
Rule-based Machine Learning Algorithms for Smart
Automatic Quadrilateral Mesh Generation System

Jie Pan

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Information and Systems Engineering) at

Concordia University

Montréal, Québec, Canada

November 2021

© Jie Pan, 2021

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Jie Pan
Entitled: Rule-based Machine Learning Algorithms for Smart Automatic

Quadrilateral Mesh Generation System

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards with respect to
originality and quality.
Signed by the Final Examining Committee:

Chair
Dr. Kudret Demirli

External Examiner
Dr. Sofiane Achiche

External to Program
Dr. Tsz Ho Kwok

Examiner
Dr. Chun Wang

Examiner
Dr. Jiayuan Yu

Thesis Supervisor
Dr. Yong Zeng

Thesis Co-supervisor
Dr. Jingwei Huang

Approved by
Dr. Mohammed Mannan, Graduate Program Director

11/22/2021
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Rule-based Machine Learning Algorithms for Smart Automatic Quadrilateral Mesh
Generation System

Jie Pan, Ph.D.

Concordia University, 2021

Mesh generation, as one of six basic research directions identified in NASA Vision 2030, is an

important area in computational geometry and plays a fundamental role in numerical simulations

in the area of finite element analysis (FEA) and computational fluid dynamics (CFD). With the

rapid progress of high-performance computing hardware, mesh generation methods are required

to handle geometric domains with more complex shapes and higher resolution in reliable and fast

fashions. Yet, existing mesh generation methods suffer from high computational complexity, low

mesh quality in complex geometries, and speed limitations, and have continued to be the bottleneck

in those simulation tasks.

This thesis addresses the quadrilateral mesh generation problem from three aspects, element extrac-

tion, sequential decision making, and data generation, and their combinations. First, a self-learning

system, FreeMesh-S, for finite element extraction system is investigated. Element extraction is a

major mesh generation method for its capabilities to generate high-quality meshes around the do-

main boundary and can be formulated into a sequential decision making process. Three kinds of

primitive element extraction rules are conceptually identified. FreeMesh-S, then learns the rules by

1) sampling the element generation rules by a reinforcement learning (RL) algorithm, 2) extract-

ing high quality samples, and 3) training the final rules by a feedforward neural network (FNN).

The comprehensive experiments demonstrate the effectiveness of the self-learned meshing rules by

FreeMesh-S.

iii

Second, an RL-based computational framework for automatic mesh generation is proposed to im-

prove algorithm automation further. A state-of-the-art RL algorithm, soft actor-critic (SAC), is used

to learn the mesh generator’s policy from trials. It achieves a fully automatic mesh generation with-

out human intervention and any extra clean-up operations, which are typically needed in current

commercial software. The reward function is carefully designed to balance the contradiction be-

tween the instant element quality and the remaining boundary quality, in order to achieve an overall

high quality mesh. The experiments have shown the competitive performance with two representa-

tive meshing methods with respect to generalizability, robustness, and effectiveness. The potentials

of mesh generation as a benchmark problem for RL are also identified.

Last, a quality function-based data generation method for the meshing algorithm is devised to in-

crease learning efficiency and algorithm performance. For any data-driven algorithms, high quality

and balanced data are essential and deterministic to the performance. This method samples the

input-output of the three rules according to their feature spaces; selects high quality samples by a

quality function that evaluates if the output is an appropriate solution to the input; and trains an

FNN model to simulate the mapping relation via the obtained data. The experiments show that the

learning time is greatly reduced while the model has competitive performance comparing with other

meshing methods.

To conclude, this thesis combines artificial intelligence techniques, rule-based system, neural net-

works, and RL, to automate the quadrilateral mesh generation while significantly reducing the time

and expertise needed during the creation of high quality mesh generation algorithm. All the tech-

niques can be directly generalized to 3D mesh generation.

iv

Acknowledgments

The way towards success is always full of tears and joy. The most important thing is to keep

curiosity and a heart for reaching excellence. It has been much more difficult and meaningful than

I thought from the first day of my Ph.D. journey. It has transformed me from confident to humble,

from a passive thinker to an active thinker, and from being solution-driven to being purpose-driven

and design-driven.

I would like to express my sincere gratitude to my supervisor, co-supervisor, co-authors, and col-

leagues for their professional assistance, guidance, experience, and support throughout this research.

I would like to thank my co-supervisor, Prof. Jingwei Huang, for providing me your professional

research knowledge and experience. Specially, I would like to express my thanks to my supervisor,

Prof. Yong Zeng, for sharing your understanding of doing excellent research, and for supporting

and encouraging me during difficult times.

I would like to thank Concordia University for providing me the wonderful research opportunity

and NSERC Discovery Grant for the financial support.

I am grateful for all my friends from the Design Lab. They are generous in providing support,

encouragement, and professional suggestions in my research and life. My awesome friend, Gaby,

thanks for motivating me to be a better myself, and thanks for your always mental support.

I am honored to have my amazing family, thank my parents for the unrequited investment and

support. Their endless support is the driving force keeping me moving forward. My little brother,

v

Yuhang, thanks for taking care of our parents when I’m absent. I would like to express my thanks

to my grandparents, for always caring and thinking about me. Because of all your love and support,

I could be able to finish my research and enjoy my life.

vi

Contribution of Authors

Chapter 4 of this thesis was published inArtificial Intelligence for Engineering Design, Analysis

and Manufacturing. Chapter 5 of this thesis has been submitted to the journal of IEEE Transactions

on Neural Networks and Learning Systems. Chapter 6 of this thesis is prepared to submit to the

journal of IEEE Transactions on Knowledge and Data Engineering. The author of this thesis was

responsible for the development, testing, and application of the methods discussed in this research,

along with preparation of manuscripts submitted to peer-reviewed journals. Dr. Yong Zeng, Pro-

fessor, Concordia Institute for Information Systems Engineering, Concordia University, supervised

this thesis and provided valuable guidance and advice on various aspects of the research.

The following individuals provided advice and assistance in all aspects of this thesis, and contributed

to the review and editing of each manuscript: Dr. Jingwei Huang, Associate Professor, Department

of Engineering Management and Systems Engineering, Old Dominion University; Dr. Yunli Wang,

Research Officer, National Research Council Canada; Dr. Gengdong Cheng, Professor, Department

of Engineering Mechanics, Dalian University of Technology.

List of publications related to the thesis:

Pan, J., Huang, J., Wang, Y., Cheng, G., & Zeng, Y. (2021). A self-learning finite element extraction

system based on reinforcement learning. Artificial Intelligence for Engineering Design, Analysis

and Manufacturing, 1–29. Doi: 10.1017/S089006042100007X

Pan, J., Huang, J., Cheng, G., & Zeng, Y. (2021). Reinforcement learning for automatic quadrilateral

vii

mesh generation: a soft actor-critic approach. IEEE Transactions on Neural Networks and Learning

Systems. (Under review).

Pan, J., Huang, J., Cheng, G., & Zeng, Y. (2021). Sampling balanced high quality data to train an

automatic mesh generator for its optimal performance. IEEE Transactions on Knowledge and Data

Engineering. (Under review).

viii

Contents

List of Figures xiii

List of Tables xviii

1 Introduction 1

1.1 Motivation . 3

1.2 Objective . 4

1.3 Outline . 5

2 Literature Review 6

2.1 Mesh generation . 7

2.1.1 Conventional methods . 7

2.1.2 Machine learning-based methods . 10

2.2 Reinforcement learning . 14

2.3 Imbalanced learning . 16

2.3.1 Data-level approaches . 16

2.3.2 Algorithm-level approaches . 18

2.4 Research challenges and opportunities . 19

3 Contributions 22

4 A self-learning finite element extraction system based on reinforcement learning 26

ix

4.1 Introduction . 27

4.1.1 Motivation: why is it necessary to use the element extraction method? . . . 28

4.1.2 The challenge of the element extraction method 30

4.1.3 Contribution . 30

4.2 Smart designing of the smart element extraction system 31

4.2.1 How is the element extraction method smart? 32

4.2.2 How can the element extraction system be smartly evolving and designed? 35

4.3 A self-learning system for element extraction . 37

4.3.1 Element extraction as a reinforcement learning problem 38

4.3.2 A2C RL network for element extraction based mesh generation 42

4.3.3 FNN as policy approximator for fast learning and meshing 51

4.3.4 Summary . 56

4.4 Experiments . 57

4.4.1 Experiment settings . 57

4.4.2 Experiment 1: training effectiveness and efficiency 59

4.4.3 Experiment 2: comparisons of the proposed method with existing methods 65

4.4.4 Summary . 72

4.5 Discussion . 73

4.5.1 Domain knowledge dependency . 73

4.5.2 The relation between smart design and smart system 74

4.5.3 Limitations . 75

4.6 Conclusions . 76

5 Reinforcement learning for automatic quadrilateral mesh generation: a soft actor-

critic approach 83

5.1 Introduction . 84

5.1.1 Mesh generation challenges . 84

5.1.2 Related work . 86

5.1.3 Contributions . 89

x

5.2 Problem formulation and fundamentals . 90

5.2.1 Problem formulation . 90

5.2.2 Reinforcement learning . 93

5.3 RL based mesh generation . 95

5.3.1 Action formulation . 95

5.3.2 State representation . 96

5.3.3 Reward function . 99

5.3.4 Meshing scheme via SAC . 101

5.4 Experimental results . 104

5.4.1 Implementation details . 104

5.4.2 Evaluation . 107

5.5 Discussion . 113

5.6 Conclusion . 115

6 Sampling balanced high quality data to train an automatic mesh generator for its op-

timal performance 116

6.1 Introduction . 117

6.2 Problem formulation and fundamentals . 119

6.2.1 Mesh generation . 119

6.2.2 Data generation . 122

6.3 Quality function-based data generation for mesh generation 126

6.3.1 Data generation procedure . 126

6.3.2 Quality function for performance measurement 128

6.3.3 Sample balancing . 129

6.3.4 FNN training . 130

6.4 Experiment results . 130

6.4.1 Implementation details . 130

6.4.2 Evaluation . 132

6.5 Discussion . 137

xi

6.6 Conclusion . 137

7 Conclusions and future works 139

7.1 Conclusions . 139

7.2 Future works . 140

Bibliography 142

xii

List of Figures

Figure 4.1 Quad mesh generation process (Yao, Yan, Chen, & Zeng, 2005) 32

Figure 4.2 Three primitive generation rules (Zeng & Cheng, 1993) 33

Figure 4.3 Changes of intermediate boundary shapes: all boundaries are represented in

red lines from (2) to (9). 33

Figure 4.4 Challenges in selecting a proper rule to extract an element for an edge V1V2. 34

Figure 4.5 Trade-off between qualities of an extracted element and the remaining bound-

ary. Subfigures (a), (b), and (c) correspond to the situation in Figure 4.4 (b); Sub-

figures (d) and (e) correspond to the situation in Figure 4.4 (f). Points A, A1, and

A2 form better elements than B, B1, and B2. 35

Figure 4.6 Element extraction architecture . 38

Figure 4.7 Architecture of Reinforcement Learning (Sutton & Barto, 2018) 39

Figure 4.8 Element extraction process as Reinforcement Learning 39

Figure 4.9 Partial boundary . 42

Figure 4.10 A2C agent architecture for element extraction 43

Figure 4.11 A2C network structure. In general, the actor will simulate three primitive

rules, as shown in Figure 4.2 (a), (b), and (c). In the current implementation, the

extraction rule in Figure 4.2 (a) is not considered and it will be implemented in the

next version of the system. 46

Figure 4.12 Coordinate transformation . 48

xiii

Figure 4.13 Invalid situations of the element. P0 is the reference point and P is the newly

generated point. 49

Figure 4.14 Different quality of elements . 49

Figure 4.15 New boundary angles . 50

Figure 4.16 FNN agent architecture . 52

Figure 4.17 FNN module structure . 53

Figure 4.18 Three types of outputs . 53

Figure 4.19 Example of experience extraction of one element. In (a), each element has

a tuple < elementid; elementquality > inside, where element id refers to the

generation order of the element; and element quality is calculated by ηei ; (b)-(d)

show three types of patterns collected for training samples: (b) type 0; (c) type 1;

(d) type 2. 55

Figure 4.20 Proposed self-learning system FreeMesh-S: architecture 57

Figure 4.21 experimental domains . 58

Figure 4.22 Model training process . 60

Figure 4.23 Partial results of sampling . 61

Figure 4.24 The first meshing result of the FNN model 62

Figure 4.25 Temporal training cost of A2C network . 63

Figure 4.26 All the meshing results of FreeMesh-S . 67

Figure 4.27 Meshing results of GB method . 68

Figure 4.28 Meshing results of GD method . 69

Figure 4.29 Meshing results of CP method . 70

Figure 4.30 Number of domains that each method achieves the best performance in each

metrics . 70

Figure 4.31 Multi-connected domain to single-connected domain. (1) Multi-connected

domain; (2) Single-connected domain. 76

Figure 5.1 Meshing problem. (a) The initial geometry is defined by the boundary B

consisting of a set of vertices V ; (b) The final mesh is the result of discretization

into a set of quadrilateral elements Q. 91

xiv

Figure 5.2 A sequence of actions took by the mesh generator to complete the mesh.

At each time step ti, an element (in red) is extracted from the current boundary

(in blue). The boundary is then updated by cutting off the element and serves as

the meshing boundary in the next time step ti+1. This process continues until the

updated boundary becomes an element. 92

Figure 5.3 The RL-based computational framework for automatic mesh generation. The

environment represents the meshing boundary. The agent is the mesh generator that

could implement various RL techniques. 93

Figure 5.4 Action spaces for each type. Subfigures (a)-(c) correspond to three types of

actions, respectively. The blue area is the area with the reference vertex V1 as the

origin and a radius r to choose the candidate vertices, such as, V3 in type 1 and V3

and V4 in type 2. 97

Figure 5.5 Partial observation of the meshing boundary. For example, the partial bound-

ary, where Lr = 4, n = 2, g = 3, is represented as the state. First, two vertices on

the left and right sides of the reference vertex V0 are selected, respectively. Sec-

ond, the angle ∠Vl,1V0Vr,1 is evenly split into three angles θ1, θ2, and θ3; three

fan-shaped areas are hence formed with these angles and a radius Lr. Then, the

closest vertex in each area is selected. 98

Figure 5.6 Element quality with different shapes. The quality value ranges from 0 to 1.

The element with the best quality 1 is a square. 100

Figure 5.7 The quality of the updated boundary. Q1 is the newly generated element.

Once it is removed, it forms two angles θ1 and θ2 with existing boundary segments.

The quality is jointly measured by these two angles, and the closest Euclidean dis-

tance dmin of the newly added vertex V3 is to the existing segments. d1 and d2 are

the Euclidean lengths of segments V3V4 and V2V3. 101

Figure 5.8 NN structures comparison. S1-4 represent four different neural network

structures in Hidden layers, including [256, 256], [128, 128, 128], [64, 128, 64,

32, 16], and [64, 128, 256, 128, 64], respectively. 105

xv

Figure 5.9 RL state comparison. The observation range is formed by Lr n g, which

represents the radius of the fan shape in the state, the number of neighbouring ver-

tices on the left and right side of the reference vertex, and the number of vertices

in the fan-shaped area, respectively. This range determines how far and how much

information the agent will be observed. 106

Figure 5.10 Different mesh densities controlled by reward function. Three kinds of den-

sities (a)-(c) are controlled by parameters in the density term, υ = 1.5, υ = 1, and

υ = 0.5, respectively. Subfigure (d) is the comparison results of the number of

generated elements by three kinds of densities over 10 episodes. 108

Figure 5.11 Meshing performance comparison results over 8 kinds of quality indices. BQ

represents the Blossom-Quad method; F-RL represents the FreeMesh-RL method.

L, H indicate if the lower value or higher value is preferred, respectively. 112

Figure 6.1 A sequence of decisions to complete the mesh. At each time step ti, an

element (in red) is extracted from the current boundary (in blue). The boundary is

then updated by cutting off the element and serves as the meshing boundary in the

next time step ti+1. This process continues until the updated boundary becomes a

quadrilateral element. 121

Figure 6.2 An example of the input with Lr = 4, n = 2, g = 3 (Pan, Huang, Cheng, &

Zeng, 2021). 125

Figure 6.3 Quality function-based data generation procedure for mesh generation. The

mesh generation algorithm consists of a set of input-output pairs. 127

Figure 6.4 Comparison of datasets with four levels of quality thresholds, τ ∈ {0.6, 0.7,

0.75, 0.8}. Five kinds of metrics are used to represent the characteristics of the

dataset, including element quality (ηe in Equation 39), boundary quality (ηb), qual-

ity (η), angle (i.e., ∠Vl,1V0Vr,1 in the input), and averaged segment length. 131

Figure 6.5 Comparison of element quality with four levels of sample size,M ∈ {5e3, 1e4,

4e4, 1e5}. Element quality is used to measure the meshing results with different

levels of sample size. 132

xvi

Figure 6.6 Comparison of vertex distribution of samples. The first row (i.e., Subfigure

(a)) is the distribution of all the vertices in the input-output samples extracted from

Gmsh; The second row (i.e., Subfigure (b)) is the vertex distribution of samples

generated by FreeMesh-DG with quality threshold τ ≥ 0.7. Type 0, 1, and 2 cor-

respond to the three basic rules in the output. Only type 1 needs generating a new

vertex (in red) to form an element. Blue vertices represent the neighboring vertices

around the reference Vertex; yellow vertices represent the vertices in the fan-shaped

area; all of them are included in the input. The x and y axes are the coordinate axes

of vertex. 133

Figure 6.7 Comparison of angle distribution of samples. The angle ranges from 0 to π.

Type 0, 1, and 2 correspond to the three basic rules in the output. Subfigure (a) is

the angle distribution of samples from Gmsh; Subfigure (b) is the vertex distribution

of samples generated by FreeMesh-DG with quality threshold τ ≥ 0.7. 134

xvii

List of Tables

Table 4.1 Examples of extracted samples for element 15: the reference point P0(x0, y0)

and output point Pi(xi, yi) are the same across these samples, respectively 54

Table 4.2 Examples of extracted samples in Table 4.1 after coordinate transformation

following Eq. 4.3.2 . 56

Table 4.3 Description of 10 testing domains . 58

Table 4.4 Mesh quality metrics . 58

Table 4.5 Self-evolving process of FNN model. 61

Table 4.6 Self-evolving process of FNN model. 78

Table 4.7 Different element quality threshold comparison: L, H indicates if the lower

value or higher value is preferred, respectively. The hidden layer of this FNN model

is [32, 64, 128, 64, 32, 16]. Each metric value is the average value of the three

domains (D1, D2, and D3). 78

Table 4.8 Comparison of FNN network structures: L, H indicate if the lower value or

higher value is preferred, respectively. Each metric value is the average value over

the three domains (D1, D2, and D3). 79

Table 4.9 Meshing speed (elements per second) of A2C and FNN for all 10 domains.

Avg. indicates the average speed; STD indicates the standard deviation. 79

xviii

Table 4.10 Mesh quality metrics of four methods on 10 domainsL, H indicate if the lower

value or higher value is preferred, respectively. The value in bold means the best

among other approaches in a domain. GB refers to Gmsh-Blossom; GD indicates

Gmsh-DelQuad; CP is CUBIT-Pave; and SS means the proposed self-learning sys-

tem, FreeMesh-S. 80

Table 4.11 Comparison of geometry knowledge required to develop and implement the

algorithms and system . 81

Table 4.12 Averaged mesh quality metrics of four methods on 10 domains: L, H indicate

if the lower value or higher value is preferred, respectively. The value in bold means

the best among other approaches in a domain. GB refers to Gmsh-Blossom; GD

indicates Gmsh-DelQuad; CP is CUBIT-Pave; and SS means the proposed self-

learning system, FreeMesh-S. 82

Table 5.1 Training hyperparameters . 105

Table 5.2 Meshing same shape with different density by FreeMesh-RL. 109

Table 5.3 Scalability evaluation for three domains . 109

Table 5.4 Meshing results comparison . 110

Table 5.5 Averaged mesh quality metrics over three domains 111

Table 6.1 Meshing results comparison . 136

Table 6.2 Averaged mesh quality metrics over the three domains 136

xix

Chapter 1

Introduction

Tremendous achievements have been made with the advancement of machine/deep learning tech-

niques in many aspects of modern industry: from pattern recognition of image and speech (Q. Zhang,

Yang, Chen, & Li, 2018) to autonomous driving (Y. Wu, Liao, Liu, Li, & Lu, 2021), and to the pro-

tein structure prediction (Jumper et al., 2021). Machine learning algorithms empower systems with

the ability to automatically learn and improve from experience without being explicitly programmed

and without human intervention (LeCun, Bengio, & Hinton, 2015).

Mesh generation is one of the critical fields of modern industry and serves as the fundamental for

numerical simulations in finite element analysis (FEA), computational fluid dynamics (CFD), or

graphic model rendering Gordon and Hall (1973); Roca and Loseille (2019). For example, solving

partial differential equations (PDE) using finite element methods requires target geometric regions

or objects to be discretized into polygonal or polyhedral meshes first; topology optimization utilizes

finite element analysis to study the behaviors of geometric objects (K. Zhang, Cheng, & Xu, 2019).

It is also identified as one of the six basic research directions in NASA’s Vision 2030 CFD study

(Slotnick et al., 2014).

The purpose of mesh generation is to discretize complex geometries into a finite set of (geomet-

rically simple and bounded) elements, such as triangles or quadrilaterals (in 2D geometries) or

1

tetrahedral or hexahedral (in 3D geometries). Although triangular and tetrahedral meshes have the

availability of fast and robust generators, quadrilateral and hexahedral meshes are particularly fa-

vored by many applications for their ability to model structure behaviors with less computational

power and higher accuracy (Docampo-Sanchez & Haimes, 2019). However, quadrilateral and es-

pecially hexahedral are harder problems, and the existing generation methods are constantly the

significant bottleneck for the simulations of FEA/CFD, due to the computational complexity, low

mesh quality in complex geometries, and the dependence of heuristic knowledge in algorithm de-

velopment (Rushdi, Mitchell, Mahmoud, Bajaj, & Ebeida, 2017; Slotnick et al., 2014; Zhao, Chen,

Zheng, Huang, & Zheng, 2015). There is an actual demand for an automatic mesh generator that

would work on arbitrarily complex geometries while maintaining high mesh quality.

There are mainly two types of methods: structured and unstructured mesh generators. All ele-

ments in structured meshes have the same valence in their vertices and are arranged in regular

patterns (Thompson, Soni, & Weatherill, 1998). Most real-world engineering problems have com-

plex geometric boundaries; structured meshes have poor mesh quality near the domain boundaries;

hence, unstructured meshes are preferred, which can adapt the mesh structure to complex boundary

shapes (Bommes et al., 2013; Garimella, Shashkov, & Knupp, 2004; Owen, 1998; Remacle et al.,

2012).

Conventional methods for unstructured quadrilateral mesh could be classified into two categories:

indirect and direct methods (Shewchuk, 2012). Indirect methods start with a triangular mesh and

then transform the triangular elements into quadrilateral elements by various strategies, including

optimization (Brewer, Diachin, Knupp, Leurent, & Melander, 2003), refinement and coarsening

(Garimella et al., 2004), simplification (Daniels, Silva, Shepherd, & Cohen, 2008), perfect matching

(Remacle et al., 2012). These methods, however, suffer from a large number of irregular vertices,

which is undesired in numerical simulations.

Direct methods generate quadrilateral elements directly. These methods include 1) advancing front

2

technique, which recursively generates elements from the domain boundary and updates its bound-

ary inwardly by cutting the generated elements until the whole domain is filled with quadrilat-

eral elements (Blacker & Stephenson, 1991; White & Kinney, 1997; Zeng & Cheng, 1993; Zhu,

Zienkiewicz, Hinton, & Wu, 1991); 2) modifying the quadtree background grid to conform to the

domain boundaries (Atalay, Ramaswami, & Xu, 2008; Baehmann, Wittchen, Shephard, Grice, &

Yerry, 1987; Liang, Ebeida, & Zhang, 2010; Liang & Zhang, 2012); 3) packing techniques, includ-

ing square packing (Shimada, Liao, & Itoh, 1998) and circle packing (Bern & Eppstein, 2000); and

4) template-based mapping methods (Gengdong & Hua, 1996). However, the generated quadrilat-

eral meshes are usually not complete (e.g., containing triangular elements), having flat or inverted

quadrilateral elements, and too much irregular arrangement. Therefore, a large amount of cleanup

operations are implemented to improve the mesh quality. The strategies range from pre-processing,

such as dividing complex geometries into small regular regions, to generating regular mesh (C. Liu,

Yu, Chen, & Li, 2017), to post-processing, such as reducing the singularity (Verma & Suresh,

2017), performing iterative topological changes (e.g., splitting, swapping, and collapsing elements)

(Docampo-Sanchez & Haimes, 2019), and mesh adaptation (Verma & Suresh, 2018).

Therefore, many extra efforts are needed to improve meshing algorithms, including using heuristic

cleanup operations to reduce the flat or inverted elements by re-adjusting location and connectivity

of element vertices; using global and local remeshing techniques to reconstruct generated mesh

in terms of topological and geometric features (Verma & Suresh, 2017); and pre-processing the

geometry to ease the element generation process (C. Liu et al., 2017). Although the mesh quality

has improved, the extra treatments make the meshing algorithms suffer from high complexity and

speed limitations, and incur expensive trial-and-error tuning for researchers.

1.1 Motivation

The aforementioned work names only a few recent advancements towards the automation of mesh

generation. Although those extra treatments could achieve the high-quality, they bring in additional

computational expense besides already complicated meshing algorithms and decrease the automa-

tion to some extend. Moreover, algorithm development is usually heuristic and requires human

3

designers to search for knowledge in a time-consuming manner. It is urgent and necessary to build

an efficient computational framework for mesh generation to sidestep the complexities and com-

putational burden of existing meshing algorithms and relieve human algorithm designers from an

inefficient and incomplete search of heuristic knowledge. This framework should provide high-

quality meshes for various complex geometries while maintaining robust automation, and avoiding

extra treatments.

Many researchers combine mesh generation with artificial intelligence algorithms, including expert

systems (Zeng & Cheng, 1993), and neural networks (NNs) (Papagiannopoulos, Clausen, & Avel-

lan, 2021; Vinyals, Fortunato, & Jaitly, 2015; Yao et al., 2005; Z. Zhang, Wang, Jimack, & Wang,

2020), to overcome those difficulties in algorithm development. However, these methods are still

not mature and cannot replace standard mesh generation algorithms in the industry. There are a few

reasons: 1) some methods have complex NN structures and are hard to train a robust generator; 2)

their problem formulation makes the generator barely adaptable to complex geometric domains; 3)

their training datasets are often low quality and imbalanced, causing low learning efficiency and

compromised model performance.

Among the existing unstructured mesh generation methods, element extraction methods provide the

optimal mesh with high quality and have strong adaptability to complex geometry shapes. However,

it is difficult, expensive, and time-consuming for human algorithm designers to develop high quality

and robust element extraction rules, even for two-dimensional domains. Their applications have

been largely limited. The rapid progress of deep learning techniques offers the potential for element

extraction methods to have radical advances to overcome these obstacles.

1.2 Objective

The objective of this thesis is to propose a highly cost-effective system that can automatically design

a self-learning 2D element extraction mesh generation algorithm.

The objective can be achieved by three actions:

4

(1) To design smart element extraction rules adaptable to complex geometries while maintaining

high mesh quality via a design methodology.

(2) To design a self-learning mechanism to automatically acquire robust and high-quality element

extraction rules using machine learning algorithms.

(3) To increase the sampling and learning efficiency of extraction rules by examining the corre-

lations between the input and output of the rule, and hence directly generating high quality

sample data.

1.3 Outline

This thesis is organized as follows: In Chapter 2, we review state-of-the-art techniques for the

three subjects we are interested in: (1) quadrilateral mesh generation, (2) reinforcement learning,

and (3) imbalanced learning. In Chapter 3, we detail our contributions. Chapter 4 investigates a

self-learning finite element extraction system. Chapter 5 proposes a reinforcement learning based

computational framework for automatic mesh generation. Chapter 6 designs a quality function-

based data generation method for the optimal performance of a mesh generation algorithm. Finally,

conclusions as well as our perspectives are presented In Chapter 7.

5

Chapter 2

Literature Review

The main objective of this research is to design a smart mesh generation system to sidestep the

complexities and computational burden of existing meshing algorithms, relieve human algorithm de-

signers from an inefficient and incomplete search of heuristic knowledge, and provide high-quality

meshes for various complex geometries while maintaining robust automation and avoiding any extra

treatments. This objective can be achieved through the previously mentioned three actions:

(1) We have designed three primitive element extract rules adaptable to arbitrary complex ge-

ometries based on a design methodology. These rules correspond to three basic geometry

situations. Any geometry can be recursively represented by or divided into a sequence of

basic situations.

(2) We have designed a self-learning mechanism to automatically acquire robust and high-quality

element extraction rules based on a reinforcement learning (RL) algorithm and a feedforward

neural network (FNN). To reduce further human intervention, we have proposed a sole RL

based learning method to obtain the rules.

(3) We have also investigated the correlations between the input and output of the rule, and de-

fined a quality function-based data generation method to increase the sampling and learning

efficiency of extraction rules.

6

This chapter will review existing technologies for mesh generation, reinforcement learning, and

imbalanced learning.

2.1 Mesh generation

2.1.1 Conventional methods

According to the connectivity of quadrilateral elements in meshes, there are structured and unstruc-

tured meshes. All elements in structured meshes have the same valence in their vertices and are

arranged in regular patterns (Thompson et al., 1998). Since the geometries in real-world simulation

problems have complex boundary shapes, structured meshes are not favored because of their poor

mesh quality near the domain boundaries. In contrast, unstructured meshes have strong adaptability

to complex boundary shapes and are frequently adopted (Bommes et al., 2013; Garimella et al.,

2004; Owen, 1998; Remacle et al., 2012).

Existing approaches for unstructured mesh generation can be classified into two categories: in-

direct and direct methods (Shewchuk, 2012). Indirect methods for quadrilateral mesh generation

often start with a triangular mesh and then transform triangular elements into quadrilateral elements

(Garimella et al., 2004). The classical transformation strategies may include optimization (Brewer

et al., 2003), refinement and coarsening (Garimella et al., 2004), or simplification (Daniels et al.,

2008). Some indirect methods split the triangle mesh into three quadrilateral elements by adding a

mid-point (Peters & Reif, 1997; Prautzsch & Chen, 2011). Owen, Staten, Canann, and Saigal (1999)

proposed Q-Morph that created an all-quadrilateral mesh by following a sequence of systematic tri-

angle transformations. Q-Morph, however, required heuristic operations such as topological cleanup

and smoothing to guarantee the quality of the final quadrilateral mesh. Ebeida, Karamete, Mestreau,

and Dey (2010) provided an indirect method, named Q-Tran, which is of provably good quality and

smoothing post-processing free in generating quadrilateral elements.

Remacle et al. (2012) proposed a fast-indirect method, Blossom-Quad, to generate all-quadrilateral

meshes by finding the best matching triangular pairs and combining them into quadrilaterals. The

quality of the generated quadrilateral mesh is not stable and limited by the initial triangulation.

7

Some triangles are easy to remain on the boundaries and appear pairwise. Remacle et al. (2013)

proposed an advanced method, DelQuad, to overcome the limitations of Blossom-Quad by generat-

ing triangular mesh suitable to be recombined into high-quality quadrilateral meshes. However, it is

a challenge for all the triangles to combine into quadrilateral elements. The class of indirect methods

often suffers from many irregular vertices, which is undesired in numerical simulations. Therefore,

some methods provide post-processing to improve this irregular situation. For example, Verma and

Suresh (2017) proposed a robust approach to increase the topological quality of generated quadri-

lateral meshes by reducing the singularity for many existing approaches; Docampo-Sanchez and

Haimes (2019) described a technique to recover the regularity by performing iterative topological

changes, such as splitting, swapping, and collapsing, on the quadrilateral mesh generated by Cat-

mull–Clark subdivision (Catmull & Clark, 1978).

Direct approach for quadrilateral mesh generation is to construct quadrilateral elements without any

intermediate triangular mesh. Zhu et al. (1991) built a mesh generator for quadrilateral elements

based on the advancing front technique. The quadrilateral elements were generated sequentially or

in parallel in each sub-boundary. Blacker and Stephenson (1991) proposed an approach named Pave,

to generate quadrilateral meshes directly in an iterative way from the boundaries of the input domain

towards the interior of the domain. White and Kinney (1997) improved the robustness of the original

Paving algorithm by changing the generation method from row by row to element by element. The

Paving algorithm is currently implemented as part of the CUBIT software (Blacker et al., 2016).

The challenge to these methods is that their ruleset is not complete, and their usages involve too

much heuristic knowledge. The meshing stability is thus hard to ensure, causing heuristic cleanup

operations.

Zeng and Cheng (1993) proposed FreeMesh, a knowledge-based method, to recursively generate

quadrilateral elements from the domain boundary until the whole domain was filled with quadri-

lateral elements. The mesh generation was considered as a design problem and could be resolved

recursively into atomic design and a sub-design problem (Zeng & Cheng, 1991; Zeng & Yao, 2009).

