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Abstract

Adaptive Memory Management in Video Object Segmentation

Ali Pourganjalikhan

Matching-based networks have achieved state-of-the-art performance for video object

segmentation (VOS) tasks by storing every-k frames in an external memory bank for

future inference. Storing the intermediate frames’ predictions provides the network

with richer cues for segmenting an object in the current frame. However, the size of

the memory bank gradually increases with the length of the video, which slows down

inference speed and makes it impractical to handle arbitrary-length videos.

This thesis proposes an adaptive memory bank strategy for matching-based net-

works for semi-supervised video object segmentation (VOS) that can handle videos

of arbitrary length by discarding obsolete features. Features are indexed based on

their importance in the segmentation of the objects in previous frames. Based on the

index, we discard unimportant features to accommodate new features. We present

our experiments on DAVIS 2016, DAVIS 2017, and Youtube-VOS that demonstrate

that our method outperforms state-of-the-art that employ first-and-latest strategy

with fixed-sized memory banks and achieves comparable performance to the every-k

strategy with increasing-sized memory banks. Furthermore, experiments show that

our method increases inference speed by up to 80% over the every-k and 35% over

first-and-latest strategies.

We further investigate memory banks’ attention during the training by proposing

two regularization and studying their effects of performance.
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Chapter 1

Introduction

Recent advances in technology have made videos a crucial medium to transfer infor-

mation and content. Abundant usage of videos has made video processing a critical

step to understanding world, using computer. A fundamental task in video processing

is video object segmentation (VOS). A dense segmentation mask can facilitate other

tasks such as object tracking and video editing.

This work focuses on semi-supervised video object segmentation, and in this chap-

ter, we discuss our motivation, contributions and provide the outline of this thesis.

1.1 Motivation

The outstanding advances of computers and the availability of annotated datasets

have enabled us to design and train complex models with an enormous number of

parameters. However, these approaches are far from real-world applications.For in-

stance, current memory bank architectures and management methods are designed

to perform on benchmark datasets and fail in real-world applications due to excessive

use of memory and computation power. In this work, we focus on the limitations of

memory banks to handle videos of arbitrary length and propose methods to alleviate

this problem. An efficient and accurate VOS can be used as a foundation for more

advanced tasks and a step toward better understanding of videos.
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1.2 Contributions

Our contributions are two folded:

• We propose a novel memory management approach to maintain a fixed-size

memory while handling videos of arbitrary size. Our method yields comparable

results with state-of-the-art methods with faster inference speed and fixed-size

memory.

• We investigate the limitations of current memory block and study two memory

regularization methods and their effect on network performance.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

In Chapter 2, we provide the background of object segmentation, attention meth-

ods, and metrics used to evaluate that are relevant to our work. This work assumes

readers have a fundamental knowledge of neural networks.

In Chapter 3, we describe the current semi-supervised VOS approaches’ inability

to process videos of arbitrary size and propose an adaptive memory management

method to alleviate this problem. This chapter was submitted as a regular paper to

the IEEE/CVF Computer Vision and Pattern Recognition (CVPR) 2022 conference.

In Chapter 4, we investigate two memory regularization methods and study their

effect on the training. Additionally, we provide supplementary materials for chapter

3, such as training details for completeness.

In Chapter 5, we give a conclusion to our work and discuss possible future

avenues to explore with the help of our proposed methods.
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Chapter 2

Background

This chapter provides a brief overview of the most relevant concepts and methods to

understand the rest of this thesis.

2.1 Architectures

This section assumes a basic knowledge of neural networks and, specifically, convo-

lution neural networks. Hence, we only cover a specific topics that are necessary to

understand this paper.

2.1.1 ResNet

Resnet [14] is one of the most groundbreaking architectures, which led to advances

in different fields of computer vision. The representation ability of Resnet makes it a

reliable backbone to extract features in many computer vision applications.

Based on the universal approximation theorem, a single-layer feed-forward network

with enough capacity can represent any function. However, in practice, a wide feed-

forward network will lead to overfitting on training data. The most practiced approach

to alleviate this issue is to increase the depth of the neural networks.

Deep neural networks produce better results with greater generalization ability.

However, training deep neural networks has its limitations. The backpropagation

process involves calculating the gradient at each layer of the neural network. As

networks get deeper, gradients start to vanish.
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Figure 1: An overview of Residual Block. Figure courtesy of [14].

Residual blocks proposed in Resnet[14] try to mitigate this issue by introducing

the identity shortcut connection. Figure 1 shows Residual block architecture. The

basic rationale behind this architecture is that the added layer should not degrade

the performance. As a result, added layers should be able to perform as an identical

map between input and output. The residual block improves gradient flow in deep

neural networks and facilitate the training process.

Resnet networks pretrained on Imagenet[9] can perform as a feature extractor

with great generalization ability for other computer vision tasks.

2.1.2 U-Net

Encoder-decoder networks are common for image segmentation, and among them,

U-Net [42] has gained popularity as it is simple and effective. We discuss U-Net as

an exmaple of encoder-decoder network to help us better understand the architecture

and concepts of this family of networks.

An overview of U-Net architecture is shown in figure 2. An input image is first pro-

cessed through a multi-stage contraction path. At each stage, features are processed

by a sequence of convolution layers with ReLU non-linearity, followed by a pooling

layer to reduce spatial dimensions. Convolution layers at each stage are padded to

have an input and output with the same spatial size. Furthermore, the number of

channels is doubled at each stage. After the contraction path, input image informa-

tion is embedded with low spatial resolutions at the bottleneck. The expansion path

follows the contraction path. Similar to the contraction path, the expansion path

is multi-stage and gradually increases image embedding resolution to reach the final

4



Figure 2: The architecture of U-Net with 572 × 572 input. Figure courtesy of [42].

segmentation mask. For each stage of the expansion path, the input is the output

of the corresponding level in the contraction path before pooling, concatenated with

the output of the previous level in the expansion path. At each level of the expansion

path, the spatial dimension is doubled using upsampling, which can be inaccurate.

Hence, combining the previous levels’ output with the corresponding encoding levels

helps the network achieve better results.

2.2 Evaluation metrics

To evaluate the quality of segmentation, the choice of metrics needs to be tailored to

the end goal of the method [40]. In a semi-supervised video object segmentation setup,

a per-frame segmentation mask is a binary classification problem between background

and foreground. A global accuracy metric is unreliable when dealing with unbalanced

data, which is the case in per-frame background-foreground segmentation.

In the following, we discuss two metrics to evaluate the quality of the segmenta-

tion. Region similarity evaluates the overall quality of the segmentation while Contour

5



Figure 3: In these figures, the red contour shows the ground truth, and the green
contour represents the predicted mask. Left: Predicted mask is missing major parts
of the object. In this case, the mislabeled area is penalized by region similarity(J ).
Right: In addition to mislabeled regions, predicted boundaries are inaccurate. Hence,
Contour accuracy (F ) will penalize the predicted mask. Images are courtesy of [40].

accuracy focuses on boundary accuracy. Although these metrics are intuitively simi-

lar, [40] shows the degree of Independence is enough to justify using both of them. In

figure 3, we show how these metrics have a different responses to segmentation mask.

