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Abstract

Matching mechanisms for two-sided shared mobility systems

Jie Gao, Ph.D.

Concordia University, 2021

Shared mobility systems have gained significant attention in the last few decades due, in large

part, to the rise of the service-based sharing economy. In this thesis, we study the matching mech-

anism design of two-sided shared mobility systems which include two distinct groups of users.

Typical examples of such systems include ride-hailing platforms like Uber, ride-pooling platforms

like Lyft Line, and community ride-sharing platforms like Zimride. These two-sided shared mobil-

ity systems can be modeled as two-sided markets, which need to be designed to efficiently allocate

resources from the supply side of the market to the demand side of the market. Given its two-sided

nature, the resource allocation problem in a two-sided market is essentially a matching problem.

The matching problems in two-sided markets present themselves in decentralized and dynamic

environments. In a decentralized environment, participants from both sides possess asymmetric

information and strategic behaviors. They may behave strategically to advance their own benefits

rather than the system-level performance. Participants may also have their private matching pref-

erences, which they may be reluctant to share due to privacy and ethical concerns. In addition, the

dynamic nature of the shared mobility systems brings in contingencies to the matching problems in

the forms of, for example, the uncertainty of customer demand and resource availability.

In this thesis, we propose matching mechanisms for shared mobility systems. Particularly, we

address the challenges derived from the decentralized and dynamic environment of the two-sided

shared mobility systems. The thesis is a compilation of four published or submitted journal papers.

In these papers, we propose four matching mechanisms tackling various aspects of the matching

mechanism design. We first present a price-based iterative double auction for dealing with asym-

metric information between the two sides of the market and the strategic behaviors of self-interested
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agents. For settings where prices are predetermined by the market or cannot be changed frequently

due to regulatory reasons, we propose a voting-based matching mechanism design. The mechanism

is a distributed implementation of the simulated annealing meta-heuristic, which does not rely on a

pricing scheme and preserves user privacy. In addition to decentralized matching mechanisms, we

also propose dynamic matching mechanisms. Specifically, we propose a dispatch framework that

integrates batched matching with data-driven proactive guidance for a Uber-like ride-hailing system

to deal with the uncertainty of riders’ demand. By considering both drivers’ ride acceptance uncer-

tainty and strategic behaviors, we finally propose a pricing mechanism that computes personalized

payments for drivers to improve drivers’ average acceptance rate in a ride-hailing system.
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Chapter 1

Introduction

The sharing economy has rapidly gained momentum across many industry sectors, such as

transportation, hospitality, energy, financing, and human resources, which is essential in develop-

ing inclusive, collaborative, ecological and mobile next-generation cities. As defined by Daniel

Schlagwein (Schlagwein, Schoder, & Spindeldreher, 2020), “The sharing economy refers to an

IT-facilitated peer-to-peer model for commercial or noncommercial sharing of underutilized goods

and service capacity through an intermediary without a transfer of ownership.” Due to its social,

economic and environmental benefits to the society, the sharing economy has maintained a strong

growing trend. A study by PricewaterhouseCoopers (PwC) shows that the sharing economy is pro-

jected to grow from roughly $15 billion in 2014 to around $335 billion in 2025 (Hawksworth &

Vaughan, 2014). Statistics Canada reports that the sharing economy has now become an annual

$1.3 billion industry in Canada (Foundation, 2019).

As one segment of the sharing economy, shared mobility has gained popularity in recent years,

serving as an innovative transportation strategy that enables users to gain short-term access to

transportation modes on an “as-needed” basis (S. Shaheen, Cohen, Zohdy, et al., 2016). Since

2010, more than $330 billion has been invested in shared mobility systems (Holland-Letz, 2021).

Shared mobility is an umbrella term that encompasses a variety of transportation modes, includ-

ing car-sharing, bike-sharing, micro-transit, on-demand ride-hailing, ride-pooling, and community

ride-sharing (Machado, de Salles Hue, Berssaneti, & Quintanilha, 2018), as shown in Figure 1.1.

Compared with traditional transportation strategies, the use of shared mobility systems presents a
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number of environmental, social, and transportation-related benefits (Mourad, Puchinger, & Chu,

2019; S. Shaheen et al., 2019). For example, ride-sharing systems match drivers and riders with

similar itineraries and time schedules, providing significant societal and environmental benefits by

reducing the total miles traveled in the transportation network, the number of cars used for personal

travel and improving the utilization of available seat capacity (Agatz, Erera, Savelsbergh, & Wang,

2012; Tafreshian, Masoud, & Yin, 2020). Recent studies of taxi trips in New York City (NYC) in-

dicate that sharing trips could reduce traffic by 40% or more and could reduce the fleet size by 30%

compared with the current transportation operation (Vazifeh, Santi, Resta, Strogatz, & Ratti, 2018).

The Transportation Sustainability Research Center at UC Berkley (Nicoll & Armstrong, 2016) also

indicates that ride-sharing could reduce carbon emissions between 34% and 41% per year for one

household.

Figure 1.1: Key areas of shared mobility

In general, shared mobility systems can be classified into two categories: one-sided sharing

systems and two-sided sharing systems, as shown in Figure 1.2. In a one-sided sharing system

such as car-sharing and bike-sharing, the system operator has full control over the transportation

resources and is responsible for allocating the resources to and coordinating the schedules of users

who share the resources. All users are considered at one side of the market while the operator is at

the other side. On the other hand, a two-sided sharing system contains two distinct groups of users,

for example drivers and riders. One group provides shared resources to the other group. These two

groups of users provide each other with network benefits. In such a system, the operator plays the

2



role of match-maker who provides matching services for both sides of the market. Typical examples

of two-sided sharing systems include ride-hailing and ride-sharing services provided by Uber, Lyft

and DiDi Chuxing and courier network services such as crowd-shipping. Two-sided shared mobility

systems can be modeled as two-sided markets where the system operator aims to match drivers from

the supply side of the market with riders from the demand side of the market (Furuhata et al., 2013;

Jia, Xu, & Liu, 2017; Rochet & Tirole, 2004).

Figure 1.2: One-sided shared mobility systems and two-sided shared mobility systems

1.1 Matching in two-sided markets

Matching in two-sided markets is a decision making process which deals with allocating cus-

tomer demand to service availability under imposed constraints from two sides of the market. This

decision-making process is the core part of building a successful shared mobility system. To that

end, a considerable amount of research has been devoted to the design and analysis of matching

approaches for two-sided shared mobility systems. In a recent comprehensive review (H. Wang &

Yang, 2019), matching approaches are classified into two categories: greedy matching and batched-

matching. Greedy matching algorithms, such as those proposed in (G. Feng, Kong, & Wang, 2020;

Lee, Wang, Cheu, & Teo, 2004), find the nearest driver or the shortest-travel-time driver for each

individual rider request. Although these methods are easy to implement and manage, they are my-

opic in the sense that they prioritize immediate individual rider satisfaction over efficient resource
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utilization across many riders, which jeopardizes rider satisfaction at a larger scale. In addition,

these matching methods do not explicitly address privacy concerns and strategic behaviors of the

participants in the two-sided markets, which hinders their practical application to the real-world

shared mobility systems. On the other hand, batched matching methods accommodate the needs of

more riders at a time by optimizing the matching among a group of drivers and riders accumulated

in a pre-determined batching window. However, existing batched matching methods used by ride-

hailing platforms are mostly reactive in nature. For example, they use price surge strategies to guide

idle drivers to high demand areas after the demands are realized, which, as shown in Chapter 5,

does not reduce much waiting times of riders and introduce other adversarial effects such as surge

chasing.

This dissertation aims to design matching mechanisms for computing high-quality matching

solutions that benefit drivers, riders, and the shared mobility system operator. These matching

mechanisms will improve the satisfaction of participants from both sides of the market. From the

perspective of the systems, they will contribute to the improvement of the matching efficiency and

user retaining rate, thus ensuring the sustainable growth of the systems.

1.2 Challenges of designing matching mechanisms for two-sided mar-

kets

One common challenge in matching mechanism design is the huge computation time demanded.

This is due to the market thickness and the NP-hard nature of the considered matching prob-

lems (Pinedo, 2012). This challenge is inherited in the matching problems in two-sided markets.

In addition to that, designing matching mechanisms for two-sided markets present two other chal-

lenges attributable to decentralized and dynamic market environment which are described below:

Decentralized Environment The challenge derived from the decentralized environment is to

compute matching solutions in the presence of asymmetric information and self-interested agents

in the market. Markets are naturally decentralized, in which matching related information is dis-

tributed and controlled by self-interested agents. There is no single fully-informed operator that

is entitled to hierarchically allocate resources and determine the courses of action for the agents.
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Agents from both sides of the market are motivated by different and conflicting objectives and have

private preferences of matching with a counterparty. Due to privacy and ethical concerns, they may

be reluctant to reveal their private information or may choose to reveal incomplete, and perhaps un-

truthful information about their preferences to the market if that leads to an individually beneficial

outcome. Therefore, classic centralized matching approaches which assume that participants re-

veal complete and truthful matching information are impracticable under the market setting. As the

winners of Nobel Economic Sciences Prizes, Paul R. Milgrom and Robert B. Wilson1 pointed out:

“Market design is difficult, because agents always act on their best response based on privately held

information, their preferences and their beliefs about the outcomes of their actions.” Thus how to

compute high-quality matching solutions for shared mobility systems with asymmetric information

and strategic behaviors of self-interested agents is challenging.

Dynamic Environment Matching problems in two-sided markets are highly dynamic as users

from either side leave and enter the market over time, not all relevant information are known at the

time the central operator executes a matching algorithm. Thus, in addition to the challenge aris-

ing from the decentralized market environment, matching has to be robust in accommodating the

contingencies caused by the uncertainty of future demand and supply. Uncertainties regarding cus-

tomer demand and service availability make the matching a complex dynamic process and impose

significant challenges when service operators try to optimize the matching solution.

1.3 Outline of the dissertation

This dissertation aims to design matching mechanisms to deal with the challenges mentioned

above. First, to deal with the asymmetric information and strategic behaviors of the self-

interested agents in two-sided markets, in Chapter 3, we propose a price-based iterative double

auction as a matching mechanism for allocating buyers to sellers in a charger sharing market. The

auction computes social welfare maximizing matching solutions by bringing asking and bidding

prices to a competitive equilibrium through iterative bidding without requiring buyers’ and sellers’

private information. This solution approach is rather general and we believe it can be applied to any
1https://www.nobelprize.org/prizes/economic-sciences/2020/press-release/
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two-sided market with multiple buyers and sellers. The iterative double auction relies on a price dis-

crimination strategy to find an optimal matching solution. While in some shared mobility systems,

such as ride-sharing among colleagues, service price is pre-set and does not change on a daily basis.

This demands non-price matching approaches. In Chapter 4, we propose a non-price voting based

negotiation mechanism to compute near-optimal matching solutions for drivers and riders, while

preserving their privacy. This mechanism implements an improvement-based searching process in-

spired by the simulated annealing meta-heuristic, allowing drivers and riders to negotiate matching

solutions iteratively according to their individual preferences.

To deal with customer demand uncertainties, we propose a dispatching framework which in-

tegrates batched matching with data-driven proactive guidance in Chapter 5. Data-driven proactive

guidance computes optimal open driver guidance strategies based on predicted rider demand and

open driver supply for various regions. The demand prediction is generated through a machine

learning algorithm based on historical data. The open driver supply is obtained from the matching

solutions computed by batched matching during previous batching windows. The optimal guid-

ance strategies are computed by solving a mixed integer program with the objectives of minimizing

the open driver idle driving cost and the supply-demand gap of the region. Taking the computed

guidance strategies from data-driven proactive guidance as inputs, batched matching computes the

optimal bipartite matching among open drivers and waiting riders in the batch. By concurrently opti-

mizing the guidance strategies and batched matching, the proposed framework possesses the ability

to compute optimal matching results that maximize the social welfare of the two-sided market.

To deal with supply availability uncertainties, in Chapter 6, we propose a pricing mechanism

to align the interests of the drivers and the platform, which leads to an overall better acceptance

rate and platform profitability. This mechanism computes a set of payments tailored to each driver

based on the unique characteristics of the assigned rides and the estimated acceptance probabilities

of the drivers. We first build a binary choice model to estimate drivers’ probabilities of accepting a

ride based on the discrete choice analysis and the random utility theory. Taking the predicted accep-

tance probabilities as inputs, a stochastic optimization model is designed to compute payments for

individual drivers. By leveraging behavioral economics and optimization techniques, the proposed
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pricing mechanism has the ability to compute optimal personalized payments that improve the over-

all ride acceptance rate and the platform profit. We foresee the proposed matching mechanisms can

have considerable impact on many real world shared mobility systems, such as ride-hailing, ride-

sharing and charger sharing platforms which require efficient and practical decentralized matching

approaches. Finally, Chapter 7 summarizes the thesis and presents future research directions
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Chapter 2

Matching problems in two-sided

markets

This chapter introduces the definitions and characteristics of two-sided markets and the match-

ing problems in the two-sided markets. At its core, we are trying to solve a matching problem, that

is Which buyer should be matched to which seller at what time? Different from classical matching

problems studied in the literature, the matching problem exists in a market environment, in which

buyers and sellers are motivated by different and conflicting objectives. They have their private pref-

erences and goals and will behave strategically in a market to advance their own benefits, rather than

the system-wide efficiency. To recognize this autonomous nature of buyers and sellers, in microeco-

nomics, they are modeled as self-interested agents (Mas-Colell, Whinston, Green, et al., 1995). In

the following, we first introduce the definitions of a two-sided market and its unique characteristics.

Then we define the matching problem in the context of two-sided markets.

2.1 Two-sided markets: definitions and characteristics

This section provides a brief introduction to definitions for two-sided markets.
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2.1.1 General definitions

A two-sided market is an economic platform that enables direct interactions between two dis-

tinct customer groups that provide each other with network benefits. In 2003, Evans (Evans, 2003)

defined a two-sided market as: “A two-sided market is a market in which a firm act as a platform:

it sells two different products to two groups of consumers, while recognizing that the demand from

one group of consumers depends on the demand from the other group and, possibly, vice versa. In

other words, the demands on the two sides of the market are linked by indirect network effects, and

the firm recognizes the existence of (that is, internalizes) these indirect network effects.” The indi-

rect network effect means the value that a customer on one side realizes from the market increases

with the number of customers on the other side. In their seminal paper, Rochet and Tirole (Rochet

& Tirole, 2006) gave a more general definition for a two-sided market: “Two-sided (or more gener-

ally multi-sided) markets are roughly defined as markets in which one or several platforms enable

interactions between end-users and try to get the two (or multiple) sides “on board” by appropriately

charging each side. That is, platforms court each side while attempting to make, or at least not lose,

money overall.” More definitions can be found in (Rysman, 2009). In line with these definitions, a

two-sided market in this thesis is defined as:

Definition 1. A two-sided market is defined as a platform that

(1) has two distinct groups of customers;

(2) enables these two groups of customers to negotiate on the provision of the services; and

(3) has a significant indirect network effect across customer groups.

Here, the indirect network effect refers to the phenomenon that the value of the service increases

for one customer group when a new customer of a different customer group joins the market (Rys-

man, 2009).

2.1.2 Market environment characteristics

After defining the two-sided market, in this subsection, we introduce the environment charac-

teristics of the two-sided market: decentralized and dynamic.

Decentralized market environment
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A two-sided market is a market, which is naturally decentralized. In decentralized market envi-

ronments, the matching related information is distributed and controlled by self-interested agents.

To maximize their own benefit or to preserve their own privacy, a rational self-interested agent may

be reluctant to reveal his or her preference or may choose to reveal incomplete and perhaps untruth-

ful information about his or her preference if that leads to an individually preferable outcome. In the

context of this thesis, we specify the decentralized environment using a description from (C. Wang,

2007): a decentralized environment consists of self-interested agents with private information and

objectives, and no agent has control of other agents. Thus, a decentralized market environment

refers to a market with:

• Asymmetric information in which matching related information is distributed among agents.

• Self-interested agent with private information and game theoretic behavior.

Dynamic market environment

Two-sided markets are highly dynamic as participants from either side leave and enter the mar-

ket over time. In a dynamic market environment, matching decisions are made over time and future

demand and supply are unknown in advance to the service operator. We call it dynamic in the sense

that the supply and demand of the market are uncertain. This is because new participants from both

sides of the market continuously arrive; not all relevant offers and requests may be known when the

service operator executes an algorithm for matching. Thus, a dynamic market environment refers to

a market with uncertainty of supply and demand.

2.2 Matching problems in two-sided markets

After introducing the characteristics of the market environment, we model the matching problem

in two-sided markets in terms of the following elements:

• Agents: An instance of a matching problem contains a service operator and two distinct

groups of agents: buyers and sellers. Let B be the set of buyers. Let S be the set of sellers.

Each buyer b ∈ B, from the demand side of the market has a service request needs to be

served by a seller s ∈ S who provide a service offer from the supply side of the market. We
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slightly abuse notations and use b and s to refer to both buyer and seller and his or her service

request and service offer, respectively.

• Constraints: The constraints in the matching problem can be divided into two groups: matching-

based constraints and time-based constraints. Matching-based constraints are matching re-

strictions related to agents’ personal requirements, such as vehicle types. Time-based con-

straints are matching restrictions related to service time such as precedence constraints and

service availability constraints. Specifically, precedence constraints define the order in which

buyers can be served by sellers and service availability constraints define the time window

during which an agent is available to be matched with a counterparty.

• Matching solution: The result of the matching problem is a matching solution which contains

the matched buyer-seller pairs and the schedules (time and itinerary). A matching solution

is feasible if it satisfies all the matching constraints. Let M be a set of feasible matching

solutions.

• Preference and utility function: Each agent has a preference over a set of feasible sched-

ules. According to the utility theory (Fishburn, 1970), this preference can be quantified by

designing a utility function. The utility function evaluates an agent’s satisfaction levels to a

feasible matching solution. We assume agents have quasi-linear utility functions (Shoham &

Leyton-Brown, 2008), such that the overall utility function of an agent can be formulated as a

linear combination of two sub-utility functions, namely matching utility function and schedul-

ing utility function. These two functions are designed for quantifying an agent’s satisfaction

levels to a matched counterparty and a travel schedule, respectively. The quasi-linear utility

function of an agent takes the form of ua(m) = umatcha (m)+uscheda (m), a ∈ B∪S,m ∈M ,

where umatcha (m) is the matching utility function for agent a over m and uscheda (m) is the

scheduling utility function for agent a over m. The utility is the abstraction of what the agent

desires and aims to maximize.

• Measure of matching solution quality: The quality of a matching solution m is measured

by the total utilities of buyers and sellers, which is the social welfare of the market. Thus,

11



the objective of the matching problem is to maximize the social welfare. Social welfare can

be used to represent the overall benefits of market participants. We argue that social welfare

maximization is a suitable objective for designing two-sided sharing markets as it focuses on

the benefits of the whole society, which is well-aligned with the motivations of the sharing

economy. In addition, social welfare is also considered as a measure of market efficiency

in the microeconomics theory (Mas-Colell et al., 1995). Parkes and Kalagnanam (Parkes

& Kalagnanam, 2005) suggest that market efficiency is well suited for the design of stable

long-term markets. In sharing economies, buyers and sellers repeatedly rate each other after

transactions, which provides strong motivation for both sellers and buyers to improve each

others’ benefits. By maximizing social welfare, the market will attract more transactions,

allowing the charging platforms to take a small percentage of cut from sellers’ and, some-

times, buyers’ utilities as their revenue. Therefore, social welfare maximizing (or efficient)

matching solutions are necessary for long-term revenue sustainability.
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Chapter 3

A price-based iterative double auction

for charger sharing markets1

The unprecedented growth of demand for charging electric vehicles (EVs) calls for novel ex-

pansion solutions to today’s charging networks. Riding on the wave of the proliferation of sharing

economy, Airbnb-like charger sharing markets open the opportunity to expand the existing charging

networks without requiring costly and time-consuming infrastructure investments, yet the success-

ful design of such markets relies on innovations at the interface between game theory, mechanism

design, and large scale optimization. In this chapter, we propose a price-based iterative double

auction for charger sharing markets where charger owners rent out their under-utilized chargers to

the charge-needing EV drivers. Charger owners and EV drivers form a two-sided market which is

cleared by a price-based double auction. Chargers’ locations, availabilities, and unit time service

costs as well as drivers’ time and location preferences are considered in the allocation and schedul-

ing process. The goal is to compute social welfare maximizing schedules which benefit both charger

owners and EV drivers and, in turn, ensure the continuous growth of the market. We prove that the

proposed double auction is budget balanced and individually rational. In addition, results from our

computational study show that the proposed auction achieves on average 94% efficiency compared

with that of the optimal solutions and is suitable for a larger day-ahead charger sharing market
1Gao, J., Wong, T., Wang, C., Yu, J. Y. (2021). A Price-Based Iterative Double Auction for Charger Sharing Markets.

IEEE Transactions on Intelligent Transportation Systems. (Early Access). DOI: 10.1109/TITS.2020.3047984
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setting in terms of running time.

3.1 Introduction

Energy spent on charging electric vehicles (EVs) will grow tremendously in the next decade. As

estimated by the International Energy Agency, annual charging energy demand for the EV popula-

tion is projected to increase from 58 billion kilowatt-hours to 640 billion kilowatt-hours from 2020

to 2030 (Agency, 2019). This surging demand places an unprecedented strain on existing charging

networks which need to be substantially expanded in terms of the total amount of energy delivered

and their geographical coverage. However, traditional methods to expand the charging networks

such as building new charging stations and upgrading to high speed DC chargers are often costly

and time-consuming (Hall & Lutsey, 2017; Howell et al., 2017; Schroeder & Traber, 2012). In

recent years, charger sharing has emerged as one of the cost-effective and immediate solutions to

expand the existing charging networks (Plenter et al., 2018; Vanrykel, Ernst, & Bourgeois, 2018).

Online charger sharing platforms are being built to connect private charger owners and EV drivers.

Some popular ones include PlugShare2, EVMatch3, ChargeHub4 and Share&Charge5. Using such

platforms, private charger owners aim to rent out under-utilized chargers to recoup their installation

and operation costs and EV drivers procure the charging services to satisfy their energy needs.

The success of charger sharing platforms hinges on two major issues: (i) attracting both charger

owners and EV drivers to the platform by providing added values to both of the groups, and (ii)

retaining them by computing charging scheduling and pricing solutions which maximize the utilities

of both EV drivers and charger owners. In the context of sharing economy, designing charger

sharing platforms with the objective of benefiting all of its participants is essential to ensure their

sustainable growth.

At the present time, the main scheduling mechanisms used by the charger sharing platforms

are variants of the First-Come-First-Served (FCFS) mechanism with the “take-it-or-leave-it” pric-

ing schemes. A FCFS mechanism schedules EV drivers in sequence according to their arrival times
2https://www.plugshare.com/
3https://www.evmatch.com/
4https://chargehub.com/en/
5https://shareandcharge.com/
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to the market. While these mechanisms do motivate charger owners and EV drivers to partici-

pate if the price is right, they do not optimize the charging schedule across all market participants.

Furthermore, a FCFS mechanism does not possess important economic properties which deal with

game-theoretic behaviors of participants in a market. This allows the room for market speculation

and further jeopardises the system wide performance.

Charger sharing scheduling mechanism design is a relatively new research topic and the lit-

erature on it is limited. As a more general research area, EV charging scheduling has attracted

increased attention in the past years. Comprehensive reviews can be found in (Rahman, Vasant,

Singh, Abdullah-Al-Wadud, & Adnan, 2016) and (Q. Wang, Liu, Du, & Kong, 2016). Several stud-

ies (Darabi, Fajri, & Ferdowsi, 2016; de Hoog, Alpcan, Brazil, Thomas, & Mareels, 2014; Q. Kang,

Feng, Zhou, Ammari, & Sedraoui, 2017; Q. Kang, Wang, Zhou, & Ammari, 2015; Korkas, Baldi,

Yuan, & Kosmatopoulos, 2017) have tackled EV charging scheduling problems by applying central-

ized approaches, which assume that a central scheduler is responsible for all allocation decisions.

However, these centralized approaches cannot be applied to EV charging scheduling problems in

the context of a charger sharing market. This market is naturally decentralized (Mas-Colell et al.,

1995; Wellman, Walsh, Wurman, & MacKie-Mason, 2001), in which scheduling information are

distributed and controlled by different self-interested agents.

Market based approaches, such as auctions, have gained popularity in providing socially de-

sirable solutions to decentralized EV charging scheduling problems. These approaches respect au-

tonomy and private information inherited from a distributed system and can provide incentives

for agents to reveal truthful information (Parkes & Ungar, 2001a). For example, P. Samadi et

al. (Samadi, Schober, & Wong, 2011) propose a Vickrey-Clarke-Groves (VCG) based mechanism

for EV charging scheduling with the objective of maximizing the social welfare. J.de Hoog et al. (de

Hoog, Alpcan, Brazil, Thomas, & Mareels, 2015) design a market mechanism for smart charging

that optimally allocates available capacity and, at the same time, ensures network stability. How-

ever, these mechanisms address the setting of one-sided markets with one charger supplier, which

cannot be directly applied to two-sided charger sharing markets. In (Gerding, Stein, Robu, Zhao, &

Jennings, 2013), an EV charging scheduling problem is studied in a two-sided market setting. The

authors propose a VCG payment rule to ensure truthfulness of EV drivers and charging stations.
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Following the same payment rule, Yassin et al. (Yassine, Hossain, Muhammad, & Guizani, 2019)

propose a double auction for energy trading of autonomous electric vehicles. Although the VCG

mechanism is well known for being truthful and socially optimal, implementations of VCG-type

mechanisms generally suffer from excessively high computational costs (Ausubel, Milgrom, et al.,

2006) and are impractical for charger sharing markets with large numbers of charger owners and

EV drivers.

Two-sided markets which involve two distinct groups of players, e.g., stock markets, are nor-

mally cleared by double auctions. In his seminal paper, McAfee (McAfee, 1992) proposes a trading

reduction rule to achieve truthfulness in two-sided markets with homogeneous single unit goods.

For the same problem, Chu and Shen (Chu & Shen, 2008) propose an agent competition mechanism

by applying shadow prices to achieve strategy proof. More recently, some research has attempted

to design double auctions for multi-unit heterogeneous trading problems. For example, Y. Chen et

al. (Y. Chen, Zhang, Wu, & Zhang, 2013) extend McAfee’s mechanism to multi-unit heterogeneous

settings. They apply the proposed mechanism to spectrum allocation problems. In (Chichin, Vo, &

Kowalczyk, 2016), a two-sided combinatorial greedy allocation mechanism is applied to multi-unit

heterogeneous cloud exchange markets. In addition, iterative double auctions based on a decompo-

sition scheme have been proposed for multi-unit heterogeneous energy trading environments (Deng,

Yang, Hou, Chow, & Chen, 2014; Faqiry & Das, 2018; Iosifidis, Gao, Huang, & Tassiulas, 2015;

J. Kang et al., 2017; Majumder, Faqiry, Das, & Pahwa, 2014). In these double auctions, trading

goods are distinct, indivisible items. In order to apply these double auctions to the charger shar-

ing scheduling problem, the continuous scheduling time line has to be discretized, such that the

charging time period can be converted to a set of distinct time units (Kutanoglu & David Wu, 1999;

Wellman et al., 2001). However, to maintain time accuracy, the discretized time unit cannot be too

large. Therefore, this approach can generate a large number of distinct time units, which inflicts

heavy computational burden on double auctions in terms of bids evaluation, communication, and

winner determination (C. Wang, 2012; C. Wang, Ghenniwa, & Shen, 2009). In (C. Wang, Wang,

Ghenniwa, & Shen, 2011) and (C. Wang & Dargahi, 2013), the authors use scheduling specific bid-

ding language for decentralized scheduling problems, which models scheduling related constraints

naturally and reduces computational costs. However, both papers focus only on one-sided settings
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where there is only one seller in the market.

In this chapter, we propose a price-based iterative double auction for matching charger owners

(sellers) with EV drivers (buyers) in a charger sharing market with the objective of maximizing

overall utilities of charger owners and EV drivers. In each round of the auction, sellers submit their

offers to indicate their locations, available service times and prices per unit time they would like

to charge (asking price). EV drivers (buyers) place bids to express their charging requirements and

prices they would like to pay (bidding price) for using the services offered by the sellers. The sellers

and buyers then update their asking and bidding prices as the auction proceeds into further rounds.

The auction terminates when sellers and buyers no longer update their prices, which indicates the

state that a market equilibrium has been reached. The proposed auction design possesses several

economic properties, such as social welfare maximization, individual rationality, budget balance,

which are desirable for such a two-sided market in the context of sharing economy. In Section 3.2,

we will first introduce definitions and give more explanations of these properties. We then present

the market environment of the auction based on which the iterative bidding structure are designed. In

Section 3.3, we describe the proposed two-sided iterative bidding structure in details. A theoretical

analysis on the properties of the auction is provided in Section 3.4, followed by a computational

study in Section 3.5. We conclude our work and discuss future improvements in Section 3.6.

3.2 The auction and its environment

In this section, we first explain the concept of using auctions as a resource allocation mechanism

in market settings with an emphasis on introducing desired auction properties. Then, we describe

the charger sharing auction environment.

3.2.1 Auctions as a market for resource allocation

At its core, the problem we are trying to solve in this chapter is a resource scheduling problem,

to which its solutions answer the question: Which buyer should be allocated to which seller at what

time? Different from classical scheduling problems studied in the literature, the charger sharing

scheduling problem exists in a market environment, in which buyers and sellers are motivated by
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different and conflicting objectives. Sellers want to maximize their revenues while buyers want to

minimize their charging costs. They will behave strategically to advance their own benefits rather

than the system wide performance. To recognize this autonomous nature of buyers and sellers, in the

microeconomics literature, they are modeled as self-interested agents6. Scheduling problems that

involve self-interested agents are called decentralized scheduling problems (Wellman et al., 2001).

Auctions are probably the most successful application of mechanism design theory to decen-

tralized scheduling problems (Shoham & Leyton-Brown, 2008). They provide a level of abstraction

based on which a system wide performance can be achieved through the simple interactions of bid-

ding between individual agents and the auctioneer. In addition, auctions are natural and intuitive in

terms of implementation in many real world domains. However, these benefits do not automatically

accrue as a result of setting up an auction market. To make an auction market effective, certain eco-

nomic properties need to be present. In the rest of this section, we will introduce these properties

in the context of charger sharing markets. We start with two fundamental concepts based on which

agents make decisions in an auction, namely value and utility.

• Value. In the context of charging services, value is the intrinsic worth of a service to the

buyer, in other words, the highest price the buyer is willing to pay for the service. In this

chapter, we follow the private value model as adopted by the classic theories of the Vickrey

auction (Vickrey, 1961) and the VCG mechanism. In this model, a buyer has a value for each

of the charging services defined by their available charging time and location. Note that a

buyer can compute the driving distance to a seller based on his or her location. Therefore,

the cost of driving to a location can be implicitly modeled in a driver’s value on the location.

These values do not depend on the private values of other buyers. Each buyer knows his or

her own values but not the values of others. It is important to note that buyers may have

different values over the same charging service offering. Different from their bidding prices,

buyers’ values do not change during the bidding process. Buyers are motivated to maximize

their utilities not their values.
6Self-interest is an assumption of classical economic theory meaning that individuals are motivated in their actions

by self interest. In The Wealth of Nations, Adam Smith makes the claim that, within the system of capitalism, an
individual acting for his own good tends also to promote the good of his community. He attributed this principle to a
social mechanism that he called the “invisible hand”.
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• Utility. The utility of a buyer for a charging service is the difference between the value of the

service to the buyer and the price that the buyer needs to pay for it. For a seller, that is the

difference between the price he or she can charge for and the cost of offering the service. The

utility is the abstraction of what the agent desires and aims to maximize. Both buyers and

sellers want to maximize their utilities in market transactions.

• Social welfare maximization. Social welfare is defined as the aggregated utilities of all agents.

It can be used to represent the overall benefits of market participants. We argue that social wel-

fare maximization is a suitable objective for designing charger sharing markets as it focuses

on the benefits of the whole society, which is well aligned with the motivations of the sharing

economy. In addition, social welfare is also considered as a measure of market efficiency

in the microeconomics theory (Mas-Colell et al., 1995). Parkes and Kalagnanam (Parkes

& Kalagnanam, 2005) suggest that market efficiency is well suited for the design of stable

long-term markets. In sharing economies, buyers and sellers repeatedly rate each other after

transactions, which provide strong motivation for both sellers and buyers to improve each

others’ benefits. Given the definition of utility above, the aggregated utilities of all agents

(social welfare) in our charger sharing market is the difference between the sum of buyers’

values and the sum of sellers’ costs calculated on a charging schedule. The same definition of

social welfare is also adopted in other double auctions proposed in the literature (Deng et al.,

2014; Faqiry & Das, 2018; Iosifidis et al., 2015; J. Kang et al., 2017). It is also worth men-

tioning that social welfare maximization is different from revenue maximization. The idea

here is that, by maximizing social welfare, the market will attract more transactions, which

allows the charging platforms better opportunity to take a small percentage of cut from sell-

ers’ and, sometimes, buyers’ utilities as their revenue. Therefore, social welfare maximizing

(or efficient) auctions are necessary for long term revenue sustainability.

• Budget balance. Budget balance implies that the total price that the platform charges all

winning buyers is not less than the total payment that the platform rewards all winning sellers,

so that the platform neither accumulates surplus, nor runs in a deficit and does not need to be

subsidised by outside payments. In a practical context, such as the charger sharing market, this
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property can also allow the platform to make profits as stated later in Remark 2 of Section 3.4.

• Individual rationality. Individual rationality ensures that all participants in the market should

obtain non-negative utility, so that agents have incentives to take part in the auction, which is

important in terms of attracting charger owners and EV drivers to join the market.

Assuming that maximizing social welfare is the objective, then the task of the auction is to com-

pute an optimal schedule given the sellers’ costs and buyers’ values on available charging services.

However, buyers and sellers are not willing to reveal their values and costs due to their conflicting

objectives. To maximize their utilities, buyers always want to pay less than their values and sellers

always want to charge more than their costs. In terms of game theory, buyers’ values and sellers’

costs are considered as their private information which will not be revealed to the auctioneer. The

challenge for the auction now is how to design the bidding and pricing rules such that when the

market reaches an equilibrium meaning that the supply meets the demand given a price vector on

services, the resulting schedule maximizes the social welfare. Since the charger sharing market is a

two-sided market, in our setting, we design the bidding rules which are similar to the double auc-

tions used in the stock markets. The bidding rules dictate that buyers gradually move their bidding

prices up and sellers gradually move their asking prices down so that the equilibrium prices can be

reached at which transactions occur.

Since the charger sharing market is usually a large system in which the effect of an agent’s own

strategy on the state of a market is small, we adopt the competitive market condition by assuming

agents’ behavior as price-taking or myopic best-response Parkes and Ungar (2001b). Under this

assumption, an agent plays a best-response to the current price and allocation conditions in the

market without modeling either the strategies of other agents or the effect of its own actions on the

future state of the market. A double auction can be defined by its market environment and bidding

rules. We will describe the environment of the double auction in the following section and the

iterative bidding rules in Section IV.
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Table 3.1: Summary of notations

Notation Description
M The set of sellers, indexed by m
N The set of buyers, indexed by n
[sm, em] Available time window of seller m
cm Unit time service cost of seller m
[an,m, dn,m] Feasible time window of buyer n for charging at seller m
rn,m Required charging duration of buyer n for charging at seller m
vn,m Valuation of buyer n for charging at seller m
K An overall charging schedule
kn,m Decision variable: starting time of buyer n at seller m

kn,m ∈ R+ if n is allocated to m, and kn,m = −1 otherwise
1kn,m Indicator function: 1kn,m 6=−1 = 1 if kn,m 6= −1 is true
t A biding round number
αtm Ask of seller m at round t
θtn,m Bid of buyer n for seller m at round t
ps,tm Asking price of seller m at round t for a unit time of service
pb,tn,m Bidding price of buyer n for seller m at round t for a unit time of service
ε Increment for buyers and decrement for sellers

3.2.2 The charger sharing double auction environment

The charger sharing double auction consists of a group of sellers, a group of buyers and an auc-

tioneer (called the platform thereafter). Each seller offers a charging service characterized by his or

her location and available time window for charging. For each unit time of charging service offered,

the seller incurs a fixed cost which can be a combination of the cost of electricity consumed and the

proportionate cost related to maintaining the parking space. Buyers have constraints regarding when

and where they can charge. For those sellers who can accommodate their constraints, buyers will

calculate values over their services based on how far the chargers are located and how convenient

their available time windows are. The goal of the platform is to allocate buyers to sellers, such that

their charging constraints are satisfied and the social welfare of all buyers and sellers is maximized.

LetM be the set of sellers and [sm, em] be the available charging time window of sellerm ∈M,

during which the seller is available for providing his or her charging service to the buyers. The cost

for seller m to offer a unit time of charging service is denoted as cm ∈ R+. Let N be the set of

buyers. For each buyer n ∈ N , let an,m be his or her earliest arrival time to seller m and dn,m

be his or her latest departure time from seller m. [an,m, dn,m] defines the feasible time window

during which buyer n has to complete his or her charging. Note that a buyer may have different

feasible charging time windows for different sellers depending on the current location of the buyer.

For buyer m to be allocated at seller n, [an,m, dn,m] must be within [sm, em]. That is an,m ≥ sm
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and dn,m ≤ em. Let rn,m ∈ R+ denote the required charging duration of buyer n at seller m with

rn,m + an,m ≤ dn,m.

We assume that a charging service is non-preemptive, i.e., once buyer n has started charging at

seller m, the service cannot be interrupted. Let vn,m ∈ R+ be the value of buyer n for charging at

seller m. The result of the charger sharing double auction is a schedule which can be represented

by a matrix K ∈ R|M|×|N |, where each element kn,m denotes the starting time of buyer n ∈ N at

seller m ∈ M. Let kn,m ∈ R+ if n is allocated to m, and kn,m = −1 otherwise. For a schedule K

to be feasible, each kn,m has to satisfy the following constraints:

(i) A buyer can only start charging after his or her arriving time, i.e., kn,m ≥ an,m, ∀n ∈ N ,

∀m ∈M,

(ii) A buyer has to finish charging before his or her departure time, i.e., kn,m ≤ dn,m−rn,m,∀n ∈

N , ∀m ∈M,

(iii) A buyer can only be allocated to one seller, i.e., ∀m,m′ ∈M: if kn,m 6= −1 and kn,m′ 6= −1

then m = m′, ∀n ∈ N ,

(iv) If two buyers n and n′ are allocated to the same seller, either nmust be finished before the start

time of n′ or n′ must be finished before the start time of n, i.e., ∀n, n′ ∈ N : if kn,m 6= −1

and kn′,m 6= −1, then kn,m + rn,m ≤ kn′,m + H · (1 − Yn,n′,m) and kn′,m + rn′,m ≤

kn,m +H · Yn,n′,m7,

(v) If a buyer is allocated to a seller, the charging time should be within the seller’s available time

window, i.e., sm ≤ kn,m ≤ em − rn,m, ∀n ∈ N , ∀m ∈M,

(vi) If a buyer is allocated to a seller, the buyer’s value cannot be less than the cost of the seller,

i.e., if kn,m 6= −1, then vn,m ≥ rn,m · cm, ∀n ∈ N , ∀m ∈M.

Let 1kn,m 6=−1 be the indicator function that equals 1 if kn,m 6= −1 is true and 0 if otherwise.

Let pn,m be the unit price paid by the buyer n for charging at seller m. Then the utility of buyer n

7Yn,n′,m is the disjunctive variable: Yn,n′,m = 1 when n is scheduled before n′ on m and Yn,n′,m = 0 n′ is first. H
is a large positive constant which is used for the linearization of the logical constraint “if” (Rardin & Rardin, 1998).
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is defined as:

ubn =
∑
m∈M

1kn,m 6=−1 · (vn,m − pn,m · rn,m) (1)

and for a seller m as:

usm =
∑
n∈N

1kn,m 6=−1 · (pn,m · rn,m − cm · rn,m) (2)

The objective of the platform is to compute a feasible scheduleK that maximizes social welfare,

which is formulated as:

max
∑
n∈N

ubn +
∑
m∈M

usm =

max
∑
n∈N

∑
m∈M

(vn,m − cm · rn,m) · 1kn,m 6=−1

(3)

However, as discussed in Section 3.2.1, buyers and sellers are modeled as self-interested agents

in the market setting. They cannot be assumed to reveal their values and costs to the platform due

to their conflicting objectives. In the next section, we will present a priced-based iterative double

auction (P-IDA) as a scheduling mechanism for allocating buyers to sellers. The auction computes

social welfare maximizing schedules by bringing asking and bidding prices to a competitive equi-

librium through iterative biding without requiring buyers’ values and sellers’ costs. The general

structure of the auction can be applied to other sharing markets where multiple buyers and sellers

are involved. The charger sharing market environment can be used to demonstrate the implementa-

tion and the performance of the proposed auction.

3.3 Price-based Iterative Double Auction

In this section, we present a price-based iterative double auction (P-IDA) for the aforemen-

tioned charger sharing auction environment. The auction serves as an iterative negotiation process
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between sellers and buyers. The process is mediated by the platform which matches buyers’ charg-

ing requests to sellers’ service offerings. In double auction literature and real world double auction

markets, such as stock exchanges, a seller’s offering is usually called an ask and a buyer’s request a

bid. In our charger sharing auction, an ask of sellerm, denoted by αm, is a three tuple (sm, em, p
s
m),

where psm indicates the asking price for a unit time of service. A buyer n’s bid on seller m’s service

offering, denoted by θn,m, is also represented as a four tuple (an,m, dn,m, rn,m, p
b
n,m), where pbn,m

is the bidding price of buyer n on a unit time of charging service offered by seller m.

3.3.1 Iterative bidding procedure

Before the auction starts, for each of the registered sellers, the platform announces a price range

for his or her service offering. The purpose for setting up such a range is to speed up the con-

vergence to price equilibrium by preventing sellers posting unnecessarily high asking prices and

buyers submitting arbitrarily low biding prices. The price range for a seller is the average of histori-

cal transaction prices at his or her location plus-minus a certain percentage set by the platform. The

platform will not accept an asking price higher than the upper bound of the range and a biding price

lower than the lower bound of the range. A high level description of P-IDA is given in Algorithm 1.

Before the iterative bidding starts, the sellers set the upper bounds of the price ranges as their initial

asking prices and submit their asks to the platform. Buyers set the lower bounds of the price ranges

as their initial bidding prices for the sellers’ service offerings (Lines 2-3 in Algorithm 1). The bid-

ding then proceeds in rounds. Each round contains three steps, namely price updating, termination

checking and winner determination. In the following, we will first give a general description of the

three steps which is applicable to any round t(t > 1). We then describe round t = 1 as a special

case of the general bidding procedure.

Price updating

At round t(t > 1), the buyers and sellers update their bidding and asking prices based on the

provisional schedule Kt−1 computed by the winner determination step at round t− 1 (Lines 6-19).

If a buyer is not included in Kt−1 i.e. rejected at round t − 1, he or she has two price updating

options at round t:
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Algorithm 1 Price-based iterative double auction
Input: w(0 ≤ w ≤ 1), ε, ∀m ∈M,∀n ∈ N
Output: Kt

1: t← 1; . round index
2: Each seller m ∈M initialize its asking price and ask;
3: Each buyer n ∈ N initialize its bidding prices;
4: ter.flag = 0;
5: while ter.flag = 0 do . iterative bidding starts
6: for all n ∈ N do . price updating for buyers
7: if t > 1∧ n is not included in Kt−1 then
8: for all bids submitted at round t− 1 do
9: ptn,m = pt−1n,m + w · ε;

10: end for
11: end if
12: end
13: Compute utility-maximization bids by (4);
14: Submit utility-maximization bids to the platform;
15: end for
16: end
17: for all m ∈M do . price updating for sellers
18: if t > 1∧m has available time in round t− 1 then
19: ptm = pt−1m − w · ε;
20: end if
21: end
22: Send the ask to the platform;
23: end for
24: end . termination checking

The platform checks the termination condition:
25: if termination condition is satisfied then
26: ter.flag ← 1;
27: end if
28: end . winner determination
29: The platform computes Kt by (5);
30: Send Kt to buyers and sellers;
31: t← t+ 1;
32: end while
33: end
34: The platform collects payment pb,tn,m from each buyer and reimburse to the corresponding sellers;

25



• The buyer can increase his or her bidding price by ε on the rejected bid. Here ε is the minimum

bid-increment or ask-decrement predetermined by the auction. Buyers do not bid with an

increment more than ε as they are assumed to be rational in maximizing their utilities.

• The buyer can keep his or her bidding price unchanged or make an increment less than ε on

the bid rejected at round t − 1. This happens when the utilities of this buyer for all other

sellers are non-positive given his or her current bidding prices. In this case, the platform will

consider that this buyer has entered into the final bid status and the buyer is forbidden from

increasing the bidding prices on any of his or her bids in the future rounds.

If a buyer is included in the provisional schedule Kt−1, this buyer will keep his or her bidding price

unchanged at round t. After updating their bidding prices, buyers compute their utility maximizing

bids to be submitted in the current round t based on their updated bidding prices. The submitted bid

in round t may be different of that in round t− 1. In computing such bids m ∈ M, a buyer n ∈ N

solves the following utility maximization problem:

max
m∈M

vn,m − rn,m · pb,tn,m (4)

where vn,m is fixed, representing the highest price that buyer n is willing to pay for charging at

seller m and pb,tn,m is the bidding price of buyer n for charging at seller m at round t. Note that the

maximization problem may have multiple solutions which equally maximize buyer n’s utility. In

this case, depending on the bidding rule configuration of the platform, the buyer can randomly pick

one (Atomic-Bid bidding rule) or join them together as an XOR-bid (XOR-Bid bidding rule) and

submits it to the platform. Here an XOR-bid:

θtn,1 ⊕ θtn,2 ⊕ · · · ⊕ θtn,m

indicates that:

• these bids equally maximize buyer n’s utility at round t based on the bidding prices and his

or her values,

• at most one θtn,k can be included in the current round provisional schedule.
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Note that the buyers included in Kt−1 will not update their bidding prices. Therefore, their utility

maximizing bids to be submitted to the platform will be the same as those submitted at round t− 1.

In other words, they will repeat their bids from the previous round. Moreover, the platform can also

allow the buyers who have already entered their final bid status to repeat their XOR-Bid (XOR-Bid-

Repeating rule).

Meanwhile, sellers also need to update their asking prices at the beginning of round t. If all

available time units of a seller are included in the provisional schedule Kt−1 , which means this

seller has sold all of his or her available charging time at round t − 1, the seller repeats his or her

ask at round t. On the other hand, if a seller still has unsold charging time at round t− 1, this seller

has the following two asking price updating options in round t:

• The seller can decrease his or her asking price by ε on the ask submitted at round t − 1.

As sellers are assumed to be rational in maximizing their utilities, they do not bid with a

decrement more than ε.

• The seller can keep the asking price unchanged or make a decrement less than ε. This happens

when ps,t−1m = cm or ps,t−1m − cm < ε. In this case, the seller is not allowed to decrease his or

her asking prices in the future rounds.

After updating their asking prices, sellers submit their updated asks to the platform.

Termination checking

Upon receiving the updated bids and asks from buyers and sellers, the platform then checks the

asks and bids against the termination condition (Lines 20-21 of Algorithm 1) stated as follows:

Termination condition: all buyers and sellers submit the same bids and asks in two consecu-

tive rounds.

If the termination condition is satisfied, which indicates that asking and bidding prices will not

change in future rounds and a market equilibrium has been reached, the auction terminates and the

provisional schedule Kt−1 becomes the final schedule. An awarded buyer pays his or her charging

time in Kt−1 at his or her current bidding price. A seller gets paid by all buyers allocated to him or
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her in Kt−1. The amount is the sum of the allocated buyers’ payments. On the other hand, if the

termination condition is not satisfied, the platform proceeds to winner determination.

Winner determination

In this step, the platform computes a new provisional schedule Kt taking the updated bids and

asks from sellers and buyers as inputs. The winner determination model at round t is formulated as:

max
∑
n∈N

∑
m∈M

rn,m · (pb,tn,m − ps,tm ) · 1ktn,m 6=−1 (5)

subject to the feasible schedule constraints same as described in Constraints (i)-(v). In order to

ensure that the bidding price of a buyer is equal or higher than the asking price of the charging time

allocated to the buyer, an additional constraint is added: ∀n,m: if ktn,m 6= −1, then pb,tn,m ≥ ps,tm . As

more than one optimal solutions may exist, ties are broken in favour of first maximizing the number

of buyers and sellers in Kt and then at random.

During the first round of the auction (t = 1), since there is no provisional schedule computed

from the previous round, as a special case to the general bidding procedure, buyers and sellers do

not need to update their bidding and asking prices. Buyers just compute their utility maximizing

bids based on their initial bidding prices on the sellers. For the same reason, termination checking

is also not needed during the first round. Winner determination just takes the initial bids and asks

as inputs to compute the first provisional schedule K1.

3.3.2 Approximate winner determination

The winner determination model can be solved using commercial integer programming opti-

mization packages, such as IBM CPLEX. However, since the model is NP-hard, it is not practical

to compute optimal provisional schedules for larger scale charger sharing market in a timely man-

ner. In order to improve the practicality of the proposed auction, we design a meta-heuristic winner

determination algorithm based on simulated annealing (SA) (Kirkpatrick, Gelatt, & Vecchi, 1983).

Due to space limitations, only a brief description is presented here. The algorithm starts by ran-

domly generating an initial schedule based on the bids and asks submitted by buyers and sellers,
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then it proceeds by taking the form of iterative “cooling” process. At each cooling cycle, multiple

schedules are generated by a random permutation of the current incumbent schedule. Then a subset

of the generated schedules are selected based on the values of their winner determination func-

tions. A generated schedule is always selected if it has a superior value than that of the incumbent

schedule. Otherwise a schedule is selected with a given decreasing possibility based on Boltzmann

distribution (Kirkpatrick et al., 1983). The size of the selected subset decreases along the cooling

process. The process converges at the cycle when the size of the selected subset reduces to one.

This last selected schedule then becomes the provisional schedule computed by winner determina-

tion at current bidding round. It is worth noting that the proposed iterative bidding auction equipped

with this approximate winner determination algorithm maintains the same incentive for buyers and

sellers to follow myopic best-response bidding strategies in larger market settings (Parkes & Ungar,

2000).

3.3.3 A worked example

This section presents a worked example of the iterative double auction procedure. This example

contains two sellers and three buyers. We intentionally keep the example oversimplified for the

purpose of clearly illustrating the steps of the bidding process. The available time windows and

the costs of a time unit for seller 1 and seller 2 and the feasible time windows, required charging

duration and valuations of the three buyers are shown in the third row of TABLE 3.2. As shown in

this table, buyer 1 can be charged at seller 1 and seller 2, while buyer 2 can only be charged at seller

1 and buyer 3 can only be charged at seller 2. Assume that the upper bound of the asking price

is $5 an hour, the lower bound of the bidding price is $3 an hour and the minimum bid-increment

or ask-decrement ε = $1. For the sake of simplicity, we assume that sellers use $5 as their initial

asking prices and buyers use $3 as their initial bidding prices. The asking and bidding prices and

allocation of each round of the iterative bidding are shown in TABLE 3.2. The iterative bidding

proceeds as follows.

1) Round 1: Buyer 1 submits the utility maximizing bid θ1,2 to the auctioneer and buyer 2 and

buyer 3 submit bids θ2,1 and θ3,2 to the auctioneer, respectively. At the same time, seller 1 and seller

2 submit asks α1 and α2, respectively to the auctioneer. After solving the winner determination

29



Table 3.2: Bidding process of a two-sided iterative auction example. The utility maximizing bids
are in bold. The allocated bids are indicated by *.

ASKING AND BIDDING PRICES PROVISIONAL
SELLER1 SELLER2 BUYER1 BUYER2 BUYER3 SCHEDULE

[18:00,22:00], $3 [16:00,20:00], $3 [18:00,19:00],1H,$4.5 [17:00,19:00],1H,$5 [19:00,22:00],2H,$6 [17:00,18:00],1H,$4
ROUND α1 α2 θ1,1 θ1,2 θ2,1 θ3,2
1 $5 $5 $3 $3 $3 $3
2 $4 $4 $3 $4 *$4 *$4 B2-S1; B3-S2
3 $3 $3 $4 *$4 *$4 *$4 B1-S2; B2-S1;

B3-S2
4 $3 $3 $4 *$4 *$4 *$4 B1-S2; B2-S1;

B3-S2

model, there is no trade between buyers and sellers resulted in the first round.

2) Round 2: Sellers decrease their asking prices to $4. Accordingly, buyer 2 and buyer 3 increase

their bidding prices to $4. Buyer 1 increases its bidding price on seller 2 to $4. Given the updated

bidding prices, buyer 1 bids on seller 1 at this round because this bid maximize his or her utility.

The auctioneer allocates buyer 2 to seller 1 and buyer 3 to seller 2 in the provisional schedule.

3) Round 3: Seller 1 decreases its asking price to $3 and seller 2 decreases its asking price to

$3. Buyer 2 and buyer 3 in this round repeat their bids as they were included in the provisional

schedule in Round 3. Buyer 1 increases its bidding price on seller 1 to $4 and bid on seller 2 as θ1,2

maximizes his or her utility in this round. The auctioneer allocates buyer 1 to seller 2 in this round.

4) Round 4: Both sellers and buyers repeat their asks and bids. The iterative bidding terminates

with an optimal schedule.

3.3.4 A day-ahead charger sharing market implementation

We now describe an implementation scenario of the proposed P-IDA in a day-ahead charger

sharing market. Day-ahead markets are commonly used for trading electric energy, in which market

participants commit to buy or sell electricity one day before the operating day. While electricity

markets are general commodity markets in which buyers do not distinguish the supply from differ-

ent sellers, our charger sharing market accommodates buyers’ preferences over sellers and requires

social welfare maximizing matching between buyers and sellers. In this charger sharing market,

buyers can book their charging services for an operating day through participating in the auction

which terminates before the operating day starts. To spare buyers and sellers the trouble of continu-

ously monitoring the auction process and repeatedly placing their asks and bids, the auction can be
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implemented as an autonomous multi-agent system, in which buyers and and sellers are represented

by their software proxy agents which place asks and bids on behalf of them. A buyer’s preferences

can be programmed into his or her proxy agent or learned from previous bidding data. A seller can

also configure his or her proxy agent with the cost and availability information before the auction

starts. In the meantime, the agents should be equipped with the algorithm to update asking and

bidding prices and select the utility maximization bids along the bidding process. For easy access,

buyers and sellers may install their proxy agents on a personal computer, a smart phone, or other

mobile devices.

While we call it “day-ahead” market, the operating time interval is not necessarily a day, it can

be half a day or even an hour. For shorter operating intervals, a fast winner determination algorithm

is required. We will elaborate more on the running time performance of various algorithms in

Section 3.5.

3.4 Theoretical analysis

In this section, we analyze the economic properties of P-IDA. As discussed in Section II, three

properties are of importance in terms of setting up an effective charger sharing auction, namely so-

cial welfare maximization, budget balance and individual rationality. We will evaluate the auction’s

performance on social welfare maximization in the next section through a computational study. We

focus on budget balance and individual rationality in the rest of this section.

If an auction is budget balanced, it requires no outside subsidy to ensure social welfare maximiz-

ing allocations. Given the proposed iterative double auction design, we have the following remarks

regarding its budget balance property:

Remark 1. P-IDA is budget-balanced because the total payments collected from the buyers is equal

to the total reward assigned to the sellers.

Remark 2. If the platform take a percentage of cut from buyers’ payments, P-IDA can be considered

weakly budget-balanced in the sense that the total payments collected from the buyers is equal to

the total reward assigned to the sellers and the platform.
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Individual rationality is another necessary property to sustain the continuous growth of a charger

sharing platform by providing incentives for both buyers and sellers to participate in the market.

It implies that participants are never worse off by participating in the auction. As stated in the

following theorem, the proposed auction possesses this property.

Theorem 1. P-IDA is individually rational for all participating buyers and sellers.

Proof. This theorem will be established separately for the buyers and the sellers. Note that not

participating in the auction leads to a zero utility for any buyers and sellers as they will not receive

or offer any charging services nor they will pay any kind of fee. For an arbitrary buyer n ∈ N , upon

termination of the auction, if he or she is not included in the final schedule, then the utility of buyer

n is zero: ubn = 0 (See Equation (1)).

If on the other hand, buyer n ∈ N is allocated to an arbitrary seller m ∈ M when the auction

terminates at time tT , then the utility of buyer n is vn,m − rn,m · pb,t
T

n,m, where pb,t
T

n,m is buyer n’s last

round bidding price. Since vn,m ≥ rn,m · pb,t
T

n,m always holds, it follows that: ubn = vn,m − rn,m ·

pb,t
T

n,m ≥ 0. Therefore, it is concluded that P-IDA is individually rational for all participating buyers.

If an arbitrary seller m is not included in the final schedule, then usm = 0 (See Equation (2)).

If, on the other hand, seller m is included in the final schedule, to satisfy the feasible schedule

constraint (vi), we have pb,t
T

n,m − ps,t
T

m ≥ 0 always holds, where ps,t
T

m is seller m’s asking price in

the last round. Since ps,t
T

m ≥ cm, it follows that: pb,t
T

n,m − cm ≥ pb,t
T

n,m − ps,t
T

m ≥ 0. Therefore,

usm =
∑

n∈N (pb,t
T

n,m − cm) · rn,m ≥ pb,t
T

n,m − cm ≥ 0. Thus we conclude that P-IDA is individually

rational for all participating sellers.

Iterative bidding is a type of heuristic search implementation of VCG. Compared with VCG

mechanisms (de Hoog et al., 2015; Gerding et al., 2013; Samadi et al., 2011), the iterative bid-

ding structure of the proposed auction promises reduced computation at the platform side (Nisan,

Roughgarden, Tardos, & Vazirani, 2007; Parkes & Ungar, 2001b). This is because a VCG requires

the platform to solve |N |−1 NP-hard instances to compute critical payments for buyers and sellers.

However, the iterative bidding structure of P-IDA can help distribute the computation across all par-

ticipants of the auction (Parkes & Ungar, 2000, 2001a). Although the winner determination problem

during each bidding round remains NP hard, the problem instances in P-IDA are much smaller than
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that in VCG as buyers only bid for a small subset of sellers in each round, which largely reduces

the computational complexities (Parkes & Ungar, 2001b). In addition, P-IDA preserves the privacy

of buyers and sellers. In the VCG, agents need to submit their complete valuations to compute a

final schedule. However, in P-IDA, agents are not required to submit their private information since

iterative biding is essentially a price system, not a direct revelation mechanism. The bidding and

asking prices do not necessarily correspond to their values and costs. In addition, compared with

single-sided multi-round auctions, such as those proposed in (Parkes, 2006; C. Wang & Dargahi,

2013; C. Wang et al., 2011), the two-sided structure of P-IDA facilitates trade between two groups

in one market, which is more efficient than combining several single-sided auctions (Xia, Stallaert,

& Whinston, 2005).

3.5 Computational study

In this section, we conduct a computational study to verify the performance of the proposed

auction in terms of three evaluation metrics which are important to charger sharing market operators,

namely efficiency, profit ratio and running time. First, we present the definitions of the evaluation

metrics. Next, we describe the design of testing data. After that, we evaluate P-IDA by comparing

its results with optimal solutions and that of two other scheduling heuristics. Finally, we evaluate

P-IDA with the SA based approximate algorithm (P-IDA-SA) against larger problem instances to

verify the scalability of the proposed auction.

3.5.1 Evaluation Metrics

The evaluation metrics are defined as follows:

• Efficiency of scheduling, eff(K), is measured as the ratio of the social welfare of the final

schedule K to the social welfare of the optimal schedule K∗

eff(K) =

∑
(n,m)∈K(vn,m − rn,m · cm)∑
(n,m)∈K∗(vn,m − rn,m · cm)

(6)

where K is the final schedule generated by the auction and K∗ is the optimal schedule which
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maximizes the social welfare.

• Profit ratio of the auction, pro(K), is measured as the sum of sellers’ payoff in the final

schedule K, as a fraction of the sum of the payoff in the optimal solution K∗ that maximizes

the social welfare

pro(K) =

∑
(n,m)∈K(pbn,m − cm) · rn,m∑
(n,m)∈K∗(vn,m − rn,m · cm)

(7)

where pbn,m is the bid price of buyer n for seller m in the final schedule K and (pbn,m − cm) ·

rn,m is the payoff of seller m in K. The profit ratio metric is designed to measure the degree

to which the sellers make money by applying the auction.

• Running time of the auction refers to the computation time needed to terminate the auction

on a charger sharing scheduling problem instance.

3.5.2 Design of Testing Data

We consider a day-ahead charger sharing scheduling setting with a 15 hour scheduling horizon

on the next day from 07:00-22:00. We designate half-hour as our unit of time in the experiments.

So the entire scheduling horizon can be divided into 30 half-hour charging units. For each seller

m, the service start time sm is randomly drawn from a uniform distribution in the range of 07:00-

14:00. We assume that a seller offers at least 16 charging units. The number of charging units

offered by m is randomly drawn from [16,min{30, 2 · (22 − sm)}]. The service end time em of

seller m can be determined based on sm and the number of charging units offered. For a seller,

the cost of a charging unit varies from $1 to $2.5 with a step $0.1. For each buyer n, the arriving

time an,m is randomly drawn from a uniform distribution in the range of 07:00-21:30. According

to a survey (Santos, McGuckin, Nakamoto, Gray, & Liss, 2011), the peak intervals of EV charging

include 08:00-10:00, 12:00-14:00 and 18:00-20:00. Thus, we vary the relative proportions between

the buyers to represent varying levels of heterogeneity in the buyer population. Specifically, our

data is designed to ensure that during each of these three peak time intervals, around 20% of all

buyers for the day arrive. A departure time dn,m of each buyer n is randomly drawn from a uniform
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distribution in the range of [an,m + 1,min{an,m + 8, em}] and required charging duration follows

a uniform distribution over the interval [1,min{dn,m− an,m, Cn
Rm

], where Cn is the battery capacity

(kWh) of buyer n andRm is the charging rate (kW) provided by sellerm. For the sake of simplicity,

we assume Cn = 80 kWh for all buyers and Rm = 10 kW for all sellers. The value of each buyer

for a charging unit varies from $0.1 to $5, with a step $0.1. For each buyer, there are multiple sellers

in the market whose available time windows can accommodate the buyer’s arriving and departure

time. We assume the number of these sellers for each buyer is a random number from interval

[1, 0.4 ·M ], where M is the number of sellers.

Given the above mentioned charger sharing scheduling setting, we generated 16 groups of test-

ing problem instances with different sizes. The size of a problem instance is determined by the

numbers of buyers and sellers considered. The numbers of buyers and sellers in all 16 groups are

shown in TABLE 3.3. Each group contains 10 instances. The sizes of problem instances in Groups

1-13 are relatively small with the number of sellers ranging from 4 to 20 and the number of buyers

ranging from 5 to 100. These instances are used to evaluate the efficiency of P-IDA against opti-

mal solutions. Groups 14-16 contain much larger problem instances which are used to evaluate the

scalability of P-IDA-SA.

Table 3.3: Numbers of buyers and sellers in all 16 testing
groups

Num.of Testing Groups
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sellers 4 4 4 4 5 5 5 5 6 6 6 6 20 40 100 500
buyers 5 10 15 20 5 10 15 20 5 10 15 20 100 200 500 1000
instances 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

3.5.3 Performance Evaluation of P-IDA

We evaluate the performance of P-IDA and P-IDA-SA by comparing their results with the op-

timal solutions computed by Cplex8 solver assuming complete information of sellers’ costs and

buyers’ values. The optimal solutions are the upper bound of the efficiency level that could be pos-

sibly achieved by any scheduling algorithms. In addition to that, we compare the performance of
8https://www.ibm.com/analytics/cplex-optimizer
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P-IDA with a First-Come-First-Served (FCFS) algorithm and a greedy allocation algorithm. FCFS

is a common resource allocation heuristic used in sharing economies. The implementation of FCFS

in this charger sharing experiment gives the buyers who arrive earlier in the market priorities to

choose their desired sellers first. The greedy heuristic is adopted from (Chichin et al., 2016), which

is an efficient strategy for two-sided resource allocation. In our implementation, the greedy algo-

rithm first finds each of the sellers a feasible buyer list which contains all the buyers to whom the

seller’s available time window is feasible. Then, the algorithm sorts the sellers in an ascending order

based on their costs. For the first seller in the list, the algorithm assigns buyers in the seller’s feasible

buyer list to the seller one by one until the seller’s charging window is used up. The order of the

assignment is based on the buyer’s value on the seller. The buyer with highest value goes first. The

process is repeated until all sellers’ charging windows are filled or all buyers have been allocated.
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Figure 3.1: Efficiency comparison between FCFS, Greedy algorithm, P-IDA-SA and P-IDA with
Atomic-Bid on Groups 1-13.

The average efficiency of schedules computed by FCFS, Greedy, P-IDA-SA and P-IDA over

Groups 1-13 are shown in Fig. 3.1. Here, P-IDA is configured with ε = 0.2, amax = 7, bmin = 0.1

and only accepting Atomic bids. When applying SA to solve the winner determination model,

we set the cooling cycle number to 1000 and the number of permutation to 30. It is observed

that the P-IDA can achieve on average 94% efficiency compared with that of the optimal solutions

(regarded as 100% efficiency). It also outperforms FCFS which has on average 84% efficiency.

Furthermore, the P-IDA-SA can achieve on average 92.5% efficiency among all these groups. Our
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Figure 3.2: The efficiency and running time performance of P-IDA with different ε under three
bidding rule configurations.

implementation of the greedy heuristic can achieve on average 98.5% efficiency which is higher

than that of P-IDA. However, the greedy algorithm requires buyers to reveal the highest prices they

can pay and sellers to reveal their true service costs to the platform, which is not practical in a

competing market environment. In the greedy algorithm implemented in (Chichin et al., 2016), the

buyers are motivated to report their highest prices (values) with the introduction of critical value

payments computed for each of the buyers. However, sellers have to be assumed to report their true

costs, which does not make it a suitable scheduling mechanism for the charger sharing market. The

comparison results indicate that P-IDA configuration is suitable and performs well in the charger

sharing market setting. In fact, as shown in Fig. 3.2, we can further boost the efficiency of P-IDA

by allowing XOR bids.

Fig. 3.2 (a) shows the efficiency of P-IDA with different values of ε under three bidding rule

configurations including Atomic-Bid, XOR-Bid and XOR-Bid-Repeating. The results are averaged

over the first 13 groups. It is shown that XOR-Bid has better efficiency (on average 97%) than that

of Atomic-Bid (on average 94%). XOR-Bid-Repeating has the highest efficiency at 98%. However

the cost comes with the high efficiency is more computation time due to the increased complexity

of solving the winner determination model containing XOR bids. XOR-Bid-Repeating results in

the largest winner determination model since it requires losing buyers to repeat their XOR-Bids

even they have already reached their final bidding state. As shown in Fig. 3.2 (b), the P-IDA with

XOR-Bid-Repeating has a relatively longer computation time than that of XOR-Bid and Atomic-

Bid, especially when the value of ε is small. It is also shown in Fig. 3.2 (b) and (c) that the running

times and number of rounds needed decrease when increasing the value of ε. Since ε controls
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the rate at which the prices of buyers and sellers are increased and decreased across rounds, with

lower value of ε, the auction needs more rounds to clear the market which in turn, requires more

computation time. For example, as shown in Fig. 3.2 (c), the number of bidding rounds needed for

P-IDA to terminate drops from 59 with ε = 0.1 to around 6 with ε = 0.5 under all three bidding

rule configurations. With a larger ε, the auction terminates quicker. However, it may also over-shoot

some price equilibrium points otherwise can be reached if using a smaller ε, which results in slightly

lower average efficiency. However, even with a large value of ε (ε = 0.5), the proposed auction can

achieve above 94% efficiency with Atomic-Bid and more than 97% efficiency with XOR-Bid or

XOR-Bid-Repeating. This verifies that P-IDA is an efficient scheduling mechanism for the charger

sharing market.
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Figure 3.3: Profit ratio performance of the P-IDA averaged over Group 12 on different values of
aupper.

Fig. 3.3 shows the profit ratio performance of the P-IDA in relation to the average asking prices

over Group 12. An immediate observation is that increasing the upper bound of the initial asking

prices will improve the profit ratio that the P-IDA can achieve. The reason for this observation is

that a low upper bound has higher probability of limiting the buyers’ biding prices from reaching

their values, therefore, presses down the equilibrium prices. The profit ratio improvement shown in

Fig. 3.3 just indicates a general trend. Actual output will depend on the configurations of the prob-

lem instances. However it is observed that the marginal profit ratio gain decreases with larger upper

bounds. Since larger upper bounds increase biding rounds which, in turn, incur more computation,
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it is not always desirable for the platform to prescribe large upper bounds given the demising gains.

Again a suitable upper bound depends on problem configurations which may be learned from the

transaction histories of a market.

3.5.4 Performance Evaluation of P-IDA-SA

In this subsection, we evaluate the scalability of the P-IDA-SA by comparing its running time

and efficiency performance with P-IDA, FCFS and the greedy algorithms over testing groups 14-16.

These groups contain large-sized problem instances with number of buyers ranging from 40 to 500

and sellers ranging from 200 to 1000. Optimal solutions could not be practically computed due to

the size of the instances. However, as indicated in Fig. 3.1, the greedy allocation algorithm performs

very close to the optimal solutions, therefore, makes a suitable benchmark algorithm for efficiency

evaluation. Since we do not have optimal solutions for groups 14-16, instead of using the ratio to

optimal, we use social welfare as the measure of efficiency.

The the social welfare (SW) and running time (RT) results of P-IDA, P-IDA-SA, Greedy and

FCFS over Groups 14-16 are shown in TABLE 6.6. The social welfare performance of P-IDA-SA

is noteworthy. It achieves on average 10% higher social welfare than Greedy and on average 40%

higher social welfare than FCFS. In addition, P-IDA-SA achieves similar social welfare perfor-

mance as P-IDA over Group 14. Note that we set a 20 hour time limit for P-IDA in the experiments.

P-IDA does not terminate within the time limit over Groups 15 and 16, which explains the absence

of social welfare values of P-IDA over Groups 15 and 16 in the table. P-IDA-SA also performs rea-

sonably well in terms of running times. For Group 16 with 500 sellers and 1000 buyers, P-IDA-SA

takes on average 5217s to terminate with ε = 0.5. This level of responsiveness is acceptable for

day-ahead charger sharing markets. The current running time performance is achieved using a PC

equipped with a NVIDIA GeForce GPU. If further speedup is required, the SA-based winner de-

termination algorithm can be parallelized and deployed on a cloud computing virtual machine with

multiple CPUs and GPUs. In addition, the running times of P-IDA-SA can also be significantly

reduced by increasing the value of ε without severely sacrificing the social welfare performance.

In the auction, the value of ε defines the rate at which the prices are changed across rounds. The

number of rounds in the auction are inversely-proportional to the value of ε, so doubling the value
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of ε will approximately halve the number of rounds needed to terminate. As shown in TABLE 6.6,

the longest running time we have for P-IDA-SA is 10217 seconds (around 2.5 hours) with ε = 0.2

for Group 16. If we increase the value of ε to 0.5, the auction terminates within 5217 seconds (1.45

hours) and the social welfare is only reduced approximately 1%. Depending on the social welfare

performance needed, we can further increase ε to reduce running time to the level of a few minutes.

It is important to note that although FCFS has better running time, its social welfare performance

is much worse than that of the proposed auction. As shown in TABLE 6.6, for Group 16, the so-

cial welfare achieved by P-IDA-SA is more than four times higher than that of FCFS. Given the

trade-off between solution quality and running time, the proposed auction is clearly favorable for a

day-ahead market setting. Greedy has a similar social welfare performance as P-IDA-SA, however,

it is not suitable for our two-sided market setting since it requires the buyers to reveal their highest

paying prices and sellers to reveal their true costs.

Table 3.4: The social welfare (SW) and running time (RT) performance of P-IDA, P-IDA-SA,
Greedy and FCFS on Groups 14-16.

Performance

Approach Group 14 Group 15 Group 16

SW RT (s) SW RT (s) SW RT (s)

Greedy 1431.4 34 3163.5 50 17064.3 55
P-IDA (ε = 0.2) 1556.8 3192 - �72000 - �72000
P-IDA (ε = 0.5) 1543.2 1313 - �72000 - �72000

P-IDA-SA (ε = 0.2) 1548.9 921 3515 3450 17999 10217
P-IDA-SA (ε = 0.5) 1444.9 395 3370 2361 17802 5217

FCFS 757.7 8 1916.2 15 3953 18

3.6 Summary

The rapid rise of the sharing economy demands the application of efficient resource scheduling

mechanisms to two-sided markets. In this chapter, we propose a price-based iterative double auction

for charger sharing scheduling with the objective of maximizing the social welfare of all participat-

ing drivers and charger owners. The proposed auction is budget balanced, individually rational

and suitable for a competitive market environment in which myopic best responses from buyers

and sellers are expected. It advances the existing literature by extending one-sided auction-based
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scheduling to two-sided markets. From practical application perspective, it achieves much better

allocative efficiency than the first-come-first-served charger scheduling scheme which is commonly

used by charger sharing platforms. It can also address concerns about privacy because bidders only

need to reveal partial and indirect information about their valuations. In addition, it scales well to

larger problem instances, which validates its potential for large scale markets.
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Chapter 4

VOMA: A Privacy-Preserving Matching

Mechanism Design for Community

Ride-Sharing

In the previous chapter, we present an iterative double auction which serves as a matching

mechanism for allocating vehicles to chargers in a charger sharing market. This approach is a price-

based mechanism. However, in some markets, prices may not sufficient to determine the allocation

such as labor markets and college admission (Haeringer, 2018) or price discrimination strategies is

not desirable to some problem settings, like community ride sharing (Eva, n.d.). In this chapter, we

propose a non-price negotiation mechanism and apply it to a community ride-sharing market.

Providing high-quality matching between drivers and riders is imperative for sustaining the

growth of ride-sharing platforms. A user-focused matching mechanism design plays a key role in

terms of ensuring user satisfaction. In this chapter, we consider the matching problem in the commu-

nity ride-sharing setting, where drivers and riders have strong personal preferences over the matched

counterparties. Obtaining high-quality solutions that accommodate drivers’ and riders’ preferences

in such a setting is particularly challenging as drivers and riders maybe reluctant to share with the

platform their personal preferences over their ride-sharing counterparties due to privacy and ethi-

cal concerns. To this end, we propose a VOting-based MAtching (VOMA) mechanism to compute
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near-optimal matching solutions for drivers and riders, while preserving their privacy. The mech-

anism is a distributed implementation of the simulated annealing meta-heuristic, which computes

matching solutions by guiding drivers and riders in the distributed search process using an iterative

voting protocol. We evaluate the performance of VOMA using test cases generated based on New

York taxi data sets. The experiment results show that the proposed matching mechanism achieves on

average 90.9% efficiency compared with optimal solutions. We also show that VOMA improves the

vehicle miles traveled (VMT) savings by up to 35% compared to an alternative voting-based greedy

matching mechanism. System scalability and other practical issues regarding the implementation of

such a matching mechanism in community ride-sharing platforms are also discussed.

4.1 Introduction

The sharing economy promotes green consumption by better leveraging idle resources. As one

segment of the sharing economy, shared mobility has gained popularity in recent years, serving as

an innovative transportation strategy that enables users to gain short-term access to transportation

services on an as-needed basis. Typical examples of these services include car-sharing, bike-sharing,

on-demand ride services, micro-transit and ride-sharing (S. Shaheen et al., 2016; S. A. Shaheen,

2016). To further promote shared mobility as a service, popular Transportation Network Companies

(TNCs) have also added shared or carpool features to their base ride-hailing services. For example,

riders can now use apps such as Uber Pool, Didi Dache and Lyft Line to share rides with other

riders. For TNCs, by combining individual trips into shared rides, the fleet size required to serve

the same demand is reduced, therefore, saving their capital expenditure and operating costs. For

cities, shared mobility helps improve citizens’ quality of life by mitigating congestion, road traffic

nuisance and air pollution.

In addition to the ride-sharing services provided by well-known TNCs, smaller scale commu-

nity ride-sharing platforms have also attracted considerable attention as a transportation alternative

in recent years, especially in sub-urban and rural areas. These acquaintance-based ride-sharing

platforms provide shared rides among colleagues, seniors, and commuters within the same com-

munity (W. Chen, Mes, Schutten, & Quint, 2019; Payyanadan & Lee, 2018). Typical examples of

43



platforms offering such services include Zimride1, Eva2, RideConnet3 and Pendla4.

Contrary to large ride-hailing platforms which rely on dedicated drivers to pick up and drop

off riders, these “turn-your-neighbors-into-codrivers” platforms operate rather differently. In such

platforms, drivers and riders are usually expected to register their personal information and pref-

erences when joining the ride-sharing community (W. Chen et al., 2019). Once the registration is

completed and verified by the platform, the commuter becomes a member and is able to submit

their trip requests as either a driver or a rider, typically on a daily basis. Each request contains

detailed trip information, such as the origin and the destination, and the earliest departure and latest

arrival times. The platform uses the received trip request information as well as the commuters’ reg-

istration information to compute suitable ride-sharing matches considering both distance and time

related scheduling constraints and commuters’ personal preferences.

Due to the acquaintance-based nature of community ride-sharing, a commuter’s perceived qual-

ity of matching is largely determined by the sharing counterparty. As reported in (Cui, Makhija,

Chen, He, & Khani, 2020; Sarriera et al., 2017), the primary concern of commuters in commu-

nity ride-sharing is to whom they would share the ride. Since they may already know each other

and they may share rides on a regular basis, commuters have strong personal preferences over the

matched pairs (Xing, Warden, Nicolai, & Herzog, 2009; Yousaf, Li, Chen, Tang, & Dai, 2014). In

addition to a list of favorite names, a driver or a rider may prefer to share the ride with specific

groups of individuals, such as non-smokers or people with the same gender, as opposed to others.

To this end, a high-quality matching between drivers and riders needs not only to respect scheduling

constraints, but also to accommodate commuters’ personal preferences. They may not accept the

platform’s matching recommendations if the assigned counterparties deviate too far from what they

have expected (Agatz et al., 2012; Yousaf et al., 2014).

To achieve this objective, the unique challenge facing community ride-sharing platforms is to

obtain complete personal preferences when making matching decisions. However, those preferences

are usually considered as private information by the commuters. They certainly do not want to share
1http://zimride.com/
2https://eva.coop/
3https://www.rideconnect.com/
4https://www.pendla.com/en/
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with the platform the list of people they do not like to share the rides with. To a certain extent, they

even do not want to share more general preferences such as the gender and age of the matching

counterparty due to ethical and privacy concerns (Aı̈vodji, Huguenin, Huguet, & Killijian, 2018;

H. Zhang & Zhao, 2018). This (culturally) sensitive information is distributed among and controlled

by individual commuters (Chau, Shen, & Zhou, 2020), to which the service operator does not have

access. This distribution of information and control calls for decentralized optimization models

which do not rely on centralized information but construct matching solutions through distributed

negotiation among drivers and riders.

In this chapter, we propose VOMA, a distributed and privacy-preserving voting-based mecha-

nism to solve the matching problems in community ride-sharing. This mechanism implements an

improvement-based searching process which is inspired by the simulated annealing meta-heuristic,

allowing drivers and riders to negotiate matching solutions iteratively in accordance with their indi-

vidual preferences. This distributed negotiation process finds high-quality matching solutions and,

at the same time, maintains the commuters’ privacy.

The rest of this chapter is organized as follows. Section 4.2 reviews related works and positions

the proposed approach in the literature. Section 4.3 describes the ride-sharing matching problem

and its mathematical formulation. Section 4.4 formulates the commuters’ utility functions, followed

by the design of the matching mechanism in Section 4.5. In Section 4.6, we conduct a numerical

study to evaluate the performance of the proposed mechanism. Finally we conclude our work in

Section 4.7.

4.2 Related work

The design of an effective matching mechanism is essential for the success of a ride-sharing

system, which has attracted considerable interest in the transportation research community (Agatz

et al., 2012; Furuhata et al., 2013; Tafreshian et al., 2020). In the literature, most attention has been

paid to maximizing travel cost savings and matching rate. Agatz et al. (Agatz, Erera, Savelsbergh, &

Wang, 2011), for example, model the single driver and single rider ride-sharing problem as a max-

weight bipartite matching problem and apply rolling horizon approaches to achieve high-quality
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matching solutions in real time. The objective is to maximize the overall system travel distance cost

savings. With the same objective, a graph partitioning-based method is developed in (Tafreshian

& Masoud, 2020) to solve a ride-matching problem. Similarly, with the objective of minimizing

the total travel costs, Bei et al. (Bei & Zhang, 2018) model the ride-sharing problem as a combina-

torial optimization problem and design an approximate algorithm to efficiently solve this NP-hard

problem. In (Stiglic, Agatz, Savelsbergh, & Gradisar, 2015), Stiglic et al. reveal that introducing

meeting points benefits ride-sharing systems by significantly increasing the number of successfully

matched participants and reducing system-wide driving distances. Meeting points increase the flex-

ibility of the ride-sharing system by expanding the set of feasible matches. In line with addressing

the impact of riders’ flexibility, Stiglic et al. (Stiglicc, Agatz, Savelsbergh, & Gradisar, 2016) use

the same model to investigate the impact of matching flexibility, detour flexibility, and scheduling

flexibility on matching rates. Masoud and Jayakrishnan (Masoud & Jayakrishnan, 2017) propose an

optimal and real-time ride-matching algorithm that maximizes the matching rate in the ride-sharing

system.

However, these papers compute the matching solutions between drivers and riders only based

on trip-related constraints and preferences. They do not incorporate drivers’ and riders’ personal

preferences, such as the age and gender of their sharing counterparties into the matching process. As

indicated by (Agatz et al., 2012; H. Zhang & Zhao, 2018), in addition to the trip-related preference,

a good understanding of the commuters’ personal preferences is essential for maximizing commuter

satisfaction when designing a ride-sharing system. If ride-sharing matching solutions do not satisfy

the commuters’ personal preferences, the solution may not be accepted, or the commuter may not

consider to use the ride-sharing system in the future.

With the consideration of drivers and riders preferences, market-based approaches such as auc-

tions have been proposed to obtain socially desirable solutions to matching problems in ride-sharing

systems. Kleiner et al. (Kleiner, Nebel, & Ziparo, 2011) propose a second-price auction for a dy-

namic ride-sharing problem with the objective of balancing the trade-off between the vehicle kilo-

meters travelled and the matching rate. This mechanism incentives drivers and riders to truthfully

report their preferences by using a Vickrey–Clarke–Groves (VCG) based payment strategy. Fol-

lowing the same payment rule, Asghari et al. (Asghari & Shahabi, 2017) propose a truthful pricing
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mechanism based on second-price auction with a reserved price for ride-sharing. In a similar fash-

ion, Bian et al. (Bian, Liu, & Bai, 2020) propose a novel mechanism, which adapts the traditional

VCG mechanism to match drivers and riders in ride-sharing systems with the objective of maximiz-

ing the social welfare which is defined as the total preferences of commuters in the system.

Despite VCG’s theoretical elegance, the implementations of VCG-type auctions have several

limitations, which restrict its application to matching problems in community ride-sharing sys-

tems: (i) VCG auctions require drivers and riders to submit their complete preference valuations

to compute a final schedule. In community ride-sharing, drivers and riders are often reluctant

to do so due to privacy concerns. (ii) Lack of transparency is another practical concern in VCG

auctions (C. Wang et al., 2011). It can be difficult to explain to the drivers and riders why a cer-

tain matching solution is chosen. (iii) The implementation of VCG auctions generally suffer from

excessively high computation costs (Ausubel et al., 2006), which are impractical for ride-sharing

systems with large numbers of drivers and riders. In addition to these limitations, the above men-

tioned matching mechanisms employ price discrimination strategies which are usually not feasible

for community ride-sharing systems due to their business model constraints as a community service.

In general, the ride-sharing service price is pre-set by the community and does not change on a daily

basis (Eva, n.d.).

In this chapter, we propose a non-price negotiation mechanism for matching drivers and riders

in a ride-sharing system. This mechanism not only respects the underlying ride-sharing match-

ing constraints but also accommodates commuters’ preferences in a privacy preserving way. Other

non-price negotiation mechanisms for optimization problems have also been proposed in the litera-

ture (Fink, 2004; J. Gao & Wang, 2018; J. Gao, Wong, & Wang, 2019, 2021; Lang, Fink, & Brandt,

2016). However, these mechanisms are designed for one-sided problem settings, which are not suit-

able for our two-sided community ride-sharing problem. In this work, we propose a more general

two-sided ride-sharing markets with two groups of players (drivers and riders). In addition, we do

not assume a given preference value for each of the players as in (Fink, 2004; Lang et al., 2016).

Instead, we explicitly design utility functions for drivers and riders (in Section VI) to support the

negotiation process and to concisely express commuters’ personal preferences over the matching

solutions.
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4.3 The community ride-sharing matching problem

In this section, we formulate the ride-sharing matching problem in the context of community

ride-sharing systems.

4.3.1 System overview

We consider a community ride-sharing system where three types of players, namely drivers,

riders and a service operator are involved. Drivers and riders first register their personal information,

such as age, gender, education level, special interests, etc. After that, drivers and riders who would

like to share a ride submit their trip offers and requests to the operator. The trip offer of a driver

contains the origin and the destination locations and the earliest departure and the latest arrival

times. Similarly, for a rider, the trip request contains the pick-up and drop-off locations, and the

earliest departure and the latest arrival times. Finally, the operator computes an optimal matching

solution between a group of trip offers and requests collected in a pre-determined time window.

In what follows, we formally define the ride-sharing matching problem. Table 4.1 lists the main

notations used in this chapter.

Table 4.1: Summary of main notations

Notation Description
f A pre-determined time window
Df A set of drivers in f , indexed by di
Rf A set of riders in f , indexed by ri

edi , eri Earliest departure time of di and ri
ldi , lri Latest arrival time of di and ri
odi , ori Origin locations of di and ri
wdi , wri Destination locations of di and ri
δo,w Driving distance between locations o and w
to,w Driving time between locations o and w
S A ride-sharing feasible matching solution

dtdi,ri Decision variable: the departure time of driver di
when matching with rider ri

1dtdi,ri∈R
+ Indicator function: 1dtdi,ri∈R+ = 1 if

dtdi,ri ∈ R+ is true
uri(S), udi(S) Utility functions of

rider ri and driver di on S
T Number of negotiation rounds
% Acceptance quota
ψ Number of candidate matching

solutions per round
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Let f .
= (ω+

f , ω
−
f ) be a pre-determined time window with length ω−f − ω

+
f , where ω+

f is the

start time and ω−f is the end time. Let Df be a set of drivers who submit their trip offers within f .

The trip offer of driver di ∈ Df is defined by a five-tuple α(di)
.
= (IDdi , odi , wdi , edi , ldi), where

IDdi is the driver’s identification number, and odi and wdi respectively represent the origin and the

destination locations of driver di. Moreover, edi indicates the earliest time that driver di can depart

from his or her origin odi and ldi indicates the latest time di should arrive at his or her destination

wdi .

Let Rf be a set of riders who submit their trip requests within f . The trip request of a rider

ri ∈ Rf is defined by a five-tuple α(ri)
.
= (IDri , ori , wri , eri , lri), where IDri is the identification

number of rider ri. ori and wri are the pick-up and drop-off location, respectively. eri is earliest

pick-up time of rider ri and lri is the latest drop-off time of rider ri.

Based on the trip offers and requests submitted by drivers and riders, the solution to the ride

sharing problem is a matching solution S which contains the matched rider-driver pairs and the

corresponding departure time of the drivers. Let dtdi,ri be the departure time of driver di when

matching with rider ri, where dtdi,ri ∈ R+ if driver di is assigned to pick up and deliver rider ri,

and dtdi,ri = −1 if otherwise. We say that a matching solution S is feasible if and only if the

following constraints are satisfied for each dtdi,ri ∈ R+:

(i) The departure time of a driver to pick-up a rider should be no earlier than the earliest departure

time of the driver, i.e., dtdi,ri ≥ edi , ∀ri ∈ Rf , ∀di ∈ Df ,

(ii) The arrival time of a driver to his or her destination after delivering a rider should be no later

than the latest arrival time, i.e., dtdi,ri + todi ,ori + tori ,wri
+ twri ,wdi

≤ ldi , ∀ri ∈ Rf , ∀di ∈ Df , where todi ,ori + tori ,wri
+ twri ,wdi

is the time required for driver

di going through locations odi , ori , wri and wdi , as shown in the right side of Figure 4.1.

(iii) The pick-up time of a driver (the time a driver arrives at the matched rider location) should

be no earlier than the rider’s earliest departure time, i.e., dtdi,ri + todi ,ori ≥ eri , ∀ri ∈

Rf , ∀di ∈ Df ,

(iv) The arrival time of a rider at his or her destination should be no later than the latest drop-off

time, i.e., dtdi,ri + todi ,ori + tori ,wri
≤ lri , ∀ri ∈ Rf , ∀di ∈ Df ,
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(v) A driver is allowed to serve at most one rider, i.e., if dtdi,ri ∈ R+ and dtdi,r′i ∈ R+, then

ri = r′i, ∀di ∈ Df ,

(vi) A rider can only be matched to a driver, i.e., if dtdi,ri ∈ R+ and dtd′i,ri ∈ R+, then di =

d′i, ∀ri ∈ Rf ,

(vii) A driver only matches to a rider with a positive distance saving, i.e., if dtdi,ri ∈ R+, then

δori ,wri
+ δodi ,wdi

− (δodi ,ori + δori ,wri
+ δwri ,wdi

) > 0 ∀ri ∈ Rf , ∀di ∈ Df , where

δori ,wri
and δodi ,wdi

are the estimated distances of rider ri and driver di when traveling alone,

as shown in Figure 4.1 (a). δodi ,ori + δori ,wri
+ δwri ,wdi

is the overall length of ride share

between rider ri and driver di, as shown in Figure 4.1 (b).

Figure 4.1: An example of a single rider single driver ride-share arrangement. Single paths of rider
(green) and driver (blue), overall path required for ride share (orange).

Drivers and riders have preferences over feasible matching solutions regarding the matched

counterparties and the arranged times and itineraries. According to the utility theory (Fishburn,

1970), these preferences can be quantified by designing utility functions. Let udi(S) and uri(S) be

the utility functions of driver di and rider ri on a matching solution S, respectively. The objective

of maximizing the overall utilities across all drivers and riders is defined as:

max
∑
ri∈Rf

∑
di∈Df

1dtdi,ri∈R
+(uri(S) + udi(S)) (8)

where 1dtdi,ri∈R+ is the indicator function that equals 1 if dtdi,ri ∈ R+ is true and 0 otherwise. This

objective considers the benefits of both drivers and riders, which ensures the continuous growth of

ride-sharing systems in the context of the sharing economy.

In what follows, we introduce the design of utility functions of drivers and riders, respectively.
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4.4 The design of utility functions

A commuter’s preference over a set of matching solutions is determined by the matched coun-

terparty and travel schedule (time and itinerary). Therefore, the utility function which is designed to

quantify the degree of a commuter’s preference over a set of matching solutions will evaluate a com-

muter’s satisfaction levels to both the matched counterparty and the travel schedule prescribed by

the operator. We assume commuters have quasilinear utility functions (Shoham & Leyton-Brown,

2008), such that the overall utility function of a commuter can be formulated as a linear combina-

tion of two sub-utility functions, namely matching utility function and scheduling utility function,

designed for quantifying a commuter’s satisfaction levels to a matched counterparty and a travel

schedule, respectively. In what follows, we first present the two sub-utility functions for both drivers

and riders, then we propose the design of a commuter’s utility function over complete matching so-

lutions.

As observed by the authors in (Cui, Makhija, Chen, He, & Khani, 2021), the perceived sat-

isfaction level of a commuter to his or her matched counterparty is mainly influenced by a set of

personal attributes, such as gender, age, education level, smoking and drinking habits, etc. The

matching utility function therefore assigns a numerical value to the matched counterparty by evalu-

ating the set of personal attributes of the matched counterparty. Let K be a set of personal attributes

for commuters, such as age and gender. Each attribute k ∈ K can be decomposed into distinct

classes based on the characteristic of the attribute. For example, attribute gender can be classi-

fied into two classes, female and male. Let Xk be a set that contains all the classes of attribute

k. Let Rresici (Xk) ⊆ Xk be the registered classes of attribute k for commuter ci ∈ {Df ∪ Rf}.

For example, Rresid1
({female,male}) = {female} indicates that the gender of driver d1 is fe-

male. Let P prefci (Xk) be the preferred classes of attribute k for commuter ci ∈ {Df ∪ Rf}, with

P prefci (Xk) ⊆ Xk. For example, P prefd1
({female,male}) = {female} indicates that driver d1

prefers to be matched with a female rider.

Example 1. To explain the above defined concept, we illustrate an example with two attributes:

age and smoking habit. In this example, the first attribute, age attribute, is decomposed into

51



three classes: young adulthood (18 to 35 years), middle age (36 to 55 years), and older adult-

hood (56 years and older) and ay, am and ao are assigned to the classes, respectively. Thus we

have X1 = {ay, am, ao}. Smoking habit, the second attribute, is decomposed into two classes:

smoker and nonsmoker. sy and sn are assigned to the classes, respectively. Therefore, X2 =

{sy, sn}. If driver d1 prefers to be matched with young, non-smoking riders, then his or her

choices would be: P prefd1
({ay, am, ao}) = {ay} and P prefd1

({sy, sn}) = {sn}. Similarly, for riders,

P prefr1 ({ay, am, ao}) = {ay} and P prefr1 ({sy, sn}) = {sy, sn} indicate that rider r1 prefers young

drivers and has no preference with regard to the smoking habit attribute.

The matching utility function is formulated based on the Jaccard similarity coefficient (Ni-

wattanakul, Singthongchai, Naenudorn, & Wanapu, 2013), which measures the similarities be-

tween a commuter’s preferred attributes and the matched counterparty’s registered attributes. Let

J(P prefdi
(Xk), Rregiri (Xk)) be the Jaccard similarity coefficient between the driver’s preferred class

set and the rider’s registered class set of attribute k, which is computed as: J(P prefdi
(Xk), Rregiri (Xk)) =

|P pref
di

(Xk)
⋂
Rregi

ri
(Xk)|

|P pref
di

(Xk)
⋃
Rregi

ri
(Xk)|

. Thus the matching utility function of driver di with rider ri, denoted as

umatchdi
(ri), is defined as:

umatchdi
(ri) =

∑
k∈K

wkdi · J(P prefdi
(Xk), Rregiri (Xk)) (9)

where wkdi is the weight of the attribute k for driver di, representing the marginal impacts of the

attribute on the preference value. Similarly, rider ri’s matching utility function with driver di,

denoted as umatchri (di), is defined as:

umatchri (di) =
∑
k∈K

wkri · J(P prefri (Xk), Rregidi
(Xk)) (10)

where wkri is the weight of the attribute k for rider ri.

In addition to the matching utility function, commuters also have scheduling utility functions to

measure their satisfaction levels to the travel schedules. We assume a driver’s satisfaction level to a

travel schedule is determined by the length of the detours to pick-up and deliver a rider. As shown

in Figure 4.1 (b), the length of the detours of driver di to pick-up and deliver rider ri, denoted as
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dedi,ri , can be computed by δodi ,ori + δori ,wri
+ δwri ,wdi

− δodi ,wdi
, where δodi ,wdi

is the length of

the original trip of driver di; and δodi ,ori + δori ,wri
+ δwri ,wdi

is the joint trip length if driver di is

matched with a rider ri. Thus the scheduling utility function of a driver di with a rider ri, denoted

as uscheddi
(ri), is defined as:

uscheddi
(ri) = −αdidedi,ri (11)

where αdi ∈ R+ is the detour related cost coefficient of driver di. This function indicates that, the

driver’s satisfaction level decreases with the increase of the length of detours.

On the other side, we define a rider’s utility in terms of travel schedule as the wait time before

being picked up by a driver. Let todi ,ori be the driving time of driver di to pick up rider ri. The wait

time of rider ri being matched with driver di, dented as wri,di can be computed as dtdi,ri + todi ,ori −

eri , where dtdi,ri + todi ,ori is the time needed for driver di to pick up rider ri. Thus, the scheduling

utility function of a rider ri with a driver di, denoted as uschedri (di), is defined as:

uschedri (di) = −λriwri,di (12)

where λri ∈ R+ represents the delay tolerance rate of rider ri. With the increase of wait time, a

rider’s preference value decreases accordingly.

Given the quasilinear utility function assumption, the utility function of a driver di over a match-

ing solution S can be represented as the weighted sum of equations (2) and (4) as follows:

udi(S) = umatchdi
(ri) + χdu

sched
di

(ri) (13)

where χd is the weight coefficient of a driver’s utility function to align the units of umatchdi
(ri) and

uscheddi
(ri). Similarly, the utility function of a rider ri over S can be represented as the weighted

sum of equations (3) and (5) as follows:

uri(S) = umatchri (di) + χru
sched
ri (di) (14)
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where χr is the weight coefficient of a rider’s utility function to align the units of umatchri (di) and

uschedri (di). There are a number of ways to choose such a utility function. For the purposes of this

work, however, the formulations in (13) and (14) are chosen for their computational and conceptual

simplicity.

As mentioned previously, the utility functions of commuters are their private information which

is not accessible to the operator. Given the privacy constraint of commuters, in the next section, we

design a privacy-preserving voting-based negotiation mechanism to match drivers and riders.

4.5 Voting-based matching mechanism

In this section, we present VOMA for matching drivers and riders in a ride-sharing system. This

mechanism is a distributed implementation of a meta-heuristic through which commuters collabora-

tively improve the overall utility of a matching solution using a privacy preserving voting procedure

inspired by Simulated Annealing (Talbi, 2009). This procedure consists of multiple hill climbing

iterations during which improving moves are always accepted and a deteriorating move is accepted

with a given probability. The acceptance probability is controlled by the cooling process, which is

computed using a quota rule similar to that proposed in (Lang et al., 2016). In the following, we first

present the design of the overall negotiation mechanism. We then discuss its practical implementa-

tion issues by showing its game theoretic properties and a multi-agent systems implementation.

4.5.1 Voting based negotiation

Figure 4.2 shows a high level flow of the proposed negotiation process. First, based on the

trip offers and requests submitted by drivers and riders, a set of feasible matching solutions, called

candidate matching solutions is randomly generated by the service operator. Upon receiving the

candidate matching solutions, drivers and riders compute their utilities over these matching solutions

based on their utility functions (defined in equations (13) and (14)). Afterwards, drivers and riders

vote on a subset of matching solutions and submit their voting decisions to the operator. This voting

decision is restricted by a quota rule, in which drivers and riders have to vote on a certain number

of candidate matching solutions so that deteriorating moves are accepted and local optima can be
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overcome. After receiving all the responses from drivers and riders, the operator has to decide

which candidate matching solution can be selected as an incumbent matching solution. The operator

proceeds with the generation of new candidate matching solutions until the maximum number of

negotiation rounds is reached.

Figure 4.2: A high level flow of the negotiation process.

The details of the negotiation process are described in Algorithm 3. As initial inputs, VOMA

requires the number of the negotiation round T , the acceptance quota % (how many matching solu-

tions need to be accepted in the first negotiation round), the number of candidate matching solutions

per round ψ, a set of trip offers α(di), ∀di ∈ Df and a set of trip requests α(ri),∀ri ∈ Rf .

At first, based on the submitted trip offers and requests, the operator matches drivers and riders

using a random allocation procedure (see Line 2 of Algorithm 1) to generate an initial permutation

Πini = {ξdi,ri | ∀di ∈ Df , ∀ri ∈ Rf}, where ξdi,ri = (α(di), α(ri)) is a driver-rider pair, binding

a driver di’s offer α(di) to a rider ri’s request α(ri). Given the initial permutation Πini, an initial

matching solution Sini is generated by calling the TIMETABLING procedure (see Algorithm 4 for

details). The initial matching solution becomes the final matching solution when the negotiation

terminates. For the quota %, in line 4 of Algorithm 1, a cooling factor θ%, which decreases the quota

% in each round is computed (see Line 33 of Algorithm 1). After the initialization, the negotiation

procedure starts and is repeated until the T th round. Each round contains three steps, namely

candidate matching solution set generation, voting and incumbent matching solution determination.

• Candidate matching solution set generation: At round t, an incumbent permutation Πinc is

first generated using an decoding bijection function f(·), which maps or converts a matching
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Algorithm 3 VOMA

Require: T, %, ψ, α(di),∀di ∈ Df , α(ri),∀ri ∈ Rf

Ensure: S∗
1: Πini ← {ξdi,ri | ∀di ∈ Df ,∀ri ∈ Rf}
2: Sini← TIMETABLING(Πini)
3: θ% ← %

1
1−T

4: for t← 1 to T do . Negotiation starts
5: AcceptedSolutions← ∅
6: CS ← Sini

7: CP ← {f(Sini)}
8: for k← 1 to ψ − 1 do . Negotiation starts
9: Πc ← SWAP(f(Sini))

10: CP ← CP ∪ {Πc}
11: end for
12: for all Πc ∈ CP do
13: Sc ← TIMETABLING(Πc)
14: CS ← CS ∪ {Sc}
15: end for
16: for all ci ∈ Df

⋃
Rf do

17:
−→
Zci ← VOTEci (CS, vci(S

c), %)
18: end for
19: for all Sc ∈ CS do
20: if

∑
ci∈Df

⋃
Rf

−→
Zci [S

c] ≥ Threshold then
21: AcceptedSolutions← AcceptedSolutions ∪ {Sc}
22: end if
23: end for
24: if AcceptedSolutions 6= ∅ then . x is a normal distribution number in the range of [0, 1]
25: Sini← RANDOMSELECT(AcceptedSolutions)
26: end if
27: %← % · θ%
28: end for
29: S∗ ← Sini
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solution to its corresponding permutation (see line 9 of Algorithm 3). Then, a set of can-

didate permutations are generated by applying the independent swapping procedure adopted

from (Talbi, 2009). This results in the candidate permutation set CP , including the incum-

bent permutation Πinc and ψ − 1 candidate permutations (lines 11-14 of Algorithm 3). ψ is

the number of permutations per round. Πc is a candidate permutation. The swap operator is

conducted by randomly swapping the locations of two pairs, such as ξdi,ri(di ∈ Df , ri ∈ Rf )

and ξdk,rk(dk ∈ Df , rk ∈ Rf ) in Πinc, where i 6= k. For each permutation in the set CP ,

the corresponding matching solution is generated by calling the TIMETABLING procedure.

Finally, the candidate matching solution set CS is completed by converting all permutations

in CP into their corresponding matching solutions (see lines 16-19 of Algorithm 3).

• Voting: Drivers and riders evaluate the candidate matching solutions based on their private

utilities. Here, this decision is subject to the current acceptance quota %. Specifically, upon

receiving the candidate matching solution set CS, each driver di and rider ri needs to vote

on the best % matching solutions from it based on their utilities. To compute the value of %

at each round of negotiation, we adopt a geometric cooling strategy: % ← % · θ% proposed

by (Blum & Roli, 2003) (see line 33 of Algorithm 3). Here θ% is the cooling factor, initialized

as θ%← %
1

1−T , where T is the predefined number of negotiation rounds. The cooling strategy

corresponds to an exponential decay of % and guarantees that only one matching solution has

to be accepted (% = 1) for each driver and rider at the last negotiation round. For all voted

matching solutions, a commuter ci ∈ Df
⋃
Rf sets the value of the corresponding position

in the binary decision vector
−→
Zci from 0 to 1 (lines 21-23 of Algorithm 3) (1 means accept a

matching solution and 0 means reject a matching solution). Naturally, commuters only accept

improved matching solutions compared with the initial matching solution Sini in terms of

utilities. However, in this protocol, each driver or rider has to accept at least % matching

solutions from a candidate matching solution set. Specifically, during each round, drivers

and riders will order candidate matching solutions based on his or her utilities on them and

attribute 1 to the first %matching solutions in
−→
Zci . This indicates that, commuters may need to

accept non-improved matching solutions or even deteriorated matching solutions compared

57



with the initial matching solution to reach the quota %.

• Incumbent matching solution determination: After the voting process, the operator assesses

the responses from the commuters. If a matching solution from a candidate matching solution

set CS is accepted by a certain number of commuters (given by Threshold, see line 26 of Al-

gorithm 3), it becomes a potential initial matching solution for the next negotiation round and

is thus added to the AcceptedSolutions set.
∑

ci∈Df
⋃
Rf

−→
Zci [S

c] represents the sum of the

commuters who accept a candidate matching solution Sc. If there are multiple matching so-

lutions in the set AcceptedSolutions, one matching solution from the set is randomly selected

and becomes the new initial matching solution. Otherwise, the initial matching solution in

the current round is carried over to the next negotiation round. The negotiation starts with a

new CS generated from the new CP and terminates after T rounds. The last initial matching

solution will be the final matching solution S∗ generated from the voting-based negotiation

process.

4.5.2 TIMETABLING for initial and candidate matching solutions generation

A matching solution is generated by calling the TIMETABLING procedure, which is shown in

Algorithm 2. This procedure adopts the priority rule-based scheduling method (Kolisch, 1996), in

which an allocation decision is first generated and a specific priority rule is then employed. To

be specific, for a pair ξdi,ri in Πc, the operator will first verify if it satisfies all the ride-sharing

constraints (i)-(vii) (see Section III for details). If the constraints are satisfied, the driver and rider

are matched and the departure time of the driver in this pair is assigned by the earliest feasible start

time (EST) rule (line 4 of Algorithm 2). Otherwise the pair is denied. The process is repeated until

all pairs in Πc are allocated and a matching solution is generated.

4.5.3 Game theoretic property of VOMA

The key factor that ensures the practical implementation of VOMA in community ride-sharing is

that commuters follow the procedure by voting for the best %matching solutions out of the candidate

matching solution set as prescribed by the negotiation procedure. In the following, we prove that
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Algorithm 4 TIMETABLING

Require: Πc

Ensure: Sc

1: for all ξdi,ri ∈ Πc do
2: if constraints (i)-(vii) are satisfied then
3: dtdi

← Assign a departure time based on EST
4: Else dtdi

= −1
5: end if
6: Sc ← Sc ∪ {(ξdi,ri , dtdi

)}
7: end for

the best strategy for a rational (utility maximizing) commuter is to vote according to the procedure.

Proposition 1. Given the negotiation procedure, the best strategy for a commuter unaware of other

commuters’ utilities is to vote on his or her best matching solutions out of the candidate matching

solution sets.

Proof. According to the expected utility theory (Von Neumann & Morgenstern, 2007), a commuter

chooses the matching solutions with the highest expected utilities. Let Lci be a simple lottery of

a commuter ci ∈ Df ∪ Rf , which is a probability distribution over candidate matching solutions

formulated as: Lci = [p1ci : S1, ..., pmci : Sm], where m is the number of candidate matching

solutions and pmci is the probability measure on candidate matching solution Sm with pmci ≥ 0,∀m

and
∑

m p
m
ci = 1. In our case pmci indicates the probability of commuter ci that candidate matching

solution Sm ∈ CS will be selected as an initial matching solution by the operator. Thus the expected

utility of the matching solution Sm for commuter ci is denoted as pmci×uci(S
m). LetCS%ci be the set

of voted matching solutions of commuter ci. To maximize his or her expected utility, a commuter

ci would vote on % matching solutions with the highest expected value which is:

arg max
CS%

ci
⊆CS

∑
Sm∈CS%

ci

pmci × uci(S
m)

However, with private information, a commuter is not aware of other commuters’ utilities. Thus

the probability of which matching solution would be selected as an initial matching solution by the

operator cannot be distinguishable. Thus p1ci = ... = pmci = p̄,∀ci,m, where p̄ is a constant number.
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The decision of each commuter is now reduced to

arg max
CS%

ci
⊆CS

∑
Sm∈CS%

ci

p̄× uci(Sm)

which is equivalent to arg maxCS%
ci
⊆CS

∑
Sm∈CS%

ci
uci(S

m). It immediately follows that, for each

commuter, to maximize his or her expected utility, the best strategy is to vote on the best %matching

solutions out of the candidate matching solution set CS.

4.5.4 Multiagent systems implementation

Due to the computation and communication efforts involved, to apply VOMA to real world com-

munity ride-sharing settings, an automated negotiation system has to be developed. One possible

structure of such automated systems can be a multi-agent systems implementation, where drivers

and riders are represented by their software proxy agents, which negotiate on behalf of them. A

commuter’s utility function can be programmed into his or her proxy agent. In the meantime, the

agents should be equipped with the algorithm to compute the utilities of the candidate matching

solutions and vote along the negotiation process. As observed in our experiments, the multi-agent

system can quickly converge during the negotiation process and find a near-optimal matching solu-

tion. For easy access, drivers and riders may install their proxy agents on a personal computer, a

smartphone, or other mobile devices.

4.6 Numerical study

In this section, we conduct a numerical study to assess the performance of VOMA in terms of

three evaluation metrics that are important to drivers, riders and community ride-sharing platforms.

In the following, we first present the evaluation metrics. Next, we describe the testing environ-

ment used to evaluate the performance of VOMA. Finally, we evaluate the performance of VOMA

by comparing its solutions with optimal solutions and those generated by an alternative matching

mechanism against the proposed evaluation metrics.
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4.6.1 Evaluation metrics

Social welfare

The social welfare of the ride-sharing system during a pre-determined time window is defined

as the sum of utilities of matched drivers and riders, formulated in equation (8).

Efficiency

The efficiency is defined as the ratio of the social welfare of the solution generated by VOMA

to the social welfare of the optimal solution.

Vehicle miles travelled (VMT) savings

VMT savings is defined as the difference between the sum of the original trip distances of the

commuters when traveling alone and the distances of the shared trips.

4.6.2 Test instance description and parameter setting

We construct the test instances based on the trip information obtained from 2016 New York City

green taxi public data5. The information available for each trip includes the timestamps and GPS

coordinates of the trip origin and destination. In this study, data from February 5th to February 6th

are extracted for the purpose of evaluating the performance of VOMA and we randomly assign 50%

of the total commuters to be drivers and make the rest riders. The information of the earliest depar-

ture time and the latest arrival time is not included in the original data, without loss of generality, we

use the pick-up and drop-off times in the data as the earliest departure and the latest arrival times,

respectively. We extract the trip records whose earliest departure times fall into evening peak hours

(6 : 00pm + ∆T ) to generate the test instances, where ∆T is the length of a pre-determined time

window. We vary the length of ∆T so that different numbers of drivers and riders are collected,

which are shown in Table II. The reason for varying the length of ∆T is to simulate different mar-

ket conditions in terms of commuter density and also to test the scalability of VOMA. The travel
5https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page. The reason for using 2016 data instead of more recent

one is that 2016 data includes the commuters’ GPS coordinates of pick-up and drop-off locations, which allows us to
estimate the traveling distance and time so that we can compute feasible matching solutions and commuters’ utility
functions
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distances between all points are approximated as Euclidean distances between the geographical co-

ordinates which can be obtained from the GPS coordinates in the data. To compute travel times, we

assume a driving speed of 30mph (we are considering an urban area). According to the American

Automobile Association, the operational cost of a personal vehicle ranges from $0.39 to $0.86 per

mile. Based on this statistic, a driver’s per mile detour cost αdi is randomly drawn from a uniform

distribution in the [$0.3 − $0.8] range. For each rider ri, the delay tolerance rate λri is randomly

drawn from a uniform distribution in the [0.1 − 0.8] range. This range is chosen based on the cus-

tomer survey results presented in (Buchholz, Doval, Kastl, Matějka, & Salz, 2020). For the sake

of simplicity, we select three personal attributes: age, gender and smoking tendency to formulate

the matching utilities of commuters. They are selected because they are the top-three attributes that

influence the commuters’ ride-sharing behaviors as indicated in (Cui et al., 2021). Each attribute

can be decomposed into distinct classes as shown in Table 4.3. For each testing group, we randomly

assign the registered and preferred classes of each attribute to the commuters.

Table 4.2: Number of drivers and riders in different time windows

Testing group ∆T Number of drivers Number of riders

1 2min 65 67
2 5min 177 130
3 10min 354 337
4 15min 458 442
5 20min 682 663
6 25min 831 785
7 30min 1402 1496

Table 4.3: Personal attributes and classified classes used in the computation study

Attribute Class

Age 1 = Young adults; 2 = Middle-aged adults
and 3 = Older adults

Gender 1 = Male, 2 = Female
Smoking tendency 1 = Smoking, 2 = Non-smoking
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Table 4.4: Performance comparisons between CPLEX, VOMA and the greedy mechanism in terms
of social welfare (SW) value, efficiency and computational time for 7 testing groups. We set a
20-hour time limit for CPLEX and “–” marks settings where CPLEX does not terminate within the
time limit.

Approach

Testing CPLEX VOMA Greedy mechanism

Group SW Running SW Running SW Running effV OMA effGREEDY

value time (s) value time (s) value time (s)

1 23.35 0.85 22.8 0.23 17.75 0.1 97.6% 76%
2 47.37 3.51 44.1 1.42 36 0.15 93.1% 76%
3 157 168 142 3.42 110 0.5 90.5% 70%
4 248 392 221.2 3.56 173.3 1.43 89.2% 69.8%
5 360 1380 318 5.82 226 1.9 88.4% 62.8%
6 412 5700 357 6.24 222 3.8 86.7% 54%
7 - - 650 16.5 404 6.76 - -

Average - - - - - - 90.9% 68.1%

4.6.3 Performance evaluation

In this subsection, we evaluate the performance of VOMA by comparing its solutions with the

optimal solutions computed by the CPLEX solver and those computed by a greedy matching mech-

anism in which drivers and riders only accept improving solutions during each negotiation round.

Same as in (Lang et al., 2016), there is no quota rule adopted in this mechanism. The optimal

solutions are obtained by solving the matching model formulated in Section III using the CPLEX

solver, assuming the operator knows the utilities of drivers and riders. Clearly, this approach is not

practical in the community ride-sharing setting, but it serves as an upper bound for the efficiency

that could be achieved by any optimization algorithm. VOMA and the greedy mechanism are imple-

mented in Python and run on a GPU. As a single experimental execution involves a certain degree

of randomness, we reduce the variance in the results by averaging them over 1000 runs.

Table 4.4 shows the comparison results in terms of the social welfare value and the efficiency

of solutions computed by CPLEX, VOMA and the greedy mechanism over Groups 1-7. Here,

VOMA is configured with % = 30, T = 1000k, ψ = 32 and the Threshold parameter is set to the

number of commuters. The greedy mechanism is configured with T = 1000k and ψ = 32. It is

observed from Table 4.4 that VOMA computes high-quality matching solutions in terms of social

welfare values and efficiency across all testing groups even through the mechanism does not have
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Table 4.5: Performance comparisons between CPLEX, VOMA and the greedy mechanism in terms
of travel distance savings for 7 testing groups. We set a 20-hour time limit for CPLEX and “–”
marks settings where CPLEX does not terminate within the time limit.

VMT savings (in Mile)

Testing Group CPLEX VOMA Greedy mechanism GapV OMA GapGREEDY

1 31.5 30.6 26.3 2.8% 16.5%
2 77 73 62 5.2% 19.4%
3 244 219 163.7 10.2% 23.9%
4 392 342 247.5 12.7% 36.9%
5 595 526 345 11.5% 42%
6 633.4 547 358 13.6% 43.4%
7 - 1035 676 - -

Average - - - 9.3% 30.3%

the commuters’ private utilities. Taking group 1 as an example, the matching solution computed by

VOMA achieves on average 97.6% efficiency compared to the optimal matching solution computed

by CPLEX (regarded as 100% efficiency). Meanwhile, the greedy mechanism only achieves on

average 76% efficiency, which is 28% lower than that of VOMA. This makes sense as commuters

in the greedy mechanism only accept improved matching solutions compared with the initial one.

In this case, the distributed search is equivalent to a local search like hill climbing, which will easily

get stuck in local optima. However, in VOMA, commuters have to follow the quota rule which

forces drivers and riders to sometimes accept worse matching solutions. This simulated-annealing

based guidance can efficiently explore the search space in order to find (near-) optimal matching

solutions. Note that we set a 20-hour time limit for CPLEX in the experiments. CPLEX does not

terminate within the time limit for group 7, which explains the absence of social welfare values for

CPLEX over group 7 in Table 4.4 and Table 4.5.

From column 8 of Table III we also observe that the average efficiency of matching solutions

computed by VOMA decreases when the number of commuters grows in the system. This can be

explained by the fact that more commuters are more difficult to coordinate and there is a larger

conflict of interest due to desperate preferences (Lang et al., 2016). Also the expansion of solution

space makes the optimization more challenging for the proposed mechanism and the optimality gap

slightly increases under the same negotiation round. However, even for testing group 6 with 831
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Table 4.6: Impact of T on the quality of matching solutions

Testing Group Performance Negotiation rounds
1k 5k 10k 50k 100k 500k 1000k 5000k

1
Efficiency 94.2% 96.4% 96.8% 97.1% 97.4% 97.7% 98% 98.1%

VMT savings 30.3 30.4 30.5 30.6 30.6 30.6 30.8 30.8
Running time (s) 0.0002 0.0012 0.002 0.011 0.023 0.11 0.23 1.15

2
Efficiency 78.2% 85.3% 87.4% 88.7% 88.9% 90.8% 91% 92%

VMT savings 54.3 58 59 59.8 60 61.1 62 63
Running time (s) 0.0014 0.007 0.014 0.06 0.14 0.646 1.42 5.278

3
Efficiency 71.3% 80.3% 84.1% 88.5% 89% 89.8% 90.5% 91.3%

VMT savings 167.8 186.7 193.9 204.3 205.8 207.8 208.5 212.6
Running time (s) 0.003 0.016 0.033 0.169 0.342 1.78 3.42 10.4

4
Efficiency 66.5% 73.8% 77.8% 85.1% 87.1% 88.7% 89.2% 89.6%

VMT savings 244.7 267.9 280.7 308 315.2 319.5 319.9 324
Running time (s) 0.0031 0.0158 0.033 0.16 0.324 1.644 3.32 15.2

5
Efficiency 59.7% 66.7% 69.7% 79.2% 80.5% 87.9% 88.3% 89%

VMT savings 332 361 378 426 443.8 467.3 471 476.3
Running time (s) 0.0057 0.029 0.058 0.29 0.58 2.93 5.82 29.4

6
Efficiency 53.2% 61.9% 63.1% 75.8% 79.6% 85.5% 86.5% 87.5%

VMT savings 358 392.7 414.5 477.5 502 540 547 552.3
Running time (s) 0.006 0.031 0.06 0.315 0.63 3.13 6.24 31.4

7
Efficiency 48% 53.2% 56% 65.7% 70.4% 79.5% 82.3% 84.3%

VMT savings 642.2 685.2 715 824 881 1001.5 1035 1075
Running time (s) 0.016 0.08 0.16 0.82 1.66 8.23 16.5 82.4

drivers and 785 riders, VOMA achieves on average 86.7% efficiency compared with CPLEX. More-

over, in contrast to CPLEX which requires the commuters’ complete utilities to compute an optimal

matching solution, VOMA does not require that information which maintains the commuters’ pri-

vacy.

The computation times to generate the corresponding matching solutions are also provided in

Table 4.4. It is shown that our largest testing group, which contains 1402 drivers and 1496 riders,

requires less than 20 seconds to be solved by VOMA. This level of responsiveness is acceptable

for a ride-sharing system. In addition, the computation times of VOMA can also be significantly

reduced by decreasing the number of negotiation rounds which we will show in Table V. It is im-

portant to note that although the greedy mechanism has better computation time performance, its

efficiency performance is much worse than that of VOMA. As shown in Table III, for group 7,

the social welfare value achieved by VOMA is 60% higher than that of the greedy mechanism.

Given the trade-off between solution quality and computation time, VOMA is clearly favorable for

a community ride-sharing setting.
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The VMT savings of matching solutions computed by CPLEX, VOMA and the greedy mech-

anism are shown in Table 4.5. The columns GapV OMA and GapGREEDY indicate the relative

gaps between the matching solutions computed by CPLEX and VOMA and the matching solutions

computed by CPLEX and the greedy mechanism, respectively. As observed in this table, the VMT

savings obtained by VOMA is close to the optimum, and the average gap is less than 10%. While

for the greedy mechanism, the average gap to the optimum solution is more than 30%. For group 7,

VOMA can save 1035 miles on average which significantly outperforms the solution computed by

the greedy mechanism (676 miles). Note that the distance savings is contributed by an average of

2898 commuters and the daily number of ride-sharing participants of the city exceeds 12000, which

may create substantial environmental and economic benefits. The comparison results in terms of

social welfare, efficiency and VMT savings indicate that the proposed approach is suitable and

performs well in ride-sharing systems. In fact, as shown in Table 4.6, we can further boost the

performance of VOMA by increasing the number of negotiation rounds.

Table 4.6 shows the performance of VOMA in terms of the efficiency and the VMT savings with

different numbers of negotiation rounds T over testing groups 1-7. It is shown that the efficiency

of VOMA increases significantly across all testing groups when increasing the value of T . Also,

the amount of VMT savings increases accordingly, as expected. Considering testing group 5 as an

example, the efficiency of VOMA increases from 59.7% to 89% and the VMT savings increase from

332 miles to more than 476 miles as the number of negotiation rounds increases from 1k to 5000k.

This makes sense since more negotiation rounds will generate more matching solutions, which in

turn increases the possibility of finding a better matching solution for each testing group. However

the cost comes with the high performance is more computation time. As shown in Table V, nego-

tiating with a greater number of rounds significantly increases the computation time, particularly

for the testing groups with a large number of drivers and riders. In spite of that, our largest testing

group, which contains 1420 drivers and 1496 riders, requires less than 2 minutes to be solved with

5000k rounds. Moreover, VOMA is an anytime algorithm. If so required, VOMA can stop at any

pre-defined time limit with an improved matching solution over the initial one.
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4.7 Summary

In this chapter, we propose a voting-based negotiation mechanism, serving as a coordination

protocol to match drivers and riders in community ride-sharing. This mechanism is a distributed

implementation of the simulated annealing meta-heuristic. It is designed to achieve high-quality

solutions, while preserving commuters’ privacy. The experiment results show that the proposed

matching mechanism achieves on average more than 90% efficiency compared with that of the

optimal solution. In addition, the vehicle miles traveled savings produced by the proposed matching

mechanism are close to the optimal results. Moreover, it scales well to larger problem instances,

which makes it a potentially viable matching algorithm candidate for large-scale community ride

sharing platforms.
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Chapter 5

BM-DDPG: An Integrated Dispatching

Framework for Ride-Hailing Systems1

In the previous chapters, we have proposed two approaches to deal with the game theoretic

behaviors of the participants in two-sided markets. In this chapter, we focus on the rider demand

uncertainty in the dynamic market environment. Towards this, we propose a dispatching framework

which integrates batched matching with data-driven guidance for driver-rider matching and apply

this approach to a Uber-like ride-hailing market.

This chapter proposes an integrated dispatching framework for matching drivers with riders

in ride-hailing systems. The goal is to compute matching solutions that maximize social welfare

and benefit both sides of the market, such that the sustainable growth of the ride-hailing system is

ensured. The proposed framework integrates data-driven proactive guidance strategies with batched

matching optimization to increase social welfare, improve matching rate and reduce rider wait time.

Proactive guidance strategies are computed by leveraging short-term demand forecasts based on

historical data. Taken the resulting guidance strategies as inputs, the batched matching algorithm

computes optimal bipartite matching between drivers and riders in a batch. Using New York City

taxi data from 2016 March 1st to March 31st as input, we conduct a numerical study to evaluate the

performance of the proposed framework and compare it with existing approaches in the literature.
1Gao, J., Li, X., Wang, C., Huang, X. (2021). BM-DDPG: An Integrated Dispatching Framework for Ride-Hailing

Systems. IEEE Transactions on Intelligent Transportation Systems. (Early Access). DOI: 10.1109/TITS.2021.3106243
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Our results show that the proposed framework improves social welfare for up to 50%. It also

increases the matching rate by an average of 20% and reduces the average rider wait time by over

15%. This implies a strong potential for the proposed dispatching framework to improve service

quality in ride-hailing systems.

5.1 Introduction

Batched matching has been adopted by ride-hailing companies such as Uber, Lyft and DiDi

to reduce overall rider wait times (Agency, 2019; Z. Xu et al., 2018). Unlike immediate match-

ing (H. Wang & Yang, 2019), a commonly used practice that allocates an open driver to the nearest

waiting rider on a first-come-first-served basis, batched matching aggregates all riders within a pre-

determined time window, i.e., a batch, and minimizes overall rider wait times (Korolko, Woodard,

Yan, & Zhu, 2018; Yan, Zhu, Korolko, & Woodard, 2020).

Batched matching makes better use of driver supply by consolidating rider requests. However,

it does not address the supply-demand imbalance issue which adversely impacts both the drivers

and the riders. For instance, suppose the number of rider requests in a specific region surges within

a short period of time. To meet the excess demand, the ride-hailing system would call in open

drivers from neighboring regions. These out-of-region drivers then have to travel extra miles to

pick up the riders, resulting in longer wait time for the rider. As the drivers become open after

dropping off the riders, the present ride-hailing system would not provide any direct guidance as to

how they should be relocated in expectation of future rider requests. Open drivers will then have

to predict the demand based on their own experience and travel to the regions where they believe

the next rider requests will likely appear. If the demand falls short of their expectations or too

many drivers show up in the same region, the drivers may end up waiting for a long period of time

without any rider assignment, following which they may need to re-evaluate the situation and move

to other regions. This ad-hoc prediction and uncoordinated ride hunting behavior lead to excessive

operational costs for the drivers and negative social externalities, such as urban congestion and

increased emissions (Yuan, Zheng, Zhang, & Xie, 2012).

In response to this issue, ride-hailing systems have adopted indirect guidance strategies such as
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surge pricing to attract drivers toward regions where demand outstrips supply. This strategy may

reduce expected wait times M. K. Chen (2016). However, with surge pricing, drivers can only

estimate the demand based on the level of surge prices. In addition, the relocation decisions among

the drivers are not coordinated. In many cases, surge-chasing drivers may oversupply some regions

while exacerbating supply shortages in other regions. These uncoordinated driver movements may

impose longer overall wait times for the riders across regions and extra idle driving costs for the

drivers (He & Shin, 2019; Rosenblat & Stark, 2016).

To address these issues, we propose an enhanced dispatching framework for ride-hailing systems

by integrating direct driver guidance strategies with batched matching. The integrated framework

consists of two modules, namely, Data-driven Proactive Guidance (DDPG) and Batched Matching

(BM). DDPG computes optimal open driver guidance strategies based on predicted rider demand

and open driver supply for various regions. The demand prediction is generated through a machine

learning algorithm based on historical data. The open driver supply is obtained from the matching

solutions computed by BM during previous batching windows. The optimal guidance strategies are

computed by solving a mixed integer program with the objectives of minimizing the open driver

idle driving cost and the supply-demand gap of the region. Taking the computed guidance strategies

from DDPG as inputs, BM computes the optimal bipartite matching among open drivers and waiting

riders in the batch.

The proposed framework contributes to the literature by integrating batched matching models

with data-driven proactive guidance strategies, thus yielding lower wait times for the riders, shorter

idle driving distance for the drivers and higher matching rate in a batching window. The rest of

the chapter is organized as follows. Section 5.2 reviews related works and positions the proposed

approach in the literature. Section 5.3 describes the batched matching problem and its mathematical

formulation. Section 5.4 presents the integrated dispatching framework followed by a computational

study to evaluate the effectiveness of the proposed framework in Section 5.5. Section 5.6 concludes

the chapter.
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5.2 Related work

A key operational challenge for ride-hailing systems, as for any on-demand transportation sys-

tems, is the problem of matching, which corresponds to the process of finding a proper driver to

serve a rider request. In recent years, a considerable amount of research has been devoted to the

design and analysis of matching approaches for ride-hailing systems. In a recent comprehensive

review (H. Wang & Yang, 2019), matching approaches are classified into two categories: greedy

matching and batched-matching. Greedy matching algorithms, such as those proposed in (G. Feng

et al., 2020; Lee et al., 2004), find the nearest driver or the shortest-travel-time driver for each indi-

vidual rider request. Although these methods are easy to implement and manage, they are myopic

in the sense that they prioritize immediate individual rider satisfaction over efficient resource uti-

lization across many riders, which jeopardizes rider satisfaction at a larger scale. As an alternative,

batched matching strives to accommodate the needs of more riders at a time by optimizing the

matching among a group of drivers and riders accumulated in a pre-determined batching window.

For the benefit of riders, Seow et al. (Seow, Dang, & Lee, 2009) propose a multi-agent taxi dis-

patch structure with the objective of minimizing total rider wait times. This approach concurrently

dispatches multiple taxis to pick up a set of riders and allows taxis to exchange their booking as-

signments. In addition to reducing rider wait times, approaches are also designed to maximize the

matching rate in a batched matching solution. A multi-stage stochastic optimization formulation is

proposed by Lowalekar et al. (Lowalekar, Varakantham, & Jaillet, 2018) to maximize the number of

matched requests in a batch with the consideration of future rider demand. Zhang et al. (L. Zhang

et al., 2017) propose a combinatorial optimization model to solve the order dispatch (matching)

problem at Didi Chuxing. Their objective is also to maximize the matching rates. For the benefit

of drivers, Zhan et al. (Zhan, Qian, & Ukkusuri, 2016) propose two matching algorithms namely

optimal matching and trip integration to minimize drivers’ idling driving time and distance across

all open drivers in the system. The computation results show that these algorithms could find the

optimal strategy that minimizes the cost of empty trips, and the number of taxis required to serve all

observed trips.

The above-mentioned approaches compute good system-wide matching results. However, they
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are more reactive in a way that they only respond to the current locations of drivers at the time of

matching without providing proactive guidance for the drivers before the rider demands are realized.

As reported in (Niu, Wang, Zhou, & Zhou, 2019), when there is no appropriate guidance, drivers are

confused with where to go for next rider requests. Some of them would waste much time roaming

on the road; while others just wait at locations where they believe they can be dispatched to the next

rider quickly.

Stand alone guidance strategies for ride-hailing systems have also been proposed in the litera-

ture. These strategies can be categorized into reactive and proactive. Reactive strategies attempt to

rebalance vehicles within the system after rider demands in different regions are realized. Typical

examples include Fluid model based rebalancing (Braverman, Dai, Liu, & Ying, 2019), Markov

transition based rebalancing (Volkov, Aslam, & Rus, 2012) and queueing-theory based rebalanc-

ing (R. Zhang & Pavone, 2016). Guidance strategies that anticipate riders’ demands before they are

realized are proactive strategies. These strategies relocate the vehicles to the regions where high

demand is expected.

In the context of Autonomous Mobility-on-Demand systems, a Model Prediction Control algo-

rithm that leverages short term forecast of customer demand is proposed to rebalance the operations

of autonomous MoD fleet (Iglesias et al., 2018). The future customer demand is predicted by a fore-

casting model based on Long Short-Term Memory neural networks. In a similar fashion, Tsao et

al. (Tsao, Iglesias, & Pavone, 2018) propose a stochastic model-predictive control algorithm to re-

locate vehicles by leveraging the short-term travel demand forecasts. The aforementioned guidance

strategies limit themselves to guidance decisions only. They do not consider the interaction between

guidance decisions and matching decisions in a ride-hailing system. In a more realistic setting, the

time constraints imposed by batched matching windows will impact the number of available open

drivers who can be guided to a certain region. Also, the driver supply of a certain region during a

future batching window is also impacted by the matching decisions made before that window. In

addition, existing matching approaches only consider benefiting one side of the market, e.g., im-

proving the service quality to riders as in (Lowalekar et al., 2018; Seow et al., 2009; L. Zhang et

al., 2017) or reducing drivers’ idle driving costs as in (Zhan et al., 2016). This one-sided objective

is not suitable for today’s ride-hailing systems which primarily operate in the context of the sharing
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economy. In the proposed framework, we maximize the social welfare of both drivers and riders,

which is a suitable objective for designing two-sided matching markets for the sharing economy.

Table 5.1: Summary of existing works on matching problem in ride-hailing systems

Reference Objective Matching strategy Guidance strategy Note

Seow et al. (2009) Minimize total rider Batched matching Reactive matching
wait times No guidance

Lowalekar et al. (2018), Maximize the system Batched matching Reactive matching
L. Zhang et al. (2017) matching rate No guidance

Zhan et al. (2016) Minimize total drivers’ Batched matching Reactive matching
driving distance and time No guidance

Braverman et al. (2019), Minimize supply and Reactive guidance No matching
Volkov et al. (2012), demand gap Reactive guidance

R. Zhang and Pavone (2016)

Iglesias et al. (2018), Minimize guidance cost Proactive guidance No interaction between
Tsao et al. (2018) matching and guidance

5.3 The batched matching problem

In general, batched matching is an optimization problem which assigns drivers to rider requests

collected in a batching window such that some social, economic and service quality objective func-

tions are maximized or minimized relative to a set of feasible assignments. In this section, we

formulate a batched matching problem which is particularly relevant to on-demand ride-hailing

companies in the context of sharing economy with the objective of maximizing the social welfare

of both drivers and riders. The social welfare maximization objective of our approach is suitable

to ensure long-term growth of ride-hailing systems as it focuses on the benefits of both drivers and

riders.

5.3.1 System overview

We consider a typical ride-hailing system with batched matching. As shown in Fig. 5.1, the sys-

tem consists of a set of drivers, a set of riders and a service operator. Drivers’ vehicles are equipped

with sensing tools and are connected with the operator via a mobile network. The operator can
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Figure 5.1: Overview of batched matching in a ride-hailing system.

monitor each taxi’s geographical coordinates and occupancy status. On the other hand, riders dy-

namically enter the system and send their ride requests to the operator through mobile devices. The

ride request of a rider contains his or her pick-up, drop-off locations as well as the latest departure

time. The operator groups such requests within a pre-defined batching window, for example Tn in

Fig. 5.1. At the end of the batching window, the operator runs a batched matching algorithm to

compute matching results and sends those results to both drivers and riders. After receiving the

matching results, drivers are on their way to pick up assigned riders.

5.3.2 Problem formulation

We consider a rather general setting in which the time of a day is divided into a set of batching

windows of fixed size ∆T , denoted as {T1, T2, ..., Tn, ...}, where Tn = [tn, tn + ∆T ] refers to the

nth batching window.

Let J Tn denote the set of riders in batching window Tn. The ride request rj of a rider j ∈ J Tn

is a five-tuple (IDj , oj , wj , tj , l̄tj), where IDj is the ride request identification number, oj and wj

are the pick-up and drop-off locations. tj is the time when rider j sends out his or her request,

tn ≤ tj ≤ tn+∆T . l̄tj denotes rider j’s latest departure time, tn+∆T ≤ l̄tj . Here we assume that

a rider will leave the ride-hailing system and switch to other alternatives if he or she is not picked

up before his or her latest departure time.
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Table 5.2: Description of notations

Notation Description
Tn A batching window
tn The start time of batching window Tn

∆T The size of a batching window
J Tn A set of riders, indexed by j
ITn A set of open drivers, indexed by i
M A set of point of interests, indexed by m
li Location of driver i

oj , wj Pick-up and drop-off locations of rider j
tj , l̄tj Request time and latest departure time of rider j
do,w Euclidean distance between two locations o and w
1
γ Driving speed
Udi,j Utility of driver i when matching with rider j
U ri,j Utility of rider j when matching with driver i
W r
i,j Wait time of rider j when matching with driver i

r̂Tn Predicted rider demand within a batching window
zTni,j zTni,j = 1 if driver i is matched with rider j

zTni,j = 0 otherwise
xtni,m xtni,m = 1 if driver i is guided to point m

xtni,m = 0 otherwise
λj Delay tolerate rate of rider j
βi Driving cost per mile of driver i
γj Utility coefficient of rider j for the ride quality measure
w Weight coefficient
m, α Base fare and ride fare per mile
H A large positive constant

WT (Tn) Average wait time of riders in a batching window
NP (Tn) Net profit of drivers in a batching window
MR(Tn) Matching rate of the ride-hailing system in a batching window
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Let ITn denote the set of open drivers at the same batching window Tn. Let IDi be the identi-

fication number of driver i ∈ ITn . The location of open driver i at the end of batching window Tn

is denoted as li. We assume all drivers operate with the same fixed speed. Let γ be the time each

driver used to travel per mile. Thus the speed is 1
γ mile per hour.

As mentioned previously, the objective of the proposed matching framework is to maximize the

social welfare of both drivers and riders, which is the sum of their utilities. We define a driver’s

utility of serving a rider request as the net profit that can be obtained from the service. Similar

definition of a driver’s utility is also adopted in (G. Gao, Xiao, & Zhao, 2016; H. Wang & Yang,

2019). This definition is suitable for drivers in ride-hailing systems as they are freelancers, not

paid by company salaries. Their incomes are the profits obtained through providing transportation

services to the riders. Let dli,oj and doj ,wj denote the distance from location li to oj and from

location oj to wj in miles respectively. The utility of open driver i being assigned to rider j, denoted

as Udi,j , is defined as:

Udi,j := m+ αdoj ,wj − βi(doj ,wj + dli,oj ) (15)

where m is the base fare and α is the ride fare per mile. Both of them are predetermined by the ride-

hailing system. βi is driver i’s driving cost per mile which consists of operating cost (including,

e.g., fuel, maintenance, repair and tires) per mile and ownership cost (including, e.g., depreciation,

insurance, license and taxes) per mile (Association, 2019). As shown in Fig. 2 (a), a driver needs

to travel dli,oj without being paid in order to pick up the rider. Therefore, the total fare paid to the

driver is m+ αdoj ,wj and the total cost of driver i for serving rider j is βi(doj ,wj + dli,oj ).

On the other hand, we define a rider’s utility as his or her level of satisfaction given the service

provided. We assume the general ride fare in a ride-hailing system is fixed. Therefore, the level of

satisfaction is largely determined by two factors, namely wait time and ride quality. As shown in

Fig. 2 (b), the wait time of a rider j being matched with a driver i, denoted asW r
i,j , can be computed

by tn + ∆T − tj + γdli,oj , where tn + ∆T − tj is the time difference between the rider submitting

his or her request and the operator executing the matching algorithm; and γdli,oj is the time needed

for driver i to pick up rider j.
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(a)

(b)

Figure 5.2: Location illustration and distance calculation of drivers and riders.

Ride quality can be difficult to measure as it depends on a rider’s personal preferences. In this

work, we use a common factor which is the physical condition of the vehicle to measure ride quality.

This measurement is grounded on the rider rating statistics from ride-hailing platforms like Uber and

Lyft. Their data indicates that riders’ satisfaction levels are closely related to the physical conditions

of the vehicles (Uber, 2020b) (Lyft, 2020). In general, a more high-end and well-maintained vehicle

is commonly perceived to be more comfortable and in good condition. These vehicles incur higher

ownership and maintenance costs which can be measured by βi. Thus the utility of a rider j being

matched with a driver i, denoted as U ri,j , is defined as:

U ri,j := γjβi − λjW r
i,j (16)

where γjβi represents the rider’s preference value generated from the ride quality. γj is the utility

coefficient of rider j for the ride quality measure. λj represents the delay tolerate rate of rider j.

With the increase of the wait time, a rider’s satisfaction level decreases accordingly. We note that γj

and λj are subjective to each individual rider. Accurately evaluating γj and λj is beyond the scope

of this work. One can use machine learning algorithms to learn them from individual rider’s rating

data in ride-hailing platforms. Although simplified, we believe the current definitions of drivers’

and riders’ utilities are sufficient in terms of demonstrating our contributions.
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After defining the utility functions of drivers and riders, in what follows, we introduce the

decision variables, objective function and constraints of the batched matching problem. We define a

binary matrix ZTn ∈ {0, 1} as the matching matrix, where zTni,j = 1 if driver i is assigned to pick-up

rider j, and zTni,j = 0 otherwise.

The social welfare maximizing objective function2 of the batched matching problem is defined

as follows:

∑
i∈ITn

∑
j∈J Tn

zTni,j

(
Udi,j + U ri,j

)
(17)

There are also constraints to be considered. If a driver is matched with a rider, the driver’s cost of

serving the rider should be less than the fare paid by the system. This means the net profit of a driver

when matches to a rider should be positive. This constraint is captured by:

m+ αdoj ,wj + (1− zTni,j )H ≥ βi(doj ,wj + dli,oj )

∀i ∈ ITn , ∀j ∈ J Tn (18)

where H is a large positive constant which is used for the linearization of the logical constraint “if”

(Rardin & Rardin, 1998). Given rider’s latest departure time, if a driver i is matched with a rider

j, we must guarantee that the pick-up time should be no later than the rider’s latest departure time.

This time constraint is represented by:

γdli,oj + tn + ∆T≤ ¯ltj + (1− zTni,j )H ∀i ∈ ITn , ∀j ∈ J Tn (19)

where γdli,oj is driver i’s driving time from his or her current location li to the rider’s pick-up

location oj .

In addition to that, each driver i is allowed to serve at most one rider and each rider j can only
2In microeconomic theory, social-welfare is defined as the aggregated utilities of market participants. In this work,

the social welfare of the ride-hailing system is defined as the aggregated utilities of drivers and riders. Similar definitions
are also adopted in other mobility on demand systems proposed in the literature (J. Gao, Wong, Wang, & Yu, 2021;
Karamanis, Anastasiadis, Angeloudis, & Stettler, 2020).
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be served by at most one driver, which result in the following two constraints:

∑
j∈J Tn

zTni,j ≤ 1 ∀i ∈ ITn (20)

∑
i∈ITn

zTni,j ≤ 1 ∀j ∈ J Tn (21)

The inequalities (20) and (21) imply that the ride-hailing solutions are not compulsory to meet all

requests. Given the previously defined decision variables, constraints and the objective function,

the batched matching problem for each batching window Tn can be put together as the following

integer linear programming model.

maximize (17)

subject to

(18), (19), (20), (21),

zTni,j = {0, 1} ∀i ∈ ITn , ∀j ∈ J Tn .

(22)

The above defined batched matching model considers the benefits of both drivers and riders, which

ensures the continuous growth of ride-hailing systems in the context of the sharing economy. How-

ever, as presented in the proposed framework (Section IV) and demonstrated in the numerical study

(Section V), the social welfare of matching solutions can be considerably improved by integrating

data-driven proactive guidance strategies into batched matching. In the rest of the chapter, we de-

sign and evaluate the integrated dispatching framework to match drivers and riders in ride-hailing

systems.

5.4 The integrated dispatching framework

In this section, we present the integrated dispatching framework which consists of two mod-

ules: data-driven proactive guidance (DDPG) and batched matching (BM). As shown in Fig. 5.3,
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DDPG combines mathematical optimization with machine learning to compute open driver guid-

ance strategies. Taken the guidance strategies computed by DDPG as inputs, BM computes so-

cial welfare maximization matching solutions. The execution sequence of the demand prediction,

Figure 5.3: Overview of the integrated dispatching framework.

guidance strategy computation and batched matching is also illustrated in Fig. 5.3. At the start of

batching window Tn, DDPG predicts rider demand for Tn based on historical demand data from

previous batching windows for the region and computes optimal guidance for open drivers who are

close to the region and can reach the region by the end of Tn. After the rider demand is realized, at

the end of Tn, the matching algorithm in BM will compute an optimal matching solution and notify

the drivers and riders. Assigned drivers will then on their way to pick up riders. We note that for

the purpose of clearly demonstrating the impact of proactive guidance to batched matching, in this

chapter, we narrow our scope to one region and one batching window. The proposed framework

can certainly be extended to concurrently optimize batched matching solutions across multiple re-

gions and multiple batching windows using rolling horizon decision making approaches. We plan

to present those extensions in our future publications. In the following, we begin by delving into

details of DDPG and then outline the data-driven batched matching algorithm.

5.4.1 Data-driven proactive guidance

In DDPG, the rider demand in each region within a batching window is predicted using a ma-

chine learning algorithm based on the rider demand time-series data. At a time point tn, DDPG
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needs to predict how many riders will emerge during the future time period [tn + ∆T ]. To do

so, time series forecasting models can be used to predict the future demand based upon the pre-

viously observed demand. In addition to predicting a single demand value such as in the cases of

the time-varying Poisson model (Y. Wang et al., 2019) and the auto-regressive integrated moving

average model (ARIMA) (Moreira-Matias, Gama, Ferreira, Mendes-Moreira, & Damas, 2013), we

can also estimate the probability distribution of rider demand by using a non-parametric learning

approach (J. Gao, Li, Wang, & Huang, n.d.). While various forecasting models can be plugged into

our framework, we would not elaborate more on the model selection since it is data dependent. One

can select a forecasting model based on the particular characteristics of their demand data. We refer

the reader to (Zhao, Tarkoma, Liu, & Vo, 2016) for a recent review on these models in the context

of urban mobility. In our numerical study (Section 5.5), we use ARIMA which is widely used in

transportation demand forecasting for DDPG.

Given the predicted rider demand and the real time open driver information including their GPS

locations and availability status, an integer program model is formulated to compute the optimal

guidance strategies for open drivers to balance the supply and demand of a region and, at the same

time, minimize the total idle driving costs of the relocated drivers. Let ktn be the number of open

drivers at the region at time tn. Let pTn be the number of drivers traveling to the region expected

to arrive within batching window Tn. This number is largely determined by the BM in the previous

batching windows and can be obtained from the real time sensing information. Hence, the initial

supply of the region can be computed by ktn + pTn . Drivers are guided to a set of point of interests

(POI), denoted byM, in the region. Each point m ∈ M represents a specific GPS location. Let

Itn be the set of open drivers outside the region at time tn. Let r̂Tn be the number of predicted rider

demand of the region within the batching window Tn. The rest of the notations used to describe

DDPG are defined in the previous section.

We represent the guidance results using a guidance strategy matrix denoted as Xtn ∈ {0, 1},

where xtni,m = 1 if driver i ∈ Itn is guided to point m ∈ M at time tn and xtni,m = 0 otherwise.

DDPG needs to make sure that if a driver is guided to point m to satisfy the demand accumulated

within Tn, the driver should be able to arrive at point m before the end of Tn. This constraint is
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captured by:

γdi,m ≤ (1− xtni,m)H + ∆T ∀i ∈ Itn , ∀m ∈M (23)

where γdi,m is driver i’s driving time from his or her current location to the location of point m. H

is a large positive constant and ∆T is the length of a batching window. Besides, each driver can be

guided to at most one point, which results in the following constraint:

∑
m∈M

xtni,m ≤ 1 ∀i ∈ Itn (24)

Moreover, we aim to design a guidance strategy such that the total number of rider requests (i.e.,

demand) and the total number open drivers (i.e., supply) within the region are balanced. This can

be captured by the following constraint:

∑
i∈Itn

∑
m∈M

xtni,m + ktn + pTn = r̂Tn (25)

where ktn + pTn is the initial supply of the region in batching window Tn and r̂Tn is the predicted

rider demand within the time window. However, Equation (25) can be too strict if used as a con-

straint, and there may be no feasible solutions satisfying (25). This is because decision variables

are integer matrix, and open drivers’ driving speed is limited that they may not be able to arrive at

the region before the end of batching window. To that end, we convert the constraint (25) into a soft

constraint by introducing a supply-demand mismatch penalty function to narrow the gap between

supply and demand within the region and one objective of the DDPG is to minimize the following

supply-demand gap function:

∑
i∈Itn

∑
m∈M

‖xtni,m + ktn + pTn − r̂Tn‖ (26)

Guiding the open driver from his or her current location to the point introduces a cost, since the

driver receives no trip fares and shall pay a certain amount of operating fee. Thus, another objective

of DDPG is to minimize the total idle driving costs of all guided open drivers. This cost is assumed
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to be proportional to the driving distance. Let di,m be the approximated idle driving distance from

the current location of a driver i to point m. The total idle driving costs of the guided open drivers

is denoted by:

∑
i∈Itn

∑
m∈M

βidi,mx
tn
i,m (27)

where βi is the driving cost per mile of driver i as defined in Section III.

Since there exists a trade-off between two objective functions, we define a weighted sum of (26)

and (27) as the objective function of the proactive guidance, represented as:

∑
i∈Itn

∑
m∈M

(βidi,mx
tn
i,m + w‖xtni,m + ktn + pTn − r̂Tn‖) (28)

where w is the weight coefficient to measure the trade-off between two objectives. Given the

above defined decision variables, constraints and objective, the optimized guidance strategy can be

generated by computing the following binary integer programming model.

minimize (28)

subject to

(23), (24),

xtni,m = {0, 1} ∀i ∈ Itn ,∀m ∈M

(29)

5.4.2 The integrated dispatching framework

The proposed dispatching framework integrates BM with the above designed DDPG to com-

pute matching solutions that maximize the social welfare of drivers and riders. The guidance and

matching decisions are interrelated in the sense that the supply of open drivers is determined by the

matching decisions computed by BM in the previous matching windows and the number of guided

drivers is restricted by the width of the batching window. In addition, which driver could be guided

to the region is impacted by the BM since the objective of DDPG is in alignment with the social

welfare maximization goal of BM. The details of the proposed framework for one batching window
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[tn, tn + ∆T ] is described in Algorithm 5.

Algorithm 5 BATCHED MATCHING WITH DATA-DRIVEN PROACTIVE GUIDANCE

Require: Batching window: Tn = [tn, tn + ∆T ]; ∀i ∈ ITn ;∀j ∈ J Tn ; ∀m ∈M
1: Initialization: The value of w, the real time indicator t.
2: while t = tn do
3: Update the sensor information for current GPS locations of open drivers and occupied drivers
4: Estimate the number of drivers pTn that will arrive at the region before time tn + ∆T
5: Predict the rider demand r̂Tn in the batching window Tn
6: Xtn ←Solve the optimized guidance problem (29)
7: Send guidance strategies to open drivers according to the optimal solution Xtn

8: if t = tn + ∆T then
9: Update the sensor information for the current locations of open drivers in the region

10: Collect rider requests in the region
11: ZTn ← Solve the batched matching problem (41)
12: Send matching results to drivers and riders according to the optimal solution ZTn

13: end if
14: end while
Ensure: Stored sensor data, guidance solutions and matching solutions.

At time tn, the operator queries the system to obtain information about the drivers’ occupancy

status and GPS locations. At the same time, the service operator predicts the future rider demand

r̂Tn for the next ∆T time steps based on the historical demand data. The operator then computes

the optimal guidance strategy Xtn by solving a mixed integer linear program (formulated in Sub-

section 5.4.1, optimization model (29)) and sends the guidance results to the open drivers. At the

end of the batching window, i.e., at time tn + ∆T , the rider requests are collected and the operator

matches the riders and drivers by computing the optimal matching model formulated in optimiza-

tion model (41) (see Section II.A for details). Open drivers immediately start picking up riders

according to the matching results ZTn . This process is repeated for every batch of requests. If there

are riders and drivers that are not matched in this batch, they are carried over and re-solved in the

next batching window. The matching model (8) and the guidance model (15) can be solved using

general integer programming optimization packages or dedicated algorithms such as the Hungarian

algorithm (Kuhn, 1955).
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5.5 Numerical study

In this section, we conduct a numerical study to verify the performance of the proposed frame-

work in terms of four evaluation metrics which are important to ride-hailing system operators, par-

ticipating riders and drivers. First, we present the definitions of the evaluation metrics. Next, we

describe the dataset used to conduct the experiments. Finally, we evaluate the framework by com-

paring its performance with alternative batched-matching approaches.

5.5.1 Evaluation Metrics

We propose four evaluation metrics: social welfare, rider average wait time, driver net profit

and matching rate. From the perspective of system operator, social welfare and matching rate are

measures of system efficiency which are well suited for the design of long-term stable ride-hailing

systems, while average wait time and net profit measure the satisfaction levels of riders and drivers

respectively.

• Social welfare of the ride-hailing system during a batching window Tn is defined in Equa-

tion (17).

• Average wait time of riders during a batching window Tn is defined as the ratio of the total

rider wait time to the number of successfully matched riders within the batching window,

WT (Tn) =

∑
j∈ZTn W

r
i,j∑

i,j∈ZTn zi,j
(30)

• Net profit of drivers during a batching window Tn is defined as the total driver net profits

within the batching window,

NP (Tn) =
∑
i∈ZTn

Udi,j (31)
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• Matching rate of the ride hailing system during a batching window Tn is defined as the ratio

of the number of successfully matched rider-driver pairs to the number of total rider requests

within the batching window,

MR(Tn) =

∑
i∈ITn ,j∈J Tn zi,j

RTn
(32)

where RTn is the number of rider requests within a batching window Tn.

5.5.2 Description of the Data

Figure 5.4: A heatmap visualization of the rider demand density computed using the 2016 New
York City green taxi trip data. The lighter the region the higher the daily demand density. As shown
on the map, the region of Midtown Manhattan has the highest demand density compared with other
regions.

We demonstrate the performance of the proposed matching framework using 2016 New York

City taxi trip data (OpenData, 2016). The reason for using 2016 data instead of more recent one

is that 2016 data includes the riders’ GPS coordinates of pick-up and drop-off locations, which

allows us to estimate the traveling distance and time so that we can compute the driver’s and rider’s

utilities. In addition, the data contains the pick-up and drop-off timestamps of each trip which are

also needed by the proposed framework. By generating a heatmap visualization of the data, as

shown in Fig. 5.4, we identified Midtown Manhattan as the region with the highest average rider

demand density. We use the demand data from this region for performance evaluation as more data

points can be obtained to feed the machine learning algorithm. In total, 362579 trip requests during
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the one month period from 00:00 on March 1st to 23:59 on March 31st, 2016 are extracted from the

data set for the purpose of evaluating the performance of the proposed batched matching framework.

The width of batching window ∆T is set to 10 minutes3, which results in 144 consecutive batching

windows in each day. Since the data set does not contain the initial locations of drivers, we randomly

assign popular drop-off locations in the regions surrounding Midtown Manhattan as open drivers’

initial locations. At the start of each batching window, 300 drivers are assigned to those drop-off

locations. The rider demand of the next batching window in Midtown Manhattan is predicted using

ARIMA based on the demand data of previous batching windows. The traveling distance between

two locations is approximated as Euclidean distance between the geographical coordinates which

can be obtained from the GPS data in the data set. To calculate the driving time between each pair

of driver and rider, we assume that all drivers drive at a constant speed of 30mph.

According to the American Automobile Association, the operational cost of a personal vehicle

ranges from $0.39 to $0.86 per mile (Association et al., 2011). Based on this statistics, in the

following experiments, the driver’s per mile operational cost βi is randomly drawn from a uniform

distribution in the range of $0.4-$0.9. According to the current rates of NYC UberX services (Uber,

2020a), we setm = $2.55 and α = $1.8 per mile for all drivers. For each rider j, the delay tolerance

rate λj is randomly drawn from a uniform distribution in the range of 0.1-0.8. This range is chosen

based on the analysis of the customer survey results presented in (Buchholz et al., 2020). For the

sake of simplicity, we assume the preference values generated from the ride quality are the same

across riders. The weight coefficient w controls the trade-off between the driver idle travel cost and

the system level supply-demand mismatch cost. In the following experiments, we choose w = 0.8,

which maintains a good balance between these two cost components. The parameter setting of the

proposed approach is shown in TABLE 6.4. Note that the values of the above mentioned parameters

can be easily adjusted according to the specific operating condition of a ride-hailing system. All

numerical experiments are coded in Python and tested on a 2.2 GHz Intel i7 laptop with 16GB

RAM. The optimization models (41) and (29) are solved using Gurobi 8.14. For the 4320 problem
3In this experiment, the width of the batching window is suitable for the demand density of the region given by the

2016 New York taxi data. It can certainly be narrowed once recent higher demand density data such as Uber’s demand
data becomes available to us. In that case, the value of W r

i,j will be reduced while still maintaining a meaningful number
of riders in a window to ensure matching quality.

4https://www.gurobi.com/academia/academic-program-and-licenses/
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instances generated from the data, the average time required to solve a single instance of model (41)

was 14.2s. For model (29), that was 15.6s. No instance required more than 48 seconds to be solved.

Table 5.3: Parameter setting of the BM-DDPG framework.

Parameter Variable Value

The width of batching window ∆T 10 minutes
Number of open drivers |ITn | 300

Driving speed 1
γ 30 mph

Vehicle operational cost βi $0.4/mile-$0.9/mile
Base fare m $2.55/mile

Ride fare per mile α $1.8/mile
Rider delay tolerance rate λj 0.1-0.8

Weight coefficient w 0.8

5.5.3 Performance Evaluation

Since we do not find an existing framework in the literature that integrates batched matching

with proactive guidance, we show the benefits of the proposed framework by comparing its results

with those generated by batched matching models without proactive guidance. In light of this

evaluation strategy, we picked two batched matching models with different optimization objectives

as the benchmark models for the purpose of comparison. The first model maximizes social welfare,

which is the same as in the model described in Section III. The second model minimizes drivers’

idling driving cost. We call these two models Social Welfare maximization Batched Matching (SW-

BM) and Drivers’ Cost minimization Batched Matching (DC-BM), respectively. SW-BM fits well in

the context of sharing economy, while DC-BM reflects the traditional view of emphasizing on cost

reduction in operation. Nevertheless, as argued in (Zhan et al., 2016), the matching assignments

that minimize drivers’ costs, e.g. idling driving time and empty trip distance, will also take care of

the needs of riders since those assignments usually result in shorter wait times.

Fig. 5.5 shows the comparison results in terms of the average value of social welfare over the

proposed framework, SW-BM and DC-BM. The results generated by the proposed framework is

labeled as BM-DDPG (batched matching with data-driven proactive guidance). The results of SW-

BM and DC-BM are optimal solutions obtained using Gurobi solver. A 24-hour day is divided into

144 10-minute batched windows. The social welfare value for each batched window is averaged
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(a) weekday (b) weekend day

Figure 5.5: Comparison of average social welfare values between SW-BM, DC-BM and BM-DDPG
in different batching windows of a day.

over 23 weekdays (Fig. 5.5-(a)) and 8 weekend days (Fig. 5.5-(b)).

It is shown that the performance improvement brought by the proposed framework (BM-DDPG)

is consistent in all batching windows with gains in social welfare ranging from 5% to 20% compared

with SW-BM and on average more than 50% compared with DC-BM. It is clear from the results

that, by integrating proactive guidance with batched-matching, the proposed framework boosts the

efficiency of the system in terms of social welfare value. This is because the proactive guidance

module of the framework can strategically position the drivers before hand so that they can reduce

their idling driving distance and meet the rider demand in a more timely manner.

It is also shown in Fig. 5.5 that DC-BM generates the lowest social welfare value which is

lower than that of SW-BM and much lower than that of BM-DDPG. This is because DC-BM’s

objective function does not include riders’ utilities in terms of wait times and ride quality. As

mentioned previously, DC-BM can be seen as an approximation to social welfare maximization.

While comparing DC-BM with SW-BM and BM-DDPG on social welfare maximization might not

seem to be fare since DC-BM has a different objective function, the comparison results indicate

that existing operation cost focused batched matching approaches may not be suitable for today’s

sharing economy based ride-hailing systems.

The computational results in terms of rider wait times are shown in Fig. 5.6. Same as in Fig. 5.5,

the results are also averaged over 23 weekdays (Fig. 5.6(a)) and 8 weekend days (Fig. 5.6(b)). As

expected, with the integrated dispatching framework, the average rider wait times are reduced in all

batching windows compared with DC-BM and SW-BM. Specifically, BM-DDPG provides a 25%

reduction in average rider wait times over DC-BM and a 20% reduction over SW-BM. It can be
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(a) weekday (b) weekend day

Figure 5.6: Comparison of average wait times of riders between SW-BM, DC-BM and BM-DDPG
in different batching windows in a day.

observed that this reduction can be even more significant in the batching windows such as rush

hours during weekdays and around midnight hours during weekend days when the rider demand

density in a window is high. This is due to the fact that to satisfy high rider demand, without any

proactive guidance, SW-BM and DC-BM have to call in more drivers far from the region to pick-up

riders, which results in much longer rider wait times. In addition to driver wait times, the proposed

framework also performs better than SW-BM and DC-BM in terms of driver net profit. As shown

in TABLE 5.4, BM-DDPG commands more than 15% of driver net profit compared with SW-BM

and DC-BM during week days and more than 10% during weekend days. In addition to rider

Table 5.4: Driver net profit value of BM-DDPG, SW-BM and DC-BM averaged over 23 weekdays
and 8 weekend days.

Approach Avg.weekday Avg.weekend day

BM-DDPG 1122 1718
SW-BM 908 1472
DC-BM 965 1609

(a) weekday (b) weekend day

Figure 5.7: Comparison of average matching rates between SW-BM, DC-BM and BM-DDPG in
different batching windows of a day.
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wait times and driver net profit, matching rate is also an important metric to measure the efficiency

of a batched matching system. Fig. 5.7 shows the comparison of average matching rate among

BM-DDPG, SW-BM and DC-BM. As can be seen, BM-DDPG outperforms SW-BM in all batching

windows of both a week day and a weekend day by 20% in average matching rate. This is because,

in the proposed framework, BM-DDPG strategically guides a subset of drivers to the region before

matching starts, which provides more drivers to meet riders’ latest departure time constraints. The

increase of feasible drivers will in turn improve the matching rate for the batching window. It is also

worth noting that, DC-BM achieves a slightly higher matching rate compared with BM-DDPG. This

makes sense since DC-BM only minimizes drivers’ costs without considering riders’ utilities such

as waiting times and ride quality. Unlike the social welfare maximization BM-DDPG, minimizing

rider wait times is not part of the objective function in DC-BM. So DC-BM can match more drivers

at the cost of longer wait times for riders.

Moreover, it can be observed that, across all three approaches, the average matching rates during

quiet hours, e.g. 23:00 pm to 5:00 am the next day during weekdays and 4:00 am to 9:00 am during

weekend days, are higher than those during peak hours, e.g. 7:00 am-9:00 am and 17:00 pm-19:00

pm during weekdays. This is because the driver/request ratio is high during quiet hours. However,

with the increase in the number of rider requests during peak hours, the average matching rates of

all three approaches decrease due to the change of driver/request ratio. Nevertheless, during the

peak hours with high demand density, BM-DDPG yields a significantly higher matching rate than

SW-BM does, which further highlights the benefits of integrating proactive guidance with batched

matching.

We also study the impact of demand density on the performance of the proposed approach. Here,

demand density is defined as the number of rider requests aggregated in each 10-minute batching

window for a specific area. The results are shown in Fig. 5.8. It is observed that the performance

gains brought by the proposed approach in terms of social welfare and average wait time compared

with SW-BM and DC-BM are more significant with high demand density than that with low demand

density. This observation can be an indication of the performance of the proposed approach in more

general problem settings. For example, it is reasonable to predict that the proposed approach could

perform better in high density urban areas than in low density rural areas.
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(a) Social welfare (b) Average wait time

Figure 5.8: The performance gains compared with SW-BM and DC-BM in terms of social welfare
and average wait time of BM-DDPG under different demand densities. Here, the performance gain
is defined as the difference between the value computed by BM-DDPG and SW-BM (or DC-BM)
divided by the value computed by BM-DDPG.

5.6 Summary

In this chapter, we propose a dispatching framework which integrates batched matching with

data-driven proactive guidance to match riders and drivers in a ride-hailing system. By guiding

drivers to the right positions before the matching starts, the proposed framework has the ability to

compute matching solutions that maximize the social welfare of both drivers and riders.
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Chapter 6

A pricing mechanism design for

ride-hailing systems in the presence of

driver acceptance uncertainty

Freelance drivers of ride-hailing systems often strategically accept and reject ride requests based

on their projection of the profitability of the assigned rides. This driver acceptance uncertainty is

mainly caused by the flat-rate pricing and blind acceptance rule adopted by most ride-hailing plat-

forms. High driver rejection rates have negative impacts on the ride-hailing systems in terms of

service quality and matching efficiency. In this chapter, we propose a pricing mechanism aiming at

improving drivers’ average ride acceptance rate by offering personalized payments computed based

on the characteristics of individual rides and the estimated acceptance probabilities of the drivers.

The proposed ride pricing mechanism is designed based on behavioral economics and stochastic

optimization models. First, a binary choice model is formulated to analyze and estimate the ride ac-

ceptance probabilities of drivers. Taking the estimated acceptance probability as input, a stochastic

optimization model is formulated to compute payments tailored to each of the drivers. Numerical

experiments are conducted using Ride Austin trip data collected from June 2016 to April 2017. We

evaluate the performance of the proposed pricing mechanism by comparing it with flat-rate pricing

and surge pricing strategies. Our results show that the proposed pricing mechanism improves the
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drivers’ average acceptance rate by an average of 80%. It also significantly increases the platform’s

expected profit and matching rate. This implies a substantial potential for the proposed pricing

mechanism to improve service reliability in ride-hailing systems.

6.1 Introduction

Serving as independent contractors, drivers in ride-hailing systems are free to decide whether

to accept or reject the ride requests assigned by the platform (?). For an accepted ride, the platform

computes the driver’s payment based on a base fare and the rider’s trip distance and trip time. This

payment scheme is called flat rate payment, which is currently adopted by ride-hailing platforms

such as Uber and Lyft (Garg & Nazerzadeh, 2021; Lyft, 2021).

The flat rate payment strategy is easy to implement and manage. However, it only takes a rider’s

trip distance and trip time into consideration. Other important factors that affect the cost of the

driver, such as the distance traveled and the time spent to pick up a rider are not considered. In

addition, the blind ride acceptance rule1 currently adopted by most of the platforms makes the

driver’s estimation of the profitability of a ride before accepting it a guessing game. When receiving

a ride request, the driver can only see the pick-up location, not the drop-off location (Rosenblat,

2018; Rosenblat & Stark, 2016). Therefore, they do not have sufficient information to calculate

if the expected payment of a ride can cover their cost, let alone make a reasonable profit. To

avoid unprofitable rides, a driver would speculate on the profits of ride requests based on their past

ride assignment experience with the platform and cherry-pick the rides that, they believe, are more

lucrative (Ashkrof, de Almeida Correia, Cats, & van Arem, 2020; Marshall, 2020).

Despite its intended purpose of combating ride cherry-picking behaviors, the blind ride accep-

tance rule limits drivers’ ability to estimate the costs of assigned rides, which may lead to more

rejections due to the risk-averse behavior of drivers. Ride-hailing platforms using this rule see, on

average, a 50% driver rejection rate (K. Xu, Sun, Liu, & Wang, 2018). It gets even higher if the bind

ride acceptance rule is not enforced. For example, from April to November 2020, to promote Prop
1Under the blind ride acceptance rule, the assigned riders’ drop-off locations and the trip fares are not shown to the

drivers before they accept the rides (Rosenblat & Stark, 2016).
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222, Uber allowed drivers in California to see the ride drop-off locations before accepting them.

However, since drivers could see their profitability beforehand, the flat rate payment strategy de-

motivated drivers from taking on higher cost rides and the rejection rate went up to 80% (Cradeur,

2019).

Another payment strategy of ride-hailing platforms that contributes to the high rejection rate is

surge pricing. It is intended to attract drivers toward regions where demand outstrips supply. When

price surges in a region, drivers are motivated to relocate themselves to that region, hoping they will

be assigned to a ride in the surge region and get paid by a higher rate. Once drivers have decided

to relocate themselves to surge regions, they normally reject standard price requests along the way

in anticipation of being assigned with a ride in the surge region, which will indirectly increase the

drivers’ rejection rate (Ashkrof et al., 2020). The high driver rejection rate experienced by the

ride-hailing systems has far-reaching consequences. It increases riders’ wait time, thus decreasing

their satisfaction and may affect their retention. Meanwhile, it results in a low matching rate in the

system, which negatively impacts its profitability and service quality.

In this chapter, we design a pricing mechanism to align the interests of the drivers and the

platform, which leads to an overall better acceptance rate and platform profitability. We first build

a binary choice model to estimate drivers’ probabilities of accepting a ride based on the discrete

choice analysis and the random utility theory. Taking the predicted acceptance probabilities as

inputs, a stochastic optimization model is designed to compute payments for individual drivers.

The pricing mechanism offers personalized payments for drivers based on the characteristics of

the assigned rides and the individual acceptance probabilities of drivers. Compared with flat-rate

and surge pricing strategies, the proposed approach significantly improves the system’s average

acceptance rate and the platform’s expected profit. The remainder of the chapter is structured as

follows. In Section 6.2, we review the literature related to our work. Section 6.3 describes the

matching problem and its mathematical formulation. Section 6.4 presents the design of pricing

mechanism followed by a numerical study to evaluate the performance of the proposed approach in

Section 6.5. Section 6.6 concludes this chapter.
2California Proposition 22 (Prop 22), officially known as the “App-Based Drivers as Contractors and Labor Poli-

cies Initiative,” defines app-based transportation and delivery drivers as “independent contractors” rather than “employ-
ees” (Cradeur, 2021).
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6.2 Related work

Efficiently matching the demand and supply in ride-hailing systems is the core service provided

by the platforms. While maximizing revenue is one of the important objectives of ride-hailing

platforms, the quality of the service they provide is usually measured by matching rates, rider wait

times and other criteria derived from both drivers and riders. Various optimization models have been

proposed for assigning drivers to riders with the objective of maximizing service quality objective

functions (Y. Feng, Niazadeh, & Saberi, 2021; G. Gao et al., 2016; J. Gao, Li, Wang, & Huang,

2021; Guo, Caros, & Zhao, 2021; H. Wang & Yang, 2019; Zhan et al., 2016). These models either

do not take the impact of pricing into consideration as in (Y. Feng et al., 2021; Guo et al., 2021) or

they usually assume static flat-rate pricing where drivers’ compensation rate does not change across

different regions or time periods as in (G. Gao et al., 2016; J. Gao, Li, et al., 2021; Zhan et al.,

2016).

On the other hand, dynamic pricing (also known as surge pricing) strategies are also studied

in the literature. In dynamic pricing, rates are “spatial-based” or “temporal-based” depending on

the supply-demand condition of a particular region at the time period in question (Garg & Naz-

erzadeh, 2021; M. Yang & Xia, 2021). Compared with the flat rate pricing strategies, surge pricing,

which dynamically determines the payments for drivers based on the supply-demand condition of a

region, could achieve a higher system performance in terms of profitability and service quality (Ca-

chon, Daniels, & Lobel, 2017). To maximize the platform’s revenue, a spatial surge pricing strategy

is designed in (Zha, Yin, & Xu, 2018) to relocate drivers so that the supply-demand gap will be

mitigated. They assume that drivers in each zone are homogeneous in terms of ride requests. Inte-

grated with surge pricing, Yang et al. (H. Yang, Shao, Wang, & Ye, 2020) propose a reward scheme

to allow riders to pay an additional amount to a reward account during peak hours. Then riders use

the balance in the reward account to compensate for their trips during off-peak hours. The authors

show that the integrated approach in some cases improves rider utility, driver income, and platform

revenue compared with approaches without reward schemes. Zha et al. (Zha, Yin, & Du, 2018)

investigate the impact of surge pricing on the supply and demand gap using a bi-level optimiza-

tion framework. The lower-level optimization model captures the drivers’ choices of working hours
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under an equilibrium state, while the upper-level optimization model maximizes the total revenue

through surge pricing, i.e., differentiated pricing across hours. A time-based surge pricing is com-

puted by (Bai, So, Tang, Chen, & Wang, 2019) to maximize the profit of the platform as well as the

social welfare of the system with the consideration of time and price sensitive customers.

In addition to analyzing the impact of surge pricing on revenue and service quality, some re-

searchers focus on how surge pricing affects the relocation behaviors of drivers in ride-hailing sys-

tems. Castillo et al. (Castillo, Knoepfle, & Weyl, 2017) show that surge pricing is responsible for

effectively relocating drivers during periods of high-demand thereby preventing them from engaging

in ‘wild goose chases’ to pick up distant customers. Similarly, Guda et al. (Guda & Subramanian,

2019) consider the strategic interaction among drivers in their decisions to move between zones.

They found that surge pricing can be profitable even in a zone where the supply of drivers exceeds

demands. Considering the drivers’ strategic relocation behaviors, Besbes et al. (Besbes, Castro, &

Lobel, 2021) study how to set prices across locations in a city optimally and what the impact of

those prices is on the strategic repositioning of drivers. In a similar fashion, Bimpikis et al. (Bai et

al., 2019) investigate how surge pricing at different locations affects driver distributions. Jiang et

al. (Jiang, Kong, & Zhang, 2020) conduct laboratory experiments to study drivers’ relocation de-

cisions with surge pricing. The authors observe that surge pricing must be combined with demand

information sharing to be the most effective in incentivizing drivers to relocate to a demand surge

region.

The above-mentioned matching models and dynamic pricing strategies are important tools for

helping ride-hailing systems to achieve high service quality. However, they assume that drivers

are fully compliant with the ride requests assigned by the platform, which is not realistic in many

ride-hailing settings. In today’s sharing economy-based ride-hailing systems, such as Uber and

Lyft, drivers can strategically make their acceptance and rejection decisions to boost their personal

benefits rather than system-wide service quality. Without addressing drivers’ strategic ride accep-

tance behaviors, the existing pricing approaches encourage drivers’ ride profitability speculation

and cherry-picking, which results in a high driver acceptance uncertainty in the system. The pro-

posed pricing mechanism fills the gap by computing optimal personalized payments that take ride

details and drivers’ acceptance uncertainty into account. As demonstrated in the numerical study
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(Section 6.5), with the proposed pricing mechanism, all stakeholders, namely drivers, riders, and

the platform, are better off compared with the flat rate and surge pricing strategies.

6.3 Matching in a ride-hailing system

Ride-hailing platforms match drivers and riders through a matching algorithm and send the

matched ride information to the corresponding drivers. In this section, we formulate a matching

problem in a ride-hailing system with the objective of maximizing the social welfare of both drivers

and riders. The social welfare maximization objective of our approach is suitable to ensure long-

term growth of ride-hailing systems as it focuses on the benefits of both drivers and riders.

6.3.1 The matching process

Figure 6.1: Overview of the matching process in a ride-hailing system.

In this work, we consider a typical matching in a ride-hailing system. As shown in Figure 6.1,

the system consists of three types of stakeholders: drivers, riders and a service operator. Drivers’

vehicles are equipped with sensing tools and are connected with the operator via a mobile network.

The operator can monitor each vehicle’s geographical coordinates and occupancy status. On the

other side, riders send their ride requests to the operator through mobile devices. The service oper-

ator aggregates the available drivers and active ride requests within a time window and matches the
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drivers and riders through a matching algorithm to minimize the riders’ wait times and the drivers’

idle times between rides. The operator then sends the matching solution to the drivers. In the

current ride-hailing system, drivers are given a few seconds (15 seconds in the Uber platform) to

decide whether to accept or reject the assigned ride request (Ashkrof et al., 2020). Those drivers

who accept the request need to pick up the corresponding riders at their pick-up locations within

riders’ feasible time intervals. If a driver rejects the request, the driver waits for the next possible

ride request provided by the operator. The rejected riders will be re-matched in the following time

period if they are still active.

6.3.2 Matching problem formulation

We consider a rather general setting where a day is divided into a set of time windows. A time

window f , denoted by [t−f , t
+
f ] with the length t+f − t

−
f , where t−f is the start time and t+f is the end

time of time window f , respectively.

Let Df denote the set of available drivers in time window f . The time that driver di ∈ Df is

available in this time window is denoted as tdi , with t−f ≤ tdi ≤ t+f . The GPS location of driver

di ∈ Df at the end of the time window (at time t+f ) is denoted as ldi . Each driver has a vehicle

type such as standard or luxury (Austin, 2021). LetM be the set of vehicle types existing in the

ride-hailing system. Let mdi ∈M be the vehicle type of driver di.

Let Rf denote the set of riders in the same time window f . Each rider rj ∈ Rf has a ride

request denoted as (trj , orj , wrj , etrj , ltrj ,mrj ), where trj is the time when rider rj submits his or

her request to the platform, with t−f ≤ trj ≤ t
+
f . orj and wrj are the pick-up and drop-off locations

of rider rj , respectively. etrj is the earliest departure time and ltrj is the latest departure time, with

trj ≤ etrj ≤ ltrj . Here, [etrj , ltrj ] defines the feasible time interval during which rider rj should

be picked up by a driver. mrj is the vehicle type requested by rider rj3. In this work, we slightly

abuse notations and use rj to refer to both rider rj and his or her ride request.

Given the available drivers and the ride requests within f , the objective of the matching problem

is to maximize the social welfare of the platform, which is defined as the total preference of drivers
3Riders may request a specific vehicle type for travel, such as regular or SUV based on their individual needs. This

service is provided by ride-hailing platforms such as Uber to enhance specialized transit (Uber, 2021).
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and riders. Based on the microeconomic theory Mas-Colell et al. (1995), these preferences can

be quantified by preference values that measure their satisfaction levels. We assume a driver’s

preference value of matching with a rider is largely determined by the idle time needed to pick up a

rider. The idle time of a driver is defined as the wait time plus the en-route time to pick up a rider.

It is also called unproductive or down time in the ride-hailing literature Zuniga-Garcia, Tec, Scott,

Ruiz-Juri, and Machemehl (2020). The wait time can be computed by dtdi−tdi , where dtdi is driver

di’s departure time (the time driver di is started to pick up the rider) and tdi is di’s avaible time. Let

tldi ,orj be the en-route time of di to pick up a rider rj . The idle time of driver di, represented as

hdrj ,di , can be computed as hdrj ,di = dtdi − tdi + tldi ,orj . For each driver, with the increase of total

idle time, his or her satisfaction level decreases accordingly. Thus, the preference of a driver di

when matching with a rider ri can be quantified by a preference value function, defined as:

gddi,rj := βdi
1

hdrj ,di + 1
(33)

where βdi > 0 is driver di’s cost coefficient for the idle time, which is subjective to each driver.

On the demand side, riders are impatient, they highly value their time and prefer to be matched

to drivers with the shortest waiting time. Let tldi ,orj be the travel time between driver’s location ldi

and rider’s pick up location orj . The wait time of rider rj , represented as wrdi,rj , can be computed as

wrdi,rj = dtdi + tldi ,orj − etrj , where dtdi + tldi ,orj is the time needed for driver di to pick up rider

rj and etrj is rj’s earliest departure time. Thus the preference value of a rider rj being matched

with a driver di, denoted as grdi,rj , is defined as:

grdi,rj := γrj
1

wrrj ,di + 1
(34)

where γrj > 0 denotes the cost of waiting per unit time for rider rj . The value of γrj is subjective

to each individual rider. The preference value can be seen as how much the rider is satisfied with

the waiting time wrrj ,di . With the increase of wait time, the rider’s satisfaction level decreases

accordingly.
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After defining the preference value functions of drivers and riders, the social welfare maximiza-

tion objective function in the matching problem is defined as follows:

∑
di∈Df

∑
rj∈Rf

(gddi,rj + grdi,rj )xdi,rj (35)

Here xdi,rj is a binary variable that equals to 1 if driver di is matched with rider rj , with respected

to the following constraints:

(1) Time constraint: as given in Eqs. (36) and (37), a driver di is matched with a rider rj only

when the pick-up time dtdi + tldi ,orj within the rider’s feasible time interval [etrj , ltrj ].

dtdi + tldi ,orj ≥ etrj + (xdi,rj − 1)H

∀di ∈ Df ,∀rj ∈ Rf (36)

dtdi + tldi ,orj ≤ ltrj + (1− xdi,rj )H

∀di ∈ Df , ∀rj ∈ Rf (37)

whereH is a large positive constant which is used for the linearization of the logical constraint

“if” [28].

(2) Vehicle type constraint: as given in Eq. (38), a driver is matched with a rider only if the

assigned vehicle type is consistent with the rider’s requested vehicle type.

xdi,rjmdi = xdi,rjmrj ∀di ∈ Df ,∀rj ∈ Rf (38)

(3) Uniqueness constraint: as given in Eqs. (39) and (40), a driver di can only be matched with

one rider rj , and vice versa.

∑
di∈Df

xdi,rj ≤ 1 ∀rj ∈ Rf (39)
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∑
rj∈Rf

xdi,rj ≤ 1 ∀di ∈ Df (40)

Given the above defined decision variables, constraints and objective function, the optimal

matching solutions can be computed by solving the following binary integer programming model.

maximize (35)

subject to

(36), (37), (38), (39), (40),

xdi,rj ∈ {0, 1} ∀di ∈ Df ,∀rj ∈ Rf ,

dtdi ∈ R ∀di ∈ Df .

(41)

While the optimal matching solution maximizes the social welfare of all drivers and riders in the

matching window, their materialization requires that drivers accept assigned rides. However, as

mentioned before, due to the potential misalignment of the cost and payment of an assigned ride,

the flat-rate pricing and blind acceptance rule currently adopted by ride-hailing systems do not

help in terms of discouraging drivers’ cherry-picking behaviors. In the next section, we design an

individual ride-based pricing mechanism for addressing this issue.

6.4 The pricing mechanism

In this section, we design a pricing mechanism to incentivize drivers to accept the assigned ride

requests. This mechanism consists of two components. First, given a matched ride, a binary choice

model is formulated to estimate the driver’s acceptance probability based on discrete choice analysis

and random utility theory (Louviere, Hensher, & Swait, 2000; Train, 2009). Taking the predicted

acceptance probabilities as inputs, a stochastic optimization model is designed to compute a set of

payments for the drivers. The objective of the stochastic optimization model is to maximize the

platform’s expected profit, which is defined as the difference between the expected income and the

expected payments. As shown in the numerical study (Section V), this objective makes a balanced

payment decision that strives mostly for maximizing the platform’s profit and improving the drivers’
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Table 6.1: Description of notations

Notation Description
f A time window
t−f Start time of time window f

t+f End time of time window f

Df A set of open drivers in f , indexed by di
Rf A set of riders in f , indexed by rj
ldi Location of driver di
bdi Vehicle type of driver di

orj , wrj Pick-up and drop-off locations of rider rj
ltrj Latest departure time of rider rj
brj Requested vehicle type of rider rj
hdrj ,di Idle time of driver di when matching with rj
wrdi,rj Wait time of rider rj when matching with di
gddi,rj Preference value of di when matching with rj
grdi,rj Preference value of rj when matching with di
xdi,rj xdi,rj = 1 if driver di is matched with rider rj

xdi,rj = 0 otherwise
Xf Matching solution of time window f
Cdi Choice set of di
U cdi Utility of di when choosing alternative c
pcdi Probability of di when choosing alternative c
sdi Payment offered to di

average acceptance probability.

6.4.1 Driver acceptance probability estimation

The discrete choice theory is applied to analyze and predict a driver’s binary choice between

accept and reject of the assigned ride request. The theory uses the principle of utility maximization

economic behavior in which a driver is modeled as a rational, self-interested agent who selects the

alternative from a choice set with the highest utility (McFadden, 1981; Train, 2009). Let Xf be

the matching solution generated from Section 6.3.2. Let Cdi = {adi,rj , ndi,rj} be the choice set of

driver di, where alternative adi,rj indicates that the driver di accepts the assigned ride rj in Xf and

alternative n represents that the driver rejects the assigned ride rj in Xf . For ease of readability, we

suppress the notations adi,rj and ndi,rj as a and n in the following, unless otherwise specified.

Given the choice set, a utility maximization driver will choose the alternative that provides the

highest utility. However, the utility of each driver is his or her private information, not known by

the operator. To deal with this issue, we adopt random utility theory (Louviere et al., 2000) and
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formulate the utility functions of choosing alternatives a and n of each driver di ∈ Xf as follows,

respectively:

Uadi = V a
di

+ εadi (42)

Undi = V n
di

+ εndi (43)

where functions V a
di

and V n
di

are the systematic (or representative) components of the utility of

choosing alternatives a and n, respectively, which are known or could be estimated statistically by

the operator. εadi and εndi are the stochastic disturbances (or random components) which are not

observed by the operator, capturing the uncertainty. In the following we first define the systematic

components of the utility functions (42) and (43). Then, we describe the formulation of the random

components.

The systematic component V c
di

of an alternative c ∈ Cdi is a function of variables of the alter-

native. Based on a recent ride-hailing drivers’ behavior and preference survey paper (Shokoohyar,

Sobhani, & Sobhani, 2020), these variables may include the travel time and travel distance to pick

up the rider, the rider pick up location region4, assigned rider’s trip distance and trip time, the inertia

comfort, and the payment offered by the operator. For the sake of simplicity, we assume the sys-

tematic utility function of a driver choosing an alternative c ∈ Cdi is a linear weighted combination

of the variables. Let mc
di
∈ RK be a vector which contains a set of variables of choosing an alter-

native c ∈ Cdi , with |mc
di
| = K. Therefore, the systematic utility functions of driver di choosing

alternatives a and n can be defined as follows, respectively:

V a
di

=

K∑
k=1

%km
a
di,k

(44)

4Drivers usually do not want to be matched with a rider in downtown areas especially in peak hours since this crowed
area is hard to stand still or park, which has a high possibility of getting fined (Ashkrof et al., 2020).

104



V n
di

=

K∑
k=1

%km
n
di,k

(45)

where ma
di,k

and mn
di,k

indicate the values of the kth variable in vectors ma
di

and mn
di

, respec-

tively. %k is the coefficient for variable k, representing the marginal impacts of the variable. The

coefficients reflect the variables’ contributions to the overall utility. Accurately evaluating these

coefficients is beyond the scope of this paper. One can use the maximum likelihood method or

machine learning algorithms to learn them from individual driver’s acceptance data in ride-hailing

platforms like the approach proposed in (Yu, Mo, Xie, Hu, & Chen, 2021). Note that the payment

offered by the operator is a variable of the systematic utility function of a driver.

After defining the systematic components, we now introduce the specification of the random

components. In this work, we assume the random components εadi and εndi are independent and

identically distributed extreme values with zero mode and π2/6 variance. In this case, the difference

between disturbances εndi − ε
a
di

follows standard logistic distribution, namely

F (εndi − ε
a
di

) =
1

1 + e
−µ(εndi−ε

a
di
)

(46)

Logit is a widely used discrete choice model. Its popularity is due to the fact that the formula for

the choice probabilities takes a closed form and is readily interpretable (Train, 2009). Although this

kind of modeling approach may seem to be restrictive, it is standard and widely used within the

ride-hailing user behavior analysis literature (Urata et al., 2021; Yu et al., 2021).

Under the assumption that εndi − εadi is logistically distributed, the probability that driver di
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chooses alternative a, represented as padi , can be computed as:

padi = Pr(Uadi ≥ U
n
di

)

= Pr(εndi − ε
a
di
≤ V a

di
− V n

di
)

=

∫
I(εndi − ε

a
di
≤ V a

di
− V n

di
)f(εdi)dεdi

=
1

1 + e
−(V a

di
−V n

di
)

=
1

1 + e
∑K

k=1(%km
n
di,k
−%kmn

di,k
)

(47)

where I(·) is the indicator function, equaling 1 when the difference between random components

εndi − ε
a
di

is less than or equal to the difference between systematic components V a
di
− V n

di
, and 0

otherwise. And, the probability that driver di chooses alternative n, denoted as pndi is computed as

pndi = 1− padi .

6.4.2 Personalized payment determination

Based on the above estimated choice probability of each driver, a stochastic optimization model

is formulated to maximize the platform’s expected profit. The expected profit of the platform is

defined as the difference between the expected revenue and the expected payment. In the current

practise, the revenue or the trip fare contains three parts: base fare, fare per mile and fare per

minute (Austin, 2021; OpenData, 2016). Let c̄ be the base fare. Let dorj ,wrj
be the trip distance in

mile of rider rj , where orj and wrj are the origin and destination of rider rj . The distance related

trip fare is thus computed as cddorj ,wrj
, where cd is the fare per mile determined by the platform.

Let torj ,wrj
be the trip time of rider rj . The time related trip fare is thus computed as cttorj ,wrj

,

where ct is the fare per minute determined by the platform. If a driver di accepts the matched rider

rj , the trip fare of rider rj , denoted as zrj , is computed as:

zrj = max{c̄+ cddorj ,wrj
+ cttorj ,wrj

, faremini} (48)
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(a) Driver 3 (b) Driver 5 (c) Driver 8

Figure 6.2: Worked example

where faremini is minimum fare regulated in the ride-hailing system (Garg & Nazerzadeh, 2021).Thus,

the expected revenue of the platform is computed as:
∑

di,rj∈Xf padizrj . Let sdi be the payment of-

fered to driver di. The expected payment is computed as:
∑

di,rj∈Xf padisdi .

With the above definitions, the payment strategy sdi of each driver di can be computed by

solving the following non-linear stochastic optimization model.

maximize
sdi

∑
di,rj∈Xf

padi(zrj − sdi) (49a)

subject to
∑
di∈Xf

sdi ≤
∑
rj∈Xf

zrj , (49b)

sdi ≥ fare
mini. ∀di ∈ Xf (49c)

The objective function (49a) is to maximize the expected profit of the platform. Constraint (49b)

ensures that the total payment is less than or equal to the total fare received by the platform. Con-

straint (49c) ensures that the price payed to driver di should be greater than or equal to the minimum

fare regulated in the system.

6.4.3 A worked example

In this subsection, we present a worked example of the proposed approach. This example con-

tains three riders and ten drivers. We intentionally keep this problem oversimplified for the purpose

of clearly illustrating the matching and pricing process. Riders submit their ride requests to the

service operator with location (origin and destination), latest departure time and required vehicle

type information. Thereafter, the operator matches these riders with the open drivers through the
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Table 6.2: Results of the worked example

Approach

Matched The pricing mechanism The flat rate payment

pair Rider Driver Acceptance Rider Driver Acceptance
trip fare payment probability trip fare payment probability

〈d3, r2〉 $27.63 $14.96 98% $27.63 $20.7 99.9%
〈d5, r3〉 $21.57 $16.88 87.2% $21.57 $16.18 68.9%
〈d8, r1〉 $5.21 $5.92 52% $5.21 $3.9 0.7%

Platform’s expected profit $16.16 $8.6

matching algorithm we designed in section III and obtain a matching result: (〈d3, r2〉, 18 : 00),

(〈d5, r3〉, 18 : 00) and (〈d8, r1〉, 18 : 00). In this case, driver d3 matches to rider r2, driver d5

matches to rider r3 and driver d8 matches to rider r1. Both of them will depart from their locations

to pick up riders at 18 : 00. The operator then computes the payment through the pricing mecha-

nism (see Section IV). As shown in Fig. 6.2, the payments offered to driver 3, driver 5 and driver

8 are 14.96$, 16.88$ and 5.92$, respectively. The acceptance probabilities of driver d3, driver d5

and driver d8 under the offered payments are 98%, 87.2% and 52%, with an average of 79.1%. The

maximum expected profit is 16.16$. A detailed matching results can be seen in Table 6.2.

6.5 Numerical experiments

In this section, we conduct experiments to assess the performance of the pricing mechanism

in terms of three evaluation metrics which are important to the platform, the participating drivers

and riders. In the following, we first present the evaluation metrics. Then, we describe the dataset

used to conduct the experiments. Finally, we evaluate the performance of the proposed approach by

comparing its results with that generated by the flat rate and the surge pricing strategies against the

evaluation metrics.

6.5.1 Evaluation metrics

We evaluate the performance of the proposed approach based on the following metrics.

• Average acceptance rate of drivers during a time window f is defined as the ratio of the total
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acceptance probability of drivers to the number of matched pairs within f ,

AAR =

∑
di∈Xf padi∑

di,rj∈Xf xi,j
× 100% (50)

where
∑

di,rj∈Xf xi,j is the number of successfully matched rider-driver pairs in f .

• Expected profit of the system within f is defined in (49a).

• Expected matching rate of the ride-hailing system within a time window f is defined as the

product of the average acceptance rate and the matching rate within f ,

EMR = AAP ×
∑

di,rj∈Xf xi,j

Rf
(51)

where Rf is the number of ride requests in f .

• Expected social welfare of the ride-hailing system within a time window f is defined as the

acceptance probability of drivers multiply the social welfare value of the system,

ESW =
∑
di∈Xf

padi × SW (52)

where SW is the social welfare value defined in equation (3).

• Average rider fare within a time window f is defined as the ratio of the total trip fares re-

ceived from the matched riders to the total number of matched riders within the time window,

ARF =

∑
rj∈Xf zrj∑

di,rj∈Xf xi,j
(53)

where zrj is the trip fare of rider rj which is defined in (48).

6.5.2 Data description

We demonstrate the performance of the proposed pricing mechanism using RideAustin data,

spanning from early-June 2016 to mid-April 2017 (Austin, 2016). There are in total 1,494,125

trip records in this dataset. Each trip record in the dataset includes the rider’s request time, the
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Longitude and Latitude of pick-up and drop-off locations, and the trip start and end timestamps.

The rider’s rating and the rider’s requested vehicle type are also included in the dataset. For each

driver, the dataset contains the driver’s vehicle type, available time and the distance (in mile) and

time (in minute) traveled by each driver to pick up and drop off the rider. The dataset has four types

of vehicles, that are Standard, SUV, Premium and Luxury. All the information is needed by the

proposed approach.

The left side of Figure 6.3 shows the number of ride requests aggregated in a day from June

6, 2016 to April 13, 2017. Clearly, March 2017 has the largest number of ride requests. We exact

one day trip requests in this month, 2017-03-03, from the dataset for the purpose of evaluating the

performance of the proposed pricing mechanism. The geographical distributions of ride requests of

the day are illustrated on the right side of Figure 6.3. Based on this data, six instances are created

with various commuter quantities by randomly sampling different time ranges from this day. The

details of the instances are listed in Table 6.3.

Figure 6.3: Left side, number of ride requests within a day from June 6, 2016 to April 13, 2017.
Right side, spatial distributions of rider requests in 2017-03-03.

According to the current rates of RideAustin services (Austin, 2021), we set the base fare c̄ =

$2.50, the time rate ct = $0.2 per minute, the distance rate cd = $0.99 per mile and the minimum

fare faremini = $4. A report from (Smartrak, 2021) indicates that drivers’ idle time costs are

closely related to the fuel consumption. Thus, for each driver di, the idle time cost coefficient βdi is

randomly drawn from a uniform distribution on U(0.01, 0.04) per minute, where U(a, b) represents

a uniform probability distribution between a and b. For each rider rj , the delay tolerance rate λrj is

randomly drawn from a uniform distribution in the U(0.1, 0.8) range. This range is chosen based
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Table 6.3: Number of drivers and riders in 6 testing instances

Instance ID Number of drivers Number of riders Time range

1 92 50 2:00-2:05
2 90 42 4:00-2:05
3 89 33 9:00-9:05
4 93 29 12:00-12:05
5 186 69 18:00-18:05
6 228 81 19:00-19:05
7 200 78 20:00-20:05
8 300 110 22:00-22:05

on the customer survey results presented in (Buchholz et al., 2020). For the sake of simplicity, we

select seven variables to formulate the systematic utility function of a driver. These variables are

the travel time and travel distance for a driver to pick up the assigned ride, the assigned rider’s trip

distance, the assigned rider’s location region, the assigned rider’s rating, the driver’s comfort and

the payment offered by the platform. As indicated in (Ashkrof et al., 2020), these are the top seven

variables that influence a driver’s ride acceptance behavior. The values of the systematic utility

coefficients %1 − %7 are generated based on a ride acceptance behavior analysis paper (Ashkrof,

Correia, Cats, & van Arem, 2021). The parameter setting of the proposed matching and pricing is

shown in Table 6.4. Note that the values of the above mentioned parameters can be easily adjusted

according to the specific operating condition of a ride-hailing system. All numerical experiments

are coded in Python and tested on a 2.2 GHz Intel i7 laptop with 16GB RAM. The optimization

models (8) and (15) are solved using Gurobi 8.13. For instance 6 with the highest number of drivers

and riders, the framework takes less than 20 seconds to compute a matching and individual payment

result.

6.5.3 Performance evaluation

In this subsection, we compare the results generated by our approach with those generated by

the flat rate payment strategy. Under the flat rate payment strategy, the platform keeps a percentage

of the rider’s fare (in this experiment, we use 25%) and transferring the rest to the driver. Thus,

the platform’s profit for a ride request is computed as 25% × zrj , where zrj is the trip fare of rider

ri defined in Equation (48). The driver’s payment is thus computed as 75% × zrj . Let p̂adi be the
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Table 6.4: Parameter setting of the proposed framework.

Parameters Description Values

βdi driver idle time cost coefficient U(0.01, 0.04)
γri rider delay tolerance rate U(0.1, 0.8)

faremini minimum fare $4
c̄ base fare $2.5
ct time rate $0.2 per minute
cd distance rate $0.99 per mile
%1 travel time coefficient U(−1.5,−2)
%2 travel distance coefficient U(−0.5,−1)
%3 pick up location region coefficient U(−1.5,−2.5)
%4 trip distance coefficient U(0.5, 3)
%5 rider rating coefficient U(−0.5,−0.6)
%6 comfort coefficient U(16, 18)
%7 payment coefficient U(1, 3)

acceptance probability of driver di under the flat rate payment strategy. Note that the variables of

computing p̂adi are the same as those described in subsection IV-B, except that the driver’s payment

variable is now computed as 75% × zrj . Given the above defined, the platform’s expected profit

under the flat rate payment strategy is computed as:

∑
di,rj∈Xf

p̂adi
(
25%× zrj

)
(54)

In what follows, we compare the results computed by the proposed approach with the above defined

flat rate payment strategy in terms of the drivers’ average acceptance rate, the platform’s expected

profit and the system’s expected matching rate and social welfare. As a single experimental exe-

cution involves a certain degree of randomness, we reduce the variance in the results by averaging

them over 20 runs.

Figure 6.4 shows the comparison results in terms of the drivers’ average acceptance rate over the

pricing mechanism and the flat rate payment strategy. Clearly, by applying the proposed approach,

significant performance improvements are achieved in all problem instances with gains in average

acceptance rate ranging from 50% (instance 3) to 107% (instance 8) compared with the flat rate

payment. Taking instance 5 as an example, the proposed approach can achieve on average an 80%

acceptance rate. However, flat rate payment only achieves 41%. It is clear from the results that by
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Figure 6.4: Performance comparison in terms of drivers’ average acceptance probability between
the proposed individual price approach and the flat rate payment strategy.

designing an appropriate payment strategy for each driver, the proposed pricing mechanism boosts

the system’s efficiency in terms of acceptance rate. This is because the flat rate payment strategy

computes the payment for each driver by only considering the length and time cost of the assigned

rider’s trip. While our proposed approach explicitly models each driver’s acceptance behavior so

that it can compute a menu of payments tailored to each of the drivers, which directly improves

their acceptance rates. The results indicate that while it is simple for the platform to share a fixed

base rate with its independent drivers, the platform should adopt a personal payment strategy across

different drivers since the underlying operating characteristics of drivers in terms of accepting or

rejecting orders can change significantly.

It is important to note that, even the average acceptance rate generated by the proposed approach

is much higher than the flat rate payment strategy, the total price paid to the drivers is lower than

that of the flat rate payment over each testing instance, as shown in Table 6.5. For example, the

drivers’ total payment for testing instance 4 is $375 with the proposed approach, which is more than

18% lower than that of the flat rate payment strategy (in total $443). This promising result indicates

that given the same amount of riders’ total trip fares for each testing instance (see column 4 of

Table 6.5), the proposed approach has the ability to smartly distribute them among drivers based on

drivers’ estimated acceptance probabilities so that the platform can spend less money to generate a

high average acceptance rate. The improved average acceptance rate and the reduced total payment
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Table 6.5: Driver’s total payments

Drivers’ total payments ($)

Instance ID Pricing mechanism Flat rate Riders’ trip
strategy payment strategy fares ($)

1 465.5 581.2 774.7
2 426 510 630
3 377.5 440.1 587
4 375 443 591
5 720 763 1018
6 833 1063 1417
7 736 980 1205
8 989 1140 1521

directly contribute to the improvement of the platform’s expected profit, as shown in Figure 6.5.

Figure 6.5: Performance comparison in terms of platform’s expected profit between the proposed
pricing mechanism and the flat rate payment strategy.

The computation results in terms of the platform’s expected profit are shown in Figure. 6.5. As

expected, with the design of personalized payment, the platform’s expected profits are improved

significantly in all problem instances compared with the flat rate payment strategy. Specifically,

for instance 5, the platform’s expected profit under the proposed approach is $402, which is 119%

higher than that of the flat rate payment ($183). The considerable gap between the platform’s ex-

pected profits achieved with the flat rate payment and the pricing mechanism uncovers the significant

profit losses caused by the currently applied average pricing rule. Designing individual payments

for drivers can benefit the platform substantially since drivers are heterogeneous in terms of the
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assigned rides. In addition to drivers’ average acceptance probability and the platform’s profit, by

Figure 6.6: Expected matching rate comparison between the proposed approach and the flat rate
payment approach.

making the allocation and payment decisions more consistent with drivers preferences, the proposed

approach also performs better than the flat rate payment strategy in terms of expected matching rate

as shown in Figure 6.6. This makes sense as the proposed approach improves the average accep-

tance probability which directly improves the expected matching rate. A high matching rate could

not only improve riders’ satisfaction level, but also ensure the reliability of the ride-hailing system.

In addition to the flat rate payment strategy, surge pricing strategy is also adopted in ride-hailing

systems. Under surge pricing, there is a regular price for the entire market region. However, de-

pending on each region’s supply and demand condition, the platform can increase the current price

at a given region to be higher than the regular price. This higher price is a surge multiplier. Let

sp be the surge multiplier. The trip fare of a rider rj under surge pricing strategy is computed as

sp × zrj . To further assess the performance of the proposed pricing mechanism, we compare the

results computed by our approach with those computed by the surge pricing strategy under different

values of surge multipliers. The results are averaged over the eight testing instances, and the values

of surge multipliers are adopted from the RideAustin dataset.

Table 6.6 shows the comparison results in terms of the platform’s expected profit, drivers’ aver-

age acceptance rate, and riders’ average trip fare over the proposed approach and the surge pricing

strategy across different surge multipliers. From Table 6.6 we have the following observations. The
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Table 6.6: Comparison of platform profit and average driver acceptance probability of the proposed
approach: personalized payment strategy and uber currently applied approach: surge pricing strat-
egy under different values of surge multiplier.

Performance

Surge Multiplier Platform expected profit Avg. driver acceptance probability Avg.rider trip fare

personalized payment surge pricing personalized payment surge pricing personalized payment surge pricing
strategy strategy strategy strategy strategy strategy

1.5 $198 $87 60% 38% $17.6 $17.6
1.75 $282 $116 80% 46% $21.1 $21.1

2 $363 $148 86% 56% $24.6 $24.6
2.25 $458 $180 90% 65% $28 $28
2.5 $555 $208 91% 70% $31.6 $31.6

2.75 $651 $238 91.5% 75.4% $35 $35
3 $749 $266 85% 80% $38.7 $38.7

3.5 $845 $295 85.2% 83.6% $42.2 $42.2
4 $1047 $351 93.3% 90% $49.2 $49.2

4.5 $1242 $405 93% 94% $56 $56
5 $1457 $458 97.6% 96% $63.3 $63.3

5.25 $1654 $511 97.5% 97.4% $70.3 $70.3
5.75 $1952 $589 96.2 98.8% $81 $81

6 $2061 $615 98% 99% $84.4 $84.4

platform’s expected profit computed by the proposed approach significantly outperforms the surge

pricing strategy across all surge multipliers. Also, the platform’s expected profit increases with the

increase of the surge multiplier. This makes sense as the platform’s profit is deducted from riders’

trip fares. When the surge multiplier increases, the rider’s average trip fare increases accordingly

(as shown in the last two columns of Table 6.6), which directly improves the platform’s profit.

On the other hand, the apply of surge multiplier indeed increase the drivers’ average acceptance

rate. For example, with a surge multiplier of 1.5, the average acceptance probability is 60% under

the proposed approach and less than 40% under the surge pricing strategy. When we increase

the surge multiplier to 4, the average acceptance probability increases to 93.3% and 90% with the

proposed approach and the surge pricing strategy, respectively. However, the cost that comes with

the high average acceptance probability is the high-priced riders’ average trip fare. As shown in the

last column of TABLE 6.6, with a surge multiplier of 4, even the average acceptance probability is

90%, the average trip fare for riders is nearly 50$. This high average trip fare increases the risk of

losing riders, which significantly jeopardizes its long-term growth.

However, when incorporating with the proposed approach, as indicated in Table1, with a 2.25

surge multiplier, our approach could achieve on average a 90% acceptance rate. At the same time,
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the rider’s average trip fare is only $28, which is 40% lower than that of surge pricing strategy

($49.2). The result indicates that designing an individual payment strategy leads to gains for both

the platform, the drivers, and the riders. It is worth noting that, for some cases, surge pricing

strategy outperforms the proposed approach in terms of average driver acceptance probability. This

is expected as the objective of the payment strategy is to maximize the platform’s profit.

6.6 Summary

In this chapter, we design a pricing mechanism that can be used by ride-hailing platforms to

compute personalized payments for individual drivers for the purpose of improving system-wide

driver average acceptance rate. The proposed mechanism utilizes a behavioral economics-based bi-

nary choice model to estimate a driver’s acceptance probability given a specific ride request and the

associated payment. Taking the estimated acceptance probability as input, a stochastic optimiza-

tion model is formulated to compute personalized payments for drivers, such that the platform’s

expected profit, matching rate and the drivers’ average ride acceptance rate can be maximized.
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Chapter 7

Conclusion and Future Research Plan

This dissertation investigates the key challenges of designing matching mechanisms in two-

sided shared mobility systems. Our objective is to design matching mechanisms that are capable of

addressing these challenges. In this chapter, we summarize the main contributions of this work and

present some future research directions.

7.1 Summary of contributions

The work described in this dissertation makes several important contributions in the area of

two-sided shared mobility systems by extending existing matching approaches to more realistic

settings involving uncertainties from supply and demand, strategic behaviors of participants, and

asymmetric market information. The specific contributions of this dissertation are the following:

• The design of a price-based iterative double auction (Chapter 3)

A price-based iterative double auction is designed to match buyers and sellers in a charger

sharing market. The bidding and pricing rules are designed such that when the market reaches

an equilibrium meaning that the supply meets the demand given a price vector on services,

the resulting matching solution maximizes the social welfare. The proposed auction is budget

balanced, individually rational and suitable for a competitive market environment in which

myopic best responses from buyers and sellers are expected. It advances the existing litera-

ture by extending one-sided auction-based matching to two-sided markets. From a practical
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application perspective, it achieves much better allocative efficiency than the first-come-first-

served charger scheduling scheme which is commonly used by charger sharing platforms. It

can also address concerns about privacy because bidders only need to reveal partial and indi-

rect information about their valuations. In addition, it scales well to larger problem instances,

which validates its potential for large scale markets.

• The design of a voting-based matching mechanism (Chapter 4)

A non-price voting based matching mechanism is designed to match drivers and riders in

a community ride-sharing market. This mechanism is inspired by the simulated annealing

meta-heuristic, allowing drivers and riders to negotiate matching solutions iteratively in ac-

cordance with their individual preferences. This distributed negotiation process finds high-

quality matching solutions and, at the same time, maintains the commuters’ privacy. Utility

functions for drivers and riders are designed to support the negotiation process and to express

commuters’ personal preferences over the matching solutions concisely. This mechanism ad-

vances the literature by extending the one-sided negotiation mechanism to two-sided markets.

• The design of a dispatching framework which integrates batched matching with data-

driven proactive guidance (Chapter 5)

An integrated dispatching framework is designed to match drivers and riders in a ride-hailing

market. This framework integrates data-driven proactive guidance strategies with batched

matching optimization to increase social welfare, improve the matching rate and reduce rider

wait time. Proactive guidance strategies are computed by leveraging short- term demand

forecasts based on historical data. Taking the resulting guidance strategies as inputs, the

batched matching algorithm computes optimal bipartite matching between drivers and riders

in a batch. The proposed framework contributes to the literature by integrating batched match-

ing models with data-driven proactive guidance strategies, thus yielding lower wait times for

the riders, shorter idle driving distance for the drivers and higher matching rate in a batching

window.

• The design of a pricing mechanism (Chapter 6)
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A pricing mechanism is designed to improve drivers’ average ride acceptance rate by offer-

ing personalized payments computed based on the characteristics of individual rides and the

estimated acceptance probabilities of the drivers. The proposed ride pricing mechanism is de-

signed based on behavioral economics and stochastic optimization models. Specifically, we

model the drivers’ ride acceptance rates through a binary choice model and incorporate it into

the stochastic optimization problem for the ride-hailing system. This provides personalized

payment for each driver in connection with the characteristics of the assigned ride. We then

evaluate the performance of the proposed pricing mechanism through extensive numerical

experiments based on RideAustin trip data from June 2016 to April 2017. The results suggest

that our proposed pricing mechanism improves the drivers’ average acceptance rate signifi-

cantly compared to some commonly used pricing schemes. It also significantly increases the

platform’s expected profit and matching rate with positive social welfare implications.

7.2 Future Research

Some potential research directions for future work are summarized as follows:

The success of two-sided markets requires a sufficient number of participants, which means

market “thickness” is an important factor for a market to work. However, since the matching prob-

lem is NP-hard in nature, the designed iterative double auction in Chapter 3 still suffers from high

computational cost. Thus, we will continue improving the computational efficiency of the iterative

double auction, especially the SA-based winner determination algorithm, so that it can take full ad-

vantage of the parallel computing capability offered by the clouds to further reduce the computation

time required to reach a market equilibrium. We will also explore the possibility of introducing other

approximate and heuristic algorithms for the winner determination problem. While these algorithms

can come with different flavors, those that preserve incentive compatibility are worth investigating.

In addition, the designed iterative double auction is more suitable for a day-ahead market which only

runs during a specified time period the day before the operating day. We will extend the auction

to more dynamic online two-sided markets. These markets employ batched-auctions which allow

buyers and sellers to enter the market at anytime and get near real-time trade confirmations
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Another important future direction is to develop machine learning approaches to learn drivers’

and riders’ matching preferences. In Chapters 4-6, drivers’ and riders’ preferences are quantified

by the design of utility functions. At the current stage, the parameters of the utility functions are

estimated based on some behavior survey papers. We can use machine learning approaches such

as deep learning to learn these parameters from individual riders’ and drivers’ historical behavior

data. Moreover, in Chapter 6, we have applied the discrete choice theory to compute drivers’ ride

acceptance probabilities. Given that the drivers’ decisions of whether to accept the rider requests or

not are changing over time, developing a pricing mechanism that combines reinforcement learning

and mechanism design would be another step toward more practical approaches to real-world de-

centralized and dynamic matching applications. In addition to that, the proposed drivers’ discrete

choice model is calibrated using the data from a driver behavior survey. Should real-world driver be-

havior data collected by ride-hailing systems becomes available, estimating model parameters and

calibrating them using that data will provide us with more accurate driver acceptance probabilities.

The currently designed mechanisms in Chapters 5-6 optimize the matching in one region and

during one batched window. Two possible extensions in this regard can be considered in future

work. First, the proactive guidance and batched matching models can be extended to maximize the

social welfare of drivers and riders across multiple regions. Second, we can concurrently optimize

consecutive batching windows using a rolling horizon modeling approach. This way, we can exploit

the interdependence between matching solutions for adjacent batching windows to further improve

the matching efficiency. In addition, to predict rider demand, we have implemented a time-series

prediction approach, ARIMA, into our framework. To make the approach more sensitive to the

hourly changing trends of the demand, deep-learning-based time series forecasting methods can be

developed and evaluated.
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