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Abstract

An Instance-Based Learning Statistical Framework for One-Shot and Few-Shot Human
Action Recognition

Mark Haddad

Along with the exponential growth of online video creation platforms such as TikTok and In-

stagram, state of the art research involving quick and effective human action/gesture recognition

remains crucial. This thesis presents an instance-based statistical framework which addresses the

challenge of classifying short human action video clips, using a domain-specific feature design ap-

proach, capable of performing significantly well using as little as one training example per action

(one-shot learning). The method is based on Gunner Farneback’s dense optical flow (GF-OF) es-

timation strategy, Gaussian mixture models, and information divergence. We first aim to obtain

accurate representations of the human movements/actions by clustering the results given by GF-OF

using K-means method of vector quantization. We then proceed by representing the result of one

instance of each action by a Gaussian mixture model. Furthermore, using Kullback-Leibler diver-

gence (KL-divergence), we estimate the information divergences in an attempt to find similarities

between the trained actions and the ones in the test videos. Classification is then done by match-

ing each test video to the trained action with the highest similarity (a.k.a lowest KL-divergence

value). We have performed experiments on the KTH and Weizmann Human Action datasets using

One-Shot and K-Shot learning approaches, and the results reveal the discriminative nature of our

proposed methodology in comparison with state-of-the-art techniques.
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Chapter 1

Introduction

In this thesis, we propose a novel action recognition framework whose goal is to classify short

action video clips to their respective actions by automatically matching their representations to

trained ones. The trained representations are essentially labeled instances of each action, as shown

in the upper left of Fig. 1.1, that are used in a few-shot learning setting to achieve a few-shot action

recognition task. The framework is flexible enough to be extended in various ways according to

the application and could for example be integrated in users’ devices to classify and organize their

videos using little training data.

Requests for new action (e.g. dance) challenges are emerging on a daily basis, and our frame-

work is designed to be able to effectively learn each new action using as little as one instance of it,

and classify new videos using the learned instances. An overview of the process flow is displayed in

Fig. 1.2 and goes as follows: Initially, the input dataset is split into training and testing sets that both

go through the same feature extraction process. This process initially tracks the actors in the videos

and places a bounding box around them, computes the dense optical flow inside the box, and clus-

ters the optical flow vectors using the KMeans algorithm. Subsequently, classification is achieved

using a similarity check method which employs Gaussian Mixture Models and Kullback-Leibler

divergence between the KMeans clusters of the training and testing videos. A visual representation

of the similarity measurement is demonstrated in Fig. 1.1, in which the KMeans cluster centers of a

trained “waving” action are used in an attempt to find similar movement patterns in a test video.
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Similarity MeasurementTrain

Figure 1.1: Similarity between clustered optical flow centers (KMeans) of a trained “Two-hands
wave” action (Red) and a test one (Green) from the Weizmann Human Action dataset.
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Figure 1.2: Overview of the process flow. The training and testing videos (shown in red) are used as
inputs and go through a feature extraction process (shown in grey), followed by a similarity check
process (shown in green) in which classification is achieved.
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1.1 Background

Recognition is a field that concentrates on a classical problem in computer vision, which is de-

termining whether the information on images or video frames contains a specific feature, object,

or activity. Such field includes “object recognition”, “Human action recognition”, “identification”

and “detection” [20, 21, 22, 23, 24, 25, 26, 27]. On the other hand, applying deep learning, image

restoration and classification has facilitated the study over different sub-branches of recognition.

Some of the novel deep learning, image restoration and classification applications which are recog-

nized for this purpose can be found in [12, 13, 14, 15, 16, 17, 18, 19].

