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Abstract

Distance-Based Formation Control of Multi-Agent Systems

Reza Babazadeh, Ph.D.

Concordia University, 2021

This Ph.D. dissertation studies the distance-based formation control of multi-agent

systems. A new approach to the distance-based formation control problem is proposed in

this thesis. We formulated distance-based formation in a nonlinear optimal control frame-

work and used the state-dependent Riccati equation (SDRE) technique as the primary

tool for solving the optimal control problem. In general, a distance-based formation can

be undirected, where distance constraints between pairs of agents are actively controlled

by both adjacent agents, or directed, where just one of the neighboring agents is respon-

sible for maintaining the desired distance. This thesis presents both, undirected and

directed formations, and provides extensive simulations to verify the theoretical results.

For undirected topologies, we studied the formation control problem where we showed

that the proposed control law results in the global asymptotic stability of the closed-loop

system under certain conditions. The formation tracking problem was studied, and the

uniform ultimate boundedness of the solutions is rigorously proven. The proposed method

guarantees collision avoidance among neighboring agents and prevents depletion of the

agents’ energy. In the directed distance-based formation control case, we developed a

distributed, hierarchical control scheme for a particular class of directed graphs, namely

directed triangulated and trilateral Laman graphs. The proposed controller ensures the

global asymptotic stability of the desired formation. Rigorous stability analyses are

carried out in all cases. Moreover, we addressed the flip-ambiguity issue by using the

signed area and signed volume constraints. Additionally, we introduced a performance

index for a formation mission that can indicate the controller’s overall performance.

We also studied the distance-based formation control of nonlinear agents. We pro-

posed a method that can guarantee asymptotic stability of the distance-based formation

for a broad category of nonlinear systems. Furthermore, we studied a distance-based for-

mation control of uncertain nonlinear agents. Based on the combination of integral sliding

mode control (ISMC) theory with the SDRE method, we developed a robust optimal for-

mation control scheme that guarantees asymptotic stability of the desired distance-based

formation in the presence of bounded uncertainties. We have shown that the proposed

controller can compensate for the effect of uncertainties in individual agents on the overall

formation.
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Chapter 1

Introduction

1.1 Literature Review

The collective and cooperative behavior of animals, such as flocking and formation, can be

seen and traced in nature for a long time. Cooperative behavior enables groups of animals

to reach a sophisticated objective that is not accessible for individual animals [3]. Inspired

by nature, cooperative control of multi-agent systems, where a group of autonomous

agents act cooperatively, has been widely studied in the control community.

A multi-agent system (MAS) is a set of autonomous agents in which each agent can

act individually. There is an increasing need for MAS and their applications nowadays,

making it necessary to design reliable and highly effective control techniques for such

systems [2]. This chapter presents the introduction, literature review, and thesis outline.

1.1.1 Formation Control

Formation control is one of the most studied areas of cooperative control problems due

to its military and engineering applications, such as search and rescue, surveillance, and

coverage control. Recently, new interesting applications of formation control have been

developed, e.g., the formation control of commercial airplanes and drone light-shows.

The concept of formation control stems from nature, where various formation examples

can be observed, e.g., flying birds, school of fish, pack of wolves, and more. It is well-

known that geese save energy when they fly in a ”V” shape formation [4]. A recent study

showed that commercial planes could significantly reduce fuel consumption when flying

in formation [5].

Formation control aims to develop control methods for a group of agents to conduct a

specific mission while maintaining the desired geometric characteristics (shape, distances,

angles, etc.). Results have shown that when multiple agents are assigned a particular task,

the overall performance and efficiency are improved if agents form a certain geometric

shape [2].
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Figure 1.1: Geese fly in ”V” shape formation. Picture taken from [1].

In literature, formation control problems are classified in several ways. In general,

according to the objective of the problem, formation control methods can be categorized

into bearing-based, position-based, displacement-based, and distance-based formation

control [2], [6]. In bearing-based formation, agents are asked to keep prescribed relative

bearings where the distances between agents are flexible [7]. This flexibility in distances is

known as the scalability property [8]. In a position-based formation control, the desired

formation is specified in terms of a relative displacement of neighboring agents. The

objective is to reach the desired formation by controlling the agents’ positions. In this

method, each agent senses its own position with respect to a global coordinate system

and moves towards the desired position (formation). In displacement-based formation,

agents control their relative positions while their local coordinate systems have the same

orientation. In this way, agents do not need to have access to the information in a global

framework [2].

In a distance-based formation control, agents sense relative positions of their neighbors

in their local coordinate system, where their local coordinate systems are not required

to be aligned in a common direction. The desired formation is specified in terms of

intra-agent distances where agents achieve the desired formation by actively controlling

the distances between neighboring agents [2], [9]. Figure 1.2 shows the comparative

properties of the methods mentioned above.

Also, other classifications of the formation control problems can be seen in the litera-

ture, such as formation producing problem, formation tracking problem, vision-based for-

mation, leader-follower approach, behavioral approach, virtual structure approach, cen-

tralized approach, and decentralized approach [2]. In a leader-follower formation there is

one or more leaders that the rest of agents (followers) follow [10], [11], [12]. Behavioral ap-
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Figure 1.2: Specifications of different formation control approaches. Figure taken from [2].

proach defines a desired behavior such as obstacle or collision avoidance [13], [14]. Virtual

structure approach assumes desired formation as a whole virtual rigid structure [15], [16].

There are also other classifications in the literature and can be found in review articles

e.g. [2], [6].

1.1.2 Distance-Based Formation

Distance-based formation control of multi-agent systems has recently attracted significant

research interest in the control systems community. There has been an increasing focus

on distance-based formation control due to its theoretical challenges and plethora of ap-

plications [2]. In a distance-based formation control, the desired formation is specified in

terms of intra-agent distances where agents aim to reach the desired shape, provided that

they have access to their neighbors’ relative positions in their local coordinate system [9].

In a distance-based formation, each distance constraint specifies the desired distance

between a pair of agents where agents are required to achieve the desired formation shape

by controlling their distances to their neighbors [9]. In a distance-based formation, main-

taining the distance between a pair of agents can be the responsibility of both adjacent

agents or just one of them. The formation is undirected if retaining the desired distance

constraint (edge) is allocated to both neighboring agents. Conversely, if only one of the

agents is designated as responsible for preserving the edge, the formation is directed [3].

Directed and undirected graphs are appropriate modeling tools in individual and shared

responsibility cases, respectively [3].

Rigid graph theory is well developed and maturely used for undirected distance-based

formation control where a distance constraint between a pair of neighboring agents is

represented by an undirected edge connecting two adjacent vertices. There is a directed
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edge from the responsible agent to the other agent in the directed graph case. Only

the accountable agent needs to measure the relative position of its neighbor or receive

such information via communication links. Directed topologies are shown to have some

advantages over undirected ones. It is shown that an undirected distance-based formation

can be distorted in 2-D or even drift to infinity in 3-D space if there exist disagreements in

measurements of the neighboring agents [17]. It is also shown in [18] that in the directed

graph case, the communication and control complexities are reduced by half compared

to the undirected graph formations.

While the majority of research in the literature used the gradient-based control method

for distance-based formation control problems, few suggested other control approaches.

A method based on the Euclidean distance dynamics matrix was proposed for distance-

based formation control in [19], [20]. Lin et al. in [21] proposed a graph Laplacian-based

distributed coordinate-free control scheme for a distance-based formation control over

directed networks. Authors in [22] proposed a sliding mode control technique for non-

holonomic unicycle agents cyclic formation. A neuro-adaptive formation control method

with target tracking was considered in [23].

Other forms of distance-based formation were studied as hybrid sensing graphs con-

taining both unidirectional and bidirectional edges [24] or as hybrid combinations of

distance and angle constraints [25]. For instance, authors in [25] divided the neighbor

set of an agent into two subsets, namely distance neighbor set that has one member and

angle neighbor set that includes the rest. The agent’s mission is to control its distance

with the former set and its relative bearing regarding the latter one. Reference [26] con-

sidered the global stability of the proposed formation control scheme, with both distance

and bearing constraints on the plane for agents modeled as single-integrators. Almost

global asymptotic stability of a hybrid formation with distance and angle constraints is

proven for a set of agents modeled as single-integrators over planar directed graphs, under

certain assumptions [27].

1.1.3 Undirected Formation

Inherently, the distance-based control problem is nonlinear and more challenging to solve

than displacement-based and position-based formations. The graph rigidity theory is a

solid mathematical foundation utilized extensively to solve the distance-based formation

control problem. For stability analysis, the center manifold theorem, Lyapunov based ap-

proached [28] and LaSalle theorem [29] have been used. The gradient-based control is the

most used method for distance-based control problem in the literature [30], [31], [32], [33].

The reference [7] developed an estimator-based, decentralized control scheme to solve

the distance-based formation problem. A controller based on the Euclidean distance

dynamics matrix is developed in [19] for the case of triangular formation. The expo-
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nential stability of distance-based formation over undirected graphs is studied in [32].

Although the global stability of the distance-based formation is achieved for the single-

integrator case [34], and the double-integrator dynamics [35], assuring global stability of

the distance-based formation for more complicated systems is still an open problem [36].

The graph rigidity approach for distance-based formation is initially proposed in [37].

In [17], it is shown that in the case of the existence of mismatch in the measurement

of neighboring agents, a distance-based formation could drift to infinity. Authors in [38]

proposed a robust model-free controller for distance-based formation control with assured

collision avoidance. Distributed control has several advantages such as independence

of agents from the leader, less communication and computation needed, flexibility in

adjusting to new tasks, etc. [3], [39]. Reference [40] proposed a distributed control scheme

for combined formation control and flocking. Distance-based undirected formation of both

single and double integrator dynamics have been studied for n-dimensional spaces in [31].

Deghat et al. combined the flocking and distance-based shape control in [41].

Distance-based formations are usually supposed to be invariant with respect to trans-

lation, rotation, and reflection. Recently, there have been attempts to uniquely determine

the desired distance-based formation with regard to reflection. The most common ap-

proach for planar topologies is using signed area constraints [42], [43]. The aim of adding

area constraints is to eliminate reflected configurations from the equilibria set. Distance-

based formation control with signed area constraints is discussed in [44], where four

agents on a planar undirected graph have been considered. The area constraints were

also utilized for hybrid, undirected, distance- and angle-based formation control over

planar graphs [45]. Reference [27] proposed a combination of distance- and angle-based

formation control method for rigid formations in 2-D. A distance-based formation control

with signed area constraints is discussed in some recent work [44], [46].

Sugie et al. in [47] proposed a hierarchical control strategy that precludes reflection

ambiguities of a triangulated distance-based formation in 2-D. While the method in [47]

is limited to equilateral triangles, the reference [48] extended the results to the general

triangulation case. The global stabilization for a set of target configurations for triangu-

lated formations is discussed in [49] to make undesired equilibria unstable. However, the

method cannot preclude the undesired equilibria that are equivalent but not congruent

configurations.

In 3-D space, reflection prevention is more challenging. Reference [50] proposed the

utilization of the volume constraints for undirected distance-based formation control of

multi-agents modeled as double-integrators in 3-D. The issue with the proposed control

is that each agent needs to take care of the volume constraints of all possible tetrahe-

drons that make control law complicated and computationally complex. Also, this control

method highlights the problem of measurement disagreement of neighboring agents. Fur-

thermore, in stability analysis, it showed that the proposed controller steers the swarm
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to an invariant set that includes undesired stable equilibria. Reference [51] used an adap-

tive potential field control over undirected graphs and considered planar and volume

constraints. The number of planar and volume constraints rises significantly with the

number of edges that are incident to the agent. Signed constraints, including angle and

normalized volume, applied on formation shape control have been proposed in [45] for

the single-integrator case.

1.1.4 Directed Formation

In order to model a directed distance-based formation topology, directed graph theory

is used where each agent is represented by a vertex and each distance constraint is rep-

resented by a directed edge from the responsible agent to the other one [52]. Only the

accountable agent needs to measure the relative position of its neighbor. Directed topolo-

gies are shown to have some advantages over undirected ones. For instance, mismatching

in measurements of the neighboring agents in undirected topologies can distort the forma-

tion [17] while this is not a concern in directed formations. Also, the communication and

control complexities in the directed formations are halved compared to the corresponding

undirected formations [18].

A graph-theoretic framework for distance-based formation over directed graphs is

developed in [52]. Distance-based formation control over a cycle-free directed graphs is

studied in [53]. Distance-based formation control with signed area constraints is discussed

in [44]. The aim of adding area constraints is to eliminate reflected configurations from

the equilibria set. A distance-based formation over minimally persistent directed graphs

with the leader-first-follower structure is considered in [54]. A directed distance-based

formation over acyclic planar persistent graphs for single-integrator dynamics is discussed

in [53]. Directed cyclic distance-based formation problems have been studied in [55]. A

directed distance-based formation for a triangle with a single moving leader, modeled as

single-integrator dynamics, is analyzed in [10].

There is a rich body of research on planar directed distance-based formation con-

trol [54], [53], [55], [10], to name a few. Authors in [56] studied the problem of distance-

based formation control over directed, acyclic, minimally persistent graphs in 3-D space

for a set of agents modeled by the single-integrator dynamics where they proposed a

gradient-based control law. They did not exclude equivalent configurations nor unde-

sired equilibria of the controlled system. Authors in [57] considered translational and

rotational movements of the directed topologies in 3-D space, namely formation march-

ing and formation rotating control problems, for single-integrator dynamics.

A directed distance-based formation control with reference tracking in 2-D is studied

in [58], where an adaptive estimator is utilized to estimate the leader’s velocity. Refer-

ence [59] considered leader-follower formation control problem using dynamic games. A
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formation and fault accommodation algorithms for autonomous underwater vehicles have

been developed in [60].

Liu et al. in [42] developed a distance-based formation control method for directed

minimally persistent graphs in 2-D with an acyclic structure for a set of agents modeled as

single-integrators. Reference [61] proposed a gradient-based control law for the distance-

based formation control problem over minimally persistent directed graphs for the single-

integrator case. It used the theory of interconnected systems for proving asymptotic

stability of the formation while it lacks the stability analysis when the primitive triangle

is cyclic. The authors extended the results for the planar second-order agents’ case in [62].

Planar directed distance-based formation is also discussed in [63], where the experimental

results are presented for a set of quadcopters.

1.1.5 Formation of Nonlinear Agents

Due to the highly nonlinear and complex nature of the distance-based formation control

problem, the majority of the research in the literature considered very simple models [56].

Distance-based formation control for a set of agents modeled as single-integrators has been

studied in [64], [65], [42], while few studies also considered the double-integrator case, e.g.,

[62], [35]. The unicycle model has been studied in [66], [67].

Authors in [68] considered the second-order nonlinear dynamics where they showed

the uniform ultimate boundedness of the formation. The multi-layered formation of

autonomous marine vehicles was studied in [69] for a particular class of nonlinear, double-

integrator models.

1.1.6 Robust Optimal Formation

There are many proposed solutions for displacement-based formation control problems

in the literature, including optimal control methods. Such a control optimizes a given

cost functional and achieves the system stability in the formation control sense. In [70]

the author used an optimal control framework to solve the formation control problem

by formulating the problem as a Linear Quadratic (LQ) optimal control problem. A

Linear Quadratic Regulator (LQR)-based optimal controller has been proposed for the

leader-follower formation in [71] and for formation reconfiguration and collision avoidance

in [72]. Various cost/objective functions were proposed for formation control problems

and solved in standard optimal control framework, e.g., [13], [14], [73], [74], [75], [76], [77].

The desired objective can include preserving formation, tracking, obstacle avoidance,

minimizing time, and control effort.

A leader-follower formation control using state-dependent Riccati equation (SDRE)

control method was proposed in [12], [78] which in general produces a sub-optimal con-

troller for nonlinear systems. A recurrent neural network was used in [73] for an optimal
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formation control. The objective is to find a desired formation from a feasible formation

set, which has the minimum distance to the initial formation of the multi-robot system.

A control method that minimizes time to reach the desired formation is given in [79].

A distributed optimization problem has also received extensive interest in the re-

search community recently [80]. Distributed optimal control of multi-agent systems due

to the dependency of the problem to the neighbors’ dynamics is more challenging than

centralized optimal control problem to solve [81], [82]. There are efforts in literature

to develop distributed LQR controller for linear systems [83], [83], [84]. In [85], an in-

verse optimal approach is used to develop a distributed cooperative optimal controller for

multi-agent systems. A distributed receding horizon control scheme is presented in [86]

and distributed subgradient optimization methods is proposed in [87]. Moreover, the ref-

erence [88] developed a distributed control scheme for linear multi-agent systems, which

is globally optimal.

Uncertainty and disturbances are real challenges in control systems. Recently, robust

formation control gained research attention. Reference [89] proposed an output feedback

algorithms-based robust control scheme for vision-based formation. Robust displacement-

based formation control problem have been studied in several recent studies, to name a

few: [90], [91], [92], [93], [94]. Robust displacement-based formation control of general

linear systems with matched uncertainty is discussed in [95] where the proposed method

requires full-rankness of the input matrix. They showed the boundedness of the forma-

tion error. Reference [96] proposed a neural network-based robust adaptive controller for

a displacement-based formation of surface vehicles where the stability of the formation

error is shown via Lyapunov theory. A continuous-time sliding mode-based robust con-

troller is designed for a set of uncertain quadrotors where the formation is a time-varying

displacement-based [97]. Robust displacement-based formation control for underactuated

quadrotors is proposed in [98] based on reinforcement learning.

A robust adaptive control protocol for a set of quadcopters is presented in [99] where

the desired formation is described in terms of displacement constraint. They showed

the stability and boundedness of the formation error signals. A robust control scheme

is proposed for displacement-based formation control of a set of multi-agent systems

with state constraints in [100]. Uniform ultimate boundedness of displacement-based for-

mation in leader’s coordinate for a group of underactuated autonomous surface vessels,

subject to disturbance, is achieved via a robust adaptive controller based on minimal

learning parameter (MLP) algorithm and the disturbance observer (DOB) in [101]. A

robust controller for a combined distance and orientation-based formation control of a

set of second-order systems is proposed in [38]. Robust displacement formation of a set

of second-order nonholonomic agents is studied in [102] where a controller based on para-

metric Lyapunov-like barrier functions is designed. A robust fault-tolerant controller was

proposed for a displacement-based formation of a set of tail-sitters in [103] where bound-
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edness of the formation error signals have been shown. A model-free robust controller

has been designed in reference [104] for a set of nonlinear scalar agents. Authors in [105]

proposed a robust formation control protocol for a displacement-based formation of a

group of second-order systems with mismatched uncertainty that guarantees ultimate

boundedness of the errors.

The robustness of distance-based formation control over undirected graphs was stud-

ied in [106], where the agents are modeled as single-integrators with additive exogenous

disturbance. The authors proposed a linear matrix inequality-based approach for dis-

turbance attenuation. A robust distance-based formation control with prescribed perfor-

mance that handles connectivity maintenance and collision avoidance for single-integrator

dynamics has been studied in [107]. A flocking and distance-based formation control of

a set of heterogeneous, second-order agents with parametric uncertainty was considered

in [34] where a distributed adaptive control scheme has been developed for leader-first-

follower (LFF) directed topologies. In combination with flocking, an angle-based forma-

tion control has been studied in [108] for the second-order agents where authors considered

angle rigidity of planar graphs. A distance-based formation tracking control over planar

acyclic directed graphs, where the leader’s velocity is unknown but bounded, has been

studied in [109].

1.2 Contributions

The contributions of this Ph.D. dissertation can be summarized in several categories.

We developed a new optimal framework for a distance-based formation control. While

the majority of the research used the famous gradient-based control for distance-based

formation, we developed a nonlinear optimal control methodology for distance-based

formation control. Additionally, we introduced new energy dynamic models for multi-

agent systems. The proposed energy model is developed for the network of unmanned

ground vehicles (UGVs). The model is also applicable to a broad range of unmanned

aerial vehicles (UAVs) without hovering capabilities, e.g., fixed-wing UAVs, when external

disturbances can be neglected. Simulation results offer deep underestimating of optimality

in multi-agent systems and revealed interesting behaviors of the group.

In graph theory, the contribution of this dissertation is threefold. First, we introduced

the normalized rigidity matrix for undirected graphs, which is a particular form of rigid-

ity matrix. The normalized rigidity matrix has been used for formation purposes later.

Second, we introduced a specific class of directed graphs, namely directed triangulated

Laman graphs in 2-D space and directed trilateral Laman graphs in 3-D space, that can

be constructed by triangulation and trilateration procedures, respectively. As a connec-

tion bridge between undirected and directed topologies, we proposed an algorithm based

on Delaunay triangulation that can convert a given distance-based framework to a corre-
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sponding directed Laman topology. Since the directed topologies have some advantages

over undirected topologies, the proposed algorithm provides an effective way to assign a

direction for each edge that can guarantee the persistence of the directed formation.

We developed a formation control scheme for undirected topologies. In undirected

formation, we showed that the given control law results in the global asymptotic stabil-

ity of the closed-loop system under certain conditions. Also, we extend the results to

guarantee collision avoidance among neighboring agents. Finally, to prevent depleting

of agent’s energy, the proposed method considers the agents’ energy level as a weighting

factor in the cost functional. In addition, by including the energy level of agents in the

proposed method, we investigate the effect of the lower energy level of weak agents on

the swarm’s behavior. Furthermore, the developed SDRE-based controller can address

performance directly by online adjustment of weighting factors. The advantages of the

proposed method include: (1) being systematic; (2) assuring global asymptotic stabil-

ity; (3) reduction in energy consumption; (4) prevention of agent’s energy depletion; (5)

collision avoidance;

We presented a distributed formation control for directed distance-based formation

control where only one of the neighboring pairs of agents is assigned to preserve the

desired distance. We developed a novel distributed distance-based formation control

scheme for a class of directed graphs. It is shown that the distance-based formation con-

trol over directed graphs has several advantages compared to the undirected graph con-

figurations. We formulated the distance-based formation control problem over directed

triangulated and directed trilateral Laman graphs. The proposed controller ensures the

global asymptotic stability of the desired formation. Furthermore, an additional problem

in distance-based formation control is the existence of reflected configurations that sat-

isfy the distance constraints while the framework is not the desired one. We introduced

a method based on the concept of a barrier function that prevents such flip-ambiguous

configurations considering signed area and signed volume constraints. Additionally, we

present a performance index for a control mission that indicates the system’s overall

performance and can be used for comparison purposes.

Distance-based formation control is mathematically complex and nonlinear. Due to

the highly nonlinear and complex nature of the distance-based formation control problem,

the majority of the research in the literature considered elementary models. To the best

of the author’s knowledge, this work is one of the first works on the distance-based

formation of affine, nonlinear systems. We studied the distance-based formation control

of nonlinear systems. We proposed a method that can guarantee asymptotic stability of

the distance-based formation for a broad class of nonlinear systems. We developed the

results for both 2-D and 3-D spaces as well as homogeneous and heterogeneous agents.

Physical systems are subjected to uncertainties due to imperfections in modeling,

internal noise, disturbances, etc. We studied a distance-based formation control of un-
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certain nonlinear agents. For a set of nonlinear agents with additive uncertainty, we

developed a robust optimal formation control scheme that guarantees asymptotic stabil-

ity of the desired distance-based formation in the presence of bounded uncertainty. The

target formation is supposed to be a directed triangulated Laman graph in 2-D space

or a directed trilateral Laman graph in 3-D space. We have shown that the proposed

controller can completely compensate for the effect of matched uncertainty on the forma-

tion. The proposed control scheme is based on the integral sliding mode control (ISMC)

theory combined with the state-dependent Riccati equation (SDRE) method.

1.3 Summary and Dissertation Outline

This dissertation is organized into eight chapters as follows:

• Chapter 1: This chapter presents the introduction, literature review, and outline

of this dissertation.

• Chapter 2: This chapter presents background on graph theory, nonlinear optimal

control theory, and stability analysis of cascade interconnected systems. We intro-

duced a new dynamic model for the energy of the agents in this chapter. Also, we

introduced directed triangulated Laman graphs in 2-D space and directed trilateral

Laman graphs in 3-D space. Furthermore, an algorithm is proposed to transfer the

desired topology to a corresponding directed Laman graph using Delaunay triangu-

lation. The corresponding parts of this chapter have been published as [J2], [C4],

and [C7].

• Chapter 3: This chapter provides a brief discussion on optimal leader-follower,

displacement-based formation control of multi-agent systems. The results of this

chapter are published as [C4].

• Chapter 4: This chapter presents the main results of this dissertation on undi-

rected distance-based formation control, where we introduced the normalized rigid-

ity matrix and proved the global asymptotic stability of the distance-based forma-

tion. Also, a hybrid SDRE control scheme is proposed for formation tracking of the

multi-agent systems that guarantee practical stability of the formation and tracking

error. The energy depletion and collision avoidance problems are addressed here.

This chapter has been published as articles [J1], [C2], and [C3].

• Chapter 5: The results of directed distance-based formation control of single and

double integrator systems are presented in this chapter. Global asymptotic stability

of the formation for single-integrator agents is proven. Also, the reflection preven-

tion problems in 2-D and 3-D spaces are solved in this chapter. The corresponding

publications are [J2] and [C1].
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• Chapter 6: One of the first studies of the distance-based formation for autonomous,

affine, nonlinear systems is developed in this chapter. The directed Laman topolo-

gies are used for this aim. The results have appeared in [J3] and [C5].

• Chapter 7: The distance-based formation of uncertain nonlinear systems is dis-

cussed in this chapter. As a novel study on the robustness of distance-based for-

mation, we developed a robust optimal distance-based formation control scheme

based on a combination of integral sliding mode control and state-dependent Ric-

cati equation methods. The results of this chapter appear in [J4] and [C6].

• Chapter 8: In this chapter, a summary of the dissertation is given, and possible

future works have been discussed.
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Chapter 2

Background

2.1 Introduction

In this section, the background materials are presented. First, the formation problem is

stated. Second, the fundamentals of graph theory are discussed for directed and undi-

rected graphs. Concepts of rigidity and persistency are presented, and directed Laman

graphs are introduced. A new model is developed for agent’s energy consumption which

can be used for a broad class of multi-agent systems. Then, the typical agent’s dynamic

models are introduced and combined with the proposed energy dynamics. Finally, the

fundamentals of nonlinear optimal control methods and some stability results are pro-

vided.

2.2 Problem Statement

A formation control problem can be defined as follows: consider a set of N agents that

can be described by

ẋi = fi(xi, ui) (2.1a)

yi = gi(xi), (2.1b)

where xi ∈ Rq, ui ∈ Rp, and yi ∈ Rr denote the state, input, and output vectors of the

agent i ∈ {1, ..., N} respectively. Here q, p and r are dimensions of the state, input, and

output vectors respectively, and fi : Rq×p → Rq, gi : Rq×p → Rr. Let us define the swarm

output vector as y = [yT1 , ..., y
T
N ]T ∈ RrN . A desired formation for the set of agents can

then be described by M -constraints

F (y) = F (y∗), (2.2)
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where F : RrN → RM , for a given y∗ ∈ RrN . A formation control problem for the set of

agents (2.1) is to design a set of control law ui such that the set

Ey∗ =
{

[xT1 , ..., x
T
N ]T : F (y) = F (y∗)

}
(2.3)

becomes asymptotically stable. It should be noted that, in general, the objective is not

y → y∗, but to achieve F (y) → F (y∗). Further, the constraint (2.2) is usually defined

by a specified problem setup [2].

2.2.1 Notation

The following notations are used throughout this thesis. Let R denote the real numbers

set, N denote the natural numbers set, and Z be used for integer numbers. The positive

real numbers set is denoted by R+. Let Rn denote an n-dimensional Euclidean space and

Rn×m denote n×m real matrices. Let In denote n× n identity matrix and 0n×m denote

the n ×m zero matrix. We use 0n and 1n for column vectors of size n with all entries

equal to zero and one, respectively. With diag[ai] we denote a block diagonal matrix

with matrices ai on its diagonal. Also, rank(A) represents the rank of a matrix A. Let

⊗ denote the Kronecker product. By ‖.‖i we denote the li-norm and by Θ(A) we denote

the set of eigenvalues of matrix A, also known as spectrum of matrix A. Mathematical

signum function, commonly referred as sign function and denoted by sgn(x), is defined

as

sgn(x) =


−1 x < 0

0 x = 0

1 x > 0

. (2.4)

The sign of a vector x = [x1, ..., xn] is denoted by sgn(x) = [sgn(x1), ..., sgn(xn)].

2.3 Graph Theory

This section gives the essential mathematical background on graph theory, rigidity, and

persistency as core concepts in distance-based formation control. First, we will present

the fundamentals of undirected graphs following by the theory of directed graphs.

