗j,min

)
.

Thus, for j = 1, 2, . . . ,m, we obtain

max
j

{
exp(dH((1− ε)xj + εyj ,x

∗
j))
}
≤ max

j

{
exp (dH(xj ,x

∗
j))

(
1 +

ε

1− ε
1

x∗j,min

)}
.

By Definition (2.23), for j = 1, 2, . . . ,m, we obtain (2.80) as follows:

exp(DH((1− ε)x + εy,x∗)) ≤ max
j

{
exp (dH(xj ,x

∗
j))

(
1 +

ε

1− ε
1

x∗j,min

)}

= max
j
{exp (dH(xj ,x

∗
j))}max

j

{(
1 +

ε

1− ε
1

x∗j,min

)}

= exp (DH(x,x∗))

(
1 +

ε

1− ε
1

x∗min

)
.

2.4.2 Results on stochastic systems

We now use the results on deterministic systems to prove almost sure convergence of the long-

term average allocation to the unique fixed point. In this direction, we present the results on the

length of the averaging period, followed by the proof of the main theorem (Theorem 2.4.1) in

several steps.

As before, for the ease of discussion, we consider m = 2 resources; however, it is easily

extended for m > 2. For y ∈ Σ2, recall that P (y) = [P1(y)> P2(y)>]> denotes the expectation

63

of the invariant measure of the AIMD model with fixed probability λ (y). We define

Pe(y) , diag
(
P1(y)e>, P2(y)e>

)
. (2.82)

We denote (c.f. Definition (2.42))

S(mv) = diag
(
S1(v), . . . ,Sm(v)

)
. (2.83)

For j = 1, 2, . . . ,m, by (2.41), we obtain

Sj(v)xj(W) =
1

v + 1

v∑

`=0

xj(W + `). (2.84)

Thus, we obtain

S(mv)x(W) = diag
(
S1(v), . . . ,Sm(v)

)

x1(W)

...

xm(W)

=

S1(v)x1(W)

...

Sm(v)xm(W)

=

1
v+1

∑v
`=0 x1(W + `)

...

1
v+1

∑v
`=0 xm(W + `)

=
1

v + 1

v∑

`=0

x(W + `). (2.85)

We now extend Lemma 2.3.1 to obtain the following continuity result for the Markov chain (2.38)

with fixed probabilities that determines the length of the averaging period.

Lemma 2.4.13 (Length of averaging period). Suppose that Assumption 2.3.2 holds. Let y ∈ Σm,

and let us consider the family of Markov chains in (2.38), with fixed probability λ = λ(y). Then

for all δ > 0 and 0 < θ ≤ 1, let there exist v ∈ N such that for all y ∈ Σm and for all m resources,

64

we have

Pλ

(∥∥S(mv)− Pe(y)
∥∥

1
> δ
)
< θ. (2.86)

Proof. For a fixed ŷ ∈ Σm and δ, ε > 0, let there exist v̂ ∈ N, for m resources in the network. Then

from Lemma 2.3.1, we have

Pλ

(∥∥S(mv̂)− Pe(ŷ)
∥∥

1
> δ
)
< ε. (2.87)

By Assumption 2.3.2, the map P is continuous; thus,

y 7→ Pλ

(∥∥S(mv̂)− Pe(ŷ)
∥∥

1
> δ
)
,

is continuous. Hence, we have

Pλ

(∥∥S(mv̂)− Pe(y)
∥∥

1
> 2δ

)
< 2ε. (2.88)

Note that it holds on the neighborhood of ŷ. Thus, there exists a finite number of such neighbor-

hoods, and so finitely many v̂ exist. For y ∈ Σm and v̂ ∈ N, let the random variable M(mv̂) be

defined as

M(mv̂) ,
∥∥S(mv̂)− Pe(y)

∥∥
1
. (2.89)

For the sake of exposition, we consider m = 2 here. By Definition (2.45), we obtain

M(2v̂) =
∥∥∥diag

(
S1(v̂)− P1(y)e>,S2(v̂)− P2(y)e>

)∥∥∥
1

= max
j=1,2

∥∥∥Sj(v̂)− Pj(y)e>
∥∥∥

1
. (2.90)

As Sj(v̂) and Pj(y)e> are column stochastic matrices, S(mv̂) and Pe(y) will also be column

stochastic matrices. Hence, we have 0 ≤M(mv̂) ≤ 2 and 0 ≤ E[M(mv̂)2] ≤ 4. Moreover, from

65

(2.87), we obtain

0 ≤ E [M(mv̂)] ≤ 2δ + 2× 2ε = 2δ + 4ε. (2.91)

Let σ2 denote the variance of M(mv̂). For a fixed ε and δ, the variance σ2 is finite. Thus, for

m = 2, and L ∈ N, for multiples of v̂, we obtain

S(2Lv̂) = diag
(
S1(Lv̂),S2(Lv̂)

)
.

Additionally, for a fixed j, by the definition of (2.41), we obtain

Sj(Lv̂) =
1

Lv̂ + 1

(
Lv̂∑

`=1

Aj(`− 1) . . .Aj(0) + I

)
.

Let Aj(`− 1) . . .Aj(0) be denoted by ΠAj (`). Then, we obtain

Sj(Lv̂) =
1

Lv̂ + 1

(
L−1∑

`=0

v̂−1∑

t=0

Aj(`v̂ + t) . . .Aj(`v̂)ΠAj (`v̂) + I

)
.

Following the steps as in the proof of (Wirth et al., 2019, Lemma C.2), we obtain

∥∥∥Sj(Lv̂)− Pj(y)e>
∥∥∥

1
≤ 1

L

L−1∑

`=0

∥∥∥Sj(`v̂)− Pj(y)e>
∥∥∥

1
. (2.92)

From (2.90) and (2.92), we obtain

M(2Lv̂) = max
j=1,2

∥∥∥Sj(Lv̂)− Pj(y)e>
∥∥∥

1
≤ max

j=1,2

1

L

L−1∑

`=0

∥∥∥Sj(`v̂)− Pj(y)e>
∥∥∥

1
. (2.93)

For ` ∈ N, let X`, Y` ∈ R. We know that

max

{
L∑

`=1

X`,
L∑

`=1

Y`

}
≤

L∑

`=1

max {X`, Y`} , for L ∈ N.

66

Thus, from (2.93), we obtain

M(2Lv̂) ≤ 1

L

L−1∑

`=0

max
j=1,2

∥∥∥Sj(`v̂)− Pj(y)e>
∥∥∥

1
=

1

L

L−1∑

`=0

M(2`v̂).

Furthermore, we obtain

Pλ

(∥∥S(2Lv̂)− Pe(y)
∥∥

1
> δ
)

= Pλ

(
M(2Lv̂) > δ

)

≤ Pλ

(
1

L

L−1∑

`=0

M(2`v̂) > δ

)
. (2.94)

As 0 ≤ E
[

1
L

∑L−1
`=0 M(2`v̂)

]
= E [M(2v̂)] ≤ 2δ + 4ε, we choose ε and δ such that 0 ≤

E [M(2v̂)] < δ
2 . Thus, we obtain

Pλ

(
1

L

L−1∑

`=0

M(2`v̂) > δ

)
≤ Pλ

(
1

L

L−1∑

`=0

M(2`v̂) > E [M(2v̂)] +
δ

2

)
.

Recall that σ2 denotes the variance of M(2v̂), considerm = 2; thus, the variance of 1
L

∑L−1
`=0 M(2`v̂) =

Lσ2

L = σ2. As σ2 is finite, from Chebyshev’s inequality, we obtain

Pλ

(
1

L

L−1∑

`=0

M(2`v̂)− E [M(2v̂)] >
δ

2

)
<

σ2

(δ2)2
=

4σ2

(δ)2
. (2.95)

Let 4σ2

(δ)2
be denoted by θ. Thus, from (2.94) and (2.95), we obtain

Pλ

(∥∥S(2Lv̂)− Pe(y)
∥∥

1
> δ
)
< θ.

As there exists a finite number of v̂, we choose v greater than the least common multiple of v̂ to

obtain (2.86).

Corollary 2.4.14. Suppose that Assumption 2.3.2 holds. Let x,y ∈ Σm. Let us consider the family

of Markov chains in (2.38) with fixed probability λ(y). Then for all δ > 0 and θ ∈ (0, 1], let there

67

exist v ∈ N such that for all W ∈ N, we have

Pλ

(∥∥∥∥∥
1

v + 1

v∑

`=0

x(W + `)− P (y)

∥∥∥∥∥ > δ

)
< θ. (2.96)

Proof. For j = 1, 2, . . . ,m, we have e>xj(W) = 1, and we also have ‖x(W)‖1 = 1. Also we use

the result (2.85); we obtain

Pλ

(∥∥∥∥∥
1

v + 1

v∑

`=0

x(W + `)− P (y)

∥∥∥∥∥
1

> δ

)

= Pλ

∥∥∥∥∥∥∥∥∥∥

1
v+1

∑v
`=0 x1(W + `)

...

1
v+1

∑v
`=0 xm(W + `)

−

P1(y)

...

Pm(y)

∥∥∥∥∥∥∥∥∥∥
1

> δ

= Pλ

∥∥∥∥∥∥∥∥∥∥

1
v+1

∑v
`=0 x1(W + `)− P1(y)

...

1
v+1

∑v
`=0 xm(W + `)− Pm(y)

∥∥∥∥∥∥∥∥∥∥
1

> δ

= Pλ

∥∥∥∥∥∥∥∥∥∥

S1(v)x1(W)− P1(y)

...

Sm(v)xm(W)− Pm(y)

∥∥∥∥∥∥∥∥∥∥
1

> δ

= Pλ

∥∥∥∥∥∥∥∥∥∥

S1(v)x1(W)− P1(y)e>x1(W)

...

Sm(v)xm(W)− Pm(y)e>xm(W)

∥∥∥∥∥∥∥∥∥∥
1

> δ

= Pλ

(∥∥∥diag
(
S1(v)− P1(y)e>, . . . ,Sm(v)− Pm(y)e>

)
x(W)

∥∥∥
1
> δ
)

≤ Pλ

(∥∥∥diag
(
S1(v)− P1(y)e>, . . . ,Sm(v)− Pm(y)e>

)∥∥∥
1
‖x(W)‖1 > δ

)

= Pλ

(∥∥∥diag
(
S1(v)− P1(y)e>, . . . ,Sm(v)− Pm(y)e>

)∥∥∥
1
> δ
)

= Pλ

(∥∥∥diag
(
S1(v), . . . ,Sm(v)

)
− diag

(
P1(y)e>, . . . , Pm(y)e>

)∥∥∥
1
> δ
)

= Pλ

(∥∥S(mv)− Pe(y)
∥∥

1
> δ
)
. (2.97)

68

From Lemma 2.4.13, we have

Pλ

(∥∥S(mv)− Pe(y)
∥∥

1
> δ
)
< θ. (2.98)

Hence, from (2.97) and (2.98), we obtain the desired result:

Pλ

(∥∥∥∥∥
1

v + 1

v∑

`=0

x(W + `)− P (y)

∥∥∥∥∥
1

> δ

)
< θ.

Let us now consider a small averaging period v ∈ N compared to the time-window W ∈ N

and use the intuition that with increasing W , the accumulative average x(W + `) is almost constant

for ` in the interval [W,W + v] (discussed previously in (2.55)—(2.61)). Hence, the response

probabilities over the interval [W,W +v] are also almost constant, denoted by the vector λ(x(W)).

The expectation of the invariant measure of the AIMD model with fixed probabilities λ(x(W)) is

denoted by P (x(W)), (refer (2.58)). For initial value x0 ∈ Σm, let Px0 denote the probability

measure with fixed probability λ(x0).

We choose W0 ∈ N such that for all W ≥ W0, we have v
W+v+1 < ε0; and for θ ∈ (0, 1), we

have (2.99), which is the perturbed version of (2.96):

Px0

(∥∥∥∥∥
1

v + 1

v∑

`=0

x(W + `)− P (x(W))

∥∥∥∥∥
1

> δ

)
< θ. (2.99)

Given a small averaging period v ∈ N, compared to time-window W ; as W → ∞, the place-

dependent probabilities of the non-homogeneous Markov chain (2.54) over the interval [W,W + v]

converge to the fixed probabilities λ(x(W)), and as λji is continuous by assumption, so, for W0 ∈

N and all W ≥W0, Equation (2.99) holds for the non-homogeneous Markov chain (2.54).

Now, for k0 ∈ N and k ≥ k0, we analyze the evolution of the following map

x(W + kv) 7→ x(W + (k + 1)v).

69

For convenience, let us define

τ(k) ,W + kv; (2.100)

εkj ,
v

W + (kj + 1)v + 1
; (2.101)

εk ,

εk1

εk2

 . (2.102)

Thus, similar to (2.55), we obtain

x(τ(k + 1)) =

(1− εk1)x1(τ(k1)) + εk1
(

1
v

∑v
`=1 x1(τ(k1) + `)

)

(1− εk2)x2(τ(k2)) + εk2
(

1
v

∑v
`=1 x2(τ(k2) + `)

)

 . (2.103)

Recall that ∆ = [∆>1 . . . ∆>m]> is the perturbation term, and � is the componentwise product.

Thus, from (2.65) and (2.103), we obtain

x(τ(k + 1)) =

(1− εk1)x1(τ(k1)) + εk1 (P (x1(τ(k1))) + ∆1)

(1− εk2)x2(τ(k2)) + εk2 (P (x2(τ(k2))) + ∆2)

= (1− εk)� x(τ(k)) + εk � P (x(τ(k))) + εk �∆

= Rεk(x(τ(k)) + εk �∆. (2.104)

From (2.99) and (2.104), we conclude that x(τ(k+1)) is close toRεk(x(τ(k)) with high probability.

The following divergence result on the sequence of independent and identically distributed ran-

dom variables will be useful to prove the main theorem.

Lemma 2.4.15. (Wirth et al., 2019, Lemma C.1) Let {X`}`∈N be a sequence of real-valued random

variables that are independent and identically distributed with well-defined expectation E(X1) < 0

and finite variance Var(X1). Moreover, let us assume that the positive real-valued sequence {ε`}`∈N

70

is not summable but square summable, then for L ∈ N, we have

lim
L→∞

L∑

`=1

ε`X` = −∞ and

lim
k→∞

sup
L≥0

k+L∑

`=k

ε`X` = 0, almost surely.

We call a sequence {ε`}`∈N not summable but square summable if, for L ∈ N, the following

holds:

ε` ≥ 0,

L∑

`=1

ε2` <∞,
L∑

`=1

ε` =∞.

We now present the proof of the main theorem in the following subsection.

2.4.3 Proof of Theorem 2.4.1 (convergence of average allocation to the KKT point)

The proof of the main theorem is presented in several steps. Step 0 describes the assumptions

and chosen constants. Step 1 shows that if the state trajectories x(τ(k)) start in Σm, they enter

Pco(2δ) almost surely, where δ (as in Lemma 2.4.3) is chosen such that 0 < 3δ < δ∗, δ∗ is defined

in Equation (2.77). Moreover, for the fixed-point x∗ ∈ Σm (as in Lemma 2.4.2) and radius ζ > 0,

Step 2 shows that if the state trajectories x(τ(k)) start in Pco(3δ), they enter the ball BH(x∗, ζ)

almost surely. Step 3 presents the stability analysis and shows that the state trajectories converge

almost surely to the fixed point.

Step 0 (Choosing constants) Let us fix ζ > 0. We choose δ− such that (2.63) holds, and $

satisfies Lemma 2.4.9. Additionally, let Cζ be the constant as in (2.73), guaranteed by Corollary

2.4.7. Furthermore, let δ∗ = min
{
Cζ exp(ζ)

2$, δ−
}

as in (2.77), and δ is chosen such that 0 < 3δ <

δ∗. Let δ+ be chosen such that (2.67) holds and Cδ be as in Lemma 2.4.3. Also, let C0 be the

constant as in (2.81), guaranteed by Lemma 2.4.12. We choose θ ∈ (0, 1) such that

θ
(
1 + Cδ

)
− (1− θ) < 0, and θC0 − (1− θ)Cζ

2
< 0. (2.105)

71

Step 1 This step shows that the state trajectories x(τ(k)) starting in Σm will enter Pco(2δ) in

finite number of steps. Let tk0 be the time instant at which every resource has at least one capacity

event; moreover, let σ1 be the first hitting time, defined as

σ1 , min
{
k ≥ k0 | x(τ(k)) ∈ Pco(2δ)

}
. (2.106)

For δ > 0, if d1(x(τ(k)), Pco(δ)) > δ, from Lemma 2.4.3 (iii), we have

Px0

(
d1(x(τ(k + 1)), Pco(δ)) ≤ (1 + εkCδ)d1(x(τ(k)), Pco(δ))

)
≤ θ. (2.107)

And, from Lemma 2.4.3 (i), we have

Px0

(
d1(x(τ(k + 1)), Pco(δ)) ≤ (1− εk)d1(x(τ(k)), Pco(δ))

)
≥ 1− θ. (2.108)

For k ∈ N and ` = 1, 2, . . . , k, let a` be random variables, defined as

a` ,

(1 + ε`Cδ) with probability θ,

(1− ε`) with probability 1− θ.

Notice that ε` and ε`Cδ are independent of the sample path; hence, the random variables a` are

independent. Thus, for τ(k) < σ1 (that is, x(τ(k)) /∈ Pco(2δ)) and d1(x(τ(k)), Pco(δ)) > δ, from

(2.107) and (2.108), we obtain

d1(x(τ(k)), Pco(δ)) ≤
k∏

`=1

a`d1(x(W), Pco(δ)). (2.109)

After taking the logarithm of (2.109), we obtain

log
(
d1(x(τ(k)), Pco(δ))

)
≤ log

(
k∏

`=1

a`

)
+ log

(
d1(x(W), Pco(δ))

)

≤
k∑

`=1

log (a`) + log
(
d1(x(W), Pco(δ))

)
. (2.110)

72

For ε` ∈ (0, 1), we obtain log (1− ε`) < −ε` and log(1+ε`Cδ) < (1+Cδ)ε`. Recall that we chose

θ ∈ (0, 1) such that (2.105) holds; thus, we obtain the following expectation

E [log(a`)] = θ log(1 + ε`Cδ) + (1− θ) log (1− ε`)

<
(
θ(1 + Cδ)− (1− θ)

)
ε` < 0.

From Lemma 2.4.15, we have limk→∞
∑k

`=1 log (a`) = −∞.

Thus, from (2.110), we obtain limk→∞ log
(
d1(x(τ(k)), Pco(δ))

)
= −∞, almost surely, as

long as x(τ(k)) /∈ Pco(2δ). So, limk→∞ d1(x(τ(k)), Pco(δ)) = 0, almost surely, as long as

x(τ(k)) /∈ Pco(2δ); which contradicts that d1(x(τ(k)), Pco(δ)) > δ > 0. Hence, for a finite

k, we have x(τ(k)) ∈ Pco(2δ), almost surely.

Step 2 For ζ > 0, and for the fixed point x∗ ∈ Σm, this step shows that the state trajectories

x(τ(k)) starting in Pco(3δ) will reach the ball BH(x∗, ζ) in a finite number of steps. From Lemma

2.4.12, if x(τ(k)) ∈ Pco(3δ), then we have

Px0 (DH (x(τ(k + 1)),x∗) ≤ DH (x(τ(k)),x∗) + εkC0) ≤ θ. (2.111)

For ε` ∈ (0, 1), we obtain log
(

1− ε` Cζ2
)
< −ε` Cζ2 . Thus, for W0 ∈ N and all W ≥ W0, and for

DH (x(τ(k)),x∗) ≥ ζ, from Corollary 2.4.11 and Equation (2.99), we have

Px0

(
DH (x(τ(k + 1)),x∗) < DH (x(τ(k)),x∗)− εk

Cζ
2

)
≥ 1− θ. (2.112)

For k ∈ N and ` = 1, 2, . . . , k, let b` be random variables, defined as

b` ,

ε`C0 with probability θ,

−ε`
Cζ
2

with probability 1− θ.

73

The random variables b` are independent by a similar argument as the random variables a`. Thus, if

x(τ(k)) ∈ Pco(3δ) and DH (x(τ(k)),x∗) ≥ ζ, then from Equations (2.111) and (2.112), we obtain

DH (x (σ1(x(W)) + kv) ,x∗) ≤ DH (x (σ1(x(W))) ,x∗) +

k∑

`=1

b`. (2.113)

We chose θ ∈ (0, 1) such that (2.105) holds; thus, we obtain

E [b`] <

(
θC0 − (1− θ)Cζ

2

)
ε` < 0.

As E [b`] < 0; from Lemma 2.4.15, we have limk→∞
∑k

`=1 b` = −∞, almost surely. Thus, from

(2.113), we obtain limk→∞DH (x (σ1(x(W)) + kv) ,x∗) = −∞, which is a contradiction to the

assumption that DH (x(τ(k)),x∗) ≥ ζ > 0. Thus, if the state trajectories x(τ(k)) start in Pco(3δ),

then the distance between x(τ(k)) and the fixed point x∗ on the metric DH will be non-negative

and smaller than ζ. Hence, almost surely, the state trajectories enter the ball BH(x∗, ζ) in a finite

number of steps.

Step 3 (Stability analysis) We present the following stability analysis to show almost sure con-

vergence of x(τ(k)) to the fixed point x∗. Moreover, for large k ∈ N, we show that x(τ(k)) ∈

BH(x∗, ζ), almost surely. To do so, we fix ζ
3 > 0 and choose the constants described in Step 0

for this fixed value. After repeating Steps 1 and 2 for the fixed value ζ
3 , we deduce that x(τ(k)) ∈

BH(x∗, ζ3), almost surely. Furthermore, we consider the radius 2ζ
3 ; from (2.113), we derive that if

x(τ(k)) ∈ BH(x∗, 2ζ
3), then the state trajectories will exit the ball BH(x∗, ζ) only if

∑k+L
`=k b` >

ζ
3 > 0. On the contrary, for k, L ∈ N, from Lemma 2.4.15, we know that

∑k+L
`=k b` ≤ 0 for large k.

Thus, almost surely, the state trajectories do not exit the ball BH(x∗, ζ) infinitely often. Hence, as

ζ is arbitrary, our claim that x(k) converges to the fixed point x∗ almost surely, holds.

2.5 Numerical results

In this section, we use numerical results to illustrate the evolution of the average allocations

over time. Although the convergence of average allocations to an optimal limit is guaranteed under

74

general assumptions, we observe that the number of iterations required for the convergence depends

intricately on the number of agents, their characteristic cost functions, additive-increase parameters

and the values of Γ1 and Γ2. The optimal limit is obtained using a solver, whereas the average

allocations are obtained by instantaneous allocations averaged over all past capacity events of the

resources.

2.5.1 Analysis 1

In numerical Analysis 1, we consider 45 agents that compete to access two shared resources

with capacities C1 = 5 and C2 = 6. Each agent i’s cost fi is a function of its average allocations of

both resources. The cost functions are given in Figure 2.1: The agents come in three classes. Agents

1 to 15 choose costs from the first case of Equation (2.114), agents 16 to 30 choose costs from the

second case, and agents 31 to 45 choose costs from the third case. Therein, we generate uniformly

distributed (integer) random variables ai ∈ [10, 30], bi ∈ [15, 35], ci ∈ [1, 3], di ∈ [1, 5], ei ∈ [1, 4],

gi ∈ [15, 25], and hi ∈ [10, 20], for each agent at the start of the experiment to obtain different costs

for agents at a time step.

fi(xi, yi) =

ai
2 x

2
i + bi

4 x
4
i + bi

2 y
2
i + ai

4 y
4
i + hi

4 (cixi + diyi)
4 i = 1, . . . , 15,

bi
2 x

2
i + bi

4 y
2
i + gi

4 (dixi + eiyi)
4 i = 16, . . . , 30,

bi
2 x

4
i + bi

3 y
4
i + gi

4 (cixi + eiyi)
4 i = 31, . . . , 45.

(2.114)

Figure 2.1: The cost functions used in numerical Analysis 1 to plot Figures 2.3,2.4, 2.5, 2.6.

75

fi(xi, yi) =

ai
2 x

2
i + ai

4 x
4
i + ai

2 y
2
i + ai

4 y
4
i + ai

4 (cixi + ciyi)
4 i = 1, 2,

ai
2 x

2
i + ai

4 y
2
i + ai

4 (cixi + ciyi)
4 i = 3, 4,

ai
2 x

4
i + ai

3 y
4
i + ai

2 (cixi + ciyi)
2 i = 5, 6.

(2.115)

Figure 2.2: The cost functions used in Analysis 2 to plot Figure 2.8.

Figures 2.3, 2.4, 2.5, and 2.6 summarize the numerical Analysis 1. Figure 2.3 shows that the

average allocations of agents for both resources converge over time to the solver’s optimal values,

x∗i , y
∗
i . Figure 2.4 shows the distribution of the absolute difference between the average allocations

and the solver’s optimal values at the last capacity events of resources 1 and 2, which is denoted by

K1 and K2, respectively.

0 5 10
Capacity events k1 ×104

0

0.1

0.2

0.3

0.4

0.5

A
v
er
a
g
e
a
ll
o
ca
ti
o
n
s Resource 1

(a)

0 5 10
Capacity events k2 ×104

0

0.1

0.2

0.3

0.4

0.5

A
v
er
a
g
e
a
ll
o
ca
ti
o
n
s Resource 2

(b)

Figure 2.3: Evolution of the average allocations: (a) of resource 1, (b) of resource 2, for five ran-
domly chosen agents, for Analysis 1. The cost functions used in Analysis 1 is presented in Equation
(2.114).

76

0 0.01 0.02 0.03 0.04
|xi(K1)− x

∗

i
|

0

5

10

15

20
N
o
.
o
f
a
g
en
ts

Resource 1

(a)

0 0.02 0.04 0.06
|yi(K2)− y∗i |

0

5

10

15

N
o
.
o
f
a
g
en
ts

Resource 2

(b)

Figure 2.4: Histogram of the absolute difference between the average allocations and the solver’s
optimal values at the last capacity event of (a) resource 1 and (b) resource 2, for Analysis 1.

Figure 2.5 presents the partial derivatives of the cost functions of agents with the shaded error

bars suggesting the width of one standard deviation either way of the mean. As derived in Section

2.2.2, to achieve optimality for the optimization Problem (2.3), the partial derivatives of all agents’

cost functions for a particular resource should be in consensus, that is, for agents i, u, we should

have ∂
∂xi
fi(xi, yi) = ∂

∂xu
fu(xu, yu)

∣∣∣
xi=x∗i ,yi=y

∗
i ,xu=x∗u,yu=y∗u

; analogously,

∂
∂yi
fi(xi, yi) = ∂

∂yu
fu(xu, yu)

∣∣∣
xi=x∗i ,yi=y

∗
i ,xu=x∗u,yu=y∗u

(cf. (2.14)). Figure 2.5 shows that the

error of partial derivatives across all agents decreases over time; in other words, the partial deriva-

tives concentrate over time around the same value, so they are in consensus, eventually.

77

0 2 4 6 8
Capacity events k1 ×104

0

5

10

15
∂ ∂
x
i

f
i(
x
i,
y
i)

Resource 1

(a)

0 2 4 6 8
Capacity events k2 ×104

0

5

10

15

∂ ∂
y
i

f
i(
x
i,
y
i)

Resource 2

(b)

Figure 2.5: Evolution of partial derivatives of the cost functions: (a) for resource 1, (b) for resource
2. Error bars are over the mean of partial derivatives of all agents and the error of one standard
deviation, for Analysis 1.

0 5 10
Capacity events k1 ×104

0

0.5

1

1.5

2

2.5

f
i(
x
i(
t k

1
),
y
i(
t k

1
))

f
i(
x
∗ i
,y

∗ i
)

Figure 2.6: (a) Evolution of the ratio of cost over average allocations and the solver’s optimal cost;
error bar is over the mean of the ratio of cost of all agents and the error of one standard deviation,
for Analysis 1.

Figure 2.6 illustrates that the ratio of costs over average allocations and the solver’s optimal

costs across all agents concentrate close to 1 over time, corroborating our claim of optimality of

Problem (2.3). Note that when we say the ratio of total costs, we mean
∑n
i=1 fi(xi(tk),yi(tk))∑n

i=1 fi(x
∗
i ,y
∗
i)

, where

tk is the time-step at which the k’th capacity event occurs. Furthermore, xi(tk) is agent i’s average

allocation over the capacity events of resource 1 up to time-step tk; analogously, yi(tk) is defined.

Figure 2.7(a) shows the evolution of aggregate instantaneous allocations
∑n

i=1 xi(ν) and
∑n

i=1 yi(ν)

at time steps ν ∈ N; we observe that it is concentrated around the respective resource capacity.

78

Furthermore, Figure 2.7(b) shows the evolution of aggregate average allocations
∑n

i=1 xi(tk) and
∑n

i=1 yi(tk) at capacity events; we observe that it is concentrated very close to the respective re-

source capacity.

0 500 1000
Time steps

0

2

4

6

8

10

T
o
ta
l
in
st
a
n
ta
n
e
o
u
s
a
ll
o
c
a
ti
o
n
s

 Resource 1
 Resource 2

(a)

0 200 400 600 800 1000
Capacity events k

0

2

4

6

8

10

T
o
ta
l
a
v
er
a
g
e
a
ll
o
ca
ti
o
n
s

Resource 1
Resource 2

(b)

Figure 2.7: (a) Evolution of aggregate instantaneous allocations of resources, (b) evolution of ag-
gregate average allocations of resources, capacities are C1 = 5 and C2 = 6, for Analysis 1.