More specifically, the “Human action recognition” field is an active and important area in com-

puter vision. Related comprehensive research works can be found in [7, 8, 45, 28]. In this regard,

spatiotemporal interest points and feature descriptors for human action recognition have been re-

searched in [1, 2, 3], which include a wide range of methodologies and described as “Bag of visual

and video words”. The strength of these methodologies is their robustness to occlusion, whereas

their drawback is their locality and distribution of content understanding, and their sensitivity to

several intermediate processes such as classifiers. There is another set of techniques that focuses

on detecting a bounding box, which includes the person executing the action. These methods in-

clude spatiotemporal shapes using contours for body tracking [29], spatiotemporal volumes using

silhouette images [9] and space-time gestures [31]. Such methodologies ignore the primitive human

sub-actions, which are considered a drawback for their representations.

There is another set of methodologies which considers the location knowledge or body parts

appearances. For instance, landmark trajectory features of body parts have been researched in [42].

Additionally, the learning of cascade of filters has been proposed by Ke et al. [38] for accurate

spatiotemporal localization and detection purposes. Such approaches are challenging issues in the

field of human action recognition since a completely supervised strategy is not ensured.

The problem of long-term visual tracking has been addressed in [33] where ascribable to de-

formation, abrupt motion, heavy occlusion and out-of-view, the target objects undergo significant

appearance variation. Accordingly, the task of tracking into translation and scale estimation of

objects has been decomposed. In another work, an adaptive region proposal scheme with feature
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channel regularization has been provided for facilitating robust object tracking [11]. Correspond-

ingly, the unsupervised video object segmentation task has been addressed in [34] where the method

was denominated as CO-attention Siamese Network (COSNet). Recently, another video object seg-

mentation (VOS) work has been proposed which unlike most existing methods which rely heavily

on extensive annotated data, this method addresses object pattern learning from unlabeled videos

[35].

1.2 Contributions

Despite the significant progress which has formerly been performed, there are several challenges

in the field of human action recognition. For instance, the variation of the camera position relative

to the subject may create confusions in the human action detection and classification. Moreover,

similarities in different action categories may cause action misclassifications. In this work, we have

overcome such challenges by presenting a human action representation and classification framework

that automatically matches human action test videos to trained ones. The action representation is

based off the repetitive nature of human actions and can be utilized effectively in one-shot or k-shot

learning settings [4, 30]. The importance of our contributions can be described as follows:

• Representing human actions considering their repetitive nature using Gaussian Mixture Mod-

els coupled with K-Means method of vector quantization for instance-based learning of mul-

tidimensional data

• Classifying human actions by automatically matching their representations to trained ones in

videos using Kullback-Leibler divergence for one-shot and few-shot human action classifica-

tion

Our research work has been accepted and published as:

M. Haddad, V. K. Ghassab, F. Najar and N. Bouguila, “A statistical framework for few-shot

action recognition”, Multimed Tools Appl 80, 24303–24318 (2021)

M. Haddad, V. K. Ghassab, F. Najar and N. Bouguila, “Instance-Based Learning for Human Ac-

tion Recognition”, 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
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2020, pp. 147-153

1.3 Thesis Overview

The rest of the thesis is arranged as follows. Chapter 2 describes the methodology and the math-

ematical background behind the Gaussian Mixture models and K-Means method of vector quantiza-

tion that have been applied with the goal of achieving instance-based learning of multidimensional

data. The section has been split into two sub-sections, one focused on Parametrized Displacement

Fields 2.1, and one 2.2 regarding Gaussian Mixture Models for human action representation. Chap-

ter 3 covers the Information Divergence Estimation method that has been employed in the proposed

framework 3.1, as well as all the experimental settings, results, and an empirical examination of the

experimental outcomes 3.2. The limitations and possible extensions have been displayed in 3.3, and

the conclusion of the thesis has been presented in Section 4.

5



Chapter 2

Gaussian Mixture Models and K-Means

Method of Vector Quantization for

Instance-Based Learning of

Multidimensional Data

The process in which the input video data is translated into features capable of being interpreted

by our model is presented in this section. This includes the optical flow used to estimate the move-

ment between each two consecutive frames, and the combination of KMeans and Gaussian Mixture

Models on multidimensional data to accurately represent human actions.