2.3.1 Undirected Graphs

A formation of N agents can be represented by an undirected graph G = (V,E), where

V = {v1, ..., vN} is the set of vertices with vi representing the agent i and E ⊂ V × V
is an edge set where any of its elements represents a direct connection between a pair

of agents. Note that (i, j) ∈ E if agents i and j are adjacent. Moreover, (j, i) ∈ E if

and only if (i, j) ∈ E. The topology of an inter-agent network can be modeled with an
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adjacency matrix A = [aij], where aij represents a distance constrain between a pair of

agents. The element aij = 1, if there exists an edge between vertices (agents) i and j;

otherwise aij = 0. A graph without multiple edges and loops is called a simple graph. In

this dissertation, all graphs are supposed to be simple. Cardinality of sets V and E (|V |
and |E|, respectively) is the number of vertices and edges of the graph G. For agent i,

the neighboring set Ni is defined as a set of agents that are adjacent to it [110].

Given a graph G(V,E), a realization is defined as a function that maps the vertices of

the graph to a set of points in the Euclidean space. Obviously, graph G can have several

realizations in Rn where n ∈ {2, 3} is the dimension of the space. A framework F(G,p)

is a realization of G(V,E) at given points p = [pT1 , ..., p
T
N ]T ∈ RnN , where pi ∈ Rn is

the corresponding position of the vertex vi. An edge function E : RnN → R|E| of the

framework F(G,p) is defined by

EG(p) =
(
..., ‖pi − pj‖2, ...

)
, (i, j) ∈ E. (2.5)

For a realization F(G,p), the rigidity matrix R(p) : RnN → R|E|×nN is defined as

R(p) =
1

2

∂EG(p)

∂p
. (2.6)

Frameworks F(G,p) and F(G,q) are said to be equivalent if EG(p) = EG(q). In

addition, they are congruent if ‖pi−pj‖ = ‖qi− qj‖ for all (i, j) ∈ V . Note that rotations

and translations of the whole framework are congruent transformations, and normally we

exclude them. Two frameworks are called flip ambiguous if they are equivalent but not

congruent.

Rigidity is an important feature in formation control, whereas a consistent formation

requires the corresponding graph to be rigid. Rigidity is defined in [111] as follows:

Definition 2.1. Let G(V,E) be a desired graph and C(V,E ′) be the complete graph

with |V | vertices. A framework F(G,p) in Rn is rigid if there exists a neighborhood Up

of p in ∈ RnN such that

E−1
G (EG(p)) ∩ Up = E−1

C (EC(p)) ∩ Up. (2.7)

We call F(G,p) flexible if it is not rigid. In other words, the framework F(G,p) is

called flexible if it can be continuously deformed to F(G, p̂) while keeping all desired

distances constant; otherwise, it is rigid [112]. A realization F(G,p) is globally rigid if

every equivalent realization is also congruent. Thus, a globally rigid graph has a unique

realization irrespective of translation and rotation. The following well-known Laman

theorem provides an effective way to check graph rigidity.
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Figure 2.1: Graph rigidity: nonrigid or flexible graph (a), minimally rigid graph where
changing node 1 to 1’ makes flip ambiguity (b), and globally rigid graph (c).

Theorem 2.1 ([113]). A graph G = (V,E) is rigid in 2-D (respectively in 3-D) if and

only if there exists a subgraph Ḡ = (V, Ē), Ē ⊂ E with |Ē| = 2|V | − 3 (respectively

|Ē| = 3|V | − 6), and for any other V̄ ⊂ V , the associated induced subgraph ¯̄G = (V̄ , ¯̄E)

of Ḡ with ¯̄E ⊂ Ē, satisfies | ¯̄E| ≤ 2|V̄ | − 3 (respectively |Ē| = 3|V | − 6).

Corollary 2.1.1 ([113]). A graph is minimally rigid if it is rigid and if by removing

any of its edges it loses rigidity. In addition, a rigid graph G = (V,E) is minimally

rigid in 2-D if and only if |E| = 2|V | − 3. For 3-D it is minimally rigid if and only if

|E| = 3|V | − 6.

In other words, a graph is rigid if and only if it contains a minimally rigid subgraph.

Remark 2.1. A minimally rigid graph in R2 is called a Laman graph [114].

The framework F(G,p) is infinitesimally rigid if every possible motion of the frame-

work that satisfies

(pi − pj)T (ṗi − ṗj) = 0, ∀(i, j) ∈ E (2.8)

consists of just rotation and translation of the whole framework. Thus, F(G,p) is in-

finitesimally flexible if it is not infinitesimally rigid [41]. A framework F(G,p), where

N > n and p is a regular point of G, is infinitesimally rigid if and only if rank(R(p)) =

Nn−
(
n+1

2

)
, [9], [111], [115].

Corollary 2.1.2 ([28]). For a minimally and infinitesimally rigid (MIR) framework

F(G,p), the rigidity matrix R(p) has full row rank.

Also, for MIR graphs, we have the following lemma presented in the literature.

Lemma 2.1 ([32]). For a MIR framework F(G,p), the matrix R(p)R(p)T is positive

definite, hence invertible.
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Roughly speaking, there are operations for building a new graph that preserves the

rigidity property of the primitive graph. The following lemma gives an essential result

on the rigidity of a graph that is obtained from another graph.

Lemma 2.2 ([18]). A graph Ḡ = (V̄ , Ē) in ∈ Rn obtained by adding a vertex with n

edges to a graph G = (V,E), is (respectively minimally) rigid if and only if G = (V,E)

is (respectively minimally) rigid.

Henneberg construction is a systematic and iterative way to construct minimally

rigid graphs in 2-D [3]. Henneberg construction consists of two possible operations: (1)

vertex addition and (2) edge splitting. Vertex addition is a procedure of adding a new

vertex with two edges to an existing graph. Edge splitting is a procedure of adding a

new vertex with three edges while removing one existing edge. It should be noted that

the vertices that were incident to the removed edge should be adjacent to the added

vertex. Figure 2.2 illustrates Henneberg construction procedures. For more detailed

information on Henneberg construction, the reader may refer to [116]. It is well-known

that having a minimally rigid framework, adding another vertex to it via Henneberg

construction, the resulting graph is also minimally rigid. Furthermore, it is shown that

every minimally rigid graph can be obtained by a sequence of Henneberg construction

applied to a complete graph with two vertex [37]. The following lemma states this.

Lemma 2.3 ([52]). A minimally rigid graph in 2-D, can be constructed using Henneberg

construction starting from a complete graph of two vertices with one edge.

Also, as a consequence of Lemma 2.3, every minimally rigid graph can be decon-

structed using the inverse of Henneberg construction to end up in the complete graph

of two [3]. The 3-dimensional version of constructing a minimally rigid graph known

as trilateration operation is discussed in [117]. Starting from a complete graph of three

vertices, a graph which is obtained by a sequence of adding a vertex with three edges are

minimally rigid. This is a direct consequence of Lemma 2.2.

Remark 2.2. A minimally rigid graph in 2-D that is obtained by the Henneberg vertex

addition procedure is called a triangulated Laman graph [114].

2.3.2 Directed Graphs

The connection between agents can be unidirectional. In this sense, the agent i can

measure the relative position or receive the data from agent j while the reverse is not

true. This is quite a common phenomenon in distributed multi-agent applications. A

communication topology or desired formation among N agents can be represented by a

directed graph (also known as digraph) G = (V , E), where V = {v1, ..., vN} is the set of

vertices and E ⊂ V × V is an edge set where any of its elements represents a distance
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Figure 2.2: Henneberg construction: a minimally rigid graph (a) results in (b) using
vertex addition and in (c) using edge splitting. Both constructed graphs preserve minimal
rigidity.

Figure 2.3: Persistency of directed graphs: (a) graph is not constraint consistent because
agent #2 has too many constraints to satisfy. While agent #4 can move freely over a
circle around agent #3, agent #2 cannot satisfy all its associated desired distances. The
graph depicted in (b) is constraint consistent.
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constraint. Note that (i, j) ∈ E means that there is a flow of information from agent j to

agent i. In other words, agent i can receive the information from agent j or it can measure

the relative position of agent j. The edge eij = (i, j) ∈ E is shown by an arrow with the

head in vertex j and the tail in vertex i, respectively. The agent j is called sink while

the vertex i is the source of the edge eij. The topology of an inter-agent network can be

defined using an adjacency matrix A = [aij], where aij represents a directed connection

between a sink and a source. The element aij = 1 if there exist a information flow from

agent j to agents i; otherwise aij = 0.

A matrix which provides the relationship between vertices and edges is known as an

incidence matrix H = [hij] [110]. The elements of incidence matrix for a directed graph

are defined as

hij =


−1 if vertex ith is the tail of edge j

1 if vertex ith is the head of edge j

0 otherwise.

(2.9)

Note that incidence matrix also can be defined for undirected graphs with associating an

arbitrary orientation for each edge.

For the agent i in a directed graph, the neighboring set Ni is defined as a set of agents

that their positions can be sensed by agent i [110]. Out-degree of vertex i is defined as

dg+
i = |Ni|. Consequently, for a directed graph G the out-degree matrix is defined as

DG = diag[dg+
1 , ..., dg

+
N ].

In the case of directed formation, the rigidity of the underlying undirected graph

(which is obtained after replacing all directed edges with undirected ones) is not sufficient

for feasibility of the formation [2]. For directed graphs, the counterpart condition to

rigidity is persistency. A directed graph is said to be persistent if it is constraint consistent

and the underlying undirected graph is rigid [52]. Roughly speaking, a formation is

constraint consistent if every agent is able to satisfy all its distance constraints while

all other agents are trying to do so. In other words, if the responsibility of an agent

for keeping desired distances is too much such that the agent can not fulfill it, then

the directed formation is not constraint consistent [52]. Figure 2.3 shows constraint

consistency of a directed graph. The following theorem provides the definition of being

persistent.

Theorem 2.2 ([117]). A directed graph G = (V , E) is persistent if and only if it is

constraint consistent and the underlying undirected graph is rigid.

There are some definitions for constraint consistency of a directed graph. Reader may

refer to [3], [52] fo more details. However, here we are giving a criteria to check the

constraint consistency of a directed graph in the following lemma.
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Lemma 2.4 ([3]). A directed graph in n-dimensional space is constraint consistent if

none of its vertices has an out-degree greater than n,

max(dg+
i ) ≤ n for all i ∈ {1, ..., N}. (2.10)

Similarly to minimal rigidity, we can define minimal persistency for a directed graph as

follows.

Definition 2.2 ([52]). A directed graph G = (V , E) is minimally persistent if it is persis-

tent and if by removing any of its edges, it loses persistency.

A simple way to check the minimal persistency of a directed graph is given in the following.

Proposition 2.1 ([118]). A directed graph G = (V , E) is minimally persistent if and only

if its underlying undirected graph is minimally rigid and for all vertices we have

max(dg+
i ) ≤ n for all i ∈ {1, ..., N}. (2.11)

Lemma 2.4 states that a directed graph in 3-D is constraint consistent if every vertex

of the graph has at most three neighbors. First, let us define degree of freedom of a vertex

in n-dimensional space where n ∈ {2, 3} as following:

Definition 2.3. For a vertex i in a directed graph G ∈ Rn, the degree of freedom (dfi) is

dfi =


n if dg+

i = 0

n− 1 if dg+
i = 1

n− 2 if dg+
i = 2

0 otherwise.

(2.12)

Based on degree of freedom we can state the following lemma which relates graph’s

pesistency to the sum of degree of freedom of vertices.

Lemma 2.5 ([18]). For a persistent directed graph in n-dimensional space where n ∈
{2, 3}, the following inequality is valid

i=1∑
N

dfi ≤
n(n+ 1)

2
. (2.13)

Henneberg operation also is defined for directed graphs. Directed vertex addition can be

stated as follows.

Definition 2.4. Henneberg directed vertex addition to a directed graph in n-dimensional

space where n ∈ {2, 3}, is adding a vertex with n directed edges to an existing directed

graph provided that the added vertex is the source of the added edges.
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Henneberg directed vertex addition in 2-D and 3-D spaces are known as triangulation

and trilateration operations, respectively. Furthermore, we can state the following lemma

about the persistency of a constructed graph.

Lemma 2.6 ([18]). A directed graph Ḡ = (V̄ , Ē) in Rn obtained by Henneberg directed

vertex addition to a graph G = (V , E), is (respectively minimally) persistent if and only

if G = (V , E) is (respectively minimally) persistent.

Not all minimally persistent directed graphs can be obtained by Henneberg sequence

since there are some counterexamples [52]. The following corollary offers important results

on the structure of minimally persistent directed graphs which is constructible using

Henneberg sequence.

Corollary 2.2.1 ([52]). A minimally persistent directed graph which has no cycle (cycle-

free or acyclic), always has a Leader-First-Follower structure and hence can be obtained

via Henneberg directed vertex addition starting from a graph of two vertices connected

with single edge.

Similar to undirected case we define a directed triangulated Laman graph as following.

Definition 2.5. A minimally persistent graph in 2-D which is obtained by Henneberg

directed vertex addition starting from a LFF structure, is called a directed triangulated

Laman graph.

Being persistent is not sufficient for the feasibility of formation in 3-D as shown in [3].

For the sake of having feasible formation, a directed graph in 3-D needs to be structurally

persistent. Figure 2.6 shows structural persistency of a directed graph in 3-D space. To

be more specific, we can state the following lemma.

Lemma 2.7 ([3]). A directed graph in 3-D is structurally persistent if it is persistent and

if it has at most one vertex with dfi = 0.

Corollary 2.2.2 ([117]). A minimally persistent directed graph in R3 can be obtained

via directed trilateration operation starting from a graph of directed triangular with three

vertices connected with three edges in form of LFF or balanced triangle (that each agent

has dg+ = 1).

Figure 2.4 depicts two possible starting triangular for constructing a minimally per-

sistent graph in 3-D.

Remark 2.3. A minimally persistent graph in 3-D which is obtained by trilateration

sequence is called trilaterated minimally persistent graph.

Figure 2.5(a) shows leader-first-follower structure while Figure 2.5(b) depicts the pro-

cedure of construction of a directed triangulated Laman graph.

Note that for directed graphs in 3-D, trilateration operation equals to directed vertex

addition.
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Figure 2.4: Two directed triangular seeds.

Figure 2.5: Constructing a directed Laman graph: (a) primitive leader-first-follower struc-
ture; (b) constructing a new triangulated Laman graph in 2-D, and (c) constructing a
new trilateral Laman graph in 3-D using directed vertex addition procedure.
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Figure 2.6: Structural persistency of directed graphs in 3-D: the graph depicted in (a) is
not structurally persistent since the agent #1 and #5 can freely move, it is impossible
to other agents to preserve their constraints. The graph depicted in (b) is structurally
persistent.

Definition 2.6. A minimally structurally persistent graph in 3-D that is obtained via

trilateration sequence from a starting LFF triangle is called directed trilateral Laman

graph.

Figure 2.5(c) shows construction of directed trilateral graphs.

2.3.3 Securing Persistence

Considering the relation between undirected and directed graphs, there is an important

question here: for a given undirected graph, can we assign a direction to each edge

such that the resulting directed graph is persistent? This problem in general form is

unsolved [18]. However, for special cases such as complete graphs, bilateration and tri-

lateration graphs, wheel graphs, C2, and C3-graphs, there are some methods proposed in

the literature [3]. The following lemma states the possibility of securing persistence for

minimally rigid graphs [52].

Lemma 2.8 ([3]). A minimally rigid graph can be assigned directions to its edges such

that the resulting directed graph be minimally persistent.

Using Henneberg construction, we can deconstruct any minimally rigid graph to its

primitive complete graph of two or three in 2-D or 3-D, respectively. A C2-graph is

a square of the corresponding cycle graph, which is obtained by adding edges between

every two vertices with a common neighbor. Both wheel and C2-graphs are interesting

structures in formation control due to their particular structures. Furthermore, it is

shown that both wheel graphs and C2-graphs are robust in terms of remaining persistent

in case of losing a vertex (rather than leader vertex for wheel graph) or an edge [3].
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Figure 2.7: Special form of persistence directed graphs: (a) wheel graph, (b) C2-graph.

2.3.4 Directed Job Assignment for Formation Topologies

Assume that the desired distance-based formation shape is given. The objective is to

find an algorithm for job assignment procedure such that the resulted directed topology

be a persistent graph. At the same time, for stability purposes and the advantages that

leader-first-follower structure has, it is desired that the final topology be in acyclic LFF

form. In this subsection, we propose an algorithm that can solve this problem.

Triangulation (respectively trilateration) of a given set P on N points in 2-dimensional

(respectively in 3-dimensional) space is a simplicial decomposition of the hull in a way

that:

1. Vertices of triangles (respectively tetrahedrons) belong to P .

2. Intersection of two triangles (respectively tetrahedrons) is either empty or a vertex

or an edge (or a face).

A triangulation in 2-D is a Delaunay triangulation (DT) if and only if the circle

circumscribing each triangle does not contain any point of the set P .

A trilateration in 3-D is a Delaunay trilateration (DT) if and only if the circumsphere

circumscribing each tetrahedron does not contain any point of the set P .

Given a desired geometric shape for a set of N agents, perform the following steps:

• Step 1. Perform the Delaunay operation (DT) for a given set of points.

• Step 2. For a resulted graph, select an appropriate leader agent (#1).

• Step 3. From the neighboring set of the leader(N1), select first follower (#2).

• Step 4. Connect the first follower to the leader with a directed outgoing edge (e21).

• Step 5. From the set N1 ∩N2 select follower #3.
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Figure 2.8: Proposed job assignment algorithm: (a) the desired topology of the agents;
(b) the corresponding Delaunay triangulation; (c) the out put of the proposed algorithm
as a minimally persistent acyclic LFF graph.

• Step 6. Connect follower #3 to the leader and first follower with two outgoing

edges e31 and e32, respectively.

• Step 7. Select next follower #i where 4 ≤ i ≤ N as Ni ⊂ Λi−1 where Λi−1 =

{1, ..., i− 1}.

• Step 8. Arrange the incidents edges of the agent i from the shortest to longest

length (Euclidean distance)

• Step 9. Connect the follower #i to the the graph with directed triangulation

(respectively trilateration in 3-D) through the shortest length edges.

• Step 10. Repeat step 7 for the next agents until all agents are connected to the

graph.

The resulted directed graph is an acyclic LFF structured graph. It is worth mentioning

that the resulted directed graph is not unique. However, it is in an LFF form, and

the formation is persistent. This job assignment is compatible with flocking, directed

distance-based formation, and vision-based formation control, where an agent is required

to preserve its position about its nearest neighbors.

Figure 2.8 shows the proposed algorithm’s application where the desired topology of

agents is given in Figure 2.8(a). Implementing the Delaunay triangulation for a given

set of points in (a), the output of Delaunay triangulation is shown in (b). The resulted

directed LFF minimally persistent graph is depicted in (c). As another example, we

implemented the proposed algorithm for a Moser graph depicted in Figure 2.9. The

procedure and the resulted directed graph are shown in Figure 2.10.
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Algorithm 1 The proposed job assignment algorithm using DT

Require: The desired framework F(G,p)
1: Perform DT on set of points p
2: Select an appropriate leader (agent#1)
3: Select first-follower (agent#2) such that 2 ∈ N1

4: Connect the first follower to the leader with a directed outgoing edge (e21)
5: Select follower #3 such that 3 ∈ N1 ∩N2

6: Connect follower #3 to the leader and first follower with outgoing edges e31 and e32

7: for 4 ≤ i ≤ N do . N = |V |
8: Select next follower #i such that Ni ⊂ Λi−1 where Λi−1 = {1, ..., i− 1}
9: Arrange the incidents edges of the agent i from the shortest to longest length

(Euclidean distance)
10: if n = 2 then
11: Connect the follower #i to the the digraph with directed triangulation via the

shortest length edges.
12: else if n = 3 then
13: Connect the follower #i to the the digraph with directed trilateration via the

shortest length edges.
14: end if
15: end for

return Corresponding directed Laman graph G = (V , E)

Figure 2.9: Moser spindle: a famous Laman graph.
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Figure 2.10: Proposed algorithm for Moser spindle: (top) the desired topology of the
agents; (middle) the respective Delaunay triangulation; (bottom) the out put of the
proposed algorithm as a minimally persistent acyclic LFF graph.
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2.4 Agent Modeling

There are variety of dynamical models of multi-agents used in the literature (e.g., see [2]

for a survey of models). The most common model of agents that are used in distance-

based formation control is the single-integrator and the double-integrator models [2], [9].

2.4.1 Single-Integrator Model

The agent model is given by

Ws : ṗi = ui, (2.14)

where pi ∈ Rn and ui ∈ Rn denote the position and control input of agent i in an n-

dimensional space, n ∈ {2, 3}, with respect to a global coordinate system. Forming the

aggregate state vector for a set of N agents as xs = p where p = [pT1 , ..., p
T
N ]T , and

aggregate input vector as u = [uT1 , ..., u
T
N ]T , the model for the set of N agents modeled

by the single-integrator dynamics is given by

ẋs = Bsu, (2.15)

where

Bs = IN ⊗ Id. (2.16)

2.4.2 Double-Integrator Model

The agents are modeled by

Wd :

{
ṗi = vi

v̇i = ui,
(2.17)

where vi ∈ Rn denotes the velocity of the agent i with respect to a global coordinate

system. Let v = [vT1 , ..., v
T
N ]T be the swarm velocity vector. Then, input vector elements

are accelerations of the agents. Defining the aggregate state vector as xd = [pT ,vT ]T ,

the state-space model for a set of N agents modeled by the double-integrator dynamics

is given by

ẋd = Adxd +Bdu, (2.18)
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with

Ad =

[
0N×N IN

0N×N 0N×N

]
⊗ Id (2.19a)

Bd =

[
0N×N

IN

]
⊗ Id, (2.19b)

where xd ∈ R2nN and u ∈ RnN are the aggregate state and control input of all agents

respectively.

2.4.3 Agent Energy Model

In real-life multi-agent applications, there are always constraints on energy usage. Here we

propose an energy model for agents that will be used in the formation control algorithm.

In general, the energy consumption of agents with electric energy sources is a function

of several parameters such as speed of electric motors, aerodynamic shape of the agent,

agent’s weight, electric efficiency, external disturbances such as wind speed, etc. The

energy level of an agent i can be modeled as

l̇i(t) = Li(vi, ui), (2.20)

where li(t) ∈ R+ is the energy level at time t, vi ∈ Rn and ui ∈ Rm are velocity and

control inputs respectively, and Li : Rn×m → R is a nonlinear mapping. In modeling

of an energy consumption we focus on agents where the energy consumption depends

on traveled distance. We assume that agents use no energy when they are stationary

(no hovering). For simplicity, we assume that the gear ratio between electric motor and

wheels is one. Suppose l0i ∈ R+ is an initial energy level of the agent i at initial time

t0, expressed as a percentage of maximum energy storage capacity (current energy level

over maximum energy that can be stored) and αi is the normalized energy consumption

rate per traveled distance unit. Then li(t) can be described by

li(t) = li(0)− αi
∫ t

t0

‖ṗi‖dt. (2.21)

Considering that time derivative of position is velocity, we can write

li(t) = li(0)− αi
∫ t

t0

‖vi‖dt. (2.22)

The total consumed energy of agent i can be expressed as

li(0)− li(tf ) = αi

∫ tf

t0

‖vi‖dt, (2.23)
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where tf is final time. Consequently, from the equation (2.22) the agent energy dynamic

can be written as {
l̇i(t) = −αi‖vi‖

li(t0) = li(0).
(2.24)

Remark 2.4. Although more complex mathematical models for energy dynamics of mobile

robots have been suggested in the literature (e.g., [119], [120]), the experimental results

from [121] and [122], justify using of the proposed model (2.24).

Remark 2.5. The proposed energy model is developed for the network of Unmanned

Ground Vehicles (UGVs) for cases when the external disturbances such as wind and road

bumps can be neglected. The model is also applicable to a broad range of Unmanned

Aerial Vehicles (UAVs) without hovering capabilities, e.g., fixed-wing UAVs in cases when

external disturbances can be neglected.

2.4.4 Augmented Agent Model with Energy State

Adding the energy dynamics as an extra state to the agent’s model results in an aug-

mented dynamic model. For the single-integrator model, the augmented state vector is

x̂si = [pTi , li]
T and the state-space model is given by

Ŵs :

{
ṗi = ui

l̇i = −αi‖ui‖.
(2.25)

Similarly, for the double-integrator model, the augmented state vector is x̂di = [pTi , v
T
i , li]

T

and the state-space model is

Ŵd :


ṗi = vi

v̇i = ui

l̇i = −αi‖vi‖.

(2.26)

Equations (2.25) and (2.26) are augmented single and double-integrator models of an

agent, respectively.

2.5 SDRE Method

There are two common approaches for solving optimal control problems – either by Pon-

tryagin’s maximum principle (PMP) or by Hamilton–Jacobi–Bellman (HJB) equation.

For linear systems with a quadratic cost functional, optimal control results in a well-

known linear quadratic regulator (LQR) method. There were attempts to mimic the
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LQR controller for nonlinear systems resulting in the state-dependent Riccati equation

(SDRE) method. The underlying idea is to generalize well-developed linear control tech-

niques for nonlinear systems to treat the nonlinear system like a linear one. In fact,

the SDRE method can be used to design a nonlinear state-feedback controller in a very

effective way for a broad class of nonlinear systems [123], [124].

Suppose a system that is nonlinear in the state, but affine in control is given by

ẋ = f(x) + B(x)u, (2.27)

where x ∈ Rq and u ∈ Rp are the state and input vectors of the system, respectively.

Note that f(x) : Rq → Rq is a nonlinear mapping and B(x) ∈ Rq×p is a matrix-valued,

state-dependent input matrix. The system (2.27) can be rewritten in a linear-like form

using extended linearization as described next.

2.5.1 Extended Linearization

Extended linearization, also known as state-dependent coefficient (SDC) factorization, is

a way of rewriting nonlinear equations in a linear-like form that absorbs nonlinearities in

the state and input matrices. Under the assumption that f(x) ∈ C1, we can write (2.27)

in a linear-like form

ẋ = A(x)x +B(x)u, (2.28)

where A : Rq → Rq×q is a matrix valued function and is non-unique for non-scalar

systems [123].

The representation (2.28) is called a SDC representation of the system (2.27) where

the matrix A(x) is SDC state matrix.

Remark 2.6. There are several proposed methods for finding A(x) in the literature. Note

that non-uniqueness of A(x) results in extra degrees of freedom in control design proce-

dure. The reader may refer to [123], [125], [126] for more details.

Remark 2.7. If A(x) is a SDC representation of the nonlinear system (2.27) such that

f(x) = A(x)x then, Â(x) = A(x) +E(x) for every E(x) that satisfies E(x)x = 0, is also

a SDC representation of the system (2.27).

Remark 2.8. If A1(x) and A2(x) are a SDC representation of the nonlinear system (2.27),

then Â(x) = αA1(x) + (1 − α)A2(x) for any 0 ≤ α ≤ 1 is also a SDC representation of

the system (2.27).
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2.5.2 SDRE Controller

Suppose a cost functional with state-dependent weighting matrices is given by

J(x0,u) =
1

2

∫ ∞
t0

{x(t)TQ(x)x(t) + u(t)TR(x)u(t)}dt, (2.29)

where x0 is the initial state of the system at the initial time t0. Here Q : Rq → Rq×q is a

non-negative, symmetric matrix-valued function and R : Rq → Rp×p is a positive definite,

symmetric matrix-valued function. The objective of the optimal control problem is to

find a control u for the system (2.28) such that it minimizes the cost functional (2.29),

while stabilizing the closed-loop system. The desired optimal control will be in the state

feedback form u(x) = −k(x)x(t), with k(x) being the optimal feedback gain.

For solution feasibility of the SDRE control method, the following conditions are

required:

• Condition 1: The function f(x) is continuously differentiable (f(x) ∈ C1) and B(x)

is a matrix valued function such that B(x) ∈ C0.

• Condition 2: The origin (x = 0) is an equilibrium of the system with zero input

such that f(0) = 0.

• Condition 3: The pair {A(x), B(x)} is point-wise stabilizable and the pair {C(x), A(x)}
is point-wise detectable in linear sense for all x in some nonempty neighborhood of

the origin Ω, where CT (x)C(x) = Q(x).

The following lemma presents the main results in SDRE theory and can be found in [123], [124].

Lemma 2.9 ([124]). Given that the nonlinear system (2.27) meets Conditions 1-3, there

exists a state feedback control law

u(x) = −k(x)x(t), (2.30)

where feedback gain k(x) is given by

k(x) = R−1(x)BT (x)S(x), (2.31)

and S(x) is a unique, symmetric, and positive-definite solution of the following corre-

sponding state-dependent Riccati equation

Q(x) + AT (x)S(x) + S(x)A(x)− S(x)B(x)R−1(x)BT (x)S(x) = 0. (2.32)

The control law (2.30) asymptotically minimizes the cost functional (2.29) and guarantees

local asymptotic stability of the closed-loop system.
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Remark 2.9. The SDRE control law (2.30) becomes optimal if it satisfies additional con-

straints presented in [124].