2.5.2 Analysis 2

In numerical Analysis 2, we consider 6 agents that compete to access two shared resources with

capacities C1 = 5 and C2 = 6. To analyze the rate of convergence, we present the number of

iterations required for average allocations to reach close to the optimal limit. We show this through

the evolution of the ratio of total cost over average allocations and the solver’s optimal cost.

Similar to Analysis 1, we generate random coefficients of the cost functions. We consider the

cost functions presented in (2.115) of Figure 2.2. The coefficients ai, ci follow (folded) normal

distribution N (µ, σ2)—wherein the absolute values of the random variables are considered. Here,

µ denotes the mean, and σ2 denotes the variance of the random variables.

79

(a)

0 1 2 3 4 5
Capacity events k

×104

1

1.05

1.1

1.15

1.2

R
a
ti
o
o
f
to
ta
l
co
st
s

µa = 600, σ2
a = 600,µc = 10, σ2

c = 4

µa = 1500, σ2
a = 600,µc = 10, σ2

c = 4

µa = 4000, σ2
a = 600,µc = 12, σ2

c = 4

µa = 4000, σ2
a = 600,µc = 20, σ2

c = 4

µa = 10000, σ2
a = 600,µc = 10, σ2

c = 4

µa = 10000, σ2
a = 600,µc = 50, σ2

c = 4

(b)

(c)

Figure 2.8: Evolution of the ratio of total cost over average allocations and the solver’s total optimal
cost: (a) with different values of Γ1, Γ2, (b) with different values of mean, and (c) with different
values of variance, of the random variables, for numerical Analysis 2. The cost functions are listed
in Equation (2.115). µa denotes the mean of the random variables (vector) a = (a1, . . . , a6); µc
denotes the mean of the random variables c = (c1, . . . , c6), with folded normal distribution. In the
folded normal distribution, the absolute values of the random variables are considered. Moreover,
σ2
a denotes the variance of the random variables a, and σc denotes the variance of the random

variables c. Subfigure (a) is based on µa = 1500, σ2
a = 600, µc = 10, and σ2

c = 4. The cost
functions used in Analysis 2 is presented in Equation (2.115).

We observe that as the values of Γ1 and Γ2 decrease, the number of iterations required for the

convergence increases, shown in Figure 2.8(a). We also observe that as the mean of the param-

eter random variables (coefficients of the characteristic cost functions) increases, the number of

80

iterations required to converge to the optimal values increases, shown in Figure 2.8(b). Further-

more, we observe that as the variance of the coefficients of the cost functions increases, the number

of iterations required to converge to optimal values increases, shown in Figure 2.8(c). Finally, as

the additive-increase parameters increase, the number of iterations required for the convergence

increases. Note that the increase of mean in combination with the increase of variance plays a sig-

nificant role in increasing the number of iterations required for the convergence, shown in Figure

2.9.

2.5.3 Analysis 3

Although the same conclusion holds for the rate of convergence described in Analysis 2, to

capture different cost functions (see Table 2.1), we conduct several experiments in Analysis 3. Again

we consider 6 agents that compete to access two shared resources with capacities C1 = 5 and C2 =

6. The coefficients of the cost functions are uniformly distributed random variables. We present

the evolution of the ratio of total costs in Figure 2.9(a). The parameters and the corresponding

legends of Figure 2.9 are listed in Tables 2.2, 2.3, and 2.4. Moreover, let Ω(k) denote the ratio∑n
i=1 fi(xi(tk+1),yi(tk+1))−

∑n
i=1 fi(x

∗
i ,y
∗
i)∑n

i=1 fi(xi(tk),yi(tk))−
∑n
i=1 fi(x

∗
i ,y
∗
i)

and Ω∗ denote the rate of convergence. Thus, for a large k,

we obtain Ω(k) ≈ Ω∗. We present the evolution of Ω(k) in Figure 2.9(b), we observe that Ω∗ is

close to 1.

(a) (b)

Figure 2.9: (a) Evolution of the ratio of total cost over average allocations and the solver’s total
optimal cost, (b) evolution of Ω(k), for Analysis 3.

81

Coefficients fi(xi, yi)

gi = hi = 0

ai
2 x

2
i + bi

4 x
4
i + bi

2 y
2
i + ai

4 y
4
i ,

bi
2 x

2
i + bi

4 y
2
i ,

bi
2 x

4
i + bi

3 y
4
i .

(2.116)

Separable functions.

ci = di = ei = 1

ai
2 x

2
i + bi

4 x
4
i + bi

2 y
2
i + ai

4 y
4
i + hi

4 (xi + yi)
4,

bi
2 x

2
i + bi

4 y
2
i + gi

4 (xi + yi)
4,

bi
2 x

4
i + bi

3 y
4
i + gi

4 (xi + yi)
4.

(2.117)

Non-separable functions.

Table 2.1: Cost functions used in Analysis 3, these are special cases of cost functions in (2.114).

Function type Parameters α1, α2 β1, β2 Γ1 Γ2 Legend

ai, bi ∈ [0, 1]. 1
5

1
5 1

ai ∈ [10, 30], bi ∈

[15, 35].

1
500

1
500 2

(2.116) 0.01, 0.0125 0.7,

0.6

1
25500

1
26000 3

ai ∈ [40, 100], bi ∈

[5, 150].

1
2000

1
2000 4

Table 2.2: Parameters for Analysis 3, and the legends used in Figure 2.9.

82

Function type Parameters α1, α2 β1, β2 Γ1 Γ2 Legend

ai, bi ∈ [0, 1],

ci, di, ei ∈ [0, 1],

gi, hi ∈ [0, 1].

1
25

1
25 5

ai ∈ [10, 30], bi ∈

[15, 35], ci, di, ei ∈

[1, 2], gi ∈ [10, 20],

hi ∈ [15, 25].

1
8500

1
8800 6

(2.114) ai ∈ [10, 30], bi ∈

[15, 35], ci, di, ei ∈

[1, 3], gi ∈ [10, 20],

hi ∈ [15, 25].

1
28500

1
28800 7

ai ∈ [10, 30], bi ∈

[15, 35], ci ∈ [1, 5],

di ∈ [1, 4], ei ∈ [1, 3],

gi ∈ [10, 20], hi ∈

[15, 25].

0.01, 0.0125 0.7,

0.6

1
89500

1
90600 8

ai ∈ [10, 30], bi ∈

[15, 35], ci ∈ [1, 6],

di ∈ [1, 5], ei ∈ [1, 3],

gi ∈ [10, 20], hi ∈

[15, 25].

1
220500

1
225600 9

Table 2.3: Parameters for Analysis 3, and the legends used in Figure 2.9.

83

Function type Parameters α1, α2 β1, β2 Γ1 Γ2 Legend

ai, bi ∈ [0, 1], gi, hi ∈

[0, 1].

1
30

1
30 10

0.01, 0.0125 0.7,

0.6

11

0.03, 0.035 12

0.05, 0.06 1
7000

1
7000 13

(2.117) ai ∈ [40, 100], bi ∈

[5, 150], gi ∈ [10, 20],

hi ∈ [15, 25].

0.4,

0.5

14

0.03, 0.035 0.2,

0.3

15

0.8,

0.9.

1
2000

1
2000 16

Table 2.4: Parameters for Analysis 3, and the legends used in Figure 2.9.

Finally, we present a comparative analysis of single resource allocation algorithm and the pro-

posed multi-resource allocation algorithm in Appendix 2.8.

2.6 Conclusion

We proposed a stochastic distributed iterative multi-resource allocation algorithm. It is based on

the additive-increase multiplicative-decrease (AIMD) algorithm. Wirth and his co-authors (Wirth

et al., 2019) modified the basic AIMD algorithm to solve a class of distributed optimization prob-

lems for a single resource with no inter-agent communication but little with a central agent. We

extended those results for multiple heterogeneous divisible resources. We modeled the system as

a non-homogeneous Markov chain with place-dependent probabilities and presented the proof of

convergence of average allocations to optimal allocations. Moreover, we presented the numerical

results to corroborate the efficacy of the proposed algorithm. It would be of considerable interest to

84

apply the algorithm to real-world applications.

85

2.7 Appendix: Analysis of the total instantaneous demands

This section presents an analysis of the sum of instantaneous demands of all agents at a time

instant. We show that the sum does not exceed the capacity of the respective resource. We also

verify that the total demands at capacity events are equal.

Recall that we consider all agents have the same additive increase factor that is αji = αj = αju,

for i, u = 1, 2, . . . , n. Hence, for ease of analysis, we can rewrite (2.35) as

xji(tkj+1) = βji(kj)xji(tkj) + (tkj+1 − tkj)αji. (2.118)

We now want to calculate the sum of instantaneous demands of all agents at time instant tν ,

ν ∈ N, after the occurence of the kj’th capacity event but before the kj + 1’th capacity event.

Moreover, let ∆t = tν − tkj ≤ tkj+1
− tkj denote the time-lapsed (duration) after the kj’th capacity

event. We obtain the instantaneous demand of agent i at time instant tν as

xji(tν) = βji(kj)xji(tkj) + (∆t)αji

≤ βji(kj)xji(tkj) + (tkj+1
− tkj)αji. (2.119)

By taking the sum of (2.119) of all agents in the network, we obtain

n∑

i=1

xji(tν) ≤
n∑

i=1

βji(kj)xji(tkj) +
Cj −

∑n
i=1 βji(kj)xji(tkj)

nαj

n∑

i=1

αji

=

n∑

i=1

βji(kj)xji(tkj) +
Cj −

∑n
i=1 βji(kj)xji(tkj)

nαj
nαj

=

n∑

i=1

βji(kj)xji(tkj) + Cj −
n∑

i=1

βji(kj)xji(tkj)

= Cj .

Hence, we obtain

n∑

i=1

xji(tν) ≤ Cj .

86

Moreover, by following similar steps as previous, it is straightforward to show that
∑n

i=1 xji(tkj+1) =

Cj—the sum of instantaneous demands at a capacity event is equal to the resource capacity. Thus,

by taking the sum of (2.35) of all agents in the network, we obtain

n∑

i=1

xji(tkj+1) =
n∑

i=1

βji(kj)xji(tkj) +
Cj −

∑n
i=1 βji(kj)xji(tkj)

nαj

n∑

i=1

αji

=
n∑

i=1

βji(kj)xji(tkj) +
Cj −

∑n
i=1 βji(kj)xji(tkj)

nαj
nαj

=
n∑

i=1

βji(kj)xji(tkj) + Cj −
n∑

i=1

βji(kj)xji(tkj)

= Cj .

Finally, we proceed as follows to verify that the total demands at capacity events are equal, that

is,
∑n

i=1 xji(tkj+1) =
∑n

i=1 xji(tkj), for kj ∈ N. Recall that xji(kj) denotes xji(tkj) and xj(kj)

denotes
[
xj1(kj) xj2(kj) . . . xjn(kj)

]>
. We formulate the evolution of the instantaneous de-

mands of resource j at capacity events as follows (see (2.36) for the AIMD matrix for resource

j):

xj(kj + 1)

=

βj1(kj) 0 . . . 0

0 βj2(kj) 0 . . . 0

...
...

...
. . .

...

0 . . . 0 βjn(kj)

+
1

n
e

[
1− βj1(kj) . . . 1− βjn(kj)

]

xj(kj).

(2.120)

After slight mathematical manipulation, we obtain

87

xj(kj + 1) =

βj1(kj)xj1(kj)

βj2(kj)xj2(kj)

...

βjn(kj)xjn(kj)

+
1

n

(1− βj1(kj))xj1(kj) + . . .+ (1− βjn(kj))xjn(kj)

...

(1− βj1(kj))xj1(kj) + . . .+ (1− βjn(kj))xjn(kj)

.

(2.121)

By taking the sum of instantaneous demands of all agents, from (2.121), we obtain

n∑

i=1

xji(kj + 1) = βj1(kj)xj1(kj) + βj2(kj)xj2(kj) + . . .+ βjn(kj)xjn(kj)

+ ((1− βj1(kj))xj1(kj) + . . .+ (1− βjn(kj))xjn(kj))

= βj1(kj)xj1(kj) + βj2(kj)xj2(kj) + . . .+ βjn(kj)xjn(kj)

+

n∑

i=1

xji(kj)− (βj1(kj)xj1(kj) + . . .+ βjn(kj)xjn(kj))

=

n∑

i=1

xji(kj).

Thus, the sum of agents’ instantaneous demands at capacity events is the same. Hence, we have
∑n

i=1 xji(kj + 1) =
∑n

i=1 xji(kj) = Cj , for j = 1, 2, . . . ,m.

2.8 Appendix: Comparison of numerical results of single resource

and multiple resource cases

This section presents several experiments to compare the results obtained by the single resource

allocation algorithm and the proposed multi-resource allocation algorithm. Recall that, in the single

resource case, the cost function of an agent depends on the average allocation of a single resource.

In contrast, in the multi-resource case, the cost functions are coupled through average allocations

of multiple resources. Subsection 2.8.1 presents results with separable cost functions. It shows

that the sum of the total costs obtained by the single resource algorithms and the total cost by

88

the multi-resource algorithm converges to the same value. Subsection 2.8.2 presents results with

non-separable cost functions. Our multi-resource allocation algorithms provide close to optimal

values (by a solver). In contrast, the single resource allocation algorithms are not efficient for such

scenarios and provide suboptimal solutions.

2.8.1 Separable cost function

For the single resource case, the cost functions for resource 1 are listed in (2.122) and the cost

functions for resource 2 are listed in (2.123). The cost functions for the multi-resource case are listed

in (2.124), wherein the cost functions are coupled through average allocations of two resources. For

an accurate comparison of results, we chose separable cost functions. We consider 6 agents and two

resources in the network. We chose the resource capacities C1 = 5 for resource 1 and C2 = 6 for

resource 2, respectively. Different costs are generated with uniformly distributed (integer) random

coefficients ai ∈ [10, 30], bi ∈ [15, 35], ci ∈ [20, 30] at a time step. Additionally, coefficients of

the cost functions, ai, bi, ci, are generated at the start of the algorithm. The same values are used in

each of the three analyses—single resource analysis with resource 1, single resource analysis with

resource 2, and multi-resource (coupled) analysis with resources 1 and 2.

fi(xi) =

ai
2 x

2
i + bi

4 x
4
i i = 1, 2,

bi
2 x

2
i i = 3, 4,

bi
2 x

4
i i = 5, 6.

(2.122)

Figure 2.10: The cost functions for allocating resource 1.

89

fi(yi) =

ci
2 y

2
i + bi

4 y
4
i i = 1, 2,

ci
2 y

2
i i = 3, 4,

ai
2 y

4
i i = 5, 6.

(2.123)

Figure 2.11: The cost functions for allocating resource 2.

fi(xi, yi) =

ai
2 x

2
i + bi

4 x
4
i + ci

2 y
2
i + bi

4 y
4
i i = 1, 2,

bi
2 x

2
i + ci

2 y
2
i i = 3, 4,

bi
2 x

4
i + ai

2 y
4
i i = 5, 6.

(2.124)

Figure 2.12: The cost functions for allocating resources 1 and 2.

Figure 2.13(a) illustrates the evolution of the total cost over average allocations obtained by sin-

gle resource allocation algorithm for resource 1, single resource allocation algorithm for resource

2, and multi-resource allocation algorithm for resources 1 and 2. We observe that in all three cases,

the total costs over average allocations converge over time. Figure 2.13(b) shows the evolution

of the sum of the total costs by single resource algorithms for resource 1 and resource 2 that is
∑n

i=1 fi(xi(tk)) +
∑n

i=1 fi(yi(tk)), and the evolution of the total cost by the multi-resource alloca-

tion algorithm
∑n

i=1 fi(xi(tk), yi(tk)). We observe that the sum of the total costs obtained by the

single resource algorithms, and the total cost by the multi-resource algorithm converge to the same

value.

90

0 2000 4000 6000 8000 10000
Capacity events

50

100

150

200
T
o
ta
l
co
st

Single resource analysis, resource 1
Single resource analysis, resource 2
Coupled analysis

(a)

0 2000 4000 6000 8000 10000
Capacity events

50

100

150

200

T
o
ta
l
co
st

Single resource analysis
Coupled analysis

(b)

Figure 2.13: (a) Evolution of the total cost over average allocations by single resource algorithm for
resource 1, single resource algorithm for resource 2, and multi-resource algorithm for resources 1
and 2, (b) evolution of the sum of the total costs by single resource algorithms for resource 1 and
resource 2, and evolution of the total cost by the multi-resource algorithm for resources 1 and 2.

We now aim to obtain close to the single resource allocation results for resource 1 from the

multi-resource allocation algorithm. We do so by assigning the capacity of resource 2 to 0 so

that resource 2 is not active; only resource 1 is allocated. We compare the results in Figure 2.14

that illustrates the evolution of the total cost over average allocations obtained by single resource

algorithm for resource 1, and multi-resource allocation algorithm with C2 = 0. We observe that the

total costs over average allocations reach very close to each other over time.

0 2000 4000 6000 8000 10000
Capacity events

55

60

65

T
o
ta
l
co
st

Single resource analysis, resource 1
Coupled analysis, C2 = 0

Figure 2.14: Evolution of the total cost over average allocations by single resource algorithm for
resource 1 and multi-resource allocation algorithm with C2 = 0.

Figure 2.15 shows the evolution of the sum of instantaneous allocations and the sum of average

91

allocations by the single resource algorithm for resource 1 and multi-resource allocation algorithm

with C2 = 0. We observe that after some time of the start of the algorithm (after the occurrence

of the first capacity event), the sum of instantaneous allocations concentrates around the respective

resource capacities, as shown in Figure 2.15 (a) (single resource case), and Figure 2.15(c) (multi-

resource case). Furthermore, the sum of average allocations concentrates very close to the respective

resource capacities, as shown in Figure 2.15 (b) (single resource case), and Figure 2.15 (d) (multi-

resource case).

0 500 1000
Time steps

0

2

4

6

8

10

T
o
ta
l
in
st
a
n
ta
n
e
o
u
s
a
ll
o
c
a
ti
o
n
s

 Resource 1

(a)

0 500 1000
Capacity events k1

0

2

4

6

8

10

T
o
ta
l
a
v
er
a
g
e
a
ll
o
ca
ti
o
n
s

Resource 1

(b)

0 500 1000
Time steps

0

2

4

6

8

10

T
o
ta
l
in
st
a
n
ta
n
e
o
u
s
a
ll
o
c
a
ti
o
n
s

 Resource 1
 Resource 2

(c)

0 500 1000
Capacity events k

0

2

4

6

8

10

T
o
ta
l
a
v
er
a
g
e
a
ll
o
ca
ti
o
n
s Resource 1

Resource 2

(d)

Figure 2.15: Single resource allocation for resource 1 with capacity C1 = 5: (a) Evolution of
aggregate instantaneous allocations, (b) evolution of aggregate average allocations. Multi-resource
allocation with capacities C1 = 5 and C2 = 0: (c) Evolution of aggregate instantaneous allocations
of resources, (d) evolution of aggregate average allocations of resources.

92

Similar to the previous analysis on resource 1, we now compare the results obtained by the

single resource algorithm for resource 2 and the multi-resource allocation algorithm by assigning

the capacity of resource 1 to 0. The same conclusion holds in this case also. The total costs over

average allocations reach very close to each other over time, as shown in Figure 2.16.

0 2000 4000 6000 8000 10000
Capacity events

70

80

90

100

T
o
ta
l
co
st

Single resource analysis, resource 2
Coupled analysis, C1 = 0

Figure 2.16: Evolution of the total cost over average allocations by single resource algorithm for
resource 2 and multi-resource allocation algorithm with C1 = 0.

Additionally, the sum of instantaneous allocations concentrates around the respective resource

capacities, as shown in Figure 2.17 (a) (single resource case), and Figure 2.17 (c) (multi-resource

case). Also, the sum of average allocations concentrates very close to the respective capacities, as

shown in Figure 2.17 (b) (single resource case), and Figure 2.17 (d) (multi-resource case).

93

0 200 400 600 800 1000
Time steps

0

2

4

6

8

10
T
o
ta
l
in
st
a
n
ta
n
e
o
u
s
a
ll
o
c
a
ti
o
n
s

 Resource 2

(a)

0 200 400 600 800 1000
Capacity events k2

0

2

4

6

8

10

T
o
ta
l
a
v
er
a
g
e
a
ll
o
ca
ti
o
n
s

Resource 2

(b)

0 500 1000
Time steps

0

2

4

6

8

10

T
o
ta
l
in
st
a
n
ta
n
e
o
u
s
a
ll
o
c
a
ti
o
n
s

 Resource 1
 Resource 2

(c)

0 500 1000
Capacity events k

0

2

4

6

8

10

T
o
ta
l
a
v
er
a
g
e
a
ll
o
ca
ti
o
n
s

Resource 1
Resource 2

(d)

Figure 2.17: Single resource allocation for resource 2 with capacity C2 = 6: (a) Evolution of
aggregate instantaneous allocations, (b) evolution of aggregate average allocations. Multi-resource
allocation with capacities C1 = 0 and C2 = 6: (c) Evolution of aggregate instantaneous allocations,
(d) evolution of aggregate average allocations of resources.

2.8.2 Non-separable cost function

In this subsection, we consider scenarios where the cost functions are non-separable, in the sense

that the allocations of one resource depend on the allocations of other resources. Moreover, the cost

functions can not be split into independent cost functions, as in the case of separable functions. Our

algorithms are suited for such scenarios and provide close to optimal values by a solver. In contrast,

the single resource allocation algorithms are not efficient for such scenarios and provide suboptimal

94

solutions.

To show this, we used the same experimental settings as described in Section 2.8.1 and chose

the same values of coefficients of the cost functions. In addition, we use the cost functions listed

in (2.125) for multi-resource case, and we use the cost functions listed in (2.122) and (2.123) for

single resource cases, for resource 1 and resource 2, respectively.

fi(xi, yi) =

ai
2 x

2
i + ci

2 y
2
i + bi

4 (xi + yi)
4 i = 1, 2,

bi
2 x

2
i + ci

2 y
2
i i = 3, 4,

bi
2 x

4
i + ai

2 y
4
i i = 5, 6.

(2.125)

Figure 2.18: The cost functions for allocating resources 1 and 2, non-separable cost functions for
coupled analysis.

Figure 2.19(a) illustrates the evolution of the total cost over average allocations obtained by the

single resource allocation algorithm for resource 1, single resource allocation algorithm for resource

2, and multi-resource allocation algorithm for resources 1 and 2 with non-separable cost function

(as listed in (2.125)). We observe that the total costs over average allocations converge over time.

Figure 2.19(b) shows that the sum of the total costs obtained by the single resource algorithms

and the total cost by the multi-resource algorithm with the non-separable cost function converges to

different values. Moreover, the total cost by the multi-resource algorithm is close to the total optimal

cost by the solver; whereas, the sum of the total costs obtained by the single resource algorithms is

much lower than the total cost by the multi-resource algorithm and is suboptimal, as we expect this

because of the nature of the cost functions used.

95

0 2000 4000 6000 8000 10000
Capacity events

50

100

150

200
T
o
ta
l
co
st

Single resource analysis, resource 1
Single resource analysis, resource 2
Coupled analysis, non-separable cost

(a)

0 2000 4000 6000 8000 10000
Capacity events

50

100

150

200

T
o
ta
l
co
st

Single resource analysis
Coupled analysis, non-separable cost
Optimal cost

(b)

Figure 2.19: (a) Evolution of the total cost over average allocations by single resource algorithm for
resource 1, single resource algorithm for resource 2, and multi-resource algorithm for resources 1
and 2, (b) evolution of the sum of the total costs by single resource algorithms for resource 1 and
resource 2, and evolution of the total cost by the multi-resource algorithm for resources 1 and 2.
The dotted line shows the optimal cost by the solver. The multi-resource algorithm and the solver
use the non-separable cost functions listed in Equation (2.125). Furthermore, the single resource
algorithms use the cost functions listed in Equations (2.122) and (2.123) for resource 1 and resource
2, respectively.

Figure 2.20 shows the evolution of the sum of instantaneous allocations and the sum of average

allocations by the multi-resource allocation algorithm. Similar to previous analyses, we observe

that after some time of the start of the algorithm, the sum of instantaneous allocations concentrates

around the respective resource capacities, as shown in Figure 2.20(a). Furthermore, the sum of av-

erage allocations concentrates very close to the respective capacities, as shown in Figure 2.20(b).

Interested readers can refer to Figures 2.15(a) and 2.17(a) for the evolution of the sum of instanta-

neous allocations and Figures 2.15(b) and 2.17(b) for the evolution of the sum of average allocations

by the single resource algorithms for resource 1 and resource 2, respectively.

96

0 200 400 600 800 1000
Time steps

0

2

4

6

8

10
T
o
ta
l
in
st
a
n
ta
n
e
o
u
s
a
ll
o
c
a
ti
o
n
s

 Resource 1
 Resource 2

(a)

0 200 400 600 800 1000
Capacity events k

0

2

4

6

8

10

T
o
ta
l
a
v
er
a
g
e
a
ll
o
ca
ti
o
n
s Resource 1

Resource 2

(b)

Figure 2.20: (a) Evolution of aggregate instantaneous allocations, (b) evolution of aggregate average
allocations of resources, capacities C1 = 5 and C2 = 6 for multi-resource allocation with the non-
separable cost functions listed in Equation (2.125).

97

Chapter 3

AIMD based Derandomized Distributed

Algorithm for Divisible Multi-resource

Allocation

In this chapter, we develop a derandomized AIMD algorithm to solve a class of distributed

optimization problems for multiple shared resource allocation. The algorithm is a derandomized

version of the stochastic additive-increase and multiplicative-decrease (AIMD) algorithm of Chapter

2. The developed solution uses a one-bit feedback signal for each resource between the system and

the agents and does not require inter-agent communication. Additionally, each agent has private

cost functions, which are strictly convex, twice continuously differentiable, and increasing in each

variable. Empirically we show that the long-term average allocations of multiple shared resources

converge to optimal allocations, and the system achieves minimum social cost. Furthermore, we

show that the proposed derandomized AIMD algorithm converges faster than the stochastic AIMD

algorithm (Alam et al., 2018a) and both the approaches provide approximately the same solutions.

98

3.1 Introduction

The number of Internet of things (IoT) devices, such as smartphones, smart-watches, fitness

trackers, connected cars, cameras, etc., is increasing very rapidly (Columbus, 2017). Such de-

vices are constrained by computational resources and battery life (Al-Fuqaha, Guizani, Moham-

madi, Aledhari, & Ayyash, 2015; Atzori, Iera, & Morabito, 2010); by providing additional shared

resources for task offloading, these devices can be used to build many emerging smart applications.

Some of the representative smart applications are Apple Siri, Google Assistant, IBM Watson, Ama-

zon Alexa, etc.; they use Cloud technologies for task offloading. Because Clouds are usually hosted

at faraway locations worldwide from the IoT devices, offloading the tasks on the Clouds incur delay,

which is not suitable for many latency-sensitive mobile applications; for example, cognitive assis-

tance (Ha et al., 2014). Interested readers can find some exciting cognitive assistance applications

in (Z. Chen et al., 2017). Such applications collect the data through sensors of wearable devices, of-

fload them on mini Cloud data-centers called Cloudlets (Satyanarayanan, Bahl, Caceres, & Davies,

2009) for processing and receiving the processed information in real-time, which assists a cogni-

tively impaired person. Cloudlets are the enabling technology for computing resource-intensive and

latency-sensitive mobile applications (Satyanarayanan, 2017). It stays in close proximity to the IoT

devices, usually at one hop (Masip-Bruin, Marin-Tordera, Jukan, & Ren, 2018). A recent survey of

such technologies can be found in (Shi, Cao, Zhang, Li, & Xu, 2016). The IoT devices receive the

resources on-demand from a Cloudlet to perform interactive tasks. However, the latency tolerant

tasks can be offloaded on the Cloud. A diagram of such a system is presented in Figure 3.1. A

similar three-tier architecture is presented in (Song et al., 2017), where a human-centric real-time

positioning system using wearable devices is proposed. The resource provisioning in a Cloudlet is

dynamic, and the IoT devices receive resources as a virtual machine (VM). Interested readers can

find details of on-demand VM provisioning in (Echeverria, Root, Bradshaw, & Lewis, 2014). Since

each device works for a different purpose, it requires a different amount of shared resources. We

assume that the VMs are customized, which are created based on the resource requirement of IoT

devices.

Due to the increase in the number of IoT devices, optimal allocation of shared resources to achieve

99

social optimum with little communication overhead is a challenging problem. It becomes more

challenging to achieve social optimum when the IoT devices do not communicate their informa-

tion to other IoT devices. As a step in this direction, Alam et al. (Alam et al., 2018a) propose a

distributed stochastic additive increase and multiplicative decrease (AIMD) algorithm to allocate

multiple shared resources to IoT devices. The algorithm is a distributed stochastic algorithm and

involves very little communication overhead. Based on this work, we propose a distributed and

deterministic AIMD algorithm, which is a derandomized version of it. The proposed algorithm

incurs very little communication overhead, and it converges much faster than the stochastic AIMD

algorithm of (Alam et al., 2018a). Interested readers can find recent works on resource allocation in

(Angelakis, Avgouleas, Pappas, Fitzgerald, & Yuan, 2016; Q. Lu, Yao, Qi, He, & Guan, 2016). In

the proposed algorithm, we assume that each IoT device has its cost function, and it does not share

the cost function or resource allocation history with other participating IoT devices.