2.1 Parameterized Displacement Fields

2.1.1 Gunnar Farneback Optical Flow

In this subsection, we are going to describe the parametrized displacement fields which we have

applied in Farneback optical flow estimation considering two consecutive video frames using the

eight-parameter model in a two dimensional space [40, 41]. For this purpose, we define the global

parameterized displacements considering polynomials which represent the neighborhood of a pixel
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in each of our video frames as follows

dx(x, y) = a1 + a2x+ a3y + a7x
2 + a8xy,

dy(x, y) = a4 + a5x+ a6y + a7xy + a8y
2, (1)

where x and y are the horizontal and vertical coordinates of corresponding pixels in two consecutive

video frames; and dx and dy illustrate the parametrized displacement polynomial with respect to x

and y. Furthermore, a1, a2, · · · , a8 are expansion coefficients considering the polynomial expan-

sions of both video frames.

Eq. 1 can be rewritten as

D = PS, (2)

P =

1 x y 0 0 0 x2 xy

0 0 0 1 x y xy y2

 , (3)

S = (a1 a2 a3 a4 a5 a6 a7 a8)
T , (4)

where D = 〈dx, dy〉 is the global displacement, and P and S stand for the polynomial matrix and

the solution, respectively. In addition, the polynomial expansion is the neighborhood approximation

of each pixel with a polynomial. Accordingly, the quadratic polynomial in a local coordinate system

can be represented as

F (X) ∼ XTAX +BX + C, (5)

where X = 〈x, y〉 is a pixel vector considering its direction in the video frame and F is the poly-

nomial expansion of pixels neighborhood in the video frame. Furthermore, A, B, and C are the

coefficients of such neighborhood polynomial expansion where A represents a symmetric matrix,

B is a vector and C is considered a scalar. By applying the global displacement in Eq. 5, we end up
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with

F (X −D) ∼ (X −D)TA(X −D) +BT (X −D) + C

= XTAX + (B − 2AD)TX +DTAD

−BTD + C. (6)

Accordingly, by defining B′ = B − 2AD and ∆B = B′−B
2 and considering Eq. 3, we minimize

the following weighted least square problem for calculating our desired solution

∑
j

ωj‖AjPjS −∆Bj‖, (7)

where j is the pixel index and ωj represents the weight of the corresponding pixel. Therefore, the

solution is calculated as follows

S = (
∑
j

ωjPj
TAj

TAjPj)
−1

∑
j

ωjPj
TAj

T∆Bj . (8)

2.1.2 Vector Quantization of Optical Flow using KMeans

The application of the parametrized displacement fields solution displayed in Eq. 8 is illustrated

on the left side of Fig. 2.1, in which a “bending” action from the Weizmann Human Action dataset

has been used as an input. Furthermore, the right side is the result of clustering of the optical flow

vectors using KMeans. The following sub-section describes how this feature extraction method

may be utilized on a spatiotemporal level to obtain a valuable representation tool for human action

classification.

2.2 Gaussian Mixture Models and Mahalanobis Distance for Human

Action Representation

As seen in Fig. 2.2, obtaining KMeans clusters gives an accurate 3D representation of the move-

ment in a video. The idea behind our approach involves the use of just one (or k) example(s) of

8



 

 

 

                       

                    

 
Figure 2.1: Application of dense optical flow (on left) and K-means clustering (on right) on a “Bend-
ing” action from the Weizmann Human Action dataset. Colors correspond to the flow magnitude
and direction, as per the color wheel.

each action in the training phase. Since our work is instance-based oriented, we focus on obtaining

a representation of a single instance/repetition of each action. In videos which contain many repeti-

tions of the same action such as a video of a person performing numerous jumping jacks, we only

focus on one of the occurrences, typically the one that looks the most representative or general for

the action.

