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Abstract 

Application of Machine Learning Algorithms to the Prediction of Water Main Deterioration 

 

Mohammad Amini 

 

Drinking water networks are among the essential infrastructure in cities worldwide. The failure 

of water mains jeopardizes this essential service and the safety of water users. However, across 

North America, the failure rate of older water mains has been increasing. The goal of this study 

is to compare the accuracy and applicability of machine learning algorithms to predict water 

main deterioration across Canadian water systems. In previous studies, different approaches 

were applied to only one or a few utilities. Nevertheless, it is valuable to compare results 

among various networks with different characteristics and levels of data collection. Accordingly, 

data was collected from thirteen Canadian water utilities, including Barrie, Calgary, Halifax, 

Kitchener, Markham, Region of Durham, Region of Waterloo, Saskatoon, St. John’s, Waterloo, 

Winnipeg, Victoria, and Vancouver. A variety of factors, including intrinsic, environmental, and 

operational, were used to develop more reliable predictions and assess the relative importance 

of each factor.  Random forest (RF), artificial neural networks (ANN), extreme gradient boosting 

(XGBOOST), and logistic regression (LR) were applied to predict the probability of failure. 

Furthermore, RF, ANN, XGBOOST, and ElasticNet regression models were employed to predict 

age at first failure and the current rate of failures. Results indicated the superiority of XGBOOST 

over other models in predicting the probability of failure and the current rate of failure. 

However, for age at first failure, RF performed better. When datasets were significantly 

imbalanced, the application of the Synthetic Minority Oversampling Technique (SMOTE) 

provided more accurate predictions. Because these models provide predictions for every pipe 

in the network, they can be mapped to facilitate the visualization of deterioration. While 

models created for one utility cannot be accurately applied to other utilities, the same machine 

learning algorithms can be quickly and effectively adapted to multiple utilities. Overall, these 

models support robust and data-driven asset management decision-making. 
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1. INTRODUCTION 
 

In today’s fast-paced world, many cities are struggling to manage their aging infrastructure. 
Evermore stringent practices are being set to manage critical infrastructure, including timely 
repair and replacement of water systems. Water mains are a vital component of water systems, 
as they convey drinking water to millions of end-users. Furthermore, as pipes are usually buried 
underground, their inspection and condition assessment can be cumbersome (Folkman, 2018). 
Accordingly, various researchers are seeking to develop better measures and methods to assess 
and predict pipe failure. This would allow utilities to better rehabilitate and replace this 
essential infrastructure. A deeper understanding of pipe failures could also be applied to asset 
management practices to keep water systems satisfactory and reduce maintenance costs. 

In order to reduce lifecycle costs, water utilities seek to predict the likely time of pipe failure. 
This enables the identification of the optimal year for pipe replacement or repair. Unexpected 
water main failures can lead to several challenges for utilities and end-users, such as service 
interruption, reduced system capacity (Andreou, 1986), and fire-fighting capability.  Pipe 
deterioration on its own can bring about tuberculation, leading to a reduction in system 
capacity as well (Lei and Saegrov, 1998). Water main failures can also damage other services 
and nearby properties and incur substantial rehabilitation or replacement expenditures (Shamir 
and Howard, 1979). Yamijala et al. (2009) reported that another potential consequence is water 
contamination which puts users’ health at risk. Service interruptions and poorer water quality 
also lead to general customer dissatisfaction. 

A study of USA drinking water systems found that most water mains laid during the early to mid 
20th century have an average life span of 75 to 100 years. However, if current replacement rates 
continue, replacing all mains would take approximately 200 years, double the estimated service 
life of water mains (Folkman, 2018). This period can be reduced by implementing asset 
management practices. In order to reduce this deficit, some utilities in the mentioned study 
were reported to have a 125-year replacement strategy (Folkman, 2018).  

In 2017, the ASCE report card was prepared and given grade D to drinking water infrastructure 
in the USA, as opposed to D- in 2009 and an estimation of 240,000 breaks per year in the USA 
(ASCE, 2017)(ASCE, 2009).  

Furthermore, from 2012 to 2018, the total breakage rates surged from 11 to 14 breaks/100 
miles/year (Folkman, 2018). Cast Iron and Asbestos Cement pipes account for almost 41% of 
the installed water mains in the USA and Canada, and many of them are approaching the end of 
their expected service lives, having experienced an increase of over 40% in breaks rate. Thus, 
having a robust strategy to maintain these pipes is the primary concern for most utilities 
(Folkman, 2018).  

On the other hand, 59% of pipes in Canada were reported to be less than 40 years old and only 
9% above 80 (Canada Infrastructure Report Card, 2019). However, if reinvestment is not 
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increased in Canada, the condition of core infrastructure may worsen, increasing the cost and 
risk of service interruption (Canada Infrastructure Report Card, 2016).  

Mirza (2007) reported that among the $123 billion estimated total infrastructure backlog, $31 
billion was related to water and wastewater networks. Mirza (2007) noted that the total cost to 
maintain core infrastructure was projected to rise to $400 billion in 2020. The Canada 
Infrastructure Report Card (2016) found that 29% of portable water infrastructure was in very 
poor, poor, and fair condition with a cost of $60 billion to replace. The more recent assessment 
found a similar percentage, of  25% (Canada Infrastructure Report Card, 2019).  

 

1.1 PROBLEM STATEMENT 
 

Previous pipe deterioration prediction studies applied different factors in modeling 
deterioration, depending on the availability of data for the given case studies and assumed 
important factors. These applications have focused on only a few water utilities. The broad 
applicability and accuracy of different predictive models for various utilities are unknown. In 
order to develop a framework for water main deterioration modeling across Canada, models 
should be compared under different conditions. 

The factors considered by previous studies are also limited, generally focusing on pipe age, 
material, and diameter. Nevertheless, other intrinsic, environmental, and operational factors 
have been shown to impact deterioration significantly. Thus, if additional data is available for a 
particular utility, it may potentially improve deterioration predictions. Accordingly, investigating 
the importance of predictive attributes cannot only help improve the accuracy and efficiency of 
deterioration models for utilities with large datasets but also provide insight into additional 
data other utilities should collect. 

1.2 RESEARCH OBJECTIVES 
 

The primary objective of this study is to compare the accuracy and applicability of machine-
learning algorithms applied in predicting water main failure across Canadian water systems. 
This main objective is achieved through the following specific objectives: 

1. Investigate the accuracy and applicability of models to predict probability of failure for 
different water systems. 

2. Investigate the accuracy and applicability of models to predict age at first failure and the 
current failure rate for different water systems. 
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Data was collected from thirteen utilities across Canada to meet these objectives, including 
Barrie, Calgary, Halifax, Kitchener, Markham, Saskatoon, St. John’s, Vancouver, Victoria, Region 
of Durham, Region of Waterloo, Waterloo, and Winnipeg. 
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2. LITERATURE REVIEW 

 
In recent decades, many studies have been conducted to understand the water mains 
deterioration process better. As a result, models for water main failure prediction can be 
broadly classified as physical or statistical. Physical models estimate the residual structural 
strength of pipes subject to different loads. In contrast, statistical models rely on historical 
failure data. 
 
The residual structural strength of pipes is affected by many factors such as environmental and 
operational conditions in addition to manufacturing and installation practices (Rajani and 
Kleiner, 2001). Physical models estimate the probability of failure by investigating the loads 
imposed on a water main network and pipes` strength that withstands these loads in the 
system (Kimutai et al., 2015; Mazumder et al., 2019; Park et al., 2011). Examples of these 
factors that put pressure on a pipeline include soil pressure, external and internal load (e.g., 
traffic, earthquake), frost load, and operational water pressure within the network. For 
instance, the internal load could be a water hammer, and traffic could be an external load. 
Moreover, these models can be applied by various types of information, such as pipe features, 
material specifications, pipe age, the severity of corrosion (corrosion condition), different 
environmental factors such as temperature and rain deficit (Rajani and Kleiner, 2001).  
 
One of the advantages of physical models is that mainly a large number of historical data is not 
required to develop a predictive model (Wilson et al., 2017), compared to statistical models, in 
which having large enough data is the primary part of the process. However, the information 
collected for physical models should include all required details for the analytical processes. 
 
Meanwhile, large diameter pipes are less prone to failure. Therefore, enough historical data is 
not available. For instance, in this case, physical models are more justifiable where the cost of 
failure is significant (Kleiner and Rajani, 2001). Physical models are classified into two main 
categories, deterministic and probabilistic models.  The deterministic is defined as a model in 
which relationships between variables are assumed to be certain (Clair and Sinha, 2012). The 
deterministic model consists of several models to calculate, for instance, the frost load, the soil-
pipe interaction, and the residual structural resistance of water mains (Rajani and Kleiner, 
2001). 
On the other hand, the probabilistic models mainly focus on the resilience of pipes by 
predicting the likelihood of failure, integrating a wide range of ambiguities in the physical 
condition of pipe modeling (Nishiyama and Filion, 2013). Creighton (1994) also believed that 
the probabilistic models analyze the likelihood of an event occurring. Therefore, this probability 
related to these incidences is feasible for providing an explanation pertinent to asset failure. 
 
Even though physical models can result in more accurate predictions, they require 
comprehensive datasets that are not effortlessly available. Therefore, these physical models are 
generally justified for pipes where failure's cost or broader consequence is considerable 
(Kleiner and Rajani, 2001). These are usually large pipes (transmission network) with little 
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redundancy utilized to transfer water from, for example, a reservoir to a local distribution 
network. Larger pipes are less likely to fail; thus, there exists less accessible historical data. On 
the other hand, statistical models can be applied with varying levels of data availability and can 
be used for minor networks (distribution water mains), for which the cost of failure is not 
considerable (Kleiner and Rajani, 2001). Thus, the focus of this study is on machine learning 
models created based upon the concept of statistical models. 
 
Owing to the deterioration process's inherent complexity, attempts to predict the failure of 
water mains focus mainly on statistical models (Lei and Saegrov, 1998). Statistical models use 
historical failure data to define patterns that are assumed to continue in the future.  Statistical 
models can be either probabilistic or deterministic. In addition, they may estimate the 
probability of failure, rate of failure, and age at first and subsequent failures (Kleiner and Rajani, 
2001; Park et al., 2011). Thus, comprehensive data would, undoubtedly, increase the accuracy 
of the models (Kleiner and Rajani, 2001). 

 
Deterministic models predict a certain rate of failure or age at failure by fitting different 
equations to historical data  (Kleiner and Rajani, 2001). These models generally require pipes to 
be partitioned into homogeneous groups with similar characteristics, such as material, size, 
land under which pipes are laid, soil type, and installation period. This partitioning, however, 
imposes a challenge on the analysis process. Groups should be large enough and significantly 
different for the related models to be reliable (Kleiner and Rajani, 2001).  Therefore, it is 
recommended that the size of the dataset be assessed prior to commencing the analytical 
process.  
 