ICD 1 ICD 2 ICD n

Cloudlet

Cloud

(CPU, RAM, Storage)

(CPU, RAM, Storage)

. . .

Figure 3.1: A three-tier architecture of IoT devices — Cloudlets — Cloud: IoT devices offload their
tasks on Cloudlets. They receive computing resources such as CPU, memory, storage, etc., from
Cloudlets with little latency. Larger and latency tolerant tasks can be offloaded on Cloud. Here ICD
denotes an IoT device.

100

As a brief background, in stochastic AIMD algorithm (described in Chapter 2), the devices keep

increasing their demand of each resource linearly by a constant called additive increase factor until

they receive a capacity event notification from the control unit. The control unit sends a capacity

event notification for each resource to all IoT devices to notify that the total demand of the resource

has reached its capacity. After receiving this notification, the devices respond in a probabilistic way

to decrease their resource demands abruptly by a constant called multiplicative decrease factor.

The devices again start increasing their demands linearly until they receive the next capacity event

notification; this process repeats over time and repeats for all the resources in the system. We

modify the stochastic AIMD algorithm (Alam et al., 2018a) and propose a deterministic algorithm

to allocate multiple shared resources.

Let us assume that there is a Cloudlet that hosts several computing resources, and IoT devices

offload their tasks on it. We also assume that the Cloudlet has a control unit that keeps track of

the aggregate demands of resources. The system aims to optimally allocate resources hosted on

Cloudlet and achieve social optimum cost. The proposed deterministic AIMD algorithm works as

follows: at the start of the algorithm, the control unit of the Cloudlet broadcasts a set of parameters

to all the IoT devices in the system. Each IoT device has its cost function, and it does not share the

costs with other IoT devices. After receiving the parameters from the control unit, IoT devices start

the AI phase, and they keep increasing the resource demand linearly by a positive constant called

additive increase factor until they receive the capacity event notification from the control unit of the

Cloudlet. After receiving capacity event notifications from the control unit, they abruptly decrease

their demand in a deterministic way, based on, multiplicative decrease factor, average resource

allocation, and derivative of the cost functions. The devices can start increasing their demands

again until they receive the next capacity event notification from the control unit. This process

repeats over time and repeats for every resource in the system.

We observe empirically that the proposed deterministic AIMD algorithm converges faster than

the stochastic AIMD algorithm. Furthermore, we observe that both approaches provide approxi-

mately the same results over time. The long-term average allocations are approximately equal to

the optimal allocation values obtained by solving the same optimization problem in a centralized

setting.

101

The following are three main contributions to this chapter. First, we propose a distributed, pri-

vate, and deterministic resource allocation algorithm to allocate multiple shared resources to IoT

devices. The algorithm is a derandomized version of the stochastic AIMD algorithm (Alam et

al., 2018a). Second, we describe simulation settings in detail and verify our results’ efficacy; we

compare the results with the stochastic AIMD algorithm. We also compare the results of the deter-

ministic AIMD with the results obtained by solving the same optimization problem in a centralized

setting. Third, we present a use case of a tourist attraction center, where we assume heterogeneous

IoT devices, such as a set of wearable devices, surveillance cameras, etc. These IoT devices receive

on-demand shared resources from the Cloudlets for task offloading. Such facilities can be useful in

realizing the potential of IoT devices in emerging applications such as assisting tourists with a phys-

ical disability, uploading pictures of scenes on social media, getting detailed real-time information

about a painting in a museum, real-time foreign language translation, etc.

3.2 Problem formulation

Suppose that a Cloudlet hosts a pool of shared resources, e.g., CPUs, GPUs, RAM, storage,

network bandwidth, etc. For the sake of generality, we assume that there are m shared resources

R1, R2, . . . , Rm with capacities C1, C2, . . . , Cm, respectively. Let there are n heterogeneous IoT

devices, ICD 1, ICD 2, . . ., ICD n, such as smart wearable devices, cameras, etc. The Cloudlet

has a control unit, which coordinates with the Cloudlet and the participating IoT devices. We index

IoT devices with i = 1, 2, . . . , n and use j = 1, 2, . . . ,m to index the resources hosted on the

Cloudlet. Let N denote the set of natural numbers. We use k to index time steps, where k ∈ N.

Furthermore, we assume that each IoT device has a cost function fi : Rm+ → R+, which associates

a cost to a certain allotment of resources. An IoT device demands the amount of shared computing

resources from the Cloudlet according to its need and the application it performs. The system aims

that each IoT device receives the optimal allocation and the system achieves a minimum social cost.

We now list the assumptions for the cost functions of each IoT device.

Assumption 3.2.1. We assume that the cost function fi is twice continuously differentiable, convex,

and increasing in each variable.

102

For all i and j, we denote by xji ∈ R+ the amount of resource j allotted to IoT device i. We aim

to solve the following optimization problem in a distributed way with no inter-agent communication:

Problem 3.2.2.

min
x11,...,x

m
n

n∑

i=1

fi(x
1
i , x

2
i , . . . , x

m
i),

subject to
n∑

i=1

xji = Cj , j = 1, 2, . . . ,m,

xji ≥ 0, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

We denote the solution to the minimization problem by x∗ ∈ (Rn+)m, where x∗ = (x∗11 , . . . , x
∗m
n).

Because of the compactness of the constraint sets and strict convexity of the cost functions, there

exists a unique optimal solution of Problem 3.2.2. Let xji (k) and xji (k) denote the amount of in-

stantaneous allocations and the amount of average allocations of resource j of IoT device i at the

time step k, respectively. For all i, j and k, the average allocation is calculated as follows:

xji (k) =
1

k + 1

k∑

`=0

xji (`). (3.1)

We assume here that an IoT device can obtain any amount of resource in [0, Cj]. Our aim here

is to propose a distributed, private and deterministic iterative scheme to allocate multiple shared

resources to IoT devices, such that the long-term average allocations of resources converge to the

optimal allocations. Thus, we aim to achieve:

x(k)→ x∗, when k →∞. (3.2)

Let ∂
∂x
fi(x, y) denote the partial derivative of fi(.) with respect to x. Based on the analysis on

optimality (refer Chapter 1.4.5), the derivatives of cost functions of all IoT devices for a particular

resource should make a consensus to achieve optimality for Problem 3.2.2.

103

3.3 Algorithm

The proposed algorithm is a distributed, private, iterative, and deterministic AIMD algorithm. It

is used to allocate multiple shared divisible resources to IoT devices. The algorithm is deterministic

in the sense that it does not involve randomness in resource allocation phases. The block diagram

of the system is presented in Figure 3.2. We assume that there is a Cloudlet that hosts computing

resources, and the control unit is a sub-system of the Cloudlet. Let αj ∈ (0, Cj] be the additive

increase factor, βj ∈ [0, 1) be the multiplicative decrease factor and Γj ∈ R+ be the normalization

factor of resource j, for j = 1, 2, . . . ,m. Let Sj(k) ∈ {0, 1} denote the capacity event at time

step k for resource j, for all j and k. At the start of the system, the control unit initializes the

parameters Γj , αj , and βj with desired values. It also initializes the capacity event Sj(0) with 0.

After initialization, the control unit broadcasts Γj , αj , βj , and Sj(0) to all the participating IoT

devices, for all resources. Each IoT device runs its algorithm to demand shared resources.

The algorithm of an IoT device works as follows, after joining the system, an IoT device starts

increasing its demand of shared resources linearly until it receives a capacity event notification from

the control unit. The control unit broadcasts this notification when the total demand of a resource

reaches its capacity. After receiving this capacity event, the IoT device decreases its demands

abruptly and in a deterministic way. It does so by using multiplicative decrease factor βj and

its scaling factor λji (k) ∈ (0, 1]. The control unit updates and broadcasts the capacity event Sj(k+

1) = 1 when the total demand
∑n

i=1 x
j
i (k) of resource j reaches the capacity Cj at time step k, i.e.,

Sj(k + 1) =

0 if
∑n

i=1 x
j
i (k) < Cj

1 if
∑n

i=1 x
j
i (k) ≥ Cj .

(3.3)

104

Control unit
Γj, if

∑n
i=1 x

j
i (k) > Cj Sj(k + 1) = 1,∀j

ICD 2

f2

ICD 1

f1

ICD n

fn

∑Demand xj2(k + 1)

...

Dem
and x

j
n
(k

+ 1)

∑n
i=1 x

j
i (k + 1)

Demand x j
1 (k + 1)

Figure 3.2: Block diagram of the multi-resource allocation deterministic AIMD model.

We now formally describe the deterministic AIMD algorithm; it has the following two phases:

additive increase (AI) and multiplicative decrease (MD).

(i) Additive increase (AI): In this phase, an IoT device keeps increasing its resource demand

linearly by additive increase factor, αj , until it receives a capacity event signal Sj(k) = 1

from the control unit. The control unit broadcasts the capacity event to notify the IoT devices

that the aggregate demand has reached the capacity of the resource. AI phase is formulated

as:

xji (k + 1) = xji (k) + αj .

(ii) Multiplicative decrease (MD): In this phase, after receiving the capacity event signal from

the control unit, the IoT devices reduce their demands synchronously in a deterministic

way. To do so, they use the multiplicative decrease factor, βj ∈ [0, 1), and scaling factor,

λji (k) ∈ (0, 1]. The value of the scaling factor, λji (k), is calculated according to (3.4). The

multiplicative decrease phase is formulated as:

xji (k + 1) =
(
λji (k)βj +

(
1− λji (k)

))
xji (k).

105

After abruptly reducing the resource demands, the IoT devices again start to increase their demands

linearly until they receive the next capacity event; this process repeats over time.

Now, let Γj be the normalization constant received by an IoT device i for resource j from the

control unit. It is used to keep scaling factor λji (k) ∈ (0, 1]. The scaling factor λji (k) of IoT device

i depends on its average resource allocation, the derivative of its cost function for resource j, and

normalization constant Γj . For all i, j, and k, we calculate the scaling factor as follows:

λji (k) = Γj

∂
∂x

∣∣∣
x=xji (k)

fi
(
x1
i (k), . . . , xmi (k)

)

xji (k)
. (3.4)

Now, let F be the set of convex, twice continuously differentiable and increasing cost functions.

The control unit calculates Γj as follows:

Γj = inf
x∈(Rn+)m,fi∈F

(xji
∂
∂x

∣∣∣
x=xji

fi(x1
i , x

2
i , . . . , x

m
i)

)
, for j = 1, 2, . . . ,m. (3.5)

Notice that the method of calculating scaling factor λji (k) and normalization factor Γj is the

same as described in (Alam et al., 2018a). However, for clarity, we use the term scaling factor for

106

λji (k) instead of probability.

Algorithm 5: Algorithm of control unit

1 Input: Cj , for j = 1, 2, . . . ,m.

2 Output: Sj(k), for j = 1, 2, . . . ,m, k ∈ N.

3 Initialization: Sj(0)← 0, for j = 1, 2, . . . ,m, and broadcast Γj , for j = 1, 2, . . . ,m;

4 while k ∈ N do

5 while j = 1, 2, . . . ,m do

6 if
∑n

i=1 x
j
i (k) ≥ Cj then

7 Sj(k + 1)← 1;

8 broadcast Sj(k + 1);

9 else

10 Sj(k + 1)← 0;

11 end

12 end

13 end

The algorithm of the control unit is presented in Algorithm 5, and the distributed deterministic

107

algorithm for each IoT device is described in Algorithm 6.

Algorithm 6: Deterministic AIMD algorithm of IoT device i (D-AIMD i)

1 Input: Sj(k), k ∈ N and Γj , for j = 1, 2, . . . ,m.

2 Output: xji (k + 1), for j = 1, 2, . . . ,m, k ∈ N.

3 Initialization: Agent i sets its states xji (0)1 and xji (0)← xji (0), for j = 1, 2, . . . ,m;

4 while IoT device i participates at k ∈ N do

5 while j = 1, 2, . . . ,m do

6 if Sj(k) = 1 then

7 λji (k)← Γj
∂
∂x

∣∣∣
x=x

j
i
(k)

fi(x1i (k),x2i (k),...,xmi (k))

xji (k)
;

xji (k + 1)←
(
λji (k)βj +

(
1− λji (k)

))
xji (k);

8 else

9 xji (k + 1)← xji (k) + αj ;

10 end

11 xji (k + 1)← k+1
k+2x

j
i (k) + 1

k+2x
j
i (k + 1);

12 end

13 end

By following the approach with appropriate values of λji (k), αj , βj , and Γj , the long-term av-

erage resource allocations converge to optimal allocations that is x(k) → x∗, when k → ∞ and

hence the system achieves a minimum social cost. Notice that, in the additive increase (AI) phase,

the stochastic and the deterministic AIMD algorithms follow the same allocation rule. However,

in the multiplicative decrease (MD) phase, they follow different allocation rules. In the stochas-

tic AIMD algorithm, the MD phase is probabilistic—an IoT device responds to the capacity event

asynchronously, either by reducing its demand multiplicatively by βj or by not responding to the

capacity event. However, in the deterministic AIMD, the MD phase is deterministic—all the partic-

ipating IoT devices back-off synchronously using parameters βj and λji (k).

2We can initialize xji (0) with any value in [0, Cj] such that
∑n
i=1 x

j
i (0) ≤ Cj , for j = 1, 2, . . . ,m.

108

Observation 3.3.1. Based on the empirical results, we observe that the average allocations con-

verge to optimal allocations. We also observe that the deterministic AIMD algorithm converges

much faster than the stochastic AIMD algorithm.

Remark 3.3.2 (Communication overhead). Because of the faster convergence of the deterministic

AIMD algorithm, the number of capacity events (in bits) required to reach consensus of derivatives

is less than that of the stochastic AIMD algorithm. As described in (Alam et al., 2018a) for m

resources in the system, the communication overhead is
∑k

`=0

∑m
j=1 S

j(`) bits until the k’th time

step, where Sj(`) ∈ {0, 1}. In the worst case scenario, this will be mk bits until time step k.

As we stated in Chapter 1, we restate that because our models consider a central server that

keeps track of aggregate demands and sends feedback signals in the network, the system may fail if

the central server stops working. However, we can fix this by adding a backup server that keeps all

the information as the central server and receives feedback signals from the central server. When

the central server stops sending the feedback signals, the backup server takes charge and works as

the central server until the central server comes live. Such settings are explored extensively by the

machine learning community as federated learning. Wherein several agents collaborate to train a

global model without sharing their local on-device data. Each agent updates the global model with

their local dataset and parameters and shares the updates with the central server. The central server

aggregates the updates by agents and updates the global model (McMahan et al., 2017), (Konecny

et al., 2016), (Bonawitz et al., 2019), (Kairouz et al., 2021). The optimization techniques are called

federated optimization (Reddi et al., 2021), (T. Li et al., 2020), (Konecny et al., 2015), (J. Wang et

al., 2020). For clarity, we restate it in each chapter in the thesis.

3.4 Experiments

This section presents the simulation settings and results of the deterministic AIMD algorithm

and compares it with the results of the stochastic AIMD algorithm, which is simulated using the

same parameters. We observe that the average allocations of a resource converge at approximately

the same value for each IoT device in both approaches. We also observe that deterministic AIMD

converges faster than the stochastic AIMD.

109

Now, suppose that there are 60 IoT devices such as Google glasses, smart-watches, and cameras

being used in and around a place of tourist attraction. Let us assume that the management of the

place has installed a Cloudlet there and aims to allocate resources optimally to all participating

IoT devices and to achieve a social minimum cost. We assume further that the Cloudlet hosts

three shared computing resources, RAM, CPU cycles, and disk storage. Let the capacities of these

resources be C1 = 32 GB, C2 = 20 GHz and C3 = 250 GB, respectively. For the convenience

of scalability of parameters, we suppose that 10 GB of storage is represented by GBD, then we

write C3 = 25 GBD. The Cloudlet has a control unit that notifies the IoT devices when the demands

reach the capacity of a resource. At the start of the system, the control unit broadcasts the parameters

α1 = 0.025 GB, α2 = 0.02 GHz, α3 = 0.0225 GBD, β1 = 0.7, β2 = 0.85 and β3 = 0.75 to all

the participating IoT devices. It also broadcasts the normalization factors Γ1 = Γ2 = Γ3 = 1/90.

Let ai, bi, and ci represent the cost of RAM, CPU cycles and disk storage, respectively and di

represents any other costs incurred. LetX = {1, 2, . . . , 25}, Y = {1, 2, . . . , 20},Z = {1, 2, . . . , 15}

and U = {1, 2, . . . , 10} be uniformly distributed random variables, they are used to obtain different

cost functions. We use ai ∈ X, bi ∈ Y, ci ∈ Z and di ∈ U as the numerical values of these uni-

formly distributed random variables in the simulation. Let for all i, the cost functions of IoT device

i is calculated as follows,

fi(x
1
i , x

2
i , x

3
i) =

(i)ai
(
(x1
i)

2 + 1
2(x1

i)
4
)

+ bi
(
2(x2

i)
4 + 1

2(x2
i)

6
)

+ci
(
(x3
i)

2 + 1
4(x3

i)
4
)

+ 1
8di(x

3
i)

8

(ii)ai(x
1
i)

2 + bi
(
(x2
i)

2 + 1
2(x2

i)
4
)

+ 3
2ci(x

3
i)

4

(iii)1
3ai(x

1
i)

6 + bi(x
2
i)

2 + ci(x
3
i)

2 + di
(

1
6(x2

i)
6 + 1

8(x3
i)

4
)
.

(3.6)

The following are some of the results obtained from the simulation. As described in Section

3.2, for the optimization Problem 3.2.2, at the optimal values the derivatives of cost functions with

respect to a particular resource make consensus.

110

0 1000 2000 3000
Time step

4

6

8

10

D
e
ri
v
a
ti
v
e
w
.r
.t
.
R

j

∇1fi(.)
∇2fi(.)
∇3fi(.)

Figure 3.3: Results of deterministic AIMD: Evolution of the profile of derivatives of cost functions
∂
∂x
fi(.) of all IoT devices of a single simulation.

0 200 400 600 800
Time step

0

0.5

1

1.5

A
v
er
a
g
e
a
ll
o
ca
ti
o
n R1, ICD 53

R2, ICD 53
R3, ICD 53

(a)

0 500 1000
Time step

0

0.1

0.2

0.3

0.4
|
x
j i
(k
)
−

x
∗
j
i

|
R1, ICD 55
R2, ICD 55
R3, ICD 55

(b)

Figure 3.4: Results of deterministic AIMD: (a) evolution of average allocation xji (k) of resources,
(b) evolution of absolute difference of average allocation and optimal allocation.

We observe from Figure 3.3 that the derivatives of cost functions of IoT devices with respect to

a particular resource gather around the same value over time and hence make a consensus. Figure

3.4(a) shows that the average allocations of resources converge over time. Thus, the long-term

average allocations of resources are optimal allocations. We verify this claim by simulating the

same optimization problem with the same parameters in a centralized setting. We see that the

absolute difference of the average allocation and the optimal allocation calculated in a centralized

setting are close to zero (see Figure 3.4(b)). Furthermore, Figure 3.5 illustrates that the ratio of the

111

sum of cost functions for average allocations and the sum of cost functions for calculated optimal

allocations are approximately 1.

0 500 1000 1500 2000
Time step

0

0.2

0.4

0.6

0.8

1

R
a
ti
o
o
f
su
m

o
f
co
st
s
to

su
m

o
f
o
p
ti
m
a
l
co
st
s

Figure 3.5: Results of deterministic AIMD: Ratio of the sum of cost functions to the sum of optimal
cost functions.

0 10 20 30 40 50
Iterations

10

20

30

40

50

S
u
m

o
f
a
ll
o
c
a
t
io
n
s R1

R2

R3

(a)

0 500 1000
Time step

10

20

30

40

50

S
u
m

o
f
a
v
er
a
g
e
a
ll
o
ca
ti
o
n
s

R1

R2

R3

(b)

Figure 3.6: Results of deterministic AIMD: (a) total allocation of resources for last 50 time steps,
(b) evolution of sum of average allocation of resources, the capacities are C1 = 32 GB, C2 = 20
GHz, and C3 = 25 GBD.

Figure 3.6(a) shows the overshoots of the allocations; we observe that the sum of instantaneous

allocations is concentrated near the respective capacities of the resources. To reduce the over-

shoots, we introduce a constant γj ∈ (0, 1) and update the capacity event Sj(k + 1) = 1, when
∑n

i=1 x
j
i (k) > γjCj as described in (Alam et al., 2018a). From, Figure 3.6(b), we observe that

112

the sum of average allocations is approximately equal to the respective capacities of the resources;

hence we say that the sum of average allocations satisfies the constraints of the optimization prob-

lem.

(a) (b)

(c)

Figure 3.7: Evolution of the profile of derivatives of cost functions ∂
∂x
fi(.) of all IoT devices of a

single simulation of D-AIMD and S-AIMD algorithms with respect to — (a) resource 1, (b) resource
2, and (c) resource 3. Legends: S-AIMD represents the stochastic AIMD and D-AIMD represents
the deterministic AIMD.

We compare the results of the deterministic AIMD approach and the stochastic approach. To do

so, we simulate the stochastic AIMD approach (Alam et al., 2018a) with the same parameters and

cost functions. Figure 3.7 illustrates the derivatives of cost functions with respect to resources 1, 2,

and 3, respectively, of a single simulation of all IoT devices of the deterministic AIMD (D-AIMD)

113

and the stochastic AIMD (S-AIMD). We present the derivatives of the D-AIMD as shaded error bars.

We see that the derivatives of all IoT devices with respect to a particular resource of the deterministic

AIMD algorithm concentrate more and more around the same value much faster than the derivatives

obtained from the stochastic AIMD algorithm. Hence, the derivatives of the deterministic AIMD

converge much faster than that of the stochastic AIMD; therefore, they reach a consensus faster

than the stochastic AIMD. Furthermore, we observe in Figure 3.8 that the average allocations of

resources 1, 2, and 3, respectively, in the deterministic AIMD algorithm converge faster than the

average allocations in the stochastic AIMD algorithm. However, the average allocations of both

approaches reach approximately the same value over time.

0 1 2 3
Time step

×104

0.6

0.7

0.8

0.9

A
v
er
a
g
e
a
ll
o
ca
ti
o
n
R

1

S-AIMD
D-AIMD

(a)

0 1 2 3
Time step

×104

0.1

0.15

0.2

0.25

0.3

A
v
er
a
g
e
a
ll
o
ca
ti
o
n
R

2
S-AIMD
D-AIMD

(b)

0 1 2 3
Time step

×104

0.5

0.6

0.7

0.8

A
v
er
a
g
e
a
ll
o
ca
ti
o
n
R

3

S-AIMD
D-AIMD

(c)

Figure 3.8: Evolution of average allocation of resources of IoT device 42 of D-AIMD and S-AIMD
algorithms — (a) resource 1, (b) resource 2, and (c) resource 3.

114

0 1 2 3
Time step

×104

0

0.01

0.02

0.03

0.04

0.05
A
b
s.

d
iff

D
-A

IM
D

a
n
d
S
-A

IM
D

ICD 15, R1

ICD 15, R2

ICD 15, R3

(a)

0 20 40 60
Time step

0

0.1

0.2

0.3

0.4

A
b
s.

d
iff
er
en

ce
o
f
a
ll
o
ca
ti
o
n
s

R1

R2

R3

(b)

Figure 3.9: (a) Evolution of absolute difference of average allocations obtained from D-AIMD and
S-AIMD, (b) absolute difference of average allocations obtained from D-AIMD and S-AIMD at
time step 30000.

0 500 1000 1500 2000 2500
Time step

120

140

160

S
u
m

o
f
co
st

fu
n
c. S-AIMD

D-AIMD

Figure 3.10: Evolution of sum of cost functions over the average allocation of S-AIMD and D-
AIMD.

Figure 3.9(a) illustrates the absolute difference of average allocations obtained from D-AIMD

and S-AIMD, where the absolute difference is close to zero. We observe that most of the absolute

differences of average allocations reach an order of 10−3 over time (Figure 3.9(b)); hence both the

approaches provide approximately the same long-term average allocations. Figure 3.10 illustrates

the convergence of the sum of cost functions
∑n

i=1 fi(x
1
i (k), x2

i (k), x3
i (k)) obtained from both the

approaches, we observe that the sum of cost functions obtained from deterministic AIMD converges

faster than the sum of cost functions obtained from stochastic AIMD, but they converge to the same

115

value over time nevertheless. Therefore, both approaches provide the same social optimum value.

Table 3.1: The simulation is run on Intel Core i5-6500, CPU 3.2 GHz, 8 GB RAM. The execution
time of each simulation and the corresponding number of capacity events broadcast by the control
unit are presented here.

No. of iterations
No. of capacity events (bits) for resources 1, 2, and 3 Execution time (seconds)

S-AIMD D-AIMD S-AIMD D-AIMD

500 184, 187, 137 266, 350, 318 0.666405 0.344306

1000 381, 388, 283 498, 719, 631 1.437232 0.681150

3000 1185, 1199, 835 1569, 2151, 1908 6.655815 3.984121

5000 1918, 1974, 1413 2439, 3563, 3288 16.052666 10.643811

10000 3889, 3950, 2800 5446, 6880, 6151 65.529710 50.616229

30000 11515, 11851, 8357 - 989.557591 -

Additionally, the execution time and the number of capacity events broadcast by the control

unit for different simulations are presented in Table 3.1 of both the D-AIMD and the S-AIMD

algorithms. We would like to clarify that these results are based on simulation performed on a single

computer, and we do not consider the communication delay between IoT devices and the control

unit. We observe that the execution time of the deterministic AIMD algorithm is less than that of the

stochastic AIMD algorithm, whereas the number of capacity events is more than stochastic AIMD

for a particular simulation. Notice that because the D-AIMD converges faster than the S-AIMD;

therefore, in the D-AIMD, the control unit broadcasts fewer capacity events to reach consensus.

Furthermore, we would like to clarify that in Table 3.1 we have not recorded the number of capacity

events and execution time for D-AIMD at 30000 time steps because, in the simulation, we observe

that the derivatives converge in less than 5000 time steps.

3.5 Conclusion

We propose a distributed, private, and deterministic algorithm to solve a set of distributed opti-

mization problems for multiple divisible resource allocations with little communication overhead.

116

The proposed algorithm is a derandomized version of a stochastic AIMD algorithm. The solu-

tion has several features, such as the IoT devices need not communicate with each other to reach

social-optimum. Second, the solution is communication-efficient, in the sense that the control unit

broadcasts a one-bit feedback signal for each resource when the demand of a resource exceeds the

capacity of the resource. Third, we showed empirically that the deterministic AIMD algorithm con-

verges faster than the stochastic AIMD algorithm. We further showed that both approaches provide

approximately the same long-term average allocation and achieve the same social-optimum cost. It

is interesting to deploy the proposed algorithm in real applications using IoT devices and a Cloudlet

and analyze its performance. It is also interesting to prove the convergence of average allocations

theoretically. Additionally, the algorithm can be extended in several application areas, like smart

grid, intelligent transportation systems, supply chain management, to name a few.

117

Chapter 4

Stochastic Distributed Algorithm for

Unit-demand Resource Allocation

In this chapter, we consider a control problem involving several agents coupled through mul-

tiple shared resources. These resources are unit-demand (indivisible), allocated either one unit or

not allocated; each agent’s consumption is modeled as a Bernoulli random variable. Controlling

the number of such agents in a probabilistic manner, subject to capacity constraints, is ubiquitous

in smart cities. For instance, such agents can be humans in a feedback loop—who respond to a

price signal or automated decision-support systems that strive toward system-level goals. In this

chapter, we consider both a single resource allocation and multi-resource allocations for the same

population of agents. For example, when a network of devices allocates resources to deliver several

services, these services are coupled through capacity constraints on the resources. We provide fun-

damental guarantees of convergence for the single resource allocation case and extend it to multiple

resources. Furthermore, we propose a distributed stochastic algorithm for multiple unit-demand

resource allocation. We also present an example illustrating the performance of the algorithm.

4.1 Introduction

Classical control has much to offer in a smart city context. However, while this is, without doubt,

true, many problems arising in the context of smart cities reveal subtle constraints that are relatively

118

unexplored by the control community. At a high level, both classical control and smart-city con-

trol deal with regulation problems. Nevertheless, in many (perhaps most) smart-city applications,

control involves orchestrating the aggregate effect of a number of agents who respond to a sig-

nal (sometimes called a price) in a probabilistic way. A fundamental difference between classical

control and smart-city control is the need to study the effect of control signals on the statistical

properties of the populations that we wish to influence while at the same time ensuring that the con-

trol is in some sense optimal. This fundamental difference concerns the need for ergodic feedback

systems, and even though this problem is rarely studied in control, it is the issue that is perhaps the

most pressing in real-life applications. Since the need for predictability at the level of individual

agents underpins an operator’s ability to write economic contracts.

