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Abstract

Occupancy Estimation and Activity Recognition in Smart

Buildings using Mixture-Based Predictive Distributions

Jiaxun Guo

Labeled data is a necessary part of modern computer science, such as machine learning

and deep learning. In that context, large amount of labeled training data is required.

However, collecting of labeled data as a crucial step is time consuming, error prone

and often requires people involvement. On the other hand, imbalanced data is also a

challenge for classification approaches. Most approaches simply predict the majority

class in all cases.

In this work, we proposed several frameworks about mixture models based pre-

dictive distribution. In the case of small training data, predictive distribution is

data-driven, which can take advantage of the existing training data at its maximum

and don’t need many labeled data. The flexibility and adaptability of Dirichlet family

distribution as mixture models further improve classification ability of frameworks.

Generalized inverted Dirichlet (GID), inverted Dirichlet (ID) and generalized

Dirichlet (GD) are used in this work with predictive distribution to do classifica-

tion. GID-based predictive distribution has an obvious increase for activity recogni-

tion compared with the approach of global variational inference using small training

data. ID-based predictive distribution with over-sampling is applied in occupancy

estimation. More synthetic data are sampling for small classes. The total accuracy is

improved in the end. An occupancy estimation framework is presented based on inter-

active learning and predictive distribution of GD. This framework can find the most

informative unlabeled data and interact with users to get the true label. New labeled

data are added in data store to further improve the performance of classification.
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Chapter 1

Introduction

1.1 Background

Smart buildings and energy management systems have been the topic of extensive

research recently, from different fields [4–8], which has been triggered by the growing

adaptable sensor technologies. The main goal has been providing practical solutions to

reduce energy consumption considering that buildings consume around 40% of total

energy in the world [9]. To achieve this goal, building occupancy information and

occupants activities recognition are key components [2, 10, 11]. Indeed, information

about the occupancy or the activities could for instance determine the operation time

of HVAC (Heating, Ventilation, and Air Conditioning) system in a given building

[12–15].

Many approaches have been proposed in the past for occupancy estimation and

activities recognition using data harvested from buildings’ sensors (e.g. PIR, CO2,

etc.) [16]. Machine learning (ML) techniques are mainly fueled by the recent tremen-

dous growth of Internet of Things (IoT) [17–19] and the recent remarkable efforts to

go ”energy-efficient” [20–26]. Identifying and detecting a given activity depend on

sensors’ information processing [27, 28]. Most of researches have focused on develop-

ing activity recognition solutions using inertial signals [29–34] in the recent years. In

order to reach their full potential, machine learning techniques need a large amount

of balanced training data. Unfortunately, in the majority of real-life scenarios only

a small training set is available which prevents using data hungry techniques. Such
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large and balanced training data are hard and expensive to obtain notably in ap-

plications related to smart buildings where only inhabitants, whose involvements is

generally hard to obtain (because of privacy concerns, for instance), can provide re-

liable labels [35, 36]. The approaches have been proposed in the past to tackle that

problem by mainly increasing the number of labeled data using techniques such as

active learning or by deploying training data from other domains using transfer learn-

ing. For instance, the authors in [37] propose a cluster based active learning model

based on K-Means and the authors in [38] propose a transfer learning approach based

on a hierarchical Bayesian method.

Unlike previous approaches, we propose a learning technique based on a data-

driven predictive distribution [39,40]. The main motivation of considering the predic-

tive distribution, as compared to the commonly used point estimate methods [41–43]

(e.g. maximum a posteriori, variational Bayes, expectation propagation), is that it

leads to more reliable results when calculating the predictive likelihood of unseen data

especially when the training data is small. Indeed, it is well-known that when training

data is small, point estimate leads to estimated parameters with large variance and

then cause uncertainty and unreliability [44]. The predictive density of a new vector

x given the training data X = [x1,x2, ...,xN ] is
1 [48, 49]

f(x|X) =

∫
f(x|θ)f(θ|X)dθ (1.1)

where θ, the parameters of both likelihood function f(x|θ) and posterior distribution

f(θ|X), should be learned from X via Bayesian inference. A crucial problem, in

predictive modeling, is the choice of the statistical distribution to model the data. The

Gaussian mixture model has been widely used in many recent applications (see, for

instance, [40, 50–53]. However, not all real-life data satisfy the Gaussian assumption

which should be dedicated mainly to model symmetric patterns [54]. This is especially

true for features extracted from smart buildings sensors and which are generally semi-

bounded [55]. In this context, mixtures of Dirichlet family distributions have been

extensively studied recently and have shown state of the art results in a variety of

applications from different domains (e.g. computer vision, pattern recognition, health

1It is noteworthy that when the training set become sufficiently large, the posterior distribution
variance decreases and then the predictive distribution, which can be viewed as an average over
model’s parameters [45], could be approximated by f(x|θ̂), where θ̂ is a point estimate (obtained
via maximum a posteriori or expectation propagation or variational Bayes, for instance) [46,47] .
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informatics, image processing, etc.). Thus, we consider these mixture models, as

likelihood functions, in our work to model the data that shall be used for prediction.

1.2 Contributions

The main objective of this thesis is to study predictive distributions based on

Dirichlet family mixture models. Indeed, we shall see that this approach can be easily

integrated with other frameworks and modules to improve further their performance.

The contributions are listed as follows:

1. A Generalized Inverted Dirichlet-Based Predictive Model for Activity

Recognition using Small Training Data

We present an elegant principled statistical framework for predictive modeling

based on the generalized inverted Dirichlet (GID) distribution [56,57] and a local

variational inference. It demonstrates a good efficiency in classification when

only small training data are provided. Activity recognition as a challenging

application is considered to validate the effectiveness of the framework.

2. Occupancy Estimation in Smart Buildings using Predictive Modeling

in Imbalanced Domains

We introduce a model based on the predictive distribution of the inverted Dirich-

let (ID) mixture model [58] to tackle the challenging problem of occupancy

estimation in smart buildings. This model is mainly motivated by its predic-

tion ability when only small training data are available. In order to tackle the

imbalance problem in occupancy estimation, we develop a data pre-processing

approach based on over-sampling via the generation of new synthetic exam-

ples. We are mainly motivated by the fact that synthesizing new data has

well documented advantages such as reducing over-fitting risks and improving

generalization capabilities [59, 60].

3. A Hybrid of Interactive Learning and Predictive Modeling For Occu-

pancy Estimation in Smart Buildings

We develop an accurate approximation to the predictive distribution of the gen-

eralized Dirichlet (GD) mixture model [61–63] as classifier. With the support of

interactive learning module, the novel framework can label data automatically,

3



which increases the precision of the learning model by expending the training

set and provides good results even when starting with a very small training data

set.

1.3 Thesis Overview

• Chapter 1 introduces the motivations of our research work and contributions.

• Chapter 2 presents the details of the GID based predictive distribution and

shows how the model works for activity recognition under small training data.

• In chapter 3, a predictive distribution of ID mixture model is presented with

over-sampling module. According to our experiments that concerns occupancy

estimation, this framework performs well with imbalanced training data and

also provides a good efficiency on small training data.

• In chapter 4, a framework of GD based predictive distribution and interactive

learning is discussed and validated via occupancy estimation application.

• Chapter 5 briefly concludes our contributions and discusses future works.

4



Chapter 2

A Generalized Inverted

Dirichlet-Based Predictive Model

for Activity Recognition using

Small Training Data

In this chapter, we propose a predictive model based on generalized inverted

Dirichlet (GID) mixture model. We show via extensive experiments that this model

has a good performance for activity recognition under small training data.

2.1 Predictive Model

In this section, we first present briefly the generalized inverted Dirichlet mixture

model. Then, its predictive distribution will be approximated by variational inference.

2.1.1 Generalized Inverted Dirichlet Mixture Model

LetM denotes the number of different components. Assume that a D-dimensional

positive vector Y⃗ = (Y1, · · · , YD) follows a finite mixture model of generalized Inverted

Dirichlet (GID) Distributions denoted by a common probability density function p(Y⃗ |
π⃗, α⃗, β⃗) such that

p(Y⃗ | π⃗, α⃗, β⃗) =
M∑
j=1

πjGID
(
Y⃗ | α⃗j, β⃗j

)
(2.1)
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where α⃗ = {α⃗1, . . . , α⃗M}, β⃗ =
{
β⃗1, . . . , β⃗M

}
, α⃗j and β⃗j are the parameters of the

GID distribution representing component j, where α⃗j = (αj1, · · · , αjD) and β⃗j =

(βj1, · · · , βjD). π⃗ = (π1, · · · , πM) denotes the mixing weights, such that
∑M

j=1 πj = 1

and πj > 0, j = 1, . . . ,M . GID
(
Y⃗ | α⃗j, β⃗j

)
is a GID distribution representing

component j with parameters α⃗j and β⃗j and is defined by [64]

GID
(
Y⃗ | α⃗j, β⃗j

)
=

D∏
l=1

Γ (αjl + βjl)

Γ (αjl) Γ (βjl)

Y
αjl−1

l(
1 +

∑l
k=1 Yk

)γjl (2.2)

where αjl > 0, βjl > 0.

