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Abstract

Wavelet-based Multi-level GANs for Facial Attributes Editing

Jun Shao

Recently, both face aging and expression translation have received increasing attention

from the computer vision community due to their wide applications in the real world.

For face aging, age accuracy and identity preserving are two important indicators.

Previous works usually rely on an extra pre-trained module for identity preserv-

ing and multi-level discriminators for fine-grained features extraction. In this work,

we propose a cycle-consistent loss based method for face aging with wavelet-based

multi-level facial attributes extraction from both generator and discriminators. The

proposed model consists of one generator with three-level encoders and three levels

of discriminators with an age and a gender classifier on top of each discriminator.

Experiment results on both MORPH and CACD show that the application of multi-

level generator can improve the identity preserving effects in face aging and reduce the

training time significantly by eliminating the rely of an identity preserving module.

Our model can outperform most of the existing approaches including the state-of-the-

art techniques on two benchmark aging databases in terms of both aging accuracy

and identity verification confidence, demonstrating the effectiveness and superiority

of our method.

In real world, expression synthesis is hard due to the non-linear properties of

facial skin and muscle caused by different expressions. A recent study showed that

the practice of using the same generator for both forward prediction and backward

reconstruction as in current conditional GANs would force the generator to leave a

potential ”noise” in the generated images, therefore hindering the use of the images

for further tasks. To eliminate the interference and break the unwanted link between

the first and second translation, we design a parallel training mechanism with two

generators that perform the same first translation but work as a reconstruction model

for each other. Additionally, inspired by the successful application of wavelet-based

multi-level Generative Adversarial Networks(GANs) in face aging and progressive
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training in geometric conversion, we further design a novel wavelet-based multi-level

Generative Adversarial Network (WP2-GAN) for expression translation with a large

gap based on a progressive and parallel training strategy. Extensive experiments

show the effectiveness of our approach for expression translation compared with the

state-of-the-art models by synthesizing photo-realistic images with high fidelity and

vivid expression effect.
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Chapter 1

Introduction

1.1 Motivation

Facial attributes editing technologies including face aging, facial expression transla-

tion, gender translation and so on have a wide application in read world.

Face aging originated from the need of finding missing children has shown sig-

nificance for cross-age recognition and recreation applications. However, face aging

is an intractable task owing to the lack of image set of the same person over a long

age span as well as the variants of face poses, the change of illumination, and the

existence of occlusion [43].

Although, expression translation shows wide applications to photography tech-

nologies, human-computer-interaction and animation movies, facial expression ma-

nipulation is challenging owing to the non-linear facial geometric variation caused by

different expressions.

Recently, generative models based on wavelet-based multi-level features extrac-

tions [44] have shown superiority in synthesizing subtle features. It is meaningful

to apply the function of wavelet-based multi-level features extraction to our facial

attributes editing tasks.

1.2 Thesis Outline

The outline of the thesis is as follows:

Chapter 2 refers to the work related the wavelet-based multi-level GAN for face
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aging. The proposed model consists of a wavelet-based multi-level generator and

three wavelet-based multi-level discriminators with an age and a gender classifier on

top of each discriminator. Extensive experiments show that utilization of multi-level

generator combined with wavelet transform decomposition can improve the identity

verification confidence in face aging, and significantly reduce the time for model train-

ing by eliminating the use of an identity preserving module. The related paper:

• Jun Shao, Tien D. Bui. Wavelet-based Multi-level GAN for Face Aging.

Submitted to Computer Vision and Image Understanding (CVIU), 2021.

Chapter 3 mentions the work related to a wavelet-based multi-level GAN for pro-

gressive facial expression translation with parallel generators. Two parallel generators

were introduced to the facial expression translation task and to eliminate the inter-

ference existed in previous methods that is caused by using one single generator for

both forward and backward translation. Additionally, we designed a novel progres-

sive training strategy based on the parallel generators, combined with wavelet-based

multi-level discriminators to improve the quality of expression translation. Extensive

experiments showed that our method outperformed the current state-of-the-art mod-

els in terms of both expression translation accuracy and image quality. The related

paper:

• Jun Shao, Tien D. Bui. WP2-GAN: Wavelet-based Multi-level GAN for

Progressive Facial Expression Translation with Parallel Generators. British

Machine Vision Conference (BMVC), 2021.

Chapter 4 summarizes the main contributions of this work as well as the ideas for

future work.
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Chapter 2

Wavelet-based Multi-level GANs

for Face Aging [58]

2.1 Introduction

Face aging including progression and regression has attracted much attention from

the community of computer vision in last decade. Face aging originated from the

need of finding missing children has shown significance for cross-age recognition and

recreation applications. However, face aging is an intractable task owing to the lack of

image set of the same person over a long age span as well as the variants of face poses,

the change of illumination, and the existence of occlusion [43]. Although difficult it

is, face aging has achieved great progress owing to the rapid development of deep

neural networks. Especially, the recent advent of Generative Adversarial Networks

(GANs), which have obtained an amazing achievement in generating photorealistic

face images [2, 24, 28, 54, 78], has opened a new door to the face manipulating

technologies.

In the area of face aging, most of the GAN-based methods [19, 37, 38, 44, 68,

71] adopt a pretrained neural network for identity preserving. However, empirical

experiments show that adding a pretrained deep neural network (e.g. a VGG-Face

descriptor [50]) will increase the training time dramatically. In this work we consider

face aging as a multi-domain translation task and adopt a CycleGAN-based [79]

method for identity preserving. Although effective in simulating both face progression

and regression with a single model, the current CycleGAN-based aging methods [60,

3



62] suffer from generating blurring results, less fine-grained details and even artifacts.

Recently, the work related to multi-level GAN [44, 71] shows that facial features

extracted from images at multiple scales by discriminators can force the generator

to synthesize vivid aging effects by back-propagation of the adversarial/condition

loss from the discriminators to the generator. Intuitively, feeding multi-level features

of original inputs to multi-level generator should be able to directly improve the

performance of the model in face aging but few works dig in this way. GLCA-GAN [37]

leveraged one global and three local generators to capture facial features at different

scales for face aging. However, this approach can only provide facial attributes at no

more than two levels.

1

Figure 1: Sampled results of face aging (a) on MORPH and (b) on UTKFace/FG-
NET with an age span of 10. The first column contains the input faces, followed by
the synthesized images in age group 11-20, 21-30, 31-40, 41-50, 51-60 and 61+.

In our approach, we design a novel multi-level generator combined with a wavelet

packet transform (WPT) module for facial features extraction. The original inputs

are decomposed into multi-level wavelet coefficients that are used as inputs to the

generator with multi-level encoders. Fusing information in different frequency bands

with multi-level resolution will provide more identity-related information to the gen-

erator. Compared with the image pyramid used in [62], multi-level wavelet coefficients

4



possess more information in different frequency.

Similar to Wavelet-GAN [44], our approach also performs wavelet-based multi-

level features extraction in the discriminators but we adopt three parallel discrimina-

tors instead of concatenating the results of three discriminators as one tensor at the

end. By this way, we can add a gradient penalty loss [25] to each discriminator to

stabilize the training of our model.

In this work, our model consists of a wavelet-based multi-level generator (G) and

three wavelet-based multi-level discriminators (D1, D2 and D3) with an age and a

gender classifier on top of each discriminator. The generator consists of three encoders

(G1, G2, G3) with a gradual decrease of depth. It takes as input the translated

multi-level wavelet coefficients and a target condition (yg) to generate an image with

the target attributes. To enable the model to distinguish age and gender features,

we concatenate the age group label with the gender label as a combined condition.

Thus, our well trained model is not only effective for face aging but also for gender

conversion. Three level discriminators are used to force the generator to synthesize

indistinguishable images. To force the generated image to fall into the target age and

gender group, two classification (age and gender) losses are added to the total loss

function of our model. Finally, a cycle-consistent loss and a pixel loss are introduced

to the total loss function to preserve the identity-level and pixel-level consistency.

Unlike [38, 44, 68, 71], our model does not rely on an additional module for identity

preserving, which can reduce the time for training significantly.

The contributions of this work are summarized as follows.

(1) Wavelet Packet Transform module and multi-level encoders are applied to the

generator of GANs for face aging for the first time.

(2) Application of multi-level generator combined with wavelet transform decom-

position can improve the identity verification confidence in face aging, and signifi-

cantly reduce the time for model training by eliminating the use of an identity pre-

serving module.

(3) Extensive experiments demonstrate the superiority and effectiveness of our

method by synthesizing vivid aging effects and outperforming the existing state-of-

the-art models in both face aging accuracy and identity verification confidence.

(4) Experiments for continuous face aging show that our model can generate im-

ages with a continuous and smooth increase of age.
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2.2 RELATED WORKS

2.2.1 Face Aging

Traditional approaches for face aging can be categorized into two classes: prototype-

based methods [21, 30] and physical model-based methods [63, 64]. Physical mod-

els usually focus on the change of facial texture, shape, and other physical mea-

sures [68]. But these models are normally complex and require a large number of

data. Prototype-based approaches leverage the differences between the average face

information of different age groups for age pattern transfer [21, 30]. These methods

neglect the differences between different person, thus are likely to synthesize unlike

face images.

Over the past decade, deep neural networks have achieved great success in repre-

sentation learning and have also been widely applied to face aging. Wang et al. [66]

proposed a recurrent face aging framework that is able to smooth the aging process,

but less identity information can be maintained. Duong et al. successfully applied

Deep Restricted Boltzmann Machines [12, 13, 14] and Deep Reinforcement Learn-

ing [15, 16] to face aging and have achieved an impressive performance. However,

these approaches still need paired images with different ages of the same person for

model training.