The atomic design was to generate an element based on the boundary situation. The author analyzed

8

the geometry boundary characteristics and proposed three primitive boundary situations. Corre-

spondingly, three primitive element generation rules (i.e., adding one, two, and three edges) for

each situation were designed, which could theoretically guarantee the completion of any geome-

tries. After cutting the generated element, the original boundary was updated and became a new

sub-design problem. This process recursively repeated until the sub-design problem turned into an

atomic design. Although the rules were limited to just a few, each rule still involved human heuristic

knowledge.

Some methods proposed a quadrilateral mesh generator by modifying the quadtree background grid

to conform to the domain boundaries. They often started with a uniform Cartesian background grid

or a quadtree structure generated based on the local feature sizes. Quadrilaterals that conform to

the domain boundaries, are then fitted into that grid or quadtree leaves. Baehmann et al. (1987) was

among the first methods to modify a balanced quadtree to generate quadrilateral meshes. Liang et al.

(2010) proposed a quadtree-based method to create guaranteed-quality and adaptable meshes. They

specifically designed four categories of templates to adjust the boundary edge to improve the angle

along the boundary thus. Liang and Zhang (2012) improved their previous work in preserving better

angle quality and boundary conforming by adding a sharp feature layer. Grid-based algorithms were

robust but often generated poor quality elements at the boundary.

There are also domain decomposition methods. The geometry domains are divided into simpler

and regular convex or mappable regions, and the meshes could be generated for each sub-region via

template-based, mapping, or geometric algorithms. Various techniques can achieve decomposition.

Tam and Armstrong (1991) introduced a medial axis decomposition approach. The medial axis

could be considered a series of lines and curves derived from the midpoints of maximal circles in

the area. Joe (1995) decomposed the domain into convex polygons using geometric decomposition

algorithms. Quadros, Ramaswami, Prinz, and Gurumoorthy (2004) proposed an algorithm to divide

a complex domain into a sub-domain using a medial axis and utilized an advancing front method for

adaptive meshes. Gengdong and Hua (1996) proposed a template-based mapping method. There

are some methods using square packing (Shimada et al., 1998) and circle packing (Bern & Eppstein,

2000) to generate all quadrilaterals. Circle packing can only bound the maximum angle to 120°.

9

Atalay et al. (2008) utilized a quadtree to construct quadrilateral mesh with a guaranteed minimum

angle bound of 18.43°. Generally, these methods could produce high internal quality, but they are

not robust and may require heuristic cleanup operations, especially if the domain has non-manifold

boundaries.

In general, among the direct unstructured mesh generation methods, the element extraction method

provides the highest quality and is preferred for applications that need high quality boundary meshes

(Docampo-Sanchez & Haimes, 2019; Park, Noh, Jang, & Kang, 2007). However, all the methods

cannot guarantee the mesh quality; the generated quadrilateral meshes are usually not complete

(e.g., containing triangular elements), have flat or inverted quadrilateral elements, and too much ir-

regular arrangement. Therefore, a large number of cleanup operations are implemented to improve

the mesh quality. The strategies range from pre-processing, such as dividing complex geometries

into small regular regions, to generating regular mesh (C. Liu et al., 2017), to post-processing, such

as reducing the singularity (Verma & Suresh, 2017), performing iterative topological changes (e.g.,

splitting, swapping, and collapsing elements) (Docampo-Sanchez & Haimes, 2019), and mesh adap-

tation (Verma & Suresh, 2018). Rushdi et al. (2017) aimed to solve the angle and post-processing

problem and developed an all-quadrilateral algorithm to achieve better quality angles, which falls in

the range [45°, 135°], without any cleanup operations.

2.1.2 Machine learning-based methods

Machine learning (ML) techniques have been approved successfully to solve complex and time-

consuming problems in modern industry. Many researchers have started to combine mesh gen-

eration with artificial intelligence techniques to reduce the dependence on heuristic knowledge.

Existing work can be classified into three kinds: 1) mesh optimization, 2) mesh reconstruction,

and 3) mesh generation. First, mesh optimization refers to optimizing the mesh quality using ML

techniques. Jadid and Fairbairn (1994) utilized an NN to remesh a square shaped structure using

triangular elements. Chedid and Najjar (1996) proposed an artificial neural network (ANN) based

method to predict the mesh density distribution based on the geometric features to reduce the com-

putation time of mesh refinements. The mesh density at a given vertex of a mesh referred to the

10

number of the vertices vicinity of that vertex.

Some methods are designed to reduce the computational cost in numerical simulation by refining

meshes. Capuano and Rimoli (2019) proposed a smart finite element method to reduce the compu-

tational cost performing numerical iteration. Z. Zhang et al. (2020) proposed a MeshingNet method

that combined deep neural networks (NNs) with an external mesh generator to refine meshes with

a better element distribution that could accurately solve Partial Differential Equations (PDE) with

FEM. Traditionally, to generate such a mesh needed a posteriori estimation, which was computa-

tionally expensive. MeshingNet could directly learn the a posteriori error from the initial mesh from

an existing generator, and predict a new mesh density for refinement. It could also be used to adjust

the mesh with a desired number of elements. J. Yang et al. (2021) trained a mesh refinement policy

to dynamically adjust the mesh resolution for a better trade-off between simulation accuracy and

computation cost via RL. Their main idea was to reallocate the computational budget to regions

where a higher resolution was needed because uniform meshes were computationally inefficient.

L. Zhang et al. (2021) proposed a numerical discretization scheme, the hierarchical deep learning

neural network for finite element method, to solve the PDE. The shape function of the element was

estimated by a deep neural network (DNN). By optimizing the nodal information, the interpolant

accuracy can thus be improved.

Second, mesh reconstruction is to reconstruct meshes from images or other sources. Neural Mesh

Flow (NMF) (Gupta, 2020) was a 3D mesh reconstruction method by deforming a template mesh

into a target mesh using several Neural Ordinary Differential Equation (NODE, a deep neural net-

work model (Chen, Rubanova, Bettencourt, & Duvenaud, 2018)) blocks. NMF had its strength

in the mesh property of manifoldness, which was beneficial for graphic rendering and 3D print-

ing. Pixel2mesh (N. Wang et al., 2018) was a deep learning architecture to produce 3D triangular

mesh from a single RGB image. The generation process was a series of deformation from an el-

lipsoid with perceptual image features extracted by a convolutional neural network (CNN) to a

target mesh model represented by a Graph Convolutional Network (GCN (Defferrard, Bresson, &

Vandergheynst, 2016)). Wen, Zhang, Li, and Fu (2019) extended the Pixel2mesh for better shape

quality from multi-view images. MeshCNN (Hanocka et al., 2019) utilized convolutional neural

11

network (CNN) architecture with convolution, pooling, and unpooling layers to conduct triangu-

lar mesh simplification while retaining the topological features of the domain. The simplification

was executed by collapsing less informative edges using the pooling and unpooling operations, and

would then facilitate the data processing and decrease computational cost. These recent advances

show that mesh related works have gained significant attention in computational graphics and com-

puter vision.

Last, mesh generation is to generate a mesh with ML algorithms. Dolšak (2002) proposed a rule-

based expert system for guiding mesh design, such as the choice of element types and the speci-

fication of mesh density. Manevitz, Yousef, and Givoli (1997) combined an expert system with a

self-organizing neural network (Kohonen, 2012) to generate mesh elements (triangular or quadrilat-

eral). The expert system could determine the size of the mesh and appropriate densities in different

regions of a domain based on geometric and physical considerations, while the self-organizing neu-

ral network realized the mesh by assigning the coordinates to nodes. To overcome the drawbacks of

SOM in tackling inaccurate mesh in the domain border and mesh construction for non-convex do-

mains, Nechaeva (2006) proposed an adaptive mesh generation algorithm based on self-organizing

maps (SOM) (an unsupervised neural networks-based method), which adapts a given uniform mesh

onto a target physical domain through mapping. However, many poorly shaped elements were still

generated, especially along the domain boundary.

Some works focus on triangular mesh generation using neural networks (NNs). Pointer networks

(Vinyals et al., 2015), was a new neural architecture that aimed to solve combinatorial problems

by NNs and could be used to generate triangular meshes by outputting a set of triplets of integers

(each forms a triangle) that correspond to the order of input points. The input contains both the

points on the boundary and internal area of the geometry domain. As it is not designed for meshing

problems, the final mesh is not robust and partially covered with triangular elements with even

intersecting edges. Papagiannopoulos et al. (2021) proposed a triangular mesh generation method

with three NNs. Given the training data derived from Constrained Delaunay Triangulation algorithm

(Chew, 1989), three NNs could predict the number of candidate inner vertices (to form a triangular

element), coordinates of those vertices, and their connection relations with existing segments on

12

the boundary, respectively. Because of the fixed input size and complex network architectures,

the method cannot adapt to arbitrary and complex geometry domains. Additionally, the resulting

meshes are constrained by the quality and sample diversity of the selected training data, especially

when it comes to geometries with complex boundary shapes. They also cannot be applied to mesh

generation or element extraction of quadrilaterals.

Zeng and Cheng (1993) proposed a rule-based expert system method, FreeMesh, to recursively

extract quadrilateral elements following a domain boundary until the remaining boundary becomes a

quadrilateral element, based on the recursive logic of design (Zeng & Cheng, 1991). Since the usage

of rules requires much heuristic knowledge, Yao et al. (2005) improved the FreeMesh approach by

introducing an ANN to learn the element extraction rules from a set of pre-selected samples for

good quality quadrilateral meshes. The improved method eased the acquisition and application

of these rules and could handle more complex boundary domains. The trained model by ANN

served as the mapping function to transform the input (a specific boundary situation) to the output

(rule type and a newly generated vertex). The element extraction process remained the same with

FREEMESH. However, the training data was difficult to prepare and cover all the possible boundary

situations.

To conclude, although many artificial intelligence (AI) techniques have started to be explored and

applied to the field of mesh generation, a robust and computational mesh generation method that

can replace the conventional mesh generation algorithms is still missing. With the rapid progress-

ing of High Performance Computing (HPC), mesh generation algorithms will intuitively encounter

tasks requiring higher resolution and fast and reliable processing. Conventional methods will be

problematic by then. It remains open to exploring with great potential for a novel meshing algo-

rithm that exploits both emerging HPC capabilities and machine learning/deep learning algorithms.

In general, supervised NN-based methods rely on labelled training data from existing conventional

methods or handmade data, which cannot guarantee the overall quality and adapt to unseen domain

boundaries; some of them also have complex network structures, which increases the training diffi-

culty; and some are barely to apply to other complex domains because of their fixed input size and

generation strategies.

13

2.2 Reinforcement learning

Reinforcement learning (RL) is simultaneously a problem, a class of solution methods that work

well on the problem, and the field that researches this problem and its solution methods (Kaelbling,

Littman, & Moore, 1996; Sutton & Barto, 2018). The problem usually refers to the optimal control

or the sequential decision making problem, mathematically known as the Markov decision process

(MDP) problem. The hypothesis behind RL is that all the goals can be represented by the max-

imization of the expected cumulative reward. The technique enables an agent to learn from the

interactions with its environment by trial-and-error via reward feedback from its actions and expe-

riences. Eventually, a policy will be learned by maximizing the accumulated reward and to guide

the agent to select actions under each environmental situation appropriately. According to different

learning fashions, existing model-free RL methods can be categorized into direct (policy-based) and

indirect (value function-based) methods.

Value function-based methods estimate the expected accumulated reward starting from a given state

or performing a given action in a given state for the agent. The optimal policy is implicitly derived by

choosing the action with the optimal value. Deep Q-Network (DQN) was a recent breakthrough in

estimating value function via a deep neural network (Mnih et al., 2013), which stabilized the training

of action value function using experience replay and target network and generalized a framework for

end-to-end RL tasks using the same algorithm. Many successors are continuously improving DQN

from various aspects, e.g., asynchronous advantage actor-critic (A3C) (Mnih et al., 2016), dueling

network to better estimate action value function (Z. Wang et al., 2016), and combating sparse reward

issues by Hindsight Experience Replay (HER) (Andrychowicz et al., 2017). Since the element

extraction method of quadrilateral mesh is intuitively an MDP, the mesh generation problem can

be cast as an RL problem. For the mesh generation problem, the action is continuous and requires

choosing appropriate vertices to form an element from an appropriate area. Correspondingly, the

meshing boundary can be considered as the environment; it is altered and updated into various

shapes after each action. Hence, to discretize both state and action spaces is not ideal, which may

distort the feedback regarding the impact of the agent’s actions on the environment and adversely

hinders exploring feasible action space, causing a sub-optimal policy.

14

Policy-based methods directly estimate a policy to map a state to an action or a distribution over

actions. The policy in modern methods is usually modelled by a parameterized function using NNs.

Its estimation is often combined with the value function estimation to increase stability and reduce

variance. According to the sampling methods, there are on-policy methods and off-policy methods.

On-policy methods are sample inefficient because they only use the data once, with estimations

based on the trajectories from the current policy. Asynchronous advantage actor-critic (A3C) (Mnih

et al., 2016) integrated policy gradient with the online critic. Proximal Policy Optimization (PPO)

(Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017) was a representative method that utilized

the trust region to monotonically improve the policy, with simpler implementation, better general-

ization, and better sample efficiency.

Off-policy is much more sample efficient; they can learn from any trajectories from any policies.

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015) concurrently learned the policy

and the Q-function. The Q-function was learned by experience reply and then it was used to learn the

policy. Although the sampling efficiency of DDPG was improved, it was very sensitive to hyperpa-

rameter tuning. To achieve faster learning efficiency and better stability in hyperparameters tuning,

soft actor-critic (SAC) (Haarnoja, Zhou, Abbeel, & Levine, 2018; Haarnoja, Zhou, Hartikainen, et

al., 2018) was proposed by simultaneously maximizing the accumulated return and the policy en-

tropy. Since the state and action spaces of the mesh generation problem are continuous, off-policy

methods are most appropriate to learn the meshing policy in fast and stable fashions.

Although many concepts, algorithms, and issues in RL are studied, their theoretical understanding is

still missing (Li, 2018; Osband et al., 2019). Some common challenges for RL problems are credit

assignment, sparse reward, sample efficiency, and exploration and exploitation. Specifically, there is

an urgent research challenge for the applicability of RL in real-world problems: the systematic and

comparative study of deep RL algorithms. Many RL algorithms are hyperparameters sensitive, and

their performance varies significantly across different hyperparameter settings and different problem

environments. Their theoretical analysis is still in its infancy. The principled benchmarks are needed

to help develop an understanding of the strengths and weaknesses of RL algorithms (Osband et al.,

2019). Other vital challenges may include algorithm generalizability, limited samples in real-life

15

problems, partial observable tasks, reward function design, and optimal state representation (Dulac-

Arnold, Mankowitz, & Hester, 2019). For instance, Wei, Wang, Liu, and Polycarpou (2020) had to

train different models for various elevator settings in optimal elevator control because of the fixed

representation of the state.

2.3 Imbalanced learning

High quality and balanced data are vital for the performance of data-driven algorithms. However,

in real life tasks, the data is unequally distributed; high quality data is rare to collect. The quantity

and quality of the data decide the performance of data-driven machine learning algorithms. A large

amount of data is essential to establish a complex decision boundary for classification problems and

avoid overfitting problems, especially in deep-learning methods entailing many parameters (LeCun

et al., 2015). Imbalanced data can quickly compel the prediction of algorithms towards majority

classes (He & Garcia, 2009). However, the minor classes are often more important and valuable.

Existing methods can be categorized into data-level and algorithm-level methods.

2.3.1 Data-level approaches

Data augmentation/synthesis are the techniques to enlarge data size by adding slightly modified

samples or newly generated artificial data from the existing dataset (He & Garcia, 2009; Krawczyk,

2016). Conventional methods concentrate on modifying the existing dataset to have a balanced dis-

tribution. Two common strategies are 1) removing examples from majority groups (undersampling)

and 2) increasing new objects for minority groups (oversampling). The random undersampling

method selects samples from the majority groups without replacement and removes them from the

dataset. X.-Y. Liu, Wu, and Zhou (2008) proposed two informed undersampling methods to solve

the deficiency of information loss in the traditional random undersampling. Yen and Lee (2009)

devised the under-sampling method based on clustering (SBC) to avoid the disjunct problem.

The random oversampling method is a basic method, and it randomly selects minority examples and

replicates them to the dataset. Since this method can easily cause an overfitting problem, synthetic

sampling methods are thus developed. Chawla, Bowyer, Hall, and Kegelmeyer (2002) developed

16

a method called SMOTE, to create artificial data based on the features space similarities between

minority examples. As SMOTE was very successful in various applications, there were a few im-

provements to the SMOTE, including borderline-SMOTE (Han, Wang, & Mao, 2005), safe-level-

SMOTE (Bunkhumpornpat, Sinapiromsaran, & Lursinsap, 2009), and Adaptive Synthetic Sampling

(ADS-SYN) (He, Bai, Garcia, & Li, 2008). Jo and Japkowicz (2004) proposed cluster-based over-

sampling (CBO) to resolve the small disjunct problem caused by within-class imbalance. Some

researchers are using the structure information underlying the data to generate synthetic samples

with better quality. Xie, Jiang, Ye, and Li (2015) tried to learn the cluster structure of the train-

ing samples and generated samples for minority groups based on the density. C.-L. Liu and Hsieh

(2019) proposed a model-based synthetic sampling (MBS) to increase the data diversity by captur-

ing the relationship between data features via regression models. Markov chain models are also

utilized to synthesize time-varying stochastic data, such as wind speed (Shamshad, Bawadi, Hussin,

Majid, & Sanusi, 2005) and vehicle velocity in driving cycles (Lee & Filipi, 2010), by constructing

transition matrices. W. Yang and Nam (2022) proposed a covariance matrix-based method that used

a) the correlations between features obtained from the original dataset and b) random noise.

Many neural network-based data synthesis models are constantly proposed. Habibie, Holden,

Schwarz, Yearsley, and Komura (2017) built a generative model for human motion samples based on

variational autoencoder (VAE). Y. Yang, Zha, Chen, Wang, and Katabi (2021) utilized deep neural

networks to represent the feature space of data samples. Generative adversarial network (GAN) has

been widely used for data synthesis due to its flexibility and efficiency in high dimensional datasets

(Tanaka & Aranha, 2019). Z. Wang, Wang, and Wang (2018) combined GAN with autoencoders

and verified the synthetic data for the vibration signal of the gearbox. Xuan et al. (2018) explored

the integration of convolutional neural networks (CNN) and GAN on the generation of pearl im-

ages. Despite its wide usage, the data generated by GAN based methods can be low quality if 1) the

training of generator is not stable, 2) the size of the original dataset is small, and 3) the dimension

and nonlinearity of the dataset is high (Tanaka & Aranha, 2019; W. Yang & Nam, 2022).

17

2.3.2 Algorithm-level approaches

Instead of creating balanced data distributions through different sampling strategies, algorithm-

based methods directly modify the existing learners to alleviate the bias towards majority groups

and adapt them to the training dataset having skewed distributions, finally enhancing the algorithm’s

performance (He & Garcia, 2009). These methods require a thorough understanding of the modified

learning algorithm and an exact identification of the causes for its failures in the imbalanced training

data (Krawczyk, 2016). The most dominant branch is cost-sensitive approaches (Zhou & Liu, 2010).

They adjust the cost matrices that incorporate a varying cost for each considered group of examples

for a given learner by assigning a higher cost for minority groups. In some application domains,

cost-sensitive techniques are more optimal than sampling methods (McCarthy, Zabar, & Weiss,

2005; Zhou & Liu, 2005).

Some methods adjust the misclassification cost to the dataset as a form of dataspace weighting.

Sun, Kamel, Wong, and Wang (2007) proposed three methods, AdaC1, Adac2, and Adac3, which

introduce the cost items that denote the uneven identification importance between classes into the

learning framework of AdaBoost. The learning can be biased intentionally towards classes with

higher identification importance. Fan, Stolfo, Zhang, and Chan (1999) devised a method called

AdaCost, which used a cost-adjustment function to increase the weights of costly misclassifications

aggressively and conservatively decrease the weights of high-cost examples. However, it is chal-

lenging to set actual values in the cost matrix and its associated cost items; they are usually not

defined by domain experts.

The cost-sensitive methods can be combined with decision trees, including applying cost-sensitive

adjustments to 1) the decision threshold, 2) the node split criteria, and 3) pruning schemes (Drum-

mond & Holte, 2000; He & Garcia, 2009). Similarly, it can be introduced into neural networks by

applying cost-sensitive modifications to 1) probabilistic estimate, 2) output prediction, 3) learning

rate, and 4) loss function (He & Garcia, 2009; Kukar, Kononenko, et al., 1998). Khan, Hayat, Ben-

namoun, Sohel, and Togneri (2017) proposed a cost-sensitive deep neural network to automatically

18

learn feature representations for both the majority and minority groups by introducing the class sen-

sitive cost into the loss function. There are some other methods. G. Wu and Chang (2005) proposed

a method called Kernel-boundary alignment (KBA) to consider the imbalance condition during the

training state by involving not only the distance between all data points and vectors but also the class

distribution of the support vectors. Huang, Li, Loy, and Tang (2016) defined a euclidean embedding

function that considered the class- and cluster-level margins to learn the discriminative representa-

tion for imbalanced image classification problems. Dong, Gong, and Zhu (2018) introduced a class

rectification loss function to guide the model incrementally exploring the minority class decision

margins, for multi-label classification problems in deep learning.

2.4 Research challenges and opportunities

The main research challenges can be summarized as follows:

(1) Conventional mesh generation methods heavily rely on heuristic knowledge and post pro-

cessing operations to improve mesh quality, causing algorithm complexity and low meshing

speed. Element extraction methods generally provide high quality among the existing direct

unstructured methods (Liang & Zhang, 2012) and are especially preferred for applications

that need high quality boundary meshes (Docampo-Sanchez & Haimes, 2019; Park et al.,

2007). Zeng and Cheng (1993) proposed the least number of element extraction rules but

were sufficient to generate meshes for any complex geometries. However, the rules that en-

sure robust and high mesh quality are difficult, expensive, and time-consuming for human

algorithm designers to develop, even for two-dimensional domains.

(2) Machine learning-based methods are still in their infancy and are not able to replace standard

mesh generators in the industry. There are a few reasons: a) some of the NNs structures

are too complex and difficult to train robust generators; b) their inputs are fixed and cannot

adapt to complex geometries; c) the imbalanced training datasets compromise the learning

efficiency and algorithm performance.

19

The element extraction rules can be smartly designed and evolving using machine learning algo-

rithms. RL is a well-known self-taught learning paradigm for solving sequential decision making

problems and has been successfully demonstrated in many application domains. By formulating the

mesh generation as a Markov decision process (MDP) problem, the meshing policy (i.e., element

extraction rules) can be learned by the interactions between the agent and the environment (i.e.,

the geometries to mesh) without the need for human intervention. Compared with most existing

benchmark problems and complex applications of RL (Machado et al., 2018; Osband et al., 2019),

the mesh generation problem also poses new challenges for learning an optimal policy: 1) the ge-

ometries have diverse shapes and sizes, which requires the policy to be adaptable and general; 2)

the step-wise reward design for obtaining the mesh is difficult since the objective is not intuitive; 3)

there is a trade-off between the current element quality and the remaining environment because the

generated element will shape the remaining boundary of the geometry for future meshing.

The mesh generation problem can be further used to understand many RL topics, such as state

representation and reward specification. Usually, the performance of newly invented RL algorithms

is evaluated over many benchmark problems (Mnih et al., 2013). However, existing benchmark

problems may have some limitations: 1) the internal dynamic mechanisms of different problems

may impact the performance and hardly provide accurate evaluation for RL methods, especially

complex problems(Berner et al., 2019; Vinyals et al., 2017); 2) the state representations are different

across different problems, which may hinder the algorithm analysis; 3) some of the problems are

simple, causing a simple reward function (i.e., game scores (Mnih et al., 2013)), which cannot study

the reward specification in-depth. The challenges of the mesh generation problem enable it to be

a potential benchmark problem for understanding these issues. The diverse geometries can test

the scalability and generalizability of the learned policy; the range of agent’s observation can be

easily adjusted and used to study the partial MDP problems; the reward design can be used to study

exploration-exploitation and credit assignment problems.

The imbalanced and low quality data always hinder the learning efficiency and algorithm perfor-

mance. High quality data and minor examples are less frequent to occur. Even with self-learning

20

algorithms (e.g., RL algorithms), the high quality data is still hard to collect. Data augmenta-

tion/synthesis is the technique to improve the algorithm performance by adding more valuable

training data, creating data variability, preventing data scarcity, and reducing overfitting. It is also

beneficial for increasing the generalization ability of the models and reducing the costs of collecting

and labelling data. However, the performance improvement is limited because: 1) the data charac-

teristics are hard to discover and represent, which often depends on the researcher’s domain-specific

knowledge; 2) the representative features of unseen situations are usually intrinsically missing from

the existing dataset. Most simple transformations to the existing data will not fundamentally im-

prove the algorithm performance and make the algorithm general to unseen situations. There is still

a long way to devising a data generation method that captures the nature of the data, especially those

with high dimensions and nonlinearity.

21

Chapter 3

Contributions

This thesis focuses on the element extraction method for quadrilateral mesh generation. Element

extraction is one of the unstructured mesh generation methods and is known for its good mesh

quality around the domain boundary. However, it is easy to produce bad elements in the middle

of the domain which prevents it from the main-stream method. Its challenge lies in establishing a

small number of robust and effective rules applicable to various boundary shapes. This thesis aims

to use machine learning algorithms to train robust and effective rules for automatically generating

high quality meshes.

The first contribution is the one to one correspondence between element extraction algorithm and

reinforcement learning. The novelty is that the mesh generation problem is formulated into a se-

quential decision problem that enables it to be solved by RL techniques. In the early stage, the

primitive rules to form an element in the element extraction process are manually designed (Blacker

& Stephenson, 1991; Zeng & Cheng, 1993), which relies on the inefficient searching of heuristic

knowledge. The mesh quality is hardly guaranteed and needs extra treatments to improve. It also in-

creased the computational burden and slowed down the meshing speed. An artificial neural network

(ANN) based method tried to replace the human design of rules by machine learning (Yao et al.,

2005). However, its training data came from existing methods or hand-crafted, which cannot cover

enough situations for the model to adapt. Only limited domains have been successfully meshed. To

22

automatically generate samples for model learning, therefore, is urgent and essential.

We find that reinforcement learning (RL) is such a method that has a self-taught paradigm to let the

agent learn from the interaction with the environment through state, action, and reward. To achieve

the learning automation, RL is introduced into the mesh generation problem (in Chapter 4). The el-

ement extraction process can be summarized as two main components: mesh generator and domain

boundary. Mesh generator extracts an element from the current boundary state; the domain bound-

ary evaluates the element quality and updates itself by cutting off the generated element; the mesh

generator receives the newly updated state again and starts the next round of element extraction.

Intuitively, the mesh generator corresponds to the agent; the domain boundary corresponds to the

environment. The state is represented by the partial observation of the boundary and consists of a

number of vertices. The action is defined as the primitive rules to produce the element. The reward

function refers to the mesh quality for the current element and future elements. The solution to the

meshing problem is to find the meshing policy π that maximizes the value of the initial state (i.e.,

the accumulated rewards in future steps).

The second contribution is the integration of a rule-based system, reinforcement learning, and FNN

into one system. The novelty is that a general framework for smart mesh generation system by

rule-based machine learning algorithms is proposed. The rule-based system has a number of ad-

vantages: 1) the complexity of the problem is significantly reduced by designing a few primitive

rules; 2) the primitive rules can provide more generalizability; and 3) it enables the system capable

of making adaptive decisions corresponding to various environmental situations. The limitation of a

sole rule-based system is that the adaptive quality is low, which cannot guarantee the overall quality.

Therefore, the rules should self-evolve to achieve overall high mesh quality for diverse boundary

shapes. The FNN model can fast simulate the rules but requires high quality data to achieve ro-

bust performance. Reinforcement learning is hence introduced to generate high quality learning

samples.

Based on this framework, we have proposed three methods: a self-learning mesh generation system

(see Chapter 4); a soft actor-critic (SAC) based method (see Chapter 5); and a quality function-based

23

method (see Chapter 6). The first method utilized a reinforcement learning algorithm, advantage

actor-critic (A2C), to generate samples by trial-and-error learning. Then an experience extraction

module was applied to extract high quality samples that were fed to train an FNN model. The model

was served as the final mesh generator to complete mesh.

During the development, we have found that the automation can be further improved by directly

learning the rules using the RL algorithm without experience extraction and FNN training. There-

fore, the second method, SAC-based meshing method, is proposed. The reward function that mea-

sures the action quality under each state is improved to guarantee the overall mesh quality and the

mesh completion in finite steps. Through this process, we realize that the input and output of the

rules (i.e., state and action) can be directly measured by the adapted reward function (i.e., the quality

function). The third method is hence proposed to use the quality function as the criteria to directly

generate balanced high quality data for an FNN model training. It will significantly reduce the time

required for RL to explore all kinds of boundary situations in finding appropriate actions.

The last contribution is to propose the mesh quality function that simultaneously takes into account

the quality of the existing mesh and future mesh. The quality function is used as the critical compo-

nent (i.e., reward function) in RL and the criteria to generate high quality data to train the ML-based

mesh generator. The novelty of the mesh quality function is that it creatively resolved the challenges

of the element extraction method. We have determined three types of primitive rules in the element

generation, including adding 1, 2, and 3 edges, respectively. The challenges lie in two questions

(see Chapter 4): 1) which rule should be selected among the three primitive rules under a specific

boundary situation? 2) How to determine relationships between the coordinates of the newly added

points and the geometric conditions? To resolve them, three kinds of quality terms are considered,

including element quality ηe, boundary quality ηb, and density factor µ. The element quality mea-

sures the quality of the generated element by jointly considering the edge quality and angle quality

of the element. The boundary quality function is measured by the newly formed angles between

the boundary and the generated element and the distance between the newly inserted vertex and

the surrounding boundary edges. The reason to include this quality is that the remaining boundary

24

influences the generation of future elements. The density factor is specifically used in RL algo-

rithms to guarantee the meshing can be complete in finite steps. It controls the size of the generated

element.

Since the objectives of the three proposed methods are different, the mesh quality function is also

slightly changed from method to method. In the first self-learning system (see Chapter 4), the reward

function is only formed by the element quality and boundary quality; in the SAC-based method (see

Chapter 5), it considered all three terms. But there are some improvements about the element and

boundary quality. The boundary quality additionally measures a distance between the newly inserted

vertex and the boundary edges to avoid mesh collision. The last quality function-based method (see

Chapter 6) only considers the changed element and boundary quality with different weights.

To evaluate the meshing performance of the proposed methods, we have selected eight kinds of

quality indices. Compared with a number of commercial software, the proposed methods:

(1) are comparable on all the selected quality indices;

(2) have the best performance in having no triangle elements;

(3) have slightly better performance in some other indices (i.e., taper, stretch, and singularity);

(4) have suboptimal performance in some indices (i.e., element quality, |MinAngle−90|, |MaxAngle−

90|, scaled Jacobian) but not in a significant manner.

All those contributions together have brought forward a highly cost-effective system that can au-

tomatically design a self-learning 2D element extraction mesh generation algorithm, which can

perform with a comparable quality to commercial systems.

25

Chapter 4

A self-learning finite element extraction

system based on reinforcement

learning

Abstract

Automatic generation of high-quality meshes is the base of CAD/CAE systems. The element extrac-

tion is a major mesh generation method for its capabilities to generate high-quality meshes around

the domain boundary and to control local mesh densities. However, its widespread applications

have been inhibited by the difficulties in generating satisfactory meshes in the interior of a domain

or even in generating a complete mesh. The primary challenge in the element extraction method is

to define element extraction rules for achieving high-quality meshes in both the boundary and the

interior of a geometric domain with complex shapes. This paper presents a self-learning element

extraction system FreeMesh-S that can automatically acquire robust and high-quality element ex-

traction rules. The FreeMesh-S is enabled by two central components: 1) three primitive structures

of element extraction rules, which are constructed according to boundary patterns of any geometric

boundary shapes; 2) a novel self-learning schema, which is used to automatically define and refine

26

the relationships between the parameters included in the element extraction rules, by combining an

Advantage Actor-Critic (A2C) reinforcement learning network and a Feedforward Neural Network

(FNN). The A2C network learns the mesh generation process through random mesh element extrac-

tion actions using element quality as a reward signal and produces high-quality elements over time.

The FNN takes the mesh generated from the A2C as samples to train itself for the fast generation

of high-quality elements. FreeMesh-S is demonstrated by its application to two-dimensional quad

mesh generation. The meshing performance of FreeMesh-S is compared with three existing popular

approaches on ten pre-defined domain boundaries. The experimental results show that even with

much less domain knowledge required to develop the algorithm, FreeMesh-S outperforms those

three approaches in important indices. FreeMesh-S significantly reduces the time and required ex-

pertise to develop high-quality mesh generation algorithms.