Remark 2.10. Substituting control law (2.30) in the system (2.28), then, the closed-loop

dynamics is

ẋ = ACL(x)x (2.33a)

ACL(x) = A(x)− B(x)R−1(x)BT (x)S(x), (2.33b)

where ACL(x) is called a closed-loop SDC matrix [127].

Lemma 2.10 ([128]). Assume that the system (2.28) satisfies Conditions 1-3 and ACL(x)

is symmetric for all x, then SDRE control law (2.30) results in the global asymptotic

stability of the closed-loop system.

Remark 2.11. As a consequence of Lemma 2.10, for scalar systems, the SDRE control

law is globally asymptotically stabilizing [128].

Remark 2.12. Conditions 1-3, known as the SDRE feasibility conditions, are common

assumptions for general systems in the literature that guarantees existence and uniqueness

of the solution of the Riccati equation and SDRE controller [123], [124].

Remark 2.13. Although we supposed that the system (2.27) is autonomous and affine in

control, there are studies that extended the SDRE method for non-affine systems [129]

and nonautonomous systems [130].

Remark 2.14. Finding the exact solution of the Riccati equation is not possible except for

very simple systems. However, there are effective numerical solutions for implementation

of SDRE controller in the literature [124], [131].

2.5.3 Stabilizability and Detectability of SDC Representation

The SDC representation of the system (2.27) where q > 2 is not unique. The stabilizabil-

ity and detectability of a SDC representation can be checked by forming the controllabil-

ity and observability matrices and checking their ranks throughout the state trajectories.

The existence and uniqueness of the SDRE solution is an important question [132]. For

an affine nonlinear system, Conditions 1-3 known as SDRE feasibility conditions are com-

mon assumptions in the literature that guarantees the existence and uniqueness of the

solution of the Riccati equation and SDRE controller [123], [124]. However, there is no

established way to propose a stabilizable and detectable representation of a system. The

following lemma presents important results on the existence of such a representation.

Lemma 2.11 ([133]). For the system (2.27) always there exist a stabilizable and detectable

SDC representation unless (x, f(x)) are linearly dependent and C(x)x = 0.
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Since the state weighting matrix Q(x) is selective, we can select a Q(x) in a way

that the state x does not belong to the null space of C(x) therefore C(x)x 6= 0. This

guarantees the existence of a stabilizable and detectable SDC representation of the system

(2.27).

Remark 2.15. By choosing a positive definite Q(x), detectability of the pair {C(x), A(x)}
is guaranteed [127].

Remark 2.16. The stabilizability of the pair {A(x), B(x)} greatly depends on the selection

of SDC matrices [134]. In particular, the flexibility of selecting A(x) can guarantee the

optimality of the solution and enhance the stabilizability of the SDC representation [135].

There are several studies in the literature on optimal selection of SDC matrix [130], and

how to choose the SDC matrices for a better stabilizability [133], [135].

The region of attraction (ROA) is also important in some applications. The refer-

ence [136] proposes a method for estimation of the region of attraction of the controller.

The region of exponential stability of SDRE controllers are studied by Chang and Chung

in [137].

2.5.4 SDRE State Tracking

For the state tracking problem using SDRE controller, several methods are proposed in

the literature. In [138], the so-called “integral servomechanism method” is introduced.

Assume that xR is the state to track, corresponding to the desired reference command

r ∈ Rτ . The state vector can be written as x = [xTR,x
T
N ]T . Define xI as the integral

state of xR; the augmented state vector is then x̃ = [xTI ,x
T
R,x

T
N ]T . Hence, the augmented

system is given by

˙̃x = Ã(x̃)x̃ + B̃(x̃)u, (2.34)

where

Ã(x̃) =

[
0 [Iτ , 0]

0 A(x)

]
(2.35a)

B̃(x̃) =

[
0

B(x)

]
. (2.35b)

Consequently, the integral servomechanism SDRE control law is

u(x̃) = −R̃−1(x̃)B̃T (x̃)S̃(x̃)

xI −
∫

rdt

xR − r

xN

 , (2.36)
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where S̃(x̃) is a solution of the corresponding algebraic Riccati equation

Q̃(x̃) + ÃT (x̃)S̃(x̃) + S̃(x̃)Ã(x̃)− S̃(x̃)B̃(x̃)R̃−1(x̃)B̃T (x̃)S̃(x̃) = 0, (2.37)

in which Q̃(x̃) and R̃(x̃) stand for weighting matrices associated with the corresponding

cost functional. It should be noted that for the sake of pointwise detectability of the

augmented system, the associated weighting element for xI has to be nonzero in Q̃(x̃)

[123].

2.5.5 SDRE Output Tracking

Suppose we have a nonlinear input-affine system given by (2.28) with the output y =

H(x)(x). Define the output tracking error as

e = z− y = z−H(x)x, (2.38)

where z ∈ Rn is the desired output reference. The objective is to minimize the cost

functional

J =
1

2

∫ ∞
t0

{e(t)TQ(x)e(t) + u(t)TR(x)u(t)}dt (2.39)

with respect to (2.28) such that the output y tracks the reference signal z. The following

result provides the SDRE-based control law that is the solution of the output tracking

problem.

Lemma 2.12 ([139]). Under feasibility conditions, there exists a control law in the feed-

back form

u(x) = −R−1(x)BT (x)[S(x)x(t)− P (x)], (2.40)

where S(x) is a unique, symmetric, and positive-definite solution of the following state-

dependent Riccati equation

HT (x)Q(x)H(x) + AT (x)S(x) + S(x)A(x)− S(x)B(x)R−1(x)BT (x)S(x) = 0, (2.41)

and P (x) is a solution of following linear vector equation

P (x) = −
(
[A(x)− B(x)R−1(x)BT (x)S(x)]T

)−1
HT (x)Q(x)z, (2.42)

that asymptotically minimizes the cost functional (2.39) alongside the closed-loop stability

of the output tracking system.
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2.5.6 HSDRE Method

SDC parametrization provides a flexible tool for control system design. However, for some

systems, the feasibility conditions cannot be satisfied at some points in their domain. The

following lemma provides the hybrid state-dependent Riccati equation (HSDRE) control

law for this kind of system and guarantees the local stability of the corresponding closed-

loop system.

Lemma 2.13 ([128]). Assume that the system (2.28) satisfies Conditions 1-2 and is

stabilizable and detectable everywhere except at the origin. Then for sufficiently small

ε > 0, the following HSDRE control law

HSDRE :

{
SDRE control law whenever ‖x‖ > ε

u = 0 whenever ‖x‖ ≤ ε
(2.43)

results in uniform ultimate boundedness of the closed-loop system’s solution with ε being

the ultimate bound.

Remark 2.17. A closed-loop system that all its solutions are uniformly ultimately bounded

(UUB) within a selective ultimate bound is called a practically stable system [140].

2.6 Stability of Interconnected Systems

Stability analysis of distributed multi-agent systems is challenging due to the coupled

dynamics of agents. Therefore, this section presents a brief discussion on the stability of

cascade interconnected systems, which is a core idea of the stability analysis of the later

results.

Definition 2.7 ([140]). The origin of the system

ẋ = f(x), (2.44)

where f(.) is a locally Lipschitz, is exponentially stable if there exist positive constants

α, λ and d such that the following is satisfied

‖x(t)‖ ≤ α‖x(0)‖e−λt, (2.45)

for any initial condition ‖x(0)‖ < d. The results are global if the conditions are satisfied

globally.

Theorem 2.3 ([141]). The origin of the system (2.44) is exponentially stable if there

exists continuously differentiable function V (x), over some neighborhood of origin Ω,
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satisfying

k1||x||p ≤V (x) ≤ k2||x||p (2.46a)

V̇ (x) ≤ −k3||x||p, (2.46b)

is which k1, k2, k3, and p are positive constants. The result is global if the conditions hold

globally.

Definition 2.8 ([140]). The system

Ξ0 : ẋ = f(x, u), (2.47)

where f is a locally Lipschitz nonlinear mapping, is input-to-state stable (ISS) if there

exist class KL and class K functions σ and ψ, respectively, such that the following is

satisfied

‖x(t)‖ ≤ σ(‖x(0)‖, t) + ψ
(

sup
0≤τ≤t

‖u(τ)‖
)
, (2.48)

for any bounded input u and initial condition x(0). The results are local if the conditions

are hold only in some neighborhood of the origin.

Remark 2.18. For the system (2.47), the unforced system is ẋ = f(x, 0).

Theorem 2.4 ([142]). Suppose that the origin of unforced system (2.47) is asymptotically

stable provided that f ∈ C1. Then, the system (2.47) is locally input-to-state stable.

Theorem 2.5 ([141]). The system (2.47) is input-to-state stable if the origin of the

unforced system is globally exponentially stable and f ∈ C1 is globally Lipschitz in (x,u).

Theorem 2.6 ([140]). If the system

Ξ1 : ω̇ = h(ω, z), (2.49)

is input-to-state stable with respect to z as the input and the system

Ξ2 : ż = g(z, u), (2.50)

is input-to-state stable with respect to u as the input, then the interconnected system

Ξ3 :

{
ω̇ = h(ω, z)

ż = g(z, u),
(2.51)

is input-to-state stable.
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Lemma 2.14 ([140]). Assume that the origin of unforced system (2.49) is locally asymp-

totically stable and the origin of unforced system (2.50) is locally asymptotically stable.

Then, the origin of the unforced interconnected system (2.51) is locally asymptotically

stable.

Lemma 2.15 ([142]). Assume that the origin of the system (2.49) is locally input-to-state

stable with respect to z as an input and the origin of unforced system (2.50) is locally

asymptotically stable. Then, the origin of the unforced interconnected system (2.51) is

locally asymptotically stable.

Lemma 2.16 ([140]). Assume that the system (2.49) is input-to-state stable with respect

to input z and the origin of unforced system (2.50) is globally asymptotically stable. Then,

the origin of the unforced interconnected system (2.51) is globally asymptotically stable.

Theorem 2.7 ([143]). The origin of the system

ẋ1 = f1(x1) (2.52a)

ẋ2 = f2(x2, x1) (2.52b)

...

ẋi = fi(xi, xi−1, . . . , x1), (2.52c)

is locally (respectively globally) asymptotically stable equilibrium point if the origin of the

system (2.52a) is locally (respectively globally) asymptotically stable and all subsystems

xj = fj(.) where 1 < j ≤ i, is locally (respectively globally) ISS with respect to the all xk

where k < j.

2.7 Signed Area and Signed Volume

For a triangular formation prescribed by the length of edges, there is one ambiguous

formation rather than translation and rotation of the original shape, known as reflection.

In other words, reflection inverses the sign of the triangulated area while translation and

rotation keep the sign same. The Figure 2.11 depicts this situation. Although these two

representations are congruent and both satisfy the desired distance constraints, it is well

known that the area of the two triangles is different in sign. A signed area of a triangle

between a three agents i, j, and k located at pi, pj, and pk is given by [42]and [44]:

A =
1

2
det

[
1 1 1

pi pj pk

]
. (2.53)

The set of (i, j, k) is called a clique [48]. The value of A is positive or negative de-

pending on the order of points around the center of the triangle whether is clockwise or
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Figure 2.11: Reflection of the desired formation in 2-D space.

counterclockwise. Using simple algebraic manipulation, we can write

A =
1

2
det
[
pj − pi pk − pi

]
(2.54a)

=
1

2
(pk − pi)T

[
0 1

−1 0

]
(pk − pj). (2.54b)

It is shown that for any rotation of the triangle the signed area, A, remains unchanged [44].

Suppose that a clique (i, j, k, l) is deployed in the space. The signed volume of tetra-

hedron that formed is between the agents located in pi, pj, pk, and pl in 3-D is given

by [144]:

V =
1

6
det


xi yi zi 1

xj yj zj 1

xk yk zk 1

xl yl zl 1

 . (2.55)

Using mathematical manipulation it can be simplified as

V =
1

6
det

xi − xl yi − yl zi − zl
xj − xl yj − yl zj − zl
xk − xl yk − yl zk − zl

 . (2.56)

Equivalently, the volume of a pyramid spanned by vectors u, v, and w is denoted by

39



Figure 2.12: Reflection of the desired formation in 3-D space.

V = 〈uvw〉3 and given by

V =
1

6
(u× v).w

=
1

6
det

w1 w2 w3

u1 u2 u3

v1 v2 v3

 . (2.57)

The value of V could be positive or negative depending on the two possible realizations.

Figure 2.12 illustrates the possible two situation. The agent #4 locates in its desired

position satisfying all the associated distance constraints in Figure 2.12(a). The agent

can locate at the position #4’, which is the reflection of the desired position shown in

Figure 2.12(b). Although the follower at position #4’ satisfies all its associated distance

constraints, the formation is not the desired one.
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Chapter 3

Leader-Follower Formation Control

3.1 Introduction

This chapter presents an optimal displacement-based leader-follower formation control of

multi-agent systems with energy consumption constraints. The leader-follower formation

control problem is formulated as a displacement-based formation, and solved using the

SDRE control approach, where we proved the asymptotic stability of the formation. We

choose the weighting matrices of the cost functional to be dependent on the energy level

of the agents, thus allowing for autonomous adjustment of the agents’ trajectories that

preserve the integrity of the overall formation despite energy levels.

3.2 Main Results

In the leader-follower formation control, two main objectives are tracking performance

and preserving the desired formation. Other aims such as energy consumption, collision

avoidance, obstacle avoidance, time of operation, control effort, etc., can also be included

in the cost functional. Here, we formulated the problem such that the obtained optimal

control law preserves formation and satisfies required tracking performance.

Consider a formation of N agents where the first agent is the leader and others are

followers. The leader is assigned a reference trajectory p? to follow. Also, it can sense

the followers’ relative position.

3.2.1 Single-Integrator Model

We define the desired formation in a displacement-based form where desired followers’

positions are vectors with regard to the leader’s local coordinate frame. For a set of agents

modeled as augmented single-integrators Ŵs, the formation vector in n-dimensional space,
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Figure 3.1: Displacement-based formation for N = 3 agents.

with the first agent being the leader, is given by

d̂1 = [0Tn , d
T
2 , ..., d

T
N ]T , (3.1)

where

di = p?i − p?1, i ∈ {2, ..., N}. (3.2)

Note that p?i is the desired position of the agent i in the global coordinate frame. Figure 3.1

shows the desired formation for N = 3 agents.

We propose a cost functional that includes three parts related to tracking, formation

stability, and energy consumption:

J = Jtr + Jfm + Jen. (3.3)

The cost functional components are given by

Jtr =
1

2

∫ ∞
t0

(p1 − p?)TQ1(p1 − p?)dt, (3.4)

Jfm =
1

2

N∑
i=2

∫ ∞
t0

(pi − p1 − di)TQi(pi − p1 − di)dt, (3.5)

Jen =
1

2

N∑
i=1

∫ ∞
t0

(αiui)
TRi(αiui)dt. (3.6)

Let define the error vector as

ê1 = [eT1 , e
T
2 , ..., e

T
N ]T , (3.7)

where e1 is the leader’s reference tracking error given by

e1 = p1 − p?. (3.8)
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The formation errors are

ei = pi − p1 − di, i ∈ {2, ..., N}. (3.9)

The error dynamics is then given by

ė1 = ṗ1 = u1 (3.10a)

ėi = ṗi − ṗ1 = ui − u1. (3.10b)

The cost functional (3.3) can now be written in the quadratic form. Thus, the optimal

control problem can be stated as

J =min
1

2

∫ ∞
t0

(êT1Qs(x)ê1 + uTRs(x)u)dt

s.t.

˙̂e1 = B̂1u

Qs(x) = diag[Q1, ..., QN ] ≥ 0

Rs(x) = diag[R1, ..., RN ] > 0,

(3.11)

where

B̂1 =

[
1 0TN−1

−1N−1 IN−1

]
⊗ In. (3.12)

Note that in the optimal control problem (3.11) the error dynamic is linear and only

the weighting matrices of cost functional are state-dependent. The notation Qs(x) and

Rs(x) are used for showing state-dependency. As a result, by proper selection of Qs(x)

we can ensure satisfaction of Conditions 1-3 of Lemma 2.9. Then based on Lemma 2.9,

we conclude that the sub-optimal state-dependent feedback control law that minimizes

the cost functional in (3.11) and locally asymptotically stabilize the closed-loop system

is

u? = −kê1, (3.13)

where k is a state feedback gain given by

k = Rs(x)−1B̂T
1 S, (3.14)

and S is the positive definite solution of the following state-dependent Riccati equation

SB̂1Rs(x)−1B̂T
1 S = Qs(x). (3.15)
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Theorem 3.1. Select the state weighting matrix as

Qs = K × I, (3.16)

where K is a positive scalar. Then, for a set of agents described by the single-integrator

model, the proposed control law (3.13) results in global asymptotic stability of the closed-

loop system.

Proof. Substituting (3.13) in error dynamic, the closed-loop error dynamics of the system

is
˙̂e1 = ACS ê1, (3.17)

where

ACS = −B̂1Rs(x)−1B̂T
1 S. (3.18)

Rearranging equation (3.15) yields

ACS = −S−1Qs. (3.19)

Since S as a solution of Riccati equation is symmetric, by selecting Qs as proposed in

equation (3.16), the closed-loop SDC matrix ACS will be symmetric for all e1. According

to Lemma 2.10, this implies global asymptotic stability of the closed-loop system.

Theorem 3.1 provides a sufficient condition for the global stability of the closed-loop

system in case of the single-integrator dynamics.

Remark 3.1. Choosing constant weighting matrix, the optimal control problem (3.11)

reduces to standard LQR that guarantees global asymptotic stability of the closed-loop

system.

3.2.2 Double-Integrator Model

In case of a double-integrator model where agents are modeled as Ŵd, we define the state

vector as xd = [pT1 , ..., p
T
N , v

T
1 , ..., v

T
N ]T . Similarly to (3.1), N agents in a formation can be

defined by a constant formation vector

d̂2 = [0Tn , d
T
2 , ..., d

T
N , 0

T
nN ]T , (3.20)

where di for i ∈ {2, ..., N} is given by (3.2). Defining the error vector we have

ê2 = [eT1 , ..., e
T
N , v

T
1 , v

T
2 − vT1 , ..., vTN − vT1 ]T , (3.21)
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where components e1 and ei are defined in (3.8) and (3.9). Derivatives are then given by

ė1 = ṗ1 = v1 (3.22a)

ėi = ṗi − ṗ1 = vi − v1 (3.22b)

v̇i − v̇1 = ui − u1. (3.22c)

Then we can rewrite the system equations as

˙̂e2 = Â2ê2 + B̂2u, (3.23)

with

Â2 =

[
0N×N IN

0N×N 0N×N

]
⊗ In (3.24a)

B̂2 =

[
0N×N

Î

]
⊗ In, (3.24b)

and

Î =

[
1 0TN−1

−1N−1 IN−1

]
. (3.25)

Now we can formulate an optimal control problem for the double-integrator model as

J =min
1

2

∫ ∞
t0

(êT2Qd(x)ê2 + uTRd(x)u)dt

s.t.

˙̂e2 = Â2ê2 + B̂2u

Qd(x) = diag[Q1, ..., Q2N ] ≥ 0

Rd(x) = diag[R1, ..., RN ] > 0.

(3.26)

Since the error dynamic in (3.23) is linear, proper choice of Qd(x) guarantees feasibility

of SDRE solution. Then, sub-optimal control law is given by Lemma 2.9 as

u? = −k2ê2, (3.27)

yields in local asymptotic stability of the closed-loop system. Note that the feedback gain

k2 is given by

k2 = Rd(x)−1B̂T
2 S, (3.28)
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where S is the positive definite solution of the following SDRE

Qd(x) + ÂT2 S + SÂ2 − SB̂2Rd(x)−1B̂T
2 S = 0. (3.29)

Note that according to equation (2.26) the energy usage can be modeled using agents’

velocity. For the double-integrator agent model, the velocity appears in the state vector

and the energy weighting factors can be adjusted in matrix Qd(x).

Remark 3.2. Selecting constant weighting matrix Qd(x) and Rd(x), results into a standard

LQR problem that guarantees global asymptotic stability of the closed-loop system.

3.2.3 Selection of Weighting Matrices

Although constant weighting matrices are widely used, our aim is to relate the weighting

matrix of the cost functional to energy levels of each agent and thus include the energy

model into the control algorithm. We propose that the control weighting factor Ri (an

element on the i-th row, i-th column of diagonal weighting matrix R) is a function of the

energy level of each agent

Ri(t) =
1

li(t)
. (3.30)

The weighting factor (3.30) is a time-varying and state (energy) dependent, resulting

in an optimal controller that is state-dependent with continuous tuning throughout the

state trajectory.

3.3 Simulation Results

Here, we present the results of simulations based on the proposed control methods. For

simplicity, we choose αi = 0.01 in all simulations.

Figure 3.2 (top) shows the result of the optimal formation control law that (3.13) for

a set of N = 5 agents that are modeled by the single-integrator dynamics in 2-D. We

first simulated the scenario where all followers have fully charged batteries (all l0i = 1)

and we selected Q = R(0) = In (top). Note that with R(0) we indicated the initial value

of weighting matrix. In case when one follower (agent #3 on the left side) has less initial

energy than other agents l03 = 0.1, we selected R3(0) = 10 according to (3.30). The result

are shown in Figure 3.2 (middle). In case of a very low initial energy level, l03 = 0.01,

the simulation results are in Figure 3.2 (bottom) with R3(0) = 100.

Figure 3.3 (top) shows the result of the proposed formation control law for a set of

single-integrators in 3-D. We first simulated the scenario where all followers have fully

charged batteries (all l0i = 1) and we selected Q = R(0) = In (top). In case when one

follower (agent #3 on the right side) has less initial energy than other agents l03 = 0.1,

we selected R3(0) = 10. The result is shown in Figure 3.3 (bottom).
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Figure 3.2: Leader-follower formation control for N = 5 agents modeled by a single-
integrator; all followers have the same energy level, Q = R(0) (top); the follower #3 (on
the left side) has less initial energy, R3(0) = 10 (middle); the follower #3 has a very low
initial energy, R3(0) = 100 (bottom).
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Figure 3.3: Leader-follower formation control for N = 5 agents modeled by a single-
integrator in 3-dimensional space; all followers have full initial energy level, Q = R(0)
(top); the agent #3 (on the right side) has less initial energy, R3(0) = 10 (bottom).
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Figure 3.4: Leader-follower formation control for N = 5 agents modeled by a double-
integrator model in 2-D; all followers has same initial energy level, Q and R(0) equal to
identity matrix (top); the follower #3 has a very low initial energy, R3(0) = 100 (bottom).
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Figure 3.5: Centralized leader-follower formation control for N = 5 agents modeled by a
double-integrator model in 3-dimensional space; all followers have the same initial energy
level, Q = [IN , 0N ; 0N , 0N ] and R(0) = IN (top); the agent on the right side has a lower
initial energy level, R3(0) = 10 (bottom).
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Figure 3.6: Comparison of the total energy consumption for the formation governed by
various controllers. The formation consists of N = 5 agents modeled by the single-
integrator model.

Figure 3.4 shows the results of the proposed optimal formation control law (3.27) for

a set of agents modeled by the double-integrator dynamics. All followers have initially

fully charged batteries (l0i = 1), and we selected Q and R(0) equal to identity matrices,

Figure 3.4 (top). Then we consider the case where one of the followers (agent #3 on

the left side) has lower initial energy charged than others (l03 = 0.01) with selected

R3(0) = 100, Figure 3.4 (bottom). Note that the agents adjust their paths to preserve

formation concerning the “weak” agent as a result of the control algorithm. Figure 3.5

shows the optimal formation control of agents with double-integrator model in 3-D.

In comparison with the linear pole-placement controller, the proposed method shows

a significant reduction in energy consumption. Figure 3.6 shows that the SDRE controller

saves more than 7.47 percent energy usage compared to a pole-placement controller with

all poles placed at s = −1. The saved energy rate reaches 22 percent in the case of

selecting l03 = 0.01 as the initial energy for agent #3.

3.4 Conclusions

In this chapter, an optimal leader-follower formation control problem is considered. We

developed a displacement-based, leader-follower control scheme for a set of agents which

asymptotically minimizes energy usage while satisfying tracking and formation perfor-

mances. We also proposed a solution that results in the global asymptotic stability of the
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closed-loop system. The simulation results show the effectiveness of the proposed solu-

tion and reveal an interesting behavior of the group (swarm) when some agents become

“weak” while maintaining the desired formation. Simulation results show a significant

reduction in energy consumption.
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Chapter 4

Undirected Distance-Based

Formation Control

4.1 Introduction

In this chapter, the distance-based formation control problem over undirected graphs is

presented. We use the nonlinear optimal control methods to optimize a predefined cost

functional, including formation and energy costs. We developed an SDRE-based control

scheme. We first formulated a distance-based formation control problem for the single

and double-integrator agent models. Then, we considered the leader tracking with the

formation control problem and provided results for the distance-based formation tracking

problem.

4.2 Cost Functional

Distance-based formation control problem, where agents need to keep desired distances

between the pair of neighbors, is an active research field during recent years. Although

formation is the prime objective, we also consider the leader-tracking capability. In the

leader-following formation control, two main goals are tracking performance and pre-

serving the desired formation. Other objectives such as energy consumption, collision

avoidance, obstacle avoidance, time of operation, and control effort also can be included

in the cost functional. Here, we formulated the problem such that the obtained optimal

control law preserves the formation and satisfies required tracking performance. Refer-

ence [75] proposed a cost functional with two terms that are related to the error vector

and the control input. In [145], the authors offered a cost functional, which includes three

elements representing the consensus formation cost, obstacle and/or collision avoidance,

and tracking cost.

Figure 4.1 depicts the leader-following formation with N = 3 agents where the first
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Figure 4.1: Leader-following distance-based formation control where the leader follows
desired trajectory and the followers establish the desired formation.

agent is the leader and others are followers. While the leader is assigned a reference

trajectory p∗ to follow, it is desired for the followers to keep the predefined formation.

Consider an undirected, minimally infinitesimally rigid (MIR), graph G = (V,E) that

models a desired distance-based formation. Here, rigidity is a necessary condition for

consistency of the formation. Let d∗ij be the desired distance between agents i and j. The

desired formation vector can be defined as

d∗ = [..., d∗ij, ...]. (4.1)

Note that the order of components of d∗ is same as the edge function EG(p).

The leader’s tracking error is

et = ‖p1 − p∗‖. (4.2)

Let us define the relative position of neighboring agents as

pij = pi − pj, (i, j) ∈ E. (4.3)

The distance between the neighboring pair of agents is

dij = ‖pij‖. (4.4)

Let us define

d = [..., dij, ...], (4.5)

with the same order as the desired formation vector introduced in (4.1). Then, the error

vector is given by

e = d− d∗

= [..., eij, ...]
T ,

(4.6)
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where

eij = dij − d∗ij. (4.7)

Remark 4.1. Note that for the graph G = (V,E) with |E| = m edges, we can rewrite

(4.6) in the form:

e = [e1, ..., em]T . (4.8)

We propose a cost functional that includes three components related to tracking,

formation stability, and energy consumption:

J = Jtr + Jfm + Jen. (4.9)

The cost functional components are given by

Jtr =
1

2

∫ ∞
t0

‖p1 − p∗‖2qtdt, (4.10)

Jfm =
1

2

N∑
i=1

Ji, (4.11)

Ji =
1

2

∑
j∈Ni

∫ ∞
t0

(‖pi − pj‖ − d∗ij)2qijdt, (4.12)

Jen =
1

2

N∑
i=1

∫ ∞
t0

‖αivi‖2ρidt, (4.13)

where qt is the wighting factor of leader’s tracking performance and qij is the weighting

factor for the corresponding edge in the desired formation. Here, ρi is a weighting factor

corresponding to vi.

4.3 Formation Producing Control

We define the desired formation in a distance-based form that is modeled by an undirected

MIR graph G = (V,E). Furthermore, the connectivity of the communication graph is

assumed. The distance-based formation control problem is formulated next.
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4.3.1 Single-Integrator Model

For an agent which is modeled by the single-integrator model Ŵs, the error dynamics is

given by

ėij =
d

dt

√
(pi − pj)T (pi − pj)

=
(pij)

T (ui − uj)
eij + d∗ij

.
(4.14)

Substituting (4.14) in the time derivative of (4.6) yields


...

ėij
...

 =


...

...
...

...
...

[0]
pTij

eij+d∗ij
[0]

pTji
eij+d∗ij

[0]

...
...

...
...

...





...

ui
...

uj
...


, (4.15)

where [0] denotes a row vector with all zeros of appropriate size. The matrix notation of

(4.15) can be written as

ė = Bs(p)u. (4.16)

Although Bs just depends on pij, for convenience, we use the notation of Bs(p). Note

that the structure of matrix Bs(p) is similar to the rigidity matrix; hence, it contains

weighted elements of the rigidity matrix. Thus, we introduce the normalized rigidity

matrix of a graph as follows.

Definition 4.1. For an undirected graph G(V,E), R̄(p) is the normalized rigidity matrix

of the graph which can be constructed using the following steps:

• Step 1. Find the rigidity matrix of G : R(p).