Our starting point for this work is the previous works of (Fioravanti, Marecek, Shorten, Souza,

& Wirth, 2017; Griggs et al., 2016), and the observation that many problems in smart cities can

be cast in a framework, where a large number of agents, such as people, cars, or machines, often

with unknown objectives—compete for a limited resource. It is challenging to allocate a resource

in a manner that utilizes it optimally and gives a guaranteed level of service to each of the agents

competing for that resource. For example, allocating parking spaces (Arnott & Rowse, 1999; Khalid

et al., 2021; Lin, Rivano, & Mouel, 2017; Teodorovic & Lucic, 2006), regulating cars competing

for shared road space (Jones, 2014), or allocating shared bikes (DeMaio, 2009; Raviv & Kolka,

2013), are examples in which resource utilization should be maximized while at the same time

delivering a certain quality of service (QoS) to individual agents is a major constraint. As noted

in (Alam, Shorten, Wirth, & Yu, 2020; Fioravanti et al., 2017), at a high level, these are primarily

optimal control problems but with the added objective of controlling the macroscopic properties of

the agents’ population. Thus, the design of feedback systems for deployment in smart cities must

combine notions of regulation, optimization, and the existence of the unique invariant measure

(Fioravanti, Marecek, Shorten, Souza, & Wirth, 2019).

Specifically, in this chapter, we consider the problem of controlling a number of agents cou-

pled through multiple shared resources, where each agent demands the resources in a probabilistic

manner. This work builds strongly on the previous work (Griggs et al., 2016) in which the optimal

control and ergodic control of the population of agents are considered for a single resource. As we

119

have mentioned, controlling a network of agents which demand resources in a probabilistic manner

is ubiquitous in smart cities. In many smart-city applications, the probabilistic intent of agents can

be natural (where humans are in a feedback loop and respond, for example, to a price signal) or de-

signed (implemented in a decision support system) so that the network achieves system-level goals.

Often, such feedback loops are coupled together as agents contribute or participate in multiple ser-

vices. For example, when a network of devices allocates resources to deliver several services, these

services are coupled through the consumption of multiple shared resources; usually, we call such

resources as unit-demand or indivisible resources which are either allocated one unit of the resource

or not allocated. A concrete manifestation of such a system is the IBM Research’s project parked

cars as a service delivery platform (Cogill et al., 2014). Here, networks of parked cars collaborate

to offer services to city managers. Examples of services include wifi coverage, finding missing ob-

jects, and gas leak detection and localization. Here, vehicle owners allocate parts of their resources

stochastically to contribute to different services, each of which is managed by a feedback loop. The

allocation between services is usually coupled via a nonlinear function representing the trade-off

between resource allocation (energy, sensors) and the reward for participating in delivering a par-

ticular service. It is our firm belief that such systems are ubiquitous in smart cities and represent

a new class of problems in feedback systems. In a similar direction, Katsikouli et al. (Katsikouli

et al., 2020) developed algorithms to manage the particulate matter in smart cities arising from tyre

abrasion using a feedback control strategy.

Our main contribution in this chapter is to establish stochastic schemes for a practically impor-

tant class of problems for several agents coupled through multiple unit-demand shared resources.

Each agent demands the shared resources in a probabilistic manner based on its private cost function

and constraints. The constraints are based on multiple shared resources. This scheme is a general-

ization of the single unit-demand resource allocation algorithm proposed in (Griggs et al., 2016) and

follows more relaxed constraints than (Alam et al., 2020). Additionally, the results on convergence

are derived for networks with a single resource and extended to multiple resources. To check the

efficacy of our algorithm, we present a use case of regulating the number of electric vehicles that

share a limited number of level 1 and level 2 charging points. It illustrates that the agents receive

the optimal charging points in long-term averages to maximize social welfare.

120

4.2 Preliminaries

Suppose that n agents are coupled through m unit-demand (indivisible) shared resources, and

each agent has a cost function that depends on the allocation of these shared resources. Let the

capacity of resources be C1, C2, . . . , Cm, respectively. We denote N , {1, 2, . . . , n}, M ,

{1, 2, . . . ,m}, and use i ∈ N as an index for agents and j ∈ M to index the resources. Let

ξji(k) denote independent Bernoulli random variable which represents the instantaneous allocation

of resource j of agent i at time step k. Furthermore, let yji(k) ∈ [0, 1] denote the average allocation

of resource j of agent i at time step k. We define yji(k) as follows,

yji(k) ,
1

k + 1

k∑

`=0

ξji(`), (4.1)

for i = 1, 2, . . . , n, and j = 1, 2, . . . ,m. Let [y]i ∈ [0, 1]m denote (y1i, y2i, . . . , ymi) and yj ∈

[0, 1]n denote (yj1, yj2, . . . , yjn). Additionally, let y ∈ ([0, 1]n)m denote (y1,y2, . . . ,ym). Note

that we use bold letters to denote vectors. Moreover, we assume that agent i has a cost function

gi : [0, 1]m → R+ which associates a cost to a certain allotment of the shared resources to the

agent. We assume that gi is twice continuously differentiable, strictly convex, and increasing in all

variables, for all i. We also assume that the agents do not share their cost functions or allocation

information with other agents, and there is no inter-agent communication. Moreover, we assume

that there is a central agent or control unit that tracks the aggregate demands of resources and

broadcasts price signals in the network. Then instead of defining the resource allocation problem in

terms of the instantaneous allocation ξji(k) ∈ {0, 1}, for all i, j and k, we define the objective and

constraints in terms of averages as follows,

min
y11,...,ymn

n∑

i=1

gi(y1i, . . . , ymi),

subject to
n∑

i=1

yji = Cj , j = 1, . . . ,m,

yji ≥ 0, i = 1, . . . , n, and, j = 1, . . . ,m.

(4.2)

Let y∗ = (y∗11, . . . , y
∗
mn) ∈ ([0, 1]n)m denote the solution to (4.2). Let N denote the set of

121

natural numbers, and let k ∈ N denote the time steps. Next, our objective is to propose a distributed

iterative algorithm that determines instantaneous allocation {ξji(k)} and ensures that the long-term

average allocation, as defined in (4.1) converge to optimal allocation (treated in Section 4.4) that is,

lim
k→∞

yji(k) = y∗ji, for i = 1, 2, . . . , n, and j = 1, 2, . . . ,m,

thereby achieving the minimum social cost in the sense of long-term averages. By compactness of

the constraint set, optimal solutions exist. The assumption that the cost function gi is strictly convex

leads to strict convexity of
∑n

i=1 gi, which follows that the optimal solution is unique.

4.2.1 Optimality conditions

Let L : ([0, 1]n)m × Rm × (Rn)m → R, and let µ = (µ1, µ2, . . . , µm) ∈ Rm and λ =

(λ11, λ12, . . . , λmn) ∈ (Rn)m are Lagrange multipliers of the constraints in Problem (4.2). We now

define Lagrangian of the optimization problem (4.2) as follows:

L(y,µ,λ) ,
n∑

i=1

gi(y1i, . . . , ymi)−
m∑

j=1

µj

(
n∑

i=1

yji − Cj
)

+
m∑

j=1

n∑

i=1

λjiyji.

Now, let ∂
∂yji

gi(y1i, . . . , ymi) denote (partial) derivative of the cost function gi with respect to yji,

for all i and j. For strictly positive y∗1i, . . . , y
∗
mi, i = 1, 2, . . . , n, following a similar analysis as in

Chapter 2, we find that the derivatives of the cost functions of all agents competing for a particular

resource reach consensus at optimal allocations. That is, the following holds, for i, u ∈ N , and j ∈

M:

∂

∂yji
gi([y]i)

∣∣∣
[y]i=[y]∗i

=
∂

∂yju
gu([y]u)

∣∣∣
[y]u=[y]∗u

. (4.3)

Recall that [y]i denotes (y1i, y2i, . . . , ymi). Moreover, the Karush-Kuhn-Tucker (KKT) conditions

are satisfied by the consensus of derivatives (see (4.3)) of the cost functions that are necessary and

sufficient conditions of optimality of the optimization Problem (4.2); a similar analysis is done in

(Alam et al., 2018a, 2020; Wirth et al., 2019), readers can find further details of the KKT conditions

at Chapter 5.5.3 (Boyd & Vandenberghe, 2004). In this chapter, we use this principle to show that

122

the proposed algorithm reaches optimal values asymptotically. The consensus of derivatives of cost

functions are also used in (Wirth et al., 2019) (single resource), (Alam et al., 2018a, 2020) (multi-

resource—stochastic), (Alam, Shorten, Wirth, & Yu, 2018b) (multi-resource—derandomized) to

show the convergence of allocations to optimal values. For ease of readability of the chapter, we

presented the optimality results here. It also appears in Chapter 1.4.5.

4.3 Allocating a single unit-demand resource

In this section, we consider the single unit-demand resource case by Griggs and co-authors

(Griggs et al., 2016) and briefly describe the distributed, iterative, and stochastic allocation algo-

rithm. We also provide results on convergence and optimality properties with a few assumptions.

With a single resource, we simplify notation by dropping the index j. Each agent i has a strictly

convex cost function gi : [0, 1] → R+. The binary random variable ξi(k) ∈ {0, 1} denotes the

allocation of the unit resource for agent i at time step k. Let yi(k) be the average allocation up to

time step k of agent i that is,

yi(k) ,
1

k + 1

k∑

`=0

ξi(`), for i = 1, 2, . . . , n. (4.4)

Let the vectors ξ(k) = (ξ1(k), . . . , ξn(k)) ∈ {0, 1}n and y(k) = (y1(k), . . . , yn(k)) ∈ [0, 1]n, for

all k.

The idea is to choose the probability for random variable ξi so as to ensure convergence to the

socially optimum value and to adjust overall consumption to the desired level (capacity constraint)

C by applying a signal Ω to the probability, we call this price signal. When an agent joins the

network at time step k ∈ N, it receives the price signal Ω(k). At each time step k, the central

agency updates Ω(k) using a gain parameter τ , past utilization of the resource, and the resource

capacity. After the update, it broadcasts the new value to all agents in the network:

Ω(k + 1) , Ω(k)− τ
(n∑

i=1

ξi(k)− C
)
, (4.5)

123

where τ ∈
(

0,
(

max
y∈[0,1]n

n∑

i=1

yi
g′i(yi)

)−1)
. (4.6)

Upon receiving this signal, agent i responds in a probabilistic fashion based on its available infor-

mation. The probability distribution function σi(·) uses the average allocation of the resource to

agent i and the derivative g′i of the cost function gi, is given by:

σi(Ω(k), yi(k)) , Ω(k)
yi(k)

g′i(yi(k))
, for i ∈ N . (4.7)

Agent i updates its resource demand at each time step either by demanding one unit of the resource

or not demanding it, as follows,

ξi(k + 1) =

1 with probability σi(Ω(k), yi(k));

0 with probability 1− σi(Ω(k), yi(k)).

(4.8)

We point out that for the above formulation, we require assumptions on the cost function gi and

the admissible value of Ω because the scheme requires that (4.7) does, in fact, define a probability.

For ease of notation, we define vi(z) , z/g′i(z), where z ∈ [0, 1], and v(y) to be the vector with

components vi(yi), for i = 1, 2, . . . , n, where y ∈ [0, 1]n.

Definition 4.3.1 (Admissibility). Let n ∈ N, and let gi : [0, 1]→ R+ be continuously differentiable

and strictly convex, for i = 1, . . . , n. We call the set {gi, i = 1, . . . , n} and Ω > 0 admissible, if

(i) vi is well defined on [0, 1], for i = 1, . . . , n,

(ii) there are constants 0 < a < b < 1, such that σi(Ω, z) = Ωvi(z) ∈ [a, b], for i = 1, . . . , n,

and z ∈ [0, 1].

The definition of admissibility imposes several restrictions on the possible cost function gi,

similar to those imposed in (Wirth et al., 2019). See this reference for a detailed discussion and

possible relaxation. For the case that Ω is a constant, that is, Ω does not depend on the time step

k ∈ N, (4.5) is not active. Therefore, the convergence of the scheme follows using tools from

classical stochastic approximation (Borkar, 2008).

124

Definition 4.3.2 (Invariant set (Borkar, 2008)). Let x ∈ Rn and w : Rn → Rn. Furthermore, let

A ⊂ Rn be a closed set. The set A is called an invariant set of the ordinary differential equation

ẋ(t) = w(x(t)), x(0) = x0, if x0 ∈ A implies that the corresponding solution trajectory x(t) is

also in A.

Definition 4.3.3 (Internally chain transitive set (Borkar, 2008)). Let A ⊂ Rn be a closed set. It is

called an internally chain transitive if for any a,b ∈ A and any ε > 0, T > 0, there exist ν ≥ 1

and points x0 = a, . . . ,xν = b ∈ A such that the trajectories of the ordinary differential equation

ẋ(t) = w(x(t)), x(0) = x0, initiated at x` meets with the ε-neighborhood of x`+1 for 0 ≤ ` ≤ ν

after time t ≥ T .

Theorem 4.3.4. (Borkar, 2008, Theorem 11.2.5) Let x,x0 ∈ Rn. If w : Rn → Rn is Lipschitz

continuous. Then the ordinary differential equation ẋ(t) = w(x(t)), x(0) = x0 is well posed, that

is, it has a unique solution x(t) for the initial value x0.

Theorem 4.3.5. (Borkar, 2008, Theorem 2.2) Let x,M ∈ Rn and w : Rn → Rn. For an initial

value x(0) = x0 and k ∈ N, let x be formulated as follows

x(k + 1) = x(k) + a(k) [w(x(k)) + M(k + 1)] . (4.9)

If Assumptions 4.3.6 (i) to (iv) are satisfied then {x(k)} converges to a compact connected internally

chain-transitive invariant set of the ordinary differential equation ẋ(t) = w(x(t)), almost surely, for t ≥

0.

Assumption 4.3.6. (i) The map w is Lipschitz continuous.

(ii) Step-size a(k) > 0, for k ∈ N, and

∞∑

`=0

a(`) =∞, and
∞∑

`=0

(a(`))2 <∞.

(iii) {M(k)} is a martingale difference sequence with respect to the σ-algebra Fk generated by

125

the events up to time step k, that is

E (M(k + 1) | Fk) = 0,

almost surely, for k ∈ N. Moreover, for l2-norm ‖·‖2, martingale difference sequence

{M(k)} is square-integrable that is,

E
(
‖M(k + 1)‖2 | Fk

)
≤ η(1 + ‖x(k)‖2),

almost surely, for k ∈ N, and η > 0.

(iv) Sequence {x(k)} is almost surely bounded.

Theorem 4.3.7. For i = 1, 2, . . . , n and k ∈ N, let yi(k) be defined as in (4.4) and y = (y1, . . . , yn).

Let y(0) = y0 be initial conditions and Ω > 0 be constant. Assume that the cost function

gi : [0, 1] → R+ is strictly convex, twice continuously differentiable and strictly increasing in

each variable, for i = 1, . . . , n. Also, assume that {gi, i = 1, . . . , n} and Ω are admissible. Then

{y(k)} converges to a unique value ŷ = (ŷ1, . . . , ŷn) characterized by the condition,

Ω = g′i(ŷi), for i = 1, . . . , n. (4.10)

Proof. By definition, we have,

y(k + 1) =
k

k + 1
y(k) +

1

k + 1
ξ(k + 1). (4.11)

Let σ(Ω,y(k)) denote the vectors with entries σi(Ω, yi(k)), for i = 1, 2, . . . , n, and k = 0, 1, 2, . . .

Thus, (4.11) may be reformulated as

y(k + 1)

= y(k) +
1

k + 1
[(σ(Ω,y(k))− y(k)) + (ξ(k + 1)− σ(Ω,y(k)))] . (4.12)

126

Furthermore, let (ξ(k + 1)− σ(Ω,y(k))) be denoted by M(k + 1), and the step-size 1
k+1 be de-

noted by a(k), for k ∈ N. Also, let (σ(Ω,y(k))− y(k)) be denoted by w(y(k)). After replacing

these values in (4.12), we obtain

y(k + 1) = y(k) + a(k) [w(y(k)) + M(k + 1)] . (4.13)

We now verify that Assumptions 4.3.6 (i) to (iv) are satisfied for formulation (4.13). Recall that

w(y(k)) = (σ(Ω,y(k))− y(k)); thus, the map w : y 7→ σ(Ω,y)− y = Ωv(y)− y is Lipschitz,

which satisfies Assumption 4.3.6 (i). Also, the step-size a(k) = 1
k+1 is positive, for k = 0, 1, 2, . . .,

and we derive that

∞∑

`=0

a(`) =∞, and
∞∑

`=0

(
a(`)

)2
<∞,

which satisfy Assumption 4.3.6 (ii). Additionally, we note that the expectation:

E (ξ(k + 1)− σ(Ω,y(k)) | Fk) = 0, (4.14)

where Fk is the σ-algebra generated by the events up to time step k. This follows immediately

from the definition of the probability σi(·). By (4.14), {M(k)} is a martingale difference sequence

with respect to σ-algebra; also, the sequence {ξ(k + 1)− σ(Ω,y(k))} is of course bounded. With

little manipulation, we show that the martingale difference sequence {M(k)} is square-integrable—

which satisfy Assumption 4.3.6 (iii). Moreover, the iterate y(k) ∈ [0, 1]n is bounded almost surely,

which satisfies Assumption 4.3.6 (iv). Thus, it follows from Theorem 4.3.5 that almost surely

{y(k)} converges to a compact connected internally chain-transitive invariant set of the ordinary

differential equation,

ẏ(t) = w(y(t))

= Ωv(y(t))− y(t), (4.15)

with initial conditions y(0) = y0. Moreover, as w(·) is Lipschitz continuous, thus from Theorem

127

4.3.4 we obtain that the ordinary differential equation (4.15) has a unique solution.

We now analyze the critical or equilibrium point(s) of the ordinary differential equation (o.d.e.)

(4.15). Let the equilibrium points of the o.d.e. (4.15) be ŷ = (ŷ1, . . . , ŷn) ∈ [0, 1]n. We know that

the equilibrium points satisfy that w(y(t)) = 0. Thus, by definition, we obtain

Ωv(ŷ)− ŷ = 0.

Furthermore, we obtain

Ωvi(ŷi)− ŷi = 0, for i = 1, 2, . . . , n.

We now show that these equilibrium points are asymptotically stable in [0, 1]n. To do so, let us

choose a point smaller than the equilibrium point ŷi, let the point be yi = 0. As 0 < Ωvi(yi) < 1,

thus we have

Ωvi(yi)− yi > 0, at yi = 0, for i = 1, 2, . . . , n.

Thus, the slope of the o.d.e. is positive and hence, the solution trajectory yi(t) is going upward

towards the equilibrium point ŷi. Let us now choose a point greater than the equilibrium point ŷi,

let the point be yi = 1; as 0 < Ωvi(yi) < 1, thus we have

Ωvi(yi)− yi < 0, at yi = 1, for i = 1, 2, . . . , n.

Thus, the slope is negative, and hence, the solution trajectory yi(t) is going downward towards the

equilibrium point. In both cases, the trajectory is going towards the equilibrium point. We conclude

that the equilibrium point ŷi is asymptotically stable, for i = 1, 2, . . . , n. Recall that for an unstable

solution, the solution trajectories tend away from the equilibrium points.

As we have Ωŷi/g
′
i(ŷi)− ŷi = 0 at equilibrium points. Thus, we obtain

Ω = g′i(ŷi), for i = 1, 2, . . . , n.

As gi is strictly convex, g′i is strictly increasing; hence, the equilibrium point ŷi is unique, for i =

1, 2, . . . , n. This determines the unique equilibrium point of {y(k)}. The proof is complete.

128

4.4 Allocating multiple unit-demand resources

We turn our attention in this section to the case of multiple unit-demand (indivisible) resources

shared by the same population of agents as in the single resource case. We present a new algorithm

that generalizes the single unit-demand resource algorithm of Section 4.3 to multiple unit-demand

shared resources. The agents are coupled through multiple shared resources.

Each agent in the network runs the distributed unit-demand multi-resource allocation algorithm.

Let τj ∈ (0, 1) be the gain parameter, and let Ωj(k) denote a normalization factor updated and

broadcast by the central agent, we call it the price signal. Additionally, let Cj represent the capacity

of resource j, for all j. The central agent updates Ωj(k) according to (4.16) at each time step k and

broadcasts it to all agents in the network, for all j. When an agent joins the network at time step k,

it receives the parameter Ωj(k) for resource j, for all j. Each agent’s algorithm updates its resource

demand at a time step—either by demanding one unit of the resource or not demanding it.

The price signal Ωj(k) depends on its value at the previous time step, τj , capacityCj , and the to-

tal utilization of resource j at the previous time step, for all j and k. After receiving this signal, agent

i’s algorithm responds in a probabilistic manner. It calculates its probability σji(Ωj(k), [y]i(k)) us-

ing its average allocation [y]i(k) of resource j and the derivative of its cost function, for all j

and k, as described in (4.17). Agent i finds out the outcome of Bernoulli trial for resource j at

time step k, outcome 1 occurs with probability σji(Ωj(k), [y]i(k)) and outcome 0 with probability

1 − σji(Ωj(k), [y]i(k)); based on the value 0 or 1, the algorithm decides whether to demand one

unit of the resource j or not. If the value is 1, then the algorithm demands one unit of the resource;

otherwise, it does not demand the resource; analogously, it is done for all the resources in the net-

work. This process repeats over time. Following this, the average allocations converge to optimal

allocations. The proposed unit-demand multi-resource allocation algorithm for the central agent is

129

presented in Algorithm 7, and the algorithm for each agent is presented in Algorithm 8.

Algorithm 7: Algorithm of the central agent.

1 Input: C1, . . . , Cm, τ1, . . . , τm, ξ11(k), . . . , ξmn(k), for k ∈ N and i ∈ N .

2 Output: Ω1(k + 1),Ω2(k + 1), . . . ,Ωm(k + 1), for k ∈ N.

3 Initialization: Ωj(0)← 0.350 , for j ∈M,

4 foreach k ∈ N do

5 foreach j ∈M do

6 calculate Ωj(k + 1) according to (4.16) and broadcast it in the network;

7 end

8 end

Algorithm 8: Multi resource allocation algorithm of agent i.

1 Input: Ω1(k),Ω2(k), . . . ,Ωm(k), for k ∈ N.

2 Output: ξ1i(k + 1), ξ2i(k + 1), . . . , ξmi(k + 1), for k ∈ N.

3 Initialization: ξji(0)← 1 and yji(0)← ξji(0), for i ∈ N , j ∈M.

4 foreach k ∈ N do

5 foreach j ∈M do

6 σji(Ωj(k), [y]i(k))← Ωj(k)
yji(k)

∂
∂y

∣∣∣
y=yji(k)

gi([y]i(k))

;

7 generate Bernoulli independent random variable bji(k) with the parameter

σji(Ωj(k), [y]i(k));

8 if bji(k) = 1 then

9 ξji(k + 1)← 1;

10 else

11 ξji(k + 1)← 0;

12 end

13 yji(k + 1)← k+1
k+2yji(k) + 1

k+2ξji(k + 1);

14 end

15 end

After introducing the algorithms, we now describe how to calculate different parameters. We

130

choose a small gain parameter τj in (0, 1). We define Ωj(k + 1) which is based on the utilization

of resource j ∈M at time step k, as

Ωj(k + 1) , Ωj(k)− τj
(

n∑

i=1

ξji(k)− Cj
)
. (4.16)

After receiving the price signal Ωj(k) from the central agent at time step k, agent i responds with

probability σji(Ωj(k), [y]i(k)) in the following manner to demand resource j at next time step:

σji(Ωj(k), [y]i(k)) , Ωj(k)
yji(k)

∂
∂y

∣∣∣
y=yji(k)

gi([y]i(k))
. (4.17)

Notice that Ωj(k) is used to bound the probability σji(Ωj(k), [y]i(k)) ∈ (0, 1), for all i, j and

k. Following the algorithm, the long-term average allocations converge to optimal allocations. Let

ξj(k) ∈ {0, 1}n and yj(k) ∈ [0, 1]n denote the vectors with entries ξji(k), yji(k), respectively,

and σj(Ωj(k),y(k)) denotes the vector with entries σji(Ωj(k), [y]i(k)), for i = 1, 2, . . . , n, j =

1, 2, . . . ,m, and k = 0, 1, 2, . . . We now present the convergence results for a fixed constant Ωj .

4.4.1 Proof of convergence of average allocations for multiple resources

This section describes convergence result for multi-resource case with a constant Ωj , for j =

1, 2, . . . ,m. Moreover, similar to the single resource case, we can restate the definition of admis-

sibility as in Definition 4.3.1 and the theorem of convergence of average allocation yj(k) for a

constant Ωj , for j = 1, 2, . . . ,m, as in Theorem 4.3.7. We state the generalized theorem of conver-

gence of average allocations of multi-resource as follows.

Theorem 4.4.1 (Convergence of average allocations). Let n,m ∈ N. Assume that the cost function

gi : [0, 1]m → R+ is strictly convex, continuously differentiable and strictly increasing in each

variable, for i = 1, . . . , n. Furthermore, let Ωj > 0, and assume that {gi, i = 1, . . . , n} and Ωj

are admissible, for j = 1, . . . ,m. Then for unique value ŷj = (ŷj1, ŷj2, . . . , ŷjn); almost surely we

have limk→∞ yj(k) = ŷj , where ŷj is characterized by the condition,

Ωj =
∂

∂yji
gi([y]i)

∣∣∣
[y]i=[ŷ]i

, (4.18)

131

for i = 1, . . . , n, and j = 1, . . . ,m.

Proof. For j = 1, 2, . . . ,m, we reformulate the average allocation yj(k) as:

yj(k + 1) =
k

k + 1
yj(k) +

1

k + 1
ξj(k + 1). (4.19)

Which may be further reformulated as:

yj(k + 1)

= yj(k) +
1

k + 1
[(σj(Ωj ,y(k))− yj(k)) + (ξj(k + 1)− σj(Ωj ,y(k)))] . (4.20)

Let (ξj(k + 1)− σj(Ωj ,y(k))) be denoted by Mj(k + 1), and the step-size 1
k+1 be denoted by

a(k), for k ∈ N. Also, let (σj(Ωj ,y(k))− yj(k)) be denoted by ωj(yj(k)). After replacing these

values in (4.20), we obtain

yj(k + 1) = yj(k) + a(k) [ωj(yj(k)) + Mj(k + 1)] . (4.21)

Here, for a fixed j, {Mj(k)} is a martingale difference sequence with respect to σ-algebra;

moreover, the sequence {ξj(k + 1) − σj(Ωj ,y(k))} is bounded. For a fixed j, (4.21) is similar to

(4.13); the proof follows the single resource case.

Remark 4.4.2 (Privacy of an agent). The central agent only knows about the aggregate utilization
∑n

i=1 ξji(k) of resource j ∈M at time step k that ensures the privacy of the probability distribution

function and the cost function of an agent.

Notice that there is no inter-agent communication required to achieve social optimum cost, but

the central agent broadcasts the price signals Ωj(k) at each time step. Hence, the network has very

little communication overhead. Suppose that Ωj(k) takes the floating-point values represented by

µ bits. If there are m unit-demand (indivisible) resources in the network, then the communication

overhead in the network will be µm bits per time unit.

As we stated in Chapter 1, we restate that because our models consider a central server that

132

keeps track of aggregate demands and sends feedback signals in the network, the system may fail if

the central server stops working. However, we can fix this by adding a backup server that keeps all

the information as the central server and receives feedback signals from the central server. When

the central server stops sending the feedback signals, the backup server takes charge and works as

the central server until the central server comes live. Such settings are explored extensively by the

machine learning community as federated learning. Wherein several agents collaborate to train a

global model without sharing their local on-device data. Each agent updates the global model with

their local dataset and parameters and shares the updates with the central server. The central server

aggregates the updates by agents and updates the global model (McMahan et al., 2017), (Konecny

et al., 2016), (Bonawitz et al., 2019), (Kairouz et al., 2021). The optimization techniques are called

federated optimization (Reddi et al., 2021), (T. Li et al., 2020), (Konecny et al., 2015), (J. Wang et

al., 2020). For clarity, we restate it in each chapter in the thesis.

4.5 Application to electric vehicle charging

In this section, we present a hypothetical scenario to regulate the number of electric vehicles that

share a limited number of level 1 and level 2 charging points, using Algorithms 7 and 8. We illustrate

through numerical results that utilization of charging points (level 1 or level 2) is concentrated

around its capacity. Moreover, agents receive the optimal charging points in long-term averages;

we verify this using the consensus of derivatives of cost functions of agents, which satisfies all the

KKT conditions for the optimization Problem 4.2, as described in Section 4.2.

As a background, the transportation sector in the US contributed around 27% of greenhouse gas

(GHG) emissions in 2015, in which light-duty vehicles like cars have a 60% contribution. Further-

more, the share of carbon dioxide (CO2) is 96.7% of all GHG gases from the transportation sector

(EPA, 2017). To put it in context, currently, we have more than 1 billion vehicles (electric (EV) as

well as internal combustion engine (ICE)) on the road worldwide (Sousanis, 2015); the number is

increasing very rapidly, which will result in increased CO2 emissions in future. Though electric-

only vehicles produce zero emissions, the electricity generating units produce GHG emissions at the

133

sources, depending on the power generation technique used; for example, thermal-electric, hydro-

electric, wind power, nuclear power, etc. The annual CO2 emissions by an electric vehicle (EV)

is 2, 079.7 kg (share of CO2 emissions in producing electricity for charging an EV) and an ICE is

5, 186.8 kg (Energy, 2018).