Let Y =
{
Y⃗1, . . . , Y⃗N

}
be a set of N independent identically distributed vectors

taken from our mixture model. According to the Bayes’ theorem, the probability

that the vector Y⃗i is from component j (also called responsibilities of each mixture

component j in generating each data sample Y⃗i) can be written as

p
(
j | Y⃗i

)
∝ πjGID

(
Y⃗i | α⃗j, β⃗j

)
(2.3)

We define γjl = βjl + αjl+1 − βjl+1 for l = 1, · · · , D, with βjD+1 = 0. After some

mathematical manipulations [65], the responsibilities can be factorized as

p
(
j | Y⃗i

)
∝ πj

D∏
l=1

iBeta (Xil | αjl, βjl) (2.4)

where Xi1 = Yi1 and Xil = Yil/(1 +
∑l−1

k=1 Yik) for l > 1 and iBeta (Xil | αjl, βjl) is an
inverted Beta distribution with parameters (αjl, βjl):

iBeta (Xil | αjl, βjl) =
Γ(αjl + βjl)

Γ(αjl)Γ(βjl)
X
αjl−1

il (1 +Xil)
−(αjl+βjl) (2.5)

where Γ(z) =
∫∞
0
xz−1e−xdx. Thus, the mixture model of the finite GID distribution

underlying dataset Y is the same as that underlying X =
{
X⃗1, . . . , X⃗N

}
, where

X⃗i =
{
X⃗i1, . . . , X⃗iD

}
, i = 1, . . . , N , using the following clustering structure with

6



conditionally independent features

p
(
X⃗i | π⃗, α⃗, β⃗

)
=

M∑
j=1

πj

D∏
l=1

iBeta (Xil | αjl, βjl) (2.6)

The formal conjugate prior distribution of the Beta distribution [49] does not

have a closed form. Thus, we consider in our work a tractable approximation to

the conjugate prior using a product of two independent Gamma distributions as

previously used in [65] in the context of a global variational inference (GVI) framework

f(αjl, βjl) ≈ Gam (αjl; a0, b0)×Gam (βjl; c0, d0)

=
ba00

Γ (a0)
αa0−1
jl e−b0αjl × dc00

Γ (c0)
βc0−1
jl e−d0βjl

(2.7)

With available data Xl = {X1l, X2l, . . . , XNl}, the hyperparameters (a∗, b∗, c∗ and

d∗) of the posterior distribution can be easily obtained by variational Bayes estimation

as detailed in [65]. The posterior distribution could be approximated by a product of

two independent Gamma distribution as

f(αjl, βjl | Xl) ≈ Gam (αjl; a
∗, b∗)×Gam (βjl; c

∗, d∗)

=
b∗a

∗

Γ (a∗)
αa

∗−1
jl e−b

∗αjl × d∗c
∗

Γ (c∗)
βc

∗−1
jl e−d

∗βjl
(2.8)

2.1.2 Predictive Distribution of the Mixture Model

The predictive distribution can assess the uncertainty of a new coming observation

with respect to the existing dataset. Let Y⃗i be that new observation independent from

the existing Y which is assumed to be generated from GID
(
Y⃗i | α⃗j, β⃗j

)
. Using the

transformation presented after Eq.2.4, the obtained new observation X⃗i follows a

product of inverted Beta distributions. The predictive distribution of X⃗i given X is

f(X⃗i | X ) =

∫ ∞

0

∫ ∞

0

D∏
l=1

[iBeta(Xil | αjl, βjl)f(αjl, βjl | Xl)] dα⃗jdβ⃗j (2.9)

With the analytically tractable posterior distribution in Eq.2.8 and the function

of the inverted Beta distribution (Eq.2.5), we can extend this predictive distribution

7



as

f(X⃗i | X ) ≈
∫ ∞

0

∫ ∞

0

D∏
l=1

[
iBeta(Xil | αjl, βjl)×

b∗
a∗

Γ (a∗)
αa

∗−1
jl e−b

∗αjl
d∗

c∗

Γ (c∗)
βc

∗−1
jl e−d

∗βjl

]
dα⃗jdβ⃗j

=
D∏
l=1

[
1

Xil

b∗
a∗

Γ (a∗)

d∗
c∗

Γ (c∗)

]

×
∫ ∞

0

∫ ∞

0

D∏
l=1

[
Γ(αjl + βjl)

Γ(αjl)Γ(βjl)
X
αjl

il (1 +Xil)
−(αjl+βjl)αa

∗−1
jl e−b

∗αjlβc
∗−1
jl e−d

∗βjl

]
dα⃗jdβ⃗j

(2.10)

f(X⃗i | X ) ≤ fupp(X⃗i | X )

=
D∏
l=1

[
1

Xil

b∗a
∗

Γ (a∗)

d∗c
∗

Γ (c∗)

Γ (α0 + β0)

Γ (α0) Γ (β0)
e−α0[ψ(α0+β0)−ψ(α0)]−β0[ψ(α0+β0)−ψ(β0)]

]

×
∫ ∞

0

∫ ∞

0

D∏
l=1

[
eαjl[ψ(α0+β0)−ψ(α0)]+βjl[ψ(α0+β0)−ψ(β0)]

X
αjl

il (1 +Xil)
−αjl(1 +Xil)

−βjlαa
∗−1
jl e−b

∗αjlβc
∗−1
jl e−d

∗βjl
]
dα⃗jdβ⃗j

=
D∏
l=1

[
1

Xil

b∗a
∗

Γ (a∗)

d∗c
∗

Γ (c∗)

Γ (α0 + β0)

Γ (α0) Γ (β0)
e−α0[ψ(α0+β0)−ψ(α0)]−β0[ψ(α0+β0)−ψ(β0)]

]

×
D∏
l=1


∫ ∞

0

e

−αjl [b
∗ − lnXil + ln(1 +Xil)− ψ (α0 + β0) + ψ (α0)]︸ ︷︷ ︸

g(Xil,α0,β0) αa
∗−1
jl dαjl


×

D∏
l=1


∫ ∞

0

e

−βjl [d
∗ + ln(1 +Xil)− ψ (α0 + β0) + ψ (β0)]︸ ︷︷ ︸

h(Xil,α0,β0) βc
∗−1
jl dβjl


(2.11)

Eq.2.10 involves the Inverse Beta function which logarithm has been proved to be

concave [66]. Using that concavity property and first order Taylor expansion, we can

obtain the following inequality [67]

Γ(α + β)

Γ(α)Γ(β)
≤ Γ (α0 + β0)

Γ (α0) Γ (β0)
× e[ψ(α0+β0)−ψ(α0)](α−α0)+[ψ(α0+β0)−ψ(β0)](β−β0) (2.12)

where ψ(·) is the digamma function defined as ψ(·) = ∂ ln Γ(x)/∂x.

8



Using Eq.2.12 in Eq.2.10, we can find an upper bound for the predictive distribu-

tion as shown in Eq.2.11 by a local variational inference (LVI) method [67]. Compared

with the global variational inference [65] which approximates all the model’s variables,

LVI is considered as a ’local’ approach to approximate a subset of variables [49]. In

Eq.2.11, the integrand in each integration is a Gamma distribution. To simplify the

predictive distribution, these integrations can be replaced by

∫∞
0
e−αjlg(Xil,α0,β0)αa

∗−1
jl dαjl

=

{
Γ(a∗)

g(Xil,α0,β0)
a∗ g (Xil, α0, β0) > 0

∞ g (Xil, α0, β0) ≤ 0∫∞
0
e−βjlh(Xil,α0,β0)βc

∗−1
jl dβjl

=

{
Γ(c∗)

h(Xil,α0,β0)
c∗ h (Xil, α0, β0) > 0

∞ h (Xil, α0, β0) ≤ 0

(2.13)

If g (Xil, α0, β0) > 0 and h (Xil, α0, β0) > 0, we obtain a closed-form upper bound

for the predictive distribution:

fupp(X⃗i | X )

=
D∏
l=1

[
1

Xil

[
b∗

g (Xil, α0, β0)

]a∗ [
d∗

h (Xil, α0, β0)

]c∗
× Γ (α0 + β0)

Γ (α0) Γ (β0)
e−α0[ψ(α0+β0)−ψ(α0)]−β0[ψ(α0+β0)−ψ(β0)]

] (2.14)

The upper bound is just a function of α0, β0 after being given X , which can be

rewritten as

fupp(X⃗i | X ) =
D∏
l=1

[
b∗a

∗
d∗c

∗

Xil

× F (Xil, α0, β0)

]
(2.15)

where F (Xil, α0, β0) can be straightforwardly deduced from Eq.2.14.

The means E(α) and E(β) are the most representative values of α0 and β0, re-

spectively, which can be taken to approximate the optimal solution (α∗
0, β

∗
0). Besides,

the means calculated by the observations in X are independent of Xil. To facilitate
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the calculation, the minimum of the upper bound can be approximated as

min
α0,β0

fupp(X⃗i | X )

=
D∏
l=1

[
b∗a

∗
d∗c

∗

Xil

× min
α0,β0

F (Xil,E(α),E(β))

]

≈
D∏
l=1

[
b∗a

∗
d∗c

∗

Xil

× F (Xil,E(α),E(β))

] (2.16)

Since minα0,β0 fupp(X⃗i | X ) is unnormalized, we need to calculate the normalization

factor:

Cupp =

∫ ∞

0

min
α0,β0

fupp(X⃗i | X )dX⃗i (2.17)

The approximation to the mixture predictive distribution is finally obtained as

f(X⃗i | X ) ≈ fLV Iappx(X⃗i | X )

=
M∑
j=1

πj
Cuppj

D∏
l=1

[
b∗jl

a∗jld∗jl
c∗jl

Xil

× F (Xil,E(αjl),E(βjl))

]
(2.18)

2.2 Experimental Results

The predictive distribution of GID (Eq.2.18) is based on LVI as we mentioned

previously. In this section, we first generate different training data to compare the

performance of out LVI approach with GVI. GVI is the approximation using the

posterior mean as the point estimates:

f(X⃗i | X ) ≈ fGV Iappx (X⃗i | X )

=
M∑
j=1

πj

D∏
l=1

iBeta (Xil | E(α),E(β))
(2.19)

In the second experiment, we apply our model for activity recognition.