The advent of GANs ushered a vigorous development of face aging. Antipov et

al. [1] first deployed the conditional GAN for age transformation. Later, Zhange et

al. [75] proposed a conditional adversarial auto-encoder (CAAE) that leverages the

high-level features of input images for the generation of target images. But their

synthesized faces show little change on aging effect for different age conditions.

Many existing studies [29, 37, 44, 68, 71] in face aging adopted multiple GANs

to model age progression or regression, thus limited the efficiency of the methods.

For example, Yang et al. [71] proposed PAG-GAN which takes faces below 30 years

old as inputs. Different models need to be trained for different target age groups.

Huang et al. [29] released the limits to some extent by assigning a different model for

each pair of adjacent age groups and trained the whole system in a progressive way,

but multiple models were still needed. Additionally, all of these methods rely on a

pretrained deep neural network for identity preserving, increased the time of model

training.
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Another line of research in face aging is based on CycleGAN, which models the

age progression and regression with one or two models. For example, Song et al. [60]

proposed to use two conditional GANs (Dual cGANs) to model face progression and

regression respectively. A reconstruction loss was adopted to maintain the identity of

inputs. Sun et al. [62] proposed Ranking GAN which considers both age progression

and regression as a multi-domain translation task based on Cycle-GAN. To model

the inter-relationship of age patterns among different age groups, Fang et al. [19]

designed Triple-GANs learned with a triple translation loss. But a pretrained model

for identity-related features extraction was still adopted.

To capture fine details of facial attributes, features at multi-level resolution were

widely applied in literature. For instance, Li et al. [37] proposed GLCA-GAN, using

one global generator and three local generators to capture both global and local

changes during face aging process. Additionally, multi-level discriminators [44, 62, 71]

were also popularly utilized to extract features at multiple scale. Liu et al. [44]

combined multi-level discriminator with a wavelet packet transform (WPT) module

for high-level age-related features extraction to improve the visual fidelity of generated

images. Generally, our approach adopts the cycle-GAN based strategy for both face

progression and regression with a single model. To improve the face aging effect and

fidelity of generated images, we successfully applied wavelet-based multi-level feature

extraction to both generator and discriminators. While most of previous multi-level

aging models [44, 62, 71] only adopt multi-level discriminators. Besides, our model

does not extract facial features of different part physically like GLCA-GAN [37] but

leverages multi-level encoders to extract identity related features automatically, thus

improving the effectiveness.

All of the methods mentioned above consider face aging in terms of age group. Two

recent work [38, 48] designed their aging models on disentangled or learned identity

and age embedding and are able for long lifespan face aging, i.e. from children to

aged adults. However, both of them suffers from details or background information

maintaining during aging process. Additionally, LifeSpan-GAN [48] is sensitive to the

background information and shows limits in special cases such as with extreme pose,

glasses and occluded face. Other related work includes [76, 77] that proposed a deep

architecture AIM unifying face aging and age recognition in a mutual boosting way.

In this work, our model only focuses on adult aging. The well-trained model
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can be used to generate fine-grained aging and rejuvenating results for adults with

accurate aging effects and high identity preserving confidence.

2.2.2 Multi-level Feature Extraction

It is a common practice to synthesize photo-realistic images with fine-grained at-

tributes by providing multi-level features from inputs to models. Both [37] and [70]

adopted one global and three local generators to capture both global and local facial

features for face attributes editing.

Li et al. [35, 36] proposed integrated face analytic networks for multi-task face

synthesis and analysis. Their work shows that features learned from different tasks

can boost the performance of each task.

Besides providing more information to generators, another line of multi-level ap-

proach focused on supervising the predictive results of the generator. For example,

[71] and [62] adopted multi-level discriminators to supervise the quality and accuracy

of the synthetic images. Recently, wavelet based decomposition has been success-

fully applied to image classification and restoration [39, 42] by providing multi-level

features in the frequency space. Liu et al. [44] incorporated a Wavelet packet trans-

form (WPT) module to the multi-level discriminator of Wavelet-GAN to capture

age-related features at multiple scales in frequency space.

Different from [37] and [70] that physically assigned global image and local patches

to different generators or [71] and [62] that only adopt multi-level discriminators, we

integrate a WPT-based image decomposition into both discriminators and generator.

In addition to imposing supervision on the last layer of the generator, a few

previous work [8, 9, 49] focused on the control of last several latent layers of the

generator, as deep supervision on the hidden layers of neural networks can improve

the performance of the models [34]. Since using a wavelet-based decomposition for

multi-level features extracting in the frequency space, we only adopt the supervision

on the final result of the generator for compactness.
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Figure 2: An overview of the wavelet-based multi-level Generative Adversarial Net-
work framework. Input image is converted to three levels of wavelet coefficients by
a wavelet packet transform (WPT) module before entering the three level encoders
of the generator G, which takes as input the multi-level wavelet coefficients and the
target condition yg to synthesize a photo-realistic image Xyg . The multi-level discrim-
inators take each level of the wavelet coefficients as input and evaluate the realism
of given images as well as the condition loss. The generator G is called twice to
reconstruct the original image and a reconstruction loss (or cycle-consistent loss) is
applied to preserve the identity of input image.

2.3 PROPOSED METHOD

2.3.1 Overview

Considering age effects as a special facial style, we propose a novel conditional GAN

with multi-level path in both generator and discriminator for face progression/regression

based on an image-to-image translation method. Our model consists mainly of two

blocks: a multi-way generator G(Xo|yg) transforming the aging effects in the original

image Xo to the desired condition yg, and three-level discriminators (D1, D2 and D3)

distinguishing the photo-realism as well as the facial attributes such as age group and

gender.

To assist the multi-level generator and discriminators to capture identity-related

and age-related texture details, a wavelet packet transform (WPT) module is per-

formed to decompose the given image into high-frequency and low-frequency coeffi-

cients at multiple scales (as shown in Fig. 3). The low-frequency components preserve

global information of the face while high-frequency components preserve the local

details.The wavelet coefficients at each decomposing level concatenated with other
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Figure 3: A sample image with multi-level wavelet coefficients decomposed by wavelet
packet transform.

conditions are fed into a corresponding encoder of the generator or discriminator.

Considering that face aging task on age groups with a small age span is challenging

than on age groups with a large span [62], we train and test our approach on age

groups with two different age spans (i.e. 5 and 10 years).

We combine the gender information with age group label as the final condition.

Gender information here can not only help the model to peel off gender attributes

from aging effects but also endow our model the capability of gender translation.

To get rid of image pairs of the same person, the generator is called twice, first

from the original image to synthesize the desired image then reconstructs the original

one from the generated face. The re-construction loss helps to preserve the identity

of the outcome.

The overview of our proposed framework is displayed in Fig. 2.

2.3.2 Wavelet-based Multi-level Generator

Although multi-level discriminators have been successfully applied to face synthesis,

few direct applications of multi-level features extracted from generator were reported

in literature. Previous works usually utilize an auto-encoder based generator (with

one encoder and one decoder) for image synthesizing. Intuitively, application of multi-

level features extracting in generator can also improve the performance of the model

in face aging by providing multi-level facial attributes to the decoder of the gener-

ator. Although the condition loss calculated after the discriminators can be back-

propagated to the generator through the discriminator, the effect is indirect and may
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Table 1: Neural Network Architecture of Multi-level Generator (’K’,’S’ and ’P’ denote
’Kernel size’,’stride’ and ’padding’).

Layer Output Size Details
Enc1 Enc2 Enc3

Input ConvI 128× 128× 64 64× 64× 64 32× 32× 128 K7, S1, P3

Down-sampling
ConVD1 64× 64× 128 32× 32× 128 16× 16× 256 K4, S2, P1
ConVD2 32× 32× 256 16× 16× 256 — K4, S2, P1
ConVD3 16× 16× 512 — — K4, S2, P1

Residual Blocks

ConvR1-1 16× 16× 512 16× 16× 256 16× 16× 256 K3, S1, P1
ConvR1-2 16× 16× 512 16× 16× 256 16× 16× 256 K3, S1, P1
... ... ...
ConvR6-1 16× 16× 512 16× 16× 256 16× 16× 256 K3, S1, P1
ConvR6-2 16× 16× 512 16× 16× 256 16× 16× 256 K3, S1, P1

Up-sampling
ConvU1 32× 32× 256 K4, S2, P1
ConvU2 64× 64× 128 K4, S2, P1
ConvU3 128× 128× 64 K4, S2, P1

Output ConvO 128× 128× 3 K7, S1, P3
Note: Before entering the up-sampling layers, tensors of three encoders are concatenated in channel.

be impacted by the vanishing gradient problem caused by long-range dependencies.

In this work, we directly apply multi-level features extracting to image synthe-

sizing and form a generator consisting of three encoders (G1, G2, G3) and one de-

coder. To make sure the encoders can receive both low-frequency information (ap-

proximation) and high-frequency information (details) as inputs, at first, the input

image is transferred to multi-level wavelet coefficients by a Wavelet Packet Trans-

form (WPT)1 [57] module. Then, concatenated with the target condition, multi-level

coefficients are fed into the corresponding pathway of the generator. Considering

the gradually shrinking size of the coefficients, we design multi-level encoders with a

decreasing number of down-sampling layers.

Mapping features (with the same height and width) from multi-level encoders are

concatenated in depth as one tensor, which is then fed to the up-sampling convolu-

tional layers until reconstructing an image with the size of 128 × 128× 3.

The work has the most similar idea to us is [37], but the approach there needs

four separate generators to learn a global face and three local patches, then a merging

network to fine-tune the final result. While our method only needs a multi-level

generator possessing three encoders, incorporated with wavelet-based transformation,

to capture multi-level features from the inputs, thus more effective. The structure of

the multi-level generator is shown in Table 1.

1https://pytorch-wavelets.readthedocs.io/en/latest/readme.html.
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Table 2: Neural Network Architecture of Multi-level Discriminators (’K’,’S’ and ’P’
denote ’Kernel size’,’stride’ and ’padding’).