Keywords: Smart design, smart mesh generation, self-learning system, reinforcement learning, arti-

ficial neural networks, element extraction

4.1 Introduction

Automatic mesh generation is an important yet not well-solved problem essential to the numeri-

cal computation for CAD/CAE applications, including finite element analysis, computational fluid

dynamics, and geometric modeling (Gordon & Hall, 1973; Roca & Loseille, 2019). For example,

solving partial differential equations (PDE) using finite element methods requires target geometric

regions or objects to be discretized into polygonal or polyhedral meshes first; topology optimization

utilizes finite element analysis to study the behaviors of geometric objects (K. Zhang et al., 2019).

The mesh quality greatly affects the accuracy, stability, and efficiency of those engineering applica-

tions. Quad meshes are particularly favored by many applications for their ability to model structure

behaviors with less computational power and higher accuracy (Docampo-Sanchez & Haimes, 2019).

The quality of a finite element mesh is measured by metrics related to geometrical and topological

properties of the mesh (Pébay et al., 2008; Verma & Suresh, 2017). Common metrics for a quad

mesh include minimum and maximum angles, aspect ratio, stretch, taper, and singularity (Rushdi

et al., 2017). In general, it is impossible for a mesh to achieve high scores on every metric because

27

of the complexities of the boundary shapes and the need for a minimum number of elements in a

mesh.

4.1.1 Motivation: why is it necessary to use the element extraction method?

Conventionally, according to the connectivity of quadrilateral elements in meshes, there are struc-

tured and unstructured meshes. All elements in structured meshes have the same valence in their

vertices and are arranged in regular patterns (Thompson et al., 1998). Most real-world engineering

problems have complex geometric boundaries, structured meshes would have poor mesh quality

near the domain boundaries; hence, unstructured meshes are preferred, which can adapt the mesh

structure to complex boundary shapes (Bommes et al., 2013; Garimella et al., 2004; Owen, 1998;

Remacle et al., 2012).

Existing approaches for unstructured mesh generation can be classified into two categories: indi-

rect and direct methods (Shewchuk, 2012). Indirect methods for quad mesh generation usually

start with a triangular mesh and then transform the triangular elements into quadrilateral elements

(Garimella et al., 2004). The classical transformation strategies may include optimization (Brewer

et al., 2003), refinement and coarsening (Garimella et al., 2004), or simplification (Daniels et al.,

2008). Some indirect methods split the triangle mesh into three quadrilateral elements by adding a

mid-point (Peters & Reif, 1997; Prautzsch & Chen, 2011). Owen et al. (1999) proposed Q-Morph

that created an all-quadrilateral mesh by following a sequence of systematic triangle transforma-

tions. Q-Morph, however, required heuristic operations such as topological cleanup and smoothing

to guarantee the quality of the final quad mesh. Ebeida et al. (2010) provided an indirect method,

named Q-Tran, which is of provably-good quality and smoothing post-processing free in generating

quadrilateral elements. Remacle et al. (2012) proposed a fast-indirect method, Blossom-Quad, to

generate all-quadrilateral meshes by finding the best matching triangular pairs and combining them

into quadrilaterals. The quality of the generated quad mesh is not stable and limited by the initial

triangulation. Remacle et al. (2013) proposed an advanced method, DelQuad, to overcome the lim-

itation of Blossom-Quad by generating triangular mesh suitable to be recombined into high-quality

quad meshes. However, it is a challenge for all the triangles to form quadrilateral elements. The

28

class of indirect methods often suffers from a large number of irregular vertices, which is unde-

sired in numerical simulations. Therefore, some methods provide post-processing to improve this

irregular situation. For example, Verma and Suresh (2017) proposed a robust approach to increase

the topological quality of generated quad meshes by reducing the singularity for many existing ap-

proaches; Docampo-Sanchez and Haimes (2019) described a technique to recover the regularity by

performing iterative topological changes, such as splitting, swapping, and collapsing, on the quad

mesh generated by Catmull–Clark subdivision (Catmull & Clark, 1978).

The direct method for quadrilateral mesh generation is to construct quadrilateral elements without

any intermediate triangular mesh. Zhu et al. (1991) built a mesh generator for quadrilateral ele-

ments based on the advancing front technique. Some methods proposed a quad mesh generator by

modifying the quadtree background grid to conform to the domain boundaries (Baehmann et al.,

1987; Liang et al., 2010; Liang & Zhang, 2012). Zeng and Cheng (1993) proposed FREEMESH,

a knowledge-based method, to recursively generate quadrilateral elements from the domain bound-

ary until the whole domain was filled with quadrilateral elements. Blacker and Stephenson (1991)

proposed an approach named Paving, to generate quad meshes directly in an iterative way from

the boundaries of the input domain towards the interior of the domain. White and Kinney (1997)

improved the original Paving algorithm by changing the generation method from a row by row to an

element by element. The Paving algorithm is currently implemented as part of the CUBIT software

(Blacker et al., 2016). The challenge for those methods is to reduce the flat or inverted elements.

Most of these methods require heuristic post-cleanup operations to improve mesh quality. There are

some methods using square packing (Shimada et al., 1998) and circle packing (Bern & Eppstein,

2000) to generate all quadrilaterals. Circle packing can only bound the maximum angle to 120°.

Atalay et al. (2008) utilized a quadtree to construct quadrilateral mesh with a guaranteed minimum

angle bound of 18.43°. Rushdi et al. (2017) aimed to solve the angle and post-processing prob-

lem and developed an all-quadrilateral algorithm to achieve better quality angles, which falls in the

range [45°, 135°], without any cleanup operations, including pillowing, swapping, or smoothing.

Among the direct unstructured mesh generation methods, the element extraction is preferred for

applications that need high quality boundary meshes (Docampo-Sanchez & Haimes, 2019; Park et

al., 2007).

29

4.1.2 The challenge of the element extraction method

Element extraction methods extract elements one by one, starting from the boundary of a domain

and updating its boundary inwardly by cutting off the generated element. An updated boundary is

also called a front (Owen, 1998). The basic procedure is 1) choosing a vertex (called reference point

in this paper) from the front; 2) constructing an element around the reference point; 3) removing the

generated element, and; 4) updating the front. During the procedure, a few crucial questions must

be answered: 1) how to choose the reference point in step 1? and 2) how to decide the other three

points to form an element in step 2? The common challenge is that it is difficult to assure element

quality as bad-quality elements occur when the front collides with itself (Shewchuk, 2012; Suresh

& Verma, 2019). To answer properly the two mentioned questions will significantly affect whether

this challenge can be solved and even whether the meshing task can be completed at all.

It is extremely difficult, expensive, and time-consuming for human algorithm designers to develop

high quality and robust element extraction rules for even two-dimensional domains. Despite its

capability to generate high-quality meshes along a domain boundary, applications of the element

extraction method have been largely limited. Therefore, researchers and developers have had to

turn to alternative solutions that are easier to develop by compromising the qualities of the overall

mesh (Sarrate Ramos, Ruiz-Gironés, & Roca Navarro, 2014).

4.1.3 Contribution

This paper proposes a self-learning system FreeMesh-S to generate quadrilateral elements by auto-

matically acquiring robust and high-quality element extraction rules. The system takes two steps in

obtaining the extraction rules. In the first step, three primitive extraction rules are proposed accord-

ing to the boundary patterns, which follows a design methodology—Environment-Based Design

(Zeng, 2004, 2015; Zeng & Yao, 2009). Then, a novel self-learning schema is formed to automati-

cally define and refine the relationships between the parameters included in the element extraction

rules by combining reinforcement learning and artificial neural networks. By applying the Ad-

vantage Actor-Critic (A2C) reinforcement learning networks, the system can generate high-quality

30

quadrilateral elements while maintaining the quality of the remaining geometry for the continu-

ous generation of good quality elements. By taking the good quality elements generated from the

A2C method as samples, a feedforward neural network (FNN) is trained for the fast generation of

high-quality meshes. This proposed system answers the two previously mentioned questions au-

tomatically and relieves human algorithm designers from an inefficient and incomplete search of

heuristic knowledge.

Comparing with three existing meshing approaches, the main contribution of this proposed system

includes: (1) to construct element extraction rules by replacing the conventionally inefficient and in-

complete search of heuristic knowledge with an automatic self-learning schema; (2) to achieve high

performance in all the quality measurement indices with the highest score in the metrics of Taper

and Scaled Jacobian; (3) to eliminate the need for in-depth knowledge in computational geometry,

which makes it algorithm developer-friendly; and (4) to provide insights about smart designing of

smart system.

The rest of this paper is organized as follows. Section 4.2 discusses the smartness of the proposed

element extraction system and the smart designing embedded in the system. Section 4.3 presents

the proposed system by using quad mesh generation as an example. Section 4.4 compares the

performances of the proposed system with the other three widely adopted methods. Section 4.5

discusses the practical and theoretical benefits of this research. Finally, Section 4.6 concludes this

paper.

4.2 Smart designing of the smart element extraction system

To address the challenge identified in Section 4.1, we adopt a concept of smart designing of smart

systems. A smart system has two important properties: 1) making adaptive decisions correspond-

ing to various environmental situations, and; 2) self-evolving to improve the system performance

(Akhras, 2000). For a smart element extraction system, its extraction rules should be adaptive to

various domain boundaries and can self-evolve to achieve the overall mesh quality. This section

introduces the design process of the smart element extraction system and links the system with two

machine learning methods: reinforcement learning and artificial neural network, for self-evolving

31

Figure 4.1: Quad mesh generation process (Yao et al., 2005)

the element extraction rules.

4.2.1 How is the element extraction method smart?

What is the element extraction method?

Mesh generation is considered as a design problem and can be resolved recursively into the atomic

design and a sub-design problem (Zeng & Cheng, 1991; Zeng & Yao, 2009). The quad mesh design

should satisfy the following conditions: (1) each element is a quadrilateral; (2) the inner corner of

each element should be between 45° and 135°; (3) the aspect ratio (the ratio of opposite edges) and

taper ratio (the ratio of neighboring edges) of each quadrilateral should be within a predefined range;

(4) the transition from a dense mesh to a coarse mesh should be smooth (Zeng & Cheng, 1991; Zeng

& Yao, 2009). Zeng and Cheng (1993) proposed a knowledge-based method, FREEMESH, to re-

cursively extract quadrilateral elements following a domain boundary until the remaining boundary

becomes a quadrilateral element, based on the recursive logic of design (Zeng & Cheng, 1991). In

FREEMESH, the atomic design is to generate an element in a specified boundary region while the

corresponding sub-design problem is to generate a good quality mesh over the domain by cutting

the generated element from the original domain (see Figure 4.1).

In extracting elements one by one, three types of element extraction rules (i.e., adding one, two,

and three edges) are defined to construct a good quality element (see Figure 4.2). The challenge

is for these rules to generate a good quality element around the current domain boundary while

guaranteeing that these design rules are still applicable to the remaining domain for the subsequent

32

Figure 4.2: Three primitive generation rules (Zeng & Cheng, 1993)

Figure 4.3: Changes of intermediate boundary shapes: all boundaries are represented in red lines
from (2) to (9).

construction of good elements.

How is the element extraction method smart?

A smart system can make adaptive decisions corresponding to various environmental situations.

For an element extraction method, the environment is domain boundaries, which keep changing

throughout the entire mesh generation process. Even starting with a simple domain, the initial

boundary can evolve into many complex intermediate boundary shapes. Following the process

specified in Figure 4.1, Figure 4.3 shows an example element extraction process, where the initial

boundary is shown in Figure complex intermediate boundary shapes. Following the process spec-

ified in Figure 4.1, Figure 4.3 (1) and the final mesh is shown in Figure 4.3 (10). Obviously, the

intermediate boundaries could include a variety of situations, which are not predictable.

The smartness of element extraction systems lies in how the variety of complex boundary shapes

are processed by the three element extraction rules shown in Figure 4.2. First, each edge in any

33

Figure 4.4: Challenges in selecting a proper rule to extract an element for an edge V1V2.

boundary shape can be processed by one of those three extraction rules. The three rules define three

kinds of patterns for a selected boundary edge V1V2 in a domain, as specified in solid lines in Figure

4.2 (a)-(c). The three rules are sufficient to process any environmental situations (boundary shapes).

Secondly, among all the boundary edges, the system would be able to smartly pick up one edge and

a corresponding rule to generate an element. In Figure 4.4, V1, V2, V3 and V4 are all the same for

different environment situations while different rules are preferred if more conditions are considered

from the environment. For instance, the boundary edge V1V2 is selected as the target edge in all the

subfigures (i.e., (a)-(f)); the extraction rule in Figure 4.2 (c) is applied in situations in Figure 4.4

(a), (c) and (d); the extraction rule in Figure 4.2 (b) is applied in situations Figure 4.4 (b) and (e);

and the last extraction rule in Figure 4.2 (a) is applied in the situation Figure 4.4 (f). This example

demonstrates that it is challenging to select a proper rule even just considering two more connected

boundary points.

Thirdly, when rules in Figure 4.2(a) or (b) are selected for a boundary edge, the positioning of the

newly added point(s) will be smartly determined according to its local surrounding environment

situations so that a good element can be generated while the remaining boundary does not create an

impossible situation for the three rules to process. For instance, in Figure 4.5, it shows the challenges

in positioning the new point in extracting a new element for two base situations in Figure 4.4 (b)

and (f). The red lines represent different remaining boundary shapes to form a complete domain

boundary. Although point B, B1, and B2 can form a better element in each situation, point A,

34

Figure 4.5: Trade-off between qualities of an extracted element and the remaining boundary. Subfig-
ures (a), (b), and (c) correspond to the situation in Figure 4.4 (b); Subfigures (d) and (e) correspond
to the situation in Figure 4.4 (f). Points A, A1, and A2 form better elements than B, B1, and B2.

A1, and A2 are the optimal options due to the trade-off of quality of the element quality and the

remaining boundary. The coordinates of newly added point(s) are adapted to various remaining

boundary shapes.

In summary, the smart element extraction process is enabled by a knowledge-based reasoning pro-

cess, where the three basic rules shown in Figure 4.2 can be used to recursively process complex

2D domain boundaries. The method smartly extracts elements one by one adaptive to the situations

implied in the current domain boundary.

4.2.2 How can the element extraction system be smartly evolving and designed?

As Figure 4.4 and Figure 4.5 show, two major challenges exist to enable the smartness of an element

extraction system, which are as follows:

(1) How to decide which of the three rules in Figure 4.2 should be applied for a selected edge

(V1V2) from all kinds of geometric boundaries?

(2) For the first and second types of rules in Figure 4.2, how to determine relationships between

the coordinates of the newly added points (V3 and V4; or V3) and the geometric conditions

surrounding the selected edge (V1V2)?

35

Conventionally, the questions above are answered manually by algorithm developers through a trial-

and-error process. Obviously, it is extremely difficult, very expensive, and time-consuming for

human algorithm designers to develop such robust element extraction rules.

The element extraction rules can be smartly designed and evolving by using machine learning al-

gorithms. Many researchers have been combining machine learning algorithms with finite element

methods, such as the optimization of mesh density by artificial neural networks (Chedid & Najjar,

1996; Z. Zhang et al., 2020), the placement of nodes of existing quad elements by a self-organizing

neural network (Manevitz et al., 1997; Nechaeva, 2006), mesh design by an expert system (Dolšak,

2002), remeshing structural elements by neural networks (Jadid & Fairbairn, 1994), the relationship

simulation between quad element state and forces (Capuano Rimoli 2019), triangular mesh sim-

plification (Hanocka et al., 2019), and the mesh optimization to solve partial differential equation

(L. Zhang et al., 2021). However, they are not focusing on the mesh generation and the element

extraction directly. There are a few works focusing on triangular mesh generation using neural net-

works (NNs). Pointer networks, (Vinyals et al., 2015), are able to transform a sequence of points

into a sequence of triangular mesh elements (three points). But it heavily relies the initial distribu-

tion of the points and cannot complete the meshing due to intersecting connections or low triangular

element coverage. Papagiannopoulos et al. (2021) proposed a triangular mesh generation method

with NNs using supervised learning. They trained three NNs based on the datasets of meshed do-

mains by the Constrained Delaunay Triangulation algorithm (Chew, 1989), to predict the number

of candidate inner vertices (to form a triangular element), coordinates of those vertices, and their

connection relations with existing segments on the boundary, respectively. The limitations of their

method lie in that the overall mesh quality is doomed by the training data, and it cannot be applied

to arbitrary and complex domain boundaries because of the fixing number of boundary vertices in

the model input. They also cannot be applied to mesh generation or element extraction of quadri-

laterals.

According to the nature of the problem, there are two machine learning algorithms that can be

exploited to enable the automatic evolution of element extraction rules. The first is Feedforward

Neural Networks (FNNs) whereas the second is Reinforcement Learning (RL). The FNN can learn

from given samples on how to decide which rule should be applied and how to position the new

36

point(s) for a new element when necessary. Yao et al. (2005) improved the FREEMESH approach

by introducing an artificial neural network (ANN) to learn the element extraction rules from a set of

pre-selected samples of good quality quad meshes. The improved method eases the acquisition and

application of these rules and could handle more complex domain boundaries. The trained model by

ANN serves as the mapping function to transform the input (a specific boundary region) to output

(rule type and a point), which is used to form an element following the FREEMESH construction

process. This kind of system provides a smart designing mechanism that can automatically generate

smart rules to extract elements from any geometric domain.

The RL, with its abilities for trial-and-error learning, models element extraction as a sequential

decision-making process. No samples are needed for the RL except that the mesh generation re-

quirements need to be formulated into a reward feedback function. The RL will produce smart el-

ement extraction rules for generating high-quality quad meshes through self-learning and evolving.

The system proposed in this paper combines these two different learning techniques: reinforcement

learning and supervised learning (i.e., Feedforward Neural Networks).

4.3 A self-learning system for element extraction

This section introduces a self-learning element extraction system, FreeMesh-S, which automatically

generates mesh elements by self-learned extraction rules from a combination of an RL algorithm and

an FNN. Quadrilateral element generation in single-connected 2D domains is used as an example

to demonstrate this system. The subsequent subsection introduces how to formulate the element

extraction into a reinforcement learning problem. Section 4.3.2 introduces an RL algorithm, A2C,

to learn to extract mesh elements by trial-and-error. Section 4.3.3 elaborates how to utilize the

FNN to accelerate the learning of extraction rules by supervised learning. Finally, Section 4.3.4

summarizes a general self-learning framework for element extraction.

37

Figure 4.6: Element extraction architecture

4.3.1 Element extraction as a reinforcement learning problem

Architecture similarity between element extraction and reinforcement learning

The element extraction process in Figure 4.1 can be generalized into architecture as shown in Figure

6. The mesh generator applies the extraction rules to a domain boundary and generates an element;

the domain boundary will be updated by removing the extracted element which is scored for its qual-

ity. This recursive process continues until the domain is filled with mesh elements. The extraction

rules, however, embedded in the mesh generator should be specified in advance. By formulating

this process into an RL problem, these extraction rules can be automatically learned by the machine

itself (i.e., the mesh generator).

Reinforcement learning (RL) is a technique that enables an agent to learn from the interactions with

its environment by trial-and-error via reward feedback from its actions and experiences (Kaelbling

et al., 1996; Sutton & Barto, 2018). The hypothesis behind RL is that all the goals can be represented

by the maximization of the expected cumulative reward. As is shown in Figure 4.7, the agent, at

each time step t, observes a state St from the environment, and conducts an action At applied to

the environment. The environment responds to the action and transits into a new state St+1. It

then reveals the new state and provides reward Rt to the agent. This process forms an iteration and

repeats until a given condition is satisfied (i.e., the RL problem is solved).

It can be obviously seen from Figure 4.6 and Figure 4.7 that element extraction and reinforcement

learning bear a similar framework of problem-solving. As illustrated in Figure 4.8, the mesh gen-

eration process shown in Figure 4.6 has exactly the same architecture as the RL process does, and

the mesh generation process can be seen as an instance of an RL process. In the context of element

extraction, the agent is a mesh generator; the environment is a domain boundary to mesh; the state

38

Figure 4.7: Architecture of Reinforcement Learning (Sutton & Barto, 2018)

Figure 4.8: Element extraction process as Reinforcement Learning

of the environment consists of a set of focused vertices and edges in the boundary; an action to take

by the agent is to extract an element from an edge in the state; the reward is the combination of

qualities of both the current extracted element and the remaining boundary; the selection of a spe-

cific action is guided by a policy of the agent, and; the agent’s goal is to maximize the aggregated

rewards - the total quality of all extracted elements and their corresponding boundaries.

Formulation of the element extraction problem in the reinforcement learning framework

In RL, how the learning agent behave (to select an action at each state) is described as the agent’s

policy. Mathematically, a policy is represented as a probability distribution over all possible actions

at each state, denoted as π(a|s). The value of a state is the expected future rewards starting at that

state, which determines how beneficial for the agent to enter that state. A value function is designed

to estimate the value for each state. The value function V π(s) of a state St under a policy is formally

denoted as, V π(s) = E[Gt|St = s,], for any s ∈ S , where S is a set of environment states; and Gt

is a discounted sum of the sequence of rewards achieved over time, which is calculated by,

Gt =
T∑

k=t+1

γk − t− 1Rk (1)

39

where 0 ≤ γ ≤ 1, is a discount rate; and T is a final time step. The value function of an action

at a state under a policy can be expressed as Qπ(s, a) = E[Gt|St = s,At = a, π]. These value

functions can be estimated from experience with different methods. Policy and value function are

essential for almost every RL algorithms.

Mathematically, the RL is a sequential decision-making process, which can be formalized as a

Markov Decision Process (MDP) consisting of a set of environment states S, a set of possible actions

A(s) for a given state s, a set of rewards R, and a transition probability P (St+1 = s
′
, Rt+1 =

r|St = s,At = a) where s
′
, s ∈ S, a ∈ A(s), r ∈ R; s

′
is the new state at t + 1 and r is

the reward after action a at state s. The transition probability indicates that the current state is

only dependent on the preceding state and action, so called Markov property, and thereby defines

the dynamics of the MDP. This requires that the state must contain information about the past

interactions that could distinguish the future and the present. The MDP and agent then produce a

sequence [S0, A0, R0, S1, A1, R1, S2, A2, R2, . . .]. In general, the MDP framework can be applied

to various problems in many ways because of its flexibility. Once a goal is represented as choices of

agents, the basis for choice from the environment, and a reward measurement of the goal, it can be

formalized as an RL problem. Existing reinforcement learning algorithms can be categorized into

three types: policy-based, value-based, and model-based methods (Kaelbling et al., 1996; Sutton

& Barto, 2018), which learn policies, value functions, and models (Grondman, Busoniu, Lopes, &

Babuska, 2012). Deep reinforcement learning (DRL) intends to make behavioral decisions through

learning from the experience of interacting with the environment and from the evaluative feedback

(Littman, 2015).

Mathematically, as RL does, the element extraction process can also be represented as an MDP,

which consists of a set of boundary environment states S, a set of possible actions A(s) in state

s to form an element for each boundary state, a set of rewards R, and a state transition probability

P (s
′
, r|s, a). The extraction process will produce a sequence [S0, A0, R0, S1, A1, R1, S2, A2, R2, . . .],

where the notations are explained as follows:

• t: denotes the index associated with the time step of element extraction;

• St: the partial boundary of the domain (at time t) from which the tth element will be extracted;

• At: the action to produce the tth extracted element, which consists of four vertices of the extracted

40

element.

This process shows the natural alignment of the element extraction method with reinforcement

learning.

Correspondingly, the three rules, which are used to extract elements in Figure 4.2, can be viewed as

three actions: (a) to add two new vertices and three edges; (b) to add one new vertex and two edges;

(c) to add just one edge. The determination of which rule to apply and especially where to position a

candidate vertex to form a high-quality element is highly challenging because the position of a new

vertex has substantial impacts on the quality of meshing in the future steps. These actions address

the two questions raised in Section 4.2.2.

In this work, we focus on using RL to select the optimal position of a candidate vertex, and the action

is defined as to locate a vertex position. In this way, the action space could be a two-dimensional

continuous domain. The policy that needs to be learned with RL is the element extraction rule,

which maps a state to an action (the position of the new vertex). The full state of the environment

at time t would consist of all vertices of the boundary at the time. However, not all vertices are

equally useful for the extraction of a new element. Zeng and Cheng (1993) identified a small set

of vertices on the current boundary, which are highly relevant to the construction of a new element.

We select this partial boundary to represent the state, which makes computing much more efficient.

This selected partial boundary denoted as St, is composed of four parts (1) a reference point, P0,

which is a vertex selected from the current boundary and will be used as the relative origin for the

new element to be constructed and extracted; (2) n neighboring vertices in the right side, where n=2

in this paper; (3) n neighbor vertices in the left side, where n=2; (4) three neighboring points P1 , P2 ,

and P3 in the fan-shaped area 1,2 and 3 with radius d, as shown in Figure 4.9. This partial boundary

is denoted as:

St = {Pl2, Pl1, P0, Pr1, Pr2, P1 , P2 , P3} (2)

which is still a high dimensional continuous domain, but its dimension is very significantly reduced

from the full boundary. We treat this partial boundary as the state partially observed by the agent

(Kaelbling et al., 1996).

41

Figure 4.9: Partial boundary

Regarding reward, we define it as the combination of qualities of both the extracted element and the

remaining boundary because their trade-off is essential to the overall quality of the final mesh. The

reward details will be defined in Section 4.3.2.

Regarding the agent’s policy and the value function of a state (or action under a state), as discussed

earlier, the position of a new vertex for a new element has substantial impacts on the quality of

meshing in the future steps; it is highly challenging to find an optimized policy to locate the vertex

position and to find a reasonable estimation of the value of that position. Both an optimal policy

and the value function are unknown to the agent but can be approximated with a parameterized

function by learning from experience. For this reason, the advantage actor-critic method is used in

this paper.

4.3.2 A2C RL network for element extraction based mesh generation

The overall architecture of the advantage actor-critic (A2C) is shown in Figure 4.10. In the archi-

tecture, the “actor” mimics the policy, and the “critic” mimics state value functions. We use an A2C

network-based agent to interact with the environment and gradually generate high-quality elements

by trial-and-error learning. The following subsections will introduce the basics of the A2C method

and explain how to generate mesh elements with the A2C method.

42

Figure 4.10: A2C agent architecture for element extraction

A2C

The RL problem is to learn how to select an action at each state over time to maximize the accu-

mulated reward Gt, which is a discounted sum of the sequence of rewards achieved over time, as

shown in Eq.1. Actor-critic is a subclass of policy-gradient methods, which learns approximations

to both policy and value functions (Grondman et al., 2012; Sutton & Barto, 2018). Policy-gradient

methods directly optimize an agent’s actions without consulting a value function. Policy-gradient

methods are via learning a parameterized policy πθ, where θ is the policy’s parameter vector. The

probability that an action a has been taken in state s at time t with policy parameter θ is represented

as π(a|s, θ) = Pr{At = a|St = s, θt = θ}. The general idea is to increase the probability of

actions being taken in each state when they have high optimality. The performance of the policy

can be denoted as J(θ) = V πθ(s), which is calculated by

V πθ(s) =
∑
a∈A

πθ(a|s)
∑
s′∈S

Pr(s
′ |s, a){r + γV πθ(s

′
)} (3)

when every episode starts in state s. r is the reward after action a at state s. According to policy

gradient theorem, the gradient of this performance is denoted as,

∇θJ (θ) ∝
∑
s

d(s)
∑
a

Qπ(s, a)∇θπ(a|s, θ) (4)

43

where d(s) is a state distribution under policy π, Qπ(s, a) is state-action value function under policy

π. The policy is improved by the gradient-ascent algorithm as

θt+1 = θt + α∇θJ(θ) (5)

where α is a step size.

We can estimate the performance gradient by Monte Carlo sampling, which is proportional to the

actual gradient. The gradient can then be represented as,

∇θJ (θ) ∝ E[
∑
a

Qπ(St, a)∇θπ(a|St, θ)] = E[Gt∇θ lnπ(At|St, θ)] (6)

where St and At are sampled state and action at time t, Gt is the return after t, and; E[.] is the

expected value of the expression with random variables St and At in the Monte Carlo sampling.

The gradient-ascent algorithm could be,

θt+1 = θt + αGt∇θ lnπ(At|St, θ) (7)

Because the variance of return is high in Monte Carlo policy gradient, the learned value function can

reduce the gradient variance and provide an informative direction for policy optimization. The actor

represents the learned policy whereas the critic is the learned value function. The critic estimates the

state-action value function as an approximator with parameters w, i.e. Q̂πθ(s, a;w) ≈ Qπθ(s, a),

where Qπθ(s, a) is the state-action value function using policy πθ. Correspondingly, V πθ(s) can

be estimated as V̂ πθ(s;w) = Ea∼π[Q̂πθ(s, a;w)]. By introducing an advantage function to the

critic,

Aπθ(s, a) = Qπθ(s, a)− V πθ(s) (8)

In this way, the policy optimization will be more directional. It leads to the advantage actor-critic

(A2C) method. The gradient is changed to the following:

∇θJ (θ) ∝ E[
∑
a

Aπθ(s, a)∇θπ(a|St, θ)] (9)

44

The actor updates the policy parameters by

θt+1 = θt + αAπθ(St, At)∇θ lnπ(At|St, θ) (10)

The critic updates its weights by

wt+1 = wt + βAπθ(St, At)∇wV̂ πθ(s;w) (11)

By the definition of the value function V πθ(s), advantage function Aπθ(St, At) can be estimated as

The critic updates its weights by

δt = Rt+1 + γV̂ πθ(St+1;w)− V̂ πθ(St;w) (12)

which is also called temporal difference (TD) error for state value at time t. For a more detailed

description of the A2C model please refer to (Sutton & Barto, 2018). For the specific description

of our A2C RL model for mesh please refer to the next subsection. Advantage Actor-Critic (A2C)

network is a class of A2C model, in which an artificial neural network is used as an approximator

for the policy or for the value function. We use this approach for mesh generation.

A2C RL network for element extraction

In the proposed self-learning element extraction system, the A2C network is responsible for the

preliminary sampling of the element extraction rules (a set of three rules in Figure 4.2). Its network

structure is shown in Figure 4.11. The actor and critic are the two heads of the network and share the

same input and one hidden layer. The input is the partial boundary St. The value head of the critic is

the estimation of the state-value function. The policy head of the actor will output two variables (i.e.,

two means) to form two normal distributions in which both the variances are set to 1, to sample the

coordinates, x and y, of the candidate point respectively. The training process of the A2C network

is illustrated in Algorithm 1. For a given 2D domain environment, the A2C network updates the

parameters of the actor and the critic during each episode using the temporal difference (TD) method

(i.e., Eq. 11). Each episode terminates when the domain is full of quadrilateral elements or exceeds

45

Figure 4.11: A2C network structure. In general, the actor will simulate three primitive rules, as
shown in Figure 4.2 (a), (b), and (c). In the current implementation, the extraction rule in Figure 4.2
(a) is not considered and it will be implemented in the next version of the system.

46

the maximum step. The episode numberM indicates the maximum iteration. The maximum step in

each episode is defined by T . Symbol λ is the discount factor during reward accumulation.

Algorithm 1 A2C reinforcement learning System
Input: Episode number M ; each episode’s max step number T ; discount factor λ; and step size α

and β
Output: Constructed A2C
1: Initialize the network policy parameter vector with random weights
2: for episode i = 1, 2, . . . ,M do
3: get an initial state Si1 (i is omitted hereafter) of the environment at episode i
4: for t = 1, 2, . . . , T do
5: sample action At ∼ π(·|St, θ)
6: get a next state St+1 after the environment is updated with its boundary for action At
7: get the rewardRt+1 by calculating the quality of the formed element and remaining bound-

ary
8: calculate TD error δt = Rt+1 + γV̂ πθ(St+1;w)− V̂ πθ(St;w)
9: update the critic: wt+1 = wt + βAπθ(St, At)∇wV̂ πθ(s;w)

10: update the actor policy: θt+1 = θt + αAπθ(St, At)∇θ lnπ(At|St, θ)
11: end for
12: end for

State representation The state is the actor’s observation of the environment, which is defined as a

partial boundary St, expressed as Eq.2. To determine which part of the boundary as the state, there

are two fundamental steps: 1) to identify the reference point P0 from the existing boundary; and 2)

to find the remaining points according to Eq.2. A new element will be extracted around this formed

partial boundary. First, the reference point is calculated by iterating all the points on the boundary,

computing the angle of each point formed by its left and right connected points, and selecting the

point having the least angle as the P0. Then, the other points in St will be determined by Eq.2.