2.2.1 Region similarity(J )

To measure the number of mislabeled pixels, [40] proposed Jaccard Index(JI):

JI =
TP

TP + FN + FP

The Jaccard Index can also be defined as the intersection-over-union(IOU) between

the ground truth mask and the predicted mask. IOU has been widely used as it

provides scale-invariant information about the number of mislabeled pixels in the

segmentation. IOU between predicted mask P and ground truth mask G can be

formulated as:

J =
|P ∩G|
|P ∪G|

2.2.2 Contour Accuracy (F)

In addition to Region similarity, contour accuracy is equally vital in applications such

as video editing, where accurate boundaries are essential to the final output quality.

Although the Jaccard Index heavily penalizes mislabeled regions, it pays little

attention to boundaries. To handle this shortcoming, [40] proposes contour accuracy

6



in addition to region accuracy with a focus on boundaries accuracy. Prediction mask

P and ground truth mask G can be interpreted as a set of closed contours C(P )

and C(G). Having the prediction and ground truth contours, one can measure the

precision and recall. Precision is the fraction of predictions that are true-positive

rather than false-positive, and recall is the fraction of true-positive rather than false-

negative predictions.

Before measuring the precision and recall between C(P ) and C(G), [40] applies

dilation to expand the edges of both ground truth and prediction to compensate small

inaccuracies. In an unbalanced setup such as this, precision and recall are better

indicators of a classifier’s quality than global accuracy. To demonstrate precision and

recall in one metric, [40] uses F-score which is a harmonic mean between precision P

and recall R.

F =
2PR

P +R

2.3 Self-attention

Self-attention, first introduced in [47], is trying to mimic cognitive attention in hu-

mans, which is concentrating on relevant stimuli and disregarding irrelevant informa-

tion. In other words, self-attention attempts to enhance an important part of the

data while fading out irrelevant parts.

After introducing self-attention mechanism and transformers by [47], it became a

popular approach in the machine translation, and Natural language Processing (NLP)

community and researchers adapted it to handle different challenges.

After the great success of self-attention in the NLP domain, researchers started

to expand the self-attention concept into the spatial domain. In this section, we dis-

cuss the self-attention module and various self-attention adaptations in the computer

vision domain.

2.3.1 Multi-head self-attention

Multi-head attention was first proposed in [47] and widely adopted by other re-

searchers in different areas. Multi-head attention is a combination of several attention

modules that are executed in parallel. To better understand multi-head attention, we

first look at the attention block.
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For instance, between vectors x1 and x2, x1 is the attendee and generates a query,

while x2 is the attendant and generates a key-value pair. The objective is to map

the query and key-value pair to an output. In self-attention, the output is a weighted

sum of values where weights are assigned a value based on the affinity of the query to

the corresponding key. The most common affinity function is the dot-product affinity.

A self-attention can be expressed as follows:

F (Q,K, V ) = Softmax(QKT )V

In transformers [47], multiple attention blocks are concatenated together and followed

by layer normalization and fully connected layer to form a multi-head attention block.

[37, 10] show that with proper modifications, multi-head attention can improve per-

formance on computer vision applications.

2.3.2 Squeeze-and-Excitation(SE)

One of the main characteristics that make the convolution layer stand out in image

processing is its attention to the locality of information. This assumption holds when

extracting low-level features from an image. However, as the network gets deeper,

extracted features become more high level, and attention to the global context of the

image can improve the quality of extracted features using the convolution layer alone.

Squeeze-and-Excitation [15] is a simple yet effective attention mechanism that uti-

lizes global information to model inter-dependency between the channels of a feature

embedding. Involving global information in the process of the model decision has

shown to be helpful in various applications [15, 5]. Squeeze-and-Excitation is done

by sequentially applying the squeeze and excitation operation to a feature map. An

overview of this mechanism is shown in figure 4.

The Squeeze-and-Excitation process starts by applying a transformation Ftr on

X to reach U . The transformation is then followed by a squeeze operation Fsq.

The squeeze operation is simply an average pooling or max-pooling along the spatial

dimension. Squeeze Fsq output is the input to the excitation Fex which is a two-layer

fully connected network with a ReLU [1] activation function after the first layer and

a Sigmoid activation after the second layer to ensure outputs are in the range [0, 1].

Finally, excitation output is the self-attention weights that emphasize the importance

of specific channels and is used to reweight U channels. The mathematical expression

8



Figure 4: An overview of Squeeze-and-Excitation mechanism. Figure is courtesy of
[15].

of Squeeze-and-Excitation is shown below:

U = Ftr(X)

Z = Fsq(U) =
1

HW

∑
H

∑
W

U:,ij

Ẑ = Fex(Z,W ) = σ(W2δ(W1, Z))

X̂ = Fscale(Z,U) =
∑
C

ZiUi,:,:

2.3.3 Non-Local

Squeeze-and-Excitation(SE) block can effectively involve global information in the

network’s decision. However, these methods fail to handle long-term dependencies in

space-time dimension.

Recurrent operations [13, 53] are the most successful in capturing long-term de-

pendency in sequential data. Recurrent operations are applied locally to the neigh-

bourhood to capture long-term dependencies and need to be applied multiple times

to handle long-term dependencies. This phenomenon makes recurrent approaches

computationally inefficient and difficult to optimize [13, 53].

The equation for non-local operation is shown below.

yi =
∑
j

f(xi, xj)g(xj)

f is the pairwise distance between corresponding input to the location of output xi

and every other input xj, and g(xj) is the representation of the input at position j.

In video processing, a non-local operation disregards the temporal order of frames

and treats all frames equally, and can benefit from past frames’ information without

forgetting through time. The downside to this approach is computational inefficiency

9



Figure 5: An Instantiation of Non-local mechanism with the input x of the size of
T × H ×W × C where T is number of frames processed at a time and the number
of channels C is 512. Before computing pairwise affinity f , the number of channels is
reduced via 1× 1 convolution. Channel reduction is common to change the represen-
tation of input x and decrease the required computation to calculate pairwise affinity
and softmax. Figure courtesy of [53].

to process long-term videos as the amount of computation necessary to process the

input x grows by O(n2) to the size of input x. Figure 5 shows an instantiation of the

Non-local operation.
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Chapter 3

Adaptive memory managment in

video object segmentation

Under review, ”Adaptive Memory Management for Video Object Segmentation”, A.

Pourganjalikhan, C. Poullis

3.1 Introduction

Video object segmentation (VOS) is a fundamental computer vision task with many

applications in self-driving cars [2], augmented reality [33], video editing [3], and

many other video-related tasks. Additionally, video object segmentation serves as a

building block in tasks such as interactive video object segmentation [7, 35, 30, 25]

and video instance segmentation [11, 57].

In VOS, the target objects are annotated in their first appearance, and the ob-

jective is to segment them in subsequent frames. Early attempts on VOS [4, 49, 28],

fine-tuned the network to learn the target objects’ appearance. Fine-tuning a deep

neural network with only one example (one-shot) at the target is challenging [12, 58].

Moreover, fine-tuning makes inference slow which makes it unsuitable for real-time

applications.