Layer Output Size Details
D1 D2 D3

Input ConvI 64× 64× 64 32× 32× 64 16× 16× 128 K4, S2, P1

Down-sampling

ConVD1 32× 32× 128 16× 16× 128 8× 8× 128 K4, S2, P1
ConVD2 16× 16× 256 8× 8× 256 4× 4× 256 K4, S2, P1
ConVD3 8× 8× 512 4× 4× 512 2× 2× 512 K4, S2, P1
ConVD4 4× 4× 1024 2× 2× 1024 — K4, S2, P1
ConVD5 2× 2× 2048 — — K4, S2, P1

Output
ConvO-Adv 2× 2× 1 2× 2× 1 2× 2× 1 K3, S1, P1
ConvO-Age 1× 1×GP 1× 1×GP 1× 1×GP K2, S1, P0
ConvO-gender 1× 1× 2 1× 1× 2 1× 1× 2 K2, S1, P0

Note: GP is the number of age groups the aging data set is divided, i.e., GP=4 or GP=7.

2.3.3 Wavelet-based Multi-level Discriminators

To capture age-related attributes such as wrinkles and eye bags, a Wavelet Packet

Transform (WPT) module is also incorporated into the multi-level discriminators.

In this work, we adopt three levels of discriminators and each discriminator has

a gradually decreasing number of convolutional layers so that three levels of wavelet

coefficients can be encoded into three matrices with the same size YDi
∈ RH/26×W/26 ,

where i = {1, 2, 3}, H and W are the height and width of the input image. Each

element of YDi represents the probability of the corresponding patch to be real.

To stabilize the training of the adversarial learning system, we add a penalty

loss [25] to the gradient norm of each critic. Thus, we do not concatenate the out-

comes of three discriminators as one tensor as [44] did. Empirical experiments show

that separate discriminators do not cost much time than combined discriminators

during model training. While the parameters of separate discriminators can be well

regularized by their corresponding gradient norm loss functions.

Unlike [44, 60] that directly adding semantic attributes to the discriminator side,

we adopt a multi-task learning framework to introduce conditioning of the discrimi-

nators by minimising the condition cross entropy loss. Besides photo-realism, three

discriminators are also responsible for estimating the age group and gender of the

given image. To reduce the number of parameters, we add auxiliary classifiers for age

and gender classification, on the last second layer of each discriminator.

The structure of three discriminators are shown in Table 2 .
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2.3.4 Overall Objective Functions

To make the generated images indistinguishable from real images, we adopt the ad-

versarial loss proposed by WGAN-GP [25]. The average adversarial loss of this work

is defined as:

Lavd =
1

3

3∑
i=1

{
EXo∼P [Di (G)]− EXo∼P [Di (Xo)] + λgpEX̃∼P̃

(
‖ ∇X̃Di

(
X̃
)
‖2 −1

)2 }
,

(1)

where G = G (Xo|yg), P is the data distribution of input image X0, X̃ represents

the random interpolated image by input image X0 and its generated face Xyg , P̃
stands for the uniform interpolation distribution and λgp is a penalty coefficient.

Besides the adversarial loss, the generator and the discriminators also have to

reduce the errors produced by the age and gender classifiers imposed on top of Di.

By this way, the model can not only generate photo-realistic images but also force

the synthesized images to have desired aging effect and gender. During the training,

the condition losses can be decomposed into two parts. On one hand, the condition

losses associated with fake images are deployed to optimize the generator G. On the

other hand, the condition losses for true images are used to improve the discriminator

Di. The whole condition losses can be written as:

Lage =
1

3

3∑
i=1

{
EXo∼P

[
‖ Di(G)− yg(Cage) ‖2

2

]
+ EXo∼P

[
‖ Di(Xo)− yo(Cage) ‖2

2

] }
, (2)

Lgd =
1

3

3∑
i=1

{
EXo∼P

[
‖ Di(G)− yg(Cgd) ‖2

2

]
+ EXo∼P

[
‖ Di(Xo)− yo(Cgd) ‖2

2

] }
, (3)

where G = G (Xo|yg), yg(Cage), yg(Cgd) are target age group and gender label, while

yo(Cage), yo(Cgd) are original age group and gender label, respectively,.

In addition, a cycle-consistent loss [79] and a pixel loss are utilized by the generator

to preserve the identity-level and image-level consistency. We adopt the l1 norm,

which helps to capture features associated with low-frequencies. The cycle-consistent

loss and pixel loss are formulated as:

Lcyc = EXo∼P [‖ G(G(Xo|yg)|yo)−Xo ‖1] , (4)

13



Lpix = EXo∼P [‖ G(Xo|yg)−Xo ‖1] , (5)

Finally, we can organize the loss functions for G and D as:

LD =Ladv + λageLage + λgdLgd
LG =Ladv + λageLage + λgdLgd + λcycLcyc + λpixLpix,

(6)

where λage, λgd, λcyc and λpix are hyper-parameters that control the relative impor-

tance of conditional loss, cycle-consistent loss and pixel loss.

2.4 EXPERIMENTS

2.4.1 Dataset

We train and validate our model on four popular aging databases. MORPH [55] is a

well-known benchmark for age estimation and face aging, which contains 55,000 color

images of more than 13,000 individuals. The ages of the subjects range from 16 to

77 years old. Similar to [62], we at first consider ages from 16 to 50 and divide the

data set (51,700 images) into 7 age groups with an age span of 5, i.e., 16-20, 21-25,

26-30, 31-35, 36-40, 41-45 and 46-50. We randomly choose 4/5 subjects for training

and the remaining unseen subjects for test. Following that, 41,396 and 10,304 images

are collected for training and testing, respectively.

CACD [6] contains 163,446 face images of 2,000 celebrities with age ranging from

14 to 62. CACD is a challenging dataset for face aging as CACD contains a large

number of images with large variants in head pose, expression, illumination and oc-

clusion. Moreover, CACD is collected via the Google Image Search, making the age

labelling error-prone. To reduce age label errors, we compare the existing age labels

of images in CACD with predictive age labels from [18] and screen out images with

an age gap bigger than 20 years. We divide CACD dataset into 7 age groups from 16

to 50 with an age span of 5. We randomly select 1/10 images for model test and the

rest for training.

To compare our model with the baselines PAG-GAN, GLCA-GAN and Wavelet-

GAN, we also divide MORPH and CACD dataset into 4 age groups as 30-, 31-40,
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41-50 and 50+. CACD dataset does not provide the gender label, we leverage Face++

to generate gender label for the dataset.

UTKFace [75] is another large-scale face database containing over 20,000 face

images in the wild. Considering the change of hair colour usually occurs from 50 to

60 years old, we divide both Morph and UTKFace into to 6 age groups as 11-20, 21-

30, 31-40, 41-50, 51-60 and 61+ to show an obvious effect of aging hair. FG-NET [33]

contains 1,002 face images of 82 subjects. We leverage it as the testing set to evaluate

the generalization of our model trained on UTKFace.

Finally, all images are aligned, cropped and resized to the size of 128×128 by

MTCNN [74].

2.4.2 Implementation Details

We utilize Adam [31] for model optimization with the following hyper-parameters:

learning rate = 0.0001, beta1=0.5, beta2=0.999, and batch size=25. The generator

is optimized once after five times optimization of the discriminator. On MORPH, we

train the model for 150 epochs and linearly decay the learning rate to zero over the

last 50 epochs. On CACD, our model is trained for 70 epochs and the learning rate

decays for the last 20 epochs. The weight coefficients for the loss functions are set to

λgp = 10, λage = 10, λgd = 5 and λcyc = 10 for all experiments. The parameter of λpix

is set to be 0.05, 0.01 and 0.02 for experiments on 7 age groups of MORPH, 4 age

groups of MORPH and all experiments on CACD, respectively. Our model is trained

for 22h on MORPH and 28h on CACD, respectively, with a single Tesla V100 GPU.

2.4.3 Qualitative Results of Face Aging

Fig. 4 display samples of age transformation on MORPH and CACD dataset with

an age span of 5 years. We can observe that the proposed model is competent for

a smoothing change of aging effects, synthesizing faces in different age groups with

high visual fidelity. Besides, our approach is robust to variations of gender, skin color,

head pose and expression.

We also divide both Morph and CACD into 4 age groups (i.e.30-, 31-40, 41-50

and 51+) as a tradition. We can observe a consistent change of aging hair, headline,

eye bags, mouth and laugh lines as age increased in Fig. 5 and Fig. 7.
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Figure 4: Sample results of face aging on MORPH (the first three rows) and CACD
(the last three rows). The first column represents the input faces for testing, followed
by the synthesized images in age group 16-20, 21-25, 26-30,31-35, 36-40, 41-45 and
46-50.

Considering the change of hair colour usually happens after 50 years old and the

limited samples in aged group (61+) of CACD, we divide Morph and UTKFace into

6 age groups as 11-20, 21-30, 31-40, 41-50, 51-60 and 61+ to display the synthesis

of aging hair. As shown in Fig. 1, we can perceive an obvious change of hair/beard

colour and texture besides adding of wrinkle on faces of Morph and UTKFace/FG-Net

after entering the age groups of 51-60 and 61+.

Performance comparison with previous models is shown in Fig. 6. To compare

with IPCGAN, Ranking GAN and DAAE, we train our models on both MORPH

and CACD with an age span of 5. To compare with PAG-GAN, Wavelet-GAN and

Triple-GAN, we divide both MORPH and CACD databases into 4 age groups i.e.,
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Figure 5: Sampled results of face aging (a) on MORPH and (b) on CACD. The first
column contains the input faces, followed by the synthesized images in age group 30-,
31-40, 41-50 and 51+.

30-, 31-40, 41-50 and 51+, and train our model on these two databases separately.