The absolute coordinates of all points selected for representing a state will be transformed into a

new coordinate system that assumes the reference point P0 as the origin, and the vector from the

reference point to the first neighboring point along the counter-clock direction as the unit vector,

along the positive direction of the x-axis (Yao et al., 2005). The transformation (i.e., rotation,

scaling, and transit) from the original coordinate system Oxy to the new one O
′
x

′
y
′

is shown in

47

Figure 4.12: Coordinate transformation

Figure 4.12, and can be represented as:

x

′

y
′

1

 =

cos θ sin θ 0

−sinθ cos θ 0

0 0 1

1
d 0 0

0 1
d 0

0 0 1

1 0 −x0

0 1 −y0

0 0 1

x

y

1

d =

√
(x0 − xr1)2 + (y0 − yr1)2 (13)

Reward function The actor will receive reward feedback from the environment to indicate how

good the performed action is at the current state St, which the environment in RL refers to the mesh

domain boundary. The reward function is defined as follows:

(1) if the point (action) is outside the domain, the reward is set to be -0.1;

(2) if the generated element has straddled segments with itself or other elements, as shown in

Figure 4.13, the reward is set to be -0.1;

(3) if the element has no situation with 1) and 2), the reward is the combination of current ith

element quality ηei and the quality of the remaining boundary ηbi , which is calculated by√
ηei ∗ ηbi . The element quality ηei is measured by both its edge quality and angle quality, and

calculated as follows, which are adapted from (Zeng & Yao, 2009),

ηei =
√
qe ∗ qa (14)

48

Figure 4.13: Invalid situations of the element. P0 is the reference point and P is the newly generated
point.

Figure 4.14: Different quality of elements

qe = 4

√√√√ 4∏
j=1

(
lj√
Ai

)
sign(

√
Ai−lj)

(15)

qa = 4

√√√√ 4∏
j=1

(1− |aj − 90|
90

) (16)

where qe refers to the quality of edges of this element; lj is the length of the jth edge of the element;

Ai is the area of the ith element; qa refers to the quality of the angles of the element; and aj is the

degree of jth inner angle of the element. The quality ηei will range from 0 to 1, which is better if

greater. Examples of various element qualities are shown in Figure 4.14.

The quality of remaining boundary, ηbi , is calculated as follows,

ηbi =

√√√√ 2∏
k=1

(
Min(θk, 60

60
) (17)

49

Figure 4.15: New boundary angles

where θk refers to the degree of the kth generated angle, as shown in Figure 4.15. The quality ηbi

also ranges from 0 to 1, which the higher value is the better.

Finally, we have the reward function as

Rt =

−0.1, if the generated point is outside the domain or

the formed elements has straddled segments;√
ηei ∗ ηbi , otherwise.

(18)

To have a negative reward prevents the actor from performing inappropriate actions and generating

invalid elements. Once the actor generates a valid element, it will immediately receive a reward

value to tell how good that action is. This is a stepwise reward signal, which smoothly guides the

actor to achieve the final goal. The reason why to consider both the quality of the current element

and the remaining boundary is that the actor needs to learn the trade-off between them to achieve an

overall good mesh quality and complete the meshing task.

Actor representation

In a fully observable MDP, the agent observes the true state of environment at each time t and per-

forms an action according to a parameterized policy πθ. The actor constantly chooses actions and

produces the best one for a given environmental state St overtime. Typically for type (b) action

shown in Figure 4.2, the selected action At (line 5 of Algorithm 1) is to sample a point Pt within a

specified area with the reference point P0 as the center. The selection is sampled from the parame-

terized policy, At = Pt ∼ πθ(st). Finally, a new element is formed by four points, Pt, Pl1, P0, and

Pr1, after the environment receives the point Pi.

50

The actor will also update (line 10 of Algorithm 1) the policy distribution at each time step with

respect to the parameter vector π by using the sampled policy gradient:

∇θJ (πθ) =
∑
s,a

[∇θlnπθ(a|s)Aπθ(s, a)] (19)

in which the direction Aπθ(s, a) is suggested by the critic (Section 4.3.2).

Critic representation

The critic is used to observe the states and rewards from the environment and estimates the value

function V̂ πθ(s;w) accounting for both immediate and future reward to be received by the following

policy πθ. The value function will determine whether the position of the selected point can achieve

the best performance in both the quality of the extracted element and the remaining boundary in

the long run. To reduce the variance of state value estimation and produce a positive direction for

optimization, the advantage function is adopted, as shown in Eq.8. Since the temporal-difference

(TD) error, defined in Eq.12, can be used as the unbiased estimation of the advantage function, it

will guide the updating of parameter vector θ in the actor. The updating of parameters of the critic

in Figure 4.10 is shown in the line 9 of Algorithm 1.

4.3.3 FNN as policy approximator for fast learning and meshing

A2C network can acquire new knowledge with a slow trial-and-error process; hence, it is practically

infeasible to do element extraction directly using RL. To address this challenge, A2C is used to

generate good meshes to extract successful (state, action) pairs as samples for training a multilayer

FNN. The FNN can be seen as an RL policy approximator. The architecture of the integrated

approach is shown in Figure 4.16.

The architecture in Figure 4.16 provides a policy-only approach without consulting value functions.

This entire process simulates the human learning process, which acquires successful samples from

trial-and-error, extracts experience from those samples, and enhances the decision-making ability

by the extracted experience. It is a novel combination of two methods to form a human-like learning

schema to solve the mesh generation problem. The learning process consists of experience extrac-

tion and FNN learning. Experience extraction is a prerequisite for the FNN component. When

51

Figure 4.16: FNN agent architecture

the learning finishes, the trained model applies to various domain boundaries for generating mesh

elements.

FNN learning

The FNN module can learn from the acquired data from the experience extraction module to 1)

decide which extraction rule should be applied and 2) determine the position of the newly gener-

ated point for a new element when necessary. Its network structure is shown in Figure 4.17 and

mathematically described as follows (Yao et al., 2005):

[typei, Pi] = f([P(l,N), . . . , Pl2, Pl1, P0, Pr1, . . . , P(r,N), Pθ1 , Pθ2 , Pθ3]) (20)

where typei is the output type, as shown in Figure 4.18, which equals to one of the three values (i.e.,

0, 1, and 2); Pi is the output point, consisting of (xi, yi); the input points are the state; and N equals

2 in this paper. The objective function used in FNN is denoted in the following formula:

MSE =
1

n

n∑
i

[(xi − x̃l)2 + (yi − ỹl)2 + (typei − t̃ypel)2] (21)

where x̃l, ỹl, t̃ypel are the FNN model output for ith input and MSE is the sum of the mean squared

errors of these three variables.

52

Figure 4.17: FNN module structure

Figure 4.18: Three types of outputs

Through supervised learning, these element extraction rules are quickly acquired. The trained model

can easily distinguish which rule should be applied under a specific environment state (input) and

can generate a point (output) to form a high-quality element correspondingly. In this way, the

experience is transferred from the slow trial-and-error A2C process to the fast one step FNN. This

process also simulates the human decision process as specified by (Kahneman, 2011).

Experience extraction

The experience extraction (EE) module intends to extract samples from existing elements derived

from the A2C model for the FNN model training. A sample here is an instance of extraction rules,

which is represented by the mappings from a state (input) to the output type and point, as shown in

Figure 4.17. For the meshing result generated in each episode by the A2C, EE will check if they

are qualified to be extracted as samples. Two criteria are hence used to determine the quality of

samples: 1) element quality ηei is used to filter out unqualified elements, and; 2) the number of total

qualified elements in a meshing result of A2C should exceed a threshold η.

53

An example of the sample extraction process is shown in Figure 4.19. A trajectory stops when there

are no valid elements generated within the maximum step T. A trajectory from the A2C module

is illustrated in Figure 4.19 (a), which meets the second criterion (e.g., η = 10) as previously

mentioned. Each element has a property defined by a tuple ¡element id; element quality¿, where

Element id is defined as the order of the element extracted. Many mesh elements can be used for

EE based on the first criterion (i.e., ηei > 0.7), such as elements 0, 1, 3, 7, 14, 15, 19 and 23 while

some other elements will be excluded, such as 5, 12, 13, and 17. For example, the element 15 with

element quality 0.91 in Figure 4.19 (a) is used to show the experience extraction process. Three

types of extracted samples are shown in Figure 4.19 (b)-(d). Eight points are selected as the input

for each rule type, where points Pl2, Pl1, P0, Pr1, and Pr2 (in red), are points in the boundary from

left to right with P0 as the reference point, and points Pθ1 , Pθ2 , and Pθ3 (in blue) are collected from

the fan-shaped area θ1, θ2 and θ3 with radius d=3 with the unit length being ‖P0Pr1‖, as shown in

Figure 4.9; and the output point is chosen as Pi (in black). It should be noted that the point Pr2 is

Pi in Figure 4.19 (c) and the point Pl2 is Pi in Figure 4.19 (d).

The input-output pair for each training sample will be arranged according to Eq. 20. Ten training

samples with the same reference point and output point are shown in Table 4.1. Those input-output

pairs will be normalized and transformed from the original coordinate system Oxy to the new one

O
′
x

′
y
′

(see Figure 4.12). The transformation results are shown in Table ??. Consequently, the

coordinates of all the sampling points are constructed into the same scale and their relationships

remain unchanged.

Table 4.1: Examples of extracted samples for element 15: the reference point P0(x0, y0) and output
point Pi(xi, yi) are the same across these samples, respectively

input output
xl2 yl2 xl1 yl1 x0 y0 xr1 yr1 xr2 yr2 xθ1 yθ1 xθ2 yθ2 x

θ3
yθ3 typei xi yi

10 2 8.87 0.55 10.09 0.13 9.39 1.51 8.27 2.35 6.72 3.25 6.72 1.05 5.57 0.94 0 8.02 0.93
10 2 8.87 0.55 10.09 0.13 9.39 1.51 8.27 2.35 6.72 3.25 6.72 1.05 5.57 0.94 0 8.02 0.93
10 2 8.87 0.55 10.09 0.13 9.39 1.51 8.27 2.35 6.95 3.55 5.65 1.49 5.57 0.94 0 8.02 0.93

8.02 0.93 8.87 0.55 10.09 0.13 9.39 1.51 10 2 6.94 2.14 7.38 1.19 5.57 0.94 1 8.02 0.93
8.02 0.93 8.87 0.55 10.09 0.13 9.39 1.51 10 2 8 4 7.12 0.56 5.57 0.94 1 8.02 0.93
8.02 0.93 8.87 0.55 10.09 0.13 9.39 1.51 10 2 6.72 3.25 6.72 1.05 5.57 0.94 1 8.02 0.93
10 2 8.87 0.55 10.09 0.13 9.39 1.51 8.02 0.93 6.94 2.14 7.38 1.19 5.57 0.94 2 8.02 0.93
10 2 8.87 0.55 10.09 0.13 9.39 1.51 8.02 0.93 8 4 7.12 0.56 5.57 0.94 2 8.02 0.93
10 2 8.87 0.55 10.09 0.13 9.39 1.51 8.02 0.93 6.72 3.25 6.72 1.05 5.57 0.94 2 8.02 0.93
10 2 8.87 0.55 10.09 0.13 9.39 1.51 8.02 0.93 6.95 3.55 5.65 1.49 5.57 0.94 2 8.02 0.93

54

Figure 4.19: Example of experience extraction of one element. In (a), each element has a tuple
< elementid; elementquality > inside, where element id refers to the generation order of the
element; and element quality is calculated by ηei ; (b)-(d) show three types of patterns collected for
training samples: (b) type 0; (c) type 1; (d) type 2.

55

Table 4.2: Examples of extracted samples in Table 4.1 after coordinate transformation following
Eq. 4.3.2

input output
x

′
l2 y

′
l2 x

′
l1 y

′
l1 x

′
0 y

′
0 x

′
r1 y

′
r1 x

′
r2 y

′
r2 x

′
θ1 y

′
θ1 x

′
θ2 y

′
θ2 x′

θ3
y
′
θ3 typei x

′
i y

′
i

1.2 0.67 0.04 0.9 0 0 1 0 1.81 0.4 2.84 0.07 1.12 1.59 0.71 2.92 0 1.07 0.96
1.2 0.67 0.04 0.9 0 0 1 0 1.81 0.4 2.78 1.03 1.52 1.67 0.71 2.92 0 1.07 0.96
1.2 0.67 0.04 0.9 0 0 1 0 1.81 0.4 2.89 0.81 2.08 2.16 0.71 2.92 0 1.07 0.96
1.07 0.96 0.04 0.9 0 0 1 0 1.1 0.49 2.08 1.23 1.4 1.25 0.71 2.92 1 1.07 0.96
1.08 0.96 0.04 0.9 0 0 1 0 1.1 0.49 2.84 0.07 1.12 1.59 0.71 2.92 1 1.07 0.96
1.09 0.96 0.04 0.9 0 0 1 0 1.1 0.49 2.78 1.03 1.52 1.67 0.71 2.92 1 1.07 0.96
1.2 0.67 0.04 0.9 0 0 1 0 1.07 0.96 2.08 1.23 1.4 1.25 0.71 2.92 2 1.07 0.96
1.2 0.67 0.04 0.9 0 0 1 0 1.07 0.96 2.84 0.07 1.12 1.59 0.71 2.92 2 1.07 0.96
1.2 0.67 0.04 0.9 0 0 1 0 1.07 0.96 2.78 1.03 1.52 1.67 0.71 2.92 2 1.07 0.96
1.2 0.67 0.04 0.9 0 0 1 0 1.07 0.96 2.89 0.81 2.08 2.16 0.71 2.92 2 1.07 0.96

The extraction process will be repeated for all the qualified elements in an existing mesh to gather

training samples. In this way, a large number of training data can be easily extracted with a single

mesh. Furthermore, the training data contains sufficiently diversified situations that may appear in

meshing any complex geometric domain.

4.3.4 Summary

By using quadrilateral mesh generation as an example, the self-learning element extraction system,

FreeMesh-S, demonstrates how the extraction rules are acquired by the combination of an A2C

and an FNN. The general architecture is illustrated in Figure 4.20. Through considering the mesh

generation as a design problem, three atomic design rules (i.e., three extraction rules) are proposed

to recursively extract quadrilateral elements by (Zeng & Cheng, 1993), which are complete and

sufficient to mesh various complex boundary shapes. Given these defined rules, the agent of RL

(i.e., A2C here) learns their transition relationships through continuously self-evolving, known as

the policy. The FNN serves as a policy-only approach to extract samples from those high-quality

elements from the trial-and-error, which enables the agent to choose one of the three extraction rules

to apply and to position the coordinates of newly added points.

The generalized architecture is not only limited to quad mesh generation, but any problem that can

be formulated into atomic design problems and sequential decision-making problems.

56

Figure 4.20: Proposed self-learning system FreeMesh-S: architecture

4.4 Experiments

To comprehensively evaluate the performance of the learned element extraction rules by the pro-

posed self-learning system, FreeMesh-S, two experiments were conducted. Experiment 1 tests the

performance of the training and the impact of the training parameters on the quality of the generated

mesh. Experiment 2 compares the quality of meshes by FreeMesh-S against three widely adopted

meshing approaches over 10 predefined 2D domain boundaries. The following subsections will

discuss the experiment details and results.

4.4.1 Experiment settings

Experimental domain boundaries

To provide comprehensive and various challenging situations for meshing, testing domain bound-

aries are chosen based on whether a boundary includes sharp angles, bottleneck regions, unevenly

distributed segments, and holes. Hence, 10 domain boundaries are selected to test the performance

of the proposed system (see Figure 4.21 and Table 4.3).

57

Figure 4.21: experimental domains

Table 4.3: Description of 10 testing domains

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
Sharp angles

√ √ √ √ √

Bottleneck region
√ √ √ √ √

Unevenly distributed segments
√ √ √ √ √ √

Hole
√

Vertex numbers 120 196 272 92 128 286 140 269 110 358
Perimeter 17.2 40.9 19.5 24.8 26.6 46.9 19 26.5 24.9 40.1

Unit boundary vertex numbers 6.9 4.8 13.9 3.7 4.8 6.1 7.4 10.2 4.4 8.9

Mesh performance evaluation metrics

The meshing performance is measured by 7 mesh quality metrics, including 6 geometric metrics,

and 1 topological metric, as shown in Table 4.

Table 4.4: Mesh quality metrics

Topological Metric Singularity
Geometric Metrics Element quality, |MinAngle-90|, |MaxAngle-90|, Scaled Jacobian, Stretch, and Taper

Seven quality metrics are:

• Singularity: the number of irregular nodes in the interior of a mesh. A node is considered

58

irregular if it does not have four incident edges (Verma & Suresh, 2017);

• Element quality ηe: am omdex defomed by Equation 14.

• |MinAngle-90|: the absolute differences between the smallest internal angle of an element

and 90◦; The smaller differences imply a better element;

• |MaxAngle-90|: the absolute differences between the largest internal angle of an element and

90◦; The smaller differences imply a better element;

• Scaled Jacobian: the minimum Jacobian (Knupp, 2000) at each corner of an element divided

by the lengths of the two edge vectors, which varies from minus one to plus one, where a

higher value implies a better element; the negative value, typically, means the element is

inverted;

• Stretch: an index referring to the ratio between the shortest element edge length and the

longest diagonal length; and

• Taper: the maximum absolute difference between the value 1 and the ratio of the areas of

two triangles separated by a diagonal within a quadrilateral element, where the smaller value

represents that the element becomes closer to a triangular shape.

All the metrics are averaged for all elements in the mesh, respectively. Some indices (e.g., scaled

Jacobian, stretch, and taper) are calculated using Verdict software (Pébay et al., 2008).

4.4.2 Experiment 1: training effectiveness and efficiency

The training of the proposed self-learning meshing system consists of two parts: A2C model training

and FNN model training. For the A2C network, the actor and critic share the same hidden layer (128

nodes). Since the environment state consists of 8 2D points, the input layer has 16 nodes. For the

action is the coordinates of the candidate point, which is continuous in a 2D space, the policy is

represented by two normal distributions to estimate x, y coordinates, respectively. Two mean values

of the normal distributions are the outputs of the actor, and two variance values are set to 1. The

final x, y coordinates are sampled from these two distributions according to the obtained mean and

variance pairs. To accelerate the learning speed, the sampled x, y coordinates are clipped into [-

1.5, 1.5]. The learning rate of 0.0001 is set for the network and the reward discount rate is set as

0.99.

59

Figure 4.22: Model training process

Self-sampling and evolving of A2C and FNN training

There are two steps to complete the training of the FNN network, as is shown in Figure 4.22. In

Step 1, the A2C module will generate a mesh, which may cover only a partial domain to mesh. The

generated mesh is then used to produce initial training samples for FNN. In Step 2, the FNN will be

trained, applied, and further evolved.

In this presented research, an empty domain, such as that shown in Figure 4.23 (a), is used to

generate elements without any prior knowledge about the parameters in the extraction rules in Figure

4.2. The A2C network can generate high-quality elements in the domain after some rounds of trial

and error. Those high-quality elements in each episode of training can be extracted as training

samples for the FNN network, which can be reused for the boundary of different shapes. Figure

4.23 (d)-(f) are episodes that include sufficient good samples to train the FNN. An episode can be

selected as a source for element sampling if two criteria are met: ηei > 0.7 and η > 20, as introduced

in Section 4.3.3.

Table 4.5 shows the total number of elements (#tE), number of valid elements (#vE), number of

extracted samples (#eS), and the number of samples per valid element (#S2E) for each episode.

The samples are extracted using the experience extraction (EE) module introduced in Section 4.3.3.

It can be seen from Table 4.5 that the episode in Figure 4.23 (d) has 37 valid elements, which allows

the extraction of 10,369 different samples (see the extraction process in Figure 4.19), where the

number of samples per valid element has reached 280. The similar information can be observed

in Figure 4.23 (e) and Figure 4.23 (f). This significant number of leverage over an element brings

60

Figure 4.23: Partial results of sampling

the EE module’s huge efficiency and effectiveness in collecting samples. This effectiveness and

efficiency in data collection ensure that the FNN model can be sufficiently trained.

Table 4.5: Self-evolving process of FNN model.

Episode #tE #vE #eS #S2E
Figure 4.23 (b) 20 2 54 27
Figure 4.23 (c) 35 6 1,174 195
Figure 4.23 (d) 56 37 10,369 280
Figure 4.23 (e) 56 41 12,230 298
Figure 4.23 (f) 62 45 14,906 331

#tE : total number of elements;
#vE : number of valid elements with quality ηe > 0.7;
#eS : number of extracted samples;
#S2E : the number of samples per valid element.

Then trained FNN model can be applied to another domain, such as domain D2, to do the meshing

even though the extracted samples are from a different domain (see Figure 4.23 (a)). The meshing

result of this FNN model is shown in Figure 4.24.

The meshing, however, is not complete in this domain. In step 2 of the training process as illustrated

61

Figure 4.24: The first meshing result of the FNN model

in Figure 4.22, therefore, there is a self-evolving process of the FNN model by learning from the

meshing results generated by itself. While repeating step 2, the element extraction rules simulated

by the model are gradually evolved and adapted to the characteristics of the boundary shape. For

example, the training process of the subsequent 4 rounds of step 2 is shown in Table 4.6. In each

round, the same FNN model will be trained using the extracted samples from the previous meshing

result (i.e., sample source) and then the trained model is applied to generate a new mesh. Obviously,

the meshing performance is getting improved and adapted to the boundary shape continuously while

a significantly high number of valid samples can be extracted.

Efficiency of A2C training

The time cost for training the A2C network on the domain (see Figure 4.23 (a)) is shown in Figure

4.25. It shows the temporal changes in the average number of elements per continuous 100 episodes

during the training process. The red line accounts for the total number of elements whose quality

meets ηe > 0. The black, green, and blue lines refer to ηe > 0.3, ηe > 0.5, and ηe > 0.7,

respectively. All the lines show an increasing trend over time, which means that the learning process

is successful. The black and red lines are very close, which indicates that almost every element has

a quality bigger than 0.3. The number of elements with quality ηe > 0.7 accounts for around

30% of total number of elements when the training is converged. At the end of the training period,

the domain has an average element number of about 75, and the average number of elements with

ηe > 0.7 is around 22.

62

Figure 4.25: Temporal training cost of A2C network

Impact of training parameters on mesh metrics

Element quality thresholds comparison

In the module of experience extraction, the quality threshold is used to control the selection of ele-

ments and determines whose experience is valuable for subsequent learning. To compare the differ-

ent performances of the trained FNN model against the quality of selected samples, three different

element selection thresholds (ηe > 0.5, ηe > 0.7, and ηe > 0.8) are tested on the three experimental

domains (D1, D2, and D3). The performance is measured by the 7 quality metrics.

The comparison results are shown in Table 4.7. Obviously, taking the quality threshold ηe > 0.7

achieves best performance in 4 metrics (i.e., Singularity, —MaxAngle - 90—, Scaled Jacobian, and

Taper); taking the threshold ηe > 0.8 has best results in Element quality, —MinAngle – 90—, and

Scaled Jacobian; and the last threshold has the best performance only in Stretch. It is understandable

that the FNN model has better performance in most of the metrics when the experience of elements

with higher quality is sampled. However, the FNN model with a higher element quality threshold

may not produce sufficient training data because the number of extracted samples will decrease

when the threshold is raised. The other metrics, such as Stretch, is not sensitive to whether the

elements with higher quality are chosen. Therefore, this paper chooses quality ηe > 0.7 as the ideal

and balanced threshold for experience extraction, which thereby trains FNN models.

63

FNN structures comparison

To compare different performances of FNN models against the network structures, 4 different hid-

den layer structures ([64, 64], [256, 256], [64, 128, 64, 32, 16], and [32, 64, 128, 64, 32, 16]) are

tested on three experimental domains. Four FNN models are trained using the 4 different structures

according to the process introduced at the beginning of this section. The model performance is

measured by the 7 quality metrics. The comparison results are shown in Table 4.8, where each met-

ric value is the average of values for three respective domains. Obviously, the models have better

performance in slender structures than the structures of [64, 64] and [256, 256]; and especially, the

model having the structure of [64, 128, 64, 32, 16] achieves the best performance in the 6 metrics.

This paper, therefore, chooses this structure as the optimal FNN network structure and uses this

trained FNN model to compare the meshing performance with other meshing approaches.

Comparison of meshing speed for A2C and FNN

The mesh generation speed is important to finite element analysis applications. In this paper, an

extra indicator, elements per second, is adopted to measure the performance differences between

the A2C and FNN models, both of which were developed by the same team under the similar

resources. Other methods are not compared since they are developed by different teams of various

software development capabilities and with different programming languages, which will have a

great impact on the performance of the system. These two models are tested on the 10 domains

given in Figure 4.21. The comparison result is shown in Table 4.9. The average speed for A2C

over 10 domains is 19.71 elements per second while that of FNN equals to 28.73. The FNN model

excels A2C by almost 9 elements per second. The performance difference is that FNN can directly

predict the coordinate of the candidate point to form an element and the A2C model still needs two

sampling operations from two normal distributions to get the x and y coordinates. In addition, the

A2C model may not be adaptable to all of the domains and could require some trial-and-error to

generate a valid element, which causes a big drop in the speed. For example, the meshing speed

of A2C is only 3.82 elements per second in domain D7. The standard deviations of A2C and FNN

are high and both the meshing speeds increase when the domain has fewer vertex numbers. The

probable reason for this trend is because the proposed method will update the boundary and find the

64

next reference point every time after an element was extracted and hence the iteration number will

be correspondingly greater for more boundary vertices.

4.4.3 Experiment 2: comparisons of the proposed method with existing methods

To examine the performance of the proposed FreeMesh-S system, the effectiveness comparison

experiment is conducted with the other three approaches.

Experimental comparison approaches

The meshing performance of the self-learning system will be compared with three popular quad

meshing approaches, Blossom-Quad (Remacle et al., 2012), Delquad (Remacle et al., 2013), and

Paving algorithm (Blacker & Stephenson, 1991; White & Kinney, 1997). Blossom-Quad and

DelQuad are two indirect algorithms to generate quad meshes in 2D domains. The former takes

advantage of the blossom algorithm to find the perfect matching of a pair of triangles that are gener-

ated by the Delaunay triangulation algorithm and then to combine matched pairs into quadrilateral

elements. The latter one improves the triangulation process of Blossom-Quad by building trian-

gular elements that are more suitable to recombine into quadrilaterals. Paving and its redesigned

version are direct methods to generate quadrilaterals from domain boundaries. They generate lay-

ered quadrilateral elements from the boundary toward the interior until only six boundary nodes are

left, which will be tackled following predefined patterns.

In the following, two widely used software systems, Gmsh (Geuzaine & Remacle, 2009) (imple-

ments the Blossom-Quad and Delquad algorithms) and CUBIT (Blacker et al., 2016) (implements

the Paving approach), are used as quad element generator to compare meshing performance with

the proposed self-learning system FreeMesh-S. Gmsh and CUBIT are both very popular meshing

software and have been developed by researchers for many years since 1991. CUBIT is developed

at Sandia National Laboratories and even has a commercial product (Csimsoft). The comparisons

will be made only on the quality indices while the computational time will not be considered since

it depends on how the systems are designed and implemented and which programming language is

used. The computational complexity of FreeMesh-S and Paving isO(n2), which is calculated using

their respective procedures, whereas that of Blossom-Quad and DelQuad is reported to be O(n2)

65

(Johnen, 2016).

Model applicability validation

To validate that the trained FNN model can be applied to arbitrary domain boundaries without any

additional training, the 10 experimental domains are tested. The meshing results of FreeMesh-S are

shown in Figure 4.26. All the domains are discretized into high-quality quadrilateral elements suc-

cessfully, and the transition of elements is smooth, which demonstrates the excellent applicability

to various boundary shapes without additional A2C and FNN training.

Comparing results and analysis

All the meshing results of four methods, Gmsh-Blossom (GB), Gmsh-DelQuad (GD), and CUBIT-

Pave (CP), and the proposed self-learning system FreeMesh-S (SS), on the 10 experimental do-

mains, are shown in Figure 4.27, Figure 4.28, Figure 4.29, and Figure 4.21, respectively. All the

domains have been successfully discretized into mesh elements, in which the methods CP and SS

have more regular quadrilateral elements than GB and GD; and GD performs better than GB. The

increase of regularity of meshes can reduce the computational consumption and improve the ac-

curacy of the analysis results. GD and CP methods, however, cannot mesh all the domains into

quadrilaterals. There are triangles in certain experimental domains, which require extra cleanup

operations to eliminate them.

To quantitatively measure the different performance of the 4 methods, the statistics of the 7 metrics

are illustrated in Table 4.12. Each value in the table is the average over 10 domains (see detailed

statistics in Table 4.10). Clearly, the proposed SS method achieves the best performance in 2 quality

metrics (Scaled Jacobian and Taper); CP method achieves the best performance in 5 quality metrics

(Singularity, Element quality, Min angle, Max angle, and Scaled Jacobian); and GB is the best

method from the aspect of Stretch. Moreover, the number of domains that each method achieves

the best in each metric are shown in Figure 4.30. For each metric, hence, there are the following

results.

• Singularity: Even though the CP method obtains the best averaged performance against other

66

Figure 4.26: All the meshing results of FreeMesh-S

67

Figure 4.27: Meshing results of GB method

68

Figure 4.28: Meshing results of GD method

69

Figure 4.29: Meshing results of CP method

Figure 4.30: Number of domains that each method achieves the best performance in each metrics

70

methods, the self-learning system FreeMesh-S (SS) has very close results and excels in 2 do-

mains when counting domains with best performances. GB and GD methods are less likely to

handle the irregular vertices during meshing because of their dependence on the triangulation

and cannot achieve good performance in all the domains. GD method, however, is better than

GB because it conducts a pre-processing on the triangulation to make the triangular elements

more suitable to be merged into quadrilaterals. Singularity impacts the numerical stability in

CFD applications, wrinkles in subdivision surfaces, and breakdown of structured patterns on

manifolds (Suresh & Verma, 2019).

• Element quality: FreeMesh-S (SS) resembles with GD method and outperforms GB in this

metric while the CP method is the best one and excels in 7 domains. Nevertheless, SS is still

comparable with other methods in 4 domains. This measure is to identify how good a single

element is, which can be calculated by the Equation 14.

• |Min/Max Angle - 90| : CP is better than the other 3 methods. FreeMesh-S (SS) has a similar

performance with the GD method and outperforms GB. These two metrics are to show the

difference between the minimal or maximum internal corners of an element and the degree of

90, because a square is considered as the perfect element in quad meshing, i.e., both of them

are 90◦.

• Scaled Jacobian: CP and SS have better results than the other two methods while SS is slightly

better than CP by excelling in 1 domain with the best performance. GB is the worst one.

Scaled Jacobian relates to the interpolation error of finite element solution, for which the

value of the best shape is 1.

• Stretch: GB is the best one among the 4 methods and defeats all the methods in 10 domains.

FreeMesh-S (SS) has a very similar performance with GD while CP is slightly worse than the

two methods by 0.01. Stretch is calculated by the ratio between the shortest edge and longest

diagonal length, which indicates the degree of deformation.

• Taper: SS outperforms all the other methods and excels in 9 domains. Taper represents the

ratio of the areas of the two triangles separated by a diagonal within a quadrilateral element,

which indicates the balanced shape of an element.

In general, the proposed system FreeMesh-S (SS) achieves high performance in all the metrics,

71

where all the values are within acceptable ranges as specified by the Verdict (Pébay et al., 2008),

and outperforms the other three approaches in the metric of Scaled Jacobian and Taper. CP approach

has the best performance in metrics of Singularity, Element quality, | MinAngle - 90|, | MaxAngle

- 90|, and Scaled Jacobian. Even though almost losing all the competitions with other methods, the

GB method has the best performance in the aspect of Stretch. For the GD method, it exceeds the GB

method in all the other metrics except the Stretch but is still poorer than SS and CP. GD is a quad-

dominant method, which cannot discretize the whole domain into quadrilateral elements. Without

extra cleanup operations (i.e., element deleting and insertion), CP and GD methods are difficult

to generate a full-quad mesh. The proposed FreeMesh-S (SS) directly generates full-quadrilateral

elements by the simulated extraction rules from A2C and FNN modules, which does not require

any heuristic operations to handle exceptional triangle elements and inverted or flat quadrilateral

elements.

4.4.4 Summary

The meshing performance of the proposed self-learning system is thoroughly evaluated by compar-

ing it with the other three popular meshing approaches over 10 complex domain boundaries. As

been indicated in the introduction section, there is no single method that could perform the best

in every measurement metric. This paper chooses 7 commonly used indices to quantify meshing

performance. The proposed FreeMesh-S achieves high in all of them and outperforms other meth-

ods in the metrics of Scaled Jacobian and Taper. FreeMesh-S has also a similar performance in

Singularity with the best method – CP, which is suitable for applications needing regular meshes.

Moreover, by analyzing the computational efficiency of 4 methods, all of them have similar time

complexity.

In the model training stage, the A2C shows that the agent can gradually generate elements with very

good quality via trial-and-error learning, which is knowledge free and needs no human intervention.

The experience extraction module successfully extracts samples (i.e., input-output pairs) for the

FNN training, which can turn several hundred elements into several hundred thousand samples.

That is essential for the FNN model to get sufficient data and converge fast. The success of the

combination of A2C and FNN demonstrates that the proposed self-learning schema is efficient to

72

obtain the extraction rules and sheds light on its applicability to other computational geometric

problems.

4.5 Discussion

The proposed self-learning system, FreeMesh-S, has achieved high performance in meshing various

complex domain boundaries when comparing with other meshing approaches, as illustrated in the

previous experiment section. Furthermore, there are a few important implications of the proposed

system from the perspectives of practical and theoretical system design.

4.5.1 Domain knowledge dependency

To develop an approach or a system of mesh generation, it requires researchers or developers to be

equipped with equivalent knowledge for the selected method. The lifecycle of mesh generation can

be divided into four phases: pre-processing, element generation, quality measurement, and post-

processing. The primary geometry knowledge required during the different development phases is

shown in Table 4.11, respectively. For each phase, there are the following results:

• Pre-processing: Since the GB and GD are indirect methods to produce mesh elements, they

need to generate triangulations in handling domains first. They need knowledge (e.g., De-

launay triangulation) to generate those triangles. GD intends to find ways to optimize the

triangles in order to recombine them into high-quality quadrilateral elements. It requires,

therefore, at least 10 kinds of knowledge in the pre-processing phase; instead, the GB only

needs Delaunay triangulation. CP and SS are direct methods for quad meshing, which do not

need any pre-processing operations.

• Element generation: GD and GB have a similar procedure to generate elements. The required

knowledge for them is the same, including 8 main categories. CP method requires less knowl-

edge and needs 4 categories. SS needs the least knowledge to generate elements, which is also

easy for understanding.

• Quality measurement: All the approaches require 2 classes of knowledge. However, the

required categories in SS, aspect, and taper ratio, are the simplest ones.

73

• Post-processing: GB and GD both need operations, including swapping the edges and re-

moving the duplicated vertex in elements. GD also needs to smoothen the mesh using Lp

Central Voronoi Tesselation (LPCVT) algorithm (Lévy & Liu, 2010). Moreover, GD is a

quadrilateral-dominant method, which means that triangles may exist. CP method also re-

quires geometrical operations, such as deleting and inserting elements and smoothing. SS

does not involve any extra operations, and only needs smoothing, which is cleanup free.

Generally, the domain knowledge required for SS is far less and easy to understand than others while

maintaining the promising meshing results. GD method has the most complicated geometry-related

concepts to learn. GB is slightly less complicated than GD in the pre-processing stage. Since CP

and SS are direct meshing methods, they do not need any pre-processing knowledge. However,

because CP relies on heuristic post-processing, it needs more knowledge in the development of

those cleanup operations. Therefore, SS is a development-friendly method for especially novice

developers or researchers. This important benefit makes it less knowledge-dependent in the method

development and relieves humans from defining the input-output relations implied in the element

extraction rules.

Designing a geometric algorithm is usually extremely difficult and time-consuming because the

learning cost of geometric knowledge is high especially for novel researchers. The self-learning

and self-evolving FreeMesh-S system takes two steps (i.e., defining the primitive rules and the

self-learning process) in developing the algorithm, which smartly balances the human efforts and

machine intelligence in the solution development.

4.5.2 The relation between smart design and smart system

In the experiment, it was found that the derived element extraction rules are applicable to 2D do-

mains with almost any shape. The final obtained model is capable of meshing domains with ar-

bitrary boundaries without any additional training to fit their geometric specialty. Many existing

meshing algorithms have difficulty in achieving high-quality elements in domains with sharp angles

or in restricted domains, such as one side of the geometric boundary (Rushdi et al., 2017). Even

within a more regular geometric domain, they usually create flat or inverted elements that require

heavy post-processing operations. It is challenging to guarantee that a method works on domains

74

with arbitrary shapes while maintaining high-quality. One of the most important properties of a

smart system is that it can make adaptive decisions to maintain the overall performance of the sys-

tem. In the proposed FreeMesh-S system, the element extraction rules can be adaptive to various

mesh boundaries. Three types of atomic rules were conceptually designed for the meshing problem

through human intelligence, which is supported by a design methodology (Zeng & Cheng, 1991;

Zeng & Yao, 2009). This primitive property of the solution provides the foundation for the smart

applicability to arbitrary domains.

However, to manually obtain these rules are time-consuming and even cannot meet the specified

quality requirements. For example, human designers spend a lot of time to observe various kinds of

errors and come up with many heuristic operations such as element splitting, swapping, and collaps-

ing to refine the overall mesh quality (Blacker & Stephenson, 1991; Rushdi et al., 2017; White &

Kinney, 1997). Therefore, these rules should be smartly designed to be obtained automatically. It is

also another important property of a smart system to self-evolve from trial-and-error. The proposed

FreeMesh-S can automatically improve the performance of the extraction rules by integrating trial-

and-error learning and supervised learning. The formed self-learning schema by A2C and FNN can

quantitatively and automatically construct the input-output relations of the atomic rules without any

human intervention.

In summary, the smart system can make adaptive decisions according to the changes in the exter-

nal environment and can be self-evolved from experiences. The smart design will greatly balance

human efforts and machine intelligence and let the system equip with these two properties. The

FreeMesh-S has shed light on how to smartly design such a smart system and can be extended to

other fields where the problem can be cast as recursive or atomic design problems.

4.5.3 Limitations

There are still a few limitations for the proposed self-learning system to resolve in the future. One

challenge is that a domain with a very sharp angle is difficult to mesh. For example, a domain

has a corner with a 1◦ angle. It is, however, a common problem for almost every meshing method

(Shewchuk, 2012). The problem can be solved by cutting off the sharp corners or adding heuris-

tic rules to form a quadrilateral element first before applying the standard meshing method to the

75

Figure 4.31: Multi-connected domain to single-connected domain. (1) Multi-connected domain; (2)
Single-connected domain.

remaining boundary. The FreeMesh-S is also limited to mesh in single-connected domains. For a

multi-connected domain (e.g., domain D9), the comprised solution taken by FreeMesh-S is to insert

a cutting line to transform it into a single-connected domain, as shown in Figure 4.31. If there is

more than one hole inside the domain, the same operation can be applied to each one of them.

4.6 Conclusions

This paper aims to solve a challenging problem – learning from experience about the element ex-

traction rules for achieving high-quality meshes in both the boundary and interior of complex geo-

metric domains. Conventionally, to guarantee the overall mesh quality, element extraction methods

rely heavily on heuristic operations, which is extremely difficult, expensive, and time-consuming for

human algorithm designers. In this paper, a self-learning system FreeMesh-S is proposed to gen-

erate quadrilateral elements by automatically acquiring robust and high-quality element extraction

rules. Firstly, according to the recursive logic, the extraction rules are categorized into three types

(i.e., adding 1, 2, and 3 edges, respectively). Then, a novel learning schema formed by A2C and

FNN is used to construct the input-output relations quantitatively and automatically. A2C simulates

human trial-and-error learning to generate effective samples for training the three element extraction

rules using FNN. The experiment results demonstrate that derived element extraction rules can be

adaptive to various boundary shapes and achieve high performance in all quality metrics, especially

the highest in the metrics of Scaled Jacobian and Taper, in comparison with the other three widely

used meshing methods while requiring the minimal and simplest geometric knowledge.

76

Furthermore, this paper, for the first time, formulates the mesh generation problem as a Markov

Decision Process (i.e., sequential decision making) problem. It closely bridges machine learning

techniques with mesh generation and provides a smart way to balance the human efforts and ma-

chine intelligence in algorithm development, which could shed light on how to smartly design a

smart system.

77

Table 4.6: Self-evolving process of FNN model.

Sample source #tE #vE #eS Meshing result

Round 1 241 124 35,324

Round 2 558 419 279,770

Round 3 605 477 295,039

Round 4 678 530 345,158

The hidden layer of this FNN model is [256, 256];
#tE : total number of elements;
#vE : number of valid elements with quality ηe > 0.7;
#eS : number of extracted samples.

Table 4.7: Different element quality threshold comparison: L, H indicates if the lower value or
higher value is preferred, respectively. The hidden layer of this FNN model is [32, 64, 128, 64, 32,
16]. Each metric value is the average value of the three domains (D1, D2, and D3).

Quality ηe > 0.5 Quality ηe > 0.7 Quality ηe > 0.8
Singularity (L) 65.7 57.3 62

Element quality (H) 0.78 0.82 0.84
|MinAngle - 90| (L) 15.3 11.6 11.3
|MaxAngle - 90| (L) 16.6 12 12.1
Scaled Jacobian (H) 0.93 0.95 0.95

Stretch (L) 0.82 0.84 0.85
Taper (L) 0.08 0.06 0.07

78

Table 4.8: Comparison of FNN network structures: L, H indicate if the lower value or higher value
is preferred, respectively. Each metric value is the average value over the three domains (D1, D2,
and D3).

Hidden layers Hidden layers Hidden layers Hidden layers
[64, 64] [256, 256] [64, 128, 64, 32, 16] [32, 64, 128, 64, 32, 16]

Singularity (L) 72.6 84.7 52.3 57.3
Element quality (H) 0.84 0.84 0.87 0.82
|MinAngle - 90| (L) 11.5 11.2 9. 11.6
|MaxAngle - 90| (L) 12.6 12.1 10 12
Scaled Jacobian (H) 0.95 0.95 0.97 0.95

Stretch (L) 0.85 0.86 0.89 0.84
Taper (L) 0.08 0.09 0.06 0.06

Table 4.9: Meshing speed (elements per second) of A2C and FNN for all 10 domains. Avg. indicates
the average speed; STD indicates the standard deviation.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Avg. STD
A2C 31.84 16.73 11.71 38.36 28.43 13.25 3.82 12.41 33.95 6.63 19.71 11.69
FNN 35.66 20.78 17.62 55.16 40.03 18.32 26.94 16.17 42.1 14.48 28.73 13.08

79

T a
bl

e
4.

10
:

M
es

h
qu

al
ity

m
et

ri
cs

of
fo

ur
m

et
ho

ds
on

10
do

m
ai

ns
L

,
H

in
di

ca
te

if
th

e
lo

w
er

va
lu

e
or

hi
gh

er
va

lu
e

is
pr

ef
er

re
d,

re
sp

ec
tiv

el
y.

T
he

va
lu

e
in

bo
ld

m
ea

ns
th

e
be

st
am

on
g

ot
he

r
ap

pr
oa

ch
es

in
a

do
m

ai
n.

G
B

re
fe

rs
to

G
m

sh
-B

lo
ss

om
;

G
D

in
di

ca
te

s
G

m
sh

-D
el

Q
ua

d;
C

P
is

C
U

B
IT

-P
av

e;
an

d
SS

m
ea

ns
th

e
pr

op
os

ed
se

lf
-l

ea
rn

in
g

sy
st

em
,F

re
eM

es
h-

S.

Si
ng

ul
ar

ity
(L

)
E

le
m

en
t q

ua
lit

y
(H

)
|M

in
A

ng
le

-9
0|

(L
)

|M
ax

A
ng

le
-9

0|
(L

)
Sc

al
ed

Ja
co

bi
an

(H
)

St
re

tc
h

(L
)

T a
pe

r(
L

)
G

B
G

D
C

P
SS

G
B

G
D

C
P

SS
G

B
G

D
C

P
SS

G
B

G
D

C
P

SS
G

B
G

D
C

P
SS

G
B

G
D

C
P

SS
G

B
G

D
C

P
SS

D
1

21
7

81
87

47
0.

79
0.

87
0.

87
0.

88
15

.8
9

9.
70

9.
5

8.
6

18
.1

10
.6

11
.3

9.
5

0.
93

0.
97

0.
96

0.
97

0.
81

0.
88

0.
88

0.
9

0.
14

0.
07

0.
09

0.
07

D
2

18
8

13
6

62
82

0.
78

0.
81

0.
84

0.
82

16
.5

5
14

.2
8

11
.7

12
.8

18
.3

16
.0

13
.4

13
.8

0.
92

0.
93

0.
94

0.
94

0.
81

0.
84

0.
86

0.
84

0.
14

0.
11

0.
1

0.
09

D
3

21
3

86
42

28
0.

81
0.

90
0.

92
0.

91
7.

15
5.

4
5.

7
6.

4
7.

68
5.

7
6.

1
6.

56
0.

97
0.

99
0.

98
0.

99
0.

92
0.

93
0.

93
0.

92
0.

04
0.

03
0.

03
0.

02
D

4
97

54
22

21
0.

75
0.

81
0.

82
0.

83
19

.8
13

.9
12

.2
13

21
.9

15
.7

13
.8

13
.8

0.
90

0.
93

0.
95

0.
95

0.
78

0.
83

0.
84

0.
84

0.
17

0.
13

0.
11

0.
09

D
5

12
3

85
35

39
0.

77
0.

80
0.

82
0.

82
17

.2
14

.8
12

.1
13

.6
19

16
.3

13
.8

13
.9

0.
92

0.
93

0.
94

0.
95

0.
80

0.
82

0.
84

0.
84

0.
15

0.
12

0.
1

0.
07

D
6

25
1

20
2

10
1

81
0.

76
0.

79
0.

81
0.

78
18

.8
16

.5
13

.1
15

.5
20

18
15

16
.2

0.
91

0.
92

0.
94

0.
93

0.
79

0.
81

0.
83

0.
80

0.
16

0.
14

0.
11

0.
09

D
7

16
3

84
46

90
0.

78
0.

85
0.

86
0.

8
16

.2
11

.6
9.

3
13

.3
18

.8
13

.2
10

.6
14

.3
0.

09
2

0.
95

0.
97

0.
94

0.
80

0.
85

0.
87

0.
81

0.
15

0.
1

0.
08

0.
1

D
8

17
8

10
1

79
61

0.
79

0.
83

0.
84

0.
85

16
12

.8
11

.7
10

.6
17

.8
14

.1
13

.8
11

.7
0.

93
0.

95
0.

95
0.

96
0.

81
0.

86
0.

86
0.

86
0.

14
0.

09
3

0.
11

0.
08

D
9

27
3

17
9

81
11

0
0.

77
0.

83
0.

85
0.

82
17

.4
12

.9
11

.6
13

.6
19

14
.3

12
.2

14
.4

0.
92

0.
94

0.
95

0.
94

0.
8

0.
85

0.
87

0.
84

0.
13

0.
1

0.
09

0.
09

D
10

44
9

20
1

57
69

0.
8

0.
87

0.
92

0.
89

4.
6

9.
7

5.
6

6.
9

16
.2

10
.6

6.
1

7.
3

0.
94

0.
96

0.
98

0.
98

0.
83

0.
9

0.
93

0.
9

0.
11

0.
05

0.
03

0.
03

A
vg

.
21

5.
2

12
0.

9
61

.2
62

.8
0.

78
0.

84
0.

86
0.

84
14

.9
6

12
.1

6
10

.3
11

.4
17

.7
13

.5
11

.6
12

.2
0.

84
0.

95
0.

96
0.

96
0.

82
0.

86
0.

87
0.

86
0.

13
0.

09
0.

08
0.

07

80

Ta
bl

e
4.

11
:C

om
pa

ri
so

n
of

ge
om

et
ry

kn
ow

le
dg

e
re

qu
ir

ed
to

de
ve

lo
p

an
d

im
pl

em
en

tt
he

al
go

ri
th

m
s

an
d

sy
st

em

G
m

sh
-B

lo
ss

om
G

m
sh

-D
el

Q
ua

d
C

U
B

IT
-P

av
e

Se
lf-

le
ar

ni
ng

sy
st

em

Pr
e-

pr
oc

es
si

ng
D

el
au

na
y

tr
ia

ng
ul

at
io

n
Su

rf
ac

e;
Pa

ra
m

et
ri

za
tio

n/
re

pa
ra

m
et

ri
za

tio
n;

Su
rf

ac
e

cu
rv

at
ur

e;
L

ap
la

ce
eq

ua
tio

n;
D

ir
ic

hl
et

bo
un

da
ry

co
nd

iti
on

s;
L

no
rm

;
fr

on
ta

lD
el

au
na

y;
D

el
au

na
y

tr
ia

ng
ul

at
io

n

E
le

m
en

tg
en

er
at

io
n

M
es

h
si

ze
fie

ld
;b

lo
ss

om
al

go
ri

th
m

;c
ro

ss
-fi

el
d;

pe
rf

ec
tm

at
ch

in
g

of
gr

ap
h;

Tu
tte

’s
th

eo
re

m
;

cu
bi

c
gr

ap
h;

qu
ad

-v
er

te
x-

m
er

ge
op

tim
iz

at
io

n;
do

ub
le

tc
ol

la
ps

e
op

tim
iz

at
io

n

M
es

h
si

ze
fie

ld
;b

lo
ss

om
al

go
ri

th
m

;c
ro

ss
-fi

el
d;

pe
rf

ec
t

m
at

ch
in

g
of

gr
ap

h;
Tu

tte
’s

th
eo

re
m

;c
ub

ic
gr

ap
h;

qu
ad

-
ve

rt
ex

-m
er

ge
op

tim
iz

at
io

n;
do

ub
le

tc
ol

la
ps

e
op

tim
iz

at
io

n

B
ou

nd
ar

y
sh

ap
e;

is
op

ar
am

et
ri

c
sm

oo
th

;L
ap

la
ci

an
sm

oo
th

in
g;

se
gm

en
ti

nt
er

se
ct

io
n

Se
gm

en
ti

nt
er

se
ct

io
n;

bo
un

da
ry

sh
ap

e;
L

ap
la

ci
an

sm
oo

th
in

g

Q
ua

lit
y

m
ea

su
re

m
en

t
A

di
m

en
si

on
al

le
ng

th
;m

es
h

si
ze

fie
ld

A
di

m
en

si
on

al
le

ng
th

;m
es

h
si

ze
fie

ld
O

dd
y

ra
tio

;d
is

to
rt

io
n

m
et

ri
c

A
sp

ec
tr

at
io

;t
ap

er
ra

tio

Po
st

-p
ro

ce
ss

in
g

E
dg

e
sw

ap
;v

er
te

x
du

pl
ic

at
io

n
L

PC
V

T
sm

oo
th

in
g,

ed
ge

sw
ap

;v
er

te
x

du
pl

ic
at

io
n

E
le

m
en

td
el

et
io

n;
el

em
en

t
in

se
rt

io
n,

L
ap

la
ci

an
sm

oo
th

in
g

L
ap

la
ci

an
sm

oo
th

in
g

81

Table 4.12: Averaged mesh quality metrics of four methods on 10 domains: L, H indicate if the
lower value or higher value is preferred, respectively. The value in bold means the best among
other approaches in a domain. GB refers to Gmsh-Blossom; GD indicates Gmsh-DelQuad; CP is
CUBIT-Pave; and SS means the proposed self-learning system, FreeMesh-S.

GB GD CP SS
Singularity (L) 215.2 120.9 61.2 62.8

Element quality (H) 0.78 0.84 0.86 0.84
|MinAngle - 90| (L) 14.96 12.16 10.3 11.4
|MaxAngle - 90| (L) 17.7 13.5 11.6 12.2
Scaled Jacobian (H) 0.84 0.95 0.96 0.96

Stretch (L) 0.82 0.86 0.87 0.86
Taper (L) 0.13 0.09 0.08 0.07

82

Chapter 5

Reinforcement learning for automatic

quadrilateral mesh generation: a soft

actor-critic approach

Abstract

This paper proposes, implements, and evaluates a Reinforcement Learning (RL) based computa-

tional framework for automatic mesh generation. Mesh generation, as one of six basic research di-

rections identified in NASA Vision 2030, is an important area in computational geometry and plays

a fundamental role in numerical simulations in the area of finite element analysis (FEA) and compu-

tational fluid dynamics (CFD). Existing mesh generation methods suffer from high computational

complexity, low mesh quality in complex geometries, and speed limitations. By formulating the

mesh generation as a Markov decision process (MDP) problem, we are able to use soft actor-critic,

a state-of-the-art RL algorithm, to learn the meshing agent’s policy from trials automatically, and

achieve a fully automatic mesh generation system without human intervention and any extra clean-

up operations, which are typically needed in current commercial software. In our experiments and

comparison with a number of representative commercial software, our system demonstrates promis-

ing performance with respect to generalizability, robustness, and effectiveness.

83

Keywords: Reinforcement learning (RL), mesh generation, soft actor-critic (SAC), neural networks

(NNs), computational geometry.

5.1 Introduction

Reinforcement learning (RL) has been flourished in many fields, such as games (Silver et al., 2016),

healthcare (Gottesman et al., 2019), natural language processing (W. Y. Wang, Li, & He, 2018), and

NP-hard problems (Mazyavkina, Sviridov, Ivanov, & Burnaev, 2021) (to name a few). However, it

is rarely applied to the area of computational geometry, especially in the field of mesh generation.

Mesh generation is the fundamental step in conducting numerical simulations in the fields of finite

element analysis (FEA), computational fluid dynamics (CFD), or graphic model rendering (Gordon

& Hall, 1973; Roca & Loseille, 2019). Mesh generation techniques have been identified as one

of the six basic research directions in NASA’s Vision 2030 CFD study (Slotnick et al., 2014). It

discretizes complex geometric domains into a finite set of (geometrically simple and bounded) ele-

ments, such as triangles or quadrilaterals (in 2D geometries) or tetrahedra or hexahedron (in 3D ge-

ometries). Since the reliable automation and high quality of mesh representation matter significantly

to the numerical simulation results, mesh generation has continued to be significant bottlenecks in

those fields due to algorithm complexities, inadequate error estimation capabilities, and complex

geometries (Slotnick et al., 2014). The rapid progress of deep learning and RL techniques offers the

potential for mesh generation to have radical advances to overcome those challenges.

5.1.1 Mesh generation challenges

In most real-world engineering problems, the geometries to mesh have complex shapes and sizes;

hence unstructured meshes are preferred because of the robustness and efficiency in adaption (Bommes

et al., 2013; Garimella et al., 2004; Owen, 1998). Quadrilateral elements of unstructured mesh

can achieve more accurate numeral simulation results comparing with triangular mesh (Verma &

Suresh, 2017), which will be used in this paper. Conventional methods for quadrilateral mesh gen-

eration can be classified into two categories: indirect and direct methods (Shewchuk, 2012). Indirect

methods start with a triangular mesh and then transform the triangular elements into quadrilateral

84

elements by various strategies, including optimization (Brewer et al., 2003), refinement and coars-

ening (Garimella et al., 2004), simplification (Daniels et al., 2008), perfect matching (Remacle et

al., 2012). These methods, however, suffer from a large number of irregular vertices, which is un-

desired in numerical simulations. Direct methods generate quadrilateral elements directly. These

methods include 1) advancing front technique, which recursively generates elements from the do-

main boundary and updates its boundary inwardly by cutting the generated elements until the whole

domain is filled with quadrilateral elements (Blacker & Stephenson, 1991; White & Kinney, 1997;

Zeng & Cheng, 1993; Zhu et al., 1991); 2) modifying the quadtree background grid to conform

to the domain boundaries (Atalay et al., 2008; Baehmann et al., 1987; Liang et al., 2010; Liang &

Zhang, 2012); 3) packing techniques, including square packing (Shimada et al., 1998) and circle

packing (Bern & Eppstein, 2000); and template-based mapping methods (Gengdong & Hua, 1996).

However, the generated quadrilateral meshes are usually not complete (e.g., containing triangu-

lar elements), having flat or inverted quadrilateral elements, and too much irregular arrangement.

Therefore, a large amount of cleanup operations are implemented to improve the mesh quality. The

strategies range from pre-processing, such as dividing complex geometries into small regular re-

gions to facilitate generating regular mesh (C. Liu et al., 2017), to post-processing, such as reducing

the singularity (Verma & Suresh, 2017), performing iterative topological changes (e.g., splitting,

swapping, and collapsing elements) (Docampo-Sanchez & Haimes, 2019), and mesh adaptation

(Verma & Suresh, 2018).

Therefore, many efforts have been made to improve meshing algorithms, including using heuristic

clean-up operations to reduce the flat or inverted elements by re-adjusting location and connectivity

of element vertices; using global and local remeshing techniques to reconstruct generated mesh

in terms of topological and geometric features (Verma & Suresh, 2017); and pre-processing the

geometry to ease the element generation process (C. Liu et al., 2017). Although the mesh quality

has improved, the extra treatments make the meshing algorithms suffering from high complexity

and speed limitations, and incur expensive trial-and-error tuning for researchers.

The aforementioned work names only a few recent advancements towards the automation of mesh

generation. Although those extra treatments could achieve the high-quality, they bring in additional

85

computational expense besides already complicated meshing algorithms and decrease the automa-

tion to some extend. Moreover, algorithm development is usually heuristic and requires human

designers to search for knowledge in a time-consuming manner. It is urgent and necessary to build

an efficient computational framework for mesh generation to sidestep the complexities and com-

putational burden of existing meshing algorithms and relieve human algorithm designers from an

inefficient and incomplete search of heuristic knowledge. This framework should provide high-

quality meshes for various complex geometries while maintaining robust automation, and avoiding

any extra treatments.

5.1.2 Related work

Machine learning techniques have been approved successfully to solve complex and time-consuming

problems in various industrial areas. Researchers have started to combine mesh generation with arti-

ficial intelligence. Existing work can be classified into three kinds: 1) mesh optimization. Z. Zhang

et al. (2020) combined deep neural networks (NNs) with an external mesh generator to refine meshes

with a better element distribution that can accurately solve Partial Differential Equations (PDE).

J. Yang et al. (2021) trained a mesh refinement policy to dynamically adjust the mesh resolution for

a better trade-off between simulation accuracy and computation cost via RL. 2) mesh reconstruc-

tion. Neural Mesh Flow (NMF) (Gupta, 2020) was a 3D mesh reconstruction method by deforming

a template mesh into a target mesh using several Neural Ordinary Differential Equation (NODE, a

deep neural network model (Chen et al., 2018)) blocks. NMF had its strength in the mesh property

of manifoldness, which was beneficial for graphic rendering and 3D printing. Pixel2mesh (N. Wang

et al., 2018) was a deep learning architecture to produce 3D triangular mesh from a single RGB

image. The generation process was a series of deformation from an ellipsoid with image perceptual

features extracted by a convolutional neural network (CNN) to a target mesh model represented by

a Graph Convolutional Network (GCN (Defferrard et al., 2016)). Wen et al. (2019) extended the

Pixel2mesh for better shape quality from multi-view images. MeshCNN (Hanocka et al., 2019)

was a NN architecture for simplifying meshes by specialized convolution and pooling operations

that collapse edges. These recent advances show that mesh related works have gained significant

attention in computational graphics and computer vision. 3) mesh generation. Nechaeva (2006)

86

proposed an adaptive mesh generation algorithm based on self-organizing maps (SOM) (an unsu-

pervised neural networks-based method), which adapts a given uniform mesh onto a target physical

domain through mapping. The proposed method indented to overcome the drawbacks of SOM

in tackling inaccurate mesh in the domain border and mesh construction for non-convex domains.

Pointer networks (Vinyals et al., 2015), was a new neural architecture that aimed to solve combi-

natorial problems by NNs and could be used to generate triangular meshes by outputting a set of

triplets of integers (each forms a triangle) that correspond to the order of input points. The input

contains both the points on the boundary and internal area of the geometry domain. As it is not

designed for meshing problems, the final mesh is not robust and partially covered with triangular

elements with even intersecting edges. Papagiannopoulos et al. (2021) proposed a triangular mesh

generation method with three NNs. Given the training data derived from Constrained Delaunay Tri-

angulation algorithm (Chew, 1989), three NNs could predict the number of candidate inner vertices

(to form a triangular element), coordinates of those vertices, and their connection relations with ex-

isting segments on the boundary, respectively. Because of the fixed input size and complex network

architectures, the method cannot adapt to arbitrary and complex geometry domains. Additionally,

the resulting meshes are constrained by the quality and sample diversity of the selected training

data, especially when it comes to geometries with complex boundary shapes.

Zeng and Cheng (1993) proposed a knowledge-based method, FreeMesh, to recursively extract

quadrilateral elements following a domain boundary until the remaining boundary becomes a quadri-

lateral element, based on the recursive logic of design (Zeng & Cheng, 1991). Yao et al. (2005)

improved the FreeMesh approach by introducing an artificial neural network (ANN) to learn the el-

ement extraction rules from a set of pre-selected samples of good quality quad meshes. Pan, Huang,

Wang, Cheng, and Zeng (2021) built a self-learning automatic quadrilateral mesh generation system

by combining a feedforward neural network (FNN) and an RL algorithm (Advantage Actor-Critic,

A2C). The RL is used to provide high-quality samples to train an FNN model that serves as the

final mesh generator to mesh various geometry domains. The resulting meshes outperform three

conventional methods in two quality metrics. The shortcoming is that the training procedure is not

fully automatic and requires extract operations from human designers, such as carefully designing

the strategies to select samples for the FNN training in order to balance samples for applying rules

87

in various situations.

Although many artificial intelligence (AI) techniques have started to be explored and applied to the

field of mesh generation, a robust computational framework for mesh generation that can replace

the standard mesh generation algorithms is still missing. With the rapid progressing of High Per-

formance Computing (HPC), mesh generation algorithms will intuitively encounter tasks requiring

higher resolution simulations, fast, and reliable processing, which could make conventional methods

problematic. A new meshing algorithm that exploits both emerging HPC capabilities and machine

learning/deep learning algorithms remains open exploration with great potential. In general, super-

vised NN-based methods rely on training data from existing conventional methods or handmade

data, which cannot guarantee the overall quality and adapt to other domain boundaries; they have

complex network structures, which increases the training difficulty; they are hard to apply to other

domains with complex boundaries because of the fixed input size and generation strategies.

RL is a well-known self-taught learning paradigm for solving sequential decision making prob-

lems and has been successfully demonstrated in many fields. By formulating the mesh generation

as a Markov decision process (MDP) (Pan, Huang, Wang, et al., 2021), the meshing policy can

be learned by the interactions between the agent and the environment without the need for super-

vised labels. Comparing with most existing benchmark problems and complex applications of RL

(Machado et al., 2018; Osband et al., 2019), the mesh generation problem poses new challenges for

learning an optimal policy: 1) the environments (i.e., the geometries to mesh) have diverse shapes

and sizes, which requires the policy to be adaptable and general; 2) the credit assignment for each

time step to achieve the final mesh is difficult since the objective is not intuitive; 3) there is a trade-

off between the immediate reward achieved by the current action and the future rewards that depend

on the state of the environment caused by the current action, because the shape and size of the

current generated element will shape the remaining boundary of the geometry to mesh. In the pre-

vious work (Pan, Huang, Wang, et al., 2021), these challenges are not addressed because the A2C’s

purpose is to generate samples for an FNN model rather than complete the mesh. Therefore, this

article redesigns the state representation, action formulation, and reward function to address those

challenges. The new reward function could address the issues, including a) the trade-off between the

current element quality and an overall mesh high quality and b) the completion of the mesh within

88

finite steps. A novel RL technique, the soft actor-critic (SAC) method (Haarnoja, Zhou, Abbeel, &

Levine, 2018; Haarnoja, Zhou, Hartikainen, et al., 2018), is used to solve the learning of the mesh-

ing policy. SAC is one of the state-of-the-art off-policy learning algorithms and has faster learning

efficiency and better stability in hyperparameters tuning comparing with the A2C method.

The mesh generation problem also has the potential to study many RL topics, such as state repre-

sentation and reward specification. Usually, the performance of newly invented or improved RL

algorithms is evaluated crossing many benchmark problems (Mnih et al., 2013). However, these

benchmark problems have some limitations: 1) the internal dynamic mechanisms of different prob-

lems may impact the performance and hardly provide accurate evaluation for RL methods, espe-

cially complex problems(Berner et al., 2019; Vinyals et al., 2017); 2) the state representations are

different across different problems, which may hinder the algorithm analysis; 3) some of the prob-

lems are simple, and the reward function is relatively simple (i.e., game scores (Mnih et al., 2013)),

which cannot study the reward specification in-depth. The challenges of the mesh generation prob-

lem enable it to be a potential benchmark problem for understanding many RL issues. The diverse

environments can be used to test the scalability and generality of the learned policy; the range of

agent’s observation can be easily adjusted and used to study the partial MDP; the reward designing

can be used for testing exploration and credit assignment problems.

5.1.3 Contributions

In this paper, we propose, implement, and evaluate an RL based fully automatic mesh generation

system. The main contributions of this paper are summarized as follows.

(1) The proposed RL-based automatic mesh generation system achieves a level of fully automatic

mesh generation without human intervention and any extra clean-up operations, which are

typically needed in current commercial software.

(2) In our experiments and comparison with a number of representative commercial software,

our system demonstrates competitive performance in several aspects, including mesh regu-

larity, high quality in various geometry domains, and the necessity of handling not expected

elements (i.e., triangles).

89

(3) Our experiments demonstrate an interesting approach to achieving generalizability and scala-

bility comparing with many RL applications by using partial observation of the environment.

(4) This RL application in mesh generation could contribute itself to RL as an excellent bench-

mark problem, which has the following features: diverse meshing environments that control

the problem difficulties, flexible state representation by altering the observation, and no fixed

representation of the meshing objective that provides freedom for exploring the reward spec-

ification.

The rest of the paper is organized as follows. Section 6.2 presents the formulation of the mesh

generation problem into an MDP problem and fundamental components. Section 6.3 introduces

the detailed implementation of SAC for mesh generation. Section 6.4 evaluates the performance of

the proposed method and comparing with other state-of-the-art meshing approaches. Section 6.5

discusses the important improvements of the proposed method to mesh generation and RL commu-

nities. Section 6.6 concludes this article and indicates some future directions.

5.2 Problem formulation and fundamentals

In this section, the formulation of mesh generation as an MDP problem and related RL techniques

are introduced.

5.2.1 Problem formulation

The problem of non-simplicial mesh generation (i.e. quadrilaterals) in single-connected 2D domains

is studied. The purpose of mesh generation is to discretize a geometric domain (see Figure 6.1 (a))

into quadrilateral elements (see Figure 6.1 (b)). The boundary of the domain, B, is composed of

piecewise linear segments and is then represented as a sequence of vertices [V1, V2, ..., VN]. The

final mesh, Ω, is composed of a set of quadrilateral elements [Q1, Q2, ..., QM]. Consequently, a

mesh should satisfy: 1) each element is a quadrilateral; (2) the inner corner of each element should

be between 45° and 135°; (3) the aspect ratio (the ratio of opposite edges) and taper ratio (the ratio

of neighbouring edges) of each quadrilateral should be within a predefined range; (4) the transition

between a dense mesh and a coarse mesh should be smooth (Zeng & Cheng, 1993; Zeng & Yao,

90

Figure 5.1: Meshing problem. (a) The initial geometry is defined by the boundary B consisting of a
set of vertices V ; (b) The final mesh is the result of discretization into a set of quadrilateral elements
Q.

2009).

In our previous work, the meshing problem is preliminarily formulated as an RL problem (Pan,

Huang, Wang, et al., 2021). The mesh generation problem can be seen as a control problem with

a sequence of steps to generate mesh elements. As illustrated in Figure 5.2, quadrilateral elements

can be generated one by one, starting from the boundary of the domain and updating its boundary

inwardly by removing the generated element, until there are only four vertices left in the updated

boundary, which forms the last element. This procedure can be discretized into four steps: 1) choos-

ing a vertex (called reference vertex in this paper) from the boundary; 2) constructing an element

around the reference vertex; 3) removing the generated element, and; 4) updating the boundary.

The meshing boundaries are continuously shaped by the generated elements. In each iteration, the

meshing problem is evolved and depends on the previous solution (i.e., the mesh element) of the

previous problem, which forms a sequential decision making process, also called an MDP. The qual-

ity of future elements hinges on the shape and size of the previously generated elements. Usually,

when the updated boundary is approaching itself, the quality of the element will start to drop, or

even elements meeting the requirements can not be constructed.

91

Figure 5.2: A sequence of actions took by the mesh generator to complete the mesh. At each time
step ti, an element (in red) is extracted from the current boundary (in blue). The boundary is then
updated by cutting off the element and serves as the meshing boundary in the next time step ti+1.
This process continues until the updated boundary becomes an element.

In this formal framework, the meshing boundary is considered as the environment, in which the

agent generates quadrilateral elements using a set of actions. The goal of the agent is to complete

the mesh given any geometric objects, which satisfies the requirement mentioned above. The overall

architecture is shown in Figure 5.3. The agent, at each time step t, observes a state St from the

environment, and conducts an action At applied to the environment. The environment responds to

the action and transits into a new state St+1. It then reveals the new state and provides a reward Rt

to the agent. This process forms an iteration and repeats until a given condition is satisfied (i.e., the

RL problem is solved).

The main problem in the previous method is that the procedure to obtain the final mesh agent is

complex and involves three phases: RL-based sampling, experience extraction, and FNN training.

It is not a fully automatic method and requires extract operations from human designers, such as

carefully designing the strategies to select samples because the imbalanced samples will hinder the

final performance.

To overcome this problem and reduce the extra operations, an automatic mesh generation method

based solely on RL is proposed in this paper. The meshing policy is self-learned from the interac-

tions between the RL agent and the environment through trial-and-error. The learned policy could

adapt to any geometric domain because a partial boundary is adopted as the state representation

92

Figure 5.3: The RL-based computational framework for automatic mesh generation. The envi-
ronment represents the meshing boundary. The agent is the mesh generator that could implement
various RL techniques.

instead of the whole boundary. Comparing with most existing methods, this method is computa-

tionally efficient and does not need any extra operations after meshing a geometry. The mesh quality

requirement is embedded in the reward function, which measures how well each element generated

at each step is contributed to the final mesh. Additionally, the reward function can be customized or

controlled by the down-streaming applications to meet their specific quality requirements, such as

sparse or dense density. By controlling the reward function, it is a straightforward pathway to ac-

quire needed mesh and avoids many time-consuming and computationally complex post-processing

operations (e.g., clean-up and remeshing).

5.2.2 Reinforcement learning

In many DRL applications, the policies have a fixed size of the input state and are applicable to

environments that are similar to the training environment. For instance, Wei et al. (2020) trained

different models for elevator settings.

RL is a learning paradigm that has been used to address a sequential decision making problem,

mathematically known as an MDP problem. The technique is to enable an agent to learn from

the interactions with its environment by trial-and-error via reward feedback from its actions and

experiences (Kaelbling et al., 1996; Sutton & Barto, 2018). Eventually, a policy will be learned by

the agent for guiding appropriately selecting actions under each environmental situation over time

93

to maximize the accumulated reward. According to different learning objectives, the policy could

be learned in a direct (policy-based) or indirect (value-function-based) fashion.

Value-function-based methods estimate the expected reward for the agent to start from a state or to

perform a given action in a given state. The optimal policy can be implicitly derived from the opti-

mal value function. Deep Q-Network (DQN) is a recent breakthrough in estimating value function

via a deep neural network (Mnih et al., 2013), which stabilizes the training of action value func-

tion using experience replay and target network and generalizes a framework for end-to-end RL

tasks using the same algorithm. Many successors are continuously improving DQN from various

aspects, e.g., asynchronous advantage actor-critic (A3C) (Mnih et al., 2016), dueling network to

better estimate action value function (Z. Wang et al., 2016), and combating sparse reward issues by

Hindsight Experience Replay (HER) (Andrychowicz et al., 2017). For the mesh generation prob-

lem, the action is continuous and requires choosing appropriate points to form an element from an

area. Correspondingly, the meshing environment will be altered and evolved into various shapes af-

ter each action. Hence, to discretize both state and action spaces may distort the feedback regarding

the impact of the agent’s actions on the environment and adversely hinders exploring feasible action

space, causing a sub-optimal policy.

Policy-based methods directly estimate a policy to guide the agent to choose actions under various

environmental states. The policy is usually modelled by a parameterized function. The modern

policy-based methods have several divisions, including deep Deterministic Policy Gradient (DDPG)

(Lillicrap et al., 2015) using policy gradient, A3C (Mnih et al., 2016) combining actor and critic

together, Proximal Policy Optimization (PPO) (Schulman et al., 2017) via trust region, and SAC

(Haarnoja, Zhou, Abbeel, & Levine, 2018; Haarnoja, Zhou, Hartikainen, et al., 2018) with off-

policy learning.

RL methods have been gradually applied to many applications in various areas and achieved promis-

ing performance (Li, 2018). Since the mesh generation problem can be cast as an MDP problem, it

is intriguing to solve the problem by RL. Formally, the MDP has a set of states S, a set of actions

A(s) for a given state s, and a reward function R. Their formulation is altered and improved from

the previous method to align the new objective, completing the mesh rather than providing training

samples. The detailed definition will be explained in the next section.

94

Since the stability, robustness, and efficiency of meshing algorithms are critical for down-streaming

applications, a customized RL algorithm, SAC is used in this article. SAC is one of the state-of-the-

art policy-based algorithms and has advantages in better sample efficiency and stable convergence.

The hypothesis behind RL is that all the goals can be represented by the maximization of the ex-

pected cumulative reward. In this article, a well designed reward function will guide the policy

learning to accomplish the meshing task. The RL-based computational framework for mesh gen-

eration offers a direct solution to acquire the mesh satisfying the quality requirement; it provides

a pathway to customize the ideal mesh for down-streaming applications by adjusting the reward

function; and it is a fully automatic method for various complex geometry domains without extra

clean-up treatments.

5.3 RL based mesh generation

In this section, a self-learning computational framework for automatic mesh generation via RL is

proposed. Quadrilateral element generation in single-connected 2D domains is used as an example

to demonstrate this method. The action formulation and state representation of the problem is

described first. Then, the reward function is defined. Finally, the detailed implementation of SAC is

explained.

5.3.1 Action formulation

In this formal framework, the agent will take actions to generate an element at each time step

according to the current boundary. The search for the best action includes 1) how to choose the

reference vertex? and 2) how to decide the other three vertices to construct an element?

For the first question, the general principle to select a vertex is the narrow region first, which is to

avoid creating hard boundary situations for the subsequent actions. The vertex will be the reference

vertex V ∗i when it forms the least angle with its surrounding vertices, as denoted by

V ∗i = arg min
Vi

1

nrv

nrv∑
j=1

∠Vl,jViVr,j (22)

95

where Vl,j and Vr,j denote the j-th vertices at the left and right side of the reference vertex Vi

along the boundary, respectively; nrv represents how many surrounding vertices should be included,

which nrv = 2 is used in this article; Vi is the i-th vertex on the boundary. Since this strategy is

consistent across all the actions, the reference vertex selection is automatically implemented by the

environment rather than by the agent.

For the second question, once the reference vertex is determined, there are three kinds of basic

situations to form an element: adding zero, one, or two vertices (Zeng & Cheng, 1993). Therefore,

as shown in Figure 5.4, the action is formally defined as [type, V1, V2], where type ∈ {0, 1, 2},

which are corresponding to the three situations respectively; V1 and V2 are the coordinates of the

newly added vertices. The coordinates space for the vertices are constrained to a fan-shaped area

(in light blue) with radius r, which is calculated as follows:

r = α ∗ L,

L =
1

2n

n∑
i=0

|Vl,iVl,i+1|+ |Vr,iVr,i+1|, 0 < n < N/2.
(23)

where Vl,i and Vr,i denote the i-th vertex at the left and right side of the reference vertex along

the boundary; Vl,0 = Vr,0 is the reference vertex; |V∗V∗| is the Euclidean distance between two

vertices. We set α = 1.5 and n = 2 in all our experiments. Usually, type 2 is only needed on

special occasions, such as circular domains, and is operated at a constant level. Hence, to reduce

the learning complexity, the action [type, V1] is finally used in the experiments.

5.3.2 State representation

The state is the observation of the agent to the environment. The environment in mesh generation

is the meshing boundary (see Figure 5.2). The full state of the environment at time t would consist

of all the vertices of the boundary. However, not all the vertices are meaningful and necessary to

represent the environment. To adapt to all kinds of geometries, the inclusion of all vertices is also not

a good option. Therefore, a partial observation of the boundary environment is considered, which

includes the following components: a reference vertex determining where the agent should generate

96

Figure 5.4: Action spaces for each type. Subfigures (a)-(c) correspond to three types of actions,
respectively. The blue area is the area with the reference vertex V1 as the origin and a radius r to
choose the candidate vertices, such as, V3 in type 1 and V3 and V4 in type 2.

97

Figure 5.5: Partial observation of the meshing boundary. For example, the partial boundary, where
Lr = 4, n = 2, g = 3, is represented as the state. First, two vertices on the left and right sides of
the reference vertex V0 are selected, respectively. Second, the angle ∠Vl,1V0Vr,1 is evenly split into
three angles θ1, θ2, and θ3; three fan-shaped areas are hence formed with these angles and a radius
Lr. Then, the closest vertex in each area is selected.

an element around, and its surrounding vertices providing a local environmental situation.

The state is denoted as st, and composed of five components (1) a reference vertex, V0, which

is used as the relative origin to generate the new element with a action at, and is calculated by

iterating all the vertices on the boundary, computing the angle of each vertex formed by its left and

right connected vertices, and selecting the vertex having the least angle; (2) n neighboring vertices

on the right side of the reference vertex; (3) n neighboring vertices on the left side; (4) g neighboring

points Vθ1 , ..., Vθg in the fan-shaped area θ1, ..., θg with radius Lr, as shown in Figure 6.2 (g = 3),

where θ1 = θ2 = θ3; Lr = β ∗ L. If there are no vertices in the fan-shaped area (e.g., θ3), the

furthest bisector vertex in the area or the intersection vertex between the bisector and the boundary

edge is selected, such as Vθ3 in Figure 6.2; (5) ρt, the area ratio between the updated domain and

the original domain.

This partial boundary is arranged as follows:

St = {Vl,n, ..., Vl,1, Vr,1, ..., Vr,n, Vθ1 , ..., Vθg , ρt}. (24)

All the vertices are represented by a polar coordinates system with V0 as the origin and
−−−→
V0Vr,1 as

the reference direction. Since the x and y coordinates of the vertex V0 are both 0, it can be removed

from the state representation. This representation only keeps the relative information among all the

98

vertices.

5.3.3 Reward function

The reward function represents the objective of mesh generation, which is to achieve overall high

mesh quality and completeness with finite elements. This is a stepwise reward signal that measures

the performance of each action. There are three main cases in total: 1) if the action forms an invalid

element or has intersections with the boundary edges, the reward is set to -0.1; 2) if the action

forms the last element, the reward is set to 10; 3) if it generates a valid element, the reward is the

joint measurement of element quality, the quality of the remaining boundary, and the density factor.

Finally, the reward function is formally defined as follows:

rt(st, at) =

−0.1, invalid element;

10, the element is the last element;

mt, otherwise.

(25)

The measurement mt is calculated by the following equation:

mt = ηet + ηbt + µt. (26)

The element quality ηet is measured by its edges and internal angles situations, and is calculated as

follows,

ηet =
√
qedgeqangle,

qedge =

√
2minj∈{0,1,2,3}{lj}

Dmax
,

qangle =
minj∈{0,1,2,3}{anglej}
maxj∈{0,1,2,3}{anglej}

,

(27)

where qedge refers to the quality of edges of this element; lj is the length of the jth edge of the

element; Dmax is the length of the longest diagonal of the tth element; qangle refers to the quality of

the angles of the element; and anglej is the degree of jth inner angle of the element. The quality ηet

99

Figure 5.6: Element quality with different shapes. The quality value ranges from 0 to 1. The element
with the best quality 1 is a square.

will range from 0 to 1, which is better if greater. Examples of various element qualities are shown

in Figure 5.6.

The quality of the remaining boundary is measured by both the quality of the angles formed between

the newly generated elements and the boundary, and the shortest distance of the generated vertex to

its surrounding edges, and denoted as follows,

ηbt =

√
mink∈{0,1}{min(θk,Mangle)}

Mangle
qdist − 1,

qdist =

dmin

(d1+d2)/2 , if dmin < (d1 + d2)/2;

1, otherwise.

(28)

where θk refers to the degree of the kth generated angle; dmin is the distance of V3 to its closet edges.

The details are shown in Figure 5.7. The quality ηbt ranges from -1 to 0, which the larger value is

the better quality. It serves as a penalty term to decrease the reward if the quality of the remaining

boundary is getting worse. We set Mangle = 60. When the formed new angles are less than Mangle,

the quality will decrease, which prevents the generation of sharp angles that are harmful to the

overall mesh quality and may even fail the meshing process.

These two qualities together represent the trade-off between the generated element and the remain-

ing boundary, which is critical to guarantee the overall mesh quality and completeness of the final

mesh. The last term is a density factor µ, which controls the mesh density and assure the meshing

process will be completed in finite steps, and is calculated as follows,

100

Figure 5.7: The quality of the updated boundary. Q1 is the newly generated element. Once it is
removed, it forms two angles θ1 and θ2 with existing boundary segments. The quality is jointly
measured by these two angles, and the closest Euclidean distance dmin of the newly added vertex
V3 is to the existing segments. d1 and d2 are the Euclidean lengths of segments V3V4 and V2V3.

µt =

−1, if At < Amin;

At−Amin
Amax−Amin , if Amin ≤ At < Amax − 1;

0, otherwise.

(29)

where At is the area of the element at time t; Amin is the estimated minimum area of the element

that is tolerable to the meshing domain, and calculated by Amin = υe2
min; Amax is the estimated

maximum area of the element, and calculated by Amax = υ
(
emax−emin

κ + emin
)2; emax and emin

is the length of the longest and shortest edges in the boundary respectively; κ controls when to start

the penalty and κ = 4 in our experiment; υ is a weight and ranges from [0,+∞), which the smaller

value means the denser density, and vice versa. We set υ = 1 in our experiments for the medium

density.

5.3.4 Meshing scheme via SAC

The computational framework of mesh generation is based on the SAC approach. SAC is one of the

state-of-the-art RL algorithms for continuous action control problems (Haarnoja, Zhou, Abbeel, &

Levine, 2018; Haarnoja, Zhou, Hartikainen, et al., 2018). To overcome the sample complexity and

hyperparameter sensitivity, it adds an entropy item in addition to reward in the objective function,

101

and maximizes the reward return while maximizing the randomness of the policy.

The objective function of the policy is correspondingly denoted as

J(π) =

T∑
t=1

E(st,at)∼ρπθ [r(st, at) + αH(πθ(.|st))], (30)

where H(.) is the entropy measure (Ziebart, 2010); ρπθ is the state-action marginal distribution of

policy π parameterized by θ; α indicates the significance of the entropy item, known as temperature

parameter. With considering the entropy maximization, it allows the learned policy acts as ran-

domly as possible while guaranteeing task completion, which gains the trade-off of the exploration-

exploitation and thus accelerates the learning. This randomness is especially important for partially

observable environment.

For learning an optimal maximum entropy policy, SAC drives from the policy iteration method

in the maximum entropy framework. During the policy evaluation step, the soft Q-value can be

computed iteratively and defined as

Q(st, at) = r(st, at) + γEst+1∼ρπ(s)[V (st+1)], (31)

where

V (st) = Eat∼π[Q(st, at)− αlogπ(at|st)], (32)

where ρπ(s) and ρπ(s, a) are the state and the state-action marginals of the trajectory distribution

induced by a policy π(at|st). The soft Q-function Qθ(st, at) is parameterized by a neural network

with parameters θ. The soft state value function V (st) is implicitly parameterized by the soft Q-

function parameters. To update the soft Q-function, its gradient is estimated by the formula,

∇̂θJQ(θ) = ∇θQθ(st, at)(Qθ(st, at)−(r(st, at)+γ(Qθ̄(st+1, at+1)−αlog(πφ(at+1|st+1)))),

(33)

where πφ is the current policy parameterized by a neural network with parameter φ; θ̄ is obtained

as an exponential moving average of the soft Q-function network weights.

102

In the soft policy improvement stage, the policy parameter can be updated by minimizing the ex-

pected KL-divergence,

J(φ) = Est∼D[Eat∼πφ [αlog(πφ(at|st))−Qθ(st, at)]]. (34)

Its gradient can be approximated by

∇̂φJπ(φ) = ∇φαlog(πφ(at|st)) + (∇atαlog(πφ(at|st)) − ∇atQ(st, at))∇φfφ(εt; st), (35)

where εt is an input noise vector and can be sampled from some fixed distribution; fφ(εt; st) is a

reparameterized policy using a neural network transformation.

Finally, the temperature α is updated by minimizing the objective

J(α) = Eat∼π[−αlogπφ(at|s)− αH̄]. (36)

The details of the algorithm are shown as Algorithm 2.

Algorithm 2 SAC for mesh generation
1: initialize network parameters θ1, θ2 and φ
2: θ̄1 ← θ1, θ̄2 ← θ2

3: for each episode do
4: for each time step do
5: Select action at ∼ πφ(·|st)
6: Observe reward r and new state s′

7: Store (st, at, rt, st+1) in replay buffer D
8: end for
9: for each gradient step do

10: Sample m batches from replay buffer
11: Update soft Q-function θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2}
12: Update policy network φ← φ− λπ∇̂φJπ(φ)
13: Update target network θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2}
14: Adjust temperature α← α− λ∇αJ(α)
15: end for
16: end for

103

5.4 Experimental results

In this section, the effectiveness of the proposed method, FreeMesh-RL, will be demonstrated by

a few types of experiments: scalability verification and meshing performance comparison. Since

the scalability challenge is common for NN-based meshing methods and RL-based applications, we

will evaluate the FreeMesh-RL method over different complex domains or the same domain with

different scales on size. The second type of experiment is to compare the meshing performance

of FreeMesh-RL with two start-of-the-art meshing approaches over three predefined geometry do-

mains. To obtain optimal meshing performance, we also examine the impact of observation and

reward function on the learning of the policy.

To the best of our knowledge, there is no baseline environment of mesh generation in the RL field.

We build a simulation environment with Python and PyTorch, which will be cleaned up and opened

for the community to test various RL algorithms in the future.

5.4.1 Implementation details

We have examined the learning performance of different neural network architectures. The compar-

ison results are shown in Figure 5.8 (b). The network architecture with three hidden layers, [128,

128, 128] (i.e., S2), achieves better learning performance while has fewer parameters comparing

with others, which is selected in this work to approximate the soft Q-function, policy, and target

networks. The hyperparameters used for SAC are listed in the Table 5.1.

The training domain boundary could be any size and shape but has to meet a few criteria, including

having a sharp angle and bottleneck region, to ensure the richness of the samples. The domain chose

for training is shown in Figure 5.8 (a). The trained model will be used to mesh other unseen domain

boundaries in the later experiments.

All the neural network models are trained on a computer with an i7-8700 CPU and an Nvidia GTX

1080 Ti GPU with 32 GB of RAM. A total of 1.2 million time steps are used for training the

policy.

104

Table 5.1: Training hyperparameters

parameter Description Value
ND Experience pool size 1e6
m Minibatch size 256
γ Discount factor 0.99

λQ, λπ Learning rate 3e-4
τ Soft update factor 5e-3

Figure 5.8: NN structures comparison. S1-4 represent four different neural network structures in
Hidden layers, including [256, 256], [128, 128, 128], [64, 128, 64, 32, 16], and [64, 128, 256, 128,
64], respectively.

Agent’s view of environmental state

The state is the agent’s observation from the environment, which will significantly influence the

agent’s decision making. Since the partial observation is adopted in the proposed method, We

need to decide how much is appropriate and effective to be observed by the agent to learn the

meshing policy. The range of the observation is controlled by three factors, Lr, n and g, in Equation

24. The factor Lr controls how far the agent can observe from its position while the other two

factors determine how many vertices the agent perceives around the reference vertex. The leaning

performance is compared with three kinds of settings, O1 (Lr = 4, n = 2, g = 3), O2 (Lr =

105

Figure 5.9: RL state comparison. The observation range is formed by Lr n g, which represents the
radius of the fan shape in the state, the number of neighbouring vertices on the left and right side
of the reference vertex, and the number of vertices in the fan-shaped area, respectively. This range
determines how far and how much information the agent will be observed.

6, n = 2, g = 3), and O3 (Lr = 6, n = 3, g = 4). The comparison results are shown in Figure

5.9. By comparing O1 and O2, it can be found that further observation contributes to more return.

This is because the agent could adjust the position of the candidate vertex in advance to avoid a

conflict with the remaining boundary. Meanwhile, since the chance of noticing vertices in the fan-

shaped area will be increased, the more complex information will be included in the state, which

the learning speed may become slower in the earlier stage. A similar phenomenon can be observed

when comparing O2 and O3. The more information the agent observes the more time to build the

correlation is needed. In this paper, the observation O2 is hence used as the state representation

across all the experiments.

Reward function

The reward function represents the objective of mesh generation, which mainly consists of overall

high mesh quality and completeness with finite elements. There are three terms in the reward

106

function, element quality ηet , the quality of remaining boundary ηbt , and density factor µt, which

guides the policy learning to fulfill the objective. The first two terms guarantee the mesh quality and

the easiness of continuing meshing. The last term controls the meshing density by the factor υ that

can adjust the minimum tolerant element area, and assure the mesh termination within finite steps.

Three kinds of density are compared, including sparse (υ = 1.5), medium (υ = 1), and dense (υ =

0.5) settings. The comparison results are shown in Figure 5.10 (a)-(c). We also examine the number

of elements for each density after running 10 episodes, as shown in Figure 5.10 (d). The difference

in the average number of elements between sparse and medium is about 20 elements while the

difference between medium and dense density is around 50 in this testing domain boundary. The

medium density is used across all the remaining experiments.

5.4.2 Evaluation

The effectiveness of the proposed FreeMesh-RL will be measured in two aspects: scalability and

meshing performance.

Scalability verification

To validate the scalability of the learned meshing policy, we have constructed three geometry do-

mains with the same shape but different vertex densities (i.e., 6.8 : 9.9 : 20.1, as shown in Table

5.3) on the boundaries. Three domains are meshed by the same trained RL model, and the results

are shown in Table 5.2. It can be seen that all the domains have been successfully meshed; the

elements on the boundaries are denser than in the interior area, which is beneficial for reducing

computational burden; the transitions between dense and coarse meshes are smooth. We have also

examined the meshing speed over three domains, which achieves 237 elements per second on aver-

age. Consequently, the results show that the self-learned mesh policy achieves good scalability to

different scales of the meshing problem and is not constrained to the scale of the training domain.

Many existing NN-based meshing methods, must train different models for adapting various sizes

of domains, which is not practical for large-scale problems. The reason for this adaptability is that

the training domain will be continuously updated and evolved into various shapes that capture most

boundary patterns (Pan, Huang, Wang, et al., 2021).

107

Figure 5.10: Different mesh densities controlled by reward function. Three kinds of densities (a)-
(c) are controlled by parameters in the density term, υ = 1.5, υ = 1, and υ = 0.5, respectively.
Subfigure (d) is the comparison results of the number of generated elements by three kinds of
densities over 10 episodes.

108

Table 5.2: Meshing same shape with different density by FreeMesh-RL.

Domain 1 Domain 2 Domain 3

The shapes of Domain 1-3 remain the same. The difference is the vertex density on their boundaries. All the
meshes are generated from one trained model by FreeMesh-RL.

Table 5.3: Scalability evaluation for three domains

Domain 1 Domain 2 Domain 3
#vertices 102 150 304
Perimeter 15.1 15.1 15.1

#vertices per unit length 6.8 9.9 20.1
#elements 289 665 2157

Execution time (s) 0.9 2.6 15.3

#vertices - the number of vertices on the boundary
#elements - the number of generated elements

Comparison to conventional methods

To evaluate the meshing performance, we compare the quality of meshes by FreeMesh-RL against

two widely adopted meshing approaches over three predefined 2D domain boundaries (i.e., domains

D4-6). These domains possess different features, including sharp angles, bottleneck regions, un-

evenly distributed edges, and holes, to increase the testing diversity. The two conventional meshing

approaches are Blossom-Quad (Remacle et al., 2012) and Pave (Blacker & Stephenson, 1991; White

& Kinney, 1997). Blossom-Quad is an indirect method, which generates quadrilateral elements by

finding the perfect matching of a pair of triangles generated in advance. The method is implemented

by an open source generator Gmsh (Geuzaine & Remacle, 2009). Pave is another state-of-the-art

meshing method for directly generating quadrilateral elements, which is implemented by the CU-

BIT software (Blacker et al., 2016). Both of them are prevalent in the industry and haven’t been

replaced by any machine learning-based methods yet, which are appropriate to be used as compari-

son methods.

109

The meshing results are shown in Table 6.1. Although all the methods can complete the meshes for

the three domains, there are some subtle differences. Only FreeMesh-RL generates fully quadrilat-

eral mesh. The other two methods have difficulties in discretizing the domains into full quadrilater-

als and generate triangles in domains (marked in yellow colour in domains). Specifically, Blossom-

Quad has a problem in handling domains with sharp angles on the boundary while Pave has the

issue in the interior of the domain. Extra operations (e.g., clean-ups) are usually required for these

methods to eliminate triangles or bad quality elements, which slows down the meshing speed and

decreases the automation to some extend. Contrarily, FreeMesh-RL doesn’t need those operations

and avoids explicit treatments. Another advantage of FreeMesh-RL is that the generated mesh can

easily grade from very small to large elements over a short distance, as shown in Table 6.1 Domain 1,

which is beneficial for reducing computational burden during simulations (Shewchuk, 2012).

Table 5.4: Meshing results comparison

Algorithms Domain 4 Domain 5 Domain 6

Blossom-
Quad

Pave

FreeMesh-
RL

The elements in yellow represent existing triangles in the meshes.

To quantitatively analyze the meshing results of three methods, we have selected eight common

110

quality metrics to measure the meshing performance, including singularity (i.e., the number of ir-

regular nodes whose number of incident edges in the interior of a mesh are not equal to four), ele-

ment quality (ηe in Equation 27), |MinAngle − 90|, |MaxAngle − 90|, scaled Jacobian, stretch,

taper, and the number of triangles (#triangles) (Knupp, Ernst, Thompson, Stimpson, & Pebay, 2006;

Pan, Huang, Wang, et al., 2021). The measurement results are averaged over three domains and are

shown in Table 6.2 and Figure 5.11. FreeMesh-RL has achieved the best performance in the indices

of singularity, taper, scaled Jacobian, and triangle. The smaller singularity means better regularity,

which can provide better accurate results for numerical simulations. The smaller taper and bigger

Scaled Jacobian represent the mesh element has a more regular shape like a square. If there exist

triangles, it indicates that the method is not full quadrilaterals and involves extra treatments to deal

with them. The Pave method achieves the best performance in the other indices (i.e., element qual-

ity, min and max angles, and stretch). Blossom-Quad has the worse performance and is only slightly

better than Pave as having fewer triangles. It is common for indirect methods (i.e., Blossom-Quad)

to have a suboptimal performance because they heavily rely on triangulation in advance. Remacle

et al. (2013) tried to optimize the triangulation. But the improvement is limited (Pan, Huang, Wang,

et al., 2021). The computational complexities for the three methods are also compared, which is all

O(n2).

Table 5.5: Averaged mesh quality metrics over three domains

Metrics Blossom-Quad Pave FreeMesh-RL
Singularity (L) 388 ± 209.50 146.70 ± 51.50 132 ± 50

Element quality (H) 0.72 ± 0.12 0.79 ± 0.12 0.79 ± 0.13
|MinAngle− 90| (L) 6.55 ± 6.91 3.69 ± 4.60 4.02 ± 5.10
|MaxAngle− 90| (L) 22.16 ± 11.14 15.69 ± 14.71 15.73 ± 12.48

Scaled jacobian (H) 0.91 ± 0.08 0.94 ± 0.13 0.94 ± 0.10
Stretch (H) 0.79 ± 0.08 0.84 ± 0.10 0.83 ± 0.11
Taper (L) 0.15 ± 0.11 0.12 ± 0.14 0.11 ± 0.11

Triangle (L) 2.70 ± 2.50 8 ± 2.80 0 ± 0

L, H indicate if the lower value or higher value is preferred, respectively. The value
in bold means the best among other approaches in that specific metric.

In general, FreeMesh-RL shows optimal performance on the four metrics against the other two

methods, has competitive performance with Pave on the remaining four metrics, and does not re-

quire extra operations to handle triangles or bad-quality elements. This demonstrates the learned

meshing policy by SAC is effective in generating high quality meshes. Meanwhile, all the meshes

111

Figure 5.11: Meshing performance comparison results over 8 kinds of quality indices. BQ repre-
sents the Blossom-Quad method; F-RL represents the FreeMesh-RL method. L, H indicate if the
lower value or higher value is preferred, respectively.

112

are generated by only one trained model without any additional training. The model is also adapt-

able to various geometry domains, which demonstrates the good generalizability and effectiveness

of this computational framework.

5.5 Discussion

The proposed computational framework, FreeMesh-RL, has achieved several important improve-

ments to both mesh generation and RL.

First, comparing with conventional or NN-based mesh generation methods, FreeMesh-RL does

not require heuristic knowledge or any labelled data, by using RL in particular SAC algorithm. It

relieves people from in-efficient searching for domain specific knowledge and time-consuming trial-

and-error and reduces the algorithm complexity by eliminating extra clean-up operations. Those

obstacles greatly hinder the advancement of meshing methods towards high processing speed and

mesh quality in complex geometry domains (Papagiannopoulos et al., 2021; Rushdi et al., 2017;

Slotnick et al., 2014).

Second, the meshing policy in FreeMesh-RL can be self-learned by a well-defined reward function.

The reward function determines various characteristics of the mesh, including mesh quality and

density. Many downstream applications in FEA/CFD, usually, require different mesh properties.

In FreeMesh-RL, some of those requirements can be fulfilled by generating a customized mesh

generator directly via adjusting the reward function rather than using extra expensive and time-

consuming treatments, such as mesh adaption or remeshing. For instance, as shown in Figure 5.10,

the mesh density is controlled by a density factor in the reward function. Usually, more elements can

provide accurate simulation results for applications but cost more computationally. In the graphic

rendering area, the sparse mesh is preferred because of this reason. To adjust the mesh density is

barely not applicable in any conventional mesh methods. This computational platform provides the

easiest and cheapest fashion to design customized mesh generators for researchers.

Many RL topics are still not well understood (Duan, Chen, Houthooft, Schulman, & Abbeel, 2016).