Once an instance for each action is obtained during the training phase, we employ the following

method to compare those instances to groups of KMeans points found in test videos. In this regard,

we propose that the KMeans clusters of each action instance be modeled by a mixture of Gaussian

distributions, resulting in a set of Gaussian components defined as follows

p(x|Θ) =

M∑
j=1

pjN(x;µj ;Σj), (9)

where pj is the mixing parameter of component j (0 ≤ pj ≤ 1,
∑M

j=1 pj = 1), Θ is the set

of all the parameters (p1, . . . , pM , µ1, . . . , µM ,Σ1, . . . ,ΣM ) and N(x;µj ;Σj) is the j-th Gaussian

9
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Figure 2.2: 3D Representation of K-means clusters of optical flow for the “Wave 2” action of
Daria from Weizmann Human Action dataset. Colors correspond to the mean flow magnitude and
direction of each cluster, as per the color wheel. Three full repetitions of the action are clearly
discernable.
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distribution given by the mean µj and the covariance matrix parameter Σj

N(x;µj ;Σj)=
1

(2π)D/2
1

|Σj |1/2
×

exp{−1

2
(x− µj)TΣ−1j (x− µj)}. (10)

Each Gaussian component represents part of an action, meaning that the mean µ of each compo-

nent is a 5D vector (x, y, u, v, t) representing the position (x, y, t) and magnitude (u, v) of a group

of KMeans clusters that constitute a lower-level action, or sub-action (e.g. left arm moving up, right

leg moving to the left).

The parameters of each Gaussian mixture model are then estimated using the Expectation-

Maximization estimation algorithm (EM) where the log-likelihood is derived with respect to the

mean, the covariance matrix, and the mixing weight. Starting with the expected value of the poste-

rior probabilities, all the parameters are updated until convergence of the likelihood. Subsequently,

Kullback-Leibler (KL) divergence measure is employed in an attempt to find similarities between

the GMM representations of the trained action instances, and the ones being generated in different

sections of each test video. The aforementioned is detailed and discussed in the following section.

Lower level features within a human action [7] may also be represented more accurately by em-

ploying a larger number of Gaussian components during the modeling of the Gaussian mixture, then

computing the sum of bidirectional Mahalanobis distances dij between each consecutive Gaussian

components i and j on the temporal axis t:

dij = (t̂i − µj)TΣ−1j (t̂i − µj) + (t̄j − µi)TΣ−1i (t̄j − µi) (11)

where ti and tj are the forward and backward transition predictions of Gaussian components i and

j, respectively:

t̂i = (xi + fui, yi + fvi, ui, vi) (12)

t̄j = (xj + fuj , yj − fvj , uj , vj) (13)

11



x, y, u and v stand for the first 4 dimensions of the mean µ of a Gaussian component, as described

earlier in section 2.2, and f stands for the temporal difference between the Gaussian components

which is determined in section 3.1. Distances with values below a certain threshold are then removed

and different sub-actions are separated from each other.

Following in-depth experimentation, we have concluded that the application of Mahalanobis

distance is extremely sensitive to the location of the Gaussian components, which have a direct

relation to the feature extraction method being employed. After careful tuning of the feature extrac-

tion parameters, the computed distance between Gaussian components of different actions may still

be significant enough to surpass the specified threshold, causing an unwanted connection between

unrelated sub-actions. For this reason, we refrained from adding this step, and used the previously

proposed method for representing human actions in a much more computationally-efficient and

flexible manner.

12



Chapter 3

Information Divergence Estimation

using Kullback-Leibler Divergence for

One-Shot and Few-Shot Human Action

Classification

Following the representation of human actions using KMeans and Gaussian Mixture Models,

it is now possible to find similarities between different actions by employing a method based on

Kullback-Leibler Divergence. This can be conducted in a one-shot or few-shot setting. In this

section, the similarity check process, as well as all the conducted experiments that prove the effec-

tiveness of the proposed framework will be presented.
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3.1 Kullback-Leibler Divergence

Considering the single Gaussians p(x) = N (x;µp; Σp) and q(x) = N (x;µq; Σq), the KL-

divergence is represented as follows [44]

KLGMM (p||q) =
1

2

[
log
|Σp|
|Σq|

+ tr(Σ−1q Σp)− k

+ (µq − µp)TΣ−1q (µq − µp)
]
, (14)

where k is the dimension of both distributions, µp and µq stand for the mean values of the Gaussians,

Σp and Σq represent the covariance values and tr(·) the trace of a matrix.