On the other hand, probabilistic models predict the probability of pipe failure at a specific time 
in the future or the probability for a pipe to enter into the next stage of deterioration (Andreou, 
1986). According to Kleiner and Rajani (2001), the advantage of these models is that they 
generally remove the need for partitioning, even if partitioning may raise the accuracy of the 
results. However, the mathematical calculation of these models is highly intricate and requires 
more expertise than deterministic models (Kleiner and Rajani, 2001). The following sections 
describe various statistical models in more detail. 
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2.1 STATISTICAL DETERMINISTIC MODELS 
 

2.1.1 TIME LINEAR MODELS 
 

One of the pioneering studies in water failure prediction was conducted by Shamir and Howard 
(1979). They proposed both linear and exponential equations to predict the number of failures 
based on the pipe age. The linear model, which was not supported with any statistical analysis, 
is shown in TABLE 2.1. However, the analysis in the study focused on the exponential equation. 
Walski and Pelliccia (1982) emphasized that the exponential model would be more reliable to 
relate age to the failure rate. The table lists different time linear models, their accuracies, and 
more information worth mentioning briefly. 
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TABLE 2.1 - DETERMINISTIC, TIME–LINEAR MODELS 

 
Authors  Equation and Required Data Accuracy Location Period Material Variables in the Equation 

Shamir and Howard (1979)  

N(t) = N(t0) A (t - t0) 

 

Pipe length, Installation date and 

historical breakage records.  

For homogeneity:  

( pipe size, material, soil type, 

type of failure, and any other 

criteria that may help to create a 

better uniform group of pipes ) 

 

Not 

Available  

 

Not 

available 

 

1961-

1975 

 

Not 

available 

 

t is time in years,  

N(t) is the rate of failure at 

time t per year per 1000.ft 

length, 

t0 is an arbitrary base year, 

N(t0) is the number of breaks 

for the base year, and 

A is the growth rate 

coefficient (1/year). 

Clark et al. (1982)  

NY = x0 + x1 D - x2P -x3I - x4 RES- x5 LH + x6T 

 

NY = 4.13 + 0.338 D - 0.022P -0.265I -  

0.0983RES- 0.0003LH + 13.28T 

 

Installation Date, historical 

breakage record, material, size, 

operating pressure, soil 

corrosivity, composition of land 

overlaying pipes, type of breaks 

and the pipe vintage which may 

enhance the accuracy of the 

model. 

 

r2 = 0.23  

 

Two major 

cities in 

North 

America 

 

1930-

1980 

 

Steel and 

reinforce

d 

concrete 

pipes 

NY is the number of years to 

first repair, 

D is the pipe diameter (inch), 

P is operational pressure 

inside the pipe in psi, 

I is the percentage of pipe 

which is covered by industrial 

area, 

RES is the percentage of pipe 

which is covered by 

residential area, 

LH is length pipe in interaction 

with significantly corrosive 

soil, and 

T is type of pipe (1 = Metal 

Pipe, 0 = Reinforced 



8 | P a g e  

 

Concrete). 

Authors Equation and Required Data Accuracy Location Date Material Variables in the Equation 

McMullen (1982) Age = x1SR - x2pH - x3rd 

Age = 0.028 SR - 6.33 pH - 0.049rd 

 

Data related to soil 

characteristics is required. Data 

could be gathered intermittently 

which is not expensive. However, 

gathering data continuously 

could be highly expensive. 

Nevertheless, it is recommended 

to analyze soil around pipes to 

obtain a model with higher 

accuracy. It should be noted that 

water level is not steady, and is 

related to seasonal precipitation. 

 

r2 = 0.375, 

 

 

 

Des 

Moines, 

Iowa 

  

CI pipes 

Age is time from installation 

to first failure, 

S is saturated soil resistivity (Ω 

cm), 

pH is the characteristic of soil, 

and 

rd is redox potential. 
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Kettler and Goulter (1985) N = K0 * DIAM 

N = 2.002 - 0.0064 DIAM 

 

N = K0 * X 

AC pipes (Excluding 23rd winter)                                   

N = -66.11 + 4.89 X 

CI pipes (Excluding 23rd winter)

  

N = -54.29 + 14.29 X 

CI pipes joint failure (Excluding 

23rd winter) 

N= -104.6 + 13.79 X 

 

Pipe length, Installation date and 

historical breakage records. For 

homogeneity:  

(pipe size, material, soil type, 

type of failure, and any other 

criteria that may help to create a 

better uniform group of pipes ) 

 

r2 = 0.93  

 

 

 

 

 

r2 = 0.884  

 

r2 = 0.672  

 

 

r2 = 0.81  

 

Winnipeg, 

Manitoba 

 

1950-

1959 

 

AC and CI 

pipes 

 

100-400 

mm 

N is the number of failures, 

K0 is the coefficient, 

X is the number winters, and 

D is the size of pipe. 

Jacobs and Karney (1994) P = a0 + a1 Length + a2 Age 

 

Pipe length, pipe age (installation 

data and breakage history) are 

required. However, in order to 

have homogenous groups of pipe 

more data is recommended. 

 

r2 = 0.704 

to 0.937 

(All Breaks) 

 

r2 = 0.957 

to 0.969 ( 

For 

independe

nt breaks) 

 

Winnipeg, 

Manitoba 

  

CI pipes 

 

150 mm 

P was reciprocal of a 

probability of a day with no 

failure, and  

a0, a1 and a2 are the 

coefficient factors. 

 

Yamijala et al. (2009) 𝑁 = 𝛽0(𝐷) + 𝛽1(𝐴𝐶) +

𝛽2(𝐶𝐼) + 𝛽3(𝐶𝑆𝐶) + 𝛽4(𝐷𝐼) +

𝛽5(𝑃𝑉𝐶) +   𝛽6(𝑆𝑇𝐿) +

 

r2 = 0.12 

 

 

Texas, USA 

 

2000 - 

2005 

 

AC, CI, 

CSC, DI, 

N is rate of failures, 

D is the size of pipe in inches;  

AC, CI, CSC, DI, PVC and STL 
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𝛽7(𝐿) + 𝛽8(𝑌) + 𝛽9(𝑃) +

∑ βj(𝐿𝑈𝑗) +20
𝑗=10

 ∑ βk(𝑆𝑇𝐾) +25
𝑘=21

𝛽26(𝑇𝐸𝑀𝑃) + 𝛽27(𝑅𝐴𝐼𝑁) +

𝛽28(𝑆𝑀𝐴𝑋) + 𝛽29(𝑀𝑋. 𝑀𝑁) +

𝛽30(𝑃𝐶1) + 𝛽31(𝑃𝐶2) +

𝛽32(𝑃𝐶3)   

 

Size, length, material, type of 

soil, categorized land use, soil 

moisture, precipitation amount, 

average temperature and 

principle component analysis of 

soil  

 

𝑁 = −0.0027(𝐷) −
0.44(𝐴𝐶) − 0.45(𝐶𝐼) −
0.43(𝐶𝑆𝐶) − 0.46(𝐷𝐼) −
0.45(𝑃𝑉𝐶) + 2.6 ∗  10−5(𝐿) −
0.00027 (𝐿𝑈6) −
0.00032 (𝐿𝑈8) −
0.00035 (𝐿𝑈11) +
0.0018(𝑇𝐸𝑀𝑃) + 3.7 ∗
 10−5(𝑅𝐴𝐼𝑁) + 0.0015(𝑆𝑀𝐴𝑋)   
 

 

Holdout 

sample: 

 

zero 

failure: 

MSE=0.014 

 

 

non-zero 

failure:  

MSE = 1.12 

 

PVC, and 

STL 

 

are the binary variable, 

indicating the type of 

material; 

L is the length of pipe in feet; 

Y is the installation year of 

pipe; 

P is the operation pressure 

inside a pipe in pounds per Sq. 

Inch; 

LU is the code of land use, 

categorized into 11 groups; 

ST is the soil type by which 

pipe is surrounded; 

TEMP is the average of 

temperature during a 6-

month period; 

RAIN is the total amount of 

precipitation quantified in 

hundredths of one inch at the 

nearby airport; 

SMAX is the maximum soil 

moisture; and  

PC1, PC2 and PC3 are the 

principal component analysis 

(PCA) obtained on six 

different covariates of 

corrosive soil. 
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Clark et al. (1982)  enhanced Shamir and Howard`s model and proposed a linear model to 
predict the number of years to the first failure based on several variables listed in TABLE 2.1. 
The initial assumption was that these variables are independent. However, the model resulted 
in a low R2 of 0.23, which indicated that variables might act jointly rather than independently 
on the failure rate. The authors also found that the interval between subsequent breaks 
shortens significantly as the number of previous breaks increases.  
 
Jacobs and Karney (1994) utilized linearity intuition with a different approach and tried to 
predict a time for a pipe without failures, using the length and the age of a pipe. According to 
previous studies in Winnipeg (Goulter et al., 1993; Goulter and Kazemi, 1988), within which 
clustering phenomenon was introduced, Jacobs and Karney (1994) proposed a new definition 
for an independent break. That is, an independent break is a failure that occurs 90 days after 
the earlier break and/or 20 meters from the previous break. Accordingly, an independent break 
is the first break that occurs within the break clustering. Goulter et al. (1988), using a clustering 
method based on time and distance from the previous failures for a group of pipes, mentioned 
that the powerful inclination for the emergence of failures could be directly pertinent to 
previous breaks within the vicinity of the new failures, temporally or spatially. This is due to 
either the weakening process of pipes or the deterioration of bedding around the failure. This 
weakening and deterioration could rise from surrounding soil affected by the failure, resulting 
from the maintenance process. Jacob and Karney (1994) introduced a new linear regression and 
applied it to data from Winnipeg, including 390 Km of 150 mm Cast Iron pipes.  The authors 
categorized water mains into three groups considering their ages (0 to 18, 19 to 30, and >30). 
Doing so, they achieved uniform data to which their model was applied. The developed linear 
equation for this model is provided in TABLE 2.1. 
 
They initiated their analysis by applying a linear model to all breaks within the network, 
resulting in r2 ranging from 0.704 to 0.937 for different age categories, which indicated that 
breaks were uniformly distributed within the network. Afterward, according to their definition 
regarding independent break, they applied the model to those breaks which happened after 90 
days and/or within 20 meters from the previous break. The result was significantly appealing 
since r2 increased to 0.957-0.969, indicating that the independent breaks distributed across the 
length of the network uniformly, which certified their assumption about independent breaks. 
Using age as a factor in the regression analysis, authors improved the quality of their 
examination for either new pipes and noticeably for older pipes. They realized that the age 
correlation could be associated with different manufacturing, operation, and installation 
practices, which were the characteristics of different age groups. Additionally, the authors 
inferred that these different features could be classified geographically and realized that age 
would be an appropriate substitute measure that can be collected and managed in GIS (Kleiner 
and Rajani, 2001). 
 
Kettler and Goulter (1985) analyzed pipe failure considering time increment and increasing pipe 
diameter in a further study. They noticed that pipe failures decreased as the diameter in CI 
pipes increased (R2 = 0.93). The study was implemented on gathered data from four different 
cities in North America (New York, St. Catharines, Philadelphia, and Winnipeg). However, the 
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focus of their research was on Winnipeg in Canada, for which the data was desirably 
comprehensive. Since data for the larger pipe was not readily available, pipes from 100 to 400 
mm were chosen for the examination. The main equation utilized for modeling is provided in 
TABLE 2.1. 
 