• Step 2. Normalize R(p) by dividing all elements of row l corresponding to the edge

el (which is incident to vertices (i, j)), by the length of the edge ‖el‖ = dij. The

normalized rigidity matrix is R̄(p).

Remark 4.2. The normalized rigidity matrix is a special form of weighted rigidity matrix

that is introduced in [7].

Based on (4.15), (4.16), and Definition 4.1, we can write

Bs(p) = R̄(p). (4.17)
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Now the optimal control problem can be formulated. Defining an augmented single-

integrator error vector as es = e, we have

J = min
1

2

∫ ∞
t0

(es
TQes + uTRu)dt

s.t.

ės = Bs(p)u

Q = diag[q1, ..., qm] > 0

R = diag[r1, ..., rN ]⊗ In > 0,

(4.18)

where qi is the weighting factor corresponding to ei in the error vector and ri is the

corresponding energy weighting factor of the agent i.

Assumption 4.1: The desired formation graph is minimally infinitesimally rigid (MIR).

The following theorem introduces a control law that guarantees local asymptotic sta-

bility of the formation.

Theorem 4.1. Consider a set of agents described by the single-integrator model Ŵs that

operate under Assumption 4.1. The control law

u = −R−1Bs(p)TS(p)es, (4.19)

where S(p) is the positive definite solution of the following state-dependent Riccati equa-

tion

Q− S(p)Bs(p)R−1Bs(p)TS(p) = 0, (4.20)

achieves local asymptotic stability of the closed-loop system.

Proof. Since the desired formation is MIR, the normalized rigidity matrix is full row rank.

Thus the system (4.16) is controllable. Selecting the positive definite Q, the conditions of

Lemma 2.9 are satisfied. Thus, we use Lemma 2.9 to obtain the stabilizing SDRE control

for the problem. The control law (4.19) is the SDRE solution of the nonlinear optimal

control problem (4.18). Therefore, the proposed control law results in local asymptotic

stability of the closed-loop system.

Remark 4.3. For the agent i, the control law is given by

ui = (zi ⊗ 1n)Tu, (4.21)

where zi is a N -vector with 1 in its i-th element and all other elements equal to zero.

Remark 4.4. Since there are different SDC parametrization for non-scalar systems, we

can use this property of SDRE method to improve the control performance.
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In order to prevent complete depletion of agent’s energy, we propose the following

weighting factors.

Corollary 4.1.1. Select input weighting factors as

ri = r̄i − log(li(t)), (4.22)

where r̄i > 0 is a constant. Then, the control law (4.19) guarantees local asymptotic

stability and prevents complete depletion of agents’ energy.

Proof. Limitations on the energy consumption can be formulated as a constrained optimal

control problem

J = min
1

2

∫ ∞
t0

(es
TQes + uT R̄u)dt

s.t.

ės = Bs(p)u

li > 0 1 < i < N

Q ≥ 0

R̄ = diag[r̄1, ..., r̄N ]⊗ In > 0.

(4.23)

There are several standard methods to solve the constrained optimal control problem [123],

[146]. Using the barrier function method we change constrained optimization into corre-

sponding unconstrained one by adding an extra term called barrier function to the cost

functional [147]. The proposed logarithmic barrier function is

Ψ = uT R̂u, (4.24)

where

R̂ = −diag[log(l1(t)), ..., log(lN(t))]⊗ In. (4.25)

The proposed barrier function (4.24) goes to infinity as an agent’s energy level approaches

zero. Hence, it prevents depleting the energy of the agents. It is straightforward to show

that adding (4.24) to the cost functional in (4.23) results in a standard form of an SDRE

problem where diagonal elements of the input weighting matrix are given by (4.22). Thus,

the solution of the resulting SDRE problem with the weighting factor (4.22) satisfies the

hard constraints of the optimal control problem (4.23).

Now we provide a sufficient condition for the global stability.

Theorem 4.2. Given Assumption 4.1, select the state weighting matrix as

Q = H(p)Im, (4.26)
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where H(p) is a positive scalar function. Then, for a set of agents described by the

single-integrator model Ŵs, the proposed control law (4.19) results in the global asymptotic

stability of the closed-loop system.

Proof. Substituting (4.19) in error dynamics (4.18), the closed-loop error dynamics is

given by

ės = ACS(p)es, (4.27)

where

ACS(p) = −Bs(p)R−1Bs(p)TS(p). (4.28)

Rearranging equation (4.28) using (4.20) yields

ACS(p) = −S(p)−1Q. (4.29)

Since the inverse of a symmetric matrix is also symmetric, thus, selecting Q as in (4.26)

ensures that the closed-loop SDC matrix ACS(p) is symmetric for all es. According to

Lemma 2.10, this implies global asymptotic stability of the closed-loop system.

Theorem 4.2 provides a sufficient condition for global stability of the closed-loop

system. The following corollary suggests a selection of the weighting matrix that prevents

collision among the neighboring agents.

Corollary 4.2.1. Select

H(p) = κ+ µ(p), (4.30)

where κ > 0 is a constant and µ(p) is a positive barrier multiplier defined by

µ(p) =
∑

(i,j)∈E

(
d∗ij

dij − rd
)ε, (4.31)

for suitable ε ≥ 1, and rd being a safe distance between pair of agents to prevent colli-

sion. Then, by using the weighting matrix (4.26), the control law (4.19), alongside global

asymptotic stability, guarantees an inter-agent collision avoidance of the multi-agents

system.

Proof. We write the collision avoidance problem in a form of a constrained optimal control

problem with hard constraints and use the barrier function method to solve it as follows.

Let us define the safety region of each agent as a ball with a radius rd/2. Then, for

preventing collision between neighboring agents it is required to have

dij > rd, (i, j) ∈ E. (4.32)

The constraint (4.32) provides the sufficient condition for collision avoidance and can

be added to the optimal control problem (4.18) as a hard constraint. The solution of
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resulting constrained optimal control problem guarantees the collision avoidance. The

resulted constrained optimal control problem is:

J = min
1

2

∫ ∞
t0

(es
T Q̄es + uTRu)dt

s.t.

ės = Bs(p)u

dij > rd (i, j) ∈ E

Q̄ = κ× Im > 0

R > 0.

(4.33)

In order to solve the constrained optimal control problem (4.33) we use the approach

proposed by Friedland in [147]. The Friedland’s approach is based on barrier function

method to solve an SDRE problem with state constraints. Thus, the proposed inverse

barrier function is

Φ(p) = µ(p)eTs es, (4.34)

where µ(p) is defined by (4.31). Adding the proposed inverse barrier function (4.34)

to the cost functional of the optimal control problem (4.33) yields to the corresponding

unconstrained problem. It is straightforward to show that the state weighting matrix of

the resulted unconstrained problem can be written in form of (4.26), where H(p) is given

by (4.30).

If the condition for collision avoidance (4.32) is violated, then the proposed barrier

function (4.34) approaches infinity and based on [147] this prevents collision avoidance

between neighboring agents.

4.3.2 Double-Integrator Model

For an agent which is modeled by the double-integrator model Ŵd, the error dynamics is

given by

ėij =
d

dt

√
(pi − pj)T (pi − pj)

=
(pij)

T (vi − vj)
eij + d∗ij

.
(4.35)

Let us define an aggregate error vector for the double-integrator model as

ed = [eT ,vT ]T , (4.36)
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where v is the velocity vector. Using the normalized rigidity matrix, the error dynamics

can be written as

ė = R̄(p)v. (4.37)

A time derivative of (4.36) yields

ėd = Ad(p)ed +Bdu, (4.38)

with

Ad(p) =

[
0m×m R̄(p)

0(nN)×m 0N×N ⊗ In

]
(4.39a)

Bd =

[
0m×(nN)

IN ⊗ In

]
. (4.39b)

Similarly, for convenience, we use the notation of Ad(p) while it depends on pij.

The corresponding optimal control problem is

J = min
1

2

∫ ∞
t0

(eTdQded + uTRu)dt

s.t.

ėd = Ad(p)ed +Bdu,

Q = diag[Qf , Qv] ≥ 0

R = diag[r1, ..., rN ]⊗ In > 0,

(4.40)

where Qf = [q1, ..., qm] and Qv = [ρ1, ..., ρN ]⊗In are the corresponding weighting matrices.

The next result proposes the control law that guarantees the local asymptotic stability

of the distance-based formation for agents modeled as double-integrators.

Theorem 4.3. Given Assumption 4.1 and a set of agents described by double-integrator

model Ŵd, the control law

u = −R−1BT
d S(p)ed, (4.41)

where S(p) is the positive definite solution of the following state-dependent Riccati equa-

tion

Q+ Ad(p)TS(p) + S(p)Ad(p)− S(p)BdR
−1BT

d S(p) = 0, (4.42)

achieves local asymptotic stability of the closed-loop system.

Proof. Under Assumption 4.1, the normalized rigidity matrix R̄(p) is a full row rank.

Thus, double-integrator error dynamics (4.38) is controllable everywhere. This is straight-

forward to show by forming the controllability matrix. Given the positive definiteness

61



of R, all feasibility conditions of Lemma 2.9 are met. Thus, control signal (4.41) is a

stabilizing SDRE control law according to Lemma 2.9.

Remark 4.5. For the agent i, the control law is given by

ui = (zi ⊗ 1n)Tu, (4.43)

where zi is a N -vector with 1 in its i-th element and all other elements equal to zero.

Corollary 4.3.1. By selecting the weighting factors as

ρi = ρ̄i − log(li(t)), (4.44)

where ρ̄i > 0 is a constant, the control law (4.41) prevents depleting the energy of the

agents.

The proof sketch is same as the proof of Corollary 4.2.1. Theorem 4.3 provides a

sufficient condition for the local asymptotic stability of the SDRE closed-loop system.

The next result considers the global asymptotic stability of the closed-loop system.

Theorem 4.4. Let S(p) be the solution of

P + Ad − BdR
−1BT

d S(p) = 0, (4.45)

where P is a desired, symmetric, and positive definite matrix with all eigenvalues λi >

2
√

3. Then, for a set of agents described by the double-integrator model Ŵd and under

Assumption 4.1, the control law (4.41) achieves the global asymptotic stability of the

closed-loop system.

Proof. The closed-loop SDC matrix of the error dynamics is given by

ACD(p) = Ad − Bd(p)R−1Bd(p)TS(p). (4.46)

Rearranging the equation (4.42) yields

ACD(p) = −S−1(p)Q− S−1(p)Ad(p)TS(p). (4.47)

Since Q is a state-dependent design parameter, it can be selected as

Q = S(p)P − Ad(p)TS(p), (4.48)

where P is a desired, symmetric, and positive definite matrix with all eigenvalues λi >

2
√

3. The proof has two steps. First, we show that (4.48) has a unique solution. Second,
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we show that the proposed P guarantees positive definiteness of Q, hence, existence of

the SDRE solution.

Equation (4.48) is a well-known Sylvester equation. According to Sylvester-Rosenblum

theorem [148], the equation (4.48) has a unique solution as long as Θ(P )∩Θ(Ad) = ∅ [149].

Applying Cauchy–Schwarz inequality on pTij = [xij, yij, zij] yields

|xij|
dij

+
|yij|
dij

+
|zij|
dij
≤
√

3. (4.49)

Due to the fact that all diagonal elements of Ad are zero and based on the well-known

Gershgorin circle theorem [110], it follows that Θ(Ad) ≤ 2
√

3. The spectral mapping

theorem[150], states that for (4.48) we have

Θ(Q) = Θ(P )−Θ(Ad). (4.50)

Selecting Θ(P ) > 2
√

3 ensures positive definiteness of Q and uniqueness of the solution

(4.48). Substituting (4.48) in (4.42), Riccati equation yields to

P + Ad − BdR
−1BT

d S(p) = 0. (4.51)

Substituting (4.48) in (4.47), the closed-loop SDC matrix is given by

ACD(p) = −P, (4.52)

which proves that the closed-loop system is globally asymptotically stable.

Theorem 4.4 provides conditions under which SDRE closed-loop system becomes glob-

ally asymptotically stable. In fact, with matrix P we introduced an auxiliary design

parameter for the formation control system. Note that at the same time we proved that

the given control law is sub-optimal as a solution of the SDRE problem.

The following corollary describes how the proposed formation control can ensure a

collision avoidance for the double-integrator model of agents.

Corollary 4.4.1. Select

P (p) = K(p)P̄ , (4.53a)

K(p) = σ + µ(p), (4.53b)

where σ ≥ 1 is a positive constant and µ(p) is defined in (4.31) and P̄ is a desired,

symmetric positive definite matrix with all eigenvalues λ̄i > 2
√

3. Then Theorem 4.4

guarantees collision avoidance among the neighboring agents and the global asymptotic

stability of the closed-loop system.
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Proof. Since K(p) is a scalar function with K(p) ≥ 1, all eigenvalues of P (p) are greater

or equal to the eigenvalues of P̄ (all λ̄i > 2
√

3). This validates results of Theorem 4.4.

The rest of the proof is as same as Corollary 4.3.1.

Corollary 4.4.1 suggests a weighting matrix that ensures collision avoidance among

neighboring agents for a set of agents modeled by double-integrator dynamics.

Remark 4.6. (Global Stability of Desired Formation Realization) The result of Theorem

4.2 (respectively Theorem 4.4) states that the origin es = 0 (respectively ed = 0) is glob-

ally asymptotically stable equilibrium point of the closed-loop system when agents are

modeled as single-integrators (respectively double-integrators). The set es = 0 (respec-

tively ed = 0) consists of all representations that are equivalent to the desired formation.

Since the desired formation is MIR, this set has more than one element for N ≥ 4. In

order to resolve this issue, we can use the Friedland method [147] that is also used in

collision avoidance. This adds a barrier function that drives the cost functional to in-

finity whenever agents approach an equivalent, but not a congruent realization. Such

method prevents agents to converge to undesired realizations. Thus, the formation real-

ization is almost globally asymptotically stable which means that the desired formation

will be reached unless the initial positions of the agents constitute an equivalent but not

a congruent realization [151].

4.4 Formation Tracking Control

Tracking is one of desired objectives in multi-agent systems. The whole formation can

be translated or rotated following some given reference command while preserving the

formation shape. Here, we consider a distance-based formation tracking problem where

the leader agent is assigned a trajectory to follow.

4.4.1 Single-Integrator Model

Adding leader tracking to the distance-based formation control problem, we can combine

the tracking error et and the formation error es to form an augmented error vector as

ês = [et, e
T
s ]T . Thus, we have

˙̂es = B̂s(p)u, (4.54)

where

B̂s(p) =

[
g

R̄(p)

]
, (4.55)
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and

g = [
(p1 − p∗)T

‖p1 − p∗‖
, [0]]. (4.56)

For an MIR graph rank(B̂s(p)) = rank(R̄(p)) = m. Therefore, it is not a full rank due

to adding g. Using the SDC factorization we can rewrite (4.54) as

˙̂es = Âs(p)ês + B̂s(p)u, (4.57)

where Âs(p) has to be chosen such that ês lies in its null-space. Hence, the distance-based

formation tracking optimal control problem becomes a SDRE control problem:

J = min
1

2

∫ ∞
t0

(êTsQês + uTRu)dt

s.t.

˙̂es = Âs(p)ês + B̂s(p)u

Q > 0

R > 0.

(4.58)

The following theorem introduces a hybrid control law that guarantees local stability of

the formation tracking problem.

Theorem 4.5. Consider a set of agents described by the single-integrator model Ŵs that

operate under Assumption 4.1. The HSDRE control law

HSDRE :

{
u = −R−1B̂s(p)TS(p)ês whenever ‖ês‖ > ε

u = 0, whenever ‖ês‖ ≤ ε
(4.59)

where ε > 0 is sufficiently small and S(p) is the positive definite solution of the following

state-dependent Riccati equation

Q+ Âs(p)TS(p) + S(p)Âs(p)− S(p)B̂s(p)R−1B̂s(p)TS(p) = 0, (4.60)

achieves the local (practical) stability of the closed-loop system.

Proof. The system (4.57) is controllable and observable everywhere except at the origin.

Thus, considering Lemma 2.13, the HSDRE control law given by (4.59) results in the

local stability of the closed-loop system.

4.4.2 Double-Integrator Model

Considering the double-integrator dynamics, we define relative velocity of the agent i as

v̂i = vi − v∗, (4.61)
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where v∗ = ṗ∗. The error dynamics (4.35) can be written as

ėij =
(pij)

T (v̂i − v̂j)
eij + d∗ij

. (4.62)

Let us define an aggregate error vector for the double-integrator model as

ed = [eT , v̂T ]T , (4.63)

where v̂ = [v̂1, ..., v̂N ] is the relative velocity vector. We combine leader’s tracking error

et and formation error ed to obtain an augmented error vector as êd = [et, e
T
d ]T . The

error dynamics can be written as

˙̂ed = Ād(p)êd + B̂du, (4.64)

where

Ād(p) =

[
0(m+1)×(m+1) B̂s(p)

0nN×(m+1) 0N×N ⊗ In

]
(4.65a)

B̂d =

[
0(m+1)×(nN)

IN ⊗ In

]
, (4.65b)

and B̂s(p) is defined in (4.55). It should be noted that, as a result of augmenting et in the

error vector, B̂s(p) loses its full rank and the system (4.64) is not controllable anymore.

Noting that êd = [êTs , v̂
T ]T and using SDC factorization we can rewrite (4.64) as

˙̂ed = Âd(p)êd + B̂du, (4.66)

where

Âd(p) =

[
A11 B̂s(p)

A21 A22

]
, (4.67)

while ês should lie in the null-space of A11 and A21ês +A22v̂ = 0. The optimal, distance-

based, formation tracking control problem becomes an SDRE-form control problem

J = min
1

2

∫ ∞
t0

(êTdQêd + uTRu)dt

s.t.

˙̂ed = Âd(p)êd + B̂du

Q > 0

R > 0.

(4.68)
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The next result proposes a hybrid control law that guarantees the local stability for

distance-based formation tracking of agents modeled as double-integrators.

Theorem 4.6. Given Assumption 4.1 and a set of agents described by double-integrator

model Ŵd, for a sufficiently small ε > 0, the HSDRE control law

HSDRE :

{
u = −R−1B̂T

d S(p)êd whenever ‖êd‖ > ε

u = 0, whenever ‖êd‖ ≤ ε
(4.69)

where S(p) is the positive definite solution of the following state-dependent Riccati equa-

tion:

Q+ Âd(p)TS(p) + S(p)Âd(p)− S(p)B̂dR
−1B̂T

d S(p) = 0, (4.70)

achieves local (practical) stability of the closed-loop, distance-based, formation tracking

problem.

Proof. System (4.66) is controllable and observable everywhere except at the origin; thus,

it meets the feasibility conditions of Lemma 2.13. HSDRE control law (4.69) is the

stabilizing control law given by Lemma 2.13.

4.5 Simulation Results

In this section we present simulation results based on the proposed control methods for

different sets of agents. We first simulated the distance-based formation producing control

with energy constraints in both 2-D and 3-D spaces, and then we presented results of the

proposed method for the formation tracking problem.

Figure 4.2 shows results of the proposed SDRE-based control law (4.19) for a set

of N = 4 agents that are modeled by the single-integrator dynamics in 2-D. We first

simulated the scenario where all agents initially have fully charged batteries: l0i = 1, for

i = 1, 2, 3, 4 (top). Figure 4.2 (bottom) shows the case when one agent (agent #4) has

less initial energy than other agents (l04 = 0.2). The weighting matrices Q and R are

determined by (4.26) and (4.22), respectively. We chose the control parameters as r̄i = 1

for all i, κ = 1, ε = 2, rd = 2, and all desired distances d∗ij = 10 for both simulations.

The simulation shows that agents with full initial energy form the desired formation

while compensating the weak agent (one with the lower initial energy). Figure 4.3 (top

and bottom) shows the convergence of edge errors corresponding to Figure 4.2 (top and

bottom), respectively.

Figure 4.4 (top and bottom) shows the L2 norm of the control signals for each agent

corresponding to the formation control in Figure 4.2 (top and bottom), respectively.

Considering (2.25), one can see that the agent #4 has a notable reduction in the energy

usage in the Figure 4.4 (bottom) compared to Figure 4.4 (top).
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Figure 4.2: Distance-based optimal formation control for N = 4 agents modeled by the
single-integrator dynamics; all agents have full initial energy levels (top). The agent #4
has a lower initial energy level, l04 = 0.2 (bottom).
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Figure 4.3: Convergence of the edge errors to zero, corresponding to the simulations in
Figure 4.2.
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Figure 4.4: L2 norm of the control inputs of the agents corresponding to Figure 4.2.
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Figure 4.5: Collision avoidance in proposed formation control scheme.
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Figure 4.5 shows the results of the proposed control law (4.19) for different initial

positions as well as the collision avoidance capability. The simulation results show that

for different initial positions the agents form the desired formation successfully. For

collision avoidance, we developed two different scenarios. First, we assume that during

the formation an external disturbance tries to push one agent (agent #4) very close to

its neighboring agent (agent #2). Simulation shows that the control law successfully

prevents collision between neighbors (top). Another scenario, depicted in the bottom, is

when initial conditions of two neighboring agents are very close to each other. Again, the

control law results in a successful formation without collision.

Figure 4.6 shows the optimal formation control of agents with double-integrator model

in 3-D using control law (4.41). The formation producing is shown in top and the errors

convergence in the bottom. All agents are assumed to have full initial energy levels

(l0i = 1, for i = 1, 2, 3, 4, 5). The controller and model parameters are selected as: ρ̄i = 1,

P̄ = 3I, σ = 1, rd = 2, ε = 2, αi = 0.0001, and ri = 1. Simulation results show the

effectiveness of the method in 3-D space as well.

Figure 4.7 shows the results of the optimal formation tracking control (4.59) for a set

of N = 4 agents with the single-integrator model in 2-D where all agents have full initial

energy (top). The bottom shows the effect of the weak agent (when energy tends to zero)

in formation tracking. The controller and model parameters are selected as ε = 0.000001,

αi = 0.0002, and all other parameters remain the same. The SDC matrix Âs(p) is given

in Appendix A. The simulation result shows that the controller manages to preserve the

rest of the formation despite the low-energy follower. In addition, Figure 4.8 illustrates

the successful formation tracking of a set of double-integrator agents in 3-D space with

the same simulation parameters. We chose A11 and A22 zero matrices while A21 is given

in the Appendix A.

In Figure 4.9 we present a comparison of the energy consumption between the pro-

posed SDRE-based controller with different weighting matrix versus the widely used

gradient-based controller [152] (the detailed information about the used gradient-based

controller is given in Appendix B). Note that based on equation (2.24) the energy is

proportional to the integral of absolute value of velocity in both cases. Therefore, we

represent the integration of the absolute value of velocity as a measure of energy usage.

In comparison with the gradient-based controller, the proposed method shows a notable

reduction in energy consumption. Table 4.5 presents total energy usage of the both SDRE

and gradient-based controllers for different initial positions of agents. The simulation re-

sults show the sensitivity of gradient-based controller to initial positions of the agents

while the proposed SDRE controller shows the global asymptotic stability.
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Figure 4.6: Distance-based optimal formation control for N = 5 agents modeled by the
double-integrator dynamics (top). The corresponding edge errors convergence to zero
(bottom).
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Figure 4.7: Distance-based optimal formation tracking control for N = 4 agents modeled
by the single-integrator model; all agents have full initial energy levels (top). The follower
number #4 at the bottom has a lower initial energy level, l04 = 0.1 (bottom).
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Figure 4.8: 3-Dimensional distance-based optimal formation tracking control for N = 5
agent modeled by double-integrator dynamics.

Figure 4.9: Comparison of the total energy consumption for the formation governed by
various controllers. The formation consists of N = 4 agents modeled by the single-
integrator model.
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Table 4.1: Total energy usage for distance-based formations
Initial positions Gradient-

based
controller

SDRE con-
troller

p1 = (−3, 4), p2 = (5, 7), p3 = (−4,−6), p4 = (6,−5) 17189 14401
p1 = (−10, 14), p2 = (5, 7), p3 = (−4,−6), p4 = (6,−5) 41886 19338
p1 = (−10, 14), p2 = (5, 7), p3 = (−14,−16), p4 =
(6,−5)

Unstable 42381

p1 = (−10, 14), p2 = (5, 7), p3 = (−14,−16), p4 =
(16,−15)

Unstable 59347

p1 = (−10, 14), p2 = (25, 30), p3 = (−14,−16), p4 =
(16,−15)

Unstable 103203

4.6 Conclusions

In this chapter, the undirected distance-based optimal formation control problem is con-

sidered. Based on the normalized rigidity matrix, we formulated the distance-based for-

mation control problem. We developed an SDRE-based sub-optimal control scheme that

asymptotically minimizes energy consumption and meets tracking and formation perfor-

mances. The proposed control law guarantees local asymptotic stability of the system.

Furthermore, we developed conditions for the global asymptotic stability of the closed-

loop system and extended the results to ensure collision avoidance among neighboring

agents. The proposed control method also allows users to adjust the trade-off between the

formation control performance and the energy usage. The simulation results proved the

effectiveness of the proposed solution while revealing an interesting behavior of the group

(swarm) when some agents become low on energy while maintaining the desired forma-

tion. The simulation examples offer more insight into optimality in formation control

and how distance-based formation adjusts due to weakness or a fault in one of the swarm

members. The SDRE-based method shows a significant reduction in energy consumption

compared to the gradient-based controller.
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Chapter 5

Directed Distance-Based Formation

Control

5.1 Introduction

In this chapter, the problem of distance-based formation control over directed graphs

is studied. We consider the distance-based formation modeled as a directed graph, de-

noted by G = (V , E), where each edge is assigned to only one of its adjacent agents to

preserve the desired distance. We proposed a distributed control solution based on the

state-dependent Riccati equation (SDRE) method that guarantees the global asymptotic

stability of the formation for a set of agents models as single-integrators. Furthermore,

the problem of flip ambiguity of distance-based formations is studied both in 2-D and

3-D spaces by using the combination of signed area and signed volume constraints. In

this chapter, we use the directed graph notations introduced in Chapter 2.

5.2 Cost Functional

The relative position of neighboring agents is

pij = pi − pj, (i, j) ∈ E . (5.1)

Thus, the distance between the pair of adjacent agents is given by

dij = ‖pij‖. (5.2)

The formation error vector of the agent i is given by

ei = [..., eij, ...]
T , j ∈ Ni, (5.3)
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where

eij = dij − d∗ij, (5.4)

and d∗ij is the desired distance between agent i and agent j. Note that the formation

error vector of the agent i depends only on the relative positions of agents’ neighbors.

The proposed local cost functional of the agent i is

Ji = Jfmi + Jeni , (5.5)

where Jfmi and Jeni are formation and energy cost, respectively, that are given by

Jfmi =
1

2

∑
j∈Ni

∫ ∞
0

(‖pi − pj‖ − d∗ij)2qijdt, (5.6)

Jeni =
1

2

∫ ∞
0

‖αivi‖2ρidt, (5.7)

and qij, ρi are associated weighting factors. Note that vi = ui for single-integrator model.

5.3 2-D Space

Distance-based formation over directed, triangulated Laman graphs is considered in this

section. For the rest of the section, we assume that the following assumption is valid.

Assumption 5.1: The desired formation is in the form of directed triangulated Laman

graph.

5.3.1 Single-Integrator Model

For an agent which is modeled by the single-integrator model, the error dynamics is given

by

ėij =
d

dt

√
(pi − pj)T (pi − pj)

=
(pij)

T (ui − uj)
eij + d∗ij

.
(5.8)

The first agent, the leader, is stationary since it is not responsible for any edge. Agent

#2 (first-follower) is responsible for the edge e21. The dynamics of error associated with
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agent #2 is

ės2 =Bs
2u

s
2

=
pT21

e21 + d∗21

us2,
(5.9)

where es2 = e21. Note that hereafter in this chapter, we use the superscripts s and d to

distinguish single- and double-integrator cases. Thus, the associated local optimal control

problem with agent #2 is

Js2 = min
1

2

∫ ∞
0

{es2
TQs

2e
s
2 + us2

TRs
2u

s
2}dt

s.t.

ės2 = Bs
2u

s
2

Qs
2 = [qs21] > 0

Rs
2 > 0.

(5.10)

The following result provides the suboptimal SDRE control law that minimizes (5.10)

and ensures that es21 asymptotically converges to zero.

Theorem 5.1. For agent #2, described by the single-integrator model, the control law

us2 = −Rs
2
−1Bs

2
TSs2e

s
2, (5.11)

in which Ss2 is the positive definite solution of the following Riccati equation

Qs
2 − Ss2Bs

2R
s
2
−1Bs

2
TSs2 = 0, (5.12)

achieves global asymptotic stability of the closed-loop system.

Proof. Since Bs
2 is full rank and Qs

2 = [qs21] > 0, Lemma 2.9 is applicable. Using the

control law (5.11), the closed-loop system dynamics is

Σs
2 : ės2 = −Bs

2R
s
2
−1Bs

2
TSs2e

s
2, (5.13)

which is scalar. Therefore, based on Lemma 2.10 and according to Remark 2.11, we

conclude that the closed-loop system (5.13) is globally asymptotically stable.