Consider a situation where a city sets aside several free (no monetary cost) electric vehicle

supply equipment (EVSE) that supports level 1 and level 2 chargers at a public EV charging station

to serve the residents or to promote usage of electric vehicles or for load balancing on the power

grids, etc. The voltage and current rating of chargers vary; interested readers can find details at

(Q. Wang, Liu, Du, & Kong, 2016; Yilmaz & Krein, 2013). Briefly, the level 1 charger works at

110–120 Volt (V) AC, 15–20 Ampere (A), and the level 2 charger works at 240 V AC, 20–40 A. It

takes around 8–12 hours to fully charge the battery of an EV with a level 1 charger; additionally, it

takes around 4–6 hours to fully charge the battery with a level 2 charger. The charging time depends

on the battery capacity, onboard charger capacity, and a few other factors (Schey, 2014). Suppose

now that the city has installed C1 EVSEs, which support level 1 chargers, and C2 EVSEs, which

support level 2 chargers. We consider n electric cars in the network; their cost functions are coupled

through average allocations of level 1 and level 2 charging points. The city must decide whether to

allocate a level 1 charging point or a level 2 charging point to an electric car to regulate the number

of cars utilizing charging points for social welfare. Clearly, in such a situation, charging points

should be allocated in a distributed manner that preserves the privacy of individual car users but

also maximizes the benefit to the city. We use the proposed distributed stochastic algorithm, which

ensures the privacy of electric car users and allocates charging points optimally to maximize social

welfare; for example, to minimize total electricity cost or CO2 emissions.

On average, 0.443 kg of CO2 is produced to generate and distribute 1 kWh of electric en-

ergy with mixed energy sources (assoc. BEV, 2009). Based on the voltage and current ratings of

level 1 and level 2 chargers, and using fundamental formulations, we calculate the amount of CO2

emissions in generation and distribution of electricity, illustrated in Table 4.1. We use this data to

formulate the cost function gi of electric car i.

134

Charger type power (kW) CO2 emission in four hours

Level 1 1.65–2.40 2.92–4.25 kg

Level 2 4.80–9.60 8.51–17.01 kg

Table 4.1: Amount of CO2 emissions in generation and distribution of electricity for level 1 and
level 2 chargers in four-hours duration.

Suppose that there are n electric cars competing for the level 1 and level 2 charging points;

each car user has private cost function gi which depends on the average allocations of level 1 and

level 2 charging points, y1i(k) and y2i(k), respectively, for i = 1, 2, . . . , n. We assume that the city

agency (central agent) broadcasts the price signals Ω1(k) and Ω2(k) in the network after every four

hours; for the simplicity of calculations and due to the charging rate of level 2 chargers, we chose a

duration of 4 hours. Moreover, suppose that the cost functions are classified into four classes based

on—the type of vehicle, its battery capacity, on-board charger capacity, and a few other factors. We

consider that a vehicle belongs to one of the classes. Let a and b be constants, based on the values

in Table 4.1, we let a = 2.9, b = 8.51. Additionally, let c1i, c2i be uniformly distributed random

variables, where c1i ∈ [1, 1.5], c2i ∈ [1, 2], for i = 1, 2, . . . , n. The cost function gi is listed in

(4.22), where first and second terms represent CO2 emissions at a basic assumed rate of charging

of the battery, whereas third and subsequent terms represent the amount of CO2 emissions due to

different charging losses or factors. We observe that no allocation of charging points produces zero

emissions. The cost functions are as follows:

gi(y1i, y2i) =

(i) ay1i + by2i + ac1i(y1i)
2 + bc2i(y2i)

4,

(ii) ay1i + by2i + ac1i(y1i)
4/2 + bc2i(y2i)

2,

(iii) ay1i + by2i + ac1i(y1i)
4/3 + ac1i(y1i)

6 + bc2i(y2i)
4,

(iv) ay1i + by2i + ac1i(y1i)
2 + bc2i(y2i)

6/6.

(4.22)

For the simulation setup, we consider n = 1200 electric cars competing for level 1 and level 2

chargers. The cost functions of electric cars are coupled through average allocations of level 1 and

level 2 chargers. Moreover, we classify the electric cars as follows—cars 1 to 300 belong to class 1,

cars 301 to 600 belong to class 2, cars 601 to 900 belong to class 3, and cars 901 to 1200 belong to

135

class 4. Each class has a set of cost functions; the cost functions of class 1 are presented in (4.22)(i)

and analogously for other classes. We consider the capacity of level 1 chargers C1 = 400, and

the capacity of level 2 chargers C2 = 500. The parameters of the algorithms are initialized with

the following values: Ω1(0) = 0.328, Ω2(0) = 0.35, τ1 = 0.001275, and τ2 = 0.001175. We

use the proposed Algorithm 7 and Algorithm 8 to allocate charging points to the electric cars in

the network. A car user sends a request for the charging point to the city agency in a probabilistic

manner based on its private cost function gi and its previous average allocation of level 1 and level

2 charging points. The car users do not share their cost functions or history of their allocations with

other car users or with the city agency. Note a limitation of this application, following the proposed

algorithm, in some cases, a car user can receive access to both level 1 and level 2 charging points

for a single car, which may not be desired in real-life scenarios.

We present simulation results of the automatic allocation of charging points here. We observe

that the electric car users receive optimal allocations of both types of charging points and minimize

the overall CO2 emissions. Figure 4.1 shows the evolution of average allocations of charging points.

0 500 1000 1500 2000
Time steps k

0

0.5

1

1.5

A
v
g
.
a
ll
o
c.

o
f
ch
a
rg
e
p
o
in
ts

Level 1, charger 24
Level 2, charger 24
Level 1, charger 1181
Level 2, charger 1181

Figure 4.1: Evolution of average allocations of charging points.

As described earlier in (4.3), to show the optimality of the solution, the partial derivatives of the

cost functions of all the cars with respect to a particular type of charger should make a consensus.

The profile of derivatives of cost functions of the cars with respect to level 1 and level 2 chargers

for a single simulation is illustrated in Figure 4.2(a) and 4.2(b), respectively. We observe that they

converge with time and hence make a consensus, which satisfies the KKT conditions for optimality.

136

Note that we use third and subsequent terms of (4.22) to calculate the derivative ∂
∂yji

gi(·) which

shifts its value by constants a or b without affecting the KKT points, but it provides faster conver-

gence in the simulation. The empirical results thus obtained show the convergence of the long-term

average allocations of charging points to their respective optimal values using the consensus of

derivatives of the cost functions; hence, the network achieves social optimum value.

2000 4000 6000 8000 10000
Time steps k

0.8

1

1.2

1.4

D
er
iv
a
ti
v
e
o
f
g
i

∂/∂y
1i
gi(y1i, y2i)

(a)

2000 4000 6000 8000 10000
Time steps k

2

2.5

3

3.5

4

D
er
iv
a
ti
v
e
o
f
g
i

∂/∂y
2i
gi(y1i, y2i)

(b)

Figure 4.2: (a) evolution of the profile of derivatives of cost functions gi of all the electric cars in the
network with respect to level 1 chargers, (b) evolution of the profile of derivatives of cost functions
gi of all the electric cars in the network with respect to level 2 chargers.

Figure 4.3(a) illustrates the sum of the average allocations
∑n

i=1 yji(k) over time, for i =

1, 2, . . . , n and j = 1, 2. We observe that the sum of the average allocations of charging points

converge to respective capacity over time that is, for large k,
∑n

i=1 yji(k) ≈ Cj , for all j. We

further illustrate the utilization of charging points for the last 60 time steps in Figure 4.3(b). It is

observed that most of the time, the total allocation of charging points is concentrated around its

capacity. Figure 4.4 shows the evolution of price signals Ω1(k) and Ω2(k) defined in (4.16).

137

0 500 1000
Time steps k

350

400

450

500

550
T
o
ta
l
a
v
e
ra
g
e
a
ll
o
c
a
ti
o
n
s

Level 1 charger
Level 2 charger

(a)

0 20 40 60
Iterations

300

400

500

600

700

U
t
il
iz
a
t
io
n

Level 1 charger
Level 2 charger

(b)

Figure 4.3: (a) Evolution of the sum of average allocations of charging points, (b) utilization of
charging points over the last 60 time steps, capacities of level 1 and level 2 chargers are C1 = 400
and C2 = 500, respectively.

0 500 1000 1500 2000
Time steps k

0

1

2

3

4

P
ri
ce

si
g
n
a
ls

Ω
j
(k
) Ω1(k)

Ω2(k)

Figure 4.4: Evolution of price signals Ω1(k) and Ω2(k), defined in (4.16).

4.6 Conclusion

We developed a new distributed stochastic algorithm to solve a class of multiple indivisible

(unit-demand) resource allocation problems. The solution does not require communication be-

tween agents but little communication with a central agent. The chapter extends an existing unit-

demand single resource allocation algorithm to multiple unit-demand shared resources. In the

138

single-resource case, based on a constant price signal, we showed the convergence of long-term av-

erage allocations to unique equilibrium points using techniques from classical stochastic approxima-

tion. We further extended the results to multiple shared resources. Additionally, experiments show

that the long-term average allocations converge rapidly to optimum values in the multi-resource

case.

Open problems are to prove convergence with a time-varying price signal for single-resource

as well as multi-resource cases. Another open problem is to analyze the rate of convergence of the

algorithms.

139

Chapter 5

Distributed Algorithms for Prosumer

Markets

Internet-of-Things (IoT) enables the development of sharing economy applications. In many

sharing economy scenarios, agents both produce as well as consume a resource; we call them pro-

sumers. A community of prosumers agrees to sell excess resources to another community in a

prosumer market. In this chapter, we develop a control-theoretic approach to regulate the number

of prosumers in a prosumer community, where each prosumer has a cost function that is coupled

through its time-averaged production and consumption of the resource. Furthermore, each prosumer

runs its distributed algorithm and takes only binary decisions in a probabilistic way, whether to pro-

duce one unit of the resource or not and to consume one unit of the resource or not. In the developed

approach, prosumers do not explicitly exchange information with each other due to privacy reasons

but little exchange of information is required for feedback signals broadcast by a central agency.

In the developed approach, prosumers achieve the optimal values asymptotically. Furthermore, our

algorithm is suitable to implement in an IoT context with minimal demands on infrastructure. We

describe two use cases; community-based car-sharing and collaborative energy storage for prosumer

markets. We also present numerical results to check the efficacy of the algorithms.

140

5.1 Introduction

Recently, consumers across a range of sectors have started to embrace shared ownership of re-

sources and services with guaranteed access, as opposed to more traditional business models that

focus on sole-ownership only. The reasons for this trend are multi-faceted, and range from societal

issues, such as the need to reduce wastage, and more general environmental concerns (Narasimhan

et al., 2018), (Hamari, Sjoklint, & Ukkonen, 2016), (J. Lan, Ma, Zhu, Mangalagiu, & Thornton,

2017), (T. D. Chen & Kockelman, 2016), to pure monetary opportunities arising from increased

connectivity (and the ability that this gives to advertise the availability of unused resources and

services) (Crisostomi et al., 2017). Well-known examples of successful companies building shar-

ing economy products include Airbnb (hospitality), Lyft (ride sharing) (Fraiberger & Sundararajan,

2015), Bird and Lime (scooter sharing), Mobike (bike sharing) (J. Lan et al., 2017), and Google

(Google reviews—information sharing).

Roughly speaking, several types of sharing application classes are discerned (as described in (Crisos-

tomi et al., 2017)).

A. Opportunistic sharing: Services based on opportunistic sharing of resources exploit large-

scale availability of either unused resources or obsolete business models or both. Examples

of products in this area include the parking application JustPark (www.justpark.com)

and the peer-to-peer car-sharing services Getaround (www.getaround.com). The key en-

ablers for such products are mechanisms for informing agents of available resources, their

delivery, and payments.

B. Federated negotiation and sharing: In this case, agents group together to negotiate better

contracts for utilities (electricity, gas, water, health, etc.) or to provide mutually beneficial

services such as collaborative energy storage. The key enablers for such products are mech-

anisms for grouping communities and enforcing contractual obligations for federations of

like-minded consumers.

141

www.justpark.com
www.getaround.com

C. Bespoke sharing: In this case, products are designed with the specific objective of being

shared rather than for sole ownership. A basic example of such systems is devices and ser-

vices that allow several users to share a single electric charge-point. Other examples include

time-shared apartments or cars that are owned by several people rather than a single person

(Crisostomi et al., 2017).

D. Hybrid sharing: Finally, opportunities also exist for sharing economy to support the regular

economy. We readily find examples of such systems in the hospitality industry, where ad-hoc

sharing economy infrastructure (spare rooms in local houses) can be used as a buffer to ac-

commodate excess demand in the regular economy (hotels).

The common characteristic in all of the above application classes is the ability for community-wide

communication and actuation to enable services to be bought and sold and so that contracts can be

enforced.

The development of sharing economy applications (Huckle, Bhattacharya, White, & Beloff,

2016), (Kortuem & Bourgeois, 2016) is facilitated by Internet-of-Things (IoT). For example, IoT

helps to perform secure payments, track the location and condition of an object, and list a few. In-

terested readers can find several IoT-based applications in (Atzori et al., 2010), (Al-Fuqaha et al.,

2015) and the papers cited therein. Therefore, while the value of the sharing economy is not in

question (Goudin, 2016; Hamari et al., 2016) and while many of the essential infrastructural ele-

ments needed for the deployment of such systems are being developed rapidly, there is an additional

requirement for structured platforms to enable distributed community-wide buying and distributed

community-wide selling. Currently, such platforms are at a very early stage of development, with

significant opportunities for improvement.

Our objective in this chapter is to address this deficit partially and to develop tools to support the

design of community-based prosumer markets. We define prosumers as agents that both produce

and consume a resource (Ritzer & Jurgenson, 2010). Specifically, we are interested in developing

142

light algorithms that can easily be deployed on modest IoT platforms and that can be used to support

distributed community-wide buying and selling of resources. Here, by light, we mean algorithms

that place low demands on the infrastructure, both in terms of computational power and actuation

and connectivity requirements of individual prosumers. A fundamental requirement is also that such

algorithms are scale-free in the sense that they can operate across a range of community sizes; from

small communities of a few prosumers to larger communities made up of very many prosumers.

These constraints are directly related to the challenges associated with uncertainties that arise in

the context of sharing economy problems. Typically, at any time instant, one does not know how

many prosumers are participating in the sharing scheme; whether prosumers can or are willing to

communicate with each other (perhaps due to privacy considerations), and whether enough com-

putational power is available to the whole network to allocate resources in real-time optimally. A

further complication is that we would like any scheme that we develop to be backward compatible

with old IoT platforms that support only essential interaction between prosumers and infrastructure.

Thus, there is considerable interest in developing light algorithms that place only modest demands

on infrastructure, yet can be used to implement complex policies in the face of the uncertainties

mentioned above.

Given this context, we are particularly interested in situations where communities come together to

purchase and sell related commodities simultaneously. Such systems arise, for example, in energy

systems where agents both produce and consume energy (Ritzer & Jurgenson, 2010), (Moret &

Pinson, 2018), (Agnew & Dargusch, 2015).

5.2 Prosumer markets and communities

Prosumers are the agents that both produce and consume resources (Ritzer & Jurgenson, 2010),

(Moret & Pinson, 2018), (Parag & Sovacool, 2016). We are interested in prosumer markets that

facilitate a community of prosumers for distributed production and consumption. Such markets are

emerging rapidly in the energy sector (Inderberg, Tews, & Turner, 2018; Schill, Zerrahn, & Kunz,

2017), but also in other areas such as shared mobility (Grijalva, Costley, & Ainsworth, 2011). Parag

143

and Sovacool (Parag & Sovacool, 2016) classify prosumer markets according to three network ar-

chitectures 1.

(i) Prosumer-to-prosumer model: In this peer-to-peer model, prosumers interact (buy or sell re-

source) directly with each other as depicted in Figure 5.1. This model is widespread. For

example, consider the case of the car-sharing platform Turo. Here, car owners list their cars

on the Turo sharing platform, and the riders book the cars of their choice through this platform

for a certain period with a fee. A similar peer-to-peer model is proposed in (C. Zhang et al.,

2018) for energy trading in microgrids.

p

p

p

pp

pp

Figure 5.1: Prosumer-to-prosumer model. Here p represents a prosumer.

(ii) Prosumer-to-firm model: In this model, prosumers interact with a local firm directly. There

are two types of prosumer to firm models, prosumer-to-interconnected-firm model, and prosumer-

to-isolated-firm model. In the prosumer-to-interconnected-firm model, prosumers are con-

nected to a local firm, which may be connected to the main firm as presented in Figure 5.2(a).

For example, suppose that prosumers produce energy from renewable sources and are con-

nected to a microgrid. A prosumer satisfies its energy needs from the microgrid and the energy
1In the network architectures, p represents a prosumer.

144

it produces. If the prosumer produces more energy than it needs; then, it can return excess

energy to the microgrid; this microgrid may be connected to the main grid. Whereas, in the

prosumer-to-isolated-firm model, prosumers are connected to the local firm, which works in

isolation as depicted in Figure 5.2(b). An example of the prosumer-to-isolated-firm model

is Island microgrid (de Souza Ribeiro, Saavedra, de Lima, & de Matos, 2011) in which pro-

sumers and microgrid work together to fulfill the energy need of prosumers on the Island.

firm

firm

p

p

p

p

p

p

p

p

(a)

firm

firm

p

p

p

p

p

p

p

p

(b)

Figure 5.2: Prosumer-to-firm models—(a) prosumer-to-interconnected-firm model, (b) prosumer-
to-isolated-firm model.

(iii) Community-based prosumer model: In this model, prosumers are located in the same ge-

ographic location who have similar resource needs and resource production pattern; more

generally, they share common goals and interests. These prosumers are grouped to interact

with each other and efficiently manage the resource needs of the community, as depicted

in Figure 5.3. In this case, communities may also exchange resources with each other. A

recent example of community-based trip sharing is found at (Hasan et al., 2018) in which

145

the algorithm clusters commuters in communities to optimize car usage. We clarify that, for

simplicity, we consider a single prosumer community that interacts with another community

(external community) in the rest of the chapter unless otherwise stated.

Community1

p

p

p

p

p
Community3

p

p

p

p

p

p

pp

p

Community2

Figure 5.3: Community-based prosumer model.

Figures 5.1, 5.2, and 5.3 are adapted from (Parag & Sovacool, 2016).

While work on analytics to help design prosumer markets is still in its infancy, somewhat sur-

prisingly, few papers have begun to deal with some of the complex market design issues associated

with such systems (Moret & Pinson, 2018), (Gkatzikis et al., 2014), (Iosifidis & Tassiulas, 2017),

(Georgiadis et al., 2020). Roughly speaking, these papers deal with two main issues; (i) the exis-

tence of market equilibria and (ii) methods to allocate resources amongst (competing) prosumers.

It is in this latter context that this present work is placed. Generally speaking, resource allocation

algorithms for prosumer markets have until now been formulated in an optimization context and

can be categorized as is traditionally done for classical optimization models. Namely, resources

are either allocated centrally (Einav, Farronato, & Levin, 2016) as in the case of Uber, whereby

drivers are assigned to the passengers; or in a distributed fashion as in the case of Airbnb, whereby

146

guests and hosts choose each other; or using hybrid of the above two, as in the case of Didi Chuxing

(Narasimhan et al., 2018). As we have said, typically, these allocation problems are formulated in

an optimization context, paying particular attention to the certain constraints that arise in the shar-

ing economy. These include privacy of the individual, fair allocation of resources, the satisfaction

of service level agreements, and ever-increasing regulatory constraints (for example, in the case of

Airbnb).

Our contribution in this chapter is to address these problems using a different approach. Namely,

we shall consider these problems (in a control-theoretic context) as regulation problems with op-

timality constraints. In particular, we are interested in applications where prosumer communities

both buy and sell resources from or to one, or more external entities. Thus, we take the view that

such communities have a contract to both buy and sell a pre-specified level of a resource at a given

time instant, and the objective of the allocation algorithm is to ensure that these levels of demand are

met. Given this basic setting, we ask the question as to whether this can be done without any explicit

exchange of information between individual prosumers in situations where prosumers take only bi-

nary decisions (buy or sell), and whether, given these constraints, optimal use of the resource can

be realized. We shall see in the next section that it is indeed possible to formulate the problem and

develop distributed algorithms that achieve all of these properties and which can be implemented in

an IoT context with minimal demands on infrastructure.

5.2.1 Contribution

We are primarily interested in applications where prosumer communities buy and sell resources

via contracts to one or more external entities and must ensure that they meet certain demands in

real-time. Thus, the objective of any allocation algorithm is to ensure that these levels of demand

are met. Typically, a problem of this nature would be solved in a standard optimization framework.

Unfortunately, this approach is not available to us due to the uncertainty that prevails for this system

class. For example, the number of prosumers participating at a given time instant may vary, as may

the contracted level of prosumption. Also, for reasons of privacy, prosumers may only commu-

nicate with each other or with the infrastructure in a limited fashion, making the communication

graph unknown a-priori, from the point of view of algorithm development. Thus, our approach is

147

to formulate these allocation problems in a control-theoretic setting, where the effect of these un-

certainties and other disturbances can be dealt with using feedback. Our principal contribution is,

therefore, to develop distributed control algorithms that can asymptotically achieve optimality.

5.3 Problem statement

Let us assume that a prosumer market consists of a prosumer community and an external com-

munity. The prosumer community has N ∈ N prosumers producing and consuming a resource,

which agrees to sell its excess resource to the external community. We also assume that the pro-

sumer market has a control unit, which measures the aggregate consumption and production of the

resource. It communicates with the prosumer community as well as the external community; we

call it a sharing platform. Additionally, notice that N is not known to the individual prosumers

participating in the scheme. For simplicity, we assume that there is a single resource produced and

consumed by all prosumers, though our formulation can easily be extended to multiple resources

and multiple prosumer communities. In our model, the process of production and consumption takes

place at discrete time instants t0 < t1 < t2 < . . ., where t0 = 0. At each time instant, the overall

production and consumption of the previous time instant are evaluated and adjusted. Additionally,

we assume that communities and external agencies are contracted to, on aggregate, consume and

produce a certain amount of the resource at time instant tk, for k = 0, 1, 2, . . .

We assume that each prosumer has limited actuation and at any time instant tk, for k = 0, 1, 2, . . .,

either it consumes one unit of the resource or it does not consume it. Similarly, each prosumer

either produces one unit of the resource at a time instant, or it does not produce it. Thus, for each

prosumer i, we denote by xi(k) the amount of the resource consumed, and by yi(k) the amount of

the resource produced at time instant tk.2

We also assume that there are constants Cx ≥ 0 and Cy ≥ 0, specifying the aggregate consumption

and production bounds, respectively. Notice that the constants Cx and Cy are known to the sharing

2Depending on the application, the processes of production and consumption may be more appropriately modeled
on a continuous time-scale. In this case, we interpret time instants tk at those times in which the prosumption over the
interval (tk−1, tk] is accounted for.

148

platform but not to individual prosumers in the market. Thus, at each time instant tk, we require:

N∑

i=1

xi(k) = Cx, and, (5.1)

N∑

i=1

yi(k) = Cy. (5.2)

Our primary objective is to ensure that these prosumption bounds are met at each time instant tk,

for k = 0, 1, 2, . . . However, we are particularly interested in situations where production and con-

sumption are coupled together. For example, in communities that are formed to produce energy,

the time-averaged production and consumption of energy might be coupled through battery stor-

age requirements. Furthermore, in the community-based car-sharing prosumer market, the average

number of delivered and received “cars" might be coupled through the desired value of utilization

of cars; and similarly, production of a resource might depend on its consumption. Thus, in these

situations, we would like to ensure that consumption and production bounds (5.1) and (5.2) are

met asymptotically. To formulate this as a long-term requirement, we introduce the time-averaged

consumption:

xi(k) ,
1

k + 1

k∑

`=0

xi(`), for i = 1, . . . , N, (5.3)

with the time-averaged production yi(k) defined analogously. Now, let Ti ∈ R+ be the desired

value of utilization of the resource, for i = 1, . . . , N . Thus, depending on the application (refer

Section 5.5, cf. (5.26)), we might require:

lim
k→∞

xi(k) + yi(k) = Ti, for i = 1, . . . , N, (5.4)

with some additional constraints on xi(k) and yi(k). In several applications, such as smart energy

trading wherein prosumers may aim to sell a fixed fraction of its produced energy from renewable

sources to others, it might require, for αi ∈ [0, 1]:

lim
k→∞

xi(k) = αiTi, and, lim
k→∞

yi(k) = (1− αi)Ti, for i = 1, . . . , N. (5.5)

149

Fortunately, in problems that we consider, there is flexibility in satisfying these constraints and

it is enough to satisfy that for sufficiently large k, we have:

xi(k) + yi(k) ≈ Ti, and, (5.6)

xi(k) ≈ αiTi, and, yi(k) ≈ (1− αi)Ti, (5.7)

for i = 1, . . . , N . To formulate this mathematically, we associate a cost gi : [0, 1]2 → R+, (xi, yi) 7→

gi(xi, yi) to the deviation of the actual long-term prosumptions.

Assumption 5.3.1 (Cost function). The cost function gi(·) is strictly convex, strictly increasing in

each variable, and is continuously differentiable, for all i.

Given this basic setting, we are interested in solving the following optimization problem:

Problem 5.3.2 (Optimization).

min
x1,...,xN ,y1,...,yN

N∑

i=1

gi(xi, yi), (5.8)

subject to
N∑

i=1

xi = Cx, (5.9)

N∑

i=1

yi = Cy, (5.10)

xi ≥ 0, (5.11)

yi ≥ 0, for i = 1, 2, . . . , N. (5.12)

We assume that for this optimization problem an optimal point (x∗,y∗) ∈ R2N
+ exists, where

x∗ = (x∗1, x
∗
2, . . . , x

∗
N) and y∗ = (y∗1, y

∗
2, . . . , y

∗
N). The optimal point is unique by Assumption

5.3.1 of strict convexity of the cost function gi(·). As our problem is timed, we aim to design a

distributed algorithm determining, for each time instant tk, values of xi(k) and yi(k), such that for

150

the long-term averages, we have:

lim
k→∞

xi(k) = x∗i , lim
k→∞

yi(k) = y∗i , for i = 1, . . . , N. (5.13)

Also, it is desirable that the constraints of the optimization problem are satisfied by xi(k) and yi(k),

for every k.

Typically, a problem of this nature can be solved in a standard optimization framework. Unfortu-

nately, this approach is not available to us for many reasons:

(i) The number of prosumers N in the prosumer community, and the constraints on Cx and Cy

may vary with time, making an off-line computation of an optimal solution difficult.

(ii) To preserve privacy, we also assume that prosumers do not necessarily communicate with

each other, and they only communicate with the infrastructure in a limited fashion. Thus,

even the communication graph is unknown a-priori for this particular problem class. In par-

ticular, individual cost function gi is often private and is not shared by prosumers.

(iii) We are interested in algorithms that self organize and converge to an optimal solution even in

the presence of disturbances in the state information.

Our approach, therefore, is to treat the above problem as a feedback (stochastic) control problem,

which changes the formulation in a minor way; namely, we allow:

N∑

i=1

xi(k) ≈ Cx, and
N∑

i=1

yi(k) ≈ Cy, for all k. (5.14)

In other words, we allow the instantaneous prosumption to undershoot or overshoot the reference

values by a small amount. Then, given this background, and from Assumption 5.3.1 for the cost

function gi, for all prosumers i, we shall demonstrate that an elementary feedback control algorithm

151

can be devised to solve an approximate version of Problem 5.3.2. As we shall see, this algorithm

requires only a few bits of message transfer as intermittent feedback from a control unit (sharing

platform) to prosumers in the prosumer market, but no inter-prosumer communication is required.

5.4 Algorithms for community-based prosumer markets

The algorithms developed in this section are motivated by the following elementary argument.

We consider only the case in which at time instant tk, either 0 or 1 unit of the resource is consumed

or produced, for k = 0, 1, 2, . . . For the sake of argument, we only consider the case of pure con-

sumption in this preamble.

Let z(k) denote the number of times an agent (consumer) consumes a unit resource until time in-

stant tk, where k = 0, 1, 2, . . . Let z(k) , 1
k+1z(k), denote the time-averaged consumption of the

resource until time instant tk. We assume that the consumption at time instant tk is decided by a

stochastic procedure, where the probability of consumption of one unit of the resource is a function

p(z(k)). Additionally, we assume that this probability conditioned on z(k) is independent of the

previous history of the process. Then:

z(k + 1) = z(k) + w(k), (5.15)

where w(k) is a random variable taking the value 0 or 1. Thus, the following holds true:

z(k + 1) =
k + 1

k + 2
z(k) +

1

k + 2
w(k) (5.16)

= z(k) +
1

k + 2

(
w(k)− z(k)

)
. (5.17)

Recall that p(z(k)) denotes the probability that w(k) = 1 at time instant tk, for k = 0, 1, 2, . . .

Then, we rewrite (5.17) as:

z(k + 1) = z(k) +
1

k + 2

(
p(z(k))− z(k)

)
+

1

k + 2

(
w(k)− p(z(k))

)
.