In order to compute the KL-divergence between two GMMs, we consider the approximation

proposed by Goldeberger et al. [43] as follows

KLGMM (f ||g)=

m∑
i=1

ωf,i(KLG(fi||gπ(i)) + log
ωf,i
ωg,π(i)

), (15)

where π(i) = arg min
j

(KLG(fi||gj) − logωg,j), f and g are two GMMs including fi and gi for

i ∈ {1, · · · ,m} as their Gaussian distributions. Moreover, ωf,i and ωg,i are the corresponding

weights and m is the total number of Gaussian components.

Since each trained action has its own GMM representation, the classification process is done by

matching each test video to the trained action with which the KL-divergence value was the lowest.

The proposed classification framework is described in Alg. 1.

3.2 Experimental Results

The conducted experiments involved training the model using a set of actions and classifying

test ones using one-shot and k-shot learning approaches. Trials were conducted using several as-

sumptions in an attempt to increase the representation quality of each action, hence maximizing

classification accuracy.

14



Algorithm 1: The proposed classification framework using
similarity measurement

1 function Classification (KM , n, GMM );
Input : KMeans parameters KM of test videos X

Number of frames n of training blockt
Gaussian Mixture Model parameters GMM of

training blockt
Output: Classification labels t of videos X

2 foreach Video Xi in X do
3 foreach blockj in the set of blocksn do
4 GMMj = GMM(blockj), Eq. 9;
5 KLj = KL(blockj , blockt), Eq. 15;
6 end
7 mini = Min KLj
8 Label Xi as t where mini = KL(blockj , blockt)

9 end
10 return labels t

3.2.1 Datasets

Our experiments were conducted on the Weizmann Human Action [37] and the KTH [47]

datasets, which contain actions that resemble the ones seen on online platforms (Short, contain one

or more repetitions of the action and recorded using a fixed camera). The Weizmann dataset contains

90 low-resolution videos consisting of 10 natural actions, as seen in Fig. 3.1 (bend, jumping jack,

jump forward, jump in place, gallop sideways, run, skip, walk, wave one hand, wave two hands).

As for the KTH dataset, it contains 600 action videos involving 25 subjects performing 6 different

actions, as seen in Fig. 3.2 (walking, jogging, running, boxing, hand waving, hand clapping) in 4

dissimilar scenarios.

3.2.2 Data Preprocessing

The goal is to pre-process all the data in a way that will maximize the quality of the extracted

features while discarding unmeaningful ones. Initially, the input videos were resized according to

their initial resolution using similar scale factors for both heights and widths. This was achieved by

resizing each frame using either an area interpolation when resizing down, or a bicubic interpolation

when resizing up, to cover up for lost information. Videos with lower resolutions can benefit from

15



Figure 3.1: Actions from the Weizmann Human Action dataset [37]

Figure 3.2: Actions from the KTH dataset [47]

being resized to a larger size prior to feature extraction, especially when followed by optical flow-

based methods as the one that has been described in section 2.1. In contrast, higher resolution videos

are typically heavy in terms of processing and may be problematic when it comes to storage space.

Furthermore, the creation and the use of additional and often unnecessary features in the model also

affect the performance of the model itself. Therefore, the clips can benefit from being resized to a

lower specified size.

Followingly, a fixed size bounding box (BBx) was employed around the actors in each video

to maximize classification accuracy while minimizing background noise. For actions that involve
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significant lateral movement, a high-speed tracking method based on kernelized correlation filters

[46] was employed on the actors to automatically keep the BBx around them. Additionally, the

velocity of the BBx was substracted from the optical flow vectors within it. This enables us to focus

solely on the articulation of the limb movements of the actors.

Both aforementioned steps can be altered according to different factors such as the quality of

the clips in the dataset, the desired processing time, and the expected output from the user.