This study also mentioned that the larger pipes have thicker walls, leading to less failure rate in 
those pipes.  Kettler and Goulter (1985)  also applied the suggested linear equation to the 
dataset from Winnipeg. However, due to insufficient information, they utilized the number of 
winters after 1959 (from 16th winter in 1975 to 23rd winter in 1983) to define the sample for 
their examination. Since the number of failures for the 23rd winter was considerably low, they 
decided to implement their analysis including and excluding that specific winter and considered 
the 23rd winter an outlier in parts of their analysis. Related equations are provided in TABLE 2.1. 
This model was relatively straightforward to be applied. However, the authors did not provide 
any validation for the model.  
 
McMullen (1982) suggested a linear relationship between pipe failure and soil specifications 
and proposed a model applied to the water distribution network of Des Moines, Iowa. The 
researchers in the examination team realized that 94% of failures were attributed to soil with 
less than 2000 Ω cm saturated resistivity, and corrosion was found as the primary type of 
failure in the system. According to the low to moderate r2, which was 0.375, it was certified that 
soil was the major contributing factor to pipe failures (Kleiner and Rajani, 2001), leading to 
expected service life reduction by 28 years for every 1000 Ω cm decrease in soil resistivity. 
Moreover, similar to that of Clark et al.(1982), the low value of r2 implies that the factors 
utilized in the analysis may not act independently; therefore, they should be employed 
dependently and multiplicatively. The proposed equation and the equation with suggested 
coefficients are provided in TABLE 2.1. 
 
Yamijala et al.(2009) incorporated a wide variety of features to the basic model introduced by 
Kettler and Goulter (1985). The analysis process started with 33 different variables. However, 
they finally ended up with fewer numbers of covariates with a significant p-value around 0.05. 
Implementing many analytical iterations, the authors ultimately obtained the equations 
provided in TABLE 2.1. The accuracy of this model was relatively low, with an r2 of 0.12. 
However, this does not indicate that whether the model would fit the dataset or not. That is, a 
more analytical process is required to find out about the accuracy rate of this model. Finally, 
this model depicted a low accuracy for non-zero failure among the pipes. 
 

2.1.2 TIME EXPONENTIAL MODELS 
 

Time exponential is a non-linear model proposed for the first time by Shamir and Howard 
(1979). The authors believed that the historical data must be investigated and utilized to 
foresee how the rate of failures in existing pipes will change in the future. It was reckoned that 
there is a positive correlation between pipe failure and the aging process and realized that the 
rate of failure increases exponentially as a pipe is aging. In this model, regression analysis was 
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used, which was supposed to predict the rate of breaks by pertaining pipe failures to the 
exponent of its age. The equation for this model is provided in (TABLE 2.2). 
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TABLE 2.2 - DETERMINISTIC, TIME – EXPONENTIAL MODELS 

Authors Equation and Required Data Accuracy Location Date Material Variables in the Equation 

Shamir 

and 

Howard 

(1979) 

N(t) = N(t0) e A (t-t0) 

 

Pipe length, Installation date and 

historical breakage records. For 

homogeneity:  

( pipe size, material, soil type, type of 

failure, and any other criteria that 

may help to create a better uniform 

group of pipes ) 

 

Not 

available 

 

Not available 

 

 

1961 - 

1975  

 

Not available 

 

t is time in years, 

N(t) is the rate of failure at time t per year 

per 1000.ft length, 

t0 is an arbitrary value which could be either 

the installation year or a year from which 

first information has been extracted, 

N(t0) is the number of breaks for the base 

year, and 

A is the growth rate coefficient. 

Walski & 

Pelliccia 

(1982) 

N(t) = C1 C2 a e  A (t-t0) 

 

Data required:  

Same as Shamir and Howard (1979) 

 

 

Pit CI: 

𝑁(𝑡) =  0.02577 𝑒  0.0207 (𝑡−t0) 

 

Sand spun CI: 

𝑁(𝑡)  =  0.0627 𝑒  0.0137 (𝑡−t0) 

 

 

Not 

available 

 

Binghamton, 

NY 

  

Not 

availabl

e 

 
Pit CI 

and 

Sandspun CI 
 
100-600 mm 

t is time in years, 

t0 is the installation year, 

N(t) is the rate of failure at age t 

(break/mile/year), 

a is the coefficient factor calculated by 

regression analysis, 

A is the growth factor coefficient (1/year), 

C1 is the added, factor for previous breaks, 

and  

C2 is the added, factor for size.  

 

These two factors are created based on the 

available information 

Clark et 

al. (1982) 

REP = y1* (e y2) T (e y3) PRD 

(e y4) A(e y5) DEV(SL y6)(SH y7) 
 

 

REP = 0.1721* (e 0.7197) T (e 0.0044) PRD  

(e 0.865) A (e 0.0121) DEV(SL 0.014)(SH 0.069)  

 

r2 = 0.47 

 

Two major 

cities in North 

America 

 

1930-

1980 

 

Steel and 
reinforced 
concrete pipes 

T is type of pipe (Metallic or Concrete) 

A is the age of pipe from the first failure, 

REP is the quantity of repair, 

PRD is differential pressure in psi, 

DEV is the percentage of the area above 

pipe in low corrosive and moderate 
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corrosive soil, 

SL is the surface area of pipe in low 

corrosive soil, and  

SH is surface area of pipe in highly corrosive 

soil. 

 

Y. Kleiner 

& Rajani 

(2002) 

N(xt) = N(x𝑡0
) 𝑒𝑎 𝑥𝑡

𝑇
  

r2 = 

0.619 to 

0.793 

 

Ottawa – 
Carlton, 
Ontario 

 

1973-

1998 

 
CI and DI 
pipes 

Xt is the vector of Time-Dependent variables 

which exist in time t; 

N(xt) is the breaks rate as a result of vector 

of Xt, 

a is corresponding coefficients related to 

covariate x, 

x𝑡0
 is vector of baseline in the year t0 which 

is the reference year, and  

N(x𝑡0
) is the rate of failure for the base 

year. 

 

Yamijala 
et al. 
(2009) 

Y = β0 e (β1 (TIME) +β2 (INSTYR)) 

 

Y = 0.093 e (0.47 (TIME) +2.7*10-5 (INSTYR)) 

 
Holdout 
Sample :  
 
zero 
failure: 
MSE = 
0.03 
 
non-zero  
failure:  
MSE = 
0.78 

 
Texas, USA 

 
2000 - 
2005 

 
AC, CI, CSC, DI, 

PVC, and STL 

 

β0 is coefficient factor calculated by 

regression analysis, 

β1 is coefficient factor of time elapsed from 

the first break, 

β2 is coefficient factor of year in which pipe 

was installed, 

Y is rate of failure, 

INSTYR is the installation year, and 

TIME is the elapsed time from the last 

break. 
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Shamir and Howard (1979)  assumed that N (t0) ≠ 0, meaning that even a newly installed pipe 
has a negligible number of breaks that may not be overlooked. 
 
In this study, for various groups of pipes, a range of 0.01-0.15 for coefficient A was proposed. 
They also recommended that to utilize this model to achieve a reliable result, the population of 
pipes should be partitioned into homogenous groups.  
 
There are, however, some critiques to this exponential model. Although the model was 
relatively straightforward to be applied to data, it required significant attention to partition 
data into homogenous groups. Besides, the authors did not provide adequate information 
about the location of the investigation. Meanwhile, the quality and method of analysis were not 
mentioned clearly. They also presumably considered failures to be distributed within the 
network uniformly. Consequently, many authors questioned their model in further studies 
(Kleiner and Rajani, 2001). 
 
Several years later, Walski and Pelliccia (1982) enhanced the model. Comparing both linear and 
exponential models, they realized that the exponential model best fit the data. The authors 
added up two additional factors to the primary model in order to increase the result accuracy. 
The model was based on the observation conducted by the US Army Corps of Engineers in 
Binghamton, NY (Walski and Pelliccia, 1982).  
 
The first factor (C1) considered the previous historical breaks of a pipe. If a pipe had one break 
prior to analyzing, it was more likely to fail again in the future. The second factor (C2) applied 
was related to the pipe with a larger diameter in Pit Cast Iron pipes. They also changed the 
arbitrary t0 in the main equation of Shamir and Howard (1982) to the installation year; thus, (t-
t0) became the pipe age. The proposed equations by Walski and Pelliccia are provided in (TABLE 
2.2). The low values of (A) indicated that the failure rate does not necessarily surge significantly 
while a pipe is aging. Furthermore, the impact of temperature was analyzed in this study and 
realized that incorporating the coldest months of the year may be a significant factor in 
predicting the water mains failures. However, this factor may not be feasible to be included in 
the analysis since the severity of winter is somehow unforeseeable. 
 
According to Walski and Pelliccia (1982), this model may be considered fundamental to predict 
pipes failures, albeit it did not employ pipes with a higher rate of failures which usually happen 
within the wear-out phase of the bathtub curve (Figure 2.1). More importantly, the authors did 
not mention whether the additional factors (C1 and C2) enhanced prediction quality and how far 
(Kleiner and Rajani, 2001). Finally, C1 and C2 were chosen randomly, which may not be 
considered as a logical selection statistically. 
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FIGURE 2.1 – THE BATHTUB CURVE OF LIFE CYCLE OF A BURIED PIPE (KLEINER AND RAJANI, 2001) 

 
In a later study, Yamijala et al. (2009)  modified the exponential model of Shamir and Howard 
(1979) and introduced a manipulated model to predict the rate of breaks. The analysis for this 
model was conducted upon data received from a utility in Texas, USA (TABLE 2.2). Analyzing the 
result indicated that the number of failures would increase as the longer time elapses from the 
last failure. The result also depicted that the non-linear model is more reliable and accurate 
than the linear model. However, the overall result indicated a non-strong fit of the model to the 
data. 
 
In another endeavor to enhance the Shamir and Howard (1979) model, Clark et al. (1982) 
proposed a new model and altered the exponential model to predict the frequency of repairs 
after the first break for an individual pipe (TABLE 2.2). The r2 was calculated moderately as 0.47 
for the exponential model. This equation should be applied to each pipe individually to predict 
the number of failures after the first failure. The moderate r2 implies that the model should be 
analyzed in order to find out whether it is suitable to be used or not. The model was likely to 
improve if there were more factors available to be included.  
 
Kleiner and Rajani (2002) mentioned that no statistical models utilized the time-dependent 
factors except the age of pipe and number of previous breaks. Therefore, they introduced a 
multi-variate time-exponential model considering time-dependent factors which may affect 
pipe deterioration. Authors believed that it is true that a pipe may deteriorate steadily and 
monotonously, yet some environmental and operational factors may affect this process 
depending on time, and they could be ephemeral.  Some of those factors could be the impact 
of aging, temperature, moisture within the soil, aggregated length of replacement, and 
cumulative length of retrofitted water mains. A worthwhile predecessor to this model is to 
partition water mains into homogenous groups that respond similarly to the deterioration 
process. The authors applied this model to data from Ottawa-Carlton, Ontario. They mainly 
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focused on cast iron and ductile iron pipe, for which data from 1973 to 1998 was available. The 
manipulated format of the exponential model suggested by Kleiner and Rajani (2002) can be 
seen in (TABLE 2.2) 
 
 

2.2 STATISTICAL PROBABILISTIC MODELS  

 
2.2.1 WEIBULL DISTRIBUTION 
 

The well-known Weibull distribution is an adaptable approach that can be employed to 
describe failure datasets. Also, Weibull is the merely parametric regression approach that has 
both accelerated failure representation and proportional hazards presentation (Røstum, 2000). 