As the code of most previous models is unavailable, we leverage the generated images

from [38, 44, 62, 71] for comparison.

As shown in Fig. 6, IPCGAN has difficulty in predicting valid face in the old age

group 45-50, by generating blurring face and misplacing moustache to a female face.

Ranking GAN shows capability in both generating detailed aging effects and identity

preserving. However, the outcomes of Ranking GAN seem to be blurring.

PAG-GAN, Wavelet-GAN and Triple-GAN can synthesize vivid aging effects and

preserve the identity to some extent. However, PAG-GAN and Triple-GAN fail to

maintain the illumination, leading to a distinguishable change in skin color and back-

ground pixel between inputs and the outcomes. Wavelet-GAN shows superiority in

keeping the pixel of background and maintaining the illumination, but has difficulty

in preserving some subtle facial attributes such as the pimple on the right cheek of

the first sample and the right eye of the second sample. Moreover, Wavelet-GAN gen-

erates extra hair behind the neck for the third sample. Compared with PAG-GAN,

Triple-GAN and Wavelet-GAN, our method shows obvious supremacy in identity
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Figure 6: Fourteen sample results compared with IPCGAN [68], Ranking GAN [62],
Wavelet-GAN [44], PAG-GAN [71], DAAE [38] and Triple-GAN [19]. From top to
bottom are inputs, images generated by previous works and by our model (zoom in
for a better view).

Figure 7: Illustration of aging consistency (zoom in for a better view). (1) Aging
hair; (2) headline; (3) eyes; (4) moustache and beard; (5) laugh lines.

preserving.

Although DAAE is designed for continuous face aging competent for dataset with

a long-tail distribution, it failed to preserve some background information and syn-

thesize vivid facial features. For instance, DAAE failed to preserve the hair texture

for the first sample. In the second example, DAAE failed to keep the letters in the

background and transformed the blue collar to a while one. At last, the outcomes of

DAAE are a little blurring compared to ours.

2.4.4 Aging Accuracy

In this section, we compare the performance of our model with the state of the arts on

both MORPH and CACD databases in terms of aging accuracy, which is measured

as the mean age difference between training data and the synthetic images. Age

estimation was performed by [18] for all synthesized images and all original images
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utilized for model training. The age estimation results on MORPH and CACD with

an age span of 5 or 10 are shown in Table 3 - Table 5.

On seven age groups of MORPH with an age span of 5, our model outperforms

Ranking GAN in 5/7 groups in terms of mean age difference (Table 3). Moreover,

Ranking GAN obtains mean age gaps more than 1.0 in three age groups, while our

model only has one bigger mean age gap (1.27) in age group 16-20. Compared with

our method and Ranking GAN, IPCGAN has a poor performance in most of the age

groups in terms of mean age gap (with three age groups more than 2.0 and two age

groups more than 1.0).

Table 3: Age estimation and identity verification results on MORPH with an age
span of 5, compared with IPCGAN and Ranking GAN (differences of mean ages are
measured in absolute value.)
Age group 16-20 21-25 26-30 31-35 36-40 41-45 46-50

Estimated Age Distributions
Original 23.54 27.56 31.56 36.61 41.28 46.01 51.44
Synthetic 24.81± 6.08 28.40± 6.58 31.42± 6.48 36.40± 7.08 41.01± 7.09 46.07± 6.84 51.35± 7.05

Difference of Mean Ages
IPCGAN 0.31 0.94 1.79 2.10 2.54 1.11 2.14
Ranking GAN 0.19 0.87 0.75 1.19 0.23 1.67 1.78
Ours 1.27 0.84 0.14 0.21 0.26 0.06 0.09

Identity verification Confidence
IPCGAN 94.29± 1.57 95.12± 1.08 95.41± 0.84 95.61± 0.59 95.46± 0.66 94.86± 1.22 93.88± 2.01
Ranking GAN 95.58± 1.04 95.97± 0.68 96.00± 0.60 96.08± 0.51 95.95± 0.62 95.75± 0.81 94.93± 1.14
Ours 95.98± 0.83 96.20±0.60 96.15± 0.55 96.21± 0.49 96.05± 0.59 95.82± 0.77 95.29± 0.96

Table 4: Age estimation and Face verification results on CACD with an age span of
5
Age group 16-20 21-25 26-30 31-35 36-40 41-45 46-50
Original age 26.34 28.14 31.48 35.58 40.04 44.89 49.90
Synthetic 24.93± 5.18 26.94± 5.51 30.79± 6.34 35.70± 7.29 40.93± 7.50 44.54± 7.09 49.53± 6.48
Identity Confidence 91.91± 2.82 93.23± 2.18 93.51± 1.98 93.35± 2.26 93.29± 2.33 93.18± 2.36 93.32± 2.28

We validate the performance of our model on the in-the-wild database CACD.

The results (Table 4) show that our model can accurately predict face aging effects

on age groups of CACD with an age span of 5. Our approach achieves a mean age

gap smaller than 1.0 in 5/7 age groups and a mean age gap no more than 2.0 in the

other two age groups.

To verify the superiority of our model on age groups with large age span, we

compare our model to the state-of-the-art models GLCA-GAN, PAG-GAN, Wavelet-

GAN and DAAE on both MORPH and CACD from age group 30- to 51+. Table 5

shows that our model consistently outperforms the state-of-the-arts in all three age
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groups of MORPH. On CACD dataset, our model achieves the lowest age gap in age

group 31-40 and 41-50 while seeing a performance drop in the eldest age group that

may be caused by the age labelling error. DAAE achieves the same aging accuracy

as our model in age group 31-40, but inferior results in two other groups.

All experiments above prove the superiority of our model in terms of aging accu-

racy on both MORPH and CACD.

2.4.5 Identity Preservation Evaluation

Besides aging accuracy, identity verification confidence is another important indicator

to evaluate the performance of face aging models. Face verification experiments have

been conducted through [18] to evaluate the identity preserving effect of our models

on both MORPH and CACD. Like previous works, we compare each image in the

test set of MORPH/CACD with the synthetic images of the same person in different

age groups.

As shown in Table 3, our model achieves an average verification confidence ranged

from 95.29% to 96.21% on MORPH (7 age groups) and consistently outperforms

Ranking GAN in identity preserving.

Table 5: Age estimation and identity verification results on MORPH and CACD
(differences of mean ages are measured in absolute value)

MORPH CACD
Age group 30- 31-40 41-50 51+ 30- 31-40 41-50 51+

Estimated Age Distributions
Original 27.08 38.94 48.21 58.32 29.23 38.01 47.27 55.98
Synthetic 27.86± 7.01 38.88± 7.10 48.24± 7.08 58.33± 7.50 27.57± 5.85 38.14± 7.34 47.49± 6.60 57.66± 7.19

Difference of Mean Ages
GLCA-GAN — 0.23 3.61 8.61 — 1.72 2.07 2.85
PAG-GAN — 0.38 0.52 1.48 — 0.70 0.22 0.57
Wavelet-GAN — 0.13 0.19 0.68 — 0.37 0.58 0.66
DAAE — 1.43 1.30 1.45 — 0.13 0.68 2.02
Ours 0.74 0.06 0.03 0.01 1.62 0.13 0.22 1.68

Identity Verification Confidence
PAG-GAN - 94.64± 0.03 91.46± 0.08 85.87± 0.25 - 94.13± 0.04 91.96± 0.12 88.60± 0.15
Wavelet-GAN - 95.77 94.64 87.53 - 93.67 91.54 90.32
Ours 96.47± 0.86 96.50± 0.45 95.98± 0.75 94.37± 1.36 94.60± 1.73 94.58± 1.81 94.41± 1.87 93.99± 1.96

Identity Verification Rate(%)
GLCA-GAN - 97.66 96.67 91.85 - 97.72 94.18 92.29
PAG-GAN - 100.00 98.91 93.09 - 99.99 99.81 98.28
Wavelet-GAN - 100.00 100.00 98.26 - 99.76 98.74 98.44
DAAE - 99.48 99.36 99.36 - 99.24 99.19 99.19
Ours 100.00 100.00 100.00 100.00 99.98 99.96 99.97 99.96

Compared with PAG-GAN and Wavelet-GAN on both MORPH and CACD, our

model exceeds the state-of-the-arts with a large gap in identity verification confidence,

especially in the two eldest age groups. As shown in Table 5, our model achieves an

identity verification confidence ranging from 94.37% to 96.50% on MORPH, reaping a
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rise ranging from 0.73% to 6.84% in identity verification confidence compared to PAG-

GAN and a rise ranging from 1.86% to 8.6% compared to Wavelet-GAN. Likewise,

our model exceeds PAG-GAN on CACD with a gap ranging from 0.45% to 5.39%,

while exceeds Wavelet-GAN with a gap ranging from 0.91% to 3.67%. Results of

face verification experiments show the superiority of our model in identity preserving

compared to Ranking GAN, PAG-GAN and Wavelet-GAN. Table 5 also shows that

our model consistently outperforms DAAE in terms of identity verification rate on

both MORPH and CACD.

2.4.6 Ablation Study

In this section, we perform an ablation study to inspect the role of different compo-

nents of our model for face aging and identity preserving. We evaluate the perfor-

mance of models including/excluding multi-level generator, multi-level discriminators

and gender condition. In this work, model without multi-level generator and without

multi-level discriminators refer to model with only one pathway in the generator and

model with one level discriminator, respectively. We only perform ablation study on

seven age groups of MORPH with an age span of 5 because of the noisy labels of

CACD.

As shown in Fig. 8, compared with the proposed model, the model without multi-

generator fails to preserve some subtle facial attributes such as the scar on the second

sample. We can also observe a slight skin color change between test face and generated

images for the first sample. Compared with other models, the model without gender

information synthesizes much younger faces in age group 46-50, as fewer wrinkles are

observed in the generated images.