2.2.1 Synthetic Data

We generate data from a known GID distribution to test our model in this section.

The parameters of GVI and LVI are trained separately under the different training

10



data. And then, all the test data will be used in GVI and LVI frameworks to obtain

the predictive distributions. Finally, Kullback-Leibler (KL) divergence is used to

judge which obtained predictive distribution is better.

KL(ftrue||fGV Iappx ) =

∫
ftrue(x) ln

ftrue(x)

fGV Iappx

dx (2.20)

KL(ftrue||fLV Iappx) =

∫
ftrue(x) ln

ftrue(x)

fLV Iappx

dx (2.21)

where ftrue is the true probability distribution, fGV Iappx and fLV Iappx are the GVI and LVI

predictive distributions, respectively. Table 4.1 summarizes the average results over

10 random experiments. According to this table we can see clearly that our LVI

approach provides better results than the previously proposed GVI one.

Table 2.1: Comparison of the KL divergences (×102)
(The results are averaged over 10 random experiments)

Distribution KL divergences N = 10 N = 20 N = 50 N = 100 N = 200

iBeta(x; 3, 4)
KL(f ||fGV Iappx ) 27.59 21.27 2.43 0.80 0.62

KL(f ||fLV Iappx) 17.52 13.64 2.18 0.93 0.62

iBeta(x; 2, 7)
KL(f ||fGV Iappx ) 16.78 7.31 2.59 1.42 0.65

KL(f ||fLV Iappx) 12.26 6.08 2.31 1.39 0.70

iBeta(x; 3, 8) ∗ 0.2
iBeta(x; 5, 5) ∗ 0.2
iBeta(x; 4, 6) ∗ 0.6

KL(f ||fGV Iappx ) 31.63 10.17 3.48 2.34 1.58

KL(f ||fLV Iappx) 15.63 7.98 2.74 2.03 1.62

iBeta(x; 1, 6) ∗ 0.1
iBeta(x; 3, 2) ∗ 0.1
iBeta(x; 5, 2) ∗ 0.8

KL(f ||fGV Iappx ) 155.13 204.81 90.39 11.90 6.97

KL(f ||fLV Iappx) 131.65 175.37 137.26 135.38 155.78

iBeta(x; 1, 5) ∗ 0.2
iBeta(x; 7, 2) ∗ 0.3
iBeta(x; 2, 6) ∗ 0.5

KL(f ||fGV Iappx ) 40.72 22.07 13.54 9.83 8.08

KL(f ||fLV Iappx) 36.91 21.40 13.51 10.62 9.23
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2.2.2 Activity Recognition

In this subsection, our statistical framework is applied to tackle the activity recog-

nition problem. First, the considered dataset is described. Some important proce-

dures about data preprocessing are also presented. Second, the recognition results

are given and analysed.

Figure 2.1: The sensors placement [1]

Figure 2.2: The two types of bending activity. [1]

Dataset Description and Preprocessing Procedure

The dataset represents a real-life benchmark [1]. Three wireless sensors (IRIS

node [68]) are placed on a user to collect Received Signal Strength (RSS) as Fig.2.1

shows. In the collected dataset, seven activities are defined: Lying, Sitting, Standing,
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Walking, two types of Bending (Keeping the legs straight and folded), and Cycling

(see Fig. 2.2 ). Sensors data were captured as pair (rss12, rss13 and rss 23) with

a frequency of 20hz. The final dataset consist of avg rss12, var rss12, avg rss13,

var rss13, avg rss23, var rss23 where avg and var are the mean and variance values

over 250ms of data, respectively.

The normalization for the original data is essential because of the magnitude dif-

ference and zero appearance. In this experiment, we proportionally normalized the

original data between 0.1 and 1. Finally, 3360 original samples were considered in

total with 480 samples in each activity class. Before each experiment, 20 samples are

randomly selected from each activity class as test data (140 samples totally). The

synthetic data section has indicated that our model has high prediction performance

for small training data. Therefore, the amount of training data is incremented dynam-

ically, which is convenient to observe and compare the performance of the prediction

model under different amounts of training data. We tested six different amounts of

training data namely 5, 10, 20, 50, 100 and 200 samples for each activity class.

Table 2.2: Average accuracy of predictive models with different training data sizes.
(N: The amount of training data in each activity class)

Type of predictive model N=5 N=10 N=20 N=50 N=100 N=200

PD 0.44 0.480714 0.537143 0.645 0.697857 0.775

GVI 0.292143 0.372143 0.523571 0.674286 0.745 0.799286

Results Analysis

For each of the six different amounts of training data, we have applied our frame-

work 10 times to take into account experimental uncertainty. Random selection of

initialization parameters is considered to ensure the consistency of the model. Ta-

ble 2.2 displays the average accuracy of our 10 simulations (seed 0-9) considering

the seven activities. Fig. 2.3 shows the average accuracy for each activity type as a

function of the training data size. In the line chart, x-axis represents the amount of

training data for each type of activity. We obtained the results for 5, 10, 20, 50, 100

and 200 training data which are enough to display the general accuracy change for

the recognition of the different activities. The y-axis is divided into seven different

intervals (one for each activity) meaning 0%-100% in each interval. There are two
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lines for each type of activity, which are the accuracy fluctuation of our model and

the accuracy fluctuation of GVI. We can clearly observe the changes of two accuracies

for each activity. Let us focus on the case when the amount of training data is 5 in

Fig.2.3. The accuracy of our model is higher than that of GVI in almost all activi-

ties except Lying activity. This trend is still being maintained when the amount of

training data increases to 10. Only the accuracy of GVI in Bending2 and Standing

are slightly better than that of our model. Therefore, the average accuracy of our

model is obviously higher than that of GVI when the number of training data equals

5 and 10 as shown in Table.2.2. Yet, the comparison begins to become difficult when

the amount of training data in each type of activity increases to 20. Both average

accuracies for N=20 are slightly similar, about 0.53. When the number of training

data becomes higher than 20, the average accuracy of GVI tends to be continually

higher than that of our model. And the gap between the two average accuracies shows

a trend of first expanding and then decreasing. Finally, both accuracies approach 0.8.

Figure 2.3: The accuracy fluctuation when increasing the training data size.
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Chapter 3

Occupancy Estimation in Smart

Buildings using Predictive

Modeling in Imbalanced Domains

In this chapter, we build a predictive model for occupancy estimation. This model

still performs well in imbalanced domains via over-sampling method.

3.1 Predictive Model

3.1.1 Inverted Dirichlet Mixture Model

Assume that a D-dimensional positive vector xn = (xn1, ..., xnD), representing

sensors outputs for instance, is sampled from a finite inverted Dirichlet mixture model

with I components, then we have:

p(xn|π,α) =
I∑
i=1

πiID(xn|αi) (3.1)

where α = (α1, ...,αI) and π = (π1, ..., πI) denotes the mixing coefficients with the

constraints that are positive and sum to one. ID(xn|αi) is an inverted Dirichlet

distribution representing component i with parameter αi and is defined by [69]

ID(xn|αi) =
Γ(
∑D+1

d=1 αid)∏D+1
d=1 Γ(αid)

D∏
d=1

xαid−1
nd (1 +

D∑
d=1

xnd)
−

∑D+1
d=1 αid (3.2)
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where 0 < xnd < ∞ for d = 1, ..., D. In addition, αi = (αi1, ..., αiD+1), such that

αid > 0 for d = 1, ..., D + 1.

3.1.2 Priors

An important property of the exponential family of distributions is that a for-

mal conjugate prior could be developed [49]. The inverted Dirichlet is part of the

exponential family as shown in [70] and as such, its conjugate prior is given by

f(αi;β0, v0) =
1

C(β0, v0)

[
Γ(
∑D+1

d=1 αid)∏D+1
d=1 Γ(αid)

]v0
× elnβ0(αi−1D)T−(

∑D+1
d=1 αid) ln (1+

∑D
d=1 β0d )

(3.3)

where β0 = [β01 , ..., β0D ] and v0 are the prior hyperparameters, 1
C(β0,v0)

is a normal-

ization coefficient, 1D is a D-dimensional vector all whose elements are equal to one.

Having the prior in hand, the posterior is given by

f(αi|X;βN , vN)

=
ID(X|αi)f(αi;β0, v0)∫
ID(X|αi)f(αi;β0, v0)dα

=
1

C(βN , vN)

[
Γ(
∑D+1

d=1 αid)∏D+1
d=1 Γ(αid)

]vN
× elnβN (αi−1D)T−(

∑D+1
d=1 αid) ln (1+

∑D
l=1 βNl

)

(3.4)

where βN = β0+lnX×1N and vN = v0+N are the hyperparameters of the posterior

distribution. We can see clearly that the prior in Eq.3.3 and the posterior have the

same form which confirms the conjugacy property. Unfortunately working with the

above conjugate prior is complex because of the normalizing function which cannot

allow to obtain, for instance, the mean and the covariance matrix which makes the

use of the obtained posterior distribution intractable.

A better approach to find a tractable conjugate prior and posterior distributions

has been based on a global variational inference (GVI) framework as proposed in [71],

where the prior was approximated as a product of Gamma distributions which give
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the following posterior

f(α|X;βN , vN) ≈ f(α|X;u∗,v∗) =
D+1∏
d=1

Gam(αd|X;u∗d, v
∗
d) (3.5)

where u∗ = (u∗1, . . . , u
∗
D+1), v

∗ = (v∗1, . . . , v
∗
D+1), u

∗
d and v

∗
d are the hyperparameters.