152

Note that systems of this form are discussed extensively in (Borkar, 2008). In particular, the term

{w(k)− p(z(k))} is a martingale difference sequence and is treated as noise. It is shown in (Borkar,

2008) that under mild assumptions, z(k) converges almost surely. The basic idea of the remainder

of this section is to construct stochastic feedback algorithms that mimic this argument. In particular,

our basic idea in the sequel is to choose the probability distribution p(z(k)), so that the stochastic

system both solves a regulation problem and also optimization problem of the form of Problem

5.3.2, simultaneously.

5.4.1 Optimality conditions

In this subsection, we briefly discuss the optimality conditions for Problem 5.3.2, using La-

grangian multipliers. These optimality conditions lead to the state dependent probabilities that we

alluded to in the preamble.

Let x = (x1, x2, . . . , xN) and y = (y1, y2, . . . , yN). Also, let µ1, µ2 and λ1 = (λ1
1, . . . , λ

1
N),

λ2 = (λ2
1, . . . , λ

2
N) be the Lagrange multipliers corresponding to the equality constraints (5.9),

(5.10) and the inequality constraints (5.11), (5.12), respectively. The Lagrangian of Problem 5.3.2

is defined as L : R2N × R2 × R2N → R, where

L(x,y, µ1, µ2, λ1, λ2) =

N∑

i=1

gi(xi, yi)− µ1(

N∑

i=1

xi − Cx)− µ2(

N∑

i=1

yi − Cy)

+
N∑

i=1

λ1
ixi +

N∑

i=1

λ2
i yi.

We assume that the optimal value of Problem 5.3.2 is obtained for positive values of consumption

and production. We, therefore, let x∗i , y
∗
i ∈ (0, 1] denote the optimal point of Problem 5.3.2. By this

assumption, the inequality constraints are not active, and it follows that the corresponding optimal

Lagrange multipliers are λ∗1 = 0 = λ∗2.

Additionally, let µ∗1, µ∗2 be the optimal Lagrange multipliers for the equality constraints. The

first order optimality condition is that the gradient vanishes, and inspection shows that the gradient

condition decouples. Recall that ∂
∂xi
gi(·) denotes the partial derivative of gi(·) with respect to xi

and ∂
∂yi
gi(·) denotes the partial derivative of gi(·) with respect yi. Then, we arrive at the following

153

conditions:

∂

∂xi
gi(xi, yi)

∣∣∣
xi=x∗i ,yi=y

∗
i

= µ∗1, for i = 1, 2, . . . , N,

and,

∂

∂yi
gi(xi, yi)

∣∣∣
xi=x∗i ,yi=y

∗
i

= µ∗2, for i = 1, 2, . . . , N.

In other words, we have:

∂

∂xi
gi(xi, yi)

∣∣∣
xi=x∗i ,yi=y

∗
i

=
∂

∂xj
gj(xj , yj)

∣∣∣
xj=x∗j ,yj=y

∗
j

, for i, j ∈ {1, 2, . . . , N}. (5.18)

Analogously, we obtain:

∂

∂yi
gi(xi, yi)

∣∣∣
xi=x∗i ,yi=y

∗
i

=
∂

∂yj
gj(xj , yj)

∣∣∣
xj=x∗j ,yj=y

∗
j

, for i, j ∈ {1, 2, . . . , N}. (5.19)

We find that the optimal values satisfy all the Karush-Kuhn-Tucker (KKT) conditions, which are

necessary and sufficient conditions for optimality of differentiable convex functions (Chap. 5.5.3

(Boyd & Vandenberghe, 2004)). Hence, the derivatives of the cost functions of all prosumers with

respect to consumption as well as production must reach consensus at the optimal point.

This type of consensus condition has been used in (Griggs et al., 2016; Wirth et al., 2019) (single

resource case) and (Alam et al., 2018a) (multi-resource case) to derive place-dependent probabilities

that ensure convergence to the consensus condition and thus, to the optimal point.

5.4.2 Algorithm for consumption

Here, we briefly describe the distributed algorithm proposed in (Griggs et al., 2016) for al-

locating a single resource to consumers. In this model, no production is taking place, hence the

corresponding variables are omitted. Suppose that there are N consumers in a community. We

assume that consumer i of the community has a cost function gi : [0, 1] → R+, which is strictly

convex, strictly increasing in each variable, and continuously differentiable, for i = 1, 2, . . . , N .

154

The random variable xi(k) ∈ {0, 1} denotes the consumption of the unit resource for consumer i at

time instant tk, for all i and k. As before, let xi(k) be the time-averaged consumption of consumer

i until time instant tk, for all i and k.

The idea is to choose probabilities so as to ensure convergence to the social optimum and to adjust

overall consumption by the community to the reference value (capacity) Cx, by applying a feedback

signal Ω(k) to the probabilities. At each time instant tk, the control unit updates Ω(k) using a gain

parameter τ > 0, the past aggregate consumption of the resource, and the capacity Cx as described

in (5.20) and then, broadcasts the new value to all consumers in the community:

Ω(k + 1) , Ω(k)− τ
(N∑

i=1

xi(k)− Cx
)
. (5.20)

After receiving this signal, consumer i responds in a probabilistic way. The probability distribution

σi(·) is calculated using the time-averaged consumption xi(k) and the derivative g′i(·) of the cost

function gi(·), as follows:

σi(Ω(k), xi(k)) , Ω(k)
xi(k)

g′i(xi(k))
. (5.21)

Notice that the cost function gi is chosen as increasing function in each variable so that the proba-

bility σi(·) is in the valid range, for all i. Now, consumer i updates its resource consumption at each

time instant tk, either by consuming one unit of the resource or not consuming it, as follows:

xi(k + 1) =

1 with probability σi(Ω(k), xi(k));

0 with probability 1− σi(Ω(k), xi(k)).

Empirical results show that the time-averaged consumption xi(k) converges to the optimal value x∗i

asymptotically.

Remark 5.4.1 (Integral control action). Equation (5.20) defines what is called an integral control

action in tracking control. The overall consumption by the community should “track” the available

capacity, i.e., approximate it. In other words, the objective of the integrator is to ensure that the

tracking error e(k) =
∑N

i=1 xi(k)− Cx ≈ 0 asymptotically.

155

Remark 5.4.2 (Consensus of derivatives). The policy for σi(Ω(k), xi(k)) in (5.21) is to ensure that

asymptotically, g′i(xi(k)) = g′j(xj(k)), for all consumers i and j. As is discussed in (Griggs et

al., 2016), the convergence of the above algorithm and strict convexity of all cost functions (and of

course assuming the existence of a feasible solution in the constraint set) is enough to imply that

Problem 5.3.2 is solved asymptotically for the consumption case.

5.4.3 Algorithm for coupled prosumption

The case of coupled prosumption of a single resource is characterized by the constraint (5.4),

that is, consumption and production are coupled through the desired value of utilization of the

resource. The algorithm follows the case of exclusive consumption closely taking into account the

cost function as discussed in the problem formulation (Section 5.3). Before proceeding, note that

the following discussion extends to an arbitrary number of resources, but is presented for a single

resource, both to aid exposition and to be consistent with the application class that is the principal

consideration in this chapter. Interested readers can look at (Alam et al., 2018a) for preliminary

results on multi-resource allocation. With this background in mind, following the discussion for

consumption, let us assume that there is a community of N prosumers in a prosumer market. The

prosumer community sells the excess resource to an external community. Furthermore, let τx, τy

denote the gain parameters for consumption and production, Ωx(k), Ωy(k) denote the feedback

signals for both processes, and Cx, Cy represent the respective contract (capacity) constraints. We

assume the existence of a centralized control unit (sharing platform) in the prosumer market that can

measure the aggregate response of the prosumer community and broadcast a feedback signal in the

prosumer market at each time instant tk, for both consumption and production type. Specifically,

the sharing platform updates the feedback signal Ωx(k), as follows:

Ωx(k + 1) , Ωx(k)− τx
(N∑

i=1

xi(k)− Cx
)
, for all k, (5.22)

with Ωy(k) updated analogously. After receiving a feedback signal prosumer i’s algorithm responds

in a probabilistic manner. The probability that prosumer i responds to the feedback signal is given

156

by:

σi,x(k) , Ωx(k)

∂
∂x

∣∣∣
x=xi(k)

gi
(
xi(k), yi(k)

)

xi(k)
, for all i and k. (5.23)

Here, σi,x(k) denotes the probability of prosumer i, responding to a demand for consumption of

the resource, at time instant tk; similarly, σi,y(k) denotes the probability of prosumer i, responding

for production of the resource at time instant tk, for all k. As in the consumption case, the cost

function gi is chosen as increasing function in each variable, to keep the probabilities σi,x(k) and

σi,y(k) in the valid range. However, the definition of σi,x(k) and σi,y(k) is slightly different from the

consumption case, described previously. Now, prosumer i updates its consumption and production

of the resource at each time instant in the following way:

xi(k + 1) =

1 with probability σi,x(k);

0 with probability 1− σi,x(k), and,

yi(k + 1) =

1 with probability σi,y(k);

0 with probability 1− σi,y(k),

for all i and k. Empirically, we observe that the time-averaged consumption xi(k) converges to the

optimal consumption value x∗i , and similarly, the time-averaged production yi(k) converges to the

optimal production value y∗i asymptotically, for all prosumers in the community. We describe the

algorithm of the sharing platform in Algorithm 9 and the algorithm of prosumers of the community

157

in Algorithm 10.

Algorithm 9: Algorithm of control unit (sharing platform).

1 Input: Cx, Cy, τx, τy, xi(k), yi(k), for k = 0, 1, 2, . . . and i = 1, 2, . . . , N .

2 Output: Ωx(k + 1),Ωy(k + 1), for k = 0, 1, 2, . . .

3 Initialization: Ωx(0)← 0.06 and Ωy(0)← 0.061,

4 foreach k = 0, 1, 2, . . . do

5 calculate Ωx(k + 1) and Ωy(k + 1) as follows and broadcast them in the prosumer

community;

Ωx(k + 1)← Ωx(k)− τx
(N∑

i=1

xi(k)− Cx
)
, and,

Ωy(k + 1)← Ωy(k)− τy
(N∑

i=1

yi(k)− Cy
)
.

6 end

We make the following remarks.

Remark 5.4.3 (Communication overhead and privacy). There is no explicit communication between

prosumers. Thus, the algorithm is low cost in terms of communication and is private.

Remark 5.4.4 (Probability bounds). The gain parameters τx, τy are small constants chosen to en-

sure σi,x(k) and σi,y(k) are the probabilities; namely, are in [0,1], for all i and k.

Remark 5.4.5 (Consensus of partial derivatives). The well-posedness of our algorithm follows from

the assumption of strict convexity of gi(·), and that the constraint sets are closed and bounded;

namely, that there exists unique optimal solution to Problem 5.3.2. To show that the long-term

average values converge to the optimal values, we use the consensus of (partial) derivatives of the

cost functions of prosumers as described previously. That is:

lim
k→∞

∂

∂x

∣∣∣
x=xi(k)

gi(xi(k), yi(k)) = lim
k→∞

∂

∂x

∣∣∣
x=xi(k)

gj(xj(k), yj(k)),

1We initialize Ωx(0) and Ωy(0) with positive real numbers.

158

and similarly,

lim
k→∞

∂

∂y

∣∣∣
y=yi(k)

gi(xi(k), yi(k)) = lim
k→∞

∂

∂y

∣∣∣
y=yi(k)

gj(xj(k), yj(k)),

for all i, j ∈ {1, 2, . . . , N}.

Algorithm 10: Algorithm of prosumer i.

1 Input: Ωx(k),Ωy(k), for k = 0, 1, 2, . . .

2 Output: xi(k + 1), yi(k + 1), for k = 0, 1, 2, . . .

3 Initialization: xi(0), yi(0)← 1 and xi(0)← xi(0) and yi(0)← yi(0).

4 while prosumer i is active at k = 0, 1, 2, . . . do

5

σi,x(k)← Ωx(k)

∂
∂x

∣∣∣
x=xi(k)

gi
(
xi(k), yi(k)

)

xi(k)
;

σi,y(k)← Ωy(k)

∂
∂y

∣∣∣
y=yi(k)

gi
(
xi(k), yi(k)

)

yi(k)
;

calculate outcome of the random variables;

xi(k + 1)←

1 w. p. σi,x(k)

0 w. p. 1− σi,x(k);

yi(k + 1)←

1 w. p. σi,y(k)

0 w. p. 1− σi,y(k);

update xi(k + 1) and yi(k + 1) as follows;

xi(k + 1)←k + 1

k + 2
xi(k) +

1

k + 2
xi(k + 1);

yi(k + 1)←k + 1

k + 2
yi(k) +

1

k + 2
yi(k + 1);

6 end

159

As we stated in Chapter 1, we restate that because our models consider a central server that

keeps track of aggregate demands and sends feedback signals in the network, the system may fail if

the central server stops working. However, we can fix this by adding a backup server that keeps all

the information as the central server and receives feedback signals from the central server. When

the central server stops sending the feedback signals, the backup server takes charge and works as

the central server until the central server comes live. Such settings are explored extensively by the

machine learning community as federated learning. Wherein several agents collaborate to train a

global model without sharing their local on-device data. Each agent updates the global model with

their local dataset and parameters and shares the updates with the central server. The central server

aggregates the updates by agents and updates the global model (McMahan et al., 2017), (Konecny

et al., 2016), (Bonawitz et al., 2019), (Kairouz et al., 2021). The optimization techniques are called

federated optimization (Reddi et al., 2021), (T. Li et al., 2020), (Konecny et al., 2015), (J. Wang et

al., 2020). For clarity, we restate it in each chapter in the thesis.

5.5 Use cases

We now describe two use cases for the community-based prosumer market. The first is a trans-

portation example and concerns a car-sharing prosumer market. The second example is from the

energy sector and considers a prosumer market, where produced and consumed energy is coupled

through storage constraints.

5.5.1 Community-based car-sharing

In this use case, we consider a community of N households (prosumers) with several cars, not

all of which are required each day. We assume that cars are pooled and shared amongst community

members to multiplex and monetize the excess capacity but that the average aggregate daily com-

munity demand for cars is known. We let Ti denote the average number of cars desired to be used by

each household i, for all i. Suppose thatCx cars are required within the community each day, and an

excess of Cy cars are made available to an external community each day. For simplicity, we assume

that Cx and Cy are fixed. Notice that a household is a prosumer in the sense that it requires cars for

160

its transportation needs and supplies excess car-days to an external community. For each prosumer

i, let xi(k) ∈ {0, 1} denote that prosumer i requires a car at day k or not, and let yi(k) ∈ {0, 1}

denote that prosumer i supplies a car to an external community at day k or not. Thus, we assume

that aggregated over the entire community, the demand for shared cars on a given day k is:

N∑

i=1

xi(k) = Cx, (5.24)

leaving the excess capacity so that Cy cars can be supplied to an external community:

N∑

i=1

yi(k) = Cy. (5.25)

Thus,
∑k

`=0 xi(`) is the number of days a car was required by prosumer i over k days, and
∑k

`=0 yi(`)

is the number of days that the same prosumer made a car available to an external community. Thus,
∑k

`=0

(
xi(`) + yi(`)

)
is the total number of days that a car was used as a result of prosumer i.

Over some days, prosumer i will require that the time-averaged of this number be equal to the de-

sired value of utilization of cars, Ti. For example, if a prosumer has two cars, thus, over seven

days period (a week) it has 14 car-days. Now, suppose that the prosumer only needs access to 10

car-days over a week. Then, this prosumer might choose
∑6

`=0 xi(`) and
∑6

`=0 yi(`), such that
∑6

`=0

(
xi(`) + yi(`)

)
= 12. In this case, the prosumer sells access to two excess car-days over

the week (two car-days rather than the maximum of four to provide some margin in case that a car

is required for personal use more than expected). Let xi(k) denote the average number of days

prosumer i requires a car over k days, and let yi(k) denote the average number of days prosumer

i makes a car available to an external community over k days, for all i and k. Thus, over a long

period, this constraint can be scaled by the number of days to yield:

xi(k) + yi(k) ≈ Ti, (5.26)

with the cost of not achieving this goal captured by a penalty function gi(xi + yi − Ti). For suffi-

ciently large k, we might also require that xi(k) ≈ αiTi and yi(k) ≈ (1 − αi)Ti with αi ∈ [0, 1],

for all i. This latter constraint can be formulated in terms of a cost via a penalty function. For

161

example, in residential areas in Ireland; two car households are common, meaning that households

can in principle both consume and produce cars simultaneously, hence act as prosumers. How-

ever, this may not always be possible, and prosumers may be required to make alternative arrange-

ments or pay penalties, should they not be able to meet contractual demands. To formulate the

cost function, we associate costs hi : [0, 1] → R+, xi 7→ hi(xi) to the deviation from αiTi and

li : [0, 1]→ R+, yi 7→ li(yi) to the deviation from (1−αi)Ti, for all i. Then, the aim of the sharing

platform is to minimize:

N∑

i=1

(
gi(xi + yi − Ti) + hi(xi − αiTi) + li(yi − (1− αi)Ti)

)
, (5.27)

subject to the additional constraints listed in Problem 5.3.2.

5.5.2 Collaborative energy storage

In this use case, we again assume that N households in a community participate in a prosumer

market. Each household is connected to the grid and has installed solar panels. Every household has

batteries to store the energy either from the solar panel or the grid. The households act as prosumers

in the sense that they can consume stored energy as well as sell excess energy for monetary benefits.

Let xi(k) ∈ {0, 1} denote that household i consumes stored energy at day k or not, and let yi(k) ∈

{0, 1} denote that household i sells stored energy to an external community at day k or not, for all i.

Let xi(k) denote the time-averaged amount of stored energy consumed by household i over k days,

and let yi(k) denote the time-averaged amount of stored energy sold by household i to an external

community over k days, for all i. Now, we assume that
∑N

i=1 xi(k) = Cx, be the aggregated

consumption of stored energy over the entire community on a given day k; whereas, the excess

energy Cy is sold to an external community, with
∑N

i=1 yi(k) = Cy. Furthermore, we assume that

each household may have a constraint on the amount of energy stored in order to realize the above

strategy. As in the previous use case, this soft constraint is captured as follows. Let Ti be the desired

amount of energy stored by household i. Then, on average, over a sufficiently large given period k,

162

household i may expect to store the following desired amount of energy temporarily:

xi(k) + yi(k) ≈ Ti, (5.28)

with the deviation from this goal captured by a penalty function gi(xi + yi − Ti). We might also

require that, roughly speaking, a certain amount of storage is reserved for consumption and a certain

amount to sell (production). Hence, again, the objective of the sharing platform is to minimize:

N∑

i=1

(
gi(xi + yi − Ti) + hi(xi − αiTi) + li(yi − (1− αi)Ti)

)
,

subject to the constraints listed in Problem 5.3.2. Notice that the definition of hi(·) and li(·) is same

as the previous use case.

5.6 Numerical results

In this section, we present numerical results for 99 prosumers participating in a prosumer mar-

ket. We assume that these N = 99 in the prosumer market are grouped into two prosumer com-

munities. Prosumers 1 to 50 are grouped in Community 1, and Prosumers 51 to 99 are grouped

in Community 2. Additionally, each community has a cost function type, and prosumers of a par-

ticular community use the cost function type of that community but with randomized parameter

values. Recall that prosumers can produce the resource as well as consume it. Let time instants

t0 < t1 < t2 < . . ., represent days, and let the capacity constraints be Cx = 90 and Cy = 80. Fur-

thermore, let the cost factors ai ∈ {1, 2, . . . , 10} and bi ∈ {1, 2, . . . , 15} be drawn from uniformly

distributed random variables. Additionally, let δ = 11.75 and γ = 11.65. Notice that the values of

δ and γ are chosen in such a way that the cost function gi(·) is increasing in each variable. Recall

that this is done to keep the probabilities σi,x and σi,y in [0, 1]. The cost functions are presented as

163

follows:

gi(xi(k), yi(k)) =

δ
(
xi(k) + yi(k)

)
+ 1

4ai
(
xi(k) + yi(k)− T1

)2
+

1
2

(
xi(k)− 1

2T1

)2
+ 1

2

(
yi(k)− 1

2T1

)2 Community 1,

γ
(
xi(k) + yi(k)

)
+ 1

8ai
(
xi(k) + yi(k)− T2

)2
+

5
4bi
(
xi(k) + yi(k)− T2

)4
+ 1

2

(
xi(k)− 1

2T2

)2
+

1
2

(
yi(k)− 1

2T2

)2 Community 2.

Now, we present the numerical results and show the convergence of the long-term average of

prosumption by each prosumer in Figure 5.4. Figure 5.4(a) shows the time-averaged consumption

and Figure 5.4(b) shows the time-averaged production over 200 days. In the context of car-sharing,

these are the average of cars used by a prosumer and the average of cars shared with another person

by the same prosumer over 200 days, respectively.

0 100 200
Time step

0

0.5

1

1.5

A
v
er
a
g
e
co
n
su
m
p
ti
o
n

Prosumer 11

Prosumer 37

Prosumer 91

(a)

0 100 200
Time step

0

0.5

1

1.5

A
v
er
a
g
e
p
ro
d
u
ct
io
n

Prosumer 4

Prosumer 52

Prosumer 91

(b)

Figure 5.4: (a) Evolution of time-averaged consumption of the resource, and (b) evolution of time-
averaged production of the resource.

Figures 5.5 and 5.6 illustrate the average prosumptions (consumption and production), respec-

tively, on the 200th day by every prosumer of a particular community.

164

0.88 0.9 0.92 0.94

Average consumption xi(K)

0

5

10

15
N
o
.
o
f
p
ro
su
m
er
s Community 1

(a)

0.88 0.9 0.92 0.94

Average consumption xi(K)

0

5

10

N
o
.
o
f
p
ro
su
m
er
s Community 2

(b)

Figure 5.5: At time index K = 200—(a) average consumption xi(K) by prosumers of Community
1, (b) average consumption xi(K) by prosumers of Community 2.

0.78 0.8 0.82 0.84

Average production yi(K)

0

5

10

15

N
o
.
o
f
p
ro
su
m
er
s Community 1

(a)

0.78 0.8 0.82 0.84

Average production yi(K)

0

5

10

N
o
.
o
f
p
ro
su
m
er
s Community 2

(b)

Figure 5.6: At time index K = 200—(a) average production yi(K) by prosumers of Community 1,
and (b) average production yi(K) by prosumers of Community 2.

Furthermore, the absolute difference between the desired value of utilization Ti of cars and

the actual utilization xi(k) + yi(k) by prosumer i for a certain period is shown in Figures 5.7

and 5.8. Figure 5.7 illustrates the evolution of the absolute difference between Ti and xi(k) +

yi(k) for individual prosumers. Here, we observe that gradually the difference comes closer to

zero. Additionally, in Figure 5.8(a) and 5.8(b), we observe that the absolute difference between the

quantities is close to zero for most of the prosumers.

165

0 500 1000
Time step

0

0.1

0.2

0.3

|x
i(
k
)
+

y
i(
k
)
−

T
i|

Prosumer 5
Prosumer 69
Prosumer 94

Figure 5.7: Evolution of absolute difference between desired value of utilization Ti and actual
utilization of the resource xi(k) + yi(k) of individual prosumers.

0 0.02 0.04 0.06

|xi + yi − T1|

0

5

10

15

N
o
.
o
f
p
ro
su
m
er
s Community 1

(a)

0 0.02 0.04 0.06

|xi + yi − T2|

0

5

10

15

20
N
o
.
o
f
p
ro
su
m
er
s Community 2

(b)

Figure 5.8: (a) Absolute difference between desired value of utilization and actual utilization
|xi(K) + yi(K) − T1| of prosumers of Community 1, here T1 = 1.74, and (b) absolute differ-
ence between desired value of utilization and actual utilization |xi(K) + yi(K)− T2| of prosumers
of Community 2, here T2 = 1.725 and time index K = 200.

Now, we analyze the derivatives of the cost functions and see whether they gather close to

each other to make consensus over time or not. Recall that the derivative of the cost function

with respect to consumption is ∂
∂xi
gi(·) and with respect to production is ∂

∂yi
gi(·), that are shown

in Figure 5.9 for a single simulation. We plot the shaded error-bars as depicted in Figure 5.9(a)

and 5.9(b). It is observed that in both the cases the derivatives gather close to each other over

time. Thus, the derivatives make consensus asymptotically with respect to the respective prosumer

166

community, which is a necessary and sufficient condition for optimality as described in Subsection

5.4.1. Notice that because both the derivatives (with respect to consumption and production) are

the same, therefore, we illustrate here just one of them. We clarify here that because of the chosen

initial values, the probability σi,x(k) may overshoot at the start of the algorithm; to keep it in the

valid range, we use min

1,Ωx(k)

∂
∂x

∣∣∣
x=xi(k)

gi(xi(k),yi(k))

xi(k)

. Similar step is used to keep σi,y(k) in

the valid probability range.

0 200 400 600

Time step

11

12

13

14

D
er
iv
a
ti
v
e
w
.r
.t
.
x

Community 1

(a)

0 200 400 600

Time step

11

12

13

14

D
er
iv
a
ti
v
e
w
.r
.t
.
x

Community 2

(b)

Figure 5.9: (a) Evolution of derivatives of gi(·) w. r. t. x for prosumers of Community 1, and (b)
evolution of derivatives of gi(·) w. r. t. x for prosumers of Community 2.

Now, we analyze the aggregate consumption
∑N

i=1 xi(k) and production
∑N

i=1 yi(k) by the

prosumer communities. The aggregate consumption
∑N

i=1 xi(k) is presented in Figure 5.10(a) for

last 40 time instants (days), and similarly, the aggregate production by the communities
∑N

i=1 yi(k)

is shown in Figure 5.10(b). Notice that the aggregate prosumption is close to the respective ca-

pacity constraints Cx and Cy; overshoots and undershoots are due to the assumption of soft con-

straints, as described previously. Additionally, Figure 5.10(c) shows the time-averaged consump-

tion
∑N

i=1 xi(k) by all prosumers in the prosumer market until 1000 time instants, and similarly,

the time-averaged production
∑N

i=1 yi(k) by all prosumers in the prosumer market for the same

period, these averages are approximately equal to the respective capacities, satisfying the capacity

constraints of Problem 5.3.2.

167

0 20 40
Time step

60

80

100

120
A
g
g
re
g
a
te

co
n
su
m
p
ti
o
n

Cx = 90

(a)

0 20 40
Time step

40

60

80

100

120

A
g
g
re
g
a
te

p
ro
d
u
ct
io
n

Cy = 80

(b)

0 500 1000
Time step

70

80

90

100

110

S
u
m

o
f
a
v
er
a
g
e
p
ro
su
m
p
ti
o
n

Consumption

Production

(c)

Figure 5.10: Aggregate prosumption for last 40 time instants—(a) aggregate consumption∑N
i=1 xi(k), (b) aggregate production

∑N
i=1 yi(k), and (c) evolution of sum of time-averaged pro-

sumption.

In addition to the above results, we observe in Figure 5.11(a) and 5.11(b) that most of the time

the aggregate consumption
∑N

i=1 xi(k) and the aggregate production
∑N

i=1 yi(k) are close to their

respective capacities Cx and Cy. Furthermore, the evolution of feedback signals Ωx and Ωy are

shown in Figure 5.12.

168

80 90 100
Aggregate consumption

∑
N

i=1 xi(k)

0

20

40

60

80
F
re
q
u
en

cy

(a)

70 80 90
Aggregate production

∑N
i=1 yi(k)

0

20

40

60

F
re
q
u
en

cy

(b)

Figure 5.11: Frequency of prosumption—(a) frequency of aggregate consumption, (b) frequency of
aggregate production for last 200 time instants.

0 200 400 600
Time step

0

0.05

0.1

0.15

0.2

F
ee
d
b
a
ck

si
g
n
a
ls Ωx(k) Ωy(k)

Figure 5.12: Evolution of feedback signals Ωx(k) and Ωy(k).

5.7 Conclusion

We developed distributed control algorithms to solve regulation problems with optimality con-

straints for the community-based prosumer market. The algorithm is based on ideas from stochas-

tic approximation but formulated in a control-theoretic setting. The algorithm reaches optimality

asymptotically, while simultaneously regulating instantaneous capacity constraints. To do so, the

algorithm does not require communication between prosumers but little communication with the

169

sharing platform. Additionally, the algorithm is light and is suitable to implement in an Internet-

of-Things (IoT) context with minimal demands on infrastructure. Two applications are described,

and numerical results are presented to demonstrate the efficacy of the algorithms. Future work will

explore the theoretical aspects of the algorithm (convergence properties), new applications and use

cases, and the development of policies to reach more complicated equilibria.

170

Chapter 6

Conclusion and Future Directions

6.1 Conclusion

In this thesis, we studied the distributed multi-resource allocation problems in which several

agents in a network collaborate to access multiple shared resources. The agents can be Internet-

of-things devices such as fitness trackers, autonomous cars, mobile devices, surveillance cameras,

wearable devices, etcetera. The agents may not wish to exchange allocation history or gradient

of their cost functions with other agents; however, they wish to achieve social-optimum cost over

the network. Such resource allocation problems are ubiquitous in smart cities, smart grids, sharing

economy, cloud computing, edge-computing, etcetera. Wherein agents in a network need multiple-

divisible and multiple-indivisible shared resources to complete their tasks and wish to achieve

social-optimum values. Such distributed resource allocation problems are challenging to solve,

particularly when the agents are constrained through communications, computational capabilities

or do not wish to communicate with other agents in the network due to privacy reasons. Further-

more, when the cost functions of agents are non-separable and are coupled through the allocation

of multiple resources, in such cases, the single resource allocation algorithms are not efficient and

provide suboptimal solutions.