Recent works [36, 48, 60], instead of learning object features implicitly, use a

learned embedding space to embed and memorize object appearance and use that

embedding to segment object in the subsequent frames by calculating affinity between

current and past frames embeddings.
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A key challenge in matching-based VOS is exploiting the previous frames’ infor-

mation. Using all previous frames’ information is impracticable and redundant. Most

recent works [34, 48, 60] rely only on the first-and-latest frame. The latest frame is

visually close to the current frame, and the first frame provides reliable annotation

for the object, avoiding drifting during the segmentation. This strategy disregards

all intermediate frames’ information.

To address this, Space-Time Memory (STM) network [36] employs a memory

bank to store every-κ frame for subsequent inferences. While this method utilizes

intermediate frames, information of the memory bank grows linearly as a function

of the number of frames κ. Hence, it imposes significant memory requirements that

prevent the processing of longer video sequences. The solution is to remove features

from the memory bank when they become obsolete, ensuring a fixed-sized memory

bank that allows the processing of videos of arbitrary length.

In this paper, we propose Least-Frequently-Used (LFU) feature removal based on

the top-k index. Our method outperforms the first-and-latest strategy and achieves

comparable results with the every-k sampling strategy while using a smaller, fixed-

sized memory bank. In addition to handling arbitrary-length video sequences without

imposing significant memory requirements, our method considerably improves the

inference speed when compared to the top two sampling strategies, first-and-latest

and every-k.

The main author, Ali Pourganjalikhan, formed the ideas, designed the algorithms

and implemented the system, conducted the experiments, and led the writing of the

scientific publication. The contributions of co-author, Charalambos Poullis, include

manuscript review, supervision, and technical support.

3.2 Related Work

In this section, we review the most relevant works in video object segmentation.

3.2.1 Semi-supervised video object segmentation

Following the taxonomy proposed by [26], recent VOS methods can be categorized

into implicit and explicit according to the approach followed to address the problem.

Implicit models aim at learning objects’ representation by fine-tuning network
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Figure 6: Overview of the network architecture. Parts with the same colour have
shared weights. We illustrate the memory bank architecture in detail in Figure 7.
Deep features learned by the key encoder are concatenated to the value encoder’s
input. The output at different levels of the key encoder is used to refine the mask at
different scales of the decoder. We store the query key of specific frames for further
inference. In the case of multiple objects, soft-aggregation is used to reach the final
output.

weights for each object. Detection-based implicit methods such as [29, 4] segment

objects in each frame independently without enforcing temporal consistency between

consecutive frames. Propagation-based implicit methods such as [39, 17, 18, 23]

propagate objects’ masks between consecutive frames.

Implicit models mainly rely on online learning to adapt to different objects. The

online learning process makes these methods very time-consuming during the infer-

ence and reduces the network’s ability to handle deformation. On the other hand,

explicit models use a fixed set of parameters for all sequences during the inference.

The features of the object from the previous frames are used to classify the current

frame pixels as foreground or background using similarity matching; hence often called

matching-based methods as well. A matching-based network uses different sources

of information. [34, 48, 54, 27] utilize information from first-and-latest frames to

segment the object in the current image. [36] uses a memory bank to store the ob-

ject representation in intermediate frames. Despite the difference in architecture and

sources of information, when it comes to incorporating previous frames’ information

into the current frame segmentation process, most of the approaches use cosine or

Euclidean distances to find the affinity between previous frames and current frames

features.
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3.2.2 Memory Banks

Networks can learn to read and write helpful information in external memory. For

example, end-to-end memory networks have proven useful for document Q&A [20,

31, 46], visual tracking [59], video understanding [32], and summarization [21].

STM [36] encodes each image into the key-value pair and uses them as cues to

segment the target object. In their framework, past frames are in memory, and the

current frame forms the query. Using the keys, they estimate the affinity between

memory and query frame to determine which memory values should be used during

segmentation. Space-Time Correspondence Networks (STCN) [8] uses object-agnostic

keys, which reduce the computation in multi-object scenarios.

STM [36] and its extensions and variants [43, 24, 16, 55, 50, 62, 63] store inter-

mediate frames’ key-value into a memory bank. The efficiency of the memory bank

depends on the number of key-value pairs that can be stored. STM [36] adds features

for every-k frame (k = 5 in their paper) in the memory bank.

Although increasing the number of frames in the memory bank improves per-

formance, MiVOS [7] showed that only a few of the memory features meaningfully

contribute to the segmentation process. Instead, MiVOS uses only the k-closest mem-

ory features for each query feature and discards the rest as they adversely affect the

performance. Although MiVOS [7] ignores redundant features during inference, it

still maintains these features in the memory bank for future inferences.

[26] propose an update and remove strategy to keep the memory bank size fixed.

When adding new features to the memory bank, they perform an eligibility check for

an update by ensuring that the feature’s distance to its closest neighbour is lower

than a threshold. The update is a running average between new features and their

closest neighbour in the memory. To remove an obsolete feature that can not be

merged, they keep track of its frequency being close to a query feature and then use

a least-frequently-used strategy to remove it. Although [26] keeps the size of the

memory bank fixed, both update and removal steps use a threshold that is dependent

on an affinity metric. The affinity metric for this approach needs to be bounded since

the threshold needs are decided beforehand.
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3.3 Methodology

Given a sequence of frames and the masks of the target objects in their first ap-

pearance (objects typically appear in the first frame; however, new objects can also

appear in the middle of the sequence), we segment the object in the rest of the frame

sequence. This problem is a variant of one-shot image segmentation [44] in which the

current frame is the query and the past frames with segmented objects mask are the

support set. Figure 6 shows an overview of the proposed technique. We have chosen

STCN [8] as the baseline since it is effective and minimal. Although we evaluate our

method on STCN, the feature sampling strategy can be used for any matching-based

network with a memory bank. For each query and support frame, we extract a key

that is independent of the object. The affinity between the query and support keys

is then used to select the corresponding support values for segmentation.

3.3.1 Encoding of key-value

Unlike STM [36], STCN[8], we use object agnostic key encoding with shared weights

for support and query. We employ a Resnet50 [14] followed by a 3 × 3 convolution

layer as a projection layer to encode the key. Spatial information is preserved by

using the output of res4 layer for the projection. The projection layer reduces the

number of channels from 1024 to 64. The query key can be reused as a support key

since the query and support key encoder have shared weights.

Value encoding is performed more frequently; therefore, we use a lighter backbone.

We employ Resnet18 to encode the image and mask of an object. Unlike key encoding,

value encoding is object-specific and only used for support frames. The output is

then concatenated with the corresponding feature map from the key encoder and

processed by two residual blocks. In this way, the network can use deeper backbone

feature embeddings without any overhead.

We initialize both key and value encoders with pre-trained weights from Imagenet

[9]. In the value encoder, the input consists of an image and a corresponding mask.

Hence, we modify the first layer of the Resnet18 to have 4-channels and initialize the

additional new weights to zero.
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3.3.2 Memory read

A memory read is a visual attention operation to reconstruct the support value with

respect to the affinity between the support key and the query key. Figure 7 shows an

overview of our memory read module. After encoding, the key-value pairs (KS, V S) of

the support frames are concatenated to form a space-time key-value. A memory read

operation starts by calculating the affinity between the support key KS ∈ RTHW×CK

and the query key KQ ∈ RHW×CK
. T refers to number of frames in the support set.