3.1.3 Predictive Distribution of the Mixture Model

We start by supposing that the likelihood function in Eq.1.1 is a single inverted

Dirichlet distribution. By using the approximated conjugate prior, we obtain the

following according to the obtained posterior in Eq.3.5

f(x|X) =

∫
ID(x|α)f(α|X;u∗,v∗)dα

=

∫
Γ(
∑D+1

d=1 αd)∏D+1
d=1 Γ(αd)

D∏
d=1

xαd−1
d (1 +

D∑
d=1

xd)
−

∑D+1
d=1 αd

×
D∏
d=1

(v∗d)
u∗d

Γ(u∗d)
α
u∗d−1

d e−v
∗
dαddα

(3.6)

It is clear that the predictive distribution in Eq.3.6 has an intractable form. For-

tunately, this problem can be solved by a local variational inference (LVI) method [44]

which is based on finding an upper-bound of the predictive distribution. In the fol-

lowing, we explain the idea behind LVI.

Unlike global variational inference used in [71] and which deploys a bound that

approximates the variational objective function in terms of all the model’s variables,

LVI focuses on a subset of the variables to find an approximation [49]. A final approx-

imation is obtained then after applying in turn multiple local approximations [49].

Indeed, suppose that the original intractable integral is

F =

∫
f(x)g(x)dx (3.7)

where f(x) is a probability density function of x and g(x) is a function of x. We can

find a function h(x, σ), which is an analytically tractable upper-bound to g(x), which

allows to upper-bound the intractable integral as
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F ≤ G(σ) =

∫
f(x)h(x, σ)dx (3.8)

In order to make G(σ), expressed in closed form, approach F as much as possible,

we need to find an optimal σ∗, which minimizes G(σ) as

σ∗ = argmin
σ

G(σ) (3.9)

Obviously, the optimized value σ∗ depends on x, and G(σ∗) is just an optimal

convenient approximation to the integral [67]. An upper-bound for the predictive

distribution of the inverted Dirichlet is given by (see Appendix A)

fupp(x|X) =
Γ(
∑D+1

d=1 α̃d)∏D+1
d=1 Γ(α̃d)

× e−
∑D+1

d=1 α̃d[ψ(
∑D+1

d=1 α̃d)−ψ(α̃d)]

×
D+1∏
d=1

(v∗d)
u∗d

xd [G(xd, α̃)]u
∗
d

(3.10)

where v∗d, u
∗
d, d = 1, 2, ..., D+1 are the hyperparameters of the predictive distribution,

which are obtained and fixed after the end of variational Bayes estimation. Therefore,

the upper-bound is only a function of α̃ for any data vector x. It is noteworthy that

the result obtained in Eq.3.10 is the same as the one obtained in the case of the

Dirichlet distribution [44], thus a good approximation to the predictive distribution

of the inverted Dirichlet could be given, by analogy to the Dirichlet one, as [44]

fupp(x|X) ≈ fpost.appx (x|X)

=
1

C
×P(x, ᾱ)×

D+1∏
d=1

(v∗d)
u∗d

xd

(3.11)

where C is a normalization factor and
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P(x, α̃) =
Γ(
∑D+1

d=1 α̃d)∏D+1
d=1 Γ(α̃d)

× e−
∑D+1

d=1 α̃d[ψ(
∑D+1

d=1 α̃d)−ψ(α̃d)]

×
D+1∏
d=1

1

G(xd, α̃)u
∗
d

(3.12)

The posterior distribution of the IDMM can be obtained by the variational Bayes

estimation method proposed in [71]. The predictive likelihood of a new vector given

an estimated IDMM is given by

fupp(x|X) =
I∑
i=1

πi

∫
ID(x|αi)f(αi|X)dαi (3.13)

Using the approximation derived in Eq.3.11, the predictive distribution of the

IDMM can be approximated as

fupp(x|X) ≈ fLV Iappx(x|X)

=
I∑
i=1

πi

[
1

Ci

×P(x, ᾱi)×
D+1∏
d=1

(v∗di)
u∗di

xd

]
(3.14)

3.2 Over-Sampling Via Data Generation and Com-

plete Algorithm

In this section we tackle the imbalanced data problem via a data pre-processing

strategy. Pre-processing techniques consist of approaches that use the actual dataset

considering the user preference biases. These techniques can be grouped into two

main categories [72]: 1) Distribution change approaches, and 2) Data space weight-

ing techniques. Approaches in the first family change the data distribution to address

the issue of poor representativeness of some classes. The second family of approaches

modifies the distribution of the training set to avoid costly classification errors (i.e.

by deploying information concerning misclassification costs) [73]. Here, we develop

an effective solution that belongs to the first category which can be divided itself into

three types of approaches [72]: stratified sampling, generating new data, or combi-

nation of both. While stratified sampling consists of removing and/or adding real
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examples to the original data set, data synthesis involve the generation of new artifi-

cially generated samples added also to the original data set. Our developed approach

that we describe in the following can be viewed as an over-sampling technique based

on data generation 1.

The over-sampling approach that we propose is based on generating new samples

for the under-represented classes from a set of existing samples in these classes (i.e.

by calculating the average of these randomly selected samples). It is noteworthy

that this over-sampling plays a crucial role for the predictive modeling technique that

we developed in the previous section. Indeed, the normalization coefficients (Ci) in

Eq.3.14 need to integrate all the predictive possibilities of training data that should

be balanced to have the most possible accurate prediction for the new test data x.

The whole prediction algorithm with the proposed over-sampling approach can be

summarized as follows.

1. Start with an initial training dataset X with know labels Y. Assuming there

are I possible labels in the training dataset.

2. Calculate the gap between the amount of samples in each group (N1, N2, ...NI)

and the maximum amount of samples (Nmax). And then, set the number of

iterations (J) and the number of new data to be synthesized for each group

(K1, K2, ...KI).

K1, K2, ...KI = (Nmax − (N1, N2, ...NI))/J

3. Randomly choose S samples from class i, i = 1, . . . , I in the current training

dataset X to calculate their mean which will be considered as the new data xki

for group i. This process continues until the number of new introduced data for

the different groups satisfies each Ki.

X = x+X

4. J = J − 1.

Repeat Steps 3-4 until J = 0.

5. Run the variational Bayes estimation method proposed in [71] to train the

1Data generation techniques themselves can be categorized into two groups [72]. The first group
of approaches introduces perturbations (i.e. producing noisy replicates of existing data). The second
group is based on interpolating existing data. Our approach belongs to the second group.
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inverted Dirichlet statistical model using the available training data X and Y,

get the weight π of each component, and the hyperparameters u∗ and v∗.

6. For each mixture component, calculate the posterior means ᾱ = u/v

7. Calculate the normalization coefficient Ci for the mixture components.

8. For any upcoming x, the predictive distribution for each possible label is calcu-

lated by Eq.3.14

3.3 Experimental Results

The goal of this section is to validate the predictive distribution of IDMM with

over-sampling using both synthetic data and real data extracted in the context of

a challenging application namely occupancy estimation in smart buildings. In the

synthetic data part, we firstly generate a dataset from a known IDMM model. Then,

the LVI and GVI based predictive distributions performances are compared. The

distributions comparison is based on the Kullback-Leibler (KL) divergence which is

widely used in the literature (see, for instance, [53]). The occupancy estimation task

is extensively detailed and different scenarios are discussed.

3.3.1 Synthetic Data

As mentioned previously, there are two main variational approaches to approxi-

mate the predictive distribution namely GVI and LVI. The goal of this experiment

is to compare both approaches. The LVI approach for IDMM has been presented in

previous section and the conventional GVI one was developed in [71] and is mainly

based on the point estimate plug-in method by using the posterior mean as the point

estimate:

fupp(x|X) ≈ fGV Iappx (x|X) =
I∑
i=1

πiID(x; ᾱGV I
i ) (3.15)

The synthetic data were generated from a two-component mixture of inverted

Dirichlet distributions. The two components have the followingα parameters: [3,25,12]

and [21,5,15]. Their weights π are [0.7, 0.3]. Each time, we extract different numbers
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Figure 3.1: Comparisons of predictive distributions obtained using LVI and GVI when
varying the training dataset size.

of samples from the true distribution as training dataset and then we use GVI and

LVI methods to estimate the density functions. The obtained estimation results using

both variational approaches when varying the size of the training data are shown in

Fig.3.1.

To compare the LVI-based method (Eq.3.14) with the GVI-based one (Eq.3.15),

we also evaluated the KL divergences between the true predictive distribution (See

Fig.3.2) and the approximated ones. According to our results, we can notice that

the predictive distributions obtained using both methods become gradually closer to

the true distribution by increasing the training dataset size (See Fig.3.3). Indeed, we

can clearly see that the KL values when using both LVI and GVI decrease with the

growth of training dataset size and that the trend is similar for both methods which

can be explained by the fact that LVI is partly based on the parameters obtained via

GVI. When the amount of training data is small, the performance of LVI is better

than GVI. However, the KL divergence when using GVI keeps a stable and better

level when the amount of training data increases.
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Figure 3.2: The true distribution based on generating 10000 points from a two-
component mixture model with parameters α = [[3, 25, 12], [21, 5, 15]],π = [0.7, 0.3]

Figure 3.3: Comparison of KL divergences the true distribution and approximated
ones obtained using GVI and LVI methods. The KL values are averaged over 5
simulation rounds.