We developed several distributed iterative algorithms to solve such resource allocation prob-

lems for multiple-divisible and multiple-indivisible resources. The resource allocation problems are

modeled as distributed optimization problems in which several agents in a network collaborate to

171

access the shared resources and minimize the sum of the total cost. In the algorithms, we consider a

central server that keeps track of aggregate resource demands and sends feedback signals to agents

in the network. There is no inter-agent communication required in the algorithms but little with

the central server, which significantly reduces the communication overhead of the models. Addi-

tionally, the agents do not share their allocation history and are unaware of the total capacity and

the number of agents in the network. Furthermore, an agent demands the resources based on its

local computation using its cost function, resource allocations, and other parameters. In recent lit-

erature, such settings have attracted significant attention from the research community as federated

optimization in which the agents do not need to share their local data or information, and a global

model is trained; notably, from the machine learning community, as in federated learning. Feder-

ated learning is a distributed machine learning model in which several clients (agents) collaborate

to train a global model without sharing their local on-device data. Because our models consider a

central server that keeps track of aggregate demands and sends feedback signals in the network, the

system may fail if the central server stops working. However, we can fix this by adding a backup

server that keeps all the information as the central server and receives feedback signals. When the

central server stops sending the feedback signals, the backup server takes charge and works as the

central server until the central server comes live.

The first algorithm we developed is a stochastic distributed algorithm for multiple divisible

resources, described in Chapter 2. It is a generalization of the additive-increase multiplicative-

decrease (AIMD) algorithm for a single resource allocation. We assume that each agent has a

private cost function coupled with multiple divisible resources; these cost functions are strictly

convex, twice continuously differentiable, and increasing in each variable. Also, the agents do not

share their allocation history and are unaware of the total capacity and the number of agents in the

network. In our model, we consider a central server that keeps track of aggregate resource demands.

The central server broadcasts a one-bit feedback signal (called a capacity event) in the network

when the aggregate demand reaches its capacity. Thus, the algorithm incurs little communication

overhead. We proposed AIMD matrices for multiple resources and modeled the system as a non-

homogeneous Markov chain with place-dependent probabilities. We showed that the accumulative

172

average (long-term average) allocations of resources converge to the optimal values. Additionally,

we presented numerical results to check the efficacy of our algorithm.

The second algorithm we developed is a distributed derandomized AIMD algorithm for multi-

ple divisible shared resource allocation, described in Chapter 3. The algorithm is a deterministic

version of the stochastic additive-increase and multiplicative-decrease (AIMD) algorithm. We con-

sider a central server in the system that keeps track of aggregate demand by agents in the network

and broadcasts a one-bit feedback signal when the aggregate demand reaches the capacity of the

resource. Furthermore, we assume that each agent has private cost functions coupled through its

allocation of multiple resources and are strictly convex, twice continuously differentiable, and in-

creasing in each variable. Also, the developed solution does not require inter-agent communication.

Thus, the algorithm incurs little communication overhead. Moreover, we showed empirically that

the long-term average allocations of multiple shared resources converge to optimal allocations, and

the system achieves minimum social cost. Additionally, we showed empirically that the developed

derandomized AIMD algorithm converges faster than the stochastic AIMD algorithm, and both

approaches provide approximately the same solutions.

The third algorithm we developed is a distributed stochastic algorithm for multiple indivisible

(unit-demand) resource allocations, described in Chapter 4. Indivisible resources can be allocated

one unit or zero units. We assume that each agent has private cost functions coupled through its al-

locations of multiple indivisible resources and are strictly convex, twice continuously differentiable,

and increasing in each variable. Additionally, we consider a central server in the system that keeps

track of aggregate demand by agents in the network and broadcasts an error signal (referred to as

price signal) at each time step. The agents calculate their resource demands probabilistically based

on cost functions, average allocations, and price signals. Each agent’s resource demand is modeled

as a Bernoulli random variable, and no inter-agent communication is required. We provided results

on convergence for the single and multiple resource allocation cases using ideas from stochastic

approximation techniques. Furthermore, we presented an example of allocating chargers to electric

vehicles, illustrating the algorithm’s performance.

Finally, in Chapter 5, we developed a distributed stochastic algorithm for applications in sharing

economy settings where prosumer communities buy and sell resources through contracts to one or

173

more external entities and ensure that they meet particular demands in real-time. The algorithm

solves regulation problems with optimality constraints for the community-based prosumer market.

Recall that prosumers are agents that both produce and consume a resource. Furthermore, in a

prosumer market, a community of prosumers sells excess resources to another community. In the

algorithm, each prosumer has a cost function coupled through the time-averaged production and

consumption of the resource. Each prosumer runs its distributed algorithm and takes binary deci-

sions whether to produce a resource or not and to consume the resource in a probabilistic way. The

prosumers do not communicate with each other; however, a little with the infrastructure (sharing

platform), so the communication graph is unknown a-priori. The sharing platform keeps track of

the aggregate consumption and production of the resource by all prosumers and sends signals to

prosumers in the community to calculate their demands for the next step. Following the algorithm,

the prosumers achieve the social-optimal cost in long-term average prosumption. Finally, we de-

scribe two use cases, community-based car-sharing and collaborative energy storage for prosumer

markets. We also present numerical results to check the efficacy of the algorithms.

6.2 Future directions

In future work, we can find the theoretical bounds for the rate of convergence of the divisible

and indivisible resource allocation algorithms. Additionally, the models can be used in several ap-

plication areas such as cloud computing, federated learning, edge computing, smart grids, energy

trading, sharing economy, or wireless sensor networks—wherein sensors have the minimal process-

ing power and battery life.

It is also interesting to deploy the algorithms in real applications using Internet-of-Things de-

vices and edge computing and analyze the system’s performance. For the de-randomized AIMD

algorithm of Chapter 3, it is an open problem to prove the convergence of average allocations. It is

also interesting to study the stability analysis of the AIMD based algorithms.

Additionally, it is interesting to investigate the fairness properties such as envy-freeness, max-

imin, proportionality for the divisible and indivisible resource allocation problems where agents do

not communicate with each other and keep their preferences private. It is also interesting to explore

174

the cases where the cost function of an agent is coupled with the allocation of mixed resources—both

divisible and indivisible. Furthermore, for the indivisible case in Chapter 4, it is an open problem to

prove the convergence results wherein Ω(k + 1) is updated with a constant step size τ , and average

allocation is formulated with a decreasing step size using ideas from stochastic approximation.

Furthermore, it will be interesting to propose privacy algorithms based on our developed algo-

rithms to provide certain privacy guarantees to agents in the network. An analyst can learn statistics

on the population of agents; however, it should not be able to infer an agent’s resource demand or

its cost function, as in differential privacy models.

Finally, it will be interesting to apply our algorithms in federated learning. For example, the

indivisible allocation algorithms of Chapter 4 can be used for client selection in federated learning.

175

Appendix A

An Overview of Notations

A.1 Basic notations

Symbol Description

N The set of natural numbers.

R The set of real numbers.

R+ The set of non-negative real numbers.

n The number of agents in a network.

Rn+ The set of vectors in Rn with non-negative values.

m The number of resources in the network.

i Index to denote an agent, i = 1, 2, . . . , n.

j Index to denote a resource, j = 1, 2, . . . ,m.

k ∈ N Discrete time steps.

xi(k) The instantaneous resource demand of agent i at time step k.

xi(k)
The average allocation of agent i until time step k; defined as xi(k) ,

1
k+1

∑k
`=0 xi(`).

C The capacity of a resource.

fi : Rm+ → R+ The cost function of agent i coupled through allocation of m resources.

176

A.2 Notations used in Chapter 2

Symbol Description

ν ∈ N The time steps.

tν The discrete time instants, ν ∈ N.

k ∈ N Index to denote the capacity events.

xi(tν) = xi(ν) The resource demand of agent i at time instant tν , ν ∈ N.

xi(tk) = xi(k) The average resource allocation until the k’th capacity event, defined in (2.1).

C The capacity constraint of a single resource.

fi : Rm+ → R+ The cost function of agent i.

x ∈ [0, C]n The vector (x1, . . . , xn).

x∗ ∈ [0, C]n The unique optimal point (x∗1, . . . , x
∗
n) of optimization problem (2.2).

C1, C2 The capacities of resources 1 and 2, respectively.

xji(kj) The demand of resource j by agent i at time instant tkj .

xji(kj)
The average allocation of resource j to agent i until the kj’th capacity event,

defined in (2.1).

x1 ∈ [0, C1]n The vector (x11, . . . , x1n).

x2 ∈ [0, C2]n The vector (x21, . . . , x2n).

x∗ ∈ (Rn+)m A unique optimal point of optimization problem (2.3), x∗ = (x∗11, . . . , x
∗
mn).

α Additive-increase factor for a single resource.

β Multiplicative-decrease factor for a single resource.

αj Additive-increase factor for resource j.

βj Multiplicative-decrease factor for resource j.

177

Symbol Description

λji(kj)
Response probability of agent i at the kj’th capacity event for resource j. De-

fined in (2.17) and (2.18), for j = 1, 2.

Γj The normalization factor.

H(x, µ) Lagrangian of optimization problem (2.2), defined in (2.6).

µ ∈ R Lagrange multipliers of optimization problem (2.2), refer (2.6).

H(x1,x2,µ, s, r) Lagrangian of optimization problem (2.3), defined in (2.13).

µ ∈ R2 The Lagrange multipliers (µ1, µ2) of (2.3), refer (2.13).

s ∈ Rn The Lagrange multipliers (s1, s2, . . . , sn) of (2.3), refer (2.13).

r ∈ Rn The Lagrange multipliers (r1, r2, . . . , rn) of (2.3), refer (2.13).

x> The transpose of vector x ∈ Rn.

Σ
The standard simplex in Rn, defined by Σ ,
{
x = (x1, x2, . . . , xn) ∈ Rn+ |

∑n
i=1 xi = 1

}
.

Σm
m product space of the simplex Σ.

x ∈ Σm The vector (x1, . . . ,xm).

x ∈ Σm The vector (x1, . . . ,xm).

[x]i
The allocation vector (x1i, x2i, . . . , xmi) of agents i, for i = 1, 2, . . . , n, and

m resources.

e ∈ Rn The vector of ones, e = [1 1 . . . 1]> ∈ Rn.

e` ∈ Rn The `’th standard basis vector; e.g., e1 = [1 0 . . . 0]> ∈ Rn.

178

Symbol Description

� The Hadamard product (or componentwise product), defined in (2.19).

diag (X,Y) The diagonal matrix
[
X 0; 0 Y

]
, for X,Y ∈ Rn×n.

x� y, for x,y ∈ Rn xi > yi, for i = 1, . . . , n.

ri Σ Relative interior of the simplex Σ, defined by {x ∈ Σ : x� 0}.

convX
The convex hull of a setX ⊂ Rn, defined as the smallest convex set containing

X .

‖x‖1, x ∈ Rn The 1-norm on Rn, defined by ‖x‖1 ,
∑n

i=1 |xi|.

dH Hilbert metric on ri Σ, defined in (2.22).

exp(dH(x,y)) Exponential form of Hilbert metric, defined in (2.23).

d1(v,X)
The distance of a point v to the set X in Rn, with respect to 1-norm, defined

in (2.20).

βi(k) ∈ {β, 1}
The stochastic multiplicative decrease factors of agent i, if agent i responds to

the k’th capacity event then βi(k) = β, if it does not respond then βi(k) = 1,

for i = 1, 2, . . . , n.

β(k)
The vector of stochastic multiplicative decrease factors, β(k) ,[
β1(k) . . . βn(k)

]>
.

I The n× n identity matrix.

Ia An a× a identity matrix, a ∈ N.

tk+1 − tk
The time difference between the k’th and the k+ 1’th capacity events, defined

in (2.25).

A(k) The stochastic AIMD matrix for a single resource, defined in (2.28).

179

Symbol Description

Aq, 1 ≤ q ≤ 2n An AIMD matrix with n agents in a network sharing a single resource.

A = {A1, . . . , A2n}
The set of all AIMD matrices with n agents in a network sharing a single

resource.

E[A(k)] The expectation of A(k).

wp The right Perron eigen vector of E[A(k)], defined in (2.31).

kj A counter for the number of capacity events associated with resource j.

K The ordered set of all capacity events for all the resources.

Kj The subset of K associated with resource j.

φ The index map, defined in (2.32).

Aj The set of the AIMD matrices associated with resource j.

Aj,q The q’th matrix in the set Aj .

A(k) The stochastic AIMD matrix for two resources, k ∈ K, defined in (2.37).

wpj The right Perron eigen vector associated with resource j, defined in (2.40).

Sj(kj) The matrix defined in (2.41).

S(k) The diagonal matrix diag (S1(k1),S2(k2)), defined in (2.42).

‖X‖1, for X ∈ Rn×n The max column sum norm, defined in (2.44)

Pλ The probability measure with fixed probability λ = λ(y), for y ∈ Σm.

Q : Σm → R A strictly convex function, see Assumption 2.3.2.

R : Σm → ([0, 1]n)m
The map is the gradient of the strictly convex function Q, see Assumption

2.3.2.

ξ(k) The state vector of the resources, defined in (2.49).

180

Symbol Description

V(k) ∈ R4n×4n The diagonal matrices of the stochastic AIMD matrices, defined in (2.52).

Vk ∈ R4n×4n The diagonal matrices of the AIMD matrices, defined in (2.53).

G(k) The set of all Vk matrices.

x∗ ∈ riΣm The KKT point of Problem (2.3), refer Lemma 2.4.2.

W ∈ N The fixed time-window, see (2.55).

v The length of the averaging period, see (2.55).

x(W + v) Defined in (2.55), also see (2.60).

x(W) The average allocation until W capacity events.

εv Denotes v
W+v+1 , refer (2.56).

Pj : Σm → Σ
The expectation of the invariant measure with fixed probabilities λj (y), de-

fined in (2.57).

P (y) The vector (P1 (y) , . . . , Pm (y)), defined in (2.58).

∆j ∈ Rn The perturbation term associated with xj .

∆ ∈ (Rn)m The vector of perturbation terms (∆1, . . . ,∆m), defined in (2.59).

δ− > 0 The constant used in (2.63).

B1(0, δ) The closed 1-norm ball of radius δ and center 0.

Rε : Σm → Σm Defined as Rε(x) , (1− ε)x + εP (x), for 0 ≤ ε ≤ 1, see (2.65).

Pco(δ) Defined as Pco(δ) , convP (Σm) +B1(0, δ), refer (2.66).

δ+ The constant defined as δ+ , maxy∈Σm {d1(y, P (Σm))}, refer (2.67).

{εk}k∈N ⊂ (0, 1) A sequence in (0, 1).

Cδ A constant, refer Lemma 2.4.3.

181

Symbol Description

BH(x, δ) The closed ball with respect to Hilbert metric, centered at x with radius δ.

ζj > 0 A constant, refer Lemma 2.4.4.

Cζj > 0 The constant defined in (2.71).

Cζ > 0 The constant defined in (2.73).

ζ > 0 A constant, see Corollary 2.4.6.

$ > 0 The constant defined in (2.76).

δ∗ The constant defined as δ∗ , min
{
Cζ exp (ζ)

2$, δ−
}

, see (2.77).

Pe(y) The diagonal matrix diag
(
P1(y)e>, P2(y)e>

)
, defined in (2.82).

S(mv) The diagonal matrix diag (S1(v),S2(v), . . . ,Sm(v)), cf. (2.42).

M(mv̂) The random variable denotes
∥∥S(mv̂)− Pe(y)

∥∥
1
, v̂ ∈ N, defined in (2.89).

σ2 The variance of M(mv̂).

τ(k) Defined as τ(k) ,W + kv, refer (2.100).

εkj Defined as εkj ,
v

W+(kj+1)v+1 , refer (2.101).

εk Defined as εk ,
[
εk1 εk2

]>
, refer (2.102).

x(τ(k + 1)) Defined in (2.103).

σ1 Defined as σ1 , min
{
k ≥ k0 | x(τ(k)) ∈ Pco(2δ)

}
, k0 ∈ N, see (2.106).

182

A.3 Notations used in Chapter 3

Symbol Description

k Discrete time steps, k ∈ N.

n The number of IoT devices (agents).

i The index for IoT devices, i = 1, 2, . . . , n.

j The index for resources, j = 1, 2, . . . ,m.

Rj Resource j, for j = 1, 2, . . . ,m.

Cj The capacity of resource j, for j = 1, 2, . . . ,m.

ICD i The IoT device i, for i = 1, 2, . . . , n.

fi : Rm+ → R+ The cost function of IoT device i, i = 1, 2, . . . , n.

xji (k)
The instantaneous demand of agent i for resource j at time step k ∈ N, for

i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

x∗ ∈ (Rn+)m The optimal point (x∗11 , . . . , x
∗m
n) of the optimization Problem 3.2.2.

xji (k)
The average allocation of agent i for resource j at time step k, for i =

1, 2, . . . , n and j = 1, 2, . . . ,m, defined in (3.1).

x(k) The vector (x1
1(k), . . . , xmn (k)).

Sj(k) ∈ {0, 1}
The capacity event signal for resource j, Sj(k) = 1 if capacity event occurs

and Sj(k) = 0 if it does not occur, refer (3.3).

αj ∈ (0, Cj] Additive increase factor for resource j.

βj ∈ [0, 1) Multiplicative decrease factor for resource j.

0 < λji (k) ≤ 1 The scaling factor of agent i for resource j at time step k, defined in (3.4).

Γj The normalization factor, defined in (3.5).

183

A.4 Notations used in Chapter 4

Symbol Description

k Discrete time steps, k ∈ N.

n The number of agents in a network.

m The number of unit-demand (indivisible) shared resources.

C The capacity of a single resource.

N The set {1, 2, . . . , n}.

M The set {1, 2, . . . ,m}.

ξi(k) ∈ {0, 1}
The demand by agent i for a single resource at time step k—an independent

Bernoulli random variable.

yi(k) ∈ [0, 1]
The average allocation of agent i of a single resource until time step k, defined

as yi(k) , 1
k+1

∑k
`=0 ξi(`).

gi : [0, 1]→ R+ The cost function of agent i for a single resource.

ξ(k) The vector (ξ1(k), . . . , ξn(k)) ∈ {0, 1}n, for k ∈ N.

y(k) The vector (y1(k), . . . , yn(k)) ∈ [0, 1]n, for k ∈ N.

Ω(k + 1)
The normalization factor or price signal of a single resource, Ω(k + 1) ,

Ω(k)− τ
(∑n

i=1 ξi(k)− C
)

, see (4.5).

σi(Ω(k), yi(k))
The probability distribution function, σi(Ω(k), yi(k)) , Ω(k) yi(k)

g′i(yi(k))
, for i ∈

N , see (4.7).

σ(Ω,y(k)) The vector (σ1(Ω, y1(k)), . . . , σn(Ω, yn(k))), for k ∈ N.

M(k + 1) Denotes (ξ(k + 1)− σ(Ω,y(k))); the martingale difference.

a(k) A decreasing step-size, a(k) = 1
k+1 , for k ∈ N.

w(y(k)) Denotes (σ(Ω,y(k))− y(k)), refer (4.12) and (4.13).

Cj The capacity of resource j.

184

Symbol Description

ξji(k) ∈ {0, 1}
The demand of agent i for resource j at time step k; an independent Bernoulli

random variable.

yji(k) ∈ [0, 1]
The average allocation of resource j to agent i until time step k, yji(k) ,

1
k+1

∑k
`=0 ξji(`).

[y]i ∈ [0, 1]m The vector (y1i, y2i, . . . , ymi), for i = 1, 2, . . . , n.

yj ∈ [0, 1]n The vector (yj1, yj2, . . . , yjn), for j = 1, 2, . . . ,m.

y ∈ ([0, 1]n)m The vector (y11, . . . , ymn).

gi : [0, 1]m → R+ The cost function of agent i coupled through allocations of m resources.

τj ∈ (0, 1) The gain parameter.

Ωj(k + 1) The normalization factor or price signal of resource j, defined in (4.16).

σji(Ωj(k), [y]i(k)) The probability distribution function of agent i for resource j, defined in (4.17).

ξj(k) ∈ {0, 1}n The vector (ξj1(k), . . . , ξjn(k)).

σj(Ωj(k),y(k)) The vector (σj1(Ωj(k), [y]1(k)), . . . , σjn(Ωj(k), [y]n(k))).

ωj(yj(k)) Denotes (σj(Ωj ,y(k))− yj(k)).

{Mj(k + 1)}
Denotes {ξj(k + 1) − σj(Ωj ,y(k))}, the martingale difference sequence of

resource j.

185

A.5 Notations used in Chapter 5

Symbol Description

k ∈ N Discrete time steps.

N The number of agents.

Cx
Aggregate consumption bound or the total consumption capacity of the re-

source.

Cy Aggregate production bound or the total production capacity of the resource.

xi(k) The amount of the resource consumed by agent i at time step k ∈ N.

yi(k) The amount of the resource produced by agent i at time step k ∈ N.

xi(k) The time-averaged consumption of the resource, defined in (5.3).

yi(k) The time-averaged production of the resource.

Ti ∈ R+ The desired value of utilization of the resource, for i = 1, . . . , N .

gi : [0, 1]2 → R+ The cost function of agent i.

(x∗,y∗) ∈ R2N
+ The optimal point of optimization Problem (5.3.2).

Ω(k + 1)
The feedback signal for the consumption case, defined as Ω(k + 1) , Ω(k)−

τ
(∑N

i=1 xi(k)− Cx
)

, see (5.20).

σi(Ω(k), xi(k))
The probability distribution for the consumption case, defined as

σi(Ω(k), xi(k)) , Ω(k) xi(k)
g′i(xi(k))

, refer (5.21).

Ωx(k)
The feedback signal for consumption (for coupled prosumption case), defined

in (5.22).

Ωy(k) The feedback signal for production (for coupled prosumption case).

σi,x(k)
The probability distribution for consumption (for coupled prosumption case),

defined in (5.23).

σi,y(k) The probability distribution for production (for coupled prosumption case).

186

References

Agnew, S., & Dargusch, P. (2015). Effect of residential solar and storage on centralized electricity

supply systems. Nature Climate Change, 5(315).

Alam, S. E., Shorten, R., Wirth, F., & Yu, J. Y. (2018a, Sep.). Communication-efficient distributed

multi-resource allocation. In IEEE international smart cities conference (ISC2) (pp. 1–8).

Alam, S. E., Shorten, R., Wirth, F., & Yu, J. Y. (2018b, Oct). Derandomized distributed multi-

resource allocation with little communication overhead. In Allerton conference on communi-

cation, control, and computing (pp. 84–91).

Alam, S. E., Shorten, R., Wirth, F., & Yu, J. Y. (2020). Distributed algorithms for Internet-of-Things

enabled prosumer markets: A control theoretic perspective. In E. C. et al. (Ed.), Analytics for

the sharing economy: Mathematics, engineering and business perspectives. Springer.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of

things: A survey on enabling technologies, protocols, and applications. IEEE Communica-

tions Surveys Tutorials, 17(4), 2347–2376.

Angelakis, V., Avgouleas, I., Pappas, N., Fitzgerald, E., & Yuan, D. (2016, Oct). Allocation

of heterogeneous resources of an IoT device to flexible services. IEEE Internet of Things

Journal, 3(5), 691–700.

Arnott, R., & Rowse, J. (1999). Modeling parking. Journal of Urban Economics, 45(1), 97 – 124.

assoc. BEV, E. (2009, April). Energy consumption, CO2 emissions and other considerations related

to battery electric vehicles.

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of things: A survey. Computer Networks,

54(15), 2787 – 2805.

187

Avrachenkov, K. E., Borkar, V. S., & Pattathil, S. (2017). Controlling G-AIMD by index policy. In

IEEE annual conference on decision and control, CDC (pp. 120–125).

Aysal, T. C., Yildiz, M. E., Sarwate, A. D., & Scaglione, A. (2009). Broadcast gossip algorithms

for consensus. IEEE Transactions on Signal Processing, 57(7), 2748–2761.

Aziz, H., Caragiannis, I., Igarashi, A., & Walsh, T. (2022). Fair allocation of indivisible goods and

chores. Auton. Agents Multi Agent Syst., 36(1), 3.

Aziz, H., & Rey, S. (2020). Almost group envy-free allocation of indivisible goods and chores.

In Proceedings of the twenty-ninth international joint conference on artificial intelligence,

IJCAI-20 (pp. 39–45).

Baklanov, A., Garimidi, P., Gkatzelis, V., & Schoepflin, D. (2021). Achieving proportionality up to

the maximin item with indivisible goods. In The conference on artificial intelligence, AAAI

(pp. 5143–5150).

Bei, X., Li, Z., Liu, J., Liu, S., & Lu, X. (2021). Fair division of mixed divisible and indivisible

goods. Artificial Intelligence, 293.

Benabbou, N., Chakraborty, M., Elkind, E., & Zick, Y. (2019). Fairness towards groups of agents

in the allocation of indivisible items. In Proceedings of the international joint conference on

artificial intelligence, IJCAI (pp. 95–101).

Benadè, G., Procaccia, A. D., & Qiao, M. (2019). Low-distortion social welfare functions. In The

AAAI conference on artificial intelligence, AAAI (pp. 1788–1795).

Benjaafar, S., Kong, G., Li, X., & Courcoubetis, C. (2018). Peer-to-peer product sharing: Implica-

tions for ownership, usage, and social welfare in the sharing economy. Management Science,

65(2).

Berahas, A. S., Bollapragada, R., Keskar, N. S., & Wei, E. (2019). Balancing communication and

computation in distributed optimization. IEEE Transactions on Automatic Control, 64(8),

3141–3155.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., . . . Roselander,

J. (2019). Towards federated learning at scale: System design. In Proceedings of machine

learning and systems (Vol. 1, pp. 374–388).

Borkar, V. S. (2008). Stochastic approximation. Cambridge University Press.

188

Boutilier, C., Caragiannis, I., Haber, S., Lu, T., Procaccia, A. D., & Sheffet, O. (2012). Optimal so-

cial choice functions: A utilitarian view. In Proceedings of the ACM conference on electronic

commerce (pp. 197–214).

Boutilier, C., Caragiannis, I., Haber, S., Lu, T., Procaccia, A. D., & Sheffet, O. (2015). Optimal

social choice functions: A utilitarian view. Artificial Intelligence, 227, 190–213.

Boyd, S., Ghosh, A., Prabhakar, B., & Shah, D. (2006). Randomized gossip algorithms. IEEE/ACM

Trans. Netw., 14(SI), 2508–2530.

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2010). Distributed optimization and

statistical learning via the alternating direction method of multipliers. Foundations and Trends

in Machine Learning, 3(1), 1–122.

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and sta-

tistical learning via the alternating direction method of multipliers. Foundations and Trends®

in Machine Learning, 3, 1–122.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York, NY, USA: Cambridge

University Press.

Brandt, F., Conitzer, V., Endriss, U., Lang, J., & Procaccia, A. D. (2016). Handbook of computa-

tional social choice (1st ed.). Cambridge University Press.

Cai, L., Shen, X., Pan, J., & Mark, J. W. (2005). Performance analysis of TCP-friendly AIMD

algorithms for multimedia applications. IEEE Transaction on Multimedia, 7(2), 339–355.

Carli, R., & Dotoli, M. (2020). Distributed alternating direction method of multipliers for linearly

constrained optimization over a network. IEEE Control Systems Letters, 4(1), 247–252.

Chakraborty, M., Igarashi, A., Suksompong, W., & Zick, Y. (2021, aug). Weighted envy-freeness

in indivisible item allocation. ACM Trans. Econ. Comput., 9(3).

Chang, T. H., Nedic, A., & Scaglione, A. (2014). Distributed constrained optimization by

consensus-based primal-dual perturbation method. IEEE Transactions on Automatic Con-

trol, 59(6), 1524–1538.

Chen, T. D., & Kockelman, K. M. (2016). Carsharing’s life-cycle impacts on energy use and

greenhouse gas emissions. Transportation Research Part D: Transport and Environment, 47,

276 – 284.

189

Chen, Z., Hu, W., Wang, J., Zhao, S., Amos, B., Wu, G., . . . Satyanarayanan, M. (2017). An

empirical study of latency in an emerging class of edge computing applications for wearable

cognitive assistance. In Proceedings of the ACM/IEEE symposium on edge computing (pp.

14:1–14:14).

Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N., . . . Sousa, P. (2006).

Issues in multiagent resource allocation. Informatica, 30(1), 3–31.

Chiu, D., & Jain, R. (1989). Analysis of the increase and decrease algorithms for congestion

avoidance in computer networks. Computer Networks and ISDN Systems, 17(1), 1–14.

Cogill, R., Gallay, O., Griggs, W., Lee, C., Nabi, Z., Ordonez, R., . . . Zhuk, S. (2014, Nov). Parked

cars as a service delivery platform. In International conference on connected vehicles and

expo (ICCVE) (pp. 138–143).

Columbus, L. (2017, Dec). 2017 roundup of Internet of things forecasts. Forbes.

Conitzer, V., Freeman, R., Shah, N., & Vaughan, J. W. (2019). Group fairness for the allocation

of indivisible goods. In The thirty-third AAAI conference on artificial intelligence, AAAI (pp.

1853–1860).

Corless, M., King, C., Shorten, R., & Wirth, F. (2016). AIMD dynamics and distributed resource

allocation (No. 29). Philadelphia, PA: SIAM.

Courcoubetis, C., & Weber, R. (2012). Economic issues in shared infrastructures. IEEE/ACM

Transactions on Networking, 20(2), 594–608.

Crisostomi, E., Liu, M., Raugi, M., & Shorten, R. (2014). Plug-and-play distributed algorithms

for optimized power generation in a microgrid. IEEE Transactions on Smart Grid, 5(4),

2145–2154.

Crisostomi, E., Shorten, R., Studli, S., & Wirth, F. (2017). Electric and plug-in hybrid vehicle

networks: Optimization and control. CRC press (Taylor and Francis Group).

DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. Journal of

Public Transportation, 12(4), 41–56.

de Souza Ribeiro, L. A., Saavedra, O. R., de Lima, S. L., & de Matos, J. G. (2011). Isolated micro-

grids with renewable hybrid generation: The case of Lencois island. IEEE Transactions on

Sustainable Energy, 2(1), 1–11.

190

Dogan, E. (2021). Population monotonicity in fair division of multiple indivisible goods. Int. J.

Game Theory, 50(2), 361–376.

Duchi, J. C., Agarwal, A., & Wainwright, M. J. (2012, March). Dual averaging for distributed

optimization: Convergence analysis and network scaling. IEEE Transactions on Automatic

Control, 57(3), 592–606.

Echeverria, S., Root, J., Bradshaw, B., & Lewis, G. (2014, Nov). On-demand VM provisioning

for cloudlet-based cyber-foraging in resource-constrained environments. In 6th international

conference on mobile computing, applications and services (pp. 116–124).

Einav, L., Farronato, C., & Levin, J. (2016). Peer-to-peer markets. Annual Review of Economics,

8, 615–635.

Elgabli, A., Park, J., Bedi, A. S., Issaid, C. B., Bennis, M., & Aggarwal, V. (2021). Q-GADMM:

Quantized group ADMM for communication efficient decentralized machine learning. IEEE

Transactions on Communications, 69(1), 164–181.

Elkind, E., Faliszewski, P., & Slinko, A. (2009). On distance rationalizability of some voting

rules. In Proceedings of conference on theoretical aspects of rationality and knowledge (pp.

108–117).

Endriss, U. (2014). Social choice theory as a foundation for multiagent systems. In J. P. Müller,

M. Weyrich, & A. L. C. Bazzan (Eds.), Multiagent system technologies (pp. 1–6).

Energy, U. D. (2018, Feb.). Emissions from hybrid and plug-in electric vehicles.

EPA, U. (2017, July). Fast facts: U.S. transportation sector GHG emissions 1990-2015 (No. EPA-

420-F-17-013).

Fioravanti, A. R., Marecek, J., Shorten, R. N., Souza, M., & Wirth, F. R. (2017, Dec). On classical

control and smart cities. In IEEE annual conference on decision and control (CDC) (pp.

1413–1420).

Fioravanti, A. R., Marecek, J., Shorten, R. N., Souza, M., & Wirth, F. R. (2019). On the ergodic

control of ensembles. Automatica, 108.

Fossati, F., Moretti, S., Perny, P., & Secci, S. (2020). Multi-resource allocation for network slicing.

IEEE/ACM Transactions on Networking, 28(3), 1311–1324.

Fraiberger, S., & Sundararajan, A. (2015). Peer-to-peer rental markets in the sharing economy.

191

SSRN Electronic Journal.

Freeman, R., Sikdar, S., Vaish, R., & Xia, L. (2019). Equitable allocations of indivisible goods.

In Proceedings of the twenty-eighth international joint conference on artificial intelligence,

IJCAI-19 (pp. 280–286).

Freeman, R., Zahedi, S. M., & Conitzer, V. (2017). Fair and efficient social choice in dynamic

settings. In Proceedings of the international joint conference on artificial intelligence, IJCAI

(pp. 4580–4587).

Georgiadis, L., Iosifidis, G., & Tassiulas, L. (2020). On the efficiency of sharing economy networks.

IEEE Transactions on Network Science and Engineering, 7(3), 1094–1110.

Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., & Stoica, I. (2011). Dominant

resource fairness: Fair allocation of multiple resource types. In Proceedings of the USENIX

conference on networked systems design and implementation (pp. 323–336).

Gkatzikis, L., Iosifidis, G., Koutsopoulos, I., & Tassiulas, L. (2014). Collaborative placement and

sharing of storage resources in the smart grid. In International conference on smart grid

communications (pp. 103–108).

Goudin, P. (2016). The cost of non-Europe in the sharing economy: Economic, social and legal

challenges and opportunities (Tech. Rep.). European Parliamentary Research Service.

Griggs, W. M., Yu, J. Y., Wirth, F. R., Hausler, F., & Shorten, R. (2016). On the design of campus

parking systems with QoS guarantees. IEEE Trans. Intelligent Transportation Systems, 17(5),

1428–1437.

Grijalva, S., Costley, M., & Ainsworth, N. (2011). Prosumer-based control architecture for the

future electricity grid. In IEEE international conference on control applications (pp. 43–48).

Gündoğan, A., Gürsu, H. M., Pauli, V., & Kellerer, W. (2020). Distributed resource allocation with

multi-agent deep reinforcement learning for 5G-V2V communication. In Proceedings of the

international symposium on theory, algorithmic foundations, and protocol design for mobile

networks and mobile computing (pp. 357–362).

Ha, K., Chen, Z., Hu, W., Richter, W., Pillai, P., & Satyanarayanan, M. (2014). Towards wear-

able cognitive assistance. In Proceedings of the annual international conference on mobile

systems, applications, and services (pp. 68–81).

192

Halpern, D., & Shah, N. (2021). Fair and efficient resource allocation with partial information.

In Proceedings of the thirtieth international joint conference on artificial intelligence, IJCAI

(pp. 224–230).

Hamari, J., Sjoklint, M., & Ukkonen, A. (2016). The sharing economy: Why people participate in

collaborative consumption. Journal of the Association for Information Science and Technol-

ogy, 67(9), 2047–2059.

Han, D., Liu, K., Sandberg, H., Chai, S., & Xia, Y. (2021). Privacy-preserving dual averaging with

arbitrary initial conditions for distributed optimization. IEEE Transactions on Automatic

Control.

Han, S., Topcu, U., & Pappas, G. J. (2017). Differentially private distributed constrained optimiza-

tion. IEEE Transactions on Automatic Control, 62(1), 50–64.

Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., & Williams,

P. (2010, July). Foundations for smarter cities. IBM Journal of Research and Development,

54(4), 1–16.

Hartfiel, D. J. (2002). Nonhomogeneous matrix products. Singapore: World Scientific.

Hasan, M. H., Hentenryck, P. V., Budak, C., Chen, J., & Chaudhry, C. (2018). Community-based

trip sharing for urban commuting. In AAAI conference on artificial intelligence (pp. 6589–

6597).

Hernandez-Munoz, J. M., Vercher, J. B., Munoz, L., Galache, J. A., Presser, M., Gomez, L. A. H.,

& Pettersson, J. (2011). The future Internet. In Smart cities at the forefront of the future

Internet (pp. 447–462).

Huckle, S., Bhattacharya, R., White, M., & Beloff, N. (2016). Internet of things, blockchain and

shared economy applications. Procedia Computer Science, 98, 461–466.

Huo, X., & Liu, M. (2022). Privacy-preserving distributed multi-agent cooperative optimiza-

tion—paradigm design and privacy analysis. IEEE Control Systems Letters, 6, 824–829.

Inderberg, T. J., Tews, K., & Turner, B. (2018). Is there a prosumer pathway? exploring household

solar energy development in Germany, Norway, and the United Kingdom. Energy Research

and Social Science, 42, 258 – 269.

Iosifidis, G., & Tassiulas, L. (2017). Dynamic policies for cooperative networked systems. In

193

Workshop on the economics of networks, systems and computation (pp. 1–6).

Jacobson, V. (1988, Aug.). Congestion avoidance and control. SIGCOMM Comput. Commun. Rev.,

18(4), 314–329.

Joe-Wong, C., Sen, S., Lan, T., & Chiang, M. (2013). Multiresource allocation: Fairness–efficiency

tradeoffs in a unifying framework. IEEE/ACM Transactions on Networking, 21(6), 1785–

1798.

Jones, I. (2014). Road space allocation: The intersection of transport planning, governance and

infrastructure (PhD.).

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., . . . Zhao, S.

(2021). Advances and open problems in federated learning. Foundations and Trends® in

Machine Learning, 14(1–2), 1–210.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., & Suresh, A. T. (2020). SCAFFOLD:

Stochastic controlled averaging for federated learning. In Proceedings of the international

conference on machine learning (Vol. 119, pp. 5132–5143).

Katsikouli, P., Ferraro, P., Richardson, H., Cheng, H., Anderson, S., Mallya, D., . . . Shorten, R.

(2020). Distributed ledger enabled control of tyre induced particulate matter in smart cities.

Frontiers in Sustainable Cities, 2, 48.

Kawase, Y., & Sumita, H. (2020). On the max-min fair stochastic allocation of indivisible goods.

In The conference on artificial intelligence, AAAI (pp. 2070–2078).

Khalid, M., Wang, K., Aslam, N., Cao, Y., Ahmad, N., & Khan, M. K. (2021). From smart

parking towards autonomous valet parking: A survey, challenges and future works. Journal

of Network and Computer Applications, 175.

Khamse-Ashari, J., Lambadaris, I., Kesidis, G., Urgaonkar, B., & Zhao, Y. (2019). A cost-aware

fair allocation mechanism for multi-resource servers. IEEE Networking Letters, 1(1), 34–37.

Kia, S. S., Cortes, J., & Martinez, S. (2015). Distributed convex optimization via continuous-time

coordination algorithms with discrete-time communication. Automatica, 55, 254 – 264.

Koloskova, A., Stich, S., & Jaggi, M. (2019). Decentralized stochastic optimization and gossip

algorithms with compressed communication. In Proceedings of the international conference

on machine learning (Vol. 97, pp. 3478–3487).

194

Konecny, J., McMahan, B., & Ramage, D. (2015). Federated optimization: Distributed optimization

beyond the datacenter. In NIPS workshop on optimization for machine learning.

Konecny, J., McMahan, H. B., Ramage, D., & Richtarik, P. (2016). Federated optimization: Dis-

tributed machine learning for on-device intelligence. CoRR, arXiv:1610.02527 [cs.LG].

Kortuem, G., & Bourgeois, J. (2016). The Internet of things for the open sharing economy. In Pro-

ceedings of the ACM international joint conference on pervasive and ubiquitous computing

(pp. 666–669).

Lan, G., Lee, S., & Zhou, Y. (2018). Communication-efficient algorithms for decentralized and

stochastic optimization. Mathematical Programming.

Lan, J., Ma, Y., Zhu, D., Mangalagiu, D., & Thornton, T. F. (2017). Enabling value co-creation in

the sharing economy: The case of mobike. Sustainability, 9(9), 1–20.

Léauté, T., & Faltings, B. (2013, May). Protecting privacy through distributed computation in

multi-agent decision making. J. Artif. Int. Res., 47(1), 649–695.

Lee, S., & Nedic, A. (2016). Asynchronous gossip-based random projection algorithms over net-

works. IEEE Transactions on Automatic Control, 61(4), 953–968.

Lee, S., Nedic, A., & Raginsky, M. (2018). Coordinate dual averaging for decentralized online

optimization with nonseparable global objectives. IEEE Transactions on Control of Network

Systems, 5(1), 34–44.

Leung, K.-C., Lai, C., & Ding, H. (2021). Leave no cash on the table: An optimal approach for

controlling wireless TCP AIMD. IEEE Transactions on Network Science and Engineering,

8(3), 2235–2248.

Li, B., Cen, S., Chen, Y., & Chi, Y. (2020). Communication-efficient distributed optimization in

networks with gradient tracking and variance reduction. In Proceedings of the international

conference on artificial intelligence and statistics (Vol. 108, pp. 1662–1672).

Li, C., Chen, S., Li, J., & Wang, F. (2019). Distributed multi-step subgradient optimization for

multi-agent system. Systems & Control Letters, 128, 26–33.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020). Federated optimiza-

tion in heterogeneous networks. In Proceedings of machine learning and systems, MLSys.

Lin, T., Rivano, H., & Mouel, F. L. (2017, Dec). A survey of smart parking solutions. IEEE

195

Transactions on Intelligent Transportation Systems, 18(12), 3229–3253.

Liu, L., & Han, Z. (2015). Multi-block ADMM for big data optimization in smart grid. In Interna-

tional conference on computing, networking and communications (pp. 556–561).

Liu, S., Chen, P. Y., & Hero, A. O. (2018). Accelerated distributed dual averaging over evolving

networks of growing connectivity. IEEE Transactions on Signal Processing, 66(7), 1845–

1859.

Liu, S., Qiu, Z., & Xie, L. (2017). Convergence rate analysis of distributed optimization with

projected subgradient algorithm. Automatica, 83, 162–169.

Lu, Q., Yao, J., Qi, Z., He, B., & Guan, H. (2016). Fairness-efficiency allocation of CPU-GPU

heterogeneous resources. IEEE Transactions on Services Computing.

Lu, T., & Boutilier, C. (2011). Budgeted social choice: From consensus to personalized decision

making. In Proceedings of the international joint conference on artificial intelligence, IJCAI

(pp. 280–286).

Makhdoumi, A., & Ozdaglar, A. (2014). Broadcast-based distributed alternating direction method

of multipliers. In Annual Allerton conference on communication, control, and computing (pp.

270–277).

Masip-Bruin, X., Marin-Tordera, E., Jukan, A., & Ren, G. (2018). Managing resources continuity

from the edge to the cloud: Architecture and performance. Future Generation Computer

Systems, 79, 777–785.

Matt, P. A., & Toni, F. (2006). Egalitarian allocations of indivisible resources: Theory and compu-

tation. In Cooperative information agents X (pp. 243–257).

McMahan, B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. (2017). Communication-

efficient learning of deep networks from decentralized data. In Proceedings of international

conference on artificial intelligence and statistics (Vol. 54, pp. 1273–1282).

Mohanty, S. P., Choppali, U., & Kougianos, E. (2016, July). Everything you wanted to know about

smart cities: The Internet of things is the backbone. IEEE Consumer Electronics Magazine,

5(3), 60–70.

Moret, F., & Pinson, P. (2018). Energy collectives: A community and fairness based approach to

future electricity markets. IEEE Transactions on Power Systems.

196

Murhekar, A., & Garg, J. (2021). On fair and efficient allocations of indivisible goods. In The

conference on artificial intelligence, AAAI (pp. 5595–5602).

Narasimhan, C., Papatla, P., Jiang, B., Kopalle, P. K., Messinger, P. R., Moorthy, S., . . . Zhu, T.

(2018). Sharing economy: Review of current research and future directions. Customer Needs

and Solutions, 5(1), 93–106.

Nedic, A. (2011). Asynchronous broadcast-based convex optimization over a network. IEEE

Transactions on Automatic Control, 56(6), 1337–1351.

Nedic, A., & Ozdaglar, A. (2009, Jan.). Distributed subgradient methods for multi-agent optimiza-

tion. IEEE Transactions on Automatic Control, 54(1), 48–61.

Nedic, A., Ozdaglar, A., & Parrilo, P. A. (2010, Apr.). Constrained consensus and optimization in

multi-agent networks. IEEE Transactions on Automatic Control, 55(4), 922–938.

Nedic, A., Pang, J., Scutari, G., & Sun, Y. (2018). Distributed optimization over networks. In

Multi-agent optimization: Lecture notes in mathematics (Vol. 2224, pp. 1–84).

Nguyen, D. H. (2021). Optimal solution analysis and decentralized mechanisms for peer-to-peer

energy markets. IEEE Transactions on Power Systems, 36(2), 1470–1481.

Nguyen, D. T., Le, L. B., & Bhargava, V. K. (2019). A market-based framework for multi-resource

allocation in fog computing. IEEE/ACM Transactions on Networking, 27(3), 1151–1164.

Nguyen, T. T., Roos, M., & Rothe, J. (2013, Jul). A survey of approximability and inapprox-

imability results for social welfare optimization in multiagent resource allocation. Annals of

Mathematics and Artificial Intelligence, 68(1), 65–90.

Oh, H., Procaccia, A. D., & Suksompong, W. (2021). Fairly allocating many goods with few

queries. SIAM J. Discret. Math., 35(2), 788–813.

Ohseto, S. (2021). Strategy-proof and Pareto efficient allocation of indivisible goods: General

impossibility domains. Int. J. Game Theory, 50(2), 419–432.

Parag, Y., & Sovacool, B. K. (2016). Electricity market design for the prosumer era. Nature Energy,

1.

Poullie, P., Bocek, T., & Stiller, B. (2018). A survey of the state-of-the-art in fair multi-resource

allocations for data centers. IEEE Transactions on Network and Service Management, 15(1),

169–183.

197

Pu, S., & Nedic, A. (2021). Distributed stochastic gradient tracking methods. Mathematical

Programming, 187(1), 409–457.

Pu, S., Shi, W., Xu, J., & Nedic, A. (2021). Push–pull gradient methods for distributed optimization

in networks. IEEE Transactions on Automatic Control, 66(1), 1–16.

Raviv, T., & Kolka, O. (2013). Optimal inventory management of a bike-sharing station. IIE

Transactions, 45(10), 1077–1093.

Reddi, S. J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Konecny, J., . . . McMahan, H. B. (2021).

Adaptive federated optimization. In International conference on learning representations,

ICLR.

Ritzer, G., & Jurgenson, N. (2010). Production, consumption, prosumption: The of capitalism in

the age of the digital ‘prosumer’. Journal of Consumer Culture, 10(1), 13–36.

Rivera, J., Goebel, C., & Jacobsen, H. (2017). Distributed convex optimization for electric vehicle

aggregators. IEEE Transactions on Smart Grid, 8(4), 1852–1863.

Robbins, H., & Monro, S. (1951, Sept.). A stochastic approximation method. The Annals of

Mathematical Statistics, 22(3), 400–407.

Rockafellar, R. T. (2015). Convex analysis. Princeton University Press.

Romao, L., Margellos, K., Notarstefano, G., & Papachristodoulou, A. (2021). Subgradient averag-

ing for multi-agent optimisation with different constraint sets. Automatica, 131, 109738.

Salehisadaghiani, F., & Pavel, L. (2016). Distributed Nash equilibrium seeking: A gossip-based

algorithm. Automatica, 72, 209–216.

Sampath, L. P. M. I., Paudel, A., Nguyen, H. D., Foo, E. Y. S., & Gooi, H. B. (2021). Peer-to-

peer energy trading enabled optimal decentralized operation of smart distribution grids. IEEE

Transactions on Smart Grid.

Sattler, F., Wiedemann, S., Muller, K. R., & Samek, W. (2020). Robust and communication-efficient

federated learning from non-i.i.d. data. IEEE Transactions on Neural Networks and Learning

Systems, 31(9), 3400–3413.

Satyanarayanan, M. (2017, Jan). The emergence of edge computing. Computer, 50(1), 30–39.

Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009, Oct). The case for VM-based

cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14-23.

198

Schey, S. (2014). Canadian electric vehicle infrastructure deployment guidelines.

Schill, W., Zerrahn, A., & Kunz, F. (2017). Prosumage of solar electricity: Pros, cons, and the

system perspective. DIW Berlin(1637).

Shah, S. N., Incremona, G. P., Bolzern, P., & Colaneri, P. (2019). Optimization based AIMD

saturated algorithms for public charging of electric vehicles. Eur. J. Control, 47, 74–83.

Shang, F., Xu, T., Liu, Y., Liu, H., Shen, L., & Gong, M. (2021). Differentially private ADMM

algorithms for machine learning. IEEE Transactions on Information Forensics and Security,

16, 4733–4745.

Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016, Oct). Edge computing: Vision and challenges.

IEEE Internet of Things Journal, 3(5), 637–646.

Shorten, R., King, C., Wirth, F., & Leith, D. (2007). Brief paper: Modelling TCP congestion control

dynamics in drop-tail environments. Automatica, 43(3), 441–449.

Silvestre, D., Hespanha, J. P., & Silvestre, C. (2019). Broadcast and gossip stochastic average con-

sensus algorithms in directed topologies. IEEE Transactions on Control of Network Systems,

6(2), 474–486.

Song, M., Ou, Z., Castellanos, E., Ylipiha, T., Kamarainen, T., Siekkinen, M., . . . Hui, P. (2017,

Dec). Exploring vision-based techniques for outdoor positioning systems: A feasibility study.

IEEE Transactions on Mobile Computing, 16(12), 3361–3375.

Sousa, T., Soares, T., Pinson, P., Moret, F., Baroche, T., & Sorin, E. (2019). Peer-to-peer and

community-based markets: A comprehensive review. Renewable and Sustainable Energy

Reviews, 104, 367–378.

Sousanis, J. (2015, Aug). World vehicle population tops 1 billion units.

Studli, S., Crisostomi, E., Middleton, R., & Shorten, R. (2012). A flexible distributed framework

for realising electric and plug-in hybrid vehicle charging policies. International Journal of

Control, 85(8), 1130–1145.

Tallapragada, P., & Cortes, J. (2020). Hierarchical-distributed optimized coordination of intersec-

tion traffic. IEEE Transactions on Intelligent Transportation Systems, 21(5), 2100–2113.

Teodorovic, D., & Lucic, P. (2006). Intelligent parking systems. European Journal of Operational

Research, 175(3), 1666 – 1681.

199

Tsianos, K. I., Lawlor, S., & Rabbat, M. G. (2012). Push-sum distributed dual averaging for convex

optimization. In IEEE conference on decision and control (CDC) (pp. 5453–5458).

Tsitsiklis, J., Bertsekas, D., & Athans, M. (1986). Distributed asynchronous deterministic and

stochastic gradient optimization algorithms. IEEE Transactions on Automatic Control, 31(9),

803–812.

Tsitsiklis, J. N. (1984). Problems in decentralized decision making and computation (Unpublished

doctoral dissertation). Massachusetts Institute of Technology, Cambridge, MA, USA.

Tushar, W., Saha, T. K., Yuen, C., Smith, D., & Poor, H. V. (2020). Peer-to-peer trading in electricity

networks: An overview. IEEE Transactions on Smart Grid, 11(4), 3185–3200.

Tushar, W., Yuen, C., Mohsenian-Rad, H., Saha, T., Poor, H. V., & Wood, K. L. (2018). Trans-

forming energy networks via peer-to-peer energy trading: The potential of game-theoretic

approaches. IEEE Signal Processing Magazine, 35(4), 90–111.

Tushar, W., Yuen, C., Saha, T. K., Morstyn, T., Chapman, A. C., Alam, M. J. E., . . . Poor, H. V.

(2021). Peer-to-peer energy systems for connected communities: A review of recent advances

and emerging challenges. Applied Energy, 282.

Umer, K., Huang, Q., Khorasany, M., Afzal, M., & Amin, W. (2021). A novel communication

efficient peer-to-peer energy trading scheme for enhanced privacy in microgrids. Applied

Energy, 296.

Uribe, C. A., Lee, S., Gasnikov, A., & Nedic, A. (2021). A dual approach for optimal algorithms in

distributed optimization over networks. Optimization Methods and Software, 36(1), 171-210.

Vaya, M. G., Andersson, G., & Boyd, S. (2014). Decentralized control of plug-in electric vehicles

under driving uncertainty. In IEEE PES innovative smart grid technologies, Europe (pp. 1–6).

Wang, J., Liu, Q., Liang, H., Joshi, G., & Poor, H. V. (2020). Tackling the objective inconsistency

problem in heterogeneous federated optimization. In Annual conference on neural informa-

tion processing systems, NeurIPS.

Wang, Q., Liu, X., Du, J., & Kong, F. (2016). Smart charging for electric vehicles: A survey from the

algorithmic perspective. IEEE Communications Surveys and Tutorials, 18(2), 1500–1517.

Wang, W., Liang, B., & Li, B. (2015). Multi-resource fair allocation in heterogeneous cloud

200

computing systems. IEEE Transactions on Parallel and Distributed Systems, 26(10), 2822–

2835.

Wei, E., & Ozdaglar, A. (2012, Dec). Distributed alternating direction method of multipliers. In

IEEE conference on decision and control (CDC) (pp. 5445–5450).

Wirth, F., Stanojevic, R., Shorten, R., & Leith, D. (2006). Stochastic equilibria of AIMD commu-

nication networks. SIAM Journal on Matrix Analysis and Applications, 28(3), 703–723.

Wirth, F., Stüdli, S., Yu, J. Y., Corless, M., & Shorten, R. (2019). Nonhomogeneous place-dependent

Markov chains, unsynchronised AIMD, and optimisation. Journal of the ACM, 66(4), 24:1–

24:37.

Yang, T., Yi, X., Wu, J., Yuan, Y., Wu, D., Meng, Z., . . . Johansson, K. H. (2019). A survey of

distributed optimization. Annual Reviews in Control, 47, 278–305.

Yilmaz, M., & Krein, P. T. (2013, May). Review of battery charger topologies, charging power

levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Transactions on

Power Electronics, 28(5), 2151–2169.

Yin, X., Zhu, Y., & Hu, J. (2021). A comprehensive survey of privacy-preserving federated learning:

A taxonomy, review, and future directions. ACM Comput. Surv., 54(6).

Yuan, H., Zaheer, M., & Reddi, S. (2021). Federated composite optimization. In Proceedings of

the 38th international conference on machine learning (Vol. 139, pp. 12253–12266).

Yuan, K., Ling, Q., & Yin, W. (2016). On the convergence of decentralized gradient descent. SIAM

Journal on Optimization, 26(3), 1835–1854.

Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014, Feb). Internet of things for

smart cities. IEEE Internet of Things Journal, 1(1), 22–32.

Zhang, C., Wu, J., Zhou, Y., Cheng, M., & Long, C. (2018). Peer-to-peer energy trading in a

microgrid. Applied Energy, 220, 1 – 12.

Zhang, J., Uribe, A. C., Mokhtari, A., & Jadbabaie, A. (2019). Achieving acceleration in distributed

optimization via direct discretization of the heavy-ball ODE. In American control conference

(ACC) (pp. 3408–3413).

Zhang, R., & Kwok, J. T. (2014). Asynchronous distributed ADMM for consensus optimization. In

201

Proceedings of the international conference on international conference on machine learn-

ing.

Zhou, Y., Ye, Q., & Lv, J. (2022). Communication-efficient federated learning with compensated

Overlap-FedAvg. IEEE Transactions on Parallel and Distributed Systems, 33(1), 192–205.

202

	List of Figures
	List of Tables
	Introduction
	Problem formulation
	A motivating example
	Objectives
	AIMD based distributed multi-resource allocation for divisible resources
	Distributed multi-resource allocation for indivisible resources

	Background and literature review
	Computational social choice theory
	Distributed optimization
	Federated optimization
	Sharing economy
	Optimality conditions for multiple resources

	Contributions
	Stochastic algorithm for distributed multi-resource allocation for divisible resources
	Deterministic algorithm for distributed multi-resource allocation for divisible resources
	Stochastic algorithm for distributed multi-resource allocation for indivisible resources
	Stochastic algorithm for regulating prosumers in a prosumer market

	Contribution as publications
	Thesis organization

	Stochastic Distributed Algorithm for Divisible Multi-resource Allocation
	Introduction
	Optimzation problem formulations
	Contributions and the structure of the chapter

	AIMD based optimization
	AIMD based optimization for a single resource
	AIMD-based optimization for multiple resources
	Notations and conventions

	AIMD matrix model
	AIMD matrix model for a single resource
	AIMD matrix model for multiple resources

	Convergence of accumulative averaging
	Results on deterministic systems
	Results on stochastic systems
	Proof of Theorem 2.4.1 (convergence of average allocation to the KKT point)

	Numerical results
	Analysis 1
	Analysis 2
	Analysis 3

	Conclusion
	Appendix: Analysis of the total instantaneous demands
	 Appendix: Comparison of numerical results of single resource and multiple resource cases
	Separable cost function
	Non-separable cost function

	AIMD based Derandomized Distributed Algorithm for Divisible Multi-resource Allocation
	Introduction
	Problem formulation
	Algorithm
	Experiments
	Conclusion

	Stochastic Distributed Algorithm for Unit-demand Resource Allocation
	Introduction
	Preliminaries
	Optimality conditions

	Allocating a single unit-demand resource
	Allocating multiple unit-demand resources
	Proof of convergence of average allocations for multiple resources

	Application to electric vehicle charging
	Conclusion

	Distributed Algorithms for Prosumer Markets
	Introduction
	Prosumer markets and communities
	Contribution

	Problem statement
	Algorithms for community-based prosumer markets
	 Optimality conditions
	Algorithm for consumption
	Algorithm for coupled prosumption

	Use cases
	Community-based car-sharing
	Collaborative energy storage

	Numerical results
	Conclusion

	Conclusion and Future Directions
	Conclusion
	Future directions

	Appendix An Overview of Notations
	Basic notations
	Notations used in Chapter 2
	Notations used in Chapter 3
	Notations used in Chapter 4
	Notations used in Chapter 5

	Bibliography