The affinity dij between a support feature KS
i and a query feature KQ

i is based on

the negative squared distance and is given by

dij =
dist(KS

i , K
Q
j )

√
Ck

(1)

where dist(., .) : RCk × RCk −→ R is the negative squared distance i.e. −‖(KS
i −

KQ
j )‖22. Similar to [36, 8], the affinity dij is divided by

√
Ck.

The affinity matrix D ∈ RTHW×HW is then normalized along the dimension of the

query features using Softmax and is used to calculate D ∈ RTHW×CV
as the weighted

summation of the support value.

Figure 7: Top: Memory read block during training. H and W are the res4 layer
dimensions which have a stride of 16 on the input. Bottom: Memory read block
during inference. After finding the affinity between query and support keys, we find
the k-closest features for each query feature. The counter module keeps track of the
support features’ appearance in top-k.
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3.3.3 Decoder

The decoder extends the work in STM [36]. It contains two consecutive refinement

modules [34] which upsample the features’ spatial size by four and reduce the number

of channels from 1024 to 1. The output of the decoder is then upsampled by four to

match the size of the input. At each step, we concatenate the features of the query

key encoder with the input through skip-connections. In the first stage, we reduce the

number of channels of skip-connections to match the number of channels of memory

read output using a 3 × 3 convolution layer. In the case of multiple objects, soft

aggregation [36] is used to reach the final mask.

3.3.4 Memory bank

During the inference, we use a memory bank to store the support frames’ information.

The size of the memory bank can grow with the length of the video. Storing all pre-

vious frames imposes significant memory requirements and slows down performance

during inference.

To address this limitation, STM [36] suggested storing only the first-and-latest

frames to maintain a fixed-size memory bank. However, experiments show that using

intermediate frames improves the performance of the model. To benefit from inter-

mediate frames, STM [36] stores every k frame (k = 5 in their experiments) into

the memory bank. On an NVIDIA 1070 with 8G of memory, STCN [8] can handle

only 100 frames in the memory bank, which is equivalent to a 15-second story on

Instagram. In order to handle long videos, streams with arbitrary length, or to use

embedded devices with limited resources, the first-and-latest strategy offers the best

solution. Figure 8 shows different memory management strategies.

MiVOS [7] shows that after applying softmax to the affinity matrix between sup-

port and query key, the weights for most of the support features become small. Fea-

ture with small weights does not meaningfully contribute to the segmentation process.

This phenomenon amplifies as the number of support features increases. MiVOS [7]

shows that disregarding non-contributing features of the support set leads to more

stable segmentation through time.

To the best of our knowledge, only the Adaptive Feature Bank (AFB) presented

in [26] attempts to address this problem. However, this method uses a user-defined

threshold which is data-dependent and requires adjustment for different videos. More
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importantly, it supports only dot product or cosine similarity as a distance metric

which, as shown in [8], are outperformed by the negative Euclidean distance.

We propose storing only the top-k features by updating the memory bank and

removing obsolete features to overcome these limitations. The advantages are three-

fold: it eliminates the threshold requirement, results in a constant fixed-sized memory

bank, and is agnostic to the distance metric used.

Figure 8: Various memory management strategies. Top: Storing every-k frames into
the memory. The size of the memory bank grows linearly with the length of the video.
Middle: Storing first-and-latest frames into the memory. Although this method uses
a fixed-size memory bank, it disregards all intermediate frames. Bottom: We store
every-k frames into the memory. However, we remove obsolete features from the
memory to maintain a fixed-size memory bank.

Storing the top-k

As the number of features in the memory bank grows, only a fraction of those features

will continue to be relevant and hence will have non-zero values after the softmax

operation [7]. Additionally, frames that are temporally closer to the query frame are

more likely to be visually similar. From the many cache management algorithms,

the least-frequently-used (LFU) policy defined as LFU = index
age

is the most suitable

for this task. Calculating the LFU score requires the index and the age. The index

is calculated as the number of times that the feature has been referenced, i.e. the

number of times it appeared in the top-k features matching a query feature. The age

is the time and is calculated in terms of the number of frames that the feature has

been in the memory.

Unlike [25], no updates are performed when adding a new frame to the memory.

During removal, we remove enough features to make accommodate new features.
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Methods J-Mean J-Recall J-decay F-Mean F-Recall F-decay J&F-Mean
DAVIS 2016 validation set

Every 5 90.4 98.1 4.1 93.0 97.1 4.3 91.7
first-and-latest 88.0 95.3 8.3 91.0 94.4 8.4 89.5

Ours 89.5 97.6 6.1 92.3 96.8 5.8 90.9
DAVIS 2017 validation set

Every 5 82.0 91.3 6.2 88.6 94.6 8.6 85.3
first-and-latest 79.5 90.4 10.8 85.4 92.9 14.0 82.5

Ours 81.3 90.4 8.1 87.4 92.9 10.7 84.4

Table 1: Quantitative results on DAVIS 2016 and DAVIS 2017 validation sets. Eval-
uation is performed with J(Intersection-over-Union) and F(boundary accuracy) met-
rics. Mean is the average of individual objects J and F. Recall measures objects
scoring higher than a threshold (τ = 0.5 following the official benchmarks [40]) in a
sequence. Decay indicates the performance drop between the first-and-latest quartile
of a sequence.

Methods J-seen J-unseen F-seen F-unseen J&F
every 5 82.6 79.3 86.9 87.6 84.1

First-and-latest 79.9 75.1 83.9 83.2 80.5
Ours 80.3 76.1 84.3 83.8 81.1

Table 2: Quantitative results on Youtube-VOS validation set. Final J&F score is
unweighted average between seen and unseen metrics.

3.4 Implementation Details

We followed the training procedure in [8] as training is not the main focus of our work.

As suggested in [8, 36, 7], we used two-stage training. First, we train the model on

static images [61, 6, 22, 52, 45] with augmented deformations for 300,000 iterations

with batch size of 16.

For the next stage, we use Youtube-VOS [56], and DAVIS [40, 41] to train the

network for 150,000 iterations with a batch size of 8. In this stage, at each iteration,

we pick three temporally ordered frames. Following [36, 60], we use the first frame

to segment the second frame and use second frame predictions and the first frame to

segment the third frame.

We used Adam [19] as optimizer, bootstrap crossentropy [7] as loss function and

used 4 P100 GPUs to train the model which took 5 days to complete. We used

Pytorch [38] as a deep learning framework.

For inference, we used a GTX1070 GPU and re-time STCN [8] to ensure fair
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comparisons in our experiments. Given that support keys are object-agnostic, we

initialize a single index and age counter at the beginning of the sequence, which is

shared by all objects. In Youtube-VOS dataset [56], objects not always appear in the

first frame. Using LFU, our method can successfully handle new objects appearing

in the middle of the sequence.

3.5 Experiments

We evaluate our approach on DAVIS 2017 [41] validation set, and Youtube-VOS

[56], two large-scale benchmarks with multiple objects in videos. In DAVIS 2017, all

target objects are present in the first frame of the sequence. However, they can be

occluded at the beginning or disappear and reappear in the middle of the sequence.

In Youtube-VOS, some of the target objects first appear in the middle of the video,

and the objective is to start tracking that object from that point onwards.

For evaluation, we use J&F from the DAVIS benchmark, which is an average

between the region accuracy J and the boundary accuracy F. For each object, we

calculate J&F score in each frame separately, and the object score is the mean of its

score in different frames. The overall score is an average of each object score. This

method prevents big objects or objects with more extended visibility from skewing

the results.

We evaluate our approach with every-k and first-and-latest methods. In all exper-

iments, we ensure a fair comparison with the first-and-latest approach by setting the

size of the memory bank to two frames worth of features. We compare our method

with first-and-latest memory utilization since it is the sole available method that

can handle videos of arbitrary length. Additionally, we compare our approach with

every-k since it is the best performing approach for memory write. Results show

that our approach outperforms first-and-latest and has comparable results with the

every-k method. We also investigate the memory utilization and inference speed of

different approaches. Our method has better inference speed with minimal memory

utilization.
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3.5.1 Results on DAVIS 2016

DAVIS 2016 [40] validation set contains 20 videos with dense masks for single objects.

A quantitative comparison of our approach with other methods is shown in Table 1.

Our network outperforms the first-and-latest method by 1.4 %. To evaluate the

network’s ability to handle multi-object scenarios closer to real-world applications,

we next present the results on DAVIS 2017.

3.5.2 Results on DAVIS 2017

DAVIS 2017 is a multi-object extension of DAVIS 2016 dataset. It contains 120 videos

that are 30 times smaller than the videos in the Youtube-VOS dataset. The validation

set has 59 objects in 30 videos. The results on DAVIS 2017 are shown in Table 1.

Our method outperforms the first-and-latest method by a significant margin and has

comparable results with every-5 method while using a smaller memory bank.

Every 5 First-and-latest Ours
Frame per Second 6.3 8.4 11.4
Memory utilization 7 2 2

Table 3: Comparison of Inference speed and memory utilization of different memory
management strategies on DAVIS 2017 validation set. Inference speed shows the
number of frames processed in a second in a multi-object video. Memory utilization
shows the number of frames stored in the memory bank. For the every-5 method, we
used the average number of frames in the memory. In our method, we set the size of
the memory bank to be equal to 2 frames worth of features.

3.5.3 Results on Youtube-VOS

Youtube-VOS is the latest large-scale dataset for VOS. The training set has 3471

videos with 65 different object categories. The validation set has 507 videos with 26

unseen object categories and the object categories of the train set. The availability of

unseen categories makes Youtube-VOS suitable to measure the generalization ability

of the various methods in question.

Results for Youtube-VOS are shown in Table 2. Our method outperforms the

first-and-latest method and underperforms when compared with every-k approach.

Since the average length of videos for Youtube-VOS is longer than DAVIS2017, using

21



the same every-k setup, the Youtube-VOS causes increased memory use; it results in

storing a more significant number of frames in the memory bank, which consequently

makes it harder to compete with using only two frames worth of features.

3.5.4 Inference speed

The size of the memory bank directly affects the amount of computation in the

memory read block. By limiting the size of the memory bank, the proposed method

can increase the inference speed by 80 %. A comparison of inference speed and

memory utilization is shown in Table 3.

The first-and-latest approach stores the latest frame into the memory at each step

which slows down the speed. On the other hand, our method can be described as

an extension to the every-k meaning that we only perform a memory write operation

every few frames. Having fewer memory write operations leads to an increase in

inference speed by 35%. To calculate the inference speed, we measure the total

processing time on the whole DAVIS 2017 [41] validation set and divide it by the

total number of frames.

Methods
DAVIS 2017 Youtube-VOS

J-Mean F-Mean J&F-Mean J-Mean F-Mean J&F-Mean
Softmax storing 79.9 82.2 83.0 76.2 81.8 79.0
Top-k storing 81.3 87.4 84.4 78.2 84.0 81.1

Table 4: Ablation on top-k storing versus softmax weights storing

3.5.5 Qualitative results

Qualitative results are shown in Figure 9. The first six rows show how different ap-

proaches handle multiple objects exhibiting deformation and significant displacement

due to motion. As we do not apply any spatial constraint to the segmentation, the

network can handle significant displacements successfully. However, in the case of

deformation, the object’s appearance in the initial frames can quickly become distant

-in metric space- from that in the current frame. In this case, the network relies

heavily on the mask propagated from the previous frame. This makes the network

prone to accumulating errors over time. On the other hand, our strategy can handle
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deformation and recover from erroneous previous predictions by removing obsolete

features from memory.

The bottom three rows in Figure 9 show the case of complete occlusion when

tracking multiple objects. Given the object-agnostic nature of our baseline, we are

using the same index counter for all of the objects. During an object’s occlusion, fea-

tures become inactive. As a result, they have a higher probability of being discarded

from memory, and in the case they reappear later in the video sequence, the network

may not track the object again.

3.5.6 Discussion

We analyzed the effectiveness of using top-k as an index. To do so, we remove the

top-k storing from the memory bank and instead use softmax weights as the counter

index. A comparison between the two approaches is shown in Table 4.

Even among the top-k features, softmax normalization is highly imbalanced to-

ward the closest features, which score a high probability. This imbalance diminishes

the network’s ability to discard features that used to be deterministic but lost their

effectiveness. Figure 10 shows a qualitative comparison between top-k and softmax

weights used as the index. As seen, our method can handle the deformation and

complex motions of objects.

Memory bank size. We further investigate the effect of memory bank capacity on

model performance. For this purpose, we gradually increase the size of the memory

bank and evaluate the performance of the network on Youtube-VOS [56] validation

set. We use Youtube-VOS [56] since it has larger validation set with longer videos.

Results are visualized in Figure 11.

Looking at the results, increasing the memory bank’s capacity leads to a better

J&F score. More importantly, only by doubling memory bank capacity from 2 to 4

frames worth of features, the network’s J&F measure increases by 2%. The results

show that using a memory bank with a capacity of four frames worth of features is the

best trade-off between inference speed and accuracy for the Youtube-VOS dataset.
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3.6 Conclusion

We presented a memory management strategy for semi-supervised video object seg-

mentation. We employed a least-frequently-used(LFU) policy using the top-k in-

dex. Extensive experimentation on DAVIS 2016, DAVIS 2017, and Youtube-VOS

demonstrates that our method outperforms fist-and-latest strategies with a fixed-

sized memory bank and achieves comparable results with every-k strategies with an

increasing-sized memory bank. Unlike state-of-the-art every-k methods, ours handles

videos of arbitrary length with no additional overhead, which is crucial for real-

world applications. Furthermore, our method facilitates video object segmentation of

arbitrary-lengthed video streams under limited computational resources.
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Figure 9: Qualitative results for DAVIS 2017. Frames are sampled from DAVIS
2017 [41] validation set. In each row, frames are temporally ordered from left to
right. Frames are sampled from challenging situations and transitions. Top: Our
method can successfully recover from the drifting. Middle: First-and-latest approach
collapses as a result of fast object deformation. Bottom: Our method fails to re-
identify object that has been completely occluded for a few frames. Features that
belonged to this object got removed after being unused for a few frames. Since object
form has not been changed through time, the first-and-latest method can successfully
segment using first frame information.
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Figure 10: Qualitative results for top-k and softmax weights as an index. Frames are
sampled from DAVIS 2017 [41] validation set. In each row, frames are temporally
ordered from left to right. Frames are sampled from challenging situations and tran-
sitions. Top: top two rows shows top-k effectiveness to handle deformation of the
object. Bottom: In the two bottom rows, we can see that using softmax weights,
the network is unable to adapt to the object’s new appearance as it changes toward
the end of the sequence.

Figure 11: Effect of memory bank capacity on J&F metric. Every-5 and first-and-
latest approach performance are shown for a clearer comparison. The size of the
memory bank is specified in terms of the number of frames.
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Chapter 4

Regularizers and Training

4.1 Memory bank regularization

During segmentation, we establish a pixel-wise connection between features of the

support key and query key. As mentioned in [8, 7], the relation between support

features and query features can be dominated by a small portion of discriminant

features, which essentially limits other features information to be propagated. STCN

[8] addresses this issue by replacing the dot product with negative Euclidean distance

as the affinity metric since the dot product is biased toward activated features with a

more significant norm. This section applies two regularization methods to the affinity

matrix and studies their effect on the performance. The intuition is to reduce network

reliance on discriminant features and improve network robustness to occlusions or

deformations. To address this issue, we investigate dropout and support feature

reallocation in the memory block.

Dropout was initially proposed to regularize the network during training and pre-

vent it from over-fitting. Dropout randomly deactivates features during the training

and makes the network perform the task using the remaining information. This op-

eration increases the generalization ability and leads to more robust performance.

After calculating the affinity matrix, we introduce a Dropout layer to randomly dis-

able feature connection using binomial distribution Pr(q) with q = 0.5. Dropout

shifts attention to remaining features and forces the network to perform segmenta-

tion based on remaining information. This simulates occlusion or illumination change

where query and support connection is affected by abrupt changes.
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Methods J-Mean J-Recall J-decay F-Mean F-Recall F-decay J&F-Mean
DAVIS 2016 validation set

STCN + dropout 90.0 98.1 4.4 92.8 97.2 4.9 91.4
STCN + reallocation 89.7 97.3 4.4 91.2 96.4 5.5 90.5

STCN 90.4 98.1 4.1 93.0 97.1 4.3 91.7
DAVIS 2017 validation set

STCN + dropout 79.1 88.1 9.4 85.5 92.3 10.5 81.6
STCN + reallocation 78.5 86.7 9.5 84.4 91.4 11.0 81.4

STCN 82.0 91.3 6.2 88.6 94.6 8.6 85.3

Table 5: Qualitative results on DAVIS 2016 and DAVIS 2017 validation sets. For
evaluation, we followed the original STCN [8] strategy to ensure a fair comparison.

Methods J-seen J-unseen F-seen F-unseen J&F
STCN + dropout 81.0, 76.9 84.9 84.0 81.6

STCN + reallocation 80.9 75.8 85.2 83.6 81.4
every 5 82.6 79.3 86.9 87.6 84.1

Table 6: Quantitative results on Youtube-VOS validation set.

In addition to dropout, inspired by [51], we also investigate the effect of support

feature reallocation on network performance. The main goal is to reallocate the

network’s attention to a broader range of support features. The affinity matrix D

shows pair-wise relation between query key Kq and support key Ks as is demonstrated

in Eq. 1 in the manuscript. By taking the average along support key dimension, we

create an attention map for support features.

dij = dist(ksi , k
q
j )

Ai =
HW∑
j=1

dij

The attention value of each support feature reflects its importance during the segmen-

tation. We reallocate the attention between support features to facilitate information

propagation and include more support features in the segmentation process. To do

so, we sort support feature attention in descending order and get sorting index w

for each feature i in support. Having sorted the index, we reweight the connection

belonging to feature i in the affinity matrix using the following equation.

d̂ij = dij ×
wj∑H

k=1Wwk

Multiplying normalized sorted index to corresponding pixels of affinity matrix in-

creases the importance of the less discriminant features. Since most of the pixels
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belong to the background, we only perform this operation on the pixels of each ob-

ject separately. For each object in the support set, we store the corresponding object

mask and multiply interpolated mask to support key to filter out background features.

We followed the training procedure suggested by STCN [8] to study the effect of

these two regularizations on the network. We evaluated each method after complete

training on Youtube-VOS [56], DAVIS 2017 [41] and DAVIS 2016 [40]. Quantitative

Results for DAVIS 2017 and 2016 are shown in table 5 and Quantitative results for

Youtube-VOS are shown in table 6.

On DAVIS 2016 [40] single object benchmark, both regularization methods achieve

close results to the baseline. However, neither of them can improve the performance

of the method. On DAVIS 2017[41] and Youtube-VOS [56] multi-object datasets, the

network performance degrades using these regularization methods.

We randomly pick two objects from the sequence for multi-object training to

save computation and reduce complexity in each iteration. However, both dropout

and feature reallocation are harmful to multi-object training and add unproductive

complexity to the network.

4.2 Training details

We follow [8, 7] strategies for data augmentation and training. They are mentioned

here for completeness. However, we invite readers to look at the open-source code for

more details.

4.2.1 Pre-training

At the pre-training stage, we used BIG[6], DUTS[52], HRSOD[61], FSS1000[22], and

ECSSD[45]. BIG and HRSOD repeated five times in training data as they provide

higher quality annotations. At each iteration, we randomly pick one image and gen-

erate three augmented samples from the base image. Before creating augmented

samples, we apply random scaling, random horizontal flip, random color jitter, and

random greyscale on the base image using Pytorch augmentation tools. To create

augmented samples, we apply affine transform and another color jitter on the aug-

mented base image. Each sample shorter side is then resized to 384, and a random

crop applied after that resulting in 384 × 384 outputs. In this stage, we only train
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the network with single object samples.

4.2.2 Main-training

At the main-training stage, we use Youtube-VOS [56], and DAVIS [41, 40]. DAVIS

is repeated five times as it contains better annotations. We used the 480p version of

DAVIS for training and resized Youtube-VOS such that the shorter edge is equal to

480. At each iteration, we sample three temporally ordered frames from a video to

form the training sequence. The maximum temporal distance of sampled frames starts

from 5 and increases by 5 at [10%, 20%, 30%, 40%. For the last 10% of iterations, the

maximum temporal distance is changed back to 5 frames.

For augmentation, we apply random horizontal flip, random resized crop (crop size =

384), random color jitter and random grayscale on all images in the training sequence.

The random seed is fixed for all images in the training sequence, and we apply the

same transform on all images. Then, for each image, we perform color jitter and

random affine transform. At each training sequence, we pick at most two objects to

perform multi-object training.

4.2.3 Loss, Optimizer, and scheduling

Adam [19] optimizer is initialized with base learning rate of 10−5, momentum of

β1 = 0.9, β2 = 0.999, L2 weight decay of 10−7, and step learning rate decay with

decay ratio of 0.1. Decay is performed once in the middle of the pre-training stage

and once in the middle of the main training. The learning rate schedule ends after each

stage of training, and we initialize a new schedule for each stage. Batch normalization

layers in the key and value encoder are frozen with the Imagenet pre-trained network

parameters to speed up the training. For bootstrapped cross-entropy loss, we used

100% of pixels for the first 20k iterations. After that, we only use top-p% pixels with

the highest error (hard pixel-mining) to compute gradients. p linearly decreases from

100 to 15 over 50k iteration and remains fixed after that.
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Chapter 5

Conclusion and future work

Recent advances in deep learning made it possible to propose solutions for many

complex problems in various areas. In the computer vision domain, deep learning

methods can deliver a reliable results for semantic segmentation and object detection

tasks.

Although deep learning approaches achieved considerable success in processing

images in recent years, the amount of information in an image is limited compared

to a video. The ability to process videos and extract meaningful information from

videos is the next milestone to understanding the world through computer vision.

To this end, video object segmentation is fundamental to many other tasks in video

processing.

Currently, matching-based networks reached state-of-the-art results for semi-supervised

video object segmentation. However, direct application of these methods to a real-

world problem is not possible. This thesis addresses the shortcomings of current

state-of-the-art methods and proposed adaptations that enable using these methods

on arbitrary length videos. In particular, we proposed a novel memory management

scheme that improves inference speed and enables the processing of long videos while

respecting the computational limitation of the processing device. We showed that

we could achieve comparable results with static methods while using a fraction of

memory and computation power with adaptive memory management.

We further investigated possible regularization to memory bank to improve model

robustness in edge cases such as abrupt illumination change, occlusion, and blur.
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Calculating the similarity is a bottleneck in matching-based networks. With adap-

tive memory management, we use fixed-size memory, and as a result, the similarity

calculation is no longer a limitation. As future work, similarity calculation can be

done in a multi-scale feature embedding. This would improve model robustness for

edge cases, especially when multiple objects with similar appearances are segmented.
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Appendix

5.1 Detailed results

In this section, we provided detailed results of our experiments in this thesis. Results

on Youtube-VOS are omitted.

Tables 8 and 7 show detailed results of our novel adaptive memory management

on DAVIS 2016 and DAVIS 2017 validation sets.

Tables 9 and 10 shows per sequence results of applying memory bank regular-

ization methods proposed in chapter 4 on DAVIS 2016 and DAVIS 2017 validation

sets.

Sequence J-Mean F-Mean

bike-packing 1 0.783 0.863

bike-packing 2 0.894 0.918

blackswan 1 0.965 0.993

bmx-trees 1 0.534 0.941

bmx-trees 2 0.761 0.935

breakdance 1 0.926 0.945

camel 1 0.971 0.995

car-roundabout 1 0.987 0.988

car-shadow 1 0.974 0.997

cows 1 0.962 0.984

dance-twirl 1 0.916 0.939

dog 1 0.959 0.986

dogs-jump 1 0.887 0.959

dogs-jump 2 0.932 0.961

dogs-jump 3 0.945 0.977
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drift-chicane 1 0.883 0.941

drift-straight 1 0.944 0.928

goat 1 0.918 0.957

gold-fish 1 0.854 0.878

gold-fish 2 0.783 0.870

gold-fish 3 0.911 0.948

gold-fish 4 0.923 0.963

gold-fish 5 0.925 0.938

horsejump-high 1 0.898 0.972

horsejump-high 2 0.845 0.988

india 1 0.925 0.912

india 2 0.745 0.750

india 3 0.660 0.689

judo 1 0.885 0.906

judo 2 0.846 0.867

kite-surf 1 0.532 0.919

kite-surf 2 0.396 0.490

kite-surf 3 0.788 0.946

lab-coat 1 0.090 0.272

lab-coat 2 0.000 0.000

lab-coat 3 0.969 0.962

lab-coat 4 0.944 0.933

lab-coat 5 0.926 0.908

libby 1 0.915 0.990

loading 1 0.975 0.987

loading 2 0.839 0.877

loading 3 0.913 0.967

mbike-trick 1 0.847 0.934

mbike-trick 2 0.828 0.849

motocross-jump 1 0.814 0.813

motocross-jump 2 0.858 0.814

paragliding-launch 1 0.851 0.920

paragliding-launch 2 0.759 0.929

34



paragliding-launch 3 0.133 0.419

parkour 1 0.956 0.984

pigs 1 0.927 0.961

pigs 2 0.805 0.895

pigs 3 0.925 0.910

scooter-black 1 0.786 0.925

scooter-black 2 0.898 0.895

shooting 1 0.315 0.411

shooting 2 0.908 0.884

shooting 3 0.830 0.947

soapbox 1 0.883 0.911

soapbox 2 0.819 0.880

soapbox 3 0.817 0.919

Table 7: Per sequence quantitative results of adaptive

memory bank with memory bank size of 2 frames worth

of features on DAVIS 2017 validation set.

Sequence J-Mean F-Mean

blackswan 1 0.962 0.990

bmx-trees 1 0.705 0.921

breakdance 1 0.907 0.925

camel 1 0.968 0.994

car-roundabout 1 0.987 0.987

car-shadow 1 0.973 0.997

cows 1 0.959 0.980

dance-twirl 1 0.912 0.931

dog 1 0.958 0.986

drift-chicane 1 0.876 0.941

drift-straight 1 0.945 0.934

goat 1 0.918 0.958

horsejump-high 1 0.917 0.976

kite-surf 1 0.753 0.926

libby 1 0.915 0.990
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motocross-jump 1 0.861 0.810

paragliding-launch 1 0.657 0.466

parkour 1 0.956 0.985

scooter-black 1 0.946 0.910

soapbox 1 0.820 0.861

Table 8: Per sequence quantitative results of adaptive

memory bank with memory bank size of 2 frames worth

of features on DAVIS 2016 validation set.

Dropout Reallocation

Sequence J-Mean F-Mean J-Mean F-Mean

blackswan 1 0.961 0.996 0.967 0.997

bmx-trees 1 0.729 0.941 0.68 0.907

breakdance 1 0.929 0.953 0.916 0.914

camel 1 0.966 0.995 0.971 0.988

car-roundabout 1 0.984 0.977 0.97 0.963

car-shadow 1 0.942 0.955 0.942 0.959

cows 1 0.961 0.989 0.964 0.986

dance-twirl 1 0.906 0.934 0.903 0.915

dog 1 0.942 0.985 0.955 0.981

drift-chicane 1 0.871 0.97 0.897 0.961

drift-straight 1 0.944 0.936 0.947 0.947

goat 1 0.904 0.954 0.919 0.958

horsejump-high 1 0.912 0.968 0.914 0.97

kite-surf 1 0.749 0.891 0.744 0.837

libby 1 0.896 0.98 0.908 0.979

motocross-jump 1 0.91 0.819 0.899 0.801

paragliding-launch 1 0.662 0.482 0.65 0.425

parkour 1 0.953 0.986 0.957 0.984

scooter-black 1 0.941 0.919 0.914 0.852

soapbox 1 0.951 0.945 0.936 0.928
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Table 9: Per sequence quantitative results of different

memory bank regularization on DAVIS 2016.

Dropout Reallocation

Sequence J-Mean F-Mean J-Mean F-Mean

bike-packing 1 0.769 0.884 0.762 0.823

bike-packing 2 0.862 0.886 0.849 0.862

blackswan 1 0.961 0.996 0.967 0.997

bmx-trees 1 0.515 0.889 0.446 0.887

bmx-trees 2 0.753 0.924 0.739 0.92

breakdance 1 0.929 0.953 0.916 0.914

camel 1 0.966 0.995 0.971 0.988

car-roundabout 1 0.984 0.977 0.97 0.963

car-shadow 1 0.942 0.955 0.942 0.959

cows 1 0.961 0.989 0.964 0.986

dance-twirl 1 0.906 0.934 0.903 0.915

dog 1 0.942 0.985 0.955 0.981

dogs-jump 1 0.24 0.333 0.12 0.167

dogs-jump 2 0.604 0.742 0.582 0.737

dogs-jump 3 0.936 0.976 0.936 0.968

drift-chicane 1 0.871 0.97 0.897 0.961

drift-straight 1 0.944 0.936 0.947 0.947

goat 1 0.904 0.954 0.919 0.958

gold-fish 1 0.846 0.879 0.856 0.886

gold-fish 2 0.751 0.799 0.774 0.826

gold-fish 3 0.846 0.901 0.869 0.907

gold-fish 4 0.899 0.959 0.919 0.959

gold-fish 5 0.914 0.938 0.927 0.928

horsejump-high 1 0.893 0.968 0.895 0.968

horsejump-high 2 0.836 0.983 0.839 0.981

india 1 0.923 0.905 0.926 0.915

india 2 0.739 0.746 0.74 0.745
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india 3 0.837 0.83 0.837 0.834

judo 1 0.884 0.914 0.861 0.886

judo 2 0.843 0.866 0.829 0.849

kite-surf 1 0.5 0.879 0.47 0.845

kite-surf 2 0.475 0.629 0.414 0.567

kite-surf 3 0.8 0.957 0.81 0.974

lab-coat 1 0 0 0 0

lab-coat 2 0 0 0 0.011

lab-coat 3 0.965 0.955 0.966 0.943

lab-coat 4 0.942 0.918 0.937 0.913

lab-coat 5 0.925 0.903 0.921 0.901

libby 1 0.896 0.98 0.908 0.979

loading 1 0.968 0.983 0.967 0.972

loading 2 0.638 0.765 0.578 0.695

loading 3 0.928 0.97 0.911 0.943

mbike-trick 1 0.809 0.871 0.826 0.902

mbike-trick 2 0.826 0.855 0.831 0.88

motocross-jump 1 0.815 0.838 0.831 0.82

motocross-jump 2 0.854 0.774 0.856 0.776

paragliding-launch 1 0.788 0.909 0.755 0.893

paragliding-launch 2 0.714 0.92 0.722 0.896

paragliding-launch 3 0.169 0.472 0.128 0.412

parkour 1 0.953 0.986 0.957 0.984

pigs 1 0.912 0.952 0.911 0.906

pigs 2 0.784 0.885 0.721 0.831

pigs 3 0.946 0.942 0.96 0.947

scooter-black 1 0.841 0.973 0.823 0.955

scooter-black 2 0.911 0.922 0.893 0.876

shooting 1 0.371 0.444 0.485 0.508

shooting 2 0.899 0.857 0.899 0.87

shooting 3 0.909 0.974 0.881 0.958

soapbox 1 0.886 0.913 0.876 0.902

soapbox 2 0.799 0.855 0.776 0.891
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soapbox 3 0.84 0.913 0.838 0.924

Table 10: Per sequence quantitative results of different

memory bank regularization on DAVIS 2017.

5.2 Reproduction

In order to reproduce results, the code and weights that are used in our experiments

are made available online at https://github.com/alipga/STCN.
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Cremers, and Luc Van Gool. One-shot video object segmentation. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 221–

230, 2017.

[5] Bodhiswatta Chatterjee and Charalambos Poullis. On building classification

from remote sensor imagery using deep neural networks and the relation between

classification and reconstruction accuracy using border localization as proxy. In

2019 16th Conference on Computer and Robot Vision (CRV), pages 41–48, 2019.

[6] Ho Kei Cheng, Jihoon Chung, Yu-Wing Tai, and Chi-Keung Tang. CascadePSP:

Toward class-agnostic and very high-resolution segmentation via global and local

refinement. In CVPR, 2020.

[7] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Modular interactive video

object segmentation: Interaction-to-mask, propagation and difference-aware fu-

sion. In CVPR, 2021.

40



[8] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Rethinking space-time net-

works with improved memory coverage for efficient video object segmentation.

arXiv preprint arXiv:2106.05210, 2021.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for

image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[11] Qianyu Feng, Zongxin Yang, Peike Li, Yunchao Wei, and Yi Yang. Dual embed-

ding learning for video instance segmentation. In Proceedings of the IEEE/CVF

International Conference on Computer Vision Workshops, pages 0–0, 2019.

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning

for fast adaptation of deep networks. In International Conference on Machine

Learning, pages 1126–1135. PMLR, 2017.

[13] Alex Graves. Long short-term memory. In Supervised sequence labelling with

recurrent neural networks, pages 37–45. Springer, 2012.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[15] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 7132–

7141, 2018.

[16] Li Hu, Peng Zhang, Bang Zhang, Pan Pan, Yinghui Xu, and Rong Jin. Learning

position and target consistency for memory-based video object segmentation.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 4144–4154, 2021.

41



[17] Yuan-Ting Hu, Jia-Bin Huang, and Alexander G Schwing. Maskrnn: Instance

level video object segmentation. arXiv preprint arXiv:1803.11187, 2018.

[18] Anna Khoreva, Rodrigo Benenson, Eddy Ilg, Thomas Brox, and Bernt

Schiele. Lucid data dreaming for multiple object tracking. arXiv preprint

arXiv:1703.09554, 2017.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[20] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan

Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. Ask me anything:

Dynamic memory networks for natural language processing. In International

conference on machine learning, pages 1378–1387. PMLR, 2016.

[21] Sangho Lee, Jinyoung Sung, Youngjae Yu, and Gunhee Kim. A memory network

approach for story-based temporal summarization of 360 videos. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages

1410–1419, 2018.

[22] Xiang Li, Tianhan Wei, Yau Pun Chen, Yu-Wing Tai, and Chi-Keung Tang.

Fss-1000: A 1000-class dataset for few-shot segmentation. In CVPR, 2020.

[23] Xiaoxiao Li and Chen Change Loy. Video object segmentation with joint re-

identification and attention-aware mask propagation. In Proceedings of the Eu-

ropean conference on computer vision (ECCV), pages 90–105, 2018.

[24] Yu Li, Zhuoran Shen, and Ying Shan. Fast video object segmentation using

the global context module. In European Conference on Computer Vision, pages

735–750. Springer, 2020.

[25] Chen Liang, Zongxin Yang, Jiaxu Miao, Yunchao Wei, and Yi Yang. Memory

aggregated cfbi+ for interactive video object segmentation. In CVPR Workshops,

volume 1, page 2, 2020.

[26] Yongqing Liang, Xin Li, Navid Jafari, and Qin Chen. Video object segmenta-

tion with adaptive feature bank and uncertain-region refinement. arXiv preprint

arXiv:2010.07958, 2020.

42



[27] Huaijia Lin, Xiaojuan Qi, and Jiaya Jia. Agss-vos: Attention guided single-

shot video object segmentation. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 3949–3957, 2019.

[28] Jonathon Luiten, Paul Voigtlaender, and Bastian Leibe. Premvos: Proposal-

generation, refinement and merging for video object segmentation. In Asian

Conference on Computer Vision, pages 565–580. Springer, 2018.

[29] K-K Maninis, Sergi Caelles, Yuhua Chen, Jordi Pont-Tuset, Laura Leal-Taixé,
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