In a similar way, we can write the formation error dynamics of the agent #3 as[
ė31

ė32

]
=

[
01×n

pT31
e31+d∗31

pT23
e32+d∗32

pT32
e32+d∗32

][
us2

us3

]
, (5.14)
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where n = 2. Equation (5.14) can be written in the matrix form

Ξs
3 : ės3 = B̂s

3û
s
3

= Bs
3u

s
3 + B̃s

3u
s
2.

(5.15)

Let us take the nominal system as

Σs
3 : ės3 = Bs

3u
s
3. (5.16)

We can write the associated optimal control problem for agent #3 as

Js3 = min
1

2

∫ ∞
0

{es3
TQs

3e
s
3 + us3

TRs
3u

s
3}dt

s.t.

ės3 = Bs
3u

s
3

Qs
3 = diag[qs31, q

s
32] ≥ 0

Rs
3 > 0.

(5.17)

The following theorem provides the control law that ensures the asymptotic stability of

the closed-loop system and consequently, asymptotic convergence of es3 to zero.

Theorem 5.2. For agent #3, described by the single-integrator model, the control law

us3 = −Rs
3
−1Bs

3
TSs3e

s
3, (5.18)

where Ss3 is the positive definite solution of the following state-dependent Riccati equation

Qs
3 − Ss3Bs

3R
s
3
−1Bs

3
TSs3 = 0, (5.19)

achieves local asymptotic stability of the closed-loop system.

Proof. Since the system Σs
2 is asymptotically stable and control law (5.18) results in

asymptotic stability of the system Σs
3, then the system Ξs

3 is locally input-to-state stable

with respect to us2 which is a function of es2 according to (5.11). Based on the Lemma

2.15, we conclude that the origin of the interconnected system

∆s
3 :

{
Σs

2

Ξs
3,

(5.20)

is locally asymptotically stable.

Since the desired formation is given in the form of a directed triangulated Laman

graph, it can be constructed by a sequence of directed vertex addition operations. We
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have just provided the result for the agent i; however, the procedure is the same for all

other agents. Consequently, for the next follower, denoted by agent i, which is added to

an existing directed triangulated Laman graph via Henneberg directed vertex addition

sequence, the error dynamic can be written as

[
ėij

ėik

]
=

 pTji
eij+d∗ij

01×n
pTij

eij+d∗ij

01×n
pTki

eik+d∗ik

pTik
eik+d∗ik


u

s
j

usk
usi

 , (5.21)

which can be written in the matrix form

Ξs
i : ėsi = B̂s

i û
s
i

= Bs
i u

s
i + B̃s

i ũ
s
i ,

(5.22)

where ũsi = [usj
T , usk

T ]T . The corresponding nominal optimal control problem can be

formulated as

Jsi = min
1

2

∫ ∞
0

{esi
TQs

ie
s
i + usi

TRs
iu

s
i}dt

s.t.

ėsi = Bs
i u

s
i

Qs
i = diag[qsij, q

s
ik] ≥ 0

Rs
i > 0.

(5.23)

The following theorem provides SDRE control law.

Theorem 5.3. For the agent i described by the single-integrator model, distributed control

law

usi = −Rs
i
−1Bs

i
TSsi e

s
i , (5.24)

where Ssi is the positive definite solution of the following Riccati equation

Qs
i − SsiBs

iR
s
i
−1Bs

i
TSsi = 0, (5.25)

achieves local asymptotic stability of the closed-loop directed distance-based formation.

Proof. The control law (5.24) is the stabilizing control of the nominal system Σs
i : ėsi =

Bs
i u

s
i . The stability analysis is similar to the one presented in the proof of Theorem 5.2

with similar arguments related to the stability analysis of interconnected systems. It

is evident that the system Ξs
i is locally input-to-state stable with respect to ũsi . Using

induction method, the interconnected system of preceding i− 1 agents, denoted by ∆s
i−1,
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is asymptotically stable. Thus, based on Lemma 2.15 the origin of interconnected system

∆s
i :

{
∆s
i−1

Ξs
i ,

(5.26)

is locally asymptotically stable.

5.3.2 Double-Integrator Model

In this case, the edge error dynamics is given by

ėij =
d

dt

√
(pi − pj)T (pi − pj)

=
(pij)

T (vi − vj)
eij + d∗ij

.
(5.27)

The dynamics of error associated with the agent #2 is

ė21 =
pT21

e21 + d∗21

v2, (5.28)

Let us define an aggregate error vector for the agent #2 as

ed2 = [e21, v
T
2 ]T . (5.29)

A time-derivative of (5.29) is

ėd2 = Ad2e
d
2 +Bd

2u
d
2, (5.30)

with

Ad2 =

[
0

pT21
e21+d∗21

0n×1 0n×n

]
(5.31a)

Bd
2 =

[
01×n

In

]
. (5.31b)

Thus, the associated local optimal control problem with the agent #2 can be formulated

as

Jd2 = min
1

2

∫ ∞
0

{ed2
T
Qd

2e
d
2 + ud2

T
Rd

2u
d
2}dt

s.t.

ėd2 = Ad2e
d
2 +Bd

2u
d
2,

Qd
2 = diag[qd21, q

d
v2

] ≥ 0

Rd
2 > 0.

(5.32)
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The following result provides suboptimal SDRE control law that minimizes (5.32) and

ensures that e21 asymptotically converges to zero.

Theorem 5.4. The control law

ud2 = −Rd
2

−1
Bd

2

T
Sd2e

d
2, (5.33)

where Sd2 is the solution of the following Riccati equation

Qd
2 + Ad2

T
Sd2 + Sd2A

d
2 − Sd2Bd

2R
d
2

−1
Bd

2

T
Sd2 = 0, (5.34)

renders the closed-loop system asymptotically stable and steers e21 to zero.

Proof. The proof of the theorem is straightforward result of Lemma 2.9.

Remark 5.1. Substituting the control law (5.33) in (5.30), the closed-loop dynamics is

given by

Σd
2 : ėd2 = (Ad2 − Bd

2R
d
2

−1
Bd

2

T
Sd2)ed2. (5.35)

For the agent #3, let us define ed3 = [e31, e32, v
T
3 ]T . Thus, one has

Ξd
3 : ėd3 = Ad3e

d
3 + B̂d

3u3
3, (5.36)

Ad3 =


0 0

pT31
e31+d∗31

0 0
pT32

e32+d∗32

0n×1 0n×1 0n×n

 (5.37a)

B̂d
3 =


01×n 01×n
pT23

e32+d∗32
01×n

0n×n In

 , (5.37b)

where ud3 = [v2
T , ud3

T
]T . Thus, the nominal system is given by

Σd
3 : ėd3 = Ad3e

d
3 +Bd

3u
d
3, (5.38)

where

Bd
3 =

01×n

01×n

In

 . (5.39a)
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One can write the associated optimal control problem for the agent #3 as

Jd3 = min
1

2

∫ ∞
0

{ed3
T
Qd

3e
d
3 + ud3

T
Rd

3u
d
3}dt

s.t.

ėd3 = Ad3e
d
3 +Bd

3u
d
3

Qd
3 = diag[qd31, q

d
32, q

d
v3

] ≥ 0

Rd
3 > 0.

(5.40)

The following theorem provides the control law that ensures the asymptotic stability of

the closed-loop system and consequently asymptotic convergence of ed3 to zero.

Theorem 5.5. For the agent #3, described by the augmented double-integrator model,

the control law

ud3 = −Rd
3

−1
Bd

3

T
Sd3e

d
3, (5.41)

where Sd3 is the positive definite solution of the following state-dependent Riccati equation

Qd
3 + Ad3

T
Sd3 + Sd3A

d
3 − Sd3Bd

3R
d
3

−1
Bd

3

T
Sd3 = 0, (5.42)

achieves local asymptotic stability of the closed-loop system.

Proof. Since the system Σd
2 is asymptotically stable and the control law (5.41) results

in asymptotic stability of system Σd
3, then the system Ξd

3 is locally input-to-state stable.

Based on the Lemma 2.15 we conclude that the origin of the interconnected system

∆d
3 :

{
Σd

2

Ξd
3,

(5.43)

is locally asymptotically stable.

Consequently, for the next follower, say agent i, which is added to an existing directed

triangulated Laman graph via Henneberg directed vertex addition sequence the error

vector is edi = [eij, eik, v
T
i ]T . The error dynamics can be written as

Ξd
i : ėdi = Adi e

d
i + B̂d

i u
d
i (5.44)
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Adi =


0 0

pTij
eij+d∗ij

0 0
pTik

eik+d∗ik

0n×1 0n×1 0n×n

 (5.45a)

B̂d
i =


pTji

eij+d∗ij
0n×n 0n×n

0n×n
pTki

eik+d∗ik
0n×n

0n×n 0n×n In

 , (5.45b)

where udi = [vj
T , vk

T , udi
T

]T . The corresponding nominal system is

Σd
i : ėdi = Adi e

d
i +Bd

i u
d
i , (5.46)

where

Bd
i =

01×n

01×n

In

 . (5.47a)

The associated nominal optimal control problem can be formulated as

Jdi = min
1

2

∫ ∞
0

{edi
T
Qd
i e
d
i + udi

T
Rd
i u

d
i }dt

s.t.

ėdi = Adi e
d
i +Bd

i u
d
i

Qd
i = diag[qdij, q

d
ik, q

d
vi

] ≥ 0

Rd
i > 0.

(5.48)

The following theorem offers the associated distributed controller for the agent i that

guarantees convergence to the desired formation.

Theorem 5.6. For the agent i, described by the double-integrator model, the distributed

control law

udi = −Rd
i

−1
Bd
i

T
Sdi e

d
i , (5.49)

where Sdi is the unique solution of the equation

Qd
i + Adi

T
Sdi + Sdi A

d
i − Sdi Bd

iR
d
i

−1
Bd
i

T
Sdi = 0, (5.50)

achieves local asymptotic stability of the closed-loop, directed, distance-based formation.

Proof. The control law (5.49) is the stabilizing control of the nominal system Σd
i . Thus,
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the system Ξd
i is locally input-to-state stable. The stability analysis is similar to the

procedure presented in the proof of Theorem 5.5 with equivalent argument about the

stability analysis of interconnected systems. The system ∆d
i−1 which is the interconnected

system of i− 1 agents, is asymptotically stable. Thus, based on Lemma 2.15, the origin

of interconnected system

∆d
i :

{
∆d
i−1

Ξd
i ,

(5.51)

is locally asymptotically stable.

5.3.3 Reflection Prevention and Collision Avoidance

In this section, based on the barrier function method, we propose a weight selection proce-

dure such that considering the signed area of the triangle, it prevents the flip ambiguity of

the desired formation and guarantees collision avoidance between the neighboring agents.

Theorem 5.7. Select

Qi = κidiag[qij, qik], (5.52)

κi =
A∗ − A
A∗ + A

, (5.53)

where A∗, A are desired and actual signed areas of the triangle corresponding to the clique

(i, j, k), and

qim = κim + µim m ∈ {j, k}, (5.54)

where κim > 0 is a constant, µim is a positive barrier multiplier defined by

µim = (
d∗im

dim − rdim
)ε, (5.55)

for suitable ε ≥ 1, and rdim is a safe distance between pair of agents to prevent collision.

Then, by using the weighting factor (5.52), the proposed SDRE control law prevents flip

ambiguity of the directed distance-based formation and guarantees inter-agent collision

avoidance between neighboring agents.

Proof. The proposed inverse barrier function is Φi = eTi Qiei where Qi is defined by (5.52).

Adding the proposed inverse barrier function to the cost functional of the corresponding

optimal control problem yields the corresponding unconstrained problem. If the condi-

tion for collision avoidance or reflection avoidance is violated, then the proposed barrier

function approaches infinity and based on [147], this prevents collision avoidance between

neighboring agents.

Note that the result of Theorem 5.7 is applicable to both single- and double-integrator
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cases.

5.4 3-D Space

Distance-based formation control problem over directed trilateral Laman graphs is con-

sidered in this section. According to the directed trilateral Laman graph structure, a

leader is not responsible for any edge. The first-follower (or the agent #2 in the rest of

the chapter) is required to preserve its distance from the leader. The agent #3 forms the

LFF structure. The rest of the agents are added via the trilateration procedure. We first

consider the single-integrator model and then the double-integrator case. The following

assumption is supposed to be valid for the rest of the section.

Assumption 5.2: The desired formation is in the form of directed trilateral Laman

graph.

5.4.1 Single-Integrator Model

For an agent that is modeled by the single-integrator model, the edge error dynamics is

given by

ėij =
d

dt

√
(pi − pj)T (pi − pj)

=
(pij)

T (ui − uj)
eij + d∗ij

.
(5.56)

Since the leader agent is not responsible for any edge, it remains stationary during the

formation. Agent #2 (first-follower) is responsible for the edge e21. The error dynamics

associated with agent #2 is

ės2 =Bs
2u

s
2

=
pT21

e21 + d∗21

us2,
(5.57)

where es2 = e21. Thus, the associated local optimal control problem with agent #2 is

Js2 = min
1

2

∫ ∞
0

{es2
TQs

2e
s
2 + us2

TRs
2u

s
2}dt

s.t.

ės2 = Bs
2u

s
2

Qs
2 = [qs21] > 0

Rs
2 > 0.

(5.58)
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The following result provides the suboptimal SDRE control law that minimizes (5.58)

and ensures that e21 globally asymptotically converges to zero.

Theorem 5.8. For the agent #2 described by the single-integrator model (2.14), the

control law

us2 = −Rs
2
−1Bs

2
TSs2e

s
2, (5.59)

in which Ss2 is the positive definite solution of the following Riccati equation

Qs
2 − Ss2Bs

2R
s
2
−1Bs

2
TSs2 = 0, (5.60)

ensures global asymptotic stability of the closed-loop system.

Proof. The system (5.57) is controllable; therefore, by selecting Qs
2 = [qs21] > 0, the

system satisfies the SDRE feasibility conditions, and therefore, Lemma 2.9 is applicable.

Using the control law (5.59), the closed-loop system dynamics is

Σs
2 : ės2 = −Bs

2R
s
2
−1Bs

2
TSs2e

s
2. (5.61)

The error es2 in (5.61) is scalar. Thus, based on Lemma 2.10 and considering Remark

2.11, we conclude that the closed-loop system is globally asymptotically stable.

Similarly, we can write the formation error dynamics of the agent #3 as[
ė31

ė32

]
=

[
01×n

pT31
e31+d∗31

pT23
e32+d∗32

pT32
e32+d∗32

][
us2

us3

]
, (5.62)

where n is the space dimension. The equation (5.62) can be written in a form of

Ξs
3 : ės3 = B̂s

3û
s
3

= Bs
3u

s
3 + B̃s

3u
s
2.

(5.63)

Consider the nominal system as

Σs
3 : ės3 = Bs

3u
s
3. (5.64)
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We can write an associated optimal control problem for agent #3 as

Js3 = min
1

2

∫ ∞
0

{es3
TQs

3e
s
3 + us3

TRs
3u

s
3}dt

s.t.

ės3 = Bs
3u

s
3

Qs
3 = %3I2 > 0

Rs
3 > 0,

(5.65)

where %3 is a positive scalar. The following theorem provides the control law that ensures

global asymptotic stability of the closed-loop system and consequently, global asymptotic

convergence of es3 to zero.

Theorem 5.9. For the second-follower (agent #3), described by the single-integrator

model (2.14), the control law

us3 = −Rs
3
−1Bs

3
TSs3e

s
3, (5.66)

where Ss3 is the positive definite solution of the following state-dependent Riccati equation

Qs
3 − Ss3Bs

3R
s
3
−1Bs

3
TSs3 = 0, (5.67)

results in the global asymptotic stability of the closed-loop system.

Proof. The origin of the system Σs
2(es2) is globally asymptotically stable equilibrium point.

The system (5.64) is stabilizable, and by selecting Qs
3 > 0 it is also detectable, which sat-

isfies conditions of SDRE controller and guarantees Lemma 2.9’s applicability. Replacing

control law (5.66) in system dynamics (5.64), the closed-loop dynamic is given by

Σs
3 : ės3 = −ACL3e

s
3

ACL3 = Bs
3R

s
3
−1Bs

3
TSs3.

(5.68)

Rearranging equation (5.67), one has ACL3 = Bs
3R

s
3
−1Bs

3
TSs3 = %3S

s
3
−1. Since Ss3 is

symmetric and positive-definite and considering the fact that inverse of a symmetric

matrix, also is symmetric, we demonstrate that ACL3 is symmetric. Thus, based on

Lemma 2.10, we conclude that using the proposed SDRE controller (5.66), the nominal

system (5.64) is globally asymptotically stable. To demonstrate the exponential stability

of the (5.68), consider the following Lyapunov function

V3(es3) =
1

2
es3
TSs3e

s
3, (5.69)
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for which, from the matrix theory, the following inequality holds

1

2
λmin3 ||es3||2 ≤ V3(es3) ≤ 1

2
λmax3 ||es3||2, (5.70)

where λmin3 and λmax3 are the smallest and the largest eigenvalues in Θ(Ss3). The derivative

of Lyapunov function alongside state trajectory of the nominal system is

V̇3(es3) =
∂V

∂es3
ės3

= −es3
TSs3B

s
3R

s
3
−1Bs

3
TSs3e

s
3,

(5.71)

which according to the Riccati equation (5.67), can be simplified to

V̇3(es3) = −%3||es3||2. (5.72)

Therefore, the proposed Lyapunov function (5.69) satisfies the conditions of Theorem 2.3,

and thus, proves the exponential stability of the nominal system (5.68). Since control law

(5.66) results in the global exponential stability of the nominal system Σs
3, then based

on Theorem 2.5, the system Ξs
3(es3, u

s
2) is globally input-to-state stable with respect to us2

where us2 is a function of es2. Therefore, based on the Lemma 2.16 and the result proven

in the Theorem 5.8, we conclude that the origin of the interconnected system

∆s
3 :

{
Σs

2(es2)

Ξs
3(es3, e

s
2),

(5.73)

is globally asymptotically stable.

For the agent #4, which is the source of added edges e41, e42, e43, we can write

Ξs
4 :

ė41

ė42

ė43

 =


01×n 01×n

pT41
e41+d∗41

pT24
e42+d∗42

01×n
pT42

e42+d∗42

01×n
pT34

e43+d∗43

pT43
e43+d∗43


u

s
2

us3

us4

 , (5.74)

The nominal system can be chosen as

Σs
4 : ės4 = Bs

4u
s
4, (5.75)

where

Bs
4 =


pT41

e41+d∗41
pT42

e42+d∗42
pT43

e43+d∗43

. (5.76)
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The associated optimal control problem is

Js4 = min
1

2

∫ ∞
0

{es4
TQs

4e
s
4 + us4

TRs
4u

s
4}dt

s.t.

ės4 = Bs
4u

s
4

Qs
4 = %4I3 > 0

Rs
4 > 0.

(5.77)

Theorem 5.10. For the third-follower (agent #4) described by the single-integrator

model, the control law

us4 = −Rs
4
−1Bs

4
TSs4e

s
4, (5.78)

where Ss4 is the positive definite solution of the following state-dependent Riccati equation

Qs
4 − Ss4Bs

4R
s
4
−1Bs

4
TSs4 = 0, (5.79)

achieves global asymptotic stability of the closed-loop system.

Proof. For the system (5.75), the Conditions 1-3 are met by selecting Qs
4 > 0. Thus,

Lemma 2.9 is applicable. The closed-loop dynamic matrix ACL4 = Bs
4R

s
4
−1Bs

4
TSs4 =

%4S
s
4
−1 is symmetric, considering the Riccati equation (5.79). Therefore, the closed-

loop nominal system is globally asymptotically stable according to Lemma 2.10. It is

easy to verify the exponential stability of the origin, considering the Lyapunov function

V4(es4) = 1
2
es4
TSs4e

s
4 following the same steps at the proof of the Theorem 5.9. Since

the control law (5.83) results in the global exponential stability of the nominal system

Σs
4, thus, based on Theorem 2.5, the system Ξs

4 is globally input-to-state stable with

respect to [us2, u
s
3]. Also, Theorem 5.9 showed global asymptotic stability of the system

∆s
3. Therefore, according to the Lemma 2.16, we can conclude that the origin of the

interconnected system

∆s
4 :

{
∆s

3

Ξs
4

, (5.80)

is globally asymptotically stable.

Since the desired formation is given in the form of a directed trilateral Laman graph,

it can be constructed by a sequence of trilateration operations as shown in Figure 2.5(c).

We just provided the results for an agent i, and the procedure is repeatable for all other

vertices in the same way. Consequently, for the next follower denoted by agent i, which

is added to an existing directed trilateral Laman graph via Henneberg directed vertex
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addition sequence, the error dynamic can be written as

ėijėil
ėik

 =


pTji

eij+d∗ij
01×n 01×n

pTij
eij+d∗ij

01×n
pTli

eil+d
∗
il

01×n
pTil

eil+d
∗
il

01×n 01×n
pTki

eik+d∗ik

pTik
eik+d∗ik



usj

usl
usk
usi

 , (5.81)

which can be written in the matrix form

Ξs
i : ėsi = B̂s

i û
s
i

= Bs
i u

s
i + B̃s

i ũ
s
i ,

(5.82)

where ũsi = [usj
T , usl

T , usk
T ]T . The corresponding nominal optimal control problem can be

formed as

Jsi = min
1

2

∫ ∞
0

{esi
TQs

ie
s
i + usi

TRs
iu

s
i}dt

s.t.

ėsi = Bs
i u

s
i

Qs
i = %iI3 > 0

Rs
i > 0,

(5.83)

where %i is a positive scalar. The following theorem provides the associated SDRE control

law.

Theorem 5.11. For the agent i, described by the single-integrator model, the distributed

control law

usi = −Rs
i
−1Bs

i
TSsi e

s
i , (5.84)

where Ssi is the unique, symmetric, positive definite solution of the following Riccati

equation

Qs
i − SsiBs

iR
s
i
−1Bs

i
TSsi = 0, (5.85)

results in the global asymptotic stability of the closed-loop, directed, distance-based forma-

tion.

Proof. The nominal system in (5.83) is stabilizable, therefore Lemma 2.9 is applicable by

choosing Qs
i > 0. The control law (5.84) is the stabilizing control of the nominal system

Σs
i : ėsi = Bs

i u
s
i . Substituting control law (5.84) in the nominal system dynamics, we have

Σs
i : ėsi = −ACLiesi
ACLi = Bs

iR
s
i
−1Bs

i
TSsi .

(5.86)
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After some mathematical manipulation, the Riccati equation (5.85) can be written as

Bs
iR

s
i
−1Bs

i
TSsi = %iS

s
i
−1. (5.87)

Since the inverse of a symmetric matrix is also symmetric, from (5.87) and (5.86) we can

conclude that the closed-loop dynamic matrix, ACLi, is symmetric for all esi . Therefore,

based on Lemma 2.10, the global asymptotic stability of the closed-loop nominal system

(5.86) is proven using the control law (5.84). To demonstrate the exponential stability of

the (5.86), consider the following Lyapunov function

Vi(e
s
i ) =

1

2
esi
TSsi e

s
i . (5.88)

The proposed Lyapunov function (5.88) satisfies

1

2
λmini ||esi ||2 ≤ Vi(e

s
i ) ≤

1

2
λmaxi ||esi ||2, (5.89)

where λmini and λmaxi are the smallest and the biggest eigenvalues in Θ(Ssi ). The derivative

of Lyapunov function alongside state trajectory is

V̇i(e
s
i ) = −esi

TSsiB
s
iR

s
i
−1Bs

i
TSsi e

s
3, (5.90)

where according to the Riccati equation (5.87), can be simplified to

V̇i(e
s
i ) = −%i||esi ||2 ≤ −ξi||esi ||2 (5.91)

for some ξi ≥ %i. Inequalities (5.91) and (5.89) show that the Lyapunov function Vi(e
s
i )

meets the conditions of the Theorem 2.3. This proves the global exponential stability of

the closed-loop nominal system (5.86) under the distributed SDRE control law (5.84).

The interconnected stability analysis is similar to the mathematical induction proce-

dure presented in the proof of Theorem 5.10 with a similar argument about the stability

analysis of interconnected systems. Based on the Theorem 2.5, it is evident that the

system Ξs
i is globally input-to-state stable with respect to ũsi . Using the mathematical

induction, one can say that the interconnected system of preceding i− 1 agents, denoted

by ∆s
i−1, is globally asymptotically stable. Thus, based on Lemma 2.16 the origin of the

interconnected system

∆s
i :

{
∆s
i−1

Ξs
i

, (5.92)

is globally asymptotically stable.
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Remark 5.2. The global asymptotic stability results of this section are also valid for the

single-integrator model case in the previous section.

5.4.2 Double-Integrator Model

In this case, the edge error dynamics is given by

ėij =
d

dt

√
(pi − pj)T (pi − pj)

=
(pij)

T (vi − vj)
eij + d∗ij

.
(5.93)

The dynamics of the error associated with the agent #2 is

ė21 =
pT21

e21 + d∗21

v2. (5.94)

Let us define an aggregate error vector for the agent #2 as

ed2 = [e21, v
T
2 ]T . (5.95)

A time-derivative of (5.95) is

ėd2 = Ad2e
d
2 +Bd

2u
d
2, (5.96)

with

Ad2 =

[
0

pT21
e21+d∗21

0n×1 0n×n

]
(5.97a)

Bd
2 =

[
01×n

In

]
. (5.97b)

Thus, the associated local optimal control problem with the agent #2 can be formulated

as

Jd2 = min
1

2

∫ ∞
0

{ed2
T
Qd

2e
d
2 + ud2

T
Rd

2u
d
2}dt

s.t.

ėd2 = Ad2e
d
2 +Bd

2u
d
2

Qd
2 = diag[qd21, q

d
v2

] > 0

Rd
2 > 0.

(5.98)

The following result provides suboptimal SDRE control law that minimizes (5.98) and

ensures that e21 asymptotically converges to zero.

94



Theorem 5.12. The control law

ud2 = −Rd
2

−1
Bd

2

T
Sd2e

d
2, (5.99)

where Sd2 is the solution of the following Riccati equation

Qd
2 + Ad2

T
Sd2 + Sd2A

d
2 − Sd2Bd

2R
d
2

−1
Bd

2

T
Sd2 = 0, (5.100)

renders the closed-loop system asymptotically stable and steers e21 to zero.

Proof. The system (5.96) is stabilizable, and by choosing Qd
2 > 0, it is detectable every-

where. Thus, Condition 1-3 are satisfied and that guarantees the Lemma 2.9’s applica-

bility. The control law (5.99) is a direct result of Lemma 2.9.

Remark 5.3. Substituting the control law (5.99) in (5.96), the closed-loop dynamics is

given by

Σd
2 : ėd2 = (Ad2 − Bd

2R
d
2

−1
Bd

2

T
Sd2)ed2. (5.101)

For the agent #3, let us define ed3 = [e31, e32, v
T
3 ]T . Thus, one has

Ξd
3 : ėd3 = Ad3e

d
3 + B̂d

3ud3, (5.102)

Ad3 =


0 0

pT31
e31+d∗31

0 0
pT32

e32+d∗32

0n×1 0n×1 0n×n

 (5.103a)

B̂d
3 =


01×n 01×n
pT23

e32+d∗32
01×n

0n×n In

 , (5.103b)

where ud3 = [v2
T , ud3

T
]T . Thus, the nominal system is given by

Σd
3 : ėd3 = Ad3e

d
3 +Bd

3u
d
3, (5.104)

where

Bd
3 =

01×n

01×n

In

 . (5.105a)
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One can write the associated optimal control problem for the agent #3 as

Jd3 = min
1

2

∫ ∞
0

{ed3
T
Qd

3e
d
3 + ud3

T
Rd

3u
d
3}dt

s.t.

ėd3 = Ad3e
d
3 +Bd

3u
d
3

Qd
3 = diag[qd31, q

d
32, q

d
v3

] > 0

Rd
3 > 0.

(5.106)

The following theorem provides the control law that ensures the asymptotic stability of

the closed-loop system and consequently asymptotic convergence of ed3 to zero.

Theorem 5.13. For the second-follower (agent #3) that is described by the double-

integrator model, the control law

ud3 = −Rd
3

−1
Bd

3

T
Sd3e

d
3, (5.107)

where Sd3 is the positive definite solution of the following state-dependent Riccati equation

Qd
3 + Ad3

T
Sd3 + Sd3A

d
3 − Sd3Bd

3R
d
3

−1
Bd

3

T
Sd3 = 0, (5.108)

results in the local asymptotic stability of the closed-loop system.

Proof. Conditions 1-3 are met as the system (5.104) is stabilizable and detectable. Since

the system Σd
2 is asymptotically stable and the control law (5.107) results in asymptotic

stability of the system Σd
3, then the system Ξd

3 is locally input-to-state stable. Based on

the Lemma 2.15 we conclude that the origin of the interconnected system

∆d
3 :

{
Σd

2

Ξd
3,

(5.109)

is locally asymptotically stable.