Quantitative comparison is shown in Table 6. Compared to the proposed model,

variants without multi-level discriminator or gender condition have a performance

drop on face aging accuracy, as there are big discrepancies between the mean age of

synthetic images and original images in several age groups. This means multi-level

discriminators and the assistance of gender attribute are necessary for guaranteeing

the accuracy of face aging. Although model without multi-level generator has no

obvious performance drop in face aging accuracy on MORPH database, the identity

preserving confidence turns out to be the lowest compared to other models. It means
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Figure 8: Ablation study results on MORPH. The first column contains test faces.
From the second column to the most right are outcomes in age group 46-50 generated
by the model without multi-level generator(No Multi-G), model without discrimi-
nator(No Multi-D), model without gender condition(No Gender) and the proposed
model.

Table 6: Comparison of face aging accuracy and identity verification confidence on
MORPH between variants of the proposed model (differences of mean ages are mea-
sured in absolute value).

Age group 16-20 21-25 26-30 31-35 36-40 41-45 46-50
Deviation of Estimated Ages

woMG 0.16 0.45 0.91 0.06 0.53 0.49 1.61
woMD 2.10 1.55 0.15 0.25 0.97 0.58 2.19
woGender 2.33 1.39 0.03 5.25 1.52 4.01 0.38
Proposed 1.27 0.84 0.14 0.21 0.26 0.06 0.09

Identity Verification Confidence
woMG 95.33 95.43 95.35 95.32 95.04 94.88 94.29
woMD 96.26 96.43 96.47 96.50 96.41 96.15 95.95
woGender 96.89 96.82 96.86 96.89 96.84 96.89 96.89
Proposed 95.98 96.20 96.15 96.21 96.05 95.82 95.29

Note: woMG represents model without multi-level generator; woMD: without
multi-level discriminators.
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Table 7: Comparison of time costing for model training per epoch and inference
among variants of the proposed model (150 epochs on MORPH).
Model woMG woMD woGender Proposed Proposed+IP
Training Time (min/epoch) 7 6 8 9 31
Inference Speed (frames/sec) 34.28 11.47 11.77 11.47 11.47

that cycle-consistent loss alone is not enough to maintain the identity, while multi-

level generator is another key component for identity preserving. The effectiveness of

the multi-level generator in identity preserving may caused by the multi-level features

in different frequency bands extracted by the multi-level encoders in the generator G.

The model without multi-level discriminators achieves the lowest face aging accu-

racy, proving the importance of multi-level discriminators in face aging.

Compared to the proposed model, the model without gender condition has a

better effect in identity preserving but bad face aging accuracy, which means that to

preserve identity effects, some identity related features have been merged into aging

attributes. Considering the contribution of gender label in face aging accuracy, we

choose the model with gender attribute as the final model.

Finally, we compare the time for model training among variants of the proposed

model. We also train a proposed model combined with an identity preserving mod-

ule [50], similar to PAG-GAN and Wavelet-GAN. The identity preserving module is

called once when the generator is trained. The training time for each epoch is shown

in Table 7. The proposed model costs 9 minutes for each epoch of training and about

22.5h for the whole process of training. Although model without multi-level discrim-

inators (woMD) and model without multi-level generator (woMG) achieve a shorter

training time (6 and 7 minutes per epoch, respectively) than the proposed model due

to partial lack of multi-level features extraction, the difference is slight. However,

adding a pre-trained deep neural network for identity preserving will increase the

time for training significantly by 3.4 times. Due to the application of multi-level en-

coders, the proposed model achieves a lower inference speed (11.47 frames/sec) than

the variant without multi-level generator. But this sacrifice is worth considering the

performance improvement in face aging and identity preserving effect.
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Figure 9: A sample of continuous face aging on MORPH. The first column contains
the test faces. The second and seventh columns are synthetic images corresponding
to discrete age groups. Other columns are interpolated results. The numbers above
all synthetic images are the mean age corresponding to the target age.

2.4.7 Continuous Face Aging

Motivated by [72], we evaluate the performance of our model qualitatively and quan-

titatively for continuous face aging on MORPH. As the aging datasets are divided

into 7 age groups with an age span of 5, we bridge the gap between two adja-

cent age groups with a linear formula: Cα = Cagem + α × (Cagem+1 − Cagem) with

α = {0, 0.35, 0.45, 0.55, 0.7} and m is the index for the age groups. To save the time

for testing, we randomly test 2,000 images for each interpolated age condition.

As shown in Fig. 9, the left most column is the test face. The second and seventh

columns are images corresponding to discrete age groups with the age group label and

the mean age on the top, while other columns are interpolated outcomes. Above each

interpolated image is the mean age of the generated faces belonging to the target age

condition. The age labels are estimated by Face++ API. We can find that between

the discrete age groups, our model can generate images with a smooth increase of

age, which shows superiority of model even on continuous face aging.

2.4.8 Gender Translation Combined with Aging

Combining gender information with age group label as the final condition can help the

model to distinguish aging attributes from gender features. In addition, integrating

gender information into target condition enables our model to perform aging and

24



Figure 10: Gender conversion combined with face aging (a)on MORPH and (b) on
CACD. The first column is the test face. The remaining four columns are generated
images in age group 21-25 and 31-35 with the same or opposite gender of the test
face.

gender transformation simultaneously. As shown in Fig. 10, gender attributes are

well separated from face aging and transformed correctly according to the gender

label.

2.4.9 Face aging for high resolution images

Our approach can be easily extended for image with high resolution. For images with

a size of 256 × 256, we just need to increase one down-sampling convolutional layer

(K4, S2, P1) to each of the multi-level discriminators. We train the extensive model

on MORPH, the results are shown in Fig. 11.

2.4.10 Limits of This Work

While our work can generate vivid aging effects for young (30-) and adult age group(31-

40, 41-50) with high identity verification rate, there are many failure cases in age group

51+ of CACD to produce natural aging hair (as shown in Figure 12(left)). This may

be caused by the limited aged examples with obvious aging hair in the age group 51+

of CACD. Moreover, the diversity of hair colors (black, blond, brown and gray) in

the young and adult age groups of CACD makes the simulating of aging hair harder

for age group 51+. Our model also shows slight change of aging effects when the
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Figure 11: Sampled results of face aging on MORPH with a resolution of 256. The
first column contains the input faces, followed by synthesized images in age group
16-20, 26-30, 36-40 and 46-50.

Figure 12: Failure cases. (1)The left columns show the failure of generating aging hair
for age group 51+ on CACD. (2) Right columns show subtle change of aging effects
when predicting age group same as the original age group. The first row contains the
input faces, followed by synthesized images in the second row.
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target age group is same as the source age group. As shown in Figure 12(right), the

first two examples display much denser white beard on synthetic faces belonging to

age group 51+ than the test faces which are also in age group 51+. While the third

example shows that the generated young face on age group 30- has denser black hair

than the test face with an age of 26.

In the next stage, we will consider of adopting relative condition of age group

and a self reconstruction loss to guarantee that the model can take into account the

original age of the inputs and synthesize the same images as inputs when the target

age group is same as the original age group. To prevent the negligence of aging hair

synthesis for the aged group caused by the unbalanced distribution of gray hair in the

current database, we will add hair colour information (black, blond, brown and gray)

generated by a classifier learned from CelebA [45]. Likewise, We can add more other

attributes such as baldness and beard information to the generative model. During

inference for aged faces, the intensity of aging hair can be manipulated by setting an

interpolate coefficient between original hair color condition and gray hair condition.

2.5 Conclusion

In this work, we consider the process of face aging as a multi-domain image-to-image

translation and propose wavelet-based multi-level Generative Adversarial Networks

for both age progression and regression. The wavelet packet transform based im-

age decomposition into multi-level coefficients in the frequency space is integrated

into the multi-level features extraction of both the multi-level generator and three

discriminators.

Extensive experiments show that the wavelet-based multi-level generator can ef-

fectively preserve the identity of input images. Combined with the wavelet-based

multi-level discriminators, our model outperforms the state-of-the-art models in all

or most of the age groups in aging accuracy and identity preserving effects on both

MORPH and CACD. Moreover, our approach reduces the time for training signif-

icantly by getting rid of an identity preserving module. Finally, with interpolated

condition between discrete age groups, our model can perform continuous face aging.
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Chapter 3

WP2-GAN: Wavelet-based

Multi-level GAN for Progressive

Facial Expression Translation with

Parallel Generators [59]

3.1 Introduction

Recently, expression synthesis has attracted much attention from the community of

computer vision because of its wide applications to photography technologies, human-

computer-interaction and animation movies. However, facial expression manipulation

is challenging owing to the non-linear facial geometric variation caused by different

expressions.

Although difficult it is, expression translation has achieved great progress due to

the rapid development of deep neural networks. Especially, the advent and devel-

opment of Generative Adversarial Networks (GANs) [2, 24, 28, 54, 78] have opened

a new door to the face manipulating technologies [7, 10, 44, 52, 71]. The advent of

Condition GAN (cGAN) [46] and Cycle-GAN [79] made the attributes editing on the

same subject possible without paired images belonging to the same subject. Many

recent models [7, 52, 62] applied the principle of cGAN and Cycle-GAN for facial

expression translation. Specifically, one generator is called twice to perform expres-

sion translation and reconstruction by conditioning on different expression domain
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(i.e. expression label or Action Units (AUs) code [20]). However, this manner will

force the generator to leave an unseen ”noise” to the generated image for a conve-

nient reconstruction in the second step. Based on the facial attributes editing task

performed by StarGAN [7], Sanchez et al. [56] found that the second translation of

the generator based on the outcome of the first translation will produce results almost

the same as the input images no matter what conditions were adopted. The footprint

left in the outcomes hampered the reuse of these images for further task. We infer the

interference may be caused by the tight linkage between the forward prediction and

backward reconstruction by using the same generator, resulting in a defective gener-

ator leaving a footprint in the outcome. To eliminate the unwanted interference, we

propose a parallel training system consisting of two generators with equal importance.

The generators are trained simultaneously for the same forward prediction but then

act as the reconstruction model for each other. Our method can break the unwanted

link between the first and second translation (as shown in Figure 14).

An intuitive application of our unbound generators is to equip them for progres-

sive training. Previous end-to-end models for expression editing usually generate

artifacts or blurs around the expression-rich areas such as the forehead, eyes and

mouth. Inspired by the successful application of progressive training in geometric

conversion [41, 70], we propose a novel progressive training framework based on our

parallel training scheme.

Besides efficient geometric translation, identity preserving with fine-grained facial

features is another important task of facial expression editing. Recent research [44]

showed that multi-level discriminators integrated with wavelet-based information de-

composition can help to extract features related to identity and age for face aging.

Considering facial expression translation also involves identity preserving and the syn-

thesis of local expression-related features such as forehead wrinkles and smiling lines,

it is intuitive to apply the wavelet-based multi-level discriminators to facial expression

translation.

In this work, we propose a novel WP2-GAN for continuous expression translation.

The model consists of two parallel generators and a set of wavelet-based multi-level

discriminators. All the modules are trained and updated progressively hence we can

effectively reduce the computing resource for model training. We adopt an attention

mechanism like [52] to each of the generators so that two generators can mainly
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focus on the active areas for expression conversion. To maintain the background

information of the input image after several progressive translations, we take the

original image as the source to calculate the background information of the generated

image. Wavelet-based multi-level discriminators are employed to extract expression-

related features at multiple scales from the given images, enforcing the generators to

synthesize photo-realistic images with vivid expressions.

Our main contribution is to introduce two parallel generators to the facial expres-

sion translation task and to eliminate the interference existed in previous methods

that is caused by using one single generator for both forward and backward transla-

tion. Additionally, we design a novel progressive training strategy based on the paral-

lel generators, combined with wavelet-based multi-level discriminators to improve the

quality of expression translation. Extensive experiments illustrate the effectiveness of

our method for expression translation with a large gap.

3.2 RELATED WORKS

3.2.1 GAN

Generative Adversarial Networks (GANs) [24] were first proposed to generate images

based on minimax game theory, then were improved by many other works [2, 25, 28].

Later, Mirza and Osindero [46] proposed a conditional GAN (cGAN) that embeds

prior information into image generation. Cycle-GAN [79] was proposed to perform

image-to-image translation without paired images through a cycle-consistent loss.

Soon after, models combined with cGAN and Cycle-GAN were widely applied to

cross-domain translation [7, 52, 62, 73]. Most of these works only adopt one generator

for target features translation and then the reconstruction of the input image. Sanchez

et al. [56] mentioned that using one generator for both prediction and reconstruction

would leave a ”noise” to the outcome, therefore hindering the further application of

the generated images. The authors proposed a recurrent cycle-consistency loss to

replace the original loss. However, their approach needs paired images with the same

identity, thus loses the advantage of Cycle-GAN for unpaired images translation. In

this work, we propose to use two parallel generators to conduct the forward transla-

tion but served as the reconstruction model for each other. Empirical experiments

show that our method can overcome the drawback of previous methods (shown in
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Figure 14).

3.2.2 Facial Expression Translation

Current methods for facial expression translation can be generally categorized into

two classes. The first class resorts to a 3D model for expression editing. Blanz

and Vetter [4] proposed the first 3D Morphable model for 3D face reconstruction.

Vlasic et al. [65] presented a multilinear model of 3D face meshes for expression

translation. Cao et al. [5] introduced a method for facial image animation based on the

3D face mesh. Geng et al. [23] proposed a 3D-guided generative model for continuous

expressions editing. paGAN [47] can perform fine-grained expression translation by

conditioning on multiple conditions such as the desired blendshape expression and

viewpoint generated by a 3D fitting model. Facial expression translation methods

using a 3D model usually require efforts for complex parametric fitting, thus are

computing resource demanding.

The second category of methods for facial expression synthesis leverages deep gen-

erative models. Many previous works [22, 53, 61] performed discrete or continuous

facial expression by conditioning on facial landmarks. ExprGAN [10] can control

the intensity of expression by conditioning on an embedding generated from expres-

sion labels. LEED [69] realized label-free expression translation by disentangling the

expression-related features from identity. But a pre-trained GAN for neutral expres-

sion synthesis is still needed to extract the identity related features. StarGAN [7]

achieved multi-task translation among different domains with one model. But this

model can only generate limited and discrete emotion expressions. Pumarola et al. [52]

proposed GANimation with an attention mechanism to predict continuous expression

translation by conditioning on AUs [20]. However, this model still generates some ar-

tifacts for expression translations with a large gap. Many other works [49, 62] leverage

multi-level discriminators to extract expression-related features during model train-

ing.

Different from [22, 53, 61], our approach can perform continuous expression editing

by conditioning on AUs code which can be extracted by Openface [3] conveniently.

Unlike [7, 49, 51, 62], which only utilize one generator for both forward prediction and

reconstruction, our method adopts two parallel generators to alleviate the interference

mentioned by [56]. Besides using multi-level discriminators like [62], we integrated the
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wavelet-based image decomposition at multiple scales in frequency space to promote

the expression-related features extraction in discriminators.

The most recent work that also adopted a progressive training strategy for expres-

sion editing is Cascade EF-GAN [70]. Different from Cascade EF-GAN that adopts

three local sub-networks to synthesize three local patches (i.e. eyes, nose and mouth)

and one global network to predict a whole face, our approach leverages wavelet-based

multi-level discriminators to extract multi-level facial features automatically without

physical concatenation. Furthermore, we design a new progressive training method

based on two parallel generators, that can be updated gradually instead of stacking

all well-trained modules and optimizing them at one time. Hence our strategy can

simplify model training and reduce the computing memory needed.

3.3 PROPOSED METHOD

3.3.1 Problem Formulation

Let X and Y represent the source facial image and expression domains, respectively.

Given an original face xo ∈ X with an expression yo ∈ Y and a different target

expression yg ∈ Y , our goal is to learn a transformation that can generate the facial

image xg ∈ X with the same identity as xo but with the desired expression yg.

As we mainly consider the problem of continuous expression translation, the con-

tinuous Action Units (AUs) intensity [20] is adopted as AUs code, which can be

extracted by OpenFace [3]. Given the AUs code of a target expression, we can obtain

the intermediate condition for progressive training according to the interpolation for-

mula: yt = yo+α∗ (yg−yo), where α ∈ {0.3, 0.6, 1.0}, is a hyper-parameter to control

the intensity of each step of progressive training. An overview of our architecture is

given in Figure 13.

3.3.2 Parallel and Progressive Training Mechanism

Motivated by the discovery in [56], we design a parallel training mechanism for the

AUs code conditioned expression translation. During the training process, two gener-

ator GA and GB both take as input the original image xo and the target condition yg

to synthesize the image xA and xB, respectively. Then, the generator GB (GA) takes
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Figure 13: An overview of the WP2-GAN framework. The workflow of the progres-
sive training is shown on the top, while the details of each step are shown in the
zoom-in area. As two generators perform a similar forward translation and work as
reconstruction model for each other, we only show one stream of the translations. In
each progressive step, one generator GA takes as input the image xin and the tar-
get expression yt to synthesize the image xt. Then the other generator GB works
as a reconstruction model to restore the input image xin. A cycle-consistent loss is
calculated by comparing xin with x̄in to preserve the identity of the input image. A
similarity loss imposed on the outcomes of two forward translations is adopted to force
two generators proceed in the same direction. Wavelet-based multi-level discrimina-
tors(WMD) take as input different levels of wavelet coefficients generated from the
synthetic image xt or the original image xo and evaluate the realism of given images
as well as the AUs code translation accuracy.

as input xA (xB) and the original expression yo to reconstruct the original image. As

each generator leverages the outcome of another generator to reconstruct the input

image, it removes the potential ”short-cut” in the model to memorize the input image

for the second translation. Our generators are auto-encoder based networks adopted

from [52]. The structure of the generator is shown in Table 8. It is worth noting

that there are InstanceNorm and ReLU layers between the convolutional layers in the

generator. A Tanh layer is posed on the outcome of ConVO1 to generate the color

map, while a Sigmoid layer is leveraged to produce mask map from the outcome of

ConVO2.

Inspired by the impressive success of progressive training methods [41, 70] in
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Table 8: Neural network architecture of generator (GA/GB) (’K’,’S’ and ’P’ denote
’Kernel size’,’stride’ and ’padding’ of convolutional layers).

Layer Output Size Details
Input ConvI 128× 128× 64 K7, S1, P3

Down-sampling
ConVD1 64× 64× 128 K4, S2, P1
ConVD2 32× 32× 256 K4, S2, P1
ConVD3 16× 16× 512 K4, S2, P1

Residual Blocks

ConvR1-1 16× 16× 512 K3, S1, P1
ConvR1-2 16× 16× 512 K3, S1, P1
... ... ...
ConvR6-1 16× 16× 512 K3, S1, P1
ConvR6-2 16× 16× 512 K3, S1, P1

Up-sampling
ConvU1 32× 32× 256 K4, S2, P1
ConvU2 64× 64× 128 K4, S2, P1
ConvU3 128× 128× 64 K4, S2, P1

Output
ConVO1 128× 128× 3 K7, S1, P3
ConVO2 128× 128× 1 K7, S1, P3

geometric conversion, we design a novel progressive learning strategy for our task

based on the parallel training mechanism. As shown in Figure 13, we decompose

the previous end-to-end translation into three progressive steps. Especially, in each

progressive training step, the forward generator GA takes as input the interpolated

condition yt and the image xin, which can be the original image xo or an intermediate

result of last step of translation. The condition yin corresponding to image xin can

be the original expression yo or an interpolated condition.

Different from [70], our progressive training is based on two parallel generators

instead of one single generator. Thus we can avoid the accumulation of interference as

mentioned before. Besides, our approach does not stack multiple pre-trained genera-

tors together and update all networks at final step but trains and updates the neural

networks by each progressive step, thus reducing the computing memories needed.

The work with the most similar idea to ours is [41]. But it is designed for unsuper-

vised image-to-image translation instead of semi-supervised facial attributes editing.

The intermediate results of progressive translation are shown in Figure 15.

Similar to [52, 70], a visual attention mechanism is applied to the generators, en-

forcing the network to only focus on the active facial area rather than the periphery.

To overcome the gradual loss of background information during progressive transla-

tion, we leverage the original input to compute the background information of the

synthetic image in each progressive step. The image can be calculated by:

xt = MA ⊗ xo + (1−MA)⊗MC , (7)
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Figure 14: Comparison between Star-
GAN and modified StarGAN with paral-
lel generators for expression translation.
Each triplet contains the input face in the
first column followed by outcome of the
first translation (angry face) in the mid-
dle and then the result of second trans-
lation (disgusted face) based on the first
outcome.

Figure 15: Display of progressive trans-
lation results by our WP2-GAN. The
first column contains the input faces
followed by two intermediate results
and then the final outcomes. The last
column shows images with target ex-
pressions. The progressive model pro-
vides a gradual transformation between
expressions with a large gap.

where MA and MC denote the attention map and color map generated by the gener-

ator from the original or intermediate input. xo represents the original input image

instead of the intermediate input.⊗ indicates the element-wise multiplication. This

strategy enables the progressive model to preserve background and face pixel infor-

mation located in inactive areas.

3.3.3 Wavelet-based Multi-level Discriminators

Recently, wavelet-based multi-level discriminators have been successfully applied to

face aging [44? ]. Wavelet Packet Transform (WPT) can decompose an image into

multi-level wavelet coefficients which contain both texture and geometric informa-

tion [44]. Considering expression translation involves changes in both shapes and

texture, image decomposition at multiple scales by WPT could promote the perfor-

mance of the system.

In this work, we adopt three levels of discriminators which have a gradually de-

creasing number of convolutional layers so that three levels of wavelet coefficients

can be encoded into three matrices with the same size YDi
∈ RH/26×W/26 , where

i = {1, 2, 3}, H and W are the height and width of the input image. Each element

of YDi represents the probability of the corresponding patch to be real. We do not

concatenate the outcomes of three critics as one tensor as [44] did. Empirical studies

show that separate discriminators do not cost much time than combined ones but can
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stabilize the training process. As we adopt WGAN-GP [25] for stabilized adversarial

training, a penalty loss is added to the gradient norm of each critic.

Besides photo-realism, three discriminators are also responsible for estimating the

AUs code. To reduce the number of parameters, we add one regression layer for AUs

regression, on the last second layer of each discriminator.

Table 9: Neural network architecture of multi-level discriminators (’K’,’S’ and ’P’
denote ’Kernel size’, ’stride’ and ’padding’ of convolutional layers).

Layer Output Size Details
D1 D2 D3

Input ConvI 64× 64× 64 32× 32× 64 16× 16× 128 K4, S2, P1

Down-sampling

ConVD1 32× 32× 128 16× 16× 128 8× 8× 128 K4, S2, P1
ConVD2 16× 16× 256 8× 8× 256 4× 4× 256 K4, S2, P1
ConVD3 8× 8× 512 4× 4× 512 2× 2× 512 K4, S2, P1
ConVD4 4× 4× 1024 2× 2× 1024 — K4, S2, P1
ConVD5 2× 2× 2048 — — K4, S2, P1

Output
ConvO-Adv 2× 2× 1 2× 2× 1 2× 2× 1 K3, S1, P1
ConvO-Aus 1× 1× 17 1× 1× 17 1× 1× 17 K2, S1, P0

The structure of three discriminators are shown in Table 9. It is worth noting

that there are InstanceNorm and LeakyReLU layers between the convolutional layers

in the discriminators.

3.3.4 Loss Functions

To make the generated images indistinguishable from real images, we adopt the ad-

versarial loss proposed by WGAN-GP [25] for each step of progressive training, which

is defined as:

Lavd =
1

3

3∑
i=1

{1
2
Exin∼P̄ [Di (GA) +Di (GB)]− Exo∼P [Di (xo)] + λgpEx̃∼P̃ (‖ ∇x̃Di (x̃) ‖2 −1)2

}
,

(8)

where Gm = Gm (xin|yt) ,m ∈ {A,B}. P is the data distribution of original image

x0, x̃ represents the random interpolated image by input image x0 and the generated

face xt, P̃ stands for the uniform interpolation distribution, P̄ indicates the union of

P and P̃, while λgp is a penalty coefficient.

According to [52], the attention mask A is easy to saturate to 1, making G (xin|yt) =

xin. To prevent the saturation, l2-weight penalty is added to the attention mask. A
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Total Variation Regularization is imposed on A to enforce the generated images to

be smooth. The attention loss can be defined as:

LA(G,xin,yt) =
1

2

∑
M∈{MA,MB}

{
Exin∼P̄ [‖M ‖2] + λTV Exin∼P̄

H,W∑
i,j

(Mi+1,j −Mi,j)
2 + (Mi,j+1 −Mi,j)

2

},
(9)

where MA and MB are masks generated by generator GA and GB, respectively.

λTV is the penalty coefficient for mask smoothing.

Besides the adversarial loss and the attention loss, the generator and the discrim-

inator also have to reduce the errors produced by the regression layer imposed on top

of each critic. The whole condition losses can be written as:

Lcond =
1

3

3∑
i=1

{1
2

∑
m∈{A,B}

Exin∼P̄
[
‖ Di(Gm)− yt ‖22

]
+ Exo∼P

[
‖ Di(xo)− yo ‖22

] }
, (10)

where Gm = Gm (xin|yt) ,m ∈ {A,B} and cond is AUs code. yt and yin are target

and input condition (expression).

To ensure two generators GA and GB proceed in the same direction, we impose

a similarity loss to the forward outcomes of two generators. The similarity loss is

formulated as:

Lsim = Exin∼P̄ [‖ GA(xin|yt)−GB(xin|yt) ‖1] , (11)

Minimizing the loss functions above does not guarantee that the generated images

keep the same identity with their input counterparts. A cycle-consistent loss [79] is

utilized by the generators to preserve the identity-level consistency. We adopt the

l1 norm, which helps to capture features associated with low-frequencies. The cycle-

consistent loss is formulated as:

Lcyc =
1

2
Exin∼P̄

[
‖ GB(GA(xin|yt)|yin)− xin ‖1 + ‖ GA(GB(xin|yt)|yin)− xin ‖1

]
,

(12)

The overall loss functions for G and D can be formulated as:

L = Ladv + λcondLcond + λsimLsim + λcycLcyc + λA(LA(G,xin,yt) + LA(G,xt,yin)),

(13)

where λcond, λsim, λcyc and λA are hyper-parameters that control the relative

importance of conditional loss, similarity loss, cycle-consistent loss and attention loss,

respectively.
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3.4 EXPERIMENTS

3.4.1 Dataset

We train and test our model WP2-GAN on two public facial expression databases:

RafD [32] and Compound Facial Expressions of Emotions Dataset (CFEED) [11].

RafD consists of 8,040 images of 73 subjects collected from different angles. We only

adopt frontal images and collect 1,608 images for our experiments. CFEED consists of

5,060 compound expression images of 230 subjects. We randomly select 9/10 images

of each database above for model training and the remaining for model testing.

In our experiments, all images are aligned, cropped and resized to the size of

128×128 by Openface [3]. We also leverage Openface to extract the AUs code for

every image.

3.4.2 Implementation Details

Our approach adopts three steps of progressive training. We utilize Adam [31] for

the model optimization with the following hyper-parameters: learning rate=0.00005,

beta1=0.5, beta2 =0.999 and batch size=25. During progressive training, the gener-

ators and discriminators are optimized at the same frequency. The weight coefficients

for the loss functions are set to λA = 0.2, λgp = 10, λcond = 160, λsim = 1 and

λcyc = 10.

Our model is trained on RafD [32] and CFEED [11] for 200 epochs, respectively.

The learning rate (lr) is linearly decayed to zero over the last 50 epochs of the training.

For the parallel only training experiments, the generator is optimized once after

five times optimization of the discriminators, with an initial learning rate of 0.0001.

The weight coefficient that is different from the progressive training is λsim = 5.

Our progressive training model is trained on RafD and CFEED for about 13h and

40h, respectively, with a single Tesla V100 GPU.

3.4.3 Qualitative Experimental Results

In this section, we test our approach on both RafD and CFEED and compare the

results with three previous models: GANimation [51], UNet-MFS [40] and Cascade

EF-GAN [70], all of which are conditioned on AUs code for continuous expression

38



Figure 16: Qualitative comparison with previous works on RafD (left four columns)
and CFEED (right four columns).

translation. We leverage the code issued publicly on Github and train GANimation

and UNet-MFS with the same training set as described above. We obtain the results

from [70] for Cascade EF-GAN due to the unavailability of the code.

As shown in Figure 16, GANimation and UNet-MFS generate results with obvi-

ous artifcats on test samples of both RafD and CFEED, especially on area of mouth.

Although Cascade EF-GAN generates natural outcomes with much less artifacts, the

results are a little blurring. In contrast, our method can vividly simulate the target

expressions and generate photo-realistic images with high-fidelity, showing the supe-

riority of our method for expression translation with obvious geometric deformation.
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Table 10: Quantitative comparison among GANimation, Unet-MFS, Cascade EF-
GAN and all variants of the proposed model.

RafD CFEED
Method Accuracy↑ FID↓ SSIM↑ Accuracy↑ FID↓ SSIM↑
GANimation 85.36% 45.34 0.6646 77.46% 25.83 0.6507
UNet-MFS 88.36% 56.44 0.6905 84.39% 28.48 0.6769
Cascade EF-GAN 89.38% 42.36 – 85.81% 27.15 –
Ours (WP2-GAN) 89.47% 41.74 0.6818 87.97% 24.91 0.6659
Parallel-GAN 87.31% 46.74 0.6590 76.67% 29.55 0.6467
P2-GAN 89.00% 43.44 0.6770 85.46% 23.75 0.6579
WP-GAN 87.71% 46.65 0.6753 85.52% 25.72 0.6619

3.4.4 Quantitative Experimental Results

We adopt a similar method of Cascade EF-GAN [70] and StarGAN [7] to evaluate the

expression translation accuracy of our model. Particularly, we train different models

on the training sets of RafD and CFEED and test them on the unseen test sets. We

then train an expression classifier (Resnet-18 [26]) on the filtered training set of each

database, which only contains images with basic expression (i.e. angry, disgust, fear-

ful, happy, sad, surprised or neutral). We obtain two classifiers with a test accuracy

of 100% on RafD and 88.67% on CFEED, respectively. Finally, we evaluate the per-

formance of our models for basic expression translation by classifying the generated

images with the classifier. Higher expression recognition accuracy represents higher

expression translation accuracy of models.

The quantitative comparison among GANimation, UNet-MFS, Cascade EF-GAN

and variants of our method is displayed in Table 10. The results of Cascade EF-GAN

are from [70]. We can observe that our approach obtains the highest expression trans-

lation accuracy compared with three previous models on both RafD and CFEED. The

proposed model was trained progressively thus can overcome the drawback of limited

training data and significantly exceed the baseline GANimation in terms of expres-

sion translation accuracy by 4.11% on RafD and 10.51% on CFEED, respectively.

Our method also outperforms UNet-MFS and Cascade EF-GAN by 3.58%/2.16% on

CFEED and slightly on RafD, showing the superiority of our method in expression

translation accuracy.

We further evaluate the image quality in terms of and Fréchet Inception Distance

(FID) [27] and structural similarity (SSIM) index [67]. A lower FID score and a

higher SSIM normally represent a higher image quality.

As shown in Table 10, our method achieves the lowest FID scores on two databases
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compared with three baselines, even outperforms the latest state-of-the-art model

(Cascade EF-GAN) by 0.62 on RafD and 2.24 on CFEED, demonstrating the ad-

vantage of the proposed model. Our method also exceeds two baselines in terms of

SSIM on two databases. Although UNet-MFS achieves slightly higher SSIM scores

than our method, we can infer that our model can predict expressions with higher

quality considering the qualitative results shown in Figure 16 as well as FID scores

in Table 10,

Higher expression translation accuracy and image quality achieved by our model

demonstrate the superiority of our approach in expression translation with a large

gap.

3.4.5 Ablation Study

In this section, we study the contributions of each component of our proposed model

and compare the expression translation effects on both RafD and CFEED among

variants of the proposed model. The baseline we compare in this section is GANima-

tion. Parallel-GAN means the model with two generators and is trained in a parallel

method, while P2-GAN denotes the model trained in a parallel and progressive way.

Compared to P2-GAN, we introduce the wavelet-based multi-level discriminators to

our final model. Compared to WP2-GAN, WP-GAN only has one generator. The

single generator works as the reconstruction model for itself in each progressive step

of training.

We can observe in Figure 17 that both the baseline and Parallel-GAN fail to

produce natural expressions but generating some artifacts in areas near mouth and

eyes. The introduction of progressive training enables the model P2-GAN to gen-

erate vivider results but still with some artifacts. In contrast, our proposed model

can generate more realistic images with high-fidelity such as much clearer teeth. In

our approach, the utilization of wavelet-based multi-level discriminators can further

help the model to capture expression-related features, thus generating photo-realistic

images.

Although WP-GAN with a single generator can generate natural facial expression

with less artifacts, the outcomes of WP2-GAN are better matched with the target

expressions. For example, WP2-GAN produces more obvious contemptuous expres-

sion than WP-GAN on the first sample of RafD and much clearer teeth on the second
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Figure 17: Comparison of expression translation between the proposal and variants
of the proposed model on both RafD (left four columns) and CFEED (right four
columns).

samples of two databases. This further demonstrates the contribution of two parallel

generators adopted in our approach.

We also perform the quantitative comparison between the variants and our pro-

posed model. Table 10 shows that our proposed model achieves the best performance

among its variants. Specially, the proposed model outperforms WP-GAN on RafD

and CFEED by 1.76%/2.45% in expression translation accuracy and 4.91/0.81 in FID

score, further illustrating the significance of parallel training in our model. However,

compared with the baseline model, parallel training alone (Parallel-GAN) does not

cause an obvious improvement of the translation accuracy but a decline of image

quality. This could be caused by the loss of the constraint (using the same generator
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for the forward and backward translation) imposed on the previous single generator.

However, progressive training and wavelet-based multi-level discriminators equipped

in our method impose extra constrains on the adversarial learning system, enforcing

the model to proceed in a desired path.

3.4.6 Extensional Experiments

Our proposed model can be easily extended for continuous expression translation.

Given the AUs code of a target expression, we can obtain the intermediate AUs code

by a similar interpolation formula as that of the progressive training. Then, we use

the intermediate AUs code as the target label of the progressive training. Our results

for continuous expression translation are shown in Figure 18.

Figure 18: Continuous expression translation performed by our proposed model on
both RafD (top) and CFEED (bottom). The first column contains the input images,
followed by generated images with a continuous change of expression.

Figure 19: Sampled expression translation results by our proposed model on Emo-
tioNet [17]. Each triplet contains the test face, the target expression and finally the
synthesized image.

We also evaluate our method on images in the wild. We train the model on over

70,000 images from EmotiNet [17] then fine-tune the model on RafD and CFEED.
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Figure 19 shows that our approach can be applied to images with different background

in the wild.

We extensively test the impact of using immediate result instead of original input

as resource to compute background information of the translation. Results show

that this practice leads to the drop of both translation accuracy (84.30%) and image

quality (FID: 31.02) on CFEED.

Finally, we explore the impact of steps in progressive training and train a model

on CFEED adopting four steps. The results show that further increase of progressive

training steps fails to bring an improvement to both translation accuracy and image

quality (Accuracy: 87.23%, FID: 24.62, SSIM: 0.6753). Thus, we adopt three steps

for our proposed method.

3.5 Conclusion

In this work, we consider facial expression editing as an image-to-image translation

task and propose a novel wavelet-based multi-level generative network for progres-

sive facial expression transformation. Our model consists of two generators that are

trained in a parallel way to alleviate the interference caused by using the same gen-

erator for image reconstruction. Progressive training breaks the translation between

large-gap expressions into several small steps, making the model robust to the synthe-

sis of extreme expressions. Wavelet-based multi-level discriminators enforce the gen-

erators to generate high-quality images by extracting expression and identity-related

facial features at multiple scales. Extensive experiments demonstrate the superiority

of our approach for expression translation compared to the start-of-the-art models.

Our method can synthesize photo-realistic images with vivid expression.

3.6 More Experimental Results

More results of expression translation by our proposed model on EmotioNet, RafD

and CFEED are shown in Figure 20∼ Figure 22.
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Figure 20: Supplementary expression translation results by our proposed model on
EmotioNet. In each triplet, the first column is the test face, followed by an image
with the target expression and finally the synthesized image.
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Figure 21: Supplementary results of expression translation by our proposed model
on RafD (left) and CFEED (right). In each triplet, the first column is the test face,
followed by an image with the target expression and finally the synthesized image.
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Figure 22: Supplementary results of seven basic expressions synthesized by our pro-
posed model (Input, Neutral, Angry, Disgusted, Fearful, Happy, Sad, Surprised) on
RafD (top) and CFEED (bottom).
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Chapter 4

Summary and Future work

In this chapter, we will give conclusions of our thesis work and ideas for future work.

4.1 Conclusions

In this thesis, we proposed the wavelet-based multi-level GANs for face aging and the

WP2-GAN for progressive facial expression translation.

For face aging task, the Wavelet Packet Transform module and multi-level en-

coders are applied to the generator of GANs for the first time. Application of multi-

level generator combined with wavelet transform decomposition can improve the iden-

tity verification confidence in face aging, and significantly reduce the time for model

training by eliminating the use of an identity preserving module. Extensive exper-

iments demonstrate the superiority and effectiveness of our method by synthesizing

vivid aging effects and outperforming the existing state-of-the-art models in both face

aging accuracy and identity verification confidence.

In the work related to expression translation, two parallel training generators were

introduced to the task to alleviate the interference caused by using the same generator

for image reconstruction. Progressive training breaks the translation between large-

gap expressions into several small steps, making the model robust to the synthesis of

extreme expressions. Wavelet-based multi-level discriminators enforce the generators

to generate high-quality images by extracting expression and identity-related facial

features at multiple scales. Extensive experiments demonstrate the superiority of our

approach for expression translation compared to the start-of-the-art models.
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4.2 Future Work

For the face aging model, according to the limits disclosed before, we can consider of

adopting relative condition of age group and a self reconstruction loss to guarantee

that the model can synthesize the same images as inputs when the target age group

is the same as the original age group. To prevent the negligence of synthesizing gray

hair for the aged group caused by the diversity of hair colors in the training set of

CACD database, we can consider of adding hair colour information (black, blond,

brown and gray) to the final condition label.

For the parallel training generators, more tasks such as face aging and head pose

transformation can be deployed to validate the contribution of the parallel training

mechanism.
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