3.2.3 Training

Our goal was to obtain a representation of a single instance for each action. In this regard, after

computing GF-OF between two consecutive frames, KMeans was applied using 50 components

(K = 50) on sub-clips [f, f + 2] consisting of three consecutive frames. A moderately larger

number of frames per sub-clip may have also been employed for faster computation without having

a considerable impact on classification results. Sub-clips in which little to no movement was present

(e.g. transition from bending down to going back up) employed a lower value of K clusters, to

prevent them from holding or being concentrated upon few optical flow points.

During the training process for one-shot learning, one video of each action was used (k videos

were used for k-shot learning). Training videos in which the action was only executed once had

all their KMeans clusters, which represent that single instance, saved. On the other hand, training

videos in which more than one repetition of the action was completed, had the KMeans clusters

of only one of those instances saved. This process was completed by setting a range of frames

which contain only one instance for each action. The length f (number of frames) of each action

occurrence was also stored and used in the testing process described in Section 3.2.4. Finally, the

KMeans clusters of each action were represented by a Gaussian mixture model consisting of n

Gaussian components.

Gaussian Components Experiments were conducted to determine the ideal number n of Gaus-

sian components per mixture. The results illustrated in Fig. 3.3 demonstrate that the highest average

classification accuracies were achieved when n = 9. This signifies that 9 Gaussian components are

sufficient to accurately represent a fully executed action.

Additionally, Gaussian components of similar action instances may resemble each other in the
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Figure 3.3: Classification accuracy with different numbers of Gaussian components n per mixture
using the Weizmann dataset. The highest accuracies were achieved when at least 9 components
were used (n = 9).

(x, y, u, v) dimensions, however, they often do not occur in the same range on the temporal axis (t).

To deal with this drawback, we employed a simple method in which the Gaussian mixture of each

action instance was assumed to begin at t = 0 on the temporal axis. This was done by subtracting

the lowest t value of all the KMeans points, which are within the range of frames of interest, from

the t values of all the other points within that same range. This process was employed prior to each

Gaussian mixture generation in both training and testing steps. For example, selecting the second

“Wave2” instance displayed in Fig. 2.2 for training would involve the employment of this process

on the KMeans points within the range of that instance so that they end up being within the frame

range t ∈ [0, 25] instead of t ∈ [30, 55].
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3.2.4 Testing

Once one, or k, representations of each action were carried out, the testing process went as

follows: Each video in the dataset, except the ones used in training, went through a similarity mea-

surement process in which an attempt to find similarities between the trained actions and the data

of the test video was conducted. This was done by calculating the KL-divergence between the

Gaussian mixture of each trained action and different Gaussian mixtures in the testing video. Those

Gaussian mixtures were generated on different f frames long blocks. One of the assumptions we

made was that all similar actions have instances executed over the same number of frames f . For in-

stance, a trained “bending” action consisting of 50 total frames had an f value set to 50. Therefore,

when an attempt was made to find similarities between this “bending” action and the action in the

test video, 50 frames long blocks of KMeans points were represented as Gaussian mixtures. After

each cluster was generated, KL-Divergence was applied to obtain a measure of similarity between

the training and the generated testing probability distributions. Finally, after obtaining a measure of

similarity using each trained action, the test video was classified by matching it to the trained video

with which the KL-divergence value was the lowest. All classification accuracies demonstrated are

averages of 5 runs.

3.2.5 One-Shot Learning

In some cases, two instances of a same action executed by two different actors have a signif-

icant resemblance between each other from a temporal perspective. An example of such case is

demonstrated in Fig. 1.1, in which the actors “Daria” and “Denis” from the Weizmann dataset have

very similar “Two-hands wave” actions. However, in general cases, a clear difference was noticed

in the number of frames f required to represent one same action. This is due to the presence of

variance in the execution time of an action from person to person. Due to this observation, we con-

ducted some experiments, using one-shot learning, to check how our assumption regarding fixing

the value of f according to the training data would affect the classification results. The experiments

involved replacing f by f +∆ with ∆ ∈ [1, 15], in which ∆ represents a fixed number of additional
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frames ranging from 1 to 15. The results showed only a slight fluctuation of ±2% in accuracy as ∆

increased, confirming the validity of our assumption.

Seo and Milanfar [6] 75%
Yang [7] 80%
FSHMM [39] 81.5%
MAP+SHMM [10] 81.88%
MAP+SHMM (Relaxed) [10] 87.12%
Proposed 89.4%

Table 3.1: Classification accuracies for one-shot learning of proposed work and similar works using
Weizmann dataset.

Seo and Milanfar [6] 65%
SHMM [10] 70.4%
FSHMM [39] 71.8%
Proposed 73.1%

Table 3.2: Classification accuracies for one-shot learning of proposed work and similar works using
KTH dataset.

Experiments conducted using one-shot learning lead to an average classification accuracy of

89.4% for the Weizmann dataset and 73.1% for the KTH one. The accuracies of our work have

been compared with methods from other works which were used in one-shot/k-shot learning settings

on the same datasets. The results displayed in Tab. 3.1 and Tab. 3.2 show that our work has the

highest accuracy compared to other works. The confusion matrix in Fig. 3.4, shows that when

only one example per action is used during training in the Weizmann dataset, the main source

of misclassification happens in the “skip” action, in which 50% of the test videos were wrongly

classified, and received prediction labels of “side” or “walk” instead. In the case of the KTH dataset,

the main source of misclassification was between the “jogging” and “running” actions, which are

highly similar in nature. A solution we will be implementing in an attempt to fix such problem in

future works is to automate the hyperparameters adjustment, as discussed in Section 3.3.

Tab. 3.3 demonstrates the KL-Divergence values between a set of trained actions using one-shot

learning and the ones of actor “Daria” from the Weizmann Human Action dataset. The classification
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Figure 3.4: Normalized confusion matrix for the classification of 10 actions of Weizmann Human
Action dataset using one-shot learning.

bend jack jump pjump run side skip walk wave1 wave2

Test Actions

bend 2.14 31.32 10.51 28.39 6.85 6.81 5.92 7.68 7.07 9.30
jack 3.77 0.29 3.64 1.35 2.90 3.09 4.20 4.15 4.00 3.02
jump 5.81 31.55 1.94 23.08 2.82 3.50 10.91 13.05 4.77 24.36
pjump 0.69 2.30 2.45 0.69 3.95 5.39 9.45 10.83 5.39 5.90
run 2.59 25.40 1.75 18.35 0.50 2.09 5.29 6.28 2.66 14.90
side 2.19 34.76 5.68 27.54 3.36 1.03 0.86 1.21 4.13 31.50
skip 2.27 23.00 11.77 13.55 5.29 3.31 0.82 0.85 8.10 25.57
walk 6.32 19.03 21.86 18.02 14.54 13.86 4.78 4.15 22.34 8.33
wave1 3.99 6.57 6.35 7.22 5.09 5.25 5.98 7.04 1.62 4.71
wave2 3.43 5.14 6.78 5.81 3.59 4.54 6.96 8.52 3.19 1.74

Table 3.3: Min. KL-Divergence values between training and testing actions using one-shot learning.
All testing actions are executed by “Daria” from the Weizmann Human Action dataset. Values
highlighted in green correspond to correct classifications, whereas the one highlighted in red is an
example of misclassification, in which the “side” action of Daria had higher similarity with the
trained “skip” action than the trained “side” one.

process was done by matching each action executed by “Daria” to the trained one with which the

KL-Divergence value is the lowest. It is perceivable, that actions which share some similarities with
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each other, have lower divergence values between each other compared to ones that do not share

ample similitude.

3.2.6 k-Shot Learning

Following one-shot learning, each experiment involved incrementally training one additional

example of each action prior to going through the classification process. Each additional action

video used in training was removed from the test dataset. The results shown in Fig. 3.5 compare our

classification accuracies using different values of k with methods from different works. The graph

shows that using as little as one training example per action (k = 1), a classification accuracies of

73.1% and 89.4% were achieved for the KTH and Weizmann datasets, respectively, compared to

80% for Yang [7], and 30% for BoVW [32]. As the number of training examples k increases, the

classification accuracies can be seen to increase the most significantly when k is low (k < 4).
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Figure 3.5: Classification accuracy comparison between proposed method and others.

3.3 Limitations and Possible Extensions

This novel occurrence-based representation method that we have presented has been proven to

be robust, even when only one training example is used. The use of KL-divergence values as a mea-

sure of similarity may also be combined with threshold values and used to discard outliers in human

action datasets (e.g. Datasets which do not solely contain videos of human actions). For instance, a
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test video which has high KL-Divergence value with all trained actions would be labelled as an out-

lier. Regarding the time complexity of our method, since it is essentially based off an instance-based

learning approach, it holds the same advantages and drawbacks as other lazy learning methods. The

training phase is considerably efficient but is coupled with a slow evaluation phase. Needless to say,

the computation time highly depends on the nature of the application in which the method is being

used and comes at the expense of some classification accuracy. For instance, a one-shot learning

setting combined with minimal frame rescaling, high value of k (number of frames per sub-clip

prior to application of KMeans) and low number of blocks in the KL-Divergence process, leads to

lower computation time than a few-shot learning setting using opposite settings to maximize clas-

sification accuracy. Moreover, although the classification accuracies have been effective, there is

room for improvement in the following sections:

Hyperparameters Different hyperparameters such as the GF-OF threshold t, the number of K-

means components K and the number of Gaussian components n used per mixture, were set after

conducting experiments to find their ideal values. Our next objectives include the automation of the

adjustment of those hyperparameters, by designing both a feature extraction and a training model

which can automatically adjust the hyperparameters according to the input data. For example, the

training model would set the ideal number of Gaussian components n to represent a specific action

and proceed through the “similarity measurement” process using that same number of components

to find actions similar to the trained ones.

Unsupervised Action Recognition The training model that we have implemented was done in a

supervised manner. Our next goal is to create a completely unsupervised human action recognition

model which is capable of automatically finding action instances/repetitions within a same video

and use one of those repetitions in the classification process. Additionally, we plan on utilizing the

effectiveness of frameworks such as GAN and R-CNN to expand the flexibility of our work and

enable its application in a wider range of datasets, including ones with multiple actors per video.
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Chapter 4

Conclusion

In this thesis, an instance-based learning approach for human actions classification was pro-

posed. The method employed Gunnar Farneback Optical Flow and K-means clustering to obtain

accurate spatiotemporal features of an action, represented those features by a Gaussian mixture

model, classified test videos using KL-divergence between two Gaussian mixtures and matched

ones with the lowest divergence values. The conducted experiments involved validating an assump-

tion made regarding the temporal perspective of each action instance, pinpointing the ideal number

of Gaussian components to use per Gaussian mixture and running experiments using one-shot and

k-shot learning. As displayed in the results section, the application of KL-Divergence as a similar-

ity measure is demonstrated. Its computed values validate the usefulness of using such measure in

our framework to not only achieve action classification, but to also give us a sense of how similar

the actions in the dataset are. Similar actions exhibit low divergence values between each other,

whereas dissimilar ones exhibit considerably higher values. The meaningful representation of hu-

man action instances, combined with the instance-based learning approach used, demonstrated that

using as little as one training video per action yielded considerably high accuracies in comparison

with state-of-the-art works. The flexibility of our work enables its application to other fields such

as detection of outliers in datasets according to their KL-Divergence values (or similarity) with re-

spect to the rest of the dataset. Additionally, various extensions could also be used on the proposed

framework depending on the application, such as automating the hyperparameter tuning process
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used in the KMeans and GMM processes according to the input dataset to achieve higher classifi-

cation accuracies while optimizing overall performance. Future works will be devoted to applying

the proposed framework to anomaly detection in crowded areas by integrating it with different topic

modeling-based approaches.
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