For the agent #4 the aggregate error vector is ed4 = [e41, e42, e43, v4
T ]T . The error

dynamics can be written as

Ξd
4 : ėd4 = Ad4e

d
4 + B̂d

4ud4 (5.110)
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where

Ad4 =


0 0 0

pT41
e41+d∗41

0 0 0
pT42

e42+d∗42

0 0 0
pT43

e43+d∗43

0n×1 0n×1 0n×1 0n×n

 (5.111a)

B̂d
4 =


01×n 01×n 01×n
pT24

e42+d∗42
01×n 01×n

01×n
pT34

e43+d∗43
01×n

0n×n 0n×n In

 , (5.111b)

and ud4 = [v2
T , v3

T , ud4
T

]T . The corresponding nominal system is

Σd
4 : ėd4 = Ad4e

d
4 +Bd

4u
d
4, (5.112)

where

Bd
4 =

[
03×n

In

]
. (5.113a)

The associated nominal optimal control problem can be formulated as

Jd4 = min
1

2

∫ ∞
0

{ed4
T
Qd

4e
d
4 + ud4

T
Rd

4u
d
4}dt

s.t.

ėd4 = Ad4e
d
4 +Bd

4u
d
4

Qd
4 = diag[qd41, q

d
42, q

d
43, q

d
v4

] > 0

Rd
4 > 0.

(5.114)

The following theorem offers the associated distributed controller for agent #4 which can

guarantees the convergence of the desired formation.

Theorem 5.14. For the third-follower (agent #4) described by the double-integrator

model, the distributed control law

ud4 = −Rd
4

−1
Bd

4

T
Sd4e

d
4, (5.115)

where Sd4 is the unique solution of the equation

Qd
4 + Ad4

T
Sd4 + Sd4A

d
4 − Sd4Bd

4R
d
4

−1
Bd

4

T
Sd4 = 0, (5.116)
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achieves local asymptotic stability of the closed-loop directed distance-based formation.

Proof. Lemma 2.9 is applicable since Conditions 1-3 are satisfied for the nominal system

(5.112) by selecting Qd
4 > 0. The control law (5.115) is the stabilizing control of the

nominal system Σd
4, thus, one can conclude the local input-to-state stability of the system

Ξd
4. Theorem 5.13 indicates asymptotic stability of the origin of the system ∆d

3. Thus,

based on Lemma 2.15 the origin of interconnected system

∆d
4 :

{
∆d

3

Ξd
4,

(5.117)

is locally asymptotically stable.

Consequently, for the next follower, denoted by agent i, which is added to an existing

directed trilateral Laman graph via trilateration sequence the aggregate error vector is

edi = [eij, eil, eik, vi
T ]T . The error dynamics can be written as

Ξd
i : ėdi = Adi e

d
i + B̂d

i u
d
i , (5.118)

where

Adi =


0 0 0

pTij
eij+d∗ij

0 0 0
pTil

eil+d
∗
il

0 0 0
pTik

eik+d∗ik

0n×1 0n×1 0n×1 0n×n

 (5.119a)

B̂d
i =


pTji

eij+d∗ij
01×n 01×n 01×n

01×n
pTli

eil+d
∗
il

01×n 01×n

01×n 01×n
pTki

eki+d
∗
ik

01×n

0n×n 0n×n 0n×n In

 , (5.119b)

and udi = [vj
T , vl

T , vk
T , udi

T
]T . The corresponding nominal system is

Σd
i : ėdi = Adi e

d
i +Bd

i u
d
i , (5.120)

where

Bd
i =


01×n

01×n

01×n

In

 . (5.121a)
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The associated nominal optimal control problem can be formulated as

Jdi = min
1

2

∫ ∞
0

{edi
T
Qd
i e
d
i + udi

T
Rd
i u

d
i }dt

s.t.

ėdi = Adi e
d
i +Bd

i u
d
i

Qd
i = diag[qdij, q

d
il, q

d
ik, q

d
vi

] > 0

Rd
i > 0.

(5.122)

The following theorem offers the associated distributed controller for agent i which can

guarantee the convergence of the desired formation.

Theorem 5.15. For the agent i, described by the double-integrator model (2.17), the

distributed control law

udi = −Rd
i

−1
Bd
i

T
Sdi e

d
i , (5.123)

where Sdi is the unique solution of the equation

Qd
i + Adi

T
Sdi + Sdi A

d
i − Sdi Bd

iR
d
i

−1
Bd
i

T
Sdi = 0, (5.124)

achieves the local asymptotic stability of the closed-loop, directed, distance-based forma-

tion.

Proof. By selecting Qd
i > 0, Conditions 1-3 are satisfied for the system (5.120) and

Lemma 2.9 can be applied. The control law (5.123) is the stabilizing control of the

nominal system Σd
i . Thus, the system Ξd

i is locally input-to-state stable. Based on

mathematical induction, the system ∆d
i−1, which is the interconnected system of i − 1

agents, is asymptotically stable. Based on Lemma 2.15, local asymptotic stability of the

origin of the interconnected system

∆d
i :

{
∆d
i−1

Ξd
i ,

(5.125)

is guaranteed.

Remark 5.4. Note that each agent’s SDRE state feedback control law, ui, depends only

on the agent’s error vector, ei. Agent’s error vector solely depends on the agent’s velocity

and the neighboring agents’ relative positions in the agent’s local coordinate system, to

which the agent is assumed to have access. Therefore, the proposed control scheme is

fully distributed.
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5.4.3 Reflection Prevention and Collision Avoidance

Inspired by the seminal work [44] in 2-D space, we propose a formation control method

that prevents reflection of formation configurations in 3-D. The proposed method prevents

reflected configurations by considering the signed volume of a tetrahedron that is formed

by the neighboring agents. Each added agent via directed vertex addition is responsible

for controlling the volume of the tetrahedron formed by its associated edges. The method

also prevents collision avoidance between the neighboring agents.

Theorem 5.16. Select the state weighting matrices as

Qi = ϑiδiI, i ≥ 4 (5.126)

ϑi =
V∗ − V
V∗ + V

, (5.127)

where V∗ and V are desired and actual signed volume of the tetrahedron between the clique

(j, l, k, i), respectively, and

δi =
∑
m∈Ni

qim

qim = ϕim + µim.

(5.128)

Here, ϕim > 0 is a constant and µim is a positive barrier multiplier defined by

µim = (
d∗im

dim − rdim
)ε, (5.129)

for suitable ε ≥ 1, and rdim being a safe distance between pair of agents to prevent collision.

Then, by using the weighting factor (5.126), the proposed SDRE control law prevents flip

ambiguity of the directed distance-based formation in 3-D space and guarantees inter-agent

collision avoidance of the neighboring agents.

Proof. The proposed inverse barrier function is

Φi = eTi Qiei, (5.130)

where Qi is defined by (5.126). Adding the proposed inverse barrier function (5.130) to

the cost functional of the corresponding optimal control problem yields the corresponding

unconstrained problem. If the condition for collision avoidance or reflection avoidance

is violated, then the proposed barrier function (5.130) approaches infinity and based

on [147], this prevents flip ambiguity of the formation and guarantees collision avoidance

between neighboring agents.
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Corollary 5.16.1. Select the state weighting matrix as

Q3 = κ3δ3I, (5.131)

where

κ3 =
A∗ − A
A∗ + A

, (5.132)

and A∗ and A are desired and actual signed area of the LFF triangle between the clique

(1, 2, 3), and

δi =
∑

m∈{1,2}

qim

q3m = ζ3m + µ3m,

(5.133)

where ζ3m > 0 is a constant and µ3m is a positive barrier multiplier defined by

µ3m = (
d∗3m

d3m − rd3m
)ε, (5.134)

for suitable ε ≥ 1, and rd3m being a safe distance between pair of agents to prevent colli-

sion. Then, by using the weighting factor (5.131), the proposed SDRE control law prevents

the flip ambiguity of the LFF triangle and guarantees inter-agent collision avoidance of

the agent #3 with its neighboring agents.

Proof. The proof is similar to the proof of Theorem (5.16).

Note that the results of this section are applicable to both single- and double-integrator

cases.

Remark 5.5. One can question the importance of reflection prevention methods for locally

stable methods. As per simulation result shows, the region of attraction can include the

reflected configurations. Therefore, it is still vital for agents not to converge to the

reflected formations from a practical point of view.

Remark 5.6. Since the weighting matrices are state-dependent, the energy of the agent,

li, can be used in the input weighting matrix Ri to control the energy usage.

5.5 Simulation Results

5.5.1 2-D Space

In this subsection, the simulation results of the proposed distance-based formation control

over directed triangulated Laman graphs are presented. Figure 5.1 shows the desired

directed distance-based formation shape. The desired configuration is in form of a directed
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Figure 5.1: Desired distance-based formation in 2-D.

triangulated Laman graph. Note that the leader is not responsible for any edges, and

thus it does not move. Figure 5.2 shows the trajectories of N = 5 agents modeled by

single-integrator dynamics under the proposed controller. The agents are initially located

at p1 = [−25,−5]T , p2 = [−29, 17]T , p3 = [−15,−20]T , p4 = [−20, 40]T , p5 = [5, 15]T .

Figure 5.3 shows how the proposed method prevents the reflection where the agent

#5 was relocated to p5 = [−35, 45]T . Figure 5.3 (top) shows the controller performance

without the signed area constraints. One can see that the agent #5 moves to the reflected

position, which makes the configuration flip ambiguous. Figure 5.3 (bottom) shows the

simulation results while the proposed method in Theorem 5.7 is utilized. The proposed

controller, with signed area constraints, successfully prevents the convergence of the agent

#5 to the reflected position. Figure 5.4 shows the trajectory of the set of N = 4 agents

modeled by a double-integrator model.

5.5.2 3-D space

This subsection presents the simulation results of the proposed distance-based formation

control over directed trilateral Laman graphs. Figure 2.6(b) depicts the desired directed

distance-based formation shape in the form of a directed trilateral Laman graph in 3-D

space. Note that the leader is not responsible for any edges.

Figure 5.5 shows the simulation results of the proposed distributed controller for a

set of N = 5 agents. The agents initial positions were selected as p1 = [20, 20, 30]T , p2 =

[20,−20,−10]T , p3 = [−20,−30, 20]T , p4 = [−10, 20,−10]T , p5 = [20, 20,−20]T . For sim-

plicity all Rs
i were selected as identity matrices. Matrices Qi were selected according to

the Theorem 5.16 and Corollary 5.16.1 with parameters selected as ϕim = 1, ζ3m = 1,

rdim = 3, and ε = 1. The simulation result shows that all agents satisfied their assigned

distance constraints.
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Figure 5.2: A distributed distance-based formation for N = 5 agents using the proposed
controller. The desired formation is given in Figure 5.1.

Figure 5.6 shows the convergence of edge errors. Figure 5.7 (top) shows the controller

performance without the signed volume constraints where p5 = [20,−20, 140]T and Qi

matrices were selected as constant identity matrix. All other parameters remained un-

changed. It shows that agent #5 moved to the reflected position, which makes the

configuration flip ambiguous. Figure 5.7 (bottom) shows the simulation results while

the proposed method in Theorem 5.16 is utilized. The simulation results show that the

proposed controller, with signed volume constraints, prevented the convergence of the

agent #5 to the reflected position. Figure 5.8 shows the trajectory of the set of N = 5

agents modeled by double-integrator model. The agents initial positions were selected

as p1 = [20, 20, 30]T , p2 = [20,−20,−10]T , p3 = [−20,−30, 20]T , p4 = [5, 20,−10]T , p5 =

[20,−20, 0]T . All other simulation parameters remained unchanged. The simulation re-

sults prove the effectiveness of the proposed controller.

5.5.3 Control Performance Function

In order to compare the performance of the proposed method with other methods in the

literature, based on integral of the absolute magnitude of the error (IAE) criteria, we

introduce the control performance function (CPF) as

υ(t) =
1

|E|
∑

(i,j)∈E

∫ t

0

|‖pi − pj‖ − d∗ij|dt+
1

|V|
∑
i∈V

∫ t

0

‖ui‖dt, (5.135)
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Figure 5.3: Simulation result of the proposed controller without signed area constraints
(top) and with the signed area constraints that prevents flip ambiguity of the formation
(bottom).
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Figure 5.4: Simulation results of the proposed controller for a set of N = 4 agents modeled
by double-integrator dynamics.

Figure 5.5: A distributed distance-based formation for N = 5 agents using the proposed
controller. The desired formation is given in Figure 2.6 (b).
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Figure 5.6: Convergence of the edge errors to zero in the simulation corresponding to
Figure 5.5.

and control performance index (CPI), Υ, as Υ = limt→∞ υ(t). The first term in the

CPF indicates how fast the formation converges, while the second term measures how

much control effort is used for the overall formation. We run simulations in 3-D space

where the desired formation is given by Figure 2.6(b). The initial positions of the agents

were selected as p1 = [2, 2, 3]T , p2 = [2,−2,−1]T , p3 = [−2,−3, 2]T , p4 = [1, 2,−1]T , p5 =

[2,−2, 14]T while the desired formation shape and the desired distances remained un-

changed.

We implemented three different controllers: (i) the controller with our proposed

method; (ii) a directed, gradient-based controller proposed in [56]; and (iii) an undi-

rected, gradient-based controller proposed in [44]. Figure 5.9 shows the corresponding

CPFs for all three methods. Also, CPIs for all simulations are presented in Table 5.1.

The simulation results show that the proposed method has a better CPI compared to

the other two methods. It is worth mentioning that, through extensive simulations, we

found that our method is less sensitive to simulation parameters such as sampling time

and initial positions of agents in comparison with the other two methods. However, the

method requires more computational time. For real-time solving of the SDRE control,

there are several methods proposed in literature [124].

Table 5.1: CPI for different methods
Method proposed in this chapter Method in [56] Method in [44]

6.15 7.67 7.86
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Figure 5.7: Simulation result of the proposed controller without signed volume constraints
(top) and with the signed volume constraints that prevents flip ambiguity of the formation
(bottom).
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Figure 5.8: Simulation result of the proposed controller for a set of N = 5 agent modeled
by double-integrator dynamics.

Figure 5.9: Control performance function for three different controller proposed for
distance-based formation control problem.
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5.6 Conclusions

In this chapter, the distributed distance-based formation control problem over directed

graphs is studied. It is shown that the distance-based formation control over directed

graphs has several advantages compared to the undirected graph configurations. We

formulated the distance-based formation control problem for special classes of directed

graphs, namely directed triangulated and trilateral Laman graphs. In this case, only

one of the neighboring pair of agents is responsible for preserving the desired distance.

We then developed a distributed control scheme for the distance-based formation prob-

lem. The proposed controller is based on the state-dependent Riccati equation (SDRE)

method that ensures the global asymptotic stability of the desired formation for the

single-integrator case.

Furthermore, an additional problem in a distance-based formation control is the ex-

istence of the reflected configurations that satisfy the distance constraints while the con-

figuration is not the desired one. To address this issue, we introduced a method based

on a barrier function that prevents such flip-ambiguous configurations. The solution also

prevents collisions among neighboring agents. In addition, we introduced a novel in-

dex, called the control performance function, that measures and indicates the formation

controller’s overall performance.
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Chapter 6

Distance-Based Formation Control

of Nonlinear Agents

6.1 Introduction

Distance-based formation control is a challenging problem due to its mathematical com-

plexity, especially in the case of nonlinear agent dynamics. We propose a distributed

distance-based formation control scheme for a set of affine, nonlinear agents over a par-

ticular class of directed graphs. By using the state-dependent Riccati equation, the

proposed control method can effectively cope with nonlinearities in the agent’s dynamics.

The majority of the research in distance-based control considered the single-integrator

model, to name a few [56], [64], [65], [42], [57], [44] and few considered the double-

integrator case, e.g., [50], [62], [35]. Authors in [68] considered the second-order nonlinear

dynamics where they showed the uniform ultimate boundedness of the formation. Since

the practical systems have complex and nonlinear dynamics, we are motivated to study

distance-based formation control of nonlinear agents. This chapter’s main contribution

is a new, distributed, distance-based formation control for a set of agents with affine,

nonlinear models where the desired topology is a directed triangulated or trilateral Laman

graph.

6.2 Nonlinear Homogeneous Agents in 2-D Space

For a set of nonlinear agents, the distance-based formation control problem is to find

distributed control signals such that agents converge to the desired framework asymp-

totically. In other words, all the desired distance constraints between pairs of agents

are required to be satisfied. In this section, we assign the responsibility of controlling

a distance between two agents to one of them (the source of the corresponding edge).

Thus, the desired topology is modeled as a digraph. In particular, we assume that the
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desired topology is a directed triangulated Laman graph.

6.2.1 Agent Model

Suppose that each agent is described by an affine nonlinear model

ẋ = f(x) + B(x)u, (6.1)

where functions f(.) and B(.) are C1 and C0 mappings, respectively. Agents’ states

vector can be written as x = [pT , vT , zT ]T where p, v, and z are agents’ position, velocity,

and the vector of other states, respectively. Therefore, (6.1) can be rewritten as

ṗ = v (6.2a)

v̇ = f̂(v, z) + B̂(v, z)u (6.2b)

ż = f̌(v, z) + B̌(v, z)u. (6.2c)

The agent’s model (6.2) can be written in a linear-like form as

ẋ = A(x)x+B(x)u. (6.3)

Assumption 6.1: For an agent described by (6.3), corresponding pairs {A(x), B(x),
√
Q(x)},

where Q(x) is associated weighting factor in SDRE problem, are point-wise stabilizable

and detectable in linear sense for all x in some nonempty neighborhood of the origin.

Remark 6.1. For a general system (6.3), Assumption 6.1 is a common assumption in

literature [123], [124], [153]. By selecting a positive definite state weighting matrix Q(x),

detectability of the pair{A(x), C(x)} is assured. Hence, the stabilizability of the pair

{A(x), B(x)} greatly depends on the selection of SDC matrices [134]. Reference [154]

proves that there always exists a stablizable and detectable SDC representation of the

system (6.1) if {x, f(x)} be linearly independent or C(x)x 6= 0. Therefore, by proper

selection of Q(x) we can guarantee the existence of such a stablizable and detectable

SDC representation.

For agent i, the relative position of its neighboring agents is

pΣi

ij = pΣi

i − pΣi

j , i ∈ Ni (6.4)

where Σi is the local coordinate system of the agent i. Since all measurements are in

agents’ local coordinate systems, we drop the Σi notation for simplification. Thus, the

corresponding distance between agent i and agent j is

dij = ‖pij‖. (6.5)
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The error of the edge between agent i and agent j is

eij = dij − d∗ij, (6.6)

where d∗ij is the desired distance between agent i and agent j. The edge error dynamics

is then given by

ėij =
d

dt

√
(pi − pj)T (pi − pj)

=
(pij)

T (ṗi − ṗj)
pij

.
(6.7)

Since the desired topology is in form of a directed triangulated Laman graph, the leader

will remains stationary. The first-follower (agent #2) has one distance constraints to

satisfy, i.e. edge e21. Dynamics of the edge associated with agent #2 is

ė21 =
pT21

‖p21‖
v2. (6.8)

Let us define the normalizing operator, also known as relative bearing, as η(pij) =
pTij
‖pij‖ .

The aggregate error vector for the agent #2 is

ė2 = [e21, v
T
2 , z

T
2 ]T . (6.9)

Therefore, the time-derivative of (6.9) is

ė21 = η(p21)v2 (6.10a)

v̇2 = f̂2(v2, z2) + B̂2(v2, z2)u2 (6.10b)

ż2 = f̌2(v2, z2) + B̌2(v2, z2)u2. (6.10c)

We can write (6.10) in a semi-linear form as

ė2 = A2e2 +B2u2. (6.11)

Now we can define the distance-based control problem as a nonlinear optimal control
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problem. The associated SDRE problem with agent #2 is

J2 = min
1

2

∫ ∞
0

{e2
TQ2e2 + u2

TR2u2}dt

s.t.

ė2 = A2e2 +B2u2

Q2 ≥ 0

R2 > 0.

(6.12)

The following theorem introduces the control law that is the solution of the SDRE problem

(6.12). The control law ensures that e21 asymptotically converges to zero.

Theorem 6.1. For agent #2 modeled with nonlinear dynamics (6.2), under Assumption

6.1, the SDRE control law

u2 = −R2
−1B2

TS2e2, (6.13)

where S2 is the positive definite solution of the following Riccati equation

Q2 + A2
TS2 + S2A2 − S2B2R2

−1B2
TS2 = 0, (6.14)

steers formation error e2 to zero and results in asymptotic stability of the closed-loop

system.

Proof. The proof of the theorem is straightforward result of Lemma 2.9.

Remark 6.2. Substituting the control law (6.13) in (6.11), the closed-loop dynamic is

ė2 = (A2 − B2R2
−1B2

TS2)e2. (6.15)

The next follower, agent #3, is responsible for controlling its distance with the leader

e31 and first-follower e32. Therefore, for agent #3 we define e3 = [e31, e32, v
T
3 , z

T
3 ]T . Then,

one has

ė31 = η(p31)v3 (6.16a)

ė32 = η(p32)(v3 − v2) (6.16b)

v̇3 = f̂3(v3, z3) + B̂3(v3, z3)u3 (6.16c)

ż3 = f̌3(v3, z3) + B̌3(v3, z3)u3. (6.16d)

System (6.16) can be written in a linear-like matrix form

ė3 = A3e3 + B̃3u3, (6.17)

where u3 = [v2, u3]. Suppose that the system is unforced with respect to v2, (v2 = 0),
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then the nominal system is

ė31 = η(p31)v3 (6.18a)

ė32 = η(p32)v3 (6.18b)

v̇3 = f̂3(v3, z3) + B̂3(v3, z3)u3 (6.18c)

ż3 = f̌3(v3, z3) + B̌3(v3, z3)u3, (6.18d)

where it can be written in linear-like form as

ė3 = A3e3 +B3u3. (6.19)

The distance-based formation control for agent #3 now can be stated as an SDRE

problem. We can write the associated nominal optimal control problem for the agent #3

as

J3 = min
1

2

∫ ∞
0

{e3
TQ3e3 + u3

TR3u3}dt

s.t.

ė3 = A3e3 +B3u3

Q3 ≥ 0

R3 > 0.

(6.20)

The following theorem provides the SDRE control law that is the solution of the optimal

control problem (6.20). The proposed control law guarantees the asymptotic convergence

of e3 to zero and asymptotic stability of the LFF formation.

Theorem 6.2. For the agent #3 described by the nonlinear affine model (6.2), under

Assumption 6.1, the SDRE control law

u3 = −R3
−1B3

TS3e3, (6.21)

where S3 is the positive definite solution of the following state-dependent Riccati equation

Q3 + A3
TS3 + S3A3 − S3B3R3

−1B3
TS3 = 0, (6.22)

drives e3 asymptotically to zero and guarantees local asymptotic stability of the origin of

the closed-loop LFF system.

Proof. The control law (6.21) results in asymptotic stability of system ė3 = f3(e3, 0).

Since v2 = [0 1n 0]e2 and according to Theorem 2.4, this implies local input-to-state

stability of the system ė3 = f3(e3, e2) with respect to e2. Also, Theorem 6.1 ensures
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asymptotically stability of the origin of the system ė2 = f2(e2). Therefore, according to

Theorem 2.7 we can conclude that the origin of the LFF system

ė2 = f2(e2)

ė3 = f3(e3, e2),
(6.23)

is locally asymptotically stable.

For the desired signed area A∗3 and the actual signed area A3 of the triangle, formed

by the agents (1, 2, 3), let us define the LFF signed area coefficient κ3 as follows:

κ3 =
A∗3 − A3

A∗3 + A3

. (6.24)

The formation edge weighting factors q3m, m ∈ {1, 2}, are given by

q3m = %3m + µ3m, (6.25)

where %3m is a positive constant. We propose the positive barrier multiplier given by

µ3m = (
d∗3m

d3m − rd3m
)ε, (6.26)

where ε ≥ 1, and rd3m is a safe distance that prevents collisions between agent #3 and

agent #m, m ∈ {1, 2}. Also, qv3 and qz3 are appropriate positive definite weighting

matrices corresponding to v3 and z3.

Corollary 6.2.1. For the SDRE problem (6.20), the state weighting matrix

Q3 = κ3diag[q31, q32, qv3 , qz3 ], (6.27)

ensures that the proposed SDRE control law (6.21) prevents flip ambiguity of the directed

distance-based LFF formation and guarantees inter-agent collision avoidance.

Proof. The proposed state weighting matrix (6.27) is an integrated barrier function for

the optimal control (6.20). The weighting matrix Q3 approaches infinity if the collision

avoidance condition or signed area condition are violated. Thus, based on the method

proposed in [147], we conclude that the control law prevents collision avoidance of agent

#3 with the leader and the first-follower. Also, it prevents agent #3 from converging to

the reflected position.

The topology of the desired formation is assumed to be a directed triangulated Laman

graph. As shown in Figure 2.5(b), the next follower, say agent i, is added to an existing

directed triangulated Laman graph via Henneberg directed vertex addition sequence.
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Therefore, the agent i connects to pre-existing agents j and k using two outgoing edges

eij and eik. The aggregate error vector of agent i is ei = [eij, eik, vi
T , zi

T ]T and the error

dynamics can be written as

ėij = η(pij)(vi − vj) (6.28a)

ėik = η(pik)(vi − vk) (6.28b)

v̇i = f̂i(vi, zi) + B̂i(vi, zi)ui (6.28c)

żi = f̌i(vi, zi) + B̌i(vi, zi)ui. (6.28d)

The system (6.28) can be rewritten in a linear-like form

ėi = Aiei + B̃iui, (6.29)

where ui = [vj
T , vk

T , ui
T ]T . The corresponding unforced nominal system is

ėij = η(pij)vi (6.30a)

ėik = η(pik)vi (6.30b)

v̇i = f̂i(vi, zi) + B̂i(vi, zi)ui (6.30c)

żi = f̌i(vi, zi) + B̌i(vi, zi)ui, (6.30d)

or in a linear-like form

ėi = Aiei +Biui. (6.31)

The desired directed distance-based formation control problem for the agent i can be

formulated as an SDRE optimal control problem:

Ji = min
1

2

∫ ∞
0

{eiTQiei + ui
TRiui}dt

s.t.

ėi = Aiei +Biui

Qi ≥ 0

Ri > 0.

(6.32)

Theorem 6.3. For the agent i that is described by the nonlinear model (6.2), under

Assumption 6.1, the distributed SDRE control law

ui = −Ri
−1Bi

TSiei, (6.33)
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where Si is the unique, symmetric, positive definite solution of the Riccati equation

Qi + Ai
TSi + SiAi − SiBiRi

−1Bi
TSi = 0, (6.34)

steers ei asymptotically to zero and ensures convergence of the desired formation.

Proof. The control law (6.33) is a stabilizing control of the unforced system (6.31). Thus,

based on Theorem 2.4, the system (6.29) is locally ISS with respect to vj = [0 0 1n 0]ej

and vk = [0 0 1n 0]ek. Using the mathematical induction, one can show that the system

made of previous 1, 2, ..., i− 1 agents is asymptotically stable. Thus, based on Theorem

2.7 the origin of the system

ė2 = f2(e2)

ė3 = f3(e3, e2)

...

ėi = fi(ei, ..., e2),

(6.35)

is locally asymptotically stable.

Let rdim be a safe distance that prevents collision between the agents i and m, m ∈
{j, k}. Thus, collision avoidance constraint can be stated as

dim > rdim . (6.36)

For a triangle that is associated with agent i and formed between the agents (i, j, k), the

desired and actual signed areas of the triangle are denoted by A∗i and Ai, respectively.

Therefore, the reflection prevention can be stated as a constraint

Ai(Tf ) = A∗i , (6.37)

where Ai(Tf ) is a signed area of the triangle at final time Tf →∞. To address reflection

and collision avoidance problems, the constraints (6.36) and (6.37) are added to the

nonlinear optimal control problem (6.32). We use the inverse barrier function method,

proposed in [147], to solve the obtained constrained SDRE problem.

Let us define the agent i’s signed area coefficient as

κi =
A∗i − Ai

A∗i + Ai

. (6.38)

The formation edge weighting factors for the agent i are given by

qim = %im + µim m ∈ {j, k}, (6.39)
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where %im is a positive constant and µim is a positive barrier multiplier given by

µim = (
d∗im

dim − rdim
)ε. (6.40)

Similarly, qvi and qzi are appropriate positive definite state weighting matrices.

Corollary 6.3.1. For the SDRE problem (6.32), selecting the state weighting matrix

Qi = κidiag[qij, qik, qvi , qzi ], (6.41)

ensures that the proposed SDRE control law (6.33) prevents flip ambiguity of the di-

rected triangulated distance-based formation and guarantees collision avoidance among

the neighboring agents.

Proof. The barrier function

Φi = eTi Qiei, (6.42)

approaches infinity if the conditions for collision avoidance and/or reflection avoidance

are violated. Thus, based on [147], it prevents flip ambiguity and collision between

neighboring agents.

6.3 Nonlinear Heterogeneous Agents in 3-D Space

We present here a distance-based formation control over directed graphs in 3-D space.

The desired topology is assumed to be given in the form of a directed trilateral Laman

graph. Each agent is assumed to have access to the relative positions of its neighbors in

the agent’s own local coordinate system and the agent’s states, excluding its own position

in the global coordinate frame.

6.3.1 Agent Model

Suppose that each agent is described by an affine nonlinear model

ẋi = fi(xi) + hi(xi)ui, (6.43)

where functions fi, hi are C1, C0 mappings, respectively. For the formation control

purposes, it is necessary that the state vector includes the agent’s position pi. Therefore,

the agent’s model can be written as

ṗi = vi (6.44a)

v̇i = f̂i(vi, wi) + ĥi(vi, wi)ui (6.44b)

ẇi = f̌i(vi, wi) + ȟi(vi, wi)ui, (6.44c)
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where vi is the velocity of the agent and wi is the vector of other states. The agent’s

model (6.43) can be written in a linear-like form as

ẋi = Ãi(xi)xi + B̃i(xi)ui, (6.45)

where xi = [pTi , v
T
i , w

T
i ]T is the state vector of the agent i and B̃i(xi) = hi(xi).

The relative position of neighboring agents is

pij = pi − pj, (i, j) ∈ E . (6.46)

Thus, the distance between the pair of adjacent agents is

dij = ‖pij‖. (6.47)

The edge error is given by

eij = dij − d∗ij, (6.48)

where d∗ij is the desired distance between agent i and agent j. The edge error dynamics

is given by

ėij =
d

dt

√
(pi − pj)T (pi − pj)

=
(pij)

T (ṗi − ṗj)
dij

.
(6.49)

In a directed trilateral Laman topology, the leader is stationary since it has no constraint

to satisfy. The first follower (agent #2) is assigned the edge (e21) to control. Thus, the

dynamics of the edge associated with agent #2 is

ė21 =
pT21

‖p21‖
v2. (6.50)

The aggregate error vector for the agent #2 is

e2 = [e21, v
T
2 , w

T
2 ]T . (6.51)

The time-derivative of (6.51) is given by

ė21 = η(p21)v2 (6.52a)

v̇2 = f̂2(v2, w2) + ĥ2(v2, w2)u2 (6.52b)

ẇ2 = f̌2(v2, w2) + ȟ2(v2, w2)u2. (6.52c)
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We can write (6.52) in a semi-linear form as

ė2 = A2e2 +B2u2. (6.53)

Thus, the associated local optimal control problem with agent #2 is given by

J2 = min
1

2

∫ ∞
0

{e2
TQ2e2 + u2

TR2u2}dt

s.t.

ė2 = A2e2 +B2u2

Q2 ≥ 0

R2 > 0.

(6.54)

The following result provides the suboptimal SDRE control law that minimizes (6.54)

and ensures that e21 asymptotically converges to zero.

Theorem 6.4. For the agent #2 described by the nonlinear affine model (6.43) under

Assumption 6.1, the control law

u2 = −R2
−1B2

TS2e2, (6.55)

where S2 is the solution of the following Riccati equation

Q2 + A2
TS2 + S2A2 − S2B2R2

−1B2
TS2 = 0, (6.56)

renders the origin of the closed-loop system asymptotically stable and steers agent #2 to

the desired position; hence, e21 converges to zero.

Proof. Given Assumption 6.1, the proof of the theorem is straightforward result of Lemma

2.9.

Remark 6.3. Substituting the control law (6.55) in (6.53), the closed-loop dynamics is

∆2 : ė2 = (A2 − B2R2
−1B2

TS2)e2. (6.57)

For the agent #3, we define e3 = [e31, e32, v
T
3 , w

T
3 ]T . Thus, one has

ė31 = η(p31)v3 (6.58a)

ė32 = η(p32)(v3 − v2) (6.58b)

v̇3 = f̂3(v3, w3) + ĥ3(v3, w3)u3 (6.58c)

ẇ3 = f̌3(v3, w3) + ȟ3(v3, w3)u3. (6.58d)
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The equation (6.58) can be written in the matrix form

Ξ3 : ė3 = Â3e3 + B̂3u3, (6.59)

where u3 = [v2, u3]. Suppose that the system is unforced with respect to v2, the nominal

system is

ė31 = η(p31)v3 (6.60a)

ė32 = η(p32)v3 (6.60b)

v̇3 = f̂3(v3, w3) + ĥ3(v3, w3)u3 (6.60c)

ẇ3 = f̌3(v3, w3) + ȟ3(v3, w3)u3, (6.60d)

and it can be written in a linear-like form as

Σ3 : ė3 = A3e3 +B3u3. (6.61)

One can write the associated nominal optimal control problem for the agent #3 as

J3 = min
1

2

∫ ∞
0

{e3
TQ3e3 + u3

TR3u3}dt

s.t.

ė3 = A3e3 +B3u3

Q3 ≥ 0

R3 > 0.

(6.62)

The following theorem provides the control law that guarantees the asymptotic stability

of the closed-loop system’s origin and, consequently, the asymptotic convergence of e3 to

zero.

Theorem 6.5. For the agent #3, described by the nonlinear affine model (6.43), under

Assumption 6.1, the control law

u3 = −R3
−1B3

TS3e3, (6.63)

where S3 is the positive definite solution of the following state-dependent Riccati equation

Q3 + A3
TS3 + S3A3 − S3B3R3

−1B3
TS3 = 0, (6.64)

achieves local asymptotic stability of the origin of the closed-loop system, hence the desired

distance-based formation.

Proof. The origin of the system ∆2 : ė2 = f2(e2) is asymptotically stable. Given
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Assumption 6.1, the control law (6.63) results in an asymptotic stability of the system

Σ3 : ė3 = f3(e3, 0). Thus, the system Ξ3 : ė3 = f3(e3, e2) is locally input-to-state stable.

Based on Theorem 2.7, we conclude that the origin of the interconnected system

∆3 :

{
ė2 = f2(e2)

ė3 = f3(e3, e2),
(6.65)

is locally asymptotically stable.

Corollary 6.5.1. Let us select

Q3 = κ3diag[q31, q32, qv3 , qw3 ], (6.66)

where

κ3 =
A∗ − A
A∗ + A

, (6.67)

and A∗ and A are desired and actual signed area of the triangle between the agents (1, 2, 3),

and

q3m = κ3m + µ3m m ∈ {1, 2}, (6.68)

where κ3m is a positive constant and µ3m is a positive barrier multiplier defined by

µ3m = (
d∗3m

d3m − rd3m
)ε, (6.69)

for suitable ε ≥ 1, and rd3m being a safe distance between pair of agents to prevent

collision. Also, qv3 and qw3 are appropriate positive definite matrices. Then, by using

the weighting factor (6.66), the proposed SDRE control law (6.63) guarantees an inter-

agent collision avoidance and prevents a flip ambiguity of the agent #3 in the directed,

distance-based formation.

Proof. The weighting matrix Q3 approaches infinity if the collision avoidance condition

or signed area condition are violated. Thus, based on the method proposed in [147], we

conclude that the SDRE control law prevents the collision of agent #3 with the leader

and the first-follower. Moreover, it prevents agent #3 from converging to the reflected

position.

For the agent #4, the aggregate error vector is e4 = [e41, e42, e43, v4
T , w4

T ]. The
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formation error dynamics can be written as

ė41 = η(p41)v4 (6.70a)

ė42 = η(p42)(v4 − v2) (6.70b)

ė43 = η(p43)(v4 − v3) (6.70c)

v̇4 = f̂4(v4, w4) + ĥ4(v4, w4)u4 (6.70d)

ẇ4 = f̌4(v4, w4) + ȟ4(v4, w4)u4. (6.70e)

It can also be written in a matrix form as

Ξ4 : ė4 = Â4e4 + B̂4u4, (6.71)

where u4 = [v2
T , v3

T , u4
T ]T . The corresponding unforced nominal system is

ė41 = η(p41)v4 (6.72a)

ė42 = η(p42)v4 (6.72b)

ė43 = η(p43)v4 (6.72c)

v̇4 = f̂4(v4, w4) + ĥ4(v4, w4)u4 (6.72d)

ẇ4 = f̌4(v4, w4) + ȟ4(v4, w4)u4, (6.72e)

and can be written in the linear-like form as

Σ4 : ė4 = A4e4 +B4u4. (6.73)

The associated nominal optimal control problem can be formulated as

J4 = min
1

2

∫ ∞
0

{e4
TQ4e4 + u4

TR4u4}dt

s.t.

ė4 = A4e4 +B4u4

Q4 ≥ 0

R4 > 0.

(6.74)

The following theorem specifies the control law for agent #4 that guarantees the conver-

gence to the desired formation.

Theorem 6.6. For the agent #4 described by the nonlinear model (6.43) under Assump-

tion 6.1, the distributed control law

u4 = −R4
−1B4

TS4e4, (6.75)
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where S4 is the unique solution of the equation

Q4 + A4
TS4 + S4A4 − S4B4R4

−1B4
TS4 = 0, (6.76)

achieves local asymptotic stability of the origin for the closed-loop, directed, distance-based

formation system.

Proof. The control law (6.75) is the stabilizing control of the nominal system Σ4 : ė4 =

f4(e4, 0, 0) provided that Assumption 6.1 is satisfied. Thus, according to the Theorem 2.4,

the system Ξ4 : ė4 = f3(e4, e3, e2) is input-to-state stable with respect to (e3, e2). We

have shown that the system ∆3 is asymptotically stable. Thus, based on the Theorem

2.7 the origin of interconnected system

∆4 :


ė2 = f2(e2)

ė3 = f3(e3, e2)

ė4 = f4(e4, e3, e2),

(6.77)

is locally asymptotically stable.

Corollary 6.6.1. Select

Q4 = κ4diag[q41, q42, q43, qv4 , qw4 ], (6.78)

where

κ4 =
V∗4 − V4

V∗4 + V4

, (6.79)

and V∗4 and V4 are desired and actual signed volume of the tetrahedron between the clique

(1, 2, 3, 4), and

q4m = κ4m + µ4m m ∈ {1, 2, 3}, (6.80)

where κ4m > 0 is a constant and µ4m is a positive barrier multiplier defined by

µ4m = (
d∗4m

d4m − rd4m
)ε, (6.81)

for suitable ε ≥ 1, rd4m is a safe distance between pair of agents to prevent collision, and

qv4, qz4 are the appropriate weighting matrices. Then, by using the weighting factor (6.78),

the proposed SDRE control law (6.75) guarantees an inter-agent collision avoidance of the

neighboring agents and prevents a flip ambiguity of the directed, distance-based formation.

Proof. The proof is similar to the proof of the Corollary 6.5.1.

Since the topology of the desired formation is assumed to be a directed trilateral

Laman graph, it can be constructed via a sequence of directed vertex addition operations.
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Consequently, for the next follower, say agent i, which is added to an existing directed

trilateral Laman graph via Henneberg directed vertex addition sequence, the error vector

is ei = [eij, eil, eik, vi
T , wi

T ]T . The aggregate error dynamics can be written as

ėij = η(pij)(vi − vj) (6.82a)

ėil = η(pil)(vi − vl) (6.82b)

ėik = η(pik)(vi − vk) (6.82c)

v̇i = f̂i(vi, wi) + ĥi(vi, wi)ui (6.82d)

ẇi = f̌i(vi, wi) + ȟi(vi, wi)ui. (6.82e)

The equation (6.82) can be written in the matrix form as

Ξi : ėi = Âiei + B̂iui (6.83)

where ui = [vj
T , vl

T , vk
T , ui

T ]T . The corresponding unforced nominal system is

ėij = η(pij)vi (6.84a)

ėil = η(pil)vi (6.84b)

ėik = η(pik)vi (6.84c)

v̇i = f̂i(vi, wi) + ĥi(vi, wi)ui (6.84d)

ẇi = f̌i(vi, wi) + ȟi(vi, wi)ui. (6.84e)

In a linear-like form it can be written as

Σi : ėi = Aiei +Biui. (6.85)

The associated nominal optimal control problem can be formed as

Ji = min
1

2

∫ ∞
0

{eiTQiei + ui
TRiui}dt

s.t.

ėi = Aiei +Biui

Qi ≥ 0

Ri > 0.

(6.86)

The following theorem offers the associated distributed controller for agent i which guar-

antees the convergence of the desired formation.

Theorem 6.7. For the agent i described by the nonlinear model (6.43), under Assump-
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tion 6.1, the distributed control law

ui = −Ri
−1Bi

TSiei, (6.87)

where Si is the unique solution of the equation

Qi + Ai
TSi + SiAi − SiBiRi

−1Bi
TSi = 0, (6.88)

achieves the local asymptotic stability of the origin of the closed-loop, directed, distance-

based formation.

Proof. The control law (6.87) is the stabilizing control of the nominal system Σi under

Assumption 6.1; thus, the system Ξi is locally input-to-state stable. The stability analysis

is based on induction method and similar to the proof of Theorem 6.6 with similar

argument about the stability analysis of interconnected systems. Using the mathematical

induction, one can show that the system ∆i−1, which is the interconnected system of

i − 1 agents, is asymptotically stable. Thus, based on Theorem 2.7 the origin of the

interconnected system

∆i :



ė2 = f2(e2)

ė3 = f3(e3, e2)

...

ėi = fi(ei, ..., e2)

(6.89)

is locally asymptotically stable.

Remark 2: The error vector of the agent i, ei, is consisted of associated edge errors

that are being measured in the agent’s local coordinate frame and the agent’s states

except its global position pi. Therefore, the proposed control method is distributed.

Remark 3: The analytical solution of the SDRE equation is extremely challenging

except for very simple scalar systems as shown in [123], [124]. However, there are very

effective numerical methods for solving SDRE proposed in the literature [124].

Corollary 6.7.1. Select

Qi = κidiag[qij, qil, qik, qvi , qzi ], i ≥ 4 (6.90)

where

κi =
V∗i − Vi

V∗i + Vi

, (6.91)

and V∗i and Vi are desired and actual signed volume of the tetrahedron between the clique
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(i, j, l, k), and

qim = κim + µim m ∈ {j, l, k}, (6.92)

where κim > 0 is a constant and µim is a positive barrier multiplier defined by

µim = (
d∗im

dim − rdim
)ε, (6.93)

for suitable ε ≥ 1, and rdim being a safe distance between pair of agents to prevent colli-

sion. Then, by using the weighting factor (6.90), the proposed SDRE control law (6.87)

guarantees inter-agent collision avoidance of the neighboring agents and prevents the flip

ambiguity of the directed distance-based formation.

Proof. The proposed inverse barrier function is

Φi = eTi Qiei, (6.94)

where Qi is defined by (6.90). Adding the proposed inverse barrier function (6.94) to the

cost functional of the corresponding optimal control problem yields the corresponding

unconstrained problem. If conditions for collision avoidance or reflection avoidance have

been violated, then the proposed barrier function (6.94) will approach infinity, and based

on [147], it will prevent collision avoidance between neighboring agents.

Remark 5: Although the stability results of the proposed method are local, the do-

main of attraction may include reflected configurations. Therefore, using the proposed

reflection prevention method has both practical and theoretical significance.

6.4 Simulation Results

6.4.1 2-D Space

We present here the simulation results of the proposed distributed control law for two

different topologies. The desired formation is assumed to be a directed triangulated

Laman graph in both cases.

Figure 6.1 shows the desired directed distance-based formation topology for a set of

N = 4 agents, a rectangle with a side length of d = 10. Accordingly, the desired length

of the edge e32 is d32 =
√

200. The leader is stationary since it has no constraint to

satisfy. The controllers’ parameters are selected as µim = 1, rdim = 2, and ε = 2 for all

simulations.
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Figure 6.1: Desired directed distance-based formation for N = 4 agents.

Figure 6.2: Trajectories of N = 4 agents modeled by nonlinear dynamics (6.95) using the
proposed control method.

The agents are modeled as

ẋ = vx

ẏ = vy

v̇x = v2
x + 2vy + (1 + vx)ux

v̇y = vxvy + (1 + vy)uy

ż = −z + ux + uy

(6.95)

Figure 6.2 shows the result of proposed controller, i.e. agents’ trajectories in 2-D

space. The leader is placed at p1 = [−5,−5]. Initial locations of the agents are selected

as p2 = [−35,−5], p3 = [0;−10], and p4 = [−15;−25]. Figure 6.3 shows the formation
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Figure 6.3: Formation errors for N = 4 agents.

Figure 6.4: Desired directed distance-based formation for N = 5 agents.

errors corresponding to simulation in Figure 6.2.

Next, we simulated a proposed control scheme for a set of N = 5 nonlinear agents.

The new desired topology is shown in Figure 6.4. The desired distances between agents

are selected as: d21 = 10, d31 = 10, d32 =
√

200, d42 =
√

200, d43 =
√

400, d53 =
√

200,

d54 =
√

200. The initial position of the agents are selected as p2 = [−35,−5], p3 =

[−20;−30], p4 = [−30,−25], and p5 = [−10;−30]. The leader’s position was remained

unchanged.

Figure 6.5 shows the agents’ trajectory for N = 5 agents. Despite changes in the

agents’ initial positions, the proposed method successfully achieves the desired distance-

based formation topology for highly nonlinear agents.

Figure 6.6(top) shows the formation error of the edge e21 corresponding to the simu-

lation of Figure 6.5 while Figure 6.6(bottom) shows the inputs of the agent 2, ux and uy,
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Figure 6.5: Trajectories of the set of N = 5 agents using the proposed controller.

respectively. Figure 6.7, Figure 6.8, and Figure 6.9 depict the convergence of the edge

errors and input controls of the agent #3, agent #4, and agent #5, respectively.

6.4.2 3-D Space

This subsection presents simulation results of the proposed distance-based formation

control over directed trilateral Laman graphs.

Figure 2.12(a) shows the desired, distance-based formation shape in 3-D space. The

desired configuration is in the form of a directed trilateral Laman graph. Note that the

leader is not responsible for any edges; thus, it is stationary. The simulation results

for a set of nonlinear heterogeneous agents are provided. Since this work is the first

study considering heterogeneous nonlinear dynamics, we chose a set of complex, highly

nonlinear models that satisfy the SDRE feasibility conditions. The agents’ models are as

follows.

The leader is placed at p1 = [20, 20, 30]. The agent #2 (first follower) is modeled as

ẋ2 = v2x

ẏ2 = v2y

ż2 = v2z

v̇2x = 2v2x + (1 + v2x)u2x

v̇2y = 2v2y + (1 + v2y)u2y

v̇2z = 2v2z + (1 + v2z)u2z

(6.96)
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Figure 6.6: Formation error and control inputs of the agent #2 associated with the
simulation of Figure 6.5
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Figure 6.7: Formation errors and control inputs of the agent #3 associated with the
simulation of Figure 6.5
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Figure 6.8: Formation errors and control inputs of the agent #4 associated with the
simulation of Figure 6.5
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Figure 6.9: Formation errors and control inputs of the agent #5 associated with the
simulation of Figure 6.5
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where the initial position of the agent #2 is p2 = [50, 20, 30]. The agent #3 is modeled

as

ẋ3 = v3x

ẏ3 = v3y

ż3 = v3z

v̇3x = v3x + u3x

v̇3y = v3y + u3y

v̇3z = v3z + u3z

ẇ3 = −w3 + u3x + u3y + u3z

(6.97)

where the initial position of the follower #3 is p3 = [50,−30, 20]. The agent #4 is modeled

as

ẋ4 = v4x

ẏ4 = v4y

ż4 = v4z

v̇4x = v2
4x + u4x

v̇4y = v2
4y + u4y

v̇4z = v2
4z + u4z

(6.98)

where the initial position of the follower #4 is p4 = [−10, 20,−10].

Figure 6.10 shows trajectories for a set of N = 4 agents in 3-D space using the proposed

controller. Figure 6.11 shows the formation errors corresponding to the formation shown

in Figure 6.10. Figure 6.12 shows the control inputs of agent #2, agent #3, and agent

#4.

Next, we add agent #5 to the desired formation using the directed vertex addition

operation. The new desired formation is shown in Figure 2.6(b). Agent #5 is modeled

as

ẋ5 = v5x

ẏ5 = v5y

ż5 = v5z

v̇5x = v5zv5x + u5x

v̇5y = v2
5y + u5y

v̇5z = v5xv5z + u5z

(6.99)

where the initial position of the follower #5 was selected as p5 = [30,−20, 50].
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Figure 6.10: A distributed directed distance-based formation for N = 4 agents using the
proposed controller.

Figure 6.11: Formation errors of the simulation 6.10.
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Figure 6.12: Control inputs of the agent #2, agent #3, and agent #4 corresponding to
the formation in Figure 6.10.
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Figure 6.13: Trajectories of the agents for N = 5 agents using the proposed controller.

Figure 6.13 shows the agents’ trajectory where the agent #5 is added. Figure 6.14

shows the formation errors of the edges that were assigned to the agent #5. Figure 6.15

shows the input signals of the agent #5.

To validate the results of the proposed reflection prevention method, we run a set

of simulations. We first simulated the proposed controller without signed volume con-

straints. The results show the flip ambiguity of the formation. Afterward, the signed

area constraints are added to the controller. Figure 6.16 (top) shows the controller per-

formance without the signed volume constraints where p5 = [10, 60, 10]T and Qi matrices

were selected as constant identity matrix. All other parameters remained unchanged. It

shows that agent #5 moved to the reflected position, making the configuration flip am-

biguous. Figure 6.16 (bottom) shows the simulation results while the proposed weighting

matrix in Corollary 6.7.1 is utilized. The simulation results show that the proposed con-

troller, with signed volume constraints, prevented the convergence of the agent #5 to the

reflected position.

6.5 Conclusions

In this chapter, a distributed, distance-based formation control problem for a set of

nonlinear agents is studied. We modeled the desired formation topology as directed tri-

angulated or trilateral Laman graphs and agents as a general, affine, nonlinear dynamics.

We formulated the distance-based formation control in a nonlinear optimal control frame-

work and proposed a state-dependent Riccati equation (SDRE) method-based controller
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Figure 6.14: Formation errors assigned to the agent #5.

Figure 6.15: Input signals of the agent #5.
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Figure 6.16: Simulation result of the proposed controller without signed volume con-
straints (top) and with the signed volume constraints that prevents flip ambiguity of the
formation (bottom).
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which ensures that all agents asymptotically converge to the desired framework. The

rigorous stability analysis is presented for the proposed control scheme. Furthermore, to

solve the problem of reflection of the desired formation, the proposed control law uses

a signed area and signed volume constraints to prevent the formation’s flip ambiguity.

The proposed method also guarantees collision avoidance between the neighboring agent

pairs.
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Chapter 7

Robust Optimal Distance-Based

Formation Control

7.1 Introduction

Nonlinear systems are often subject to uncertainties such as unmodeled dynamics or

model perturbation. Although the SDRE method offers a handy tool for optimal control

of nonlinear systems, it is not robust against uncertainties and disturbances. There-

fore, the controller might have poor performance or even be unstable in the presence of

uncertainty. There are several proposed methods to make an optimal controller robust,

including the robust LQR [155], H2/H∞ [156], adaptive dynamic programming [157], and

sliding mode control [158], [159]. The integral sliding mode method is introduced in [160]

and combined with optimal control in [161], [162] and [163].

This chapter studies the formation control problem with distance constraints for a set

of nonlinear agents where agents’ dynamics are affected by uncertainties. The respon-

sibility of controlling an edge is assigned to only one of its adjacent agents; therefore,

directed graph theory is used to represent the desired formation topology.

7.2 Controller Design

In this section, we study the distributed, directed, distance-based formation control under

uncertainty. We research formations with agents subject to various unknown uncertain-

ties. We proposed a robust controller that can overcome the effect of uncertainty and

stir the agent to the desired framework. Furthermore, the proposed robust optimal con-

trol scheme guarantees the asymptotic stability of the overall formation. The results

presented in this section are applicable to both 2-D and 3-D spaces, where the desired

topology is assumed to be given as a directed triangulated Laman graph (in 2-D) or a

directed trilateral Laman graph (in 3-D).
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Suppose that each agent model is described by an affine nonlinear model

ẋi = fi(xi) + hi(xi)ui + φi(xi, t), (7.1)

where xi ∈ Rp and ui ∈ Rq are agent’s state and input vectors. The functions fi and

hi are C1 and C0 mappings, respectively. Function φi(xi, t) ∈ Rp represents all additive

uncertainties such as unmodeled dynamics and model perturbations and assumed to have

a bounded 1-norm, ‖φi‖1 < εi. Provided that fi(0) = 0, the agent’s model (7.1) can be

written in the following linear-like form

ẋi = Ai(xi)xi + Bi(xi)ui + φi(xi, t), (7.2)

where fi(xi) = Ai(xi)xi and hi(xi) = Bi(xi).
Since the desired formation is described as a set of distance constraints, the state

vector should include the agent’s position pi. Thus, the state vector of the agent i can be

partitioned as xi = [pTi , w
T
i ]T , where wi is the vector of remaining states. We can write

the agent’s model (7.1) as

ṗi = f̂i(xi) + ĥi(xi)ui + φ̂i (7.3a)

ẇi = f̌i(xi) + ȟi(xi)ui + φ̌i, (7.3b)

where functions f̂i, f̌i, ĥi, ȟi, φ̂i, and φ̌i are corresponding parts of fi, hi, and φi, respec-

tively.

For a pair of neigbouring agents, the relative position is

pij = pi − pj, (i, j) ∈ E . (7.4)

Note that pij can be measured by the source agent i in its own coordinate system. Thus,

the distance between the pair of adjacent agents is given by

dij = ‖pij‖. (7.5)

It is assumed that the desired distance-based formation is specified in terms of a set

of distance constraints, where d∗ij is the desired distance between agent i and agent j.

Consequently, the edge error can be written as

eij = dij − d∗ij. (7.6)

The objective of formation control is to control agents such that they form and preserve

a specific geometric shape. A distance-based formation control problem for a set of

nonlinear, heterogeneous agents modeled as (7.1) is to design a distributed stabilizing
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control law ui such that

lim
t→∞

eij −→ 0 ∀(i, j) ∈ E . (7.7)

Note that, for the sake of having a stable, persistent formation, in addition to (7.7), the

overall formation should also be stable.

The edge error is defined in (7.6). Thus, the edge error dynamics is

ėij =
d

dt

√
(pij)T (pij)

=
pTij ṗij

‖pij‖
.

(7.8)

Substituting the agent dynamics (7.3) in the edge error dynamics (7.8) yields

ėij = η(pij){f̂i(xi) + ĥi(xi)ui + φ̂i − (f̂j(xj) + ĥj(xj)uj + φ̂j)}, (7.9)

where η(pij) =
(pij)T

‖pij‖ is the relative bearing function. Rearranging the equation (7.9), the

edge error dynamics can be written as

ėij = η(pij)f̂i(xi) + η(pij)ĥi(xi)ui + lij + φij, (7.10)

where

lij = −η(pij)(f̂j + ĥjuj), (7.11)

and

φij = η(pij)(φ̂i − φ̂j), (7.12)

is an auxiliary uncertainty function.

For the agent i that is responsible for preserving its distance to its neighbors, the

formation error vector is

êi = [..., eij, ...]
T , j ∈ Ni. (7.13)

Remark 7.1. It is to be noted that the formation error vector of the agent i depends only

on the relative positions of agents’ neighbors since agent i only requires to have access to

its neighbors’ relative positions on its local coordinate system.

Remark 7.2. Since the agent #1 (the leader) is not responsible for any edge, it is sta-

tionary. For the agent #2, that is responsible for preserving its distance with the leader,

ê2 = [e12]. For the agent #3, the error vector is ê3 = [e31, e32]T . For the next follower,

agent i in a triangulated Laman graph topology the error vector is êi = [eij, eik]
T where

{j, k} ∈ Ni. Accordingly, in trilateral Laman topologies we can write êi = [eij, eik, eil]
T

where {j, k, l} ∈ Ni.
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Since the topology of the desired formation is assumed to be directed triangulated or

trilateral Laman graphs, it can be constructed via a sequence of triangulation or trilat-

eration operations, respectively. Consequently, for the next follower, say agent i, which

is added to an existing directed Laman graph via Henneberg directed vertex addition

sequence, the aggregate error vector is ei = [êTi , wi
T ]T . The aggregate error dynamics

can be written as

˙̂ei =Fi(ei) +Hi(ei)ui + ϕi + Li (7.14a)

ẇi =f̌i(ei) + ȟi(ei)ui + φ̌i, (7.14b)

where ϕi and Li are matrix form functions of φij and lij for ∀j ∈ Ni. Also, Fi and Hi

are corresponding matrix valued functions. Neglecting the effect of neighbors Li, the

equation (7.14) can be written in the following matrix form

ėi = Aiei +Biui + Φi. (7.15)

The uncertainty function Φi is bounded since its every component is bounded. Thus,

equation (7.15) represents the dynamics of the formation error and states of the agent i.

The objective is to design a control law such that under bounded uncertainty, the origin

of the system (7.15), which corresponds to the desired formation, becomes asymptotically

stable.

The proposed control method has three steps. First, for the nominal system without

uncertainties, we design an optimal, infinite horizon SDRE controller that can asymp-

totically stabilize the nominal system. Second, to design the controller that can handle

uncertainties, we propose the SDRE controller in combination with an integral sliding

mode control scheme that can stabilize the uncertain system. Stability analysis is driven

based on the Lyapunov stability theory. Third, using the stability theory of cascade-

connected systems, we show that the overall directed distance-based formation of N

nonlinear, heterogeneous agents, subjected to bounded uncertainties, is asymptotically

stable.

Neglecting the uncertainty of the system (7.15), the nominal system is

ėi = Aiei +Biui. (7.16)

We propose a nonlinear, infinite horizon SDRE controller for the nominal system that

asymptotically stabilizes the system. To meet SDRE feasibility condition we establish

the following assumption.

Assumption 7.1: The pair {Ai, Bi} is point-wise stabilizable in the linear sense for all

x in some non-empty neighborhood of the origin.

Remark 7.3. Reference [154] proves that there always exist a stablizable and detectable
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SDC representation of the system (7.14) unless {ei, [F T
i (ei), f̌

T
i (ei)]

T} be linearly depen-

dent and Q
1/2
i ei = 0. Therefore, by proper selection of Qi we can guarantee the existence

of such a stablizable and detectable SDC representation.

The distributed optimal control problem for the agent i is

Ji = min
1

2

∫ ∞
t0

{eTi Qiei + uTi Riui}dt

s.t.

ėi = Aiei +Biui

Qi = diag[Qêi , Qwi
] > 0

Ri > 0.

(7.17)

where Qêi = diag[..., qij, ...] for j ∈ Ni and Qwi
is the weighting matrix of remaining

states.

Remark 7.4. For any matrix Ei that ei lies in its null space, ėi = (Ai + Ei)ei + Biui is

also another SDC representation of the system (7.15).

Remark 7.5. By choosing a positive definite Qi, detectability of the pair {Q1/2
i , Ai} is

guaranteed [127].

Theorem 7.1. Given Assumption 7.1, the distributed control law

uSDREi = −R−1
i BT

i Siei, (7.18)

where Si is a unique and positive-definite solution of the corresponding state-dependent

Riccati equation

Qi + ATi Si + SiAi = SiBiR
−1
i BT

i Si, (7.19)

guarantees asymptotic stability of the origin of the nominal system (7.16).

Proof. Given Assumption 7.1, the Lemma 2.9 is applicable to the nominal system (7.16),

and thus the control law (7.18) is the stabilizing control of the nominal system.

Remark 7.6. Substituting the control law (7.18) in the nominal system (7.16), the nominal

closed-loop dynamics is

ėi = {Ai − BiR
−1BT

i Si}ei. (7.20)

Theorem 7.1 provides solution of the nonlinear optimal control problem (7.17) where

the SDRE control law (7.18) stabilizes the nominal system (7.16). However, this does not

guarantee the stability of the uncertain system (7.15). In order to stabilize the uncertain

system, we propose the robust optimal controller presented next.
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Let us define an integral sliding surface, si, as

si = Gi[ei(t)− ei(t0)−
∫ t

t0

{Aiei +Biu
SDRE
i }dτ ], (7.21)

where the matrix Gi is to be selected such that (GiBi) is nonsingular. The following

theorem represents our main result, which provides a robust optimal controller as a

combination of SDRE and ISMC.

Theorem 7.2. Given Assumption 7.1, the distributed robust optimal control law of the

agent i

ui = uSDREi + uISMC
i , (7.22)

where uSDREi is the SDRE based control law of the nominal system, obtained in (7.18),

and uISMC
i is a integral sliding mode control law, defined as

uISMC
i = −(GiBi)

−1(αisi + βi‖Gi‖1sgn(si)), (7.23)

in which positive scalars αi, βi to be designed appropriately, results in the asymptotic

stability of the uncertain system (7.15) and ensures that the agent i converges to its

predefined distance-based formation.

Proof. The derivative of the integral sliding surface is

ṡi = Gi{ėi − Aiei − Biu
SDRE
i }. (7.24)

Substituting the aggregate error dynamics (7.15) in derivative of the sliding surface (7.24),

one can write

ṡi = Gi{Aiei +Biui + Φi − Aiei − Biu
SDRE
i }. (7.25)

Substituting (7.18) in (7.25) results in

ṡi = Gi{Biui + Φi +BiR
−1
i BT

i Siei}. (7.26)

The proposed positive definite Lyapunov candidate function is

Vi =
1

2
sTi si. (7.27)

Thus, the derivative of proposed Lyapunov candidate function is

V̇i = sTi ṡi. (7.28)
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Therefore, by showing

V̇i < 0 for all si 6= 0, (7.29)

it is proven that the integral sliding surface is globally asymptotically reachable.

Substituting (7.26) in (7.28), with some mathematical manipulation, one can write

V̇i = sTi

{
GiBiui +GiΦi +GiBiR

−1
i BT

i Siei

}
. (7.30)

Substituting (7.22) in (7.30) yields

V̇i = sTi

{
GiBiu

SDRE
i +GiBiu

ISMC
i

+GiΦi +GiBiR
−1
i BT

i Siei

}
= sTi

{
−GiBiR

−1
i BT

i Siei

−GiBi(GiBi)
−1(αisi + βi‖Gi‖1sgn(si))

+GiΦi +GiBiR
−1
i BT

i Siei

}
= sTi

(
GiΦi − αisi − βi‖Gi‖1sgn(si)

)
= sTi GiΦi − αisTi si − βi‖Gi‖1s

T
i sgn(si)

= sTi GiΦi − αi‖si‖2
2 − βi‖Gi‖1‖si‖1.

(7.31)

The Lyapunov candidate function is scalar, thus, sTi GiΦi is scalar and from the properties

of the l1-norm we can write

‖sTi GiΦi‖1 ≤ ‖si‖1‖Gi‖1‖Φi‖1. (7.32)

Replacing (7.32) in derivative of Lyapunov candidate function, one can show

V̇i = sTi GiΦi − βi‖Gi‖1‖si‖1 − αi‖si‖2
2

≤ ‖si‖1‖Gi‖1‖Φi‖1 − βi‖Gi‖1‖si‖1 − αi‖si‖2
2

(7.33)

Therefore, for any βi satisfying the following inequality

βi > ‖Φi‖1, (7.34)

V̇i is strictly negative and therefore under the proposed robust optimal controller (7.22),

the integral sliding surface si is globally asymptotically reachable. This proves that the

proposed control law (7.22) drives the system trajectories toward the integral sliding

surface and remains on it regardless of the initial conditions of the system.
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Remark 7.7. One can show that

‖Φi‖1 < εi +
∑
j∈Ni

εj. (7.35)

7.2.1 Matched Uncertainty

The uncertainty is said to be matched if the uncertainty function can be written as

Φi = BiΠi. In other words, if uncertainty is applied through the input channel, it is

matched; otherwise, it is unmatched. It is well-known that generally compensating the

effect of matched uncertainty is easier than unmatched one [159].

For the system on the sliding surface, we have

si = 0

ṡi = 0.
(7.36)

From (7.26), for a system with a matched uncertainty on the sliding surface, we can write

ṡi = 0

= GiBiu
?
i +GiBiΠi +GiBiR

−1
i BT

i Siei = 0,
(7.37)

where u?i is the control on the integral sliding surface. Thus

u?i = −Πi −R−1
i BT

i Siei. (7.38)

Substituting u?i in system dynamics (7.15), the closed-loop dynamics of the system with

matched uncertainty is

ėi = {Ai − BiR
−1BT

i Si}ei. (7.39)

One can see that for a system with matched uncertainty, the closed-loop system

dynamics (7.39) is precisely the same as the closed-loop dynamics of the SDRE controlled

nominal system (7.20). In other words, for a system with a matched uncertainty, the

proposed controller can completely compensate the effect of the uncertainty. Furthermore,

from (7.21) one can see that si(t0) = 0. Thus, a system with matched uncertainty will

stay on the sliding surface for t > t0, which means that the trajectories of the uncertain

system (7.15) with the proposed control law (7.22) are the same as the state trajectories

of the nominal system (7.16) under the SDRE controller (7.18).

Theorem 7.2 provides a controller that makes the closed-loop system asymptotically

stable and ensures achieving the desired distance constraints. Note that, based on the

ISMC theorem, we showed that the given control law in (7.22) preserves the asymptotic

optimality of the SDRE controller for the multi-agent systems with matched uncertainty.
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7.3 Formation Stability

In the previous section, we designed a distributed robust optimal controller that steers

agent i to its desired formation and satisfies the distance constraints assigned to it. This

section shows that the proposed distributed controller also results in the asymptotic

stability of the overall formation. In other words, the collective objective of the group of

agents will be reached based on action of individual controllers for each agent.

Theorem 7.3. Suppose that the desired formation is specified in the form of a directed

triangulated Laman graph in 2-D or a directed trilateral Laman graph in 3-D space and

Assumption 7.1 is valid for all 2 ≤ i ≤ N . Then, for a set of uncertain nonlinear multi-

agent systems that is modeled as (7.1), the distributed robust optimal control law (7.22)

guarantees the asymptotic stability of the overall distance-based formation.

Proof. We use the mathematical induction method to show the asymptotic stability of

the overall formation of N nonlinear, heterogeneous agents. First, we show the stability

of agent #2. Next, we show the stability of the overall system of agent #3 and agent #2.

Finally, repeating this induction-based procedure, we prove that the overall formation of

the agent i,..., agent #2 is asymptomatically stable.

Theorem 7.1 provides the asymptotic stabilizing control for the nominal system (7.16)

where 2 ≤ i ≤ N . Since the agent #2 (first-follower) is only responsible for controlling

its distance toward agent #1 (the leader), therefore we have φ21 = η(p21)φ̂2. Since the

uncertainty function φ̂2 is assumed to be bounded, therefore the boundedness of ϕ2 is

assured and the boundedness of Φ2 is guaranteed. This guarantees the applicability of

Theorem 7.2 which guarantees the asymptotic stability of agent #2 under uncertainty.

For the agent #3, from (7.12), one can confirm that φ31 = η(p31)φ̂3 and φ32 = η(p32)(φ̂3−
φ̂2). This guarantees the boundedness of ϕ3, Φ3, and thus applicability of Theorem 7.2.

Also, from the equation (7.11) and (7.22) one can verify that L3 solely depends on e2

and s2. Based on Theorem 7.2 where i = 3 and according to the Theorem 2.4, it is

obvious that the system (7.14) where i = 3 is ISS with respect to L3. Then, based

on Lemma 2.15 we can conclude that the origin of the following interconnected system

(overall LFF triangle formation)

∆3 :

{
ė2 = f2(e2, s2,Φ2)

ė3 = f3(e3, s3,Φ3, e2, s2,Φ2)
(7.40)

is asymptotically stable.

Using the mathematical induction, one can show that the overall system of cascade

interconnected i − 1 agents, ∆i−1, is asymptotically stable. We show that for the last

agent i, the interconnected system is also asymptotically stable, and then the proof is
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finished. The control law (7.18) is the stabilizing control of the nominal system (7.16).

According to (7.12), the uncertainty function ϕi depends on φ̂i and φ̂j ∀j ∈ Ni. There-

fore, boundedness of Φi is guaranteed and consequently Theorem 7.2 is applicable. Thus,

the system (7.15) is asymptotically stable, and therefore, based on theorem 2.3, it is obvi-

ous that the system (7.14) is locally ISS with respect to Li. Then according to Theorem

2.7 the origin of interconnected system

∆i :



ė2 = f2(e2, s2,Φ2)

ė3 = f3(e3, s3,Φ3, e2, s2,Φ2)

...

ėi = fi(ei, si,Φi, ..., ej, sj,Φj, ...)

(7.41)

where j ∈ Ni, is locally asymptotically stable.

7.4 Selection of Weighting Matrices

Selection of state-dependent weighting matrices of the cost functional provides a very ef-

fective tool to include some desired constraints and/or performance adjustments [146], [147].

Thus, the weighting matrices of the cost functional can be chosen accordingly. In Chap-

ter 4, we proposed an input weighting selection procedure that prevents from depleting

the energy of the electrically sourced agents. We also proposed state weighting matrix

selection procedures in Chapter 5, that prevent from flip ambiguity in distance-based

formations in 2-D and 3-D spaces, respectively.

For a formation edge eij, let us define the corresponding weighting factor as

qij = %ij + µij ∀j ∈ Ni, (7.42)

where %ij ∈ R+ is a constant and µij is a positive barrier multiplier defined by

µij = (
d∗ij

dij − rdij
)ε, (7.43)

for suitable ε ≥ 1, and rdij being a safe distance between pair of agents i and j to prevent

the collision. Then, the following theorem, which offers the weighting matrices selection

procedure for preventing the collision of the neighboring agents and reflection of the

formation, can be presented.

Theorem 7.4. For a nominal SDRE controller in Theorem 7.1, let state weighting matrix

be selected as

Qi = κidiag[..., qij, ..., qwi
], ∀j ∈ Ni (7.44)
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where

κi =

{ A∗
i−Ai

A∗
i +Ai

, if dg+
i = 2

V∗
i−Vi

V∗
i +Vi

, if dg+
i = 3

(7.45)

and A∗i , Ai, V∗i and Vi are desired signed area, actual signed area, desired signed volume

and actual signed volume of the corresponding triangle or tetrahedron formed by agent i

and its neighbors. Then, the proposed control law (7.22), alongside asymptotic stability

of the desired formation, prevents flip ambiguity of the directed distance-based formation

and guarantees inter-agent collision avoidance of the neighboring agents.

Proof. Proof can be found in Chapter 5, thus omitted here.

7.5 Simulation Results

In this section, we present simulation results of the proposed robust optimal controller

for different scenarios. We studied different desired formation shapes in both 2-D and

3-D spaces for different sets of multi-agent systems. Moreover, we considered the forma-

tion control problem for groups of homogeneous agents and heterogeneous agents with

different nonlinear dynamics. Finally, we also considered both matched and unmatched

uncertainty situations. To prevent chattering of control, we can use a sigmoid function

or a saturation function instead of the signum function [164]. In simulations, we used the

saturation function where it is defined as

sat(x) =

{
x |x| ≤ 1

sgn(x) |x| > 1
. (7.46)

It is easy to show that the results and proof of the Theorem 7.2 are still valid under this

modification [165].

7.5.1 2-D Space

Figure 7.1 shows the desired directed distance-based formation topology for a set of N = 6

agents in 2-D space. All desired distances between agents are selected as dij = 10. Since

the desired formation is directed triangulated Laman graph, the leader is not responsible

for any edge and therefore leader is stationary. The SDRE controllers’ parameters are

selected as %ij = 1, rdij = 2, ε = 2, and Ri = I for all simulations. The agents are
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Figure 7.1: Desired formation topology for N = 6 agents in 2-D.

homogeneous and we use the model proposed in Chapter 6 to represent the agents as

ẋi = vxi

ẏi = vyi

v̇xi = v2
xi

+ 2vyi + (1 + vxi)(uxi + di)

v̇yi = vxivyi + (1 + vyi)(uyi − di)

ẇi = −wi + uxi + uyi ,

(7.47)

where uncertainty assumed to be matched and selected as d2 = 2cos(0.2t), d3 = sin(0.2t),

d4 = 2sin(0.1t), d5 = 3cos(0.3t), and d6 = 3sin(0.3t). The initial position of the agents

are selected as p1 = [−5,−5]. p2 = [−35,−5], p3 = [−5;−30], p4 = [−25,−25], p5 =

[−10;−30], and p6 = [−35;−20].

First, we simulated the scenario where just the nominal SDRE controller is applied,

without the robust ISMC part. This is to examine what happens to the nominal formation

under the uncertainty condition without having a robust controller. Figure 7.2 shows the

trajectories of agents with the SDRE controller, uSDRE, of the nominal system proposed

in Theorem 7.1. Figure 7.3 depicts the corresponding formation errors. It is evident that

although the SDRE controller asymptotically stabilizes the nominal system, it can not

stabilize the system under uncertainty. The formation is distorted, and error signals do

not converge.

Next, we simulate the system with the proposed robust optimal control in Theo-

rem 7.2. Figure 7.4 depicts the trajectories of agents with the proposed ISMC-SDRE

controller. It can be seen that the agents converge to the desired framework using the

proposed controller. The corresponding formation errors and control signals are shown

in Figure 7.5 and Figure 7.6, respectively.
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Figure 7.2: Trajectories of the agents with only nominal SDRE controller under matched
uncertainty.

Figure 7.3: Corresponding formation errors in simulation Figure 7.2.
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Figure 7.4: Trajectories of the agents with proposed ISMC-SDRE controller under
matched uncertainty.

Figure 7.5: Corresponding formation errors in simulation Figure 7.4.
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Figure 7.6: Agents control signals in simulation Figure 7.4.

7.5.2 3-D Space

Figure 2.6(b) depicts the desired directed trilateral Laman graph. Here, agents are sup-

posed to be heterogeneous. Also, the uncertainties are assumed to be matched. The

heterogeneous models from Chapter 6, is used to represent the agents. The leader is

placed at p1 = [20, 20, 30]. The agent #2 (first follower) is modeled as

ẋ2 = v2x

ẏ2 = v2y

ż2 = v2z

v̇2x = 2v2x + (1 + v2x)(u2x + d2)

v̇2y = 2v2y + (1 + v2y)(u2y − d2)

v̇2z = 2v2z + (1 + v2z)(u2z − d2),

(7.48)
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where the initial position of the agent #2 is p2 = [30, 10,−10] and the uncertainty is

d2 = 0.5cos(0.2t). The agent #3 is modeled as

ẋ3 = v3x

ẏ3 = v3y

ż3 = v3z

v̇3x = v3x + u3x + d3

v̇3y = v3y + u3y − d3

v̇3z = v3z + u3z − d3

ẇ3 = −w3 + u3x + u3y + u3z − d3,

(7.49)

where the uncertainty is d3 = 0.6sin(0.2t) and the initial position of the follower #3

is p3 = [50,−30, 20]. The agent #4 is modeled as

ẋ4 = v4x

ẏ4 = v4y

ż4 = v4z

v̇4x = v2
4x + u4x + d4

v̇4y = v2
4y + u4y

v̇4z = v2
4z + u4z − d4,

(7.50)

where d4 = 0.5sin(0.1t) and the initial position of the follower #4 is p4 = [−10, 20,−10].

Agent #5 is modeled as

ẋ5 = v5x

ẏ5 = v5y

ż5 = v5z

v̇5x = v5zv5x + u5x − d5

v̇5y = v2
5y + u5y + d5

v̇5z = v5xv5z + u5z − d5,

(7.51)

where the initial position of the follower #5 was selected as p5 = [50,−20, 20] and uncer-

tainty is d5 = sin(0.15t).

Figure 7.7 shows the trajectories of N = 5 agents with proposed ISMC-SDRE con-

troller. The agents converge to the desired distance-based formation shape successfully.

Figure 7.8 presents the formation errors of the simulation that converges to zero.
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Figure 7.7: Trajectories of the agents using ISMC-SDRE based proposed controller in
3-D space.

Figure 7.8: Corresponding formation errors in simulation Figure 7.7.
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Figure 7.9: Desired formation topology for N = 5 agents in 2-D space.

7.5.3 Unmatched Uncertainty

In this subsection, we consider the unmatched uncertainties. From the mathematical

analysis we anticipate that the control of unmatched uncertainties be more challenging

and the controller loses its optimality. Figure 7.9 shows the desired formation topology.

The desired distance constraints are selected as d21 = 10, d31 = 10, d32 =
√

200, d42 = 10,

d43 =
√

200, d53 = 10 and d54 = 10. For simplicity and comparison purposes, we assume

that the agents are homogeneous and modeled as

ẋi = vxi + di

ẏi = vyi − di
v̇xi = v2

xi
+ 2vyi + (1 + vxi)uxi + di

v̇yi = vxivyi + (1 + vyi)uyi − di
ẇi = −wi + uxi + uyi + di.

(7.52)

the uncertainties are selected as d2 = 0.1 ∗ cos(0.1 ∗ t), d3 = 15 ∗ sin(0.2 ∗ t), d4 =

0.25∗sin(0.25∗t), and d5 = 0.2∗cos(0.1∗t). The initial position of the agents were selected

as p1 = [−5,−5]. p2 = [−35,−10], p3 = [−5;−30], p4 = [−30,−25], and p5 = [−10;−30].

Figure 7.10 depicts the trajectories of the agents with unmatched uncertainty over the

plane where the proposed ISMC-SDRE controllers successfully steer all agents to form the

desired formation. Fig. 7.11 shows the corresponding control signals of the agents. The

simulation is run for another desired wheel graph given in directed triangulated Laman

form, Figure 7.12, and a different set of initial conditions to verify the performance of

the proposed controller. The new initial positions were p1 = [−5,−5]. p2 = [−35,−10],

p3 = [−5;−35], p4 = [−20, 15], and p5 = [10; 10]. Figure 7.13 results demonstrate the

effectiveness of the proposed controller.
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Figure 7.10: Trajectories of the agents with proposed ISMC-SDRE controller under un-
matched uncertainty.

Figure 7.11: Agents control signals in simulation of Fig. 7.10.
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Figure 7.12: Desired formation topology for N = 4 agents in 2-D space.

Figure 7.13: Trajectories of the agents with proposed ISMC-SDRE controller under un-
matched uncertainty.
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7.6 Conclusions

Physical systems are subject to uncertainties due to imperfections in modeling, internal

noise, disturbances, etc. In this chapter, we studied a distance-based formation control

of uncertain nonlinear agents. For a set of nonlinear agents with additive uncertainties,

we developed a robust optimal formation control scheme that can guarantee asymptotic

stability of the desired distance-based formation. The target formation is a directed

triangulated Laman graph in 2-D space or a directed trilateral Laman graph in 3-D

space, which are particular classes of directed acyclic minimally persistent or minimally

structurally persistent graphs, respectively.

We developed a robust optimal control scheme that guarantees the asymptotic stabil-

ity of the formation in the presence of bounded uncertainties. We have shown that the

proposed controller can completely compensate for the effect of matched uncertainty on

the formation. The proposed control scheme is based on the integral sliding mode con-

trol (ISMC) theory in combination with the state-dependent Riccati equation (SDRE)

method. We also presented a discussion on weight selection policy that can include sev-

eral constraints in the optimal control problem, including collision avoidance, reflection

prevention, energy depletion prevention. The proposed weight selection procedure also

allows users to adjust the trade-off between the formation control performance and con-

trol input energy usage. Simulation results are provided to back up the effectiveness of

the theoretical results.
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Chapter 8

Summary and Future Works

8.1 Summary

In this dissertation, we developed a new framework for distance-based formation con-

trol. Unlike the majority of the research on distance-based formation control, which

used gradient-based control, as a novel approach, we developed a nonlinear optimal

control-based methodology for the distance-based formation control problem. We studied

distance-based formation control in different setups and developed a systematic approach

for controlling the agents toward the desired objective. Due to the nonlinear nature of

the distance-based formation problem, we used the well-matured state-dependent Riccati

equation (SDRE) method as a backbone of the proposed solution. The SDRE method

is a systematic approach that has great capability to control nonlinear systems along-

side its ability to adjust the control performance directly and handle the state and input

constraints.

The distance-based formation could be undirected or directed where controlling the

distance between a pair of agents is assigned to both adjacent agents or just one of them,

respectively. The desired distance between a pair of neighboring agents is controlled by

the mutual effort of both adjacent agents in undirected formation. In contrast, in directed

formation, only the source agent tries to preserve the edge. The appropriate mathematical

framework for the directed and undirected distance-based formation problems are directed

persistent and undirected rigid graph theories. We studied distance-based formation for

both directed and undirected topologies. Accordingly, the proper rigid graph theory and

persistent graph theory are used toward this aim.

We studied undirected distance-based formation control in Chapter 4. Introducing a

particular form of rigidity matrix, named as normalized rigidity matrix, we formulated the

distance-based formation control via dynamics of the edge function and used the SDRE

controller to stabilize it. The proposed method assures global asymptotic stability of the

desired formation for a set of agents models as single and double-integrators. Also, using
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hybrid SDRE, we studied a leader-follower tracking problem where the leader tracks

the desired trajectory and the followers preserve the desired formation shape. Using

the barrier function method and including the collision avoidance in the cost function,

the proposed method guarantees collision-free convergence of all agents to the desired

framework. Furthermore, we introduced an energy dynamic for agents and used it to add

a constraint to the optimal control problem that also prevents agents’ energy depletion.

It is worth mentioning that, through extensive simulations, we found that our method is

less sensitive to simulation parameters such as sampling time, and it has a broader region

of attraction compared to the other gradient-based controller. However, the method

requires more computational time since it requires solving an SDRE equation in each

step.

For directed topologies in which each edge is controlled by just one agent, we proposed

a distributed control law that guarantees the global stability of the desired formation for

agents modeled as the single-integrator. We introduced special classes of the directed

graphs: directed triangulated and trilateral Laman graphs. The desired formation is

supposed to be in the form of a directed triangulated Laman graph in 2-D or a directed

trilateral Laman graph in 3-D. The control design process is established in accordance

with cascade systems’ stability that guarantees the stability of the desired formation. In

order to prevent flip ambiguity of the formation, using signed area and signed volume

constraints, we proposed a solution that prevents agents from converging to the undesired

equilibrium set (reflected configurations).

We also studied the distance-based formation control for nonlinear systems. The pro-

posed methodology applies to a broad class of homogeneous and heterogeneous affine non-

linear systems in both 2-D and 3-D space. In addition, the robustness of distance-based

formation control of uncertain nonlinear systems is studied. Using the integral sliding

mode control (ISMC) method combined with SDRE, we propose a robust controller that

can stabilize the desired formation for a set of agents affected by bounded uncertainties.

The proposed method is effective for both matched and unmatched uncertainties where

it preserves the optimality of the controller for the matched case.

8.2 Future Work

The possible future work related to this theses can be

• Implementation of the methods developed in this dissertation:

A real-time experimental setup for the controllers proposed in this thesis can be

the next step. The methods proposed in this dissertation can be implemented

on a set of UGVs or UAVs. Also, using the job assignment algorithm that is

proposed in this work, several forms of the desired formations could be converted
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to a persistent, directed, distance-based formation control. Then, the proposed

control approaches can be used to control the formation. Also, there could be other

potential applications such as autonomous vehicles, commercial planes, and drone

shows.

• Combination of vision-based formation with distance-based formation:

Vision-based control is a promising approach since it can be implemented by agents

equipped with a camera sensor. Also, it is compatible with the formation control of

LFF structures that are developed in this thesis. Therefore, plenty of applications

can be defined for the combination of vision- and distance-based formation control

approaches.

• Extending the optimal control framework to a vision- and bearing-based formations:

The optimal control methods that are developed in this thesis can also be adopted

for bearing-based, vision-based, or a combination of them with distance-based for-

mation control. This might result in a unified platform for different approaches to

formation control problems.

• Artificial intelligence controller design for the distance-based formation problem:

Artificial intelligence and machine learning techniques are recently gained interest

in different engineering fields, including control systems. There are few studies on

the formation control of multi-agent systems with neural networks, but there are

still open problems to study; for instance, asymptotic stability of the distance-based

formation with neural-network-based controller needs to be addressed.
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Appendix A

SDC Parametrization

The SDC parametrization which is used for simulation in Figure 4.7 is

Âs(p) = 0.1



e1 −et 0 0 0 0

0 e2 −e1 0 0 0

0 0 e3 −e2 0 0

0 0 0 e4 −e3 0

0 0 0 0 e5 −e4

−e5 0 0 0 0 et


.

Also, the matrix A21 that is used for simulation in Figure 4.8 is

A21 =
1

20



e1 −et 0 0 0 0 0 0 0 0

0 e2 −e1 0 0 0 0 0 0 0

0 0 e3 −e2 0 0 0 0 0 0

0 0 0 e4 −e3 0 0 0 0 0

0 0 0 0 e5 −e4 0 0 0 0

0 0 0 0 0 e6 −e5 0 0 0

0 0 0 0 0 0 e7 −e6 0 0

0 0 0 0 0 0 0 e8 −e7 0

0 0 0 0 0 0 0 0 e9 −e8

−e9 0 0 0 0 0 0 0 0 et



.
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Appendix B

Gradient-Based Controller

The gradient-based control law for the agent i law is

ui = −∇piΦ(e) = −
∑
j∈Ni

(‖dij‖2 − d∗ij
2)dij,

where the corresponding positive semi-definite potential function is

Φ(e) =
1

2

N∑
(i,j)∈E

(‖dij‖2 − d∗ij
2)2.

The local asymptotic stability of the controller is proved in [152].
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