3.3.2 Occupancy Estimation

In this section, we apply our statistical framework to tackle occupancy estimation

problem in different situations and scenarios to verify its validity. The data used

are extracted from a real-life heterogenous sensor environment as we explain in the

following.

Dataset Description and Preprocessing Procedure

The real data used in this section were collected from a test bed (Fig.3.4) in Greno-

ble Institute of Technology. The test bed is an office usually used by a professor and

3 PhD students. It also houses frequently visitors for meetings and presentations.
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Figure 3.4: Sensor test bed at Grenoble INP [2]

Many sensors are installed in the office (e.g. temperature, relative humidity, motions,

C02, power consumption, door and window positions, acoustic pressure from micro-

phone, etc.). Moreover, two video cameras were installed to record real occupancy

numbers and activities.

More details about the test bed and data collection and processing can be found

in a previous work [2] where it was shown that the most relevant features that should

be considered for occupancy estimation are motion, power consumption, acoustic

pressure (microphone) and door opening. Thus, the data set that we consider in the

following simulations is composed of 718 four-dimensional labeled vectors. The data

directly obtained from sensors have generally different degrees of magnitude. Thus,

we have used the following activation function in our experiments:

A(x) = tanh(x ∗ 0.1 + 0.3) (3.16)

The 0.1 keeps the data from crowding around the edge of tanh and enlarges data

features. The 0.3 is the factor to avoid the appearance of zero in data. If zero

appears in the denominator, the result will be singular. In addition, cross-validation

is essential and helpful for avoiding over-fitting since the dataset is small. Thus, the

different data classes are divided into training data and test data in a ratio of 0.7:0.3.
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Occupancy Estimation with Original Training Data

The original training data is imbalanced as we can see from Table 3.1. We con-

sidered these data to test our model with or without over-sampling. The purposes is

to verify the necessity of synthesizing new data to improve the estimation accuracy.

Table 3.1: Size of the classes in the original training data.

Label Number of samples

0 352

1 82

2 42

3 18

4 6

The results of the model without over-sampling are shown in Fig.3.5. The bar

chart shows how many samples from each class are predicted correctly. And the de-

tailed prediction can be seen in the line graph. The blue line and points represent the

actual situation. On the contrary, the orange line and point represents the predicted

situation. The labels on the x-axis represent the prediction accuracy for different

numbers of people in the office. Fig.3.5 represents just one simulation of the exper-

iments using training data without over-sampling. After 10 simulations, the total

accuracy stays around 82.94%. Yet, the distribution of the correct labels predictions

is extremely imbalanced. There are few or no correct predictions for labels 2,3,4. This

can be explained by following two points:

• The data in classes 1 and 2 are too much similar. It is difficult for the model

to distinguish the two classes when the training data is so small.

• The sizes of classes 3 and 4 are too small and because our model is based on

the integral normalization coefficient, the densities for classes 3 and 4 are too

sparse.

The model is then reinforced after adding over-sampling module. Assuming that

the number of iterations for over-sampling module is N , the growth of data size in

each class in each iteration is calculated according to the following equation:
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(a) Bar Chart

(b) Line Graph

Figure 3.5: The results using original training data without over-sampling

S = S+ (max(S)− S)/N (3.17)

where S = [352, 82, 42, 18, 6] represents the size of the different classes in the original

data set. It is noteworthy that the hyperparameter u∗ and v∗ are updated after each

iteration. As the training data increases, these parameters will be optimized step

by step based on last iteration. Moreover, the synthesized data of each iteration are

based on the training data of last iteration. This way of data generation makes the

distribution of training data close to the real distribution.

Fig.3.6 shows the results of the model after over-sampling. Obviously, the distri-

bution of the correct predictions is better than Fig.3.5. Even though the accuracy

just increases from 82.48% to 86.63%, the prediction accuracy regarding classes 4 and

5 observed significant improvement. Thus, the average accuracy in terms of labels has

been improved significantly. After 10 simulations with and without over-sampling, we
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(a) Bar Chart

(b) Line Graph

Figure 3.6: The results with over-sampling.

observed that the average accuracy in terms of labels had increased from 36.32% to

65.96%. In the line graph of Fig.3.6, we can still see that the majority of predictions

that should be ”label 2” are ”label 1”.

Occupancy Estimation with Extremely Small Training Data

When training data is extremely small, the KL divergences between predictive

distribution based-LVI and the true distribution is better than the GVI-based vari-

ational inference learning. Thus, it is valuable to test the performance of the model

with over-sampling.

The smallest class size in the original training data is 6. Thus, the sizes of the

rest of classes are reduced to 6 samples (i.e.under-sampling) before the experiment.

We can see the result of our prediction model without data generation in Fig.3.7.

Almost all the predictions except those for class 0 are wrong, though the predictive
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(a) Bar Chart

(b) Line Graph

Figure 3.7: The results when using 6 training data in each class without over-
sampling.

distribution based on LVI is better than the one reached by GVI.

In the second experiment we introduced generated data. We set the number of

iterations to 10 and generate 10 samples for each label in each iteration which gave us

106 training samples in each class. The prediction results are shown in Fig.3.8. After

10 simulations, the total accuracy increased from 69.76% to 79.72%. In addition,

the average accuracy in terms of labels significantly increased from 20.32% to 52.98%

which is close to the average accuracy of the model with original training data.

All the results are summarized in Tables 3.2 and 3.3. It is clear that the perfor-

mance of the model is always improved with the support of the over-sampling mod-

ule. It is interesting to observe also that the model with over-sampling performed

well when we started with 6 samples in each class which makes our framework and

attractive alternative when there are not too many training data at the beginning of
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(a) Bar Chart

(b) Line Graph

Figure 3.8: The results wen using 6 training data in each class with over-sampling.

the estimation task.

Table 3.2: The total Accuracy.

Training Data

Over-sampling
Without With

Full original Data 82.48% 86.63%

6 Samples in each class 69.76% 79.72%
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Table 3.3: The Average accuracy in terms of classes.

Training Data

Over-sampling
Without With

Full original Data 36.32% 65.96%

6 Samples in each class 20.32% 52.98%
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Chapter 4

A Hybrid of Interactive Learning

and Predictive Modeling For

Occupancy Estimation in Smart

Buildings

In this chapter, we present an occupancy estimation framework by combining the

predictive model with interactive learning. This framework performs well for both

small and imbalanced data.

4.1 Approximation of the Predictive Distribution

of the Generalized Dirichlet Mixture Model

In this section, we briefly present the GD mixture model that we have previously

proposed in [74], then we develop an approximation to its predictive distribution.

4.1.1 Generalized Dirichlet Mixture Model

Assume that a D-dimensional positive vector Y⃗ = (Y1, · · · , YD) is sampled from

a finite mixture model of GD Distributions with M components, then:
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p(Y⃗ | π⃗, α⃗, β⃗) =
M∑
j=1

πjGD
(
Y⃗ | α⃗j, β⃗j

)
(4.1)

where α⃗ = {α⃗1, . . . , α⃗M}, β⃗ =
{
β⃗1, . . . , β⃗M

}
, α⃗j and β⃗j are the parameters of the

GD distribution representing component j, where α⃗j = (αj1, · · · , αjD) and β⃗j =

(βj1, · · · , βjD). π⃗ = (π1, · · · , πM) denotes the mixing coefficients with the constraints

that are positive and sum to one. GD
(
Y⃗ | α⃗j, β⃗j

)
is a GD distribution representing

component j with parameters α⃗j and β⃗j and is defined by [74]

GD
(
Y⃗ | α⃗j, β⃗j

)
=

D∏
l=1

Γ (αjl + βjl)

Γ (αjl) Γ (βjl)
Y
αjl−1

l

(
1−

l∑
k=1

Yk

)γjl

(4.2)

where
∑D

l=1 Yl < 1 and 0 < Yl < 1 for l = 1, · · · , D, αjl > 0, βjl > 0, γjl =

βjl − αjl+1 − βjl+1 for l = 1, · · · , D − 1, and γjD = βjD − 1.

Consider that a set of independent identically distributed vectors Y =
{
Y⃗1, . . . , Y⃗N

}
follow a finite GD mixture model. According to the Bayes’ theorem, the probability

that the vector i is from component j conditional on the observed Y⃗i (also called as

responsibilities) can be written as

p
(
j | Y⃗i

)
∝ πjGD

(
Y⃗i | α⃗j, β⃗j

)
(4.3)

Because of an interesting mathematical property of the GD distribution [74], the

responsibilities can be redefined as

p
(
j | Y⃗i

)
∝ πj

D∏
l=1

Beta (Xil | αjl, βjl) (4.4)

where Xi1 = Yi1 and Xil = Yil/(1 −
∑l−1

k=1 Yik) for l > 1 and Beta (Xil | αjl, βjl) is a

Beta distribution with parameters (αjl, βjl):

Beta (Xil | αjl, βjl) =
Γ(αjl + βjl)

Γ(αjl)Γ(βjl)
X
αjl−1

il (1−Xil)
βjl−1 (4.5)

where Γ(z) =
∫∞
0
xz−1e−xdx. The Beta distribution has been widely deployed in

various industrial application such, smart wireless indoor localization [75], thanks to

its flexibility and ease of use.

Now, the mixture model of the finite GD distribution underlying dataset Y can
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be redefined by a new dataset X =
{
X⃗1, . . . , X⃗N

}
using the following clustering

structure with conditionally independent features

p
(
X⃗i | π⃗, α⃗, β⃗

)
=

M∑
j=1

πj

D∏
l=1

Beta (Xil | αjl, βjl) (4.6)

The formal conjugate prior distribution of the Beta distribution [49] does not

have a closed form because of the need to approximate the normalization factor. A

solution to find a tractable approximation to the conjugate prior, based on a global

variational inference (GVI) framework, has been proposed in [76], using a product of

two independent Gamma distributions as

f(αjl, βjl) ≈ Gam (αjl; a0, b0)×Gam (βjl; c0, d0)

=
ba00

Γ (a0)
αa0−1
jl e−b0αjl × dc00

Γ (c0)
βc0−1
jl e−d0βjl

(4.7)

With enough data Xl = {X1l, X2l, . . . , XNl}, the posterior distribution could ap-

proximated by a product of two independent gamma distribution as [76]

f(αjl, βjl | Xl) ≈ Gam (αjl; a
∗, b∗)×Gam (βjl; c

∗, d∗)

=
b∗a

∗

Γ (a∗)
αa

∗−1
jl e−b

∗αjl × d∗c
∗

Γ (c∗)
βc

∗−1
jl e−d

∗βjl
(4.8)

where a∗, b∗, c∗ and d∗ are the hyperparameters of the posterior distribution, which

are obtained by variational Bayes estimation as detailed in [76].

4.1.2 Predictive Distribution of the Mixture Model

The predictive distribution can assess the uncertainty of a new coming observation

with respect to the existing dataset. Let Y⃗i be that new observation independent from

the existing Y which is assumed to be generated from GD
(
Y⃗i | α⃗j, β⃗j

)
. The redefined

new observation X⃗i obtained using the transformation presented after Eq.4.4 follows

a product of Beta distributions. The predictive distribution of X⃗i given X is

f(X⃗i | X ) =

∫ ∞

0

∫ ∞

0

D∏
l=1

[Beta(Xil | αjl, βjl)f(αjl, βjl | Xl)] dα⃗jdβ⃗j (4.9)
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f(X⃗i | X ) ≤ fupp(X⃗i | X )

=
D∏
l=1

[
1

Xil(1−Xil)

b∗a
∗

Γ (a∗)

d∗c
∗

Γ (c∗)

Γ (α0 + β0)

Γ (α0) Γ (β0)
e−α0[ψ(α0+β0)−ψ(α0)]−β0[ψ(α0+β0)−ψ(β0)]

]

×
∫ ∞

0

∫ ∞

0

D∏
l=1

[
eαjl[ψ(α0+β0)−ψ(α0)]+βjl[ψ(α0+β0)−ψ(β0)]

X
αjl

il (1−Xil)
βjlαa

∗−1
jl e−b

∗αjlβc
∗−1
jl e−d

∗βjl

]
dα⃗jdβ⃗j

=
D∏
l=1

[
1

Xil(1−Xil)

b∗a
∗

Γ (a∗)

d∗c
∗

Γ (c∗)

Γ (α0 + β0)

Γ (α0) Γ (β0)
e−α0[ψ(α0+β0)−ψ(α0)]−β0[ψ(α0+β0)−ψ(β0)]

]

×
D∏
l=1


∫ ∞

0

e

−αjl [b
∗ − lnXil − ψ (α0 + β0) + ψ (α0)]︸ ︷︷ ︸

g(Xil,α0,β0) αa
∗−1
jl dαjl


×

D∏
l=1


∫ ∞

0

e

−βjl [d
∗ − ln(1−Xil)− ψ (α0 + β0) + ψ (β0)]︸ ︷︷ ︸

h(Xil,α0,β0) βc
∗−1
jl dβjl


(4.10)

With the analytically tractable posterior distribution in Eq.4.8, we can approxi-

mate this predictive distribution as

f(X⃗i | X )

≈
∫ ∞

0

∫ ∞

0

D∏
l=1

[
Beta(Xil | αjl, βjl)×

b∗
a∗

Γ (a∗)
αa

∗−1
jl e−b

∗αjl
d∗

c∗

Γ (c∗)
βc

∗−1
jl e−d

∗βjl

]
dα⃗jdβ⃗j

=
D∏
l=1

[
1

Xil(1−Xil)

b∗
a∗

Γ (a∗)

d∗
c∗

Γ (c∗)

]

×
∫ ∞

0

∫ ∞

0

D∏
l=1

[
Γ(αjl + βjl)

Γ(αjl)Γ(βjl)
X
αjl

il (1−Xil)
βjlαa

∗−1
jl e−b

∗αjlβc
∗−1
jl e−d

∗βjl

]
dα⃗jdβ⃗j

(4.11)

The previous equation involves the Inverse Beta function which logarithm has been

proved to be concave [66]. Using that concavity property, the following inequality can

be easily obtained by first order Taylor expansion
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Γ(α + β)

Γ(α)Γ(β)
≤ Γ (α0 + β0)

Γ (α0) Γ (β0)
× e[ψ(α0+β0)−ψ(α0)](α−α0)+[ψ(α0+β0)−ψ(β0)](β−β0) (4.12)

where ψ(·) is the digamma function defined as ψ(·) = ∂ ln Γ(x)/∂x. Using Eq. 4.12

and a local variational inference (LVI) method [67] we can find an upper bound for

the predictive distribution as shown in Eq.4.10. Compared with the global variational

inference [76] which approximates all the model’s variables, LVI is considered as a

’local’ approach to approximate a subset of variables [49].

In Eq.4.10, the integrand in each integration is a Gamma distribution. To simplify

the predictive distribution, these integrations can be replaced by

∫∞
0
e−αjlg(Xil,α0,β0)αa

∗−1
jl dαjl

=


Γ(a∗)

g(Xil,α0,β0)
a∗ g (Xil, α0, β0) > 0

∞ g (Xil, α0, β0) ≤ 0∫∞
0
e−βjlh(Xil,α0,β0)βc

∗−1
jl dβjl

=


Γ(c∗)

h(Xil,α0,β0)
c∗ h (Xil, α0, β0) > 0

∞ h (Xil, α0, β0) ≤ 0

(4.13)

Using the previous equation, by obviously considering that g (Xil, α0, β0) > 0 and

h (Xil, α0, β0) > 0, we obtain a closed-form upper bound for the predictive distribu-

tion:

fupp(X⃗i | X )

=
D∏
l=1

[
1

Xil(1−Xil)

[
b∗

g (Xil, α0, β0)

]a∗ [
d∗

h (Xil, α0, β0)

]c∗
× Γ (α0 + β0)

Γ (α0) Γ (β0)
e−α0[ψ(α0+β0)−ψ(α0)]−β0[ψ(α0+β0)−ψ(β0)]

] (4.14)

The upper bound is just a function of α0, β0 after being given Xil, which can be

rewritten as

fupp(X⃗i | X ) =
D∏
l=1

[
b∗a

∗
d∗c

∗

Xil(1−Xil)
× F (Xil, α0, β0)

]
(4.15)
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where F (Xil, α0, β0) can be straightforwardly deduced from Eq. 4.14. The means E(α)

and E(β) are the most representative values of α0 and β0, respectively, which can be

taken to approximate the optimal solution (α∗
0, β

∗
0). Besides, the means calculated

by the observations in X are independent of Xil. To facilitate the calculation, the

minimum of the upper bound can be approximated as

min
α0,β0

fupp(X⃗i | X )

=
D∏
l=1

[
b∗a

∗
d∗c

∗

Xil(1−Xil)
× min

α0,β0
F (Xil,E(α),E(β))

]

≈
D∏
l=1

[
b∗a

∗
d∗c

∗

Xil(1−Xil)
× F (Xil,E(α),E(β))

] (4.16)

Since minα0,β0 fupp(X⃗i | X ) is unnormalized, we can calculate the normalization

factor:

Cupp =

∫ 1

0

min
α0,β0

fupp(X⃗i | X )dX⃗i (4.17)

The approximation to the mixture predictive distribution is finally obtained as

f(X⃗i | X ) ≈ fLV Iappx(X⃗i | X )

=
M∑
j=1

πj
Cuppj

D∏
l=1

[
b∗jl

a∗jld∗jl
c∗jl

Xil(1−Xil)
× F (Xil,E(αjl),E(βjl))

]
(4.18)

4.2 Occupancy Estimation Framework

In this section, we introduce our occupancy estimation framework. The framework

summarized in Fig. 4.1 is composed of two main modules: 1) an interactive learning

module [36, 77] that allows to get the labels directly from the users and that we

summarize briefly in this section, and 2) a predictive modeling one that we have

developed in the last section. While interactive learning will allow to ensure to collect

a set of training data of good quality with a minimal interaction of the user and to a

certain extent self labeling to reduce further the involvement of the user and to retrain

the model’s hyperparameters, predictive modeling will allow continuous simultaneous

occupancy estimation.
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Figure 4.1: Occupancy estimation framework.

The so-called interactive learning is mainly motivated by its proven effectiveness

for occupancy estimation as shown in [36, 77]. Interactive learning is a process that

allows the exchange of information with users in buildings when needed and it is used

here with the ultimate goal to reduce inner product of estimation errors. It could be

obviously used at the beginning to start collecting training data to be able to build the

predictive statistical model and learn its parameters. It is important to distinguish

between interactive learning and active learning [78] in our context. Indeed, while

active learning assumes that there is an ”oracle” such as a human expert to get

ground-truth labels for selected unlabeled instances (i..e the outputs of the sensors

such as motion detection, power consumption or CO2 concentration) which is very

difficult in our case, interactive learning extends supervised learning by collecting the

labels directly from the occupants themselves.

The most important problem in interactive learning is determining when to ask
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the occupants to get their exact number. If the frequency is too high, occupants will

feel bored and will not give timely feedback. Besides, the high frequency of inquiry is

also the reflection of the weak prediction ability of the model itself. On the opposite

side, the inner product of errors will be too high if the interactive learning is not

activated when the prediction result of the original model is not satisfactory. In [36],

three criteria had been designed to determine when an interaction, called an ask, with

the user is required: 1) the density of the neighborhood of the data point to label

(i.e. the added data point should increase the density), 2) the estimated error in the

neighborhood of the potential data point to add to the training data (i..e the added

data point should reduce the error), 3) the low level weight: if the weight of a given

class is too small and training data is not enough, the prediction ability of the model

for the small classes will also be insufficient. So, a minimum number of data points

is set as a condition for an ask. The three criteria will be checked for each new data

point in turn as we can see in Fig.4.1. If any criterion is validated, occupant response

has to be taken into account and added to training dataset with the new data point.

Furthermore, the hyper parameters of the predictive model that we shall develop in

the next section need to be updated using the new training data. For more details

about these three criteria and the interactive learning part, the interested reader is

referred to [77].

4.3 Experimental Results

In this section, the predictive distribution of GD model is validated using synthetic

data. Besides, the predictive distribution model with interactive learning is applied

on real-world data that we have collected. We will illustrate our results from three

perspectives. First, occupancy estimation with original training data. This is a

regular experiment to test the model performance when the full training data is

given. Second, occupancy estimation with extremely small training data. Predictive

distribution has relatively good performance under small training data. The goal of

this perspective is to validate that the predictive distribution of GD mixture model

with interactive learning is also good enough when there is only a small supply of

training data. Finally, a comprehensive comparative analysis of the above two aspects

is extensively detailed and different scenarios are discussed in the third part.
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4.3.1 Synthetic Data

In this section, we will use two main variational approaches to approximate the

predictive distribution namely GVI and LVI. As we mentioned previously, Eq.4.18 is

the predictive distribution of GD based on LVI. The GVI one is the approximation

using the posterior mean as the point estimates:

f(X⃗i | X ) ≈ fGV Iappx (X⃗i | X )

=
M∑
j=1

πj

D∏
l=1

Beta (Xil | E(α),E(β))
(4.19)

Table 4.1: Comparison of the KL divergences (×10−2)

Distribution KL divergences N = 10 N = 20 N = 50 N = 200 N = 500

Beta(x; 3, 4)
KL(f ||fGV Iappx ) 36.24 8.60 1.75 0.56 0.20

KL(f ||fLV Iappx) 25.80 7.59 1.43 0.54 0.25

Beta(x; 4, 5) ∗ 0.2 KL(f ||fGV Iappx ) 27.35 12.53 5.25 1.36 0.28

Beta(x; 2, 8) ∗ 0.8 KL(f ||fLV Iappx) 20.69 11.76 7.03 4.45 4.20

Beta(x; 3, 8) ∗ 0.4 KL(f ||fGV Iappx ) 23.77 14.61 6.82 1.25 0.5005

Beta(x; 5, 5) ∗ 0.6 KL(f ||fLV Iappx) 18.52 11.27 5.20 0.91 0.5081

Kullback-Leibler (KL) divergence was used for the comparison of distributions

[53]. The result of KL is smaller when the two distributions being compared are more

similar. Because the synthetic data are generated from a known GD distribution, the

true distribution (f) is compared with GVI (fGV Iappx ) and LVI (fLV Iappx) distribution to

calculate two KL values as in Table 4.1. One single distribution (Beta(x; 3, 4)) and

two mixture distributions (Beta(x; 4, 5) ∗ 0.2, Beta(x; 2, 8) ∗ 0.8 and Beta(x; 3, 8) ∗
0.4, Beta(x; 5, 5) ∗ 0.6) are considered to extract the synthetic data from 10 rounds

of simulations. Each round, the synthetic data is grouped and tested from small to

large according to the size of data. Table 4.1 shows the mean of KL values. As we

can see, the KL values of both GVI and LVI decrease with the increase of training

data size, which indicates that the performance of predictive distribution is better

when more training data can be given. It is noteworthy that KL divergence of LVI

is stably smaller when the amount of training data is under 50, and the performance
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of GVI is better when the size of training data reaches 500.

4.3.2 Occupancy Estimation

In this section, our statistical framework is applied to tackle occupancy estima-

tion problem with different scenarios. The data used are extracted from a real-life

heterogeneous sensor environment. In order to evaluate the performance of the frame-

work, we considered four commonly used metrics: Precision, Recall, F-measure and

Accuracy :

Precision(P ) =
TP

TP + FP
(4.20)

Recall(R) =
TP

TP + FN
(4.21)

F-measure(F1) =
2 · P ·R
P +R

(4.22)

Accuracy(Acc.) =
TP + FN

TP + FP + TN + FN
(4.23)

where TP, TN, FP, and FN are true-positives, true-negatives, false-positives and

false-negatives, respectively. These metrics except accuracy are calculated for each

label because of the imbalanced nature of the training data as we shall see later, and

find their average weighted by the number of true instances for each label. Two kinds

of accuracy are considered. The first is the total accuracy on the full training dataset

(Acc.T ) and the second is the average accuracy in terms of classes (Acc.A).

Dataset Description, Feature Selection and Preprocessing Procedure

The same real data used in this section is also collected from the test bed (Fig.3.4),

in Grenoble Institute of Technology, described in [2] where the authors considered

an office which is monitored by many sensors (e.g. temperature, relative humidity,

motions, CO2, power consumption, door and window positions, acoustic pressure

from microphone, etc.). Two cameras are used to record the true occupancy numbers.

During the data capture period, a professor and 3 PhD students used the office, and

the number of people in the room was uncertain.

After calculation of information gains and the analysis of decision trees by the
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authors, the top 4 most important features were selected and shall be used in this

experiment to test the framework proposed in this paper. These features are Motion,

Power Consumption, Acoustic Pressure (the microphone just provides the amplitude

of the sound in dB) and Door Opening. Each data point in the dataset is based on

an interval of 30 mins (referred to as 1 quantum). Motion counter is a PIR sensor

which outputs a binary value and reports 1 whenever some motions are detected.

The number of motions is the value of Motion in 1 quantum. There are 4 sensors

connected to inhabitant laptops in the office. They are also binary sensors set to

report 1 when the voltage is higher than 15W. The value of Power Consumption is

how many laptops’ voltage exceeded 15W. Acoustic Pressure is the root mean square

(or average) of the amplitude of a sound. Door Opening is a state quantity: 0 means

the door was always closed and 1 was always opened. The fourth feature corresponds

then to the time ratio of the door opened during time quantum.

The full dataset is composed of 718 four-dimensional labeled vectors ⟨f1, f2, f3, f4; y⟩.
Besides, the data directly obtained from sensors have generally different degrees of

magnitude. We have used L2-norm to independently normalize each sample. Finally,

we used cross-validation. The different data classes were divided into training data

and test data in a ratio of 0.7:0.3.

Occupancy Estimation with Original Training Data

The original training data is imbalanced on labels as we can see from Table 3.1

(Label 0: 352, Label 1: 82, Label 2: 42, Label 3: 18, Label 4: 6). In this section,

we considered this data to test our model with and without interactive learning.

The results are shown in Fig.4.2. The experimental uncertainty can influence the

numerical comparison. Random seeds are helpful to ensure the consistency of random

selection between the cases with and without interactive learning. Fig.4.2 displays

the average result of 10 experiments (seed 1-10) using real data. In the bar chart,

x-axis represents the different labels meaning the occupancy number in the test bed.

For a single label, the blue bar is the total amount of test data. The orange and green

bars represent how many samples are predicted correctly using the model with and

without interactive learning.

The total accuracy without interactive learning is 78.52%, and the single accuracy

of label 0 is much better than that of labels 1, 2, 3 and 4. This can be explained by
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Table 4.2: Comparison table of occupancy estimation using different training datasets
and frameworks, where 6I and 6 mean that the training uses 6 samples in each class
with and without interactive learning. FI and F mean that the training uses all
samples with and without interactive learning.

Training Dataset

and Framework
Acc.T Acc.A P R F1

6I 84.10% 76.73% 90.34% 84.10% 85.46%

6 63.92% 42.91% 78.40% 63.92% 64.41%

FI 87.51% 75.05% 92.58% 87.51% 88.45%

F 78.52% 51.34% 84.70% 78.52% 79.78%

the higher amount of label 0 in the training data. The model is then reinforced after

adding interactive learning module. The total accuracy has been improved to 87.51%

with 36.3 asks. The accuracy of all classes has been improved in varying degrees

especially labels 1, 2, 3, and 4. The average accuracy in terms of classes is increased

from 51.34% to 75.05%. The trends of Precision, Recall and F-measure are similar

to the Accuracy trend.

Figure 4.2: The results using original training data with and without interactive
learning (average values obtained from 10 experiments).
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Occupancy Estimation with Extremely Small Training Data

With synthetic data, the results prove that KL divergence between LVI-based pre-

dictive distribution and true one is better than GVI-based variational learning when

training data is extremely small. Thus, it is valuable to test the performance of the

model with interactive learning. The smallest class in original training data contains

6 samples. The rest of classes are all reduced to 6 samples before the experiments.

Figure 4.3: The results using 6 training data in each class with and without interactive
learning (average values obtained from 10 experiments).

Fig.4.3 displays the results in this scenario. The total accuracy of the model

using 6 samples in each class improved from 63.92% to 84.10% after combining the

interactive learning with 64.2 asks. In addition, the average accuracy in terms of

labels significantly increased from 42.91% to 76.73% which is beyond the average

accuracy of the model with original training data. Even though the total accuracy

under the small training data is not better than that using original training data,

84.10% is an encouraging accuracy for occupancy estimation when there are only

few labeled data for training. From Table 4.2, it is clear that the performance of

the model using an extremely small training data without interactive learning is far

worse than that using original training data, which is expected since real data are

more complex and uncertain as compared with synthetic data. However, the small

weighted class sometimes performs better after reducing all classes to 6 samples. For

example, the result of Label 2 (5.7) in Fig. 4.3 is higher than that (5.6) in Fig. 4.2
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without interactive learning module. The balanced training dataset of Fig. 4.3 is

the reason for this situation. As in Table 4.2, the difference of all metrics between

small training data and original training data are obviously decreasing after using

interactive learning. Consequently, interactive learning is an essential module when

there are not too many training data at the beginning of the estimation task.

Comparative Analysis

The authors in [3] proposed a variational learning of a shifted scaled Dirichlet

mixture model with component splitting approach (VSSDMM) to estimate occupancy

using the same real data. They also assessed the experimental results using Accuracy,

Precision, Recall and F-measure and performed a comparison with the results of

variational learning of Dirichlet mixture model (VDMM) and variational learning of

Gaussian mixture model (VGMM). The results are in Table 4.3, in which VSSDMM

model is shown to be always better than VDMM and VGMM. It is noteworthy that,

for all four metrics, our framework with interactive learning provided better results

than VSSDMM, especially for Precision.

Table 4.3: Comparison Table of Occupancy Estimation using VSSDMM, VDMM and
VGMM [3].

Framework Acc. P R F1

VSSDMM 81.72% 79.87% 81.72% 79.44%

VDMM 79.14% 77.31% 79.14% 78.21%

VGMM 78.03% 76.11% 78.03% 77.06%

In this section, we also considered the change of accuracy with the increase of

ask times to compare the performance of the model under original training data and

6 training data in each class. In Fig. 4.4, 4 kinds of accuracy and ask frequency

are averaged over 10 experiments and fluctuate with the increase of test samples.

The results in Fig.4.2 and Fig.4.3 are the comparison of accuracy pd (red line) and

accuracy final ask (blue line) in Fig. 4.4.a and Fig. 4.4.b. The accuracy of the

starting point (test 0) is actually just 0 or 1. But all the accuracy of lines in Fig. 4.4

are the average values of 10 experiments using the real data and the starting points

are maybe different. accuracy final ask and accuracy pd are obtained from the
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(a) Original training data

(b) 6 training data in each class

Figure 4.4: The fluctuation of accuracy with the increase of ask times.

predictive distribution of GD model with and without interactive learning. However,

the accuracy final ask is the revised result by interactive learning. It is difficult

to see the changes that the interactive learning module brings to the result of the

predictive distribution model. Thus, accuracy pd ask (orange line) records the

unrevised result. The comparison between accuracy pd and accuracy pd ask can

show how the interactive learning improves the accuracy of the predictive distribution

model by adding new data from interaction to training data and updating hyper

parameters. The final accuracy is accuracy pd selfTraining. The result of each

test is considered as a new labeled vector added to the training data. The y-axis of

Fig. 4.4 does not match the ask Frequency (purple line), which is just a reference

for observing the impact of ask frequency on accuracy. The ask Frequency is the

average value of ask times at every five samples after 10 experiments.

With original training data, the accuracy pd ask, accuracy pd selfTraining

and accuracy pd are similar in the experiment. But, the accuracy pd ask exceeds
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the accuracy pd and obviously has a better accuracy at the end of experiments with

6 training data in each class. With the rapid accumulation of training data, accu-

racy pd selfTraining is always better than accuracy pd and accuracy pd ask

before sample 130 in Fig.4.4.b, but gradually decreases and equals accuracy pd

because of the inner product of errors. No matter the size of training data, ac-

curacy final ask always maintained an advantage of almost 10 percentage points

compared with the other accuracy, and ask Frequency gradually decreases along

with the experimental training and self labeling using the results of interactive learn-

ing, which satisfies the requirement of practical application. As we can see from

Fig.4.4, while the interactive learning module is not helpful when enough training

data (original training data) is given, it is essential under extremely small training

data condition.
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Chapter 5

Conclusion

In this thesis, we developed different mixture models based predictive distributions

for activity recognition and occupancy estimation. Over-sampling and interactive

learning as extra modules are introduced to improve the performance of predictive

modeling.

In chapter 2, we presented an elegant principled statistical framework for predic-

tive modeling based on the GID distribution and a local variational inference. The

proposed approach is motivated first by the flexibility of the GID distribution when

modeling semi-bounded positive vectors that are naturally generated by several ap-

plications involving sensors outputs and second by the efficiency of local variational

inference when the amount of training data is limited. Extensive simulations based

on synthetic data as well as a challenging real application that concerns activity

recognition have shown the merits of our approach.

In chapter 3, we introduced a model based on the predictive distribution of the

inverted Dirichlet mixture model to tackle the challenging problem of occupancy es-

timation in smart buildings. This model is mainly motivated by its prediction ability

when only small training data are available. Moreover, an over-sampling approach

is introduced to handle imbalanced data that we generally face in occupancy esti-

mation.The model is shown to be promising and to provide impressive performance

under small training data.

Finally, in chapter 4, we developed an occupancy estimation methodology in smart

buildings in the commonly faced critical barriers for a practical implementation re-

lated to: 1) the knowledge of the stochasticity of occupancy and its modeling, 2)
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the non-Gaussianity of the generated data from the deployed sensors, 3) the neces-

sity to have a large amount of labeled data to obtain a proper fit of the occupancy

distribution, 4) the difficulty to obtain such labeled data since the labelling must

be performed by the inhabitants. To tackle the first two challenges a mixture of

generalized Dirichlet distributions is deployed. The third challenge is approached by

developing the generalized Dirichlet mixture predictive distribution to allow reliable

labeling of the data while interacting in an efficient manner with the users to get

their output in order to face the fourth challenge. The proposed approach can be

viewed as an elegant principled statistical framework for estimating occupancy in

smart buildings using a set of easy-to-install, low-cost and small sensors. Our results

suggest that our approach, which can be perceived as less invasive than camera-based

ones, provides promising results without requiring a strong supervision information

(i.e. fully ground-truth labels) which is difficult to get due to its high cost in terms

of users involvement.

Potential future works could be devoted to developing a principled approach for

the hyperparameters optimization like the one proposed in [79] within our occupancy

estimation framework. The results of this research will be useful to tackle a future

problem related to activities recognition and prediction with the ultimate goal to

integrate all the work for a practical implementation of a smart energy management

system to automatically control energy consumption that puts constantly the users

in the loop without affecting their comfort nor their privacy.
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Appendix A

Proof of Equation 3.10

The logarithm of the Multivariate-Inverse-Beta has been proved to be concave [44].

Thus, the following inequality can be easily obtained by first order Taylor expansion

ln
Γ(
∑D+1

d=1 αd)∏D+1
d=1 Γ(αd)

≤ ln
Γ(
∑D+1

d=1 α̃d)∏D+1
d=1 Γ(α̃d)

+
D+1∑
d=1

[
ψ

(
D+1∑
d=1

α̃d

)
− ψ(α̃d)

]
(αd − α̃d)

(A.1)

where α̃d, k = 1, 2, ..., D + 1 is any point from the posterior distribution. Taking the

exponential of both sides, we have

Γ(
∑D+1

d=1 αd)∏D+1
d=1 Γ(αd)

≤ Γ(
∑D+1

d=1 α̃d)∏D+1
d=1 Γ(α̃d)

× e
∑D+1

d=1 [ψ(
∑D+1

d=1 α̃d)−ψ(α̃d)](αd−α̃d)

(A.2)

By substituting (A.2) into (3.6) and with some mathematical manipulations, we

can obtain the following upper-bound
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f(x|X) ≤
∫

· · ·
∫
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∑D+1

d=1 α̃d)−ψ(α̃d)](αd−α̃d)
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∗
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=
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d=1 Γ(α̃d)

× e−
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e−αd[v∗d−lnxd−ψ(
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d=1 α̃d)+ψ(α̃d)+ln(1+

∑D
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× α
u∗d−1

d dαd

≈ fupp(x|X)

(A.3)

For simplicity let’s denote

G(xd, α̃) = v∗d − lnxd − ψ

(
D+1∑
d=1

α̃d

)
+ ψ(α̃d) + ln

(
1 +

D∑
d=1

xd

)
(A.4)

where d = 1, 2, ..., D+1. Thus, the integration in Eq.A.3 has a same form as Gamma

function and could be reduced to

∫
e−αdG(xd,α̃)α

u∗d−1

d dαd =


Γ(u∗d)

[G(xd, α̃)]
u∗d

G(xd, α̃) > 0

∞ G(xd, α̃) ≤ 0

(A.5)

Here, we attempt G(xd, α̃) > 0 for any d because the situation of G(xd, α̃) ≤ 0

is unsolvable. Finally, the analytically tractable form of finite upper-bound of the
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predictive distribution is

fupp(x|X) =
Γ(
∑D+1

d=1 α̃d)∏D+1
d=1 Γ(α̃d)

× e−
∑D+1

d=1 α̃d[ψ(
∑D+1

d=1 α̃d)−ψ(α̃d)]

×
D+1∏
d=1

(v∗d)
u∗d

xd [G(xd, α̃)]u
∗
d

(A.6)
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