The WPHM or Weibull Proportional Hazards Model is an approach that is used to model times 
to failure distribution and links a variety of explanatory attributes to this interval time (Le Gat 
and Eisenbeis, 2000; Kalbfleisch and Prentice, 1980). These covariates could affect the failure 
rate as well as the number of years to failure. A critical point in this model is that the time to 
failure could be either right-censored or observed failure.  

 

2.2.2 POISSON 
 

The Poisson distribution is one of the most well-known statistical models that explain the 
probable number of events (number of failures for a specific pipe) or objects in a particular 
volume in a specific interval of time (Motulsky, 2010). Some criteria should be taken into 
consideration while implementing Poisson distribution (Jarosz, 2021): 

1- Events should be countable in positive format (0, 1, 2, …) 

2- The occurring events are typically independent and random 

3- Each object or event is counted only one time 

4- The average frequency of occurrence is predefined and known 

 
2.2.3 PROPORTIONAL HAZARDS MODEL 
 

The proportional Hazards Model was proposed for the first time by Cox in 1972. For the group 
of individuals, the survival time (time to failure or the time to loss) is observed. For the 
individuals who have been censored, it is merely known that the time to failure is higher than 
the censored time. 
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In many studies before, several regression analyses were proposed to define an appropriate 
relationship between the survivor time t and an array of covariates Z, among which PHM 
(proportional hazards model) introduced Cox (1972) found to be more feasible and have been 
applied by many researchers (Andreou, 1986, Andreou et al. 1987a, Jeffrey, 1985, Lei and 
Saegrov, 1998, Vanrenterghem-Raven et al. 2003). One of the most significant upsides of 
survival analysis is that it considers different pipes with one or more failures during the 
examination and those pipes that have not been failed during the analysis (Mailhot et al., 
2000). More importantly, being dynamic, the PHM model may be used by one to update the 
probability of failures for a pipe towards future time after each break. The hazard function is 
provided in TABLE 2.3. 

According to Cox (1972), the baseline hazard function which is h0(t), can be deciphered as a 
time-dependent aging element. Whereas the other covariates stand for operational and 
environmental factors, acting on the water pipes to decline or even increase the probability of 
failure. 
 
For the first time, the methodology of PHM application to predict the probability of failure for a 
particular pipe at a specific time in the future within the water main networks was introduced 
by Jeffrey (1985). This study was conducted upon data from New Haven, Connecticut in The 
USA, including pipes with the number of failures less than four, as well as a pipe with a large 
diameter since it was believed that these kinds of pipes have more effects on managerial 
decisions than those of smaller pipes. The author utilized various regression methods to find 
out covariates Z that might significantly contribute to pipe failure rates. The covariates found by 
the examinations are listed in TABLE 2.3. The arbitrary baseline hazard function h0(t) was 
computed using the polynomial regression analysis. 
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TABLE 2.3 - PROBABILISTIC MODELS – PROPORTIONAL HAZARDS MODEL (PHM) 

Authors Equation and Required Data Location Date Material Variables in the Equation 

Jeffrey (1985)  

ℎ(𝑡, 𝑍) = ℎ0(𝑡) 𝑒𝑏𝑇𝑍 

 
Natural log of pipe length, pressure in 
the system, age, the number of 
previous breaks, vintage of pipe, the 
proportion of low land development. 
 
Baseline hazard function: 
h0(t) = 10 -4(2  - 0.1 t  + 0.002  t 2) 

 
New 

Haven, 
Connecticu

t 

 
1930-
1985 

 
Different 

Pipes in the 
system 

 

t is the time, 
h(t, Z) is the hazard function, 
h0(t) is the arbitrary baseline hazard function, 
Z is the covariates vector which acts multiplicatively 
on the hazard function, and  
b is the coefficients vector. 
t  
 

Andreou S. A. 
(1986) 
Andreou et al. 
(1987a) 

First Stage: ℎ(𝑡, 𝑍) = ℎ0(𝑡) 𝑒𝑏𝑇𝑍 
 
Natural log of pipe length, pressure in 
the system, age, the number of 
previous breaks, vintage of pipe, the 
proportion of low land development. 
 
Baseline hazard function: 
h0(t) = 10 -4(2  - 0.1 t  + 0.002  t 2) 
 
Second Stage: 𝜆 = exp(𝑏𝑇𝑧) +  𝑒 
 

𝑃(𝑥) =
(𝜆𝑡)𝑒−𝜆𝑡

𝑥!
          𝑥 = 1,2,3, …. 

 
New 

Haven, 
Connecticu

t and 
Cincinnati, 

Ohio 

 
1855 - 
1985 

 
Different 

Pipes in the 
system 

 
Pipe with 
diameter 
equal or 

greater than 8 
inches 

 

PHM variables: Same as Lisa A. Jeffrey (1985) 
 
Poisson type model: 
 
λ is annual rate of failure, 
b is vector of coefficients, 
z is vector of covariates, and  
e is model error 
 
p(x) is the probability of x breaks, 
t is time, and 
x is the number of breaks. 

Le Gat and 
Eisenbeis 
(2000) 

 

 ln 𝑇 = 𝑥𝑇𝛽 +  𝜎𝑊 +  µ 
 

 
Data from 
Charente-
Maritime 

and 
Lausanne 

 
Differe

nt 
Periods 

 
AC,CI, Steel 

and PVC 

T is a pipe lifetime, 

x is a vector of explanatory variables; 

β is a vector of coefficient related to each 

explanatory variables which can be estimated by 

max likelihood using different methods (e.g. 

Newton-Raphson algorithm); 

σ is an unknown parameter than can be estimated 
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by maximum likelihood; 

W is a random variable (Weibull distribution); and 

µ is a constant value; 

Vanrenterghe
m-Raven et al. 
(2003) 

 
ln 𝑇 = 𝑥𝑇𝛽 +  𝜎𝑊 +  µ 

 
length, diameter, material, age, traffic, 
soil, subway, location in the street, 
presence of ancient water zones 

 
New York, 

USA 

 
1982-
2002 

 
CI, Lined CI, DI 

and Steel 
 

4 – 72 inches 

T is a pipe lifetime, 

x is a vector of explanatory variables; 

β is a vector of coefficient related to each 

explanatory variables which can be estimated by 

max likelihood using different methods (e.g. 

Newton-Raphson algorithm); 

σ is an unknown parameter than can be estimated 

by maximum likelihood; 

W is a random variable (Weibull distribution); and 

µ is a constant value; 
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Given is the h0(t)  utilized in Jeffrey, (1985) research: 
 
 

 h0(t) = (2 * 10 -4) - (10 -5t) + (2 * 10 -7 t 2) (1) 

 
 
Where: 
t is the time for a pipe to survive since the installation for a new pipe, and since the last break 
for a pipe with the previous break;  
 
The h0(t) in their analysis does not correspond to the life cycle bathtub curve (ROCOF); instead, 
it demonstrates the immediate hazard (probability of next break) after installation or after the 
last break for a new pipe or a pipe with previous failures, respectively. The break hazard had a 
minimum of t=28 within the Jeffrey (1985) examination, indicating that a 28-year old pipe had a 
minimum risk of failure. Therefore, according to their analysis, a pipe's probability of failure 
decreases throughout the aging period after installation until 28 years. Afterward, the pipe 
initiates the deterioration process, and the probability of failure increases. Likewise, this 
process would happen for a non-new pipe, increasing the likelihood of failure 28 years after the 
previous failure.  
 
This model then was enhanced to foresee the probability of failure in a water network and 
realized that a two-stage analysis would be required (Andreou et al., 1987b, 1987a, Andreou, 
1986). That is, in order to accomplish a model with higher accuracy, defining different stages in 
which a pipe may fail would be noticeably significant. The early stage of failure included fewer 
breaks, and the late stage of deterioration comprised multiple and frequent failures. Therefore, 
the authors suggested that the proportional hazards model (PHM) could be utilized for the 
early stage and the Poisson type model for the late stage. 
 
The authors stated that the failure patterns among different water systems are not consistent; 
thus, analyzing each pipe is of significant importance, helping to make a better decision to 
conduct maintenance practices. In addition, pipes with a larger diameter are less prone to 
failure. Therefore, they may be considered to become appropriate candidates to implement 
rehabilitation strategies. On the contrary, rehabilitation preferences for smaller pipes are not 
economically justifiable. Thus, the authors focused on the cast iron pipes with a diameter equal 
to or greater than 8 inches. 
 
Initial statistical analysis revealed that as a pipe was experiencing the first break, the time to 
subsequent break shortened. However, from the third break, there seemed to be no clear 
pattern. Several analyses inferred that previous breaks might not be considered an important 
index to predict the subsequent failures after the third break. Therefore, the third break was 
selected as a cut-off point for the analysis. Moreover, the need for another model to examine 
data for two networks was identified. Finally, the authors mentioned that stage classification is 
highly site-specific and may not be applied to other utilities. However, it gives an insight into 
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the importance of deterioration stage classification for further study in the future (Andreou et 
al., 1987b). Significantly noteworthy is that gathered data in terms of break records and 
operational and environmental factors require accurate interpretation to increase the precision 
of analysis (Andreou et al., 1987a). 
 
Furthermore, Andreou et al. (1987) realized that quantifying the probability of failure is 
significantly important. Accordingly, the very compelling model to predict the probability of 
failure was considered to be the survivor function for each pipe individually, which predicts the 
likelihood of surviving toward the future time, followed by hazard function, which leads to the 
instantaneous probability of breaks for a specific pipe at any given time.  
 
After analyzing the experimental process, some variables appeared to be statistically significant, 
which can be found in TABLE 2.3. Finally, the baseline hazard function proposed by the authors 
was similar to that of Jeffrey (1985). 
 
By looking at the baseline hazard function, it can be inferred that the hazard of failure would 
decrease initially after pipe installation or after the last failure. Using the derivative form of the 
baseline hazard function, the authors realized that the minimum hazard is at age 28. The 
derivative form is as follow: 
 

 
𝑑 h0(t)

𝑑𝑡
= 0 (2) 

 
The bathtub shape of the baseline hazard equation in Andreou et al. (1987a) and Andreou 
(1986) was intriguing, indicating that a pipe would be in a desirable condition early after 
installation if it does not have any failure caused by either environmental or operational 
incidence. However, it also depicted that age would contribute to failure many years after 
installation when external and internal corrosion affects the pipe deterioration. 
 
In order to predict the probability of failure during the fast-breaking stage, the third and sixth 
breaks were defined as cut-offs. Andreou et al. (1987) utilized an exponential regression model 
to estimate the annual failure rate, denoting by λ, provided in TABLE 2.3. Afterward, this λ was 
added to the Homogeneous Poisson Model to predict the probability of failure. Using the 
Poisson equation, Andreou et al. (1987) predicted x failure within the network throughout the 
time t. This Homogenous Poisson Model assumes that the rate of failure typically remains 
unchanged in a time interval. This assumption then was challenged by Goulter and Kazemi 
(1988). Andreou et al. (1987) also analyzed the effect of cleaning and lining on pipe failures. 
However, these two factors were found statistically inconsequential. 
 
Conducting the PHM analysis in combination with the Poisson Model, the authors perceived 
that it would be beneficial to identify a pipe with a higher hazard rate. Thus, an appropriate 
maintenance strategy may be considered for that specific pipe (Andreou et al., 1987a).  
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The authors also noted that the pipe age as a contentious feature might have a different impact 
on pipe failure. That is, not all pipes installed in the previous era are prone to more failure than 
pipes installed in the more recent periods; thus, failure may be affected by the existence of 
various factors. Amidst different influential factors which may cause an increase in the rate of 
failure, higher internal pressure, and land development were found to be significantly 
important.  
 
Eisenbeis (1994) and Bremond (1997) reported applying the proportional hazards model to data 
from Bordeaux, France. The Weibull model was used to create the baseline hazard function in 
their studies. Using 33-year data of Bordeaux, the authors reported a reasonable estimation of 
the failure rate for 11 years. Nonetheless, whether they performed the two-stage analysis 
proposed by  Andreou et al. (1987)  or not has remained unclear. 
 
Lei and Saegrov (1998) also applied the proportional hazard model and the accelerated lifetime 
model to data from Trondheim municipality, Norway. There did not exist any indication of the 
quality of the proportional hazards model in this research. However, explicitly can be noticed 
that pipe material was used to stratify the data rather than as an explanatory variable.  
 
Le Gat and Eisenbeis (2000) applied Weibull Proportional Hazards Model (WPHM) to data from 
two different companies with long and short maintenance records data. WPHM is an 
accelerated lifetime model which assumes the time to T (failure) is pertinent to p covariates X 
with a linear function (TABLE 2.3). These X variables could be pipe characteristics such as size, 
material, and length, or environmental and operational factors. The number of previous 
failures, as an important factor, was suggested to be used as a covariate or as a means to 
stratify the existent data. Le Gat and Eisenbeis (2000) also utilized the Monte Carlo simulation 
method to predict the rate of failures. The result of this study indicated that WPHM could be 
applied to networks with long maintenance records and networks with short records. It was 
also mentioned that a universal method for all networks is less likely to be achieved due to 
different factors that uniquely affect each network. Moreover, Le Gat and Eisenbeis (2000) 
noted that this method might be associated with the Geographical Information System (GIS) to 
accomplish better rehabilitation strategies. 
 
In a later study by Vanrenterghem-Raven et al. (2003), PHM was examined to identify the 
applicability of this model for the large urban area. The study was conducted upon data from 
New York, USA, and certified that there is no obstacle to using this model for large cities. It was 
also noted that material stratification could improve the accuracy of the model.  
Park (2004) applied the PHM to investigate the alteration of the hazard function between 
subsequent breaks. It was suggested that the point that hazard function is changed from an 
exponential format to a consistent format might be ascertained as a new stage of deterioration 
for a pipe. Thus, that stage could be examined differently. Park et al.  (2008) also applied the 
PHM and realized that the groups examined in their study followed Weibull distribution. 
Furthermore, it was cited that the hazard rate of the first break increases as time elapses from 
the installation, and the time between subsequent breaks declines while the number of breaks 
increases. In this study, the effect of land development under which pipe is laid and the length 
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of pipe was found to be significant factors. Finally, p) investigated PHM, applying to the data 
from a utility situated in the USA. The main focus of the study was on the CI pipe with the size 
of 150 mm, which presented a significant proportion of different pipes in that network. In 
addition, the authors included the time-dependent impact of covariates on the hazard rate of 
pipes. Interestingly, they found the hazard rate pattern similar to the bathtub curve, especially 
from the third break to the seventh break. However, it was suggested that if a utility opts for 
using this method, it should inevitably monitor and update data regularly.   
 
Kimutai et al. (2015) compared three widely used probabilistic models, Cox-PHM, WPHM, and 
Poisson Process model, to find out the superior fitness of these models to data from Calgary, 
Alberta. The authors examined different groups of materials, dominantly CI, DI, and PVC pipes. 
For all materials, WPHM and Poisson Process performed better compared to Cox-PHM. 
However, comparing WPHM and Poisson Process, authors realized that WPHM best fit the 
metallic pipes. Whereas, Poisson Process appeared to be a better predictive model for PVC 
pipes. Cox-PHM was found unsuitable for pipes entering the fast-breaking stage, as was 
mentioned before  (Andreou et al., 1987a and Andreou, 1986); consequently, it may be used for 
younger systems. On the contrary, Poisson Process is inferred to be an appropriate model for 
pipes entering the fast-breaking stage of their deterioration process. The authors also 
mentioned that since the utilities worldwide are to change their pipes continuously in terms of 
material, combining with the older pipes, it is highly suggested to use different models to 
evaluate the condition of their systems. 
 
In one study Bayesian Model Averaging (BMA) was employed to predict the rate of failure in 
Kelowna, BC, and Greater Vernon Water, BC, Canada (Kabir et al., 2015). Results of this study 
indicated that the performance of BMA was better than classical linear regression whenever 
the information of pipe failures is limited. Pipe age and length were found to be the most 
contributing factors where data is available limitedly. The authors proposed strengthening the 
model by integrating it with GIS tools to identify hot spot zones and provide more effective 
plans for the utilities. Moreover, rain deficit and freezing index, for instance, could be employed 
to improve the model's reliability. The authors updated the model by proposing another 
Bayesian Weibull Proportional Hazard Model (BWPHM)(Kabir et al., 2016). BMA was conducted 
to choose the most critical input variables. Whereas BWPHM was a method to develop the 
survival shape for Cast Iron and Ductile Iron pipes, applying to 57 years of recorded data from 
Calgary, Canada. This study indicated that the water main predictive models could be 
effectively enhanced with an updated Bayesian model. 
 
Snider and McBean (2018) provided an in-depth comparison of one machine learning model 
(XGBOOST) to Weibull Proportional Hazard survival analysis. The result of this study revealed 
that the machine learning approach consistently forecasted earlier times to break than actual 
events. However, survival analysis over-forecasted these incidences. This difference was 
believed to be related to not incorporating censored data by the machine-learning model 
(removed information for the training set). Removing this information would lead to training 
the model ineffectively. The authors suggested that for an immediate maintenance process, 
machine learning models may be sufficient. However, for finding a more effective long-term 
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pattern, survival analysis should be incorporated within the analytics, which means that 
censored data (removed data) should be considered for water main failure prediction. 

2.3 MACHINE LEARNING ALGORITHMS 
 
Machine learning is an element of artificial intelligence, even though it typically tries to solve 
problems based on historical records (Rebala et al., 2019; Swamynathan, 2019; Verdhan, 2020). 
The primary types of machine learning models can be categorized as follows (Rebala et al., 
2019): 
 

- Supervised Learning 
- Unsupervised Learning 
- Semi-supervised Learning 
- Reinforcement Learning 

 
In supervised learning, the target is given in the data. For example, in the prediction of pipe 
failure, it is clear whether a pipe is broken or not. This type of machine learning is the most 
widely used method (Verdhan, 2020). Generally, there are two types of widely used supervised 
learning algorithms (Swamynathan, 2019), regression and classification.   
 
Regression predicts a continuous number related to the input variables. For instance, in the 
water industry domain, the rate of failure or age at failure could be predicted through 
regression.  
 
Classification forecasts a class (e.g., yes/no) and the corresponding probability of a given class. 
For example, with this method, the status of a pipe (Broken/Non-Broken pipes) and the 
corresponding probability of pipe failure at any given time in the future can be predicted. 
Overall, this method is able to classify data points into distinct classes (Rebala et al., 2019). 
 
In unsupervised learning, the target is not available in the data (Swamynathan, 2019). Instead, 
unsupervised learning aims to find a pattern for input variables to understand similarity and 
dissimilarity within unlabelled datasets. For example, this could be finding groups of 
homogenous pipes to have a better prediction. Since this method does not require consultation 
with domain experts prior to modeling, it is called unsupervised learning (Swamynathan, 2019).  

 
Semi-supervised falls between supervised and unsupervised learning. In this case, only a few 
target instances are labeled clearly in the dataset(Rebala et al., 2019). Reinforcement learning 
improves models iteratively as more data is available and is growing in popularity. This method 
is mainly used for real-time decisions, games, learning tasks, robot navigation, and skill 
acquisition.  
 

One issue that must be addressed in applying machine learning models is the availability of 
imbalanced data. Imbalanced data is characterized by a minority class with peculiar or 
prominent information and a majority class with standard information (Mena and Gonzalez, 



27 | P a g e  

 

2006). For example, the minority class in the water domain could be the number of failed pipes, 
and the majority, the number of pipes that have not failed.  When the ratio between the two 
classes surpasses 1:10, they are considered imbalanced. Standard classification algorithms do 
not perform well when the samples within one class are markedly outnumbered by those in the 
other class (Wang et al., 2013).  Approaches such as Synthetic Minority Oversampling 
Technique (SMOTE) can be employed to artificially “re-balance” the datasets. This method is 
explained in more detail in chapter three. 
 
2.3.1 ARTIFICIAL NEURAL NETWORKS  

 
Artificial Neural Networks (ANNs) have various applications, and it has been widely used in 
recent decades for water main failure prediction (Asnaashari and Shahrour, 2007; Moselhi and 
Shehab-Eldeen, 2000; Sattar et al., 2019; Tavakoli, 2018). In addition, ANNs are networks of 
multiple neuron layers and can be used for classification and regression tasks (Sharma et al., 
2020; Tavakoli, 2018). 

ANNs were inspired by the human brain structure, where a complex network of neurons swap 
information through synapses (Kerwin et al., 2020). There are different types of ANNs; 
however, the multi-layer perceptron (MLP) is the most popular format found in the studies in 
accordance with pipe deterioration prediction. Typically, MLP consists of a different number of 
layers (basically three layers), within which there are some nodes or units called neurons 
(Giraldo-González and Rodríguez, 2020; Kerwin et al., 2020; Tabesh et al., 2009). 
Mathematically, a neuron (Perceptron or Node) may be a nonlinear function, which makes 
ANNs a fully intricate nonlinear system (Tabesh et al., 2009). A three-layer MLP consists of one 
input layer, one hidden layer (typically), and finally, one output layer. Each layer could be a 
combination of one or more interconnected neurons, which may facilitate the process of 
weighting input variables and converting these variables to an output variable using an 
activation function (Giraldo-González and Rodríguez, 2020; Kerwin et al., 2020). There are a 
number of activation functions that can be applied for giving specific weights to each attribute. 
Sigmoid function, tanh, and are among the most common activation functions (Sharma et al., 
2020). Yet, there still are many other functions that are explained in more detail in the next 
section of this study. Sharma et al. (2020) reported that should an activation function not be 
used in the ANNs, the output would be a simple linear regression. The complexity of linear 
regressions is limited, and they cannot recognize intricate relationships between different input 
variables (Sharma et al., 2020), meaning that an activation function can handle more complex 
relationships within the Neural Networks. In ANNs, the signals are transferred from perceptron 
i to perceptron j, and the output variable can be defined as the given equation (Figure 2.2).  

 

FIGURE 2.2 – OUTPUT EQUATION OF ARTIFICIAL NEURAL NETWORKS 
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Where: 

Xi are the input signals or the explanatory variables; 

Wij are the synaptic wrights; and 

F is the neuron activation function 

 

FIGURE 2.3 – NEURAL NETWORK MODEL WITH TWO HIDDEN LAYERS 

In order to detect and classify sewer pipe defects, Moselhi and Shehab-Eldeen (2000) applied 
artificial neural networks (ANN) to data provided by a specific contractor in Montreal, Canada. 
This study aimed to stratify four types of failures in the underground sewer pipes: joint 
displacements, spalling, reduction of cross-sectional area, and cracks. The backpropagation 
algorithm was utilized to learn the model. This algorithm was suggested to be an appropriate 
method for classification problems. In this study, the result was fascinating, indicating 98% 
accuracy in defects detection. The developed ANN was able to detect 214 out of 218 defects 
properly. 

Several years later, Ahn et al. (2005)  applied ANN model to Seoul City, South Korea data. They 
investigated the correlation of pipes failures in the service pipes and water mains, considering 
different factors, which were believed to be highly influential. Recorded failures and changing 
water and soil temperature were taken into consideration in their analysis, which is related to 
seasonal change. In addition, they utilized historical records to predict pipe failures to decline 
the operational cost and improve the reliability of the water distribution network. Researchers 
utilized data, from 1995 to 2004, on soil and water temperature combined with historical 
failure records so as to foresee the rate of failures. Authors discovered that the rate of failures 
for pipes surged following water and soil temperature alteration in fall and spring. The 
compelling part of their study was that water mains were affected higher by water and soil 
temperature than service pipes. It was also noted that valves and fittings are more prone to 
failure due to temperature varying. The ANN model represented a satisfactory result due to the 
low rate of Mean Absolute Error metric (MAE), except for the time in which the failures rate 
increased or decreased substantially where the model was less sensitive to accurately 
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predicting the rate of failure. It was, therefore, suggested that incorporating more factors and 
the enhanced use of the ANN model would bring about desirable predictive results for utilities.  

In another study conducted by Najafi and Kulandaivel (2005), the condition rate of sewer pipes 
was examined. Several features were considered in this research, such as size, pipe material, 
slope, type of sewer, depth, age, and section length. The BPNN (backpropagation neural 
networks) algorithm was applied to data from Atlanta, USA. The RMSE error for training and 
test sets were calculated as 0.1868 and 0.1792, respectively. It was noted that the result of the 
examination was insufficient for a desirable statistical analysis. However, the ANN indicated its 
capability in capturing the sophisticated correlation between inputs, which was a manifestation 
of the condition state of sewer pipes. Therefore, this model proved an appropriate learning 
tendency according to the available data. The authors, nonetheless, mentioned that more data 
availability would lead to this model's higher accuracy and reliability, leading to the prediction 
of actual pipe conditions. In this study, noises, outliers, and missing values significantly affected 
the model accuracy. 

Furthermore, Al-Barqawi and Zayed (2006) utilized the supervised ANN model 
(backpropagation algorithm) to evaluate and predict the condition rate of water mains, even 
before the additional examination. They believed that condition assessment of water mains is 
among the most challenging obstacles that most utilities are confronting worldwide. The 
collection of data from three various municipalities was examined. Moncton (New Brunswick, 
Canada), London (Ontario, Canada), Longueuil (Quebec, Canada) were the case studies for this 
research. Their datasets, including pipes materials, installation year, size, number of breaks, soil 
type, C factor (Hazen–Williams factor), depth of the pipe, and the surface type, were used to 
model the training and test data set. These are the combination of intrinsic, environmental, and 
operational factors affecting pipe deterioration. In order to evaluate the accuracy of the model, 
several error terms were taken into account. These evaluation terms indicated a desirable 
result of the examination. 

Furthermore, the authors provided a scale rating condition proposal that can be used by 
different utilities according to their criteria, based on this research. This study has proven the 
importance of previous breakage rate and age of mains as the most contributing factors to 
assess the condition of water main with weights of 30.17% and 13.56%, respectively. 
Compelling is the part where the authors provided different equations for computing the 
breakage rate of AC, CI, and DI pipes by which practitioners would evaluate the condition rate 
of any specific pipe. Finally, comparing breakage rate and condition score, the researchers 
realized an inverse correlation between breakage rate and condition rate. This study indicated 
the robustness of the ANN model and its feasibility to ascertain the condition state of water 
mains.  

Al-Barqawi and Zayed (2008), in further study, tried to design a comprehensive model to 
evaluate the condition and performance of water mains. The same data as the previous study 
was used (Al-Barqawi and Zayed, 2006). The authors created an integrated model using the 
analytic hierarchy process (AHP) and artificial neural networks (ANN). One specific 
infrastructure management tool was developed based on the produced integrated model. It 
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should be noted that the accuracy of the model was reported at 98.51%, and also age was 
found to have a significant impact on the condition rate of the pipe, followed by material and 
breakage rate. Nevertheless, the accuracy of the result indicated that the model proposed by 
the authors is efficiently reliable and robust. Thus, practitioners can use it to better plan the 
rehabilitation process of water mains and academics to get information for further studies.  

Tran et al. (2007)  compared Neural Networks Model calibration using Markov Chain Monte 
Carlo Simulation (Bayesian Weight Estimation) to Neural Network Models calibration using 
traditional Back Propagation algorithms to tackle the uncertainties in the latter one. This study 
focused on concrete storm water pipes in the City of Greater Dandenong (CGD) in Victoria, 
Australia, to evaluate the serviceability condition of storm water collector networks. The result 
of the study was also compared to that of Multiple Discrimination Analysis (MDA).   This 
research indicated better performance of using Neural Networks Model with Bayesian Weight 
Estimation than Back Propagation and MDA. The authors, however, were not satisfied with the 
final result. Thus, they suggested that having a robust dataset may improve the accuracy of the 
model. Moreover, age was insignificant, whereas pipe size was reported as the most influential 
factor affecting the serviceability condition of the storm water network.  
 
Asnaashari and Shahrour (2007) compared the result of ANN model to the Poisson regression 
model. The 10-year dataset of Sanandaj City-Iran was used to implement the examination. The 
authors noted that according to the result of this study, both models could predict water main 
failures. However, Artificial Neural Networks indicated a better performance compared to that 
of Poisson regression. It was also mentioned that one advantage of the ANN model is that it 
does not require any specific assumptions. Whereas, in the Poisson model, it is assumed that 
there is a logarithmic relationship between a dependent variable and independent variables.  
 
In another study, to predict the rate of failure of water mains, Achim et al. (2007) applied ANN 
model to data from a specific utility in Australia. Cast Iron pipes with a diameter of less than 
300 mm failed between 1997 and 2002 were examined. In this study, it was realized that ANN 
outperforms other statistical models when the dataset is relatively large, and more importantly, 
is noisy. Several pipe characteristics were employed in this study, such as length, material, 
diameter, and installation year. Nevertheless, the authors recommended that utilizing time-
dependent factors, such as corrosion and climatic factors (seasonality), could improve the 
accuracy and reliability of the Neural Networks. 
 
Fahmy and Moselhi (2009) investigated the remaining useful life of Cast Iron pipes with the 
application of two various neural network methods: the multilayer perceptron (MLP) and the 
general regression neural network (GRNN). The authors also compared the result with multiple 
linear regression to evaluate the accuracy and performance of ANN. Datasets from sixteen 
different utilities in the USA and Canada were obtained. Fourteen attributes were contributed 
to the analysis. For instance, in the GRNN model, authors found corrosion depth, pipe age, and 
soil resistivity to have had a significant impact on the remaining useful life of Cast Iron pipes. 
The importance of these factors was determined by calculating each input variable's 
contribution to producing output variable using Neural Networks. Researchers suggested that 
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this model be applied to either an individual pipe or even a group of pipes. In addition, the 
authors recommended that employing soil-related factors, such as soil corrosivity, soil 
resistivity, and soil pH, would result in more reliability. Therefore, the model may be used 
across the globe more efficiently. 
 
 Jafar et al. (2010) applied the artificial neural network method to a dataset from a city located 
in the north of France. In this study, the rate of failure and optimal replacement year for an 
individual pipe were the primary outputs of the ANN. Furthermore, the authors used the cross-
validation method to evaluate the accuracy of the model. After analyzing the results from this 
study, ANN was suggested to be used to employ the best strategies that may help decision-
makers offer better solutions to manage water networks in terms of maintenance and 
rehabilitation. 
 
Another study in 2013 indicated better performance of ANN compared to the Multiple Linear 
Regression model (Asnaashari et al., 2013). In this study, researchers applied ANN to the water 
network in Etobicoke, Ontario in Canada. Many factors such as length, diameter, soil type, and 
material were used in this study. ANN represented 94% accuracy as opposed to MLR with 75% 
accuracy. Authors believed that although MLR has relatively good accuracy, predictive models 
would require higher accuracy in the real world. In terms of protection, Cement Mortar Lining 
(CML) and Cathodic Protection (CP) are believed to increase the useful life of water networks. 
 
One study investigated the time to failure by analyzing different features (Harvey et al. 2014). 
The authors, in this study, applied ANN to the historical database of Scarborough district 
located in the Great Toronto Area (GTA), Canada. As a result, an artificial Neural Network was 
found to be an efficient way to predict time to failure. Moreover, using Cement Mortar Lining 
and Cathodic Protection reduced the rate of annual water pipes failures, and seasonal change 
was investigated to be an important factor influencing the rate of failure in Scarborough. 
 
In Kingston (Ontario, Canada), Artificial Neural Networks were utilized to predict the number of 
failures (Nishiyama and Filion, 2014). Several attributes such as length, age, diameter, and soil 
type were considered for this study. ANN represented relatively good accuracy in this research. 
The decrease in the rate of breaks in the Kingston network was related to replacing older pipes 
and having an appropriate performance of existing pipes within the network. In another study, 
Kutyłowska (2015) applied Neural Networks to a Polish network to predict failure frequency. 
Researchers found that ANN applied by the Quasi-Newton method gives a satisfactory 
convergence while used for water networks.  
 
Giraldo-González and Rodríguez (2020) made a comparison between different machine learning 
and statistical models. Dataset from Bogota in Columbia was used for the analytical process. 
Linear Regression, Poisson Regression, and Evolutionary Polynomial Regression were compared 
to Artificial Neural Networks, Bayesian, Support Vector Machine, and Gradient-Boosted Tree. 
Statistical models indicated acceptable results. Neural Networks, however, among machine 
learning models, did not present the best performance. In this study, as previous studies 
mentioned (e.g., Kettler and Goulter, 1985), the negative relationship between diameter and 
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failure rate was proven. In addition, other factors such as construction practices, corrosion 
process, and environmental conditions are believed to be important contributing factors to 
pipe failures. The given table below summarizes studies that employed artificial neural 
networks for the deterioration process of water mains. 
 

TABLE 2.4 – SUMMARY OF STUDIES THAT USED ARTIFICIAL NEURAL NETWORKS (ANN) 

Authors Input Variables Target Accuracy 

Moselhi and 
Shehab-Eldeen 

(2000) 

Diameter, Material, Installation Year, Failures Records, 
Visual Records 

Failure Classification R2 = 0.98 

Ahn et al. (2005) 
Diameter, Material, Length, Install Year, Soil Type, 

Failure Type, Break Records, Soil Features, 
Precipitation, Temperature, Water Quality 

Relationship 
Between Cause and 

Nature of Failure 
- 

Najafi and 
Kulandaivel 

(2005) 

Diameter, Material, Length, Install Year, Pipe Depth, 
Slope 

Condition Rate of 
Sewer Pipes 

R2 = 0.52 to 
0.98 

Al-Barqawi and 
Zayed (2006) 

Diameter, Material, Length, Install Year, Soil Type, 
Failure Type, Break Records, Pipe Depth, Wall 

Thickness 

Condition Rate of 
Water Mains 

R2 = 0.931 

Tran et al. (2007) 
Diameter, Material, Install Year, Pipe Depth, Location, 

Number of Trees, Slope 
Serviceability 
Deterioration 

- 

Raed et al. (2007) 
Diameter, Material, Length, Install Year, Soil Type, 

Break Records, Pressure, Soil Features, Failure Type, 
Wall Thickness 

Rate of Failure - 

Asnaashari and 
Shahrour (2007) 

Diameter, Material, Length, Failure Type, Break 
Records, Pressure, Pipe Depth, Average Daily Traffic 

Rate of Failure R2 = 0.78 

Achim et al. 
(2007) 

Diameter, Material, Length, Install Year, Soil Type, 
Failure Type, Break Records, Location 

Rate of Failure R2 = 0.679 

Al-Barqawi and 
Zayed (2008) 

Diameter, Material, Length, Install Year, Soil Type, 
Break Records, Pressure, Soil Features, Type of Land, 

Water Level, Average Daily Traffic, Service Type, 
Cathodic Protection, Hazen-William Coefficient 

Predict performance 
and condition of 

water mains 
R2 = 0.982 

Tabesh et al. 
(2009) 

Diameter, Material, Length, Installation Year, Pressure, 
Pipe Depth 

Rate of Failure - 

Nasser and Saleh 
(2009) 

Diameter, Material, Length, Install Year, Soil Type, 
Pressure, Soil Features, Structural Details 

Predict wire break of 
PCCP 

R2 = 0.994 

Fahmy and 
Moselhi (2009) 

Diameter, Material, Length, Soil Type, Pressure, Soil 
Features, Type of Land, Pipe Depth, Average Daily 

Traffic, Structural Detail, Corrosion Depth 

Remaining useful life 
of Cast Iron 

R2 = 0.96 

Tran et al.  (2009) 
Diameter, Material, Length, Install Year, Soil Type, 
Failure Type Pressure, Soil Features, Type of Land, 

Water Quality, Number of Trees, Slope 
Deterioration Pattern - 

Jafar et al.  
(2010) 

Diameter, Material, Length, Install Year, Pressure, Pipe 
Depth 

Failure rate and 
optimal replacement 

year 
R2 = 0.972 

Shi et al., (2018
) 
Soil Resistivity, pH, Sulfide, Soil Moisture, Wall 

Thickness 
Condition 

assessment 
R2 = 0.52 
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Giraldo-González 
and Rodríguez, 

(2020) 

Age, Diameter, Length, Failure Records, Operational 
Attributes 

Probability of Failure R2 = 0.95 

 Almheiri et al. 
(2020
) 

Material, Length, Diameter Time to Failure R2 = 0.84 

Snider and 
McBean, (2018) 

Installation Year, Length, Diameter, Soil Type, Lining 
Status, Total number of failures 

Time to Subsequent 
Failures 

R2 = 0.76 

 
2.4 OTHER EMERGING MACHINE LEARNING APPLICATIONS 
 

2.4.1 LOGISTIC REGRESSION 
 

Logistic Regression, also called logit, or logistic model, is one of the most powerful algorithms 
for machine learning purposes that has been used in several studies for predicting water main 
failure (Motiee and Ghasemnejad, 2019; Robles-Velasco et al., 2020; H. D. Tran et al., 2009; 
Vladeanu and Koo, 2015). This algorithm was introduced and utilized statistically before 
applying it to water main networks (Berkson, 1944; Cox, 1958). In statistical studies, logistic 
regression is typically utilized to generate the probability of belonging to different classes, 
either as a binary (0, 1) or categorical (Yes, No) outcome  (Cox, 1958). For example, in the case 
of the present study, the binary outcome would be broken (1) and Non-Broken (0) pipes. The 
regression seeks to find relationships between different independent variables, e.g., Material, 
Diameter, and a categorical/binary dependent variable. The probability of the dependent event 
is estimated by fitting data to the logistic (sigmoid) curve  (Park, 2013). Where there is a 
dichotomous output variable, binary logistic regression is generally used. However, in some 
cases, there may be more than two classes, and in order to tackle this challenge, multinomial 
logistic regression should be employed (Park, 2013). The popularity of logistic regression is due 
to the fact that it provides the outcome values between 0 and 1, which is an indicator of the 
probability of belonging to one class. Given are the main equations assumed in the logistic 
regression function (Kleinbaum and Klein, 2010). For acquiring the logistic model, z is written as 
the linear combination of input variables as a linear regression format (equation 8), followed by 
transforming this linear model to the logistic function (equation 10 ). 
 

 z = α + β1X1 +  β2X2 + … +  βnXn   (3) 

 

 f(z) = 
1

1 + 𝑒−(𝑧)
 (4) 

 

 f(z) = 
1

1 + 𝑒−(α + ∑ βnXn)
 (5) 
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Where z is a linear combination of input variables X (Diameter, Material, etc.), β is the 
regression coefficient, and α is the regression intercept (constant term). The given figure 
demonstrates the primary format of the logistic curve (Kleinbaum and Klein, 2010). The 
prediction of belonging to each class depends on the value of f(z). Should the output be more 
than 0.5, the instance would belong to class 1, which in this domain, 1 is an indicator of a 
broken pipe.   
 

 
FIGURE 2.4 – THE PRIMARY FORMAT OF LOGISTIC CURVE (KLEINBAUM AND KLEIN, 2010) 

 
 
The conditional probability can show the probability of belonging to class 1 (Broken Pipe) as 
below: 

 P (Y = 1 | X1, X2, …, Xn ) = 
1

1 + 𝑒−(α + ∑ βnXn)
 (6) 

 

 P (X ) = 
1

1 + 𝑒−(α + ∑ βnXn)
 (7) 

 

2.4.2 DECISION TREES 

 

As the name suggests, Decision Trees (DT) has a tree-based structure and can be applied to 
both classification and regression problems  (James et al., 2013; Swamynathan, 2019). For the 
pipe deterioration modeling, DT is used where the failure is imminent (Winkler et al., 2018). 
One of the most marked advantages of DT is its computational efficacy and also its 
straightforwardness  (Breiman et al., 1984). The model forecasts target variables through a 
series of rules organized similarly to a tree (Syachrani et al., 2013). While training the model, 
building the rules starts at a first node known as the root, and it includes entire initially assigned 
observations (Swamynathan, 2019; Syachrani et al., 2013). Within the modeling process, each 
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branch is an indicator of the test outcome on the chosen attribute (True, False). Each leaf 
indicates the class of labels. The final decision is made after applying all calculations upon all 
attributes. The path which is produced from the root node to leaf nodes illustrates classification 
or regression rules. Therefore, a decision tree is made up of three main nodes: root node, 
branch node, and leaf node which represents the class of label (Swamynathan, 2019). 

 

FIGURE 2.5 – CONCEPT OF DECISION TREES (SYACHRANI ET AL., 2013) 

The output of a DT can be easily visualized and interpreted, helping practitioners perceive the 
most important factors that affect deterioration (Winkler et al., 2018).  Swamynathan (2019) 
noted that a decision tree model utilizes the training dataset to build the tree model, and it 
ascertains which input variable should be employed for splitting the three into branches.  

The greedy algorithm is the base of the decision tree method, upon which a tree is produced in 
a top-down recursive approach, and all training data points are located at the root node. Then, 
selecting an attribute, the tree model partitions the dataset into smaller portions. This splitting 
process is performed based on a statistical impurity measure known as Information (entropy) or 
Gini gain. Splitting stops when: a given node includes samples belonging to one class, no 
remaining attributes for continuing partitioning, and no more samples for partitioning. Then, 
given equations are employed to calculate the impurity within each node according to the 
selected attribute (Swamynathan, 2019).  

 Gini = 1 - ∑(pi)2 (8) 

 

Where pi is the probability of each class (in this domain, classes can be broken and non-broken 
water mains); 

 Entropy= - p log2 (p) - q log2 (q) (9) 
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Where p and q show the probability of broken/non-broken pipes respectively in a selected 
node; 

Several hyperparameters can be tuned to achieve an efficient DT model, such as maximum 
depth and maximum features, explained in further sections where necessary. 

 

Having a significant variance is one of the main downsides of a simple decision tree (Hastie et 
al., 2009). In order to cope with this issue, bagging or bootstrap aggregation was introduced 
and can be employed to decrease the variance of the model (Breiman, 1996). This method can 
significantly improve the reliability and accuracy of the prediction. The training dataset, in this 
model, is portioned into multiple data points (samples) with replacement samples that have the 
same size as the original dataset (Swamynathan, 2019). Figure 2.6 shows the concept of bagging 
for a decision tree model.  

 

FIGURE 2.6 – BOOTSTRAPPING (SWAMYNATHAN, 2019) 

 

In each step of bagging (bootstrap), independent models are created. It should be mentioned 
that for the regression model, the average of predictions, and for the classification model, the 
majority vote is considered for final prediction (Swamynathan, 2019). 

2.4.3 RANDOM FORESTS 

 

Random Forests (RF) is another tree-based algorithm that is an ensemble machine learning 
method that can be used for both regression and classification analysis (CART) and is based on 
the combination of several decision trees (Breiman, 2001; Breiman et al., 1984). However, the 
conventional tree-based model inclines to overfit the training data set, leading to a weak 
performance (Murphy, 2012; Sadler et al., 2018). RF is an approach that could be utilized in 
order to address this issue. The given figure presents the concept of RF (Zhang et al., 
2018)(Figure 2.7). 
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FIGURE 2.7 – RANDOM FOREST STRUCTURE (ZHANG ET AL., 2018) 

 
In addition to bagging, which was introduced previously, RF improves the model's accuracy by 
applying minor tweaks, making trees decorrelated (James et al., 2013). Similar to bagging, 
several decision trees are built using bootstrapped (bagged) samples. However, when these 
trees are built (every time splitting is considered), m predictors are chosen as candidates from a 
set of p variables.  The splitting process is allowed to employ only one of these m candidates, 
and this process continues freshly at each split (James et al., 2013). That is, at each split, the RF 
algorithm is only allowed to use the minority of predictors. This would help the algorithm avoid 
repeatedly using the most influential factors when creating decision trees and use all of the 
predictors during the modeling process. This is the main difference known between bagging 
and RF. 
 