For instance, the designs of state representation and reward function are critical topics for the perfor-

mance of RL algorithms and for understanding the mechanism of RL. The state representation will

113

influence the generalizability, effectiveness, and learning speed (Lesort, Dı́az-Rodrı́guez, Goudou,

& Filliat, 2018; Niv, 2019). To obtain the generalizability of the policy, a partial observation of the

environment is hence utilized in FreeMesh-RL to eliminate the agent’s dependency on the global

environment, which is the critical technique to achieve adaptability to other geometry domain envi-

ronments. Many RL applications have to train different models for different environmental settings,

which is not practical and expensive in real-life environments. As shown in the Figure 5.9, how far

the observation and how much information (i.e., vertices on the domain boundary) should be in-

cluded are controlled by three factors, respectively. The learning efficiency and overall return vary

correspondingly. The low dimension state representation achieves better learning efficiency and

provides easier interpretation and utilization for humans, thus improving the policy’s performance

and generalizability. Some advanced topics for state representation may be researched in-depth by

using this platform, such as partial observability, informative representations, state abstraction, and

state representation learning (Dulac-Arnold et al., 2019; Lesort et al., 2018).

Finally, FreeMesh-RL has the potential to serve as an RL research platform, for example, to be used

to study the reward function and examine the performance of RL algorithms. Many RL benchmark

problems have very simple reward functions and environments, such as Atari games (Mnih et al.,

2013), while some other famous problems are too complex, such as Dota2 (Berner et al., 2019)

and StarCraft (Vinyals et al., 2017). The simple problems cannot fully reflect the performance of

RL algorithms whereas the complex problems cannot be easily used to study topics, such as hyper-

parameters tuning, generalizability, sample efficiency, and reward specification (Li, 2018). Mesh

generation can be an excellent case to research RL. The difficulty of the mesh generation problem

can be easily adjusted by altering the size and shape of input geometry domains. The reward func-

tion can also be customized to fulfill different objectives, which is not applicable in many benchmark

problems. As stated by Silver, Singh, Precup, and Sutton (2021), reward function is associated with

almost all the agent’s behaviours that it can learn. With mesh generation, FreeMesh-RL can be

developed as a testbed for understanding those topics.

114

5.6 Conclusion

To overcome the difficulties of conventional methods in achieving the balance between high quality

mesh and computational complexity, a novel RL-based method for automatic quadrilateral mesh

generation, FreeMesh-RL, is presented in this article. Since the geometry domains are naturally

different and complex, a partial observation of the environment is adopted as the state to eliminate

the agent’s dependency on the global environment and thus achieve adaptability to arbitrary mesh-

ing environments. The well designed reward function integrates the element quality, remaining

boundary quality, and mesh density together, which allows the achievement of overall high mesh

quality and the completeness of the meshing. Using extensive experiments on the various geome-

try domains, it was demonstrated that the proposed method can be adaptable to different environ-

ments and achieves competitive performance compared with representative commercial meshing

software, while no complex extra operations are further needed. Consequently, FreeMesh-RL is a

computationally efficient meshing framework that is fully automatic, can adapt to various complex

geometries, and satisfies mesh quality requirements without extra treatments.

Furthermore, this paper has discussed the potential of the FreeMesh-RL to be a computational plat-

form to understand many RL topics. Several future works can be conducted, such as the compara-

tive analysis of deep RL algorithms using the FreeMesh-RL as the testbed, and the extension of this

framework to the 3D mesh generation problem that is still challenging and unsolved.

115

Chapter 6

Sampling balanced high quality data to

train an automatic mesh generator for

its optimal performance

Abstract

In real life situations, high quality data is scarce and imbalanced but essential for the optimal perfor-

mance of data-driven algorithm models. Data synthesis methods are important techniques to address

this problem. However, their main challenge lies in the dependence on the original dataset, which

significantly limits the performance improvement. This article presents a quality function-based

method to generate high quality data directly and uses a mesh generation algorithm as an exam-

ple to demonstrate the efficiency and performance. This method samples the input-output pairs of

the algorithm according to their feature spaces; selects high quality samples by the defined quality

function that evaluates if the output is a suitable solution to the input; and trains an FNN model to

simulate the mapping relation via the obtained data. The experiments show that the learning time of

the algorithm is significantly reduced while its performance is competitive with two representative

meshing algorithms.

116

Keywords: Data generation, data synthesis, mesh generation, optimal performance, algorithm de-

sign

6.1 Introduction

High quality data is the source for the optimal performance of most machine learning algorithms.

In real world problems, the distribution of the examples is imbalanced since the minority scenar-

ios are less frequently occurred and are even challenging to collect. These minor classes are more

valuable and vital to determine whether a problem is finally solved or not. The performance of

many classification, regression, and semi-supervised algorithms is significantly compromised with

the imbalanced data (He & Garcia, 2009; Y. Yang et al., 2021). To tackle this imbalanced prob-

lem and increase the algorithm performance, two types of methods, data-level and algorithm-level,

have been proposed and constantly improved in the last two decades (Krawczyk, 2016; Tanaka &

Aranha, 2019). However, since the treatments are constrained on the given dataset, the algorithm

performance is barely improved; the algorithm still cannot handle unseen situations, especially for

minor ones. Instead of operating on the given dataset, this article proposes a data generation method

through defining a quality function to retrieve high quality data that covers diverse problem situa-

tions and uses mesh generation as an application.

Mesh generation is one of the critical fields of computational geometry and serves as the funda-

mental for numerical simulations in finite element analysis (FEA), computational fluid dynamics

(CFD), or graphic model rendering (Gordon & Hall, 1973; Roca & Loseille, 2019). It is also iden-

tified as one of the six basic research directions in NASA’s Vision 2030 CFD study (Slotnick et al.,

2014). The purpose of mesh generation is to discretize complex geometries into a finite set of (geo-

metrically simple and bounded) elements, such as triangles or quadrilaterals (in 2D geometries) or

tetrahedra or hexahedron (in 3D geometries). Due to the computational complexity, low mesh qual-

ity in complex geometries, and the dependence of heuristic knowledge in algorithm development,

the existing mesh generation methods are constantly the significant bottleneck for the advancements

of FEA/CFD (Slotnick et al., 2014). A robust and high performance algorithm of mesh generation

is hence needed to overcome those challenges. Many researchers combine mesh generation with

117

artificial intelligence (AI) algorithms, including expert system (Zeng & Cheng, 1993), and neural

networks (NNs) (Papagiannopoulos et al., 2021; Vinyals et al., 2015; Yao et al., 2005; Z. Zhang et

al., 2020), to sidestep those difficulties in algorithm development. However, these AI-based meth-

ods are still not mature and cannot replace standard mesh generation algorithms in the industry.

There are a few reasons: 1) some methods have complex NN structures and are hard to train a

robust generator; 2) their problem formulation makes the generator barely adaptable to complex

geometric domains; 3) their training datasets are often low quality and imbalanced, causing low

learning efficiency and compromised model performance.

The first two issues can be resolved by formulating the mesh generation problem into a sequen-

tial decision-making process (Pan, Huang, Cheng, & Zeng, 2021; Pan, Huang, Wang, et al., 2021).

Thus, the mesh generation problem can be decomposed into how to generate a single element at a

time; the NN structures can be simplified. For the last issue, instead of balancing existing datasets

to improve the model performance, this paper proposes a quality function-based data generation

method to achieve the optimal performance for the mesh generator. The quality function that mea-

sures the mesh quality is determined to filter out various examples covering all the possible meshing

scenarios while ensuring the overall high mesh quality. A comprehensive dataset can be obtained

and used to train the mesh generator approximated by a feedforward neural network (FNN).

The main contributions of this paper are summarized as follows:

(1) the imbalanced data problem can be solved based on a well designed quality function, which

dramatically improves the algorithm model performance and saves a lot of time for algorithms

that need self-exploration.

(2) because of the generation of high quality data, the mesh generation algorithm achieves full

automation without human intervention and any extra cleanup operations, which reduces the

complexity and benefits downstream applications.

(3) comparing with several representative commercial software, the obtained algorithm demon-

strates competitive performance in several aspects, including mesh regularity, high quality in

various geometry domains, and the necessity of handling not expected elements (i.e., trian-

gles).

118

The rest of the paper is organized as follows. Section 6.2 introduces the related work about imbal-

anced learning and mesh generation. Section 6.3 introduces the detailed implementation of quality

function-based data generation for mesh generation algorithm. Section 6.4 evaluates the perfor-

mance of the proposed method and comparing with other state-of-the-art meshing approaches. Sec-

tion 6.5 discusses the important improvements of the proposed method to mesh generation and

machine learning communities. Section 6.6 concludes this article and indicates some future direc-

tions.

6.2 Problem formulation and fundamentals

This section discusses the formulation of the mesh generation problem and fundamental techniques,

including mesh generation and data generation.

6.2.1 Mesh generation

Existing methods

With the rapid progress of high-performance computing hardware, mesh generation methods are

required to handle geometric domains with more complex shapes and higher resolution in reliable

and fast fashions. Unstructured meshes are preferred in dealing with complex geometries (Bommes

et al., 2013). Many methods can directly generate quadrilateral meshes (Shewchuk, 2012). They

include 1) advancing front technique, which recursively generates elements from the domain bound-

ary and updates its boundary inwardly by cutting the generated elements until the whole domain

is filled with quadrilateral elements (Blacker & Stephenson, 1991; White & Kinney, 1997; Zeng &

Cheng, 1993; Zhu et al., 1991); 2) modifying the quadtree background grid to conform to the domain

boundaries (Baehmann et al., 1987; Liang & Zhang, 2012); 3) packing techniques, including square

packing (Shimada et al., 1998) and circle packing (Bern & Eppstein, 2000); and 4) template-based

mapping methods (Gengdong & Hua, 1996). Usually, the generated meshes need extra cleanup

operations to handle irregular elements and even triangles for better quality. These operations can

be dividing complex geometries into small regular regions to facilitate generating regular mesh

119

(C. Liu et al., 2017), reducing the singularity (Verma & Suresh, 2017), performing iterative topo-

logical changes (e.g., splitting, swapping, and collapsing elements) (Docampo-Sanchez & Haimes,

2019), and mesh adaptation (Verma & Suresh, 2018). Consequently, the algorithm complexity has

increased; the meshing speed becomes slower.

To reduce algorithm complexity and increase meshing performance, some research efforts have been

made on combining machine learning techniques with mesh generation. Nechaeva (2006) proposed

an adaptive mesh generation algorithm based on self-organizing maps (SOM) (an unsupervised

neural networks-based method), which adapted a given uniform mesh onto a target physical domain

through mapping. The proposed method aimed to overcome the drawbacks of SOM in tackling

inaccurate mesh in the domain border and mesh construction for non-convex domains. Vinyals et

al. (2015) created a new neural architecture (Pointer networks) to solve combinatorial problems

by NNs. It could also generate triangular meshes by outputting a set of triplets of integers (each

forms a triangle) that correspond to the order of input points. Since it is not designed for meshing

problems, the performance is not robust and not complete; the final mesh is partially covered with

triangular elements and intersected edges. Papagiannopoulos et al. (2021) proposed a triangular

mesh generation method using three NNs. It could predict the number of candidate inner vertices

(to form triangular elements), coordinates of those vertices, and their connection relations with

existing segments on the boundary, respectively. It is difficult to adapt to arbitrary and complex

geometry domains with the fixed input size and complex network structures. Moreover, the meshing

performance is seriously limited by the generator from which the training data comes.

Meshing problem formulation

The mesh generation problem is formulated into a sequential decision making process (Pan, Huang,

Wang, et al., 2021). Quadrilateral mesh in single-connected 2D domains is used as an example

to demonstrate this process. The process is to discretize a geometric domain into quadrilateral

elements, as shown in Figure 6.1. At each time step, an element Qi (in red) is generated from the

existing boundary (in blue),Bi, which is composed of piecewise linear segments and is denoted as a

sequence of vertices [V1, V2, ..., VNi]. The boundary is updated by cutting off the generated element

and is then used to generate the next element until the remaining vertices on the boundary form the

120

Figure 6.1: A sequence of decisions to complete the mesh. At each time step ti, an element (in red)
is extracted from the current boundary (in blue). The boundary is then updated by cutting off the
element and serves as the meshing boundary in the next time step ti+1. This process continues until
the updated boundary becomes a quadrilateral element.

last element. The final mesh should meet several criteria: 1) each element is a quadrilateral; (2)

the inner corner of each element should be between 45° and 135°; (3) the aspect ratio (the ratio

of opposite edges) and taper ratio (the ratio of neighbouring edges) of each quadrilateral should be

within a predefined range; (4) the transition between a dense mesh and a coarse mesh should be

smooth (Zeng & Cheng, 1993; Zeng & Yao, 2009).

The meshing procedure can be divided into four steps: 1) choosing a vertex (called reference vertex

in this paper) from the boundary, Bi; 2) constructing an element, Qi, around the reference vertex;

3) removing the generated element, and; 4) updating the boundary. The first two steps are critical

to the meshing success. Pan, Huang, Cheng, and Zeng (2021) selected the vertex on the boundary

whose angle formed with its left and right vertices was the least among the remaining vertices, as

the reference vertex, which demonstrated effective meshing performance. The optimal strategy can

still be explored, such a dynamic selection. But it is not the focus of this paper.

Zeng and Cheng (1993) firstly found three basic boundary situations and defined three primitive

rules: add one, two, and three edges, respectively, in corresponding situation to form an element.

However, the difficulties are how to determine which rule should be selected and where vertices in

the edge(s) should be located (Pan, Huang, Wang, et al., 2021). Yao et al. (2005) formally defined

the reference vertex and its neighboring vertices as the input and the rule type and the location of the

vertices as the output. They manually generated data about the specific input-output pairs and used

an artificial neural network (ANN) to approximate the mapping relations. Pan, Huang, Cheng, and

Zeng (2021); Pan, Huang, Wang, et al. (2021) further improved the input definition by considering

121

more environment information of the reference vertex, such as the vertices in the fan-shaped area

formed by the reference point and its left and right vertices together. They also tried to use feed-

forward neural networks (FNN) and reinforcement learning (RL) to automatically generate high

quality samples (input-output pairs) and improve the accuracy of the mapping relations. Although

the RL method has learned an effective meshing policy and makes the policy adaptable to complex

geometries, there are some disadvantages: 1) the learning process is time-consuming; 2) the sample

efficiency is low; 3) the randomness of the policy causes robustness issue for meshing. The reason

behind those issues is that some boundary situations are rare, and the RL method requires more time

to explore the state and action space to collect useful knowledge.

This article intends to propose a data generation method that provides comprehensive data in ad-

vance to train an efficient mesh generator to resolve this problem. The data will cover all the possible

boundary situations and their corresponding decisions. Therefore, this method reduces the compu-

tational burden for the model training; it relieves researchers from ineffectively searching heuristic

knowledge for extra treatments; it offers a more direct pathway to obtain a mesh that satisfies the

criteria.

6.2.2 Data generation

Existing methods

In real life environment, the data is unequally distributed; high quality data is rare to collect. The

quantity and quality of the data decide the performance of data-driven machine learning algorithms.

A large amount of data is essential to establish a complex decision boundary for classification prob-

lems and avoid overfitting problem, especially in deep-learning methods entailing many parameters

(LeCun et al., 2015). Imbalanced data can easily compel the prediction of algorithms towards major-

ity classes (He & Garcia, 2009). However, the minor classes are often more important and valuable.

Data augmentation/synthesis are the techniques to enlarge data size by adding slightly modified

samples or newly generated artificial data from the existing dataset (He & Garcia, 2009; Krawczyk,

2016).

122

Conventional methods concentrate on modifying the existing dataset to have a balanced distribu-

tion. Two common strategies are 1) removing examples from majority groups (undersampling) and

2) increasing new objects for minority groups (oversampling). The random undersampling method

selects samples from the majority groups without replacement and removes them from the dataset.

X.-Y. Liu et al. (2008) proposed two informed undersampling methods to solve the deficiency of

information loss in the traditional random undersampling. Yen and Lee (2009) devised the under-

sampling method based on clustering (SBC) to avoid disjunct problem. Random oversampling

method is a basic method and it randomly selects minority examples and replicates them to the

dataset. Since this method can easily cause overfitting problem, synthetic sampling method are thus

developed. Chawla et al. (2002) developed a method called SMOTE, to create artificial data based

on the features space similarities between minority examples. As SMOTE was very successful in

various applications, there were a few improvements to the SMOTE, including borderline-SMOTE

(Han et al., 2005), safe-level-SMOTE (Bunkhumpornpat et al., 2009), and Adaptive Synthetic Sam-

pling (ADS-SYN) (He et al., 2008). Jo and Japkowicz (2004) proposed cluster-based over-sampling

(CBO) to resolve the small disjunct problem caused by within-class imbalance. Some researchers

are using the structure information underlying the data to generate synthetic samples with better

quality. Xie et al. (2015) tried to learn the cluster structure of the training samples and generated

samples for minority groups based on the density. C.-L. Liu and Hsieh (2019) proposed a model-

based synthetic sampling (MBS) to increase the data diversity by capturing the relationship between

data features via regression models. Markov chain models are also utilized to synthesize time-varing

stochastic data, such as win speed (Shamshad et al., 2005) and vehicle velocity in driving cycles (Lee

& Filipi, 2010), by constructing transition matrices. W. Yang and Nam (2022) proposed a covari-

ance matrix-based method that used a) the correlations between features obtained from the original

dataset and b) random noise.

Many neural network-based data synthesis models are constantly proposed. Habibie et al. (2017)

built a generative model for human motion samples based on variational autoencoder (VAE). Y. Yang

et al. (2021) utilized deep neural networks to represent the feature space of data samples. Gener-

ative adversarial network (GAN) has been widely used for data synthesis due to its flexibility and

efficiency in high dimensional datasets (Tanaka & Aranha, 2019). Z. Wang et al. (2018) combined

123

GAN with autoencoders and verified the synthetic data for the vibration signal of gearbox. Xuan et

al. (2018) explored the integration of convolutional neural networks (CNN) and GAN on the gen-

eration of pearl images. Despite of its wide usage, the data generated by GAN based methods can

be low quality if 1) the training of generator is not stable, 2) the size of the original dataset is small,

and 3) the dimension and nonlinearity of the dataset is high (Tanaka & Aranha, 2019; W. Yang &

Nam, 2022).

Data augmentation can improve the algorithm performance by adding more valuable training data,

creating data variability, preventing data scarcity, and reducing overfitting. It is also beneficial

for increasing the generalization ability of the models and reducing the costs of collecting and

labelling data. However, the performance improvement is limited because 1) the data characteristics

are hard to discover and represent, which often depends on the researcher’s degree of knowledge

about a specific data environment; 2) the representative features of unseen situations are usually

intrinsically missing from the existing dataset. Most simple transformations to the existing data

will not fundamentally improve the algorithm performance and make the algorithm general to any

situation. There is still a long way to devising a data generation method that captures the nature of

the data, especially those with high dimension and nonlinearity.

Problem formulation

To sidestep the limitation of the existing dataset, this paper intends to generate high quality data

for the algorithm with a balanced distribution directly. The obtained algorithm is thus able to adapt

to various situations and applies to the real-life environment. The general procedure is shown as

follows:

(1) formulates the control problem into state-action (i.e., input-output) pairs;

(2) determines the feature space for each dimension in the state and action, respectively;

(3) samples the state and action pairs in their feature spaces;

(4) defines a quality function that can evaluate the state and action pairs, which usually requires

a simulation environment to the problem;

(5) specifies quality criteria to select qualified samples;

(6) evaluates and balances collected samples.

124

Figure 6.2: An example of the input with Lr = 4, n = 2, g = 3 (Pan, Huang, Cheng, & Zeng,
2021).

Mesh generation problem is used as the example to demonstrate this procedure in this paper. It has

been formulated into a sequential decision making process that consists of a set of state-action (i.e.,

input-output) pairs. The input is formally represented as follows,

xt = {Vl,n, ..., Vl,1, Vr,1, ..., Vr,n, Vθ1 , ..., Vθg}. (37)

where Vl,i and Vr,i denote the i-th vertex at the left and right side of the reference vertex V0 along the

boundary; g neighboring points, Vθ1 , ..., Vθg in the fan-shaped area θ1, ..., θg with radius Lr, where

θ1 = θ2 = ... = θg. The output is formally defined as

yt = [typet, Vt], (38)

where typet ∈ {0, 1, 2}, which are corresponding to the three basic rules, respectively; Vt are the

coordinates of the newly added vertex. An example of the input is shown in Fig. 6.2. A detailed

description can be found in our previous work (Pan, Huang, Cheng, & Zeng, 2021).

With the formulations of input and output, the feature space for each dimension of the data can be

easily determined. All kinds of boundary situations can be represented by equally sampling from

those spaces. The quality function will evaluate all the possible actions for each situation, and

125

suitable actions can be selected via the specified criteria.

6.3 Quality function-based data generation for mesh generation

This section describes the quality function-based data generation method for the mesh generation

algorithm. An overview of the data generation procedure will be introduced. Then, the main steps

are detailed, including defining the quality function, sample balancing, and FNN training for the

final mesh generation algorithm.

6.3.1 Data generation procedure

The general procedure of the data generation can be divided into three steps: 1) sample the input and

output data according to the feature space of each dimension in the input and output, respectively;

2) set a quality threshold, and filter out samples whose quality is under the threshold; 3) balance

the samples according to types. Finally, the data will be fed to an FNN model to train the mapping

relations between the input and output. The overview of the data generation procedure for the mesh

generation algorithm is shown in Figure 6.3.

The mesh generation problem is defined as a sequential decision making problem in the previous

section. At each time step i, a partial boundary environment is taken as the input xi (see Equation

37); the rule type and coordinates of the newly generated vertex are the output yi (see Equation 38).

This process will be repeated until the last element is formed. The partial boundary is continuously

shaped and updated into various situations by the decisions. The meshing problem will be solved

if the optimal decision is found for each situation. The idea behind data generation is to generate

enough high quality solutions for all the possible situations; it then can be fed to train an FNN

model. The dataset D is denoted as {xi, yi}Ni=1.

The lower and upper value bound of each dimension in the input X is denoted as

XL,U = ([xl,1, xu,1], ..., [xl,n, xu,n]),

where xl,j and xu,j determines the lower and upper value bound for jth dimension of X; n is the

126

Figure 6.3: Quality function-based data generation procedure for mesh generation. The mesh gen-
eration algorithm consists of a set of input-output pairs.

127

size of the input dimensions. Similarly, let YL,U = ([yl,1, yu,1], ..., [yl,n, yu,n]) denotes the lower and

upper value bound of each dimension in the output Y . Then, a large number of input-output pairs

D can be sampled using uniform distribution. The details of the algorithm are shown as Algorithm

3.

Algorithm 3 Sampling input-output pairs
Require: input and output value bounds XL,U and YL,U , sample number N;

1: D ← []
2: for k ← 1 to N do
3: D ← D ∪ {(xk, yk)|xk ∼ U(XL,U), yk ∼ U(YL,U)} {U(∗) is the uniform distribution.}
4: end for

6.3.2 Quality function for performance measurement

The goodness of the solution to a problem should be determined and measurable. Significantly, for

a sequential decision making problem, how the solution contributes to the final goal at each step

should be specified. In this article, the quality function measures the performance of the stepwise

solution. After a large amount of samples is generated, the quality function is then used to evaluate

them.

The objective of mesh generation is to achieve overall high mesh quality and completeness with fi-

nite quadrilateral elements, as mentioned in the previous section. The quality function will stepwise

measure: 1) the validness of input and output themselves, if the vertices in the input form intersected

segments or if the output has the intersections with the input. If there is such a case, the quality is

set to 0. 2) the joint quality of the formed element and the updated boundary if the input and output

are valid. Consequently, the quality function η(xi, yi) is defined as follows:

η(xi, yi) =

0, invalid input and output;

(1− α)ηei + αηbi , otherwise;

(39)

where ηei refers to the element quality measured by its edges and angles situation; ηbi indicates the

quality of the remaining boundary measured by both the quality of the angles formed between the

newly generated elements and the boundary, and the shortest distance of the generated vertex to its

128

surrounding edges; α adjusts the weights between the element quality and remaining boundary qual-

ity, which experimentally sets as 0.618 because the remaining boundary quality is more important

to guarantee the overall mesh quality than the instant element quality.

The detailed definition and introduction of element quality ηei and boundary quality ηbi can be found

in our previous work (Pan, Huang, Cheng, & Zeng, 2021; Pan, Huang, Wang, et al., 2021). The

reason to use these two qualities is that they represent the trade-off between the generated element

and the remaining boundary. Since the generated element constantly shapes the remaining boundary,

it may cause a very difficult situation to form a good quality element or even a valid element in the

future if pursuing a perfect element in the current situation. The trade-off is critical to guarantee the

overall mesh quality and mesh completeness.

Many high quality samples can be selected by setting a quality threshold τ to the measurement

results. The details of the algorithm are shown as Algorithm 4. Those samples Dτ cover: 1) all the

possible situations (i.e., the input) that the mesh generation may encounter; 2) all the possible high

quality solutions (i.e., the output) to each situation. This is fundamental to train a comprehensive

mesh generator for various geometric domains while maintaining overall high mesh quality.

Algorithm 4 Filtering samples by quality threshold
Require: sample dataset D, quality threshold τ

1: Dτ ← []
2: for each sample in D do
3: x, y ← sample
4: if η(x, y) ≥ τ then
5: Dτ ← Dτ ∪ (x, y)
6: end if
7: end for

6.3.3 Sample balancing

Since the first dimension of the output is the type of the rules, y0,i = typei, it has a discrete value

range, typei ∈ {0, 1, 2}. To maintain a balanced dataset Db = {xi, yi}Mi=1, the total amount of

samples for each type need to be specified as γM, (1 − 2γ)M , and γM , respectively. This article

experimentally uses γ = 1/3, which ensures that the sample numbers for each type are uniformly

distributed.

129

6.3.4 FNN training

The finally obtained datasetDb will be fed to train an FNN model. The model captures the mapping

relations between the input and output and serves the final mesh generator. The network structure

is the same as the one in (Pan, Huang, Wang, et al., 2021). The loss function, mean square error

(MSE), is used to evaluate the model prediction error. The performance evaluation will be conducted

in the following section.

6.4 Experiment results

In this section, the effectiveness of the proposed method, FreeMesh-DG, will be demonstrated by

a few types of experiments: data diversity verification and meshing performance comparison. The

implementation details will be introduced first, and then the experimental evaluation follows.

6.4.1 Implementation details

We set n = 3 and g = 3 in the input formulation (in Equation 37). The input is composed of vertices;

each vertex is represented by a 2D polar coordinate system, (r, θ). The lower and upper bounds for

each axis are [0, 1] and [0, π], respectively. The lower and upper bounds for each dimension in

the output are [0, 1], [0, 1], [0, π], respectively. The optimal quality threshold τ and the size of final

balanced dataset M will be analyzed in the following section. The network structure of the FNN

has 5 hidden layers as [64, 128, 64, 32, 16], which is evaluated by Pan, Huang, Wang, et al. (2021).

The learning rate is set as 1e-3. All the experiments are conducted on a computer with an i7-8700

CPU and an Nvidia GTX 1080 Ti GPU with 32 GB of RAM. A total of 1 million time steps are

used for training the policy.

Quality threshold analysis

After a large amount of input-output samples are generated, the quality threshold τ needs to be

determined to select high quality solutions. Five metrics are selected to represent the basic charac-

teristics of the dataset. They are element quality (ηe in Equation 39), boundary quality (ηb), quality

130

Figure 6.4: Comparison of datasets with four levels of quality thresholds, τ ∈ {0.6, 0.7, 0.75, 0.8}.
Five kinds of metrics are used to represent the characteristics of the dataset, including element
quality (ηe in Equation 39), boundary quality (ηb), quality (η), angle (i.e., ∠Vl,1V0Vr,1 in the input),
and averaged segment length.

(η), angle (i.e., ∠Vl,1V0Vr,1 in the input), and averaged segment length. Four kinds of quality thresh-

olds, τ ∈ {0.6, 0.7, 0.75, 0.8}, are identified and their generated datasets are evaluated on the five

metrics. The comparison results are shown in Fig. 6.4. With the increase of the quality threshold,

the values of three kinds of quality indices are correspondingly increased but their value ranges are

decreasing. The values of the averaged segment length are slight decreased with almost fixed value

range. The mean values of all the angle indices are around 90◦; but the value ranges are shrinking.

The general principle to select the appropriate quality threshold is to guarantee the high quality

while maximize the example diversity, such as the angle distribution. Therefore, we choose τ = 0.7

as a compromised threshold to select the final dataset for the optimal model.

131

Figure 6.5: Comparison of element quality with four levels of sample size, M ∈ {5e3, 1e4,
4e4, 1e5}. Element quality is used to measure the meshing results with different levels of sam-
ple size.

Sample size analysis

The sufficient dataset size to achieve optimal algorithm model performance is analyzed in this sec-

tion. Certainly, a large amount of data could facilitate the establishment of a clear decision boundary

for the targeting problem. However, it will not significantly improve the algorithm model perfor-

mance but increase the computational burden if the sample size exceeds the minimum required for

useful and representative statistics. Four levels of sample sizes are selected and compared for the

optimal algorithm model performance, such as M ∈ {5e3, 1e4, 4e4, 1e5}. The element quality (ηe

in Equation 39) is used as the performance indicator. The comparison results are shown in Fig.

6.5. The sample size M = 5e3 has the smallest mean element quality comparing with the other

three levels, which indicates the least performance. As shown in the remaining three levels, with the

increase of sample size, there is no significant element quality improvement; the outliers are fewer,

which shows better stability of the algorithm. Therefore, the sample size M = 4e4 is used in this

paper because of its balance of algorithm model performance and computational cost.

6.4.2 Evaluation

Data diversity verification

Many NN-based methods are using existing mesh generators as the data sources to obtain the train-

ing data. For instance, Papagiannopoulos et al. (2021) utilized the output data of Gmsh, a mesh

generator that had implemented Blossom-Quad algorithm (Remacle et al., 2012), to train their NNs.

However, the diversity and balance of the obtained data are significantly limited, which signifi-

cantly compromises the final model performance. To examine the diversity and balance of the data,

132

Figure 6.6: Comparison of vertex distribution of samples. The first row (i.e., Subfigure (a)) is the
distribution of all the vertices in the input-output samples extracted from Gmsh; The second row
(i.e., Subfigure (b)) is the vertex distribution of samples generated by FreeMesh-DG with quality
threshold τ ≥ 0.7. Type 0, 1, and 2 correspond to the three basic rules in the output. Only type 1
needs generating a new vertex (in red) to form an element. Blue vertices represent the neighboring
vertices around the reference Vertex; yellow vertices represent the vertices in the fan-shaped area;
all of them are included in the input. The x and y axes are the coordinate axes of vertex.

we extract training samples from a domain meshed via Gmsh and compare it with the proposed

method. The sample extraction process can be found in our previous work (Pan, Huang, Wang, et

al., 2021).

The comparison results of vertex distributions of two methods are shown in Fig. 6.6. Since all

the input-output pairs in the samples use a polar coordinate system with the reference vertex as the

center, the data presents circular shapes. It is evident that the value ranges of neighboring vertices

(in blue), vertices in the fan-shaped area (in yellow), and the newly generated vertices (in red) are

smaller and more unbalanced in the samples from Gmsh (in Fig. 6.6 (a)) than via FreeMesh-DG

(in Fig. 6.6 (b)) across three type of outputs. Those imbalances and limited value ranges will cause

critical situations less covered.

133

Figure 6.7: Comparison of angle distribution of samples. The angle ranges from 0 to π. Type 0,
1, and 2 correspond to the three basic rules in the output. Subfigure (a) is the angle distribution of
samples from Gmsh; Subfigure (b) is the vertex distribution of samples generated by FreeMesh-DG
with quality threshold τ ≥ 0.7.

Additionally, we examine the angle distribution in the samples of two methods, as shown in Fig. 6.7.

All kinds of angles in the boundary should be covered, which facilitates the algorithm to deal with

them. Both methods have a similar normal distribution with a mean of around 90◦. The difference is

that FreeMesh-DG (in Fig. 6.7 (b)) covers more smaller angles in the samples than via Gmsh (in Fig.

6.7 (a)), which can increase the accuracy and robustness of the algorithm in those situations.

Consequently, the proposed method can produce more diverse and balanced data than using existing

data generators. This is usually because 1) the problematic situations for meshing seldomly occur

in the existing methods; 2) the methods themselves cannot handle those situations appropriately.

FreeMesh-DG can directly generate the data for various situations by uniformly sampling the feature

spaces while maintaining high quality.

134

Performance comparison

To evaluate the meshing performance, we compare the quality of meshes by FreeMesh-DG against

two widely adopted meshing approaches over three predefined 2D domain boundaries (i.e., do-

mains D1-3). These domains contain different features, including sharp angles, bottleneck regions,

unevenly distributed edges, and holes, to increase the testing diversity. The two famous approaches

are Blossom-Quad (Remacle et al., 2012) and Pave (Blacker & Stephenson, 1991; White & Kinney,

1997).

The meshing results are shown in Table 6.1. Although all the methods have completed the mesh

for the three domains, Blossom-Quad and Pave methods are mixed with triangles marked in yellow.

Their differences are 1) Blossom-Quad is problematic in handling domains with sharp boundary

angles; and 2) Pave has the issue in the interior area of domains where two updated boundaries

are approaching together. Extra cleanup operations are usually required to eliminate triangles or

bad quality elements. FreeMesh-DG is the only method that has full quadrilateral elements, which

makes it cleanup free.

The quantitative measurement of the meshing performance for the three methods are shown in Table

6.2. Eight common quality metrics are used, such as singularity, element quality (ηe in Equation

39), |MinAngle− 90|, |MaxAngle− 90|, scaled Jacobian, stretch, taper, and the number of trian-

gles (#triangles) (Pan, Huang, Wang, et al., 2021). The measurement results are averaged over the

three domains. FreeMesh-DG achieves the best performance in the indices of singularity, taper, and

triangle. The smaller singularity value indicates better regularity, which is beneficial for accurate

numerical simulations. The smaller taper value represents that the mesh elements have more regular

shapes like a square. The involvement of triangles can slow down the meshing speed because ad-

ditional treatments are required to deal with them. The Pave method achieves the best performance

in other indices (i.e., element quality, min and max angles, stretch, and scaled Jacobian). The larger

Scaled Jacobian value means more regular quadrilateral elements. The performance of Blossom-

Quad is at a suboptimal level and it only outperforms the Pave method in having less triangles. It is

a common problem for all the indirect methods because of the preliminary triangulation (Remacle

et al., 2013).

135

Table 6.1: Meshing results comparison

Algorithms Domain 1 Domain 2 Domain 3

Blossom-
Quad

Pave

FreeMesh-
DS

The elements in yellow represent existing triangles in the meshes.

Table 6.2: Averaged mesh quality metrics over the three domains

Metrics Blossom-Quad Pave FreeMesh-DG
Singularity (L) 322.67 ± 114.11 78.67 ± 17.15 73.33 ± 13.57

Element quality (H) 0.75 ± 0.11 0.87 ± 0.10 0.83 ± 0.12
|MinAngle− 90| (L) 6.86 ± 6.77 3.33 ± 3.33 5.87 ± 7.13
|MaxAngle− 90| (L) 19.06 ± 10.43 9.33 ± 12.54 11.95 ± 11.70

Scaled jacobian (H) 0.93 ± 0.07 0.97 ± 0.11 0.96 ± 0.08
Stretch (H) 0.82 ± 0.07 0.90 ± 0.07 0.86 ± 0.08
Taper (L) 0.11 ± 0.10 0.05 ± 0.11 0.05 ± 0.08

Triangle (L) 0.67 ± 0.94 6 ± 5.29 0 ± 0

L, H indicate if the lower value or higher value is preferred, respectively. The value
in bold means the best among other approaches in that specific metric.

136

6.5 Discussion

The proposed method, FreeMesh-DG, has exhibited its competitive performance against the other

two meshing algorithms and achieved the optimal performance in three quality indices: singular-

ity, taper, and triangle. Meanwhile, it demonstrates some further significance from the following

aspects.

FreeMesh-DG can fulfill various quality requirements of downstream applications by customizing

the quality function specifically. Different applications have distinct simulation tasks that require

the mesh with diverse topological and geometric features. Since existing mesh generators can only

produce meshes with their own characteristics, many post-processing techniques are hence needed,

such as remeshing and mesh adaptation (Verma & Suresh, 2017). However, the development of

those extra techniques is expensive and time-consuming; they will also slow down the meshing

speed and increase the algorithm complexity. FreeMesh-DG provides a novel path to directly design

the desired mesh by only adjusting the quality function. The generated data can then be fed to train

the target algorithm within short period of time, which is valuable in real-life situations.

Many real-life problems can be resolved in the same fashion of FreeMesh-DG. The problem can be

formulated into a sequential decision making process; a few primitive rules (i.e., state-action pairs)

are identified; a quality function is then used to select high quality samples; a neural network can be

finally trained to capture the mapping relations between states and actions using the obtained data.

In this way, a lot of human efforts could be saved to obtain an efficient and robust algorithm.

6.6 Conclusion

To overcome the high quality data scarcity and imbalance problem, this paper presents a qual-

ity function-based data generation method for automatic quadrilateral mesh generation algorithm,

FreeMesh-DG. The mesh generation is defined as a sequential decision making problem and con-

sists of a set of state-action (i.e., input-output) pairs. A large amount of data is equally sampled from

the feature spaces of the input and output, which intends to cover all the possible input situations

and output solutions. Then those samples are evaluated and selected by a well designed quality

function that determines if the output is a qualified solution to the input. The extensive experiments

137

demonstrate that the obtained algorithm based on the generated data is competitive with two repre-

sentative mesh generation approaches and even outperforms them in three importance measurement

indices.

This paper has further discussed the potential of the FreeMesh-DG to the mesh generation and

algorithm design community. Several future works can be conducted, such as exploring quality

functions for different requirements of downstream applications, and the extension of this method

to the 3D mesh generation problem.

138

Chapter 7

Conclusions and future works

7.1 Conclusions

The objective of this thesis was threefold: 1) design smart element extraction rules that are adaptable

to complex geometries; 2) design a self-learning mechanism to acquire robust and high-quality

element extraction rules without human intervention; and 3) investigate the correlations between

the input and output of the rule, and increase the sampling and learning efficiency of extraction

rules.

As was reviewed in Chapter 2, numerous techniques have been proposed over the years to generate

quadrilateral meshes. We have focused on the element extraction methods because of their high

mesh quality, especially along the domain boundary. Conventionally, element extraction methods

rely heavily on heuristic operations to guarantee the overall mesh quality, which is extremely diffi-

cult, expensive, and time-consuming for human algorithm designers. In Chapter 4, a self-learning

system, FreeMesh-S, is proposed to generate quadrilateral elements by automatically acquiring ro-

bust and high-quality element extraction rules. First, according to the recursive logic, the extraction

rules are categorized into three types (i.e., adding 1, 2, and 3 edges, respectively). These three

primitive rules are smart and sufficient to mesh for any complex geometries. Then, a novel learn-

ing scheme formed by A2C and FNN is used to construct the input-output relations automatically.

The experiment results demonstrate that derived element extraction rules can be adaptive to various

boundary shapes, achieve competitive performance with the other three popular meshing methods,

139

and outperform them at Scaled Jacobian and Taper indices. Simultaneously, FreeMesh-S requires

the minimal and simplest geometric knowledge.

To further increase the algorithm automation and reduce human intervention, a sole RL-based learn-

ing method, FreeMesh-RL, is proposed to obtain the element extraction rules. A partial observation

of the environment is designed as the state to eliminate the agent’s dependency on global infor-

mation and thus achieve adaptability to arbitrary environments. A well designed reward function

incorporates the element quality, boundary quality, and mesh density together, which essentially

contributes to the overall high mesh quality and mesh completeness. Extensive experiments demon-

strate that the proposed method can be adaptable to different environments and achieve competitive

performance compared with representative commercial meshing software while no complex extra

operations are further needed.

High quality data scarcity and imbalanced distribution are the main challenges for optimal sam-

ple efficiency and algorithm performance. To overcome the issues, Chapter 6 proposes a quality

function-based data generation method for automatic quadrilateral mesh generation algorithm. As

the mesh generation consists of a set of state-action (i.e., input-output) pairs, a large amount of

data can be uniformly sampled from their feature spaces. The purpose is to obtain all the possible

input situations and output solutions. A quality function is designed to evaluate if the output is a

qualified solution to each input in the samples. Compared with two representative mesh generation

approaches, the trained algorithm based on the generated data achieves optimal performance in im-

portance measurement indices. Moreover, the algorithm development time is much faster than the

previous two methods.

7.2 Future works

Many perspectives for future works exist.

(1) Extension of the quadrilateral techniques to 3D: The proposed three methods have thoroughly

studied the formulation of primitive extraction rules of quadrilateral elements and their auto-

matically obtaining via reinforcement learning and data generation techniques. The 3D mesh

generation problem could be similarly cast into an MDP process and its primitive rules can

140

be formulated.

(2) Build a benchmark framework based on quadrilateral mesh generation for analyzing different

machine learning algorithms: As explained in 6.5, the mesh generation has the potential to be

a benchmark problem for theoretically analyzing the performance of various RL algorithms,

and understanding many RL topics, such as state representation and reward specification. A

benchmark framework can thus be built for such objectives. Many supervised algorithms can

be analyzed and evaluated by this framework as well.

(3) Combining data generation technique with reinforcement learning algorithms: Sample effi-

ciency is a common challenge for RL algorithms. The quality function-based data generation

method could provide samples sufficiently. The combination of these two methods to reduce

exploration time for RL algorithms could be investigated.

141

References

Akhras, G. (2000). Smart materials and smart systems for the future. Canadian Military Journal,

1(3), 25–31.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., . . . Zaremba, W.

(2017). Hindsight experience replay. arXiv preprint arXiv:1707.01495.

Atalay, F. B., Ramaswami, S., & Xu, D. (2008). Quadrilateral meshes with bounded minimum

angle. In Proceedings of the 17th international meshing roundtable (pp. 73–91). Springer.

Baehmann, P. L., Wittchen, S. L., Shephard, M. S., Grice, K. R., & Yerry, M. A. (1987). Robust,

geometrically based, automatic two-dimensional mesh generation. International Journal for

Numerical Methods in Engineering, 24(6), 1043–1078.

Bern, M., & Eppstein, D. (2000). Quadrilateral meshing by circle packing. International Journal

of Computational Geometry & Applications, 10(04), 347–360.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., . . . others (2019). Dota

2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680.

Blacker, T. D., Owen, S. J., Staten, M. L., Quadros, W. R., Hanks, B., Clark, B. W., . . . others

(2016). Cubit geometry and mesh generation toolkit 15.2 user documentation (Tech. Rep.).

Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

Blacker, T. D., & Stephenson, M. B. (1991). Paving: A new approach to automated quadrilateral

mesh generation. International journal for numerical methods in engineering, 32(4), 811–

847.

Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., & Zorin, D. (2013). Quad-mesh

generation and processing: A survey. , 32(6), 51–76.

142

Brewer, M. L., Diachin, L. F., Knupp, P. M., Leurent, T., & Melander, D. J. (2003). The mesquite

mesh quality improvement toolkit. In Imr.

Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2009). Safe-level-smote: Safe-level-

synthetic minority over-sampling technique for handling the class imbalanced problem. In

Pacific-asia conference on knowledge discovery and data mining (pp. 475–482).

Capuano, G., & Rimoli, J. J. (2019). Smart finite elements: A novel machine learning application.

Computer Methods in Applied Mechanics and Engineering, 345, 363–381.

Catmull, E., & Clark, J. (1978). Recursively generated b-spline surfaces on arbitrary topological

meshes. Computer-aided design, 10(6), 350–355.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: synthetic minority

over-sampling technique. Journal of artificial intelligence research, 16, 321–357.

Chedid, R., & Najjar, N. (1996). Automatic finite-element mesh generation using artificial neural

networks-part i: Prediction of mesh density. IEEE Transactions on Magnetics, 32(5), 5173–

5178.

Chen, R. T., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018). Neural ordinary differential

equations. arXiv preprint arXiv:1806.07366.

Chew, L. P. (1989). Constrained delaunay triangulations. Algorithmica, 4(1-4), 97–108.

Daniels, J., Silva, C. T., Shepherd, J., & Cohen, E. (2008). Quadrilateral mesh simplification. ACM

transactions on graphics (TOG), 27(5), 1–9.

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs

with fast localized spectral filtering. Advances in neural information processing systems, 29,

3844–3852.

Docampo-Sanchez, J., & Haimes, R. (2019). Towards fully regular quad mesh generation. In Aiaa

scitech 2019 forum (p. 1988).

Dolšak, B. (2002). Finite element mesh design expert system. In Applications and innovations in

intelligent systems ix (pp. 3–14). Springer.

Dong, Q., Gong, S., & Zhu, X. (2018). Imbalanced deep learning by minority class incremental

rectification. IEEE transactions on pattern analysis and machine intelligence, 41(6), 1367–

1381.

143

Drummond, C., & Holte, R. C. (2000). Exploiting the cost (in) sensitivity of decision tree splitting

criteria. In Icml (Vol. 1).

Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016). Benchmarking deep rein-

forcement learning for continuous control. In International conference on machine learning

(pp. 1329–1338).

Dulac-Arnold, G., Mankowitz, D., & Hester, T. (2019). Challenges of real-world reinforcement

learning. arXiv preprint arXiv:1904.12901.

Ebeida, M. S., Karamete, K., Mestreau, E., & Dey, S. (2010). Q-tran: a new approach to transform

triangular meshes into quadrilateral meshes locally. In Proceedings of the 19th international

meshing roundtable (pp. 23–34). Springer.

Fan, W., Stolfo, S. J., Zhang, J., & Chan, P. K. (1999). Adacost: misclassification cost-sensitive

boosting. In Icml (Vol. 99, pp. 97–105).

Garimella, R. V., Shashkov, M. J., & Knupp, P. M. (2004). Triangular and quadrilateral surface mesh

quality optimization using local parametrization. Computer Methods in Applied Mechanics

and Engineering, 193(9-11), 913–928.

Gengdong, C., & Hua, L. (1996). New method for graded mesh generation of quadrilateral finite

elements. Computers & structures, 59(5), 823–829.

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-d finite element mesh generator with built-in pre-

and post-processing facilities. International journal for numerical methods in engineering,

79(11), 1309–1331.

Gordon, W. J., & Hall, C. A. (1973). Construction of curvilinear co-ordinate systems and applica-

tions to mesh generation. International Journal for Numerical Methods in Engineering, 7(4),

461–477.

Gottesman, O., Johansson, F., Komorowski, M., Faisal, A., Sontag, D., Doshi-Velez, F., & Celi,

L. A. (2019). Guidelines for reinforcement learning in healthcare. Nature medicine, 25(1),

16–18.

Grondman, I., Busoniu, L., Lopes, G. A., & Babuska, R. (2012). A survey of actor-critic reinforce-

ment learning: Standard and natural policy gradients. IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews), 42(6), 1291–1307.

144

Gupta, K. (2020). Neural mesh flow: 3d manifold mesh generation via diffeomorphic flows. Uni-

versity of California, San Diego.

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic actor. In International conference on

machine learning (pp. 1861–1870).

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., . . . others (2018). Soft actor-

critic algorithms and applications. arXiv preprint arXiv:1812.05905.

Habibie, I., Holden, D., Schwarz, J., Yearsley, J., & Komura, T. (2017). A recurrent variational

autoencoder for human motion synthesis. In 28th british machine vision conference.

Han, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-smote: a new over-sampling method

in imbalanced data sets learning. In International conference on intelligent computing (pp.

878–887).

Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., & Cohen-Or, D. (2019). Meshcnn: a

network with an edge. ACM Transactions on Graphics (TOG), 38(4), 1–12.

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). Adasyn: Adaptive synthetic sampling approach

for imbalanced learning. In 2008 ieee international joint conference on neural networks (ieee

world congress on computational intelligence) (pp. 1322–1328).

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge

and data engineering, 21(9), 1263–1284.

Huang, C., Li, Y., Loy, C. C., & Tang, X. (2016). Learning deep representation for imbalanced clas-

sification. In Proceedings of the ieee conference on computer vision and pattern recognition

(pp. 5375–5384).

Jadid, M. N., & Fairbairn, D. R. (1994). The application of neural network techniques to

structural analysis by implementing an adaptive finite-element mesh generation. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 8(3), 177–191. doi:

10.1017/S0890060400001979

Jo, T., & Japkowicz, N. (2004). Class imbalances versus small disjuncts. ACM Sigkdd Explorations

Newsletter, 6(1), 40–49.

Joe, B. (1995). Quadrilateral mesh generation in polygonal regions. Computer-Aided Design, 27(3),

145

209–222.

Johnen, A. (2016). Indirect quadrangular mesh generation and validation of curved finite elements

(Unpublished doctoral dissertation). Université de Liège, Liège, Belgique.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., . . . others (2021).

Highly accurate protein structure prediction with alphafold. Nature, 596(7873), 583–589.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: a survey. Journal

of artificial intelligence research, 4, 237–285.

Kahneman, D. (2011). Thinking, fast and slow. Macmillan.

Khan, S. H., Hayat, M., Bennamoun, M., Sohel, F. A., & Togneri, R. (2017). Cost-sensitive learning

of deep feature representations from imbalanced data. IEEE transactions on neural networks

and learning systems, 29(8), 3573–3587.

Knupp, P. M. (2000). Achieving finite element mesh quality via optimization of the jacobian matrix

norm and associated quantities. part ii—a framework for volume mesh optimization and the

condition number of the jacobian matrix. International Journal for numerical methods in

engineering, 48(8), 1165–1185.

Knupp, P. M., Ernst, C., Thompson, D. C., Stimpson, C., & Pebay, P. P. (2006). The verdict

geometric quality library (Tech. Rep.). Sandia National Laboratories.

Kohonen, T. (2012). Self-organization and associative memory (Vol. 8). Springer Science &

Business Media.

Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future directions.

Progress in Artificial Intelligence, 5(4), 221–232.

Kukar, M., Kononenko, I., et al. (1998). Cost-sensitive learning with neural networks. In Ecai

(Vol. 15, pp. 88–94).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436–444.

Lee, T.-K., & Filipi, Z. S. (2010). Synthesis and validation of representative real-world driving

cycles for plug-in hybrid vehicles. In 2010 ieee vehicle power and propulsion conference (pp.

1–6).

Lesort, T., Dı́az-Rodrı́guez, N., Goudou, J.-F., & Filliat, D. (2018). State representation learning

for control: An overview. Neural Networks, 108, 379–392.

146

Lévy, B., & Liu, Y. (2010). L p centroidal voronoi tessellation and its applications. ACM Transac-

tions on Graphics (TOG), 29(4), 1–11.

Li, Y. (2018). Deep reinforcement learning. arXiv preprint arXiv:1810.06339.

Liang, X., Ebeida, M. S., & Zhang, Y. (2010). Guaranteed-quality all-quadrilateral mesh gener-

ation with feature preservation. Computer Methods in Applied Mechanics and Engineering,

199(29-32), 2072–2083.

Liang, X., & Zhang, Y. (2012). Matching interior and exterior all-quadrilateral meshes with guar-

anteed angle bounds. Engineering with Computers, 28(4), 375–389.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., . . . Wierstra, D. (2015).

Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

Littman, M. L. (2015). Reinforcement learning improves behaviour from evaluative feedback.

Nature, 521(7553), 445–451.

Liu, C., Yu, W., Chen, Z., & Li, X. (2017). Distributed poly-square mapping for large-scale semi-

structured quad mesh generation. Computer-Aided Design, 90, 5–17.

Liu, C.-L., & Hsieh, P.-Y. (2019). Model-based synthetic sampling for imbalanced data. IEEE

Transactions on Knowledge and Data Engineering, 32(8), 1543–1556.

Liu, X.-Y., Wu, J., & Zhou, Z.-H. (2008). Exploratory undersampling for class-imbalance learning.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 539–550.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M., & Bowling, M. (2018).

Revisiting the arcade learning environment: Evaluation protocols and open problems for gen-

eral agents. Journal of Artificial Intelligence Research, 61, 523–562.

Manevitz, L., Yousef, M., & Givoli, D. (1997). Finite–element mesh generation using self–

organizing neural networks. Computer-Aided Civil and Infrastructure Engineering, 12(4),

233–250.

Mazyavkina, N., Sviridov, S., Ivanov, S., & Burnaev, E. (2021). Reinforcement learning for com-

binatorial optimization: A survey. Computers & Operations Research, 105400.

McCarthy, K., Zabar, B., & Weiss, G. (2005). Does cost-sensitive learning beat sampling for

classifying rare classes? In Proceedings of the 1st international workshop on utility-based

data mining (pp. 69–77).

147

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., . . . Kavukcuoglu, K. (2016).

Asynchronous methods for deep reinforcement learning. In International conference on ma-

chine learning (pp. 1928–1937).

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M.

(2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

Nechaeva, O. (2006). Composite algorithm for adaptive mesh construction based on self-organizing

maps. In International conference on artificial neural networks (pp. 445–454). Springer.

Niv, Y. (2019). Learning task-state representations. Nature neuroscience, 22(10), 1544–1553.

Osband, I., Doron, Y., Hessel, M., Aslanides, J., Sezener, E., Saraiva, A., . . . others (2019). Be-

haviour suite for reinforcement learning. arXiv preprint arXiv:1908.03568.

Owen, S. J. (1998). A survey of unstructured mesh generation technology. In Imr (Vol. 239, p. 267).

Owen, S. J., Staten, M. L., Canann, S. A., & Saigal, S. (1999). Q-morph: an indirect approach to

advancing front quad meshing. International journal for numerical methods in engineering,

44(9), 1317–1340.

Pan, J., Huang, J., Cheng, G., & Zeng, Y. (2021). Reinforcement learning for automatic quadrilateral

mesh generation: a soft actor-critic approach. Under review.

Pan, J., Huang, J., Wang, Y., Cheng, G., & Zeng, Y. (2021). A self-learning finite element extrac-

tion system based on reinforcement learning. Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, 1–29. doi: 10.1017/S089006042100007X

Papagiannopoulos, A., Clausen, P., & Avellan, F. (2021). How to teach neural networks to mesh:

Application on 2-d simplicial contours. Neural Networks, 136, 152–179.

Park, C., Noh, J.-S., Jang, I.-S., & Kang, J. M. (2007). A new automated scheme of quadrilateral

mesh generation for randomly distributed line constraints. Computer-Aided Design, 39(4),

258–267.

Pébay, P. P., Thompson, D., Shepherd, J., Knupp, P., Lisle, C., Magnotta, V. A., & Grosland, N. M.

(2008). New applications of the verdict library for standardized mesh verification pre, post,

and end-to-end processing. In Proceedings of the 16th international meshing roundtable (pp.

535–552).

Peters, J., & Reif, U. (1997). The simplest subdivision scheme for smoothing polyhedra. ACM

148

Transactions on Graphics (TOG), 16(4), 420–431.

Prautzsch, H., & Chen, Q. (2011). Analyzing midpoint subdivision. Computer Aided Geometric

Design, 28(7), 407–419.

Quadros, W., Ramaswami, K., Prinz, F., & Gurumoorthy, B. (2004). Laytracks: a new approach

to automated geometry adaptive quadrilateral mesh generation using medial axis transform.

International journal for numerical methods in engineering, 61(2), 209–237.

Remacle, J.-F., Henrotte, F., Carrier-Baudouin, T., Béchet, E., Marchandise, E., Geuzaine, C., &

Mouton, T. (2013). A frontal delaunay quad mesh generator using the l norm. International

Journal for Numerical Methods in Engineering, 94(5), 494–512.

Remacle, J.-F., Lambrechts, J., Seny, B., Marchandise, E., Johnen, A., & Geuzainet, C. (2012).

Blossom-quad: A non-uniform quadrilateral mesh generator using a minimum-cost perfect-

matching algorithm. International journal for numerical methods in engineering, 89(9),

1102–1119.

Roca, X., & Loseille, A. (2019). 27th international meshing roundtable (Vol. 127). Springer.

Rushdi, A. A., Mitchell, S. A., Mahmoud, A. H., Bajaj, C. C., & Ebeida, M. S. (2017). All-quad

meshing without cleanup. Computer-Aided Design, 85, 83–98.

Sarrate Ramos, J., Ruiz-Gironés, E., & Roca Navarro, F. J. (2014). Unstructured and semi-

structured hexahedral mesh generation methods. Computational technology reviews, 10, 35–

64.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy opti-

mization algorithms. arXiv preprint arXiv:1707.06347.

Shamshad, A., Bawadi, M., Hussin, W. W., Majid, T., & Sanusi, S. (2005). First and second

order markov chain models for synthetic generation of wind speed time series. Energy, 30(5),

693–708.

Shewchuk, J. R. (2012). Unstructured mesh generation. Combinatorial Scientific Computing,

12(257), 2.

Shimada, K., Liao, J.-H., & Itoh, T. (1998). Quadrilateral meshing with directionality control

through the packing of square cells. In Imr (pp. 61–75). Citeseer.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., . . . others (2016).

149

Mastering the game of go with deep neural networks and tree search. Nature, 529(7587),

484–489.

Silver, D., Singh, S., Precup, D., & Sutton, R. S. (2021). Reward is enough. Artificial Intelligence,

103535.

Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., & Mavriplis, D.

(2014). Cfd vision 2030 study: a path to revolutionary computational aerosciences. National

Aeronautics and Space Administration, Langley Research Center.

Sun, Y., Kamel, M. S., Wong, A. K., & Wang, Y. (2007). Cost-sensitive boosting for classification

of imbalanced data. Pattern recognition, 40(12), 3358–3378.

Suresh, K., & Verma, C. S. (2019). Singularity reduction in quadrilateral meshes (No.

20190325647).

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: an introduction. MIT press.

Tam, T., & Armstrong, C. G. (1991). 2d finite element mesh generation by medial axis subdivision.

Advances in engineering software and workstations, 13(5-6), 313–324.

Tanaka, F. H. K. d. S., & Aranha, C. (2019). Data augmentation using gans. arXiv preprint

arXiv:1904.09135.

Thompson, J. F., Soni, B. K., & Weatherill, N. P. (1998). Handbook of grid generation. CRC press.

Verma, C. S., & Suresh, K. (2017). A robust combinatorial approach to reduce singularities in

quadrilateral meshes. Computer-Aided Design, 85, 99–110.

Verma, C. S., & Suresh, K. (2018). αmst: A robust unified algorithm for quadrilateral mesh

adaptation in 2d and 3d. Computer-Aided Design, 103, 47–60.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M., . . . others (2017).

Starcraft ii: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782.

Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. In In advances in neural

information processing systems (Vol. 28, pp. 2692–2700).

Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., & Jiang, Y.-G. (2018). Pixel2mesh: Generating 3d

mesh models from single rgb images. In Proceedings of the european conference on computer

vision (eccv) (pp. 52–67).

Wang, W. Y., Li, J., & He, X. (2018). Deep reinforcement learning for nlp. In Proceedings of the

150

56th annual meeting of the association for computational linguistics: Tutorial abstracts (pp.

19–21).

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016). Dueling net-

work architectures for deep reinforcement learning. In International conference on machine

learning (pp. 1995–2003).

Wang, Z., Wang, J., & Wang, Y. (2018). An intelligent diagnosis scheme based on generative ad-

versarial learning deep neural networks and its application to planetary gearbox fault pattern

recognition. Neurocomputing, 310, 213–222.

Wei, Q., Wang, L., Liu, Y., & Polycarpou, M. M. (2020). Optimal elevator group control via

deep asynchronous actor–critic learning. IEEE transactions on neural networks and learning

systems, 31(12), 5245–5256.

Wen, C., Zhang, Y., Li, Z., & Fu, Y. (2019). Pixel2mesh++: Multi-view 3d mesh generation via

deformation. In Proceedings of the ieee/cvf international conference on computer vision (pp.

1042–1051).

White, D. R., & Kinney, P. (1997). Redesign of the paving algorithm: Robustness enhancements

through element by element meshing. In 6th international meshing roundtable (Vol. 10,

p. 830).

Wu, G., & Chang, E. Y. (2005). Kba: Kernel boundary alignment considering imbalanced data

distribution. IEEE Transactions on knowledge and data engineering, 17(6), 786–795.

Wu, Y., Liao, S., Liu, X., Li, Z., & Lu, R. (2021). Deep reinforcement learning on autonomous

driving policy with auxiliary critic network. IEEE Transactions on Neural Networks and

Learning Systems.

Xie, Z., Jiang, L., Ye, T., & Li, X. (2015). A synthetic minority oversampling method based on

local densities in low-dimensional space for imbalanced learning. In International conference

on database systems for advanced applications (pp. 3–18).

Xuan, Q., Chen, Z., Liu, Y., Huang, H., Bao, G., & Zhang, D. (2018). Multiview generative ad-

versarial network and its application in pearl classification. IEEE Transactions on Industrial

Electronics, 66(10), 8244–8252.

Yang, J., Dzanic, T., Petersen, B., Kudo, J., Mittal, K., Tomov, V., . . . others (2021). Reinforcement

151

learning for adaptive mesh refinement. arXiv preprint arXiv:2103.01342.

Yang, W., & Nam, W. (2022). Data synthesis method preserving correlation of features. Pattern

Recognition, 122, 108241.

Yang, Y., Zha, K., Chen, Y.-C., Wang, H., & Katabi, D. (2021). Delving into deep imbalanced

regression. arXiv preprint arXiv:2102.09554.

Yao, S., Yan, B., Chen, B., & Zeng, Y. (2005). An ann-based element extraction method for

automatic mesh generation. Expert Systems with Applications, 29(1), 193–206.

Yen, S.-J., & Lee, Y.-S. (2009). Cluster-based under-sampling approaches for imbalanced data

distributions. Expert Systems with Applications, 36(3), 5718–5727.

Zeng, Y. (2004). Environment-based formulation of design problem. Journal of Integrated Design

and Process Science, 8(4), 45–63.

Zeng, Y. (2015). Environment-based design (ebd): A methodology for transdisciplinary design+.

Journal of Integrated Design and Process Science, 19(1), 5–24.

Zeng, Y., & Cheng, G. (1991). On the logic of design. Design Studies, 12(3), 137–141.

Zeng, Y., & Cheng, G. (1993). Knowledge-based free mesh generation of quadrilateral elements

in two-dimensional domains. Computer-Aided Civil and Infrastructure Engineering, 8(4),

259–270.

Zeng, Y., & Yao, S. (2009). Understanding design activities through computer simulation. Advanced

Engineering Informatics, 23(3), 294–308.

Zhang, K., Cheng, G., & Xu, L. (2019). Topology optimization considering overhang constraint in

additive manufacturing. Computers & Structures, 212, 86–100.

Zhang, L., Cheng, L., Li, H., Gao, J., Yu, C., Domel, R., . . . Liu, W. K. (2021). Hierarchical deep-

learning neural networks: finite elements and beyond. Computational Mechanics, 67(1),

207–230.

Zhang, Q., Yang, L. T., Chen, Z., & Li, P. (2018). A survey on deep learning for big data. Informa-

tion Fusion, 42, 146–157.

Zhang, Z., Wang, Y., Jimack, P. K., & Wang, H. (2020). Meshingnet: A new mesh generation

method based on deep learning. In International conference on computational science (pp.

186–198). Springer.

152

Zhao, D., Chen, J., Zheng, Y., Huang, Z., & Zheng, J. (2015). Fine-grained parallel algorithm for

unstructured surface mesh generation. Computers & Structures, 154, 177–191.

Zhou, Z.-H., & Liu, X.-Y. (2005). Training cost-sensitive neural networks with methods addressing

the class imbalance problem. IEEE Transactions on knowledge and data engineering, 18(1),

63–77.

Zhou, Z.-H., & Liu, X.-Y. (2010). On multi-class cost-sensitive learning. Computational Intelli-

gence, 26(3), 232–257.

Zhu, J., Zienkiewicz, O., Hinton, E., & Wu, J. (1991). A new approach to the development of

automatic quadrilateral mesh generation. International Journal for Numerical Methods in

Engineering, 32(4), 849–866.

Ziebart, B. D. (2010). Modeling purposeful adaptive behavior with the principle of maximum causal

entropy. Carnegie Mellon University.

153

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objective
	Outline

	Literature Review
	Mesh generation
	Conventional methods
	Machine learning-based methods

	Reinforcement learning
	Imbalanced learning
	Data-level approaches
	Algorithm-level approaches

	Research challenges and opportunities

	Contributions
	A self-learning finite element extraction system based on reinforcement learning
	Introduction
	Motivation: why is it necessary to use the element extraction method?
	The challenge of the element extraction method
	Contribution

	Smart designing of the smart element extraction system
	How is the element extraction method smart?
	How can the element extraction system be smartly evolving and designed?

	A self-learning system for element extraction
	Element extraction as a reinforcement learning problem
	A2C RL network for element extraction based mesh generation
	FNN as policy approximator for fast learning and meshing
	Summary

	Experiments
	Experiment settings
	Experiment 1: training effectiveness and efficiency
	Experiment 2: comparisons of the proposed method with existing methods
	Summary

	Discussion
	Domain knowledge dependency
	The relation between smart design and smart system
	Limitations

	Conclusions

	Reinforcement learning for automatic quadrilateral mesh generation: a soft actor-critic approach
	Introduction
	Mesh generation challenges
	Related work
	Contributions

	Problem formulation and fundamentals
	Problem formulation
	Reinforcement learning

	RL based mesh generation
	Action formulation
	State representation
	Reward function
	Meshing scheme via SAC

	Experimental results
	Implementation details
	Evaluation

	Discussion
	Conclusion

	Sampling balanced high quality data to train an automatic mesh generator for its optimal performance
	Introduction
	Problem formulation and fundamentals
	Mesh generation
	Data generation

	Quality function-based data generation for mesh generation
	Data generation procedure
	Quality function for performance measurement
	Sample balancing
	FNN training

	Experiment results
	Implementation details
	Evaluation

	Discussion
	Conclusion

	Conclusions and future works
	Conclusions
	Future works

	Bibliography