Random Forests, either classification or regression model, consider the average of all trees or 
majority votes, respectively, for final prediction (Breiman, 2001; Sadler et al., 2018). Selecting 
different variables randomly while creating decision trees, the RF can prevent overfitting by 
creating several weak learners that employ these random predictors.  
 
Additionally, the RF can be used to extract feature importance from a dataset. Since many trees 
are created based on random predictors, RF can learn and record the significance of input 
features while performing prediction. Therefore, RF could be considered one of the most 
powerful algorithms for detecting the most critical factors (Sadler et al., 2018; Shirzad and 
Safari, 2019). Furthermore, the number of trees can be defined prior to the modeling process; 
the default value is 100 trees based on Scikit learn documentation.  
 
2.4.4 GRADIENT BOOSTING 

 

Boosting is another common approach that can be employed for improving the accuracy of any 
applied algorithms and is an intuitively similar approach to bagging (Freund and Schapire, 1999; 
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Hastie et al., 2009; James et al., 2013; Winkler et al., 2018). Freund and Schapire (1999) first 
introduced this method in their first boosting paper, introducing the renowned Adaptive 
Boosting algorithm known as AdaBoost (Freund and Schapire, 1997). This approach, 
theoretically, can be utilized to dramatically decline the error of any learning algorithm that 
produces models with a little more reliable and accurate performance than only random 
guessing (Freund and Schapire, 1996). Furthermore, this method can develop a robust 
predictive model from a list of weaker models by training each model (classification or 
regression) on a slightly changed subset of the dataset (Freund and Schapire, 1997). Essentially, 
this method transfers weak learners to significantly stronger learners that can be employed 
more reliably in the real world (Swamynathan, 2019). To clarify the concept behind boosting, 
let’s assume Gm(x) as sequential classifiers and take am as each classifier's weight created 
sequentially. The final robust model is produced with the combination of all models to a 
weighted majority votes (Winkler et al., 2018) (equation 13).  

 𝐺(𝑥)  =  sign ( ∑ 𝑎 𝑚

𝑀

𝑚=1

𝐺𝑚 (𝑥) ) (10) 

 

Where G(X) is the final model; m is the number of an individual model, am is the weight of each 
model; and Gm(x) is an individual model; 

It should be noted, the main difference between boosting and bagging is the fact that the 
training dataset is resampled strategically to represent the most valuable information for each 
successive model (Zhang and Haghani, 2015). In boosting, misclassified samples have a higher 
probability of being chosen with a higher weight for making sequential models. Consequently, 
every freshly created model emphasizes those instances that have been classified incorrectly. 
The given figure indicates the process of boosting by one of the most powerful boosting 
algorithms called AdaBoost (Hastie et al., 2009) (Figure 2.8): 

 

FIGURE 2.8 – ADABOOST FLOWCHART (HASTIE ET AL., 2009) 
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Gradient boosting (GB) is a state-of-the-art machine learning approach used widely for noisy 
datasets and datasets with an intricate relationship between attributes (Dorogush et al., 2018). 
This ensemble learning algorithm creates a robust predictive model combining several 
sequential weak learners (Friedman, 2001, 2002). Typically, this method is used for decision 
trees (Dorogush et al., 2018; Snider and McBean, 2018). However, GB can be employed for any 
machine learning algorithm to improve the performance and accuracy of final models. 
According to previous studies, the main difference between Adaboost and gradient boosting is 
weight adjustment. In Adaboost, weights are adjusted to minimize the number of 
misclassifications in classification problems or errors in regression problems. This process is 
executed based on the prediction of target values. 

On the contrary, in gradient boosting, this reduction in misclassifications and errors is achieved 
based on the prediction of misclassified samples or residuals. Thus, gradient boosting tries to 
minimize wrongly classified samples or decrease the residuals in each iterative step of the 
process (James et al., 2013; Rebala et al., 2019; Swamynathan, 2019). In addition, gradient 
boosting utilizes the first or second derivative function format to better decline the 
misclassified samples. 

 

2.4.5 EXTREME GRADIENT BOOSTING TREES 
 

Extreme Gradient Boosting Trees (XGBOOST) was first time introduced by Chen and Guestrin 
(2016). Like AdaBoost and GB, XGBOOST is an ensemble machine learning method trained and 
created by combining several decision trees (Chen and Guestrin, 2016). XGBOOST is the 
developed and more regularized version of the gradient boosting method (Swamynathan, 
2019). This method, specifically, employs gradient descent to build sequential decision trees 
that decline residuals (Snider and McBean, 2018). This algorithm is reported to have less 
susceptibility to noises and outliers and a shorter time for the training process (Snider and 
McBean, 2020a). In one study conducted in 2018, XGBOOST was reported to have 
outperformed random forest and artificial neural networks for water main failure prediction 
(Snider and McBean, 2018). XGBOOST is known as one of the most efficient, largescale, and 
scalable prediction models (machine learning models) that have been contributing to winning 
solutions (17 out of 29 solutions) in Kaggle, where analytics competition in the data science 
field is performed (Swamynathan, 2019; D. Zhang et al., 2018). As can be seen at each iteration, 
the residuals will be employed to adjust the predecessor predictor to optimize the particular 
loss function (Zhang et al., 2018)(Figure 2.9). 
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FIGURE 2.9 – FLOW CHART OF EXTREME GRADIENT BOOSTING 

In order to achieve objective function, a regularization parameter is added to the loss function 
as an improvement for XGBOOST. The given equation indicates the objective function: 

 J (Θ) = L (Θ) + Ω (Θ) (11) 

 

Where Θ are parameters trained from data; 

L is the training loss function (square loss, logistic loss) and an indicator to know how well 
XGBOOST fits on the training dataset; 

After a specific number of node splitting in the decision tree, the improvement of model 
accuracy can be evaluated based on the objective function mentioned before. If there is an 
improvement in the model's performance after splitting the node, the change would be taken 
into account. Otherwise, the splitting process would not proceed. Provided information about 
XGBOOST is adopted from the main article (Chen and Guestrin, 2016) and one study conducted 
about Wind Turbines (Zhang et al., 2018). 

2.5 COMPARISON OF PREVIOUS MACHINE LEARNING STUDIES 
 

In addition to different probabilistic, fuzzy, and neural network approaches, some studies have 
been conducted using different machine learning algorithms, such as Random Forest, Naïve 
Bayes, and Logistic Regression. Accordingly, some of the most important related literature is 
provided in this section, and related results are presented briefly. 
 
Almheiri et al. (2020) compared different machine learning models for time to failure prediction 
in Quebec City, Canada. In this study Ridge Regression (ℓ2), Artificial Neural Networks (ANN), 
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and Ensemble Decision Trees (EDT). Material, length, and diameter were used as input 
variables. The authors, in this study, utilized a Global Sensitivity Analysis (GSA) to evaluate the 
robustness of the models and indicate the correlation among different inputs and outputs. With 
considering all of these analytical processes, Cast Iron (CI), Hyperscon/Concrete (Hy), and 
Ductile Iron (DI) were found to be the most vulnerable type of materials for the output of 
models. They also found that material and length are the most contributing factors to water 
main failures. Therefore, in this study, EDT was recommended as a model that can predict the 
failure of water mains more accurately due to its efficient computational processes. 
 
In another study in 2020, different machine learning classification models such as Artificial 
Neural Networks (ANN), Naïve Bayes (NB), Gradient Boosting algorithm (GB), and Support 
Vector Machines (SVM) were compared (Giraldo-González and Rodríguez, 2020). GB indicated 
the best performance among these classification algorithms with higher accuracy. This method 
also showed a better performance considering imbalanced datasets, which is a significant 
challenge for classification models. Furthermore, the models in this study can also predict the 
probability of failures for an individual pipe within the system. 
 
Robles-Velasco et al. (2020) compared Logistic Regression (LR) and Support Vector Machines 
(SVM) as classification models to predict the probability of failures in one Spanish city. LR 
showed slightly higher accuracy and performance compared to SVM. From LR feature 
importance, it was referred that material is the most influential factor within the analyzed 
network, followed by many historical failures and length of segments. Another finding in this 
study was the fact that smaller pipes are more prone to failure. 
 
A further study in 2020 compared one of the most powerful statistical approaches, Weibull 
Proportional Hazard survival analysis (WPH), to one of the most efficient machine learning 
algorithms called Extreme Gradient Boosting Decision Trees, known as XGBOOST (Snider and 
McBean, 2020). The main aim of this study was to forecast the time to subsequent failures in 
water mains. The results from this study recommended that machine learning approaches are 
more suitable for short-term planning, where the physical security of the network is of 
significant importance for the next several years. However, powerful statistical models such as 
WPH could be more favorable for long-term planning since corporates censored information to 
the analytical processes. Therefore, these authors investigated the feasibility of XGBOOST in a 
different study separately (Snider and McBean, 2018). 
 
Random Forest (RF) and Multivariate Adaptive Regression Splines (MARS) were compared by 
Shirzad and Safari in 2019. A variety of features such as diameter, length, pipe depth, age, and 
average hydraulic pressure were considered for this study. The random forest model indicated 
better efficiency than the MARS model, although the results were close. In this study, datasets 
from Mahabad City and Mashhad City were used, and diameter, age, and hydraulic pressure 
were found to be the most important attributes within these networks. 
 
Different tree-based algorithms were compared in another study by Winkler et al. (2018). The 
authors applied Decision Tree, Random Forest, Random under Sampling Boosting, and Adaptive 
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Boosting methods in order to predict the probability of failures. The authors recommended that 
tree-based algorithms could be an appropriate alternative to traditional statistical models. In 
this study, Boosted Random under-sampling method outperformed other methods.  
 
Furthermore, one study in 2018 compared different machine learning models, such as Multiple 
Linear Regression, Artificial Neural Networks, Random Forest, Support vector machines, and 
Stacking Ensemble Regression. The main aim of this study was to predict the condition of pipes, 
considering different soil characteristics, including resistivity, pH value, Sulfide, soil moisture, 
and wall thickness. As a result, stacking regression was found to be the most efficient method 
to predict the condition of water pipes with a lower rate of errors (Shi et al., 2018). 
 
Given table compares the abovementioned studies (TABLE 2.5): 
 

TABLE 2.5 – COMPARING RECENT STUDIES CONDUCTED USING MACHINE LEARNING METHODS 

Authors Models Input Variables Target 

Winkler et al., 2018 

Decision Tree, Random 
Forest, Random Under 

Sampling, Adaptive 
Boosting (Adaboost) 

Age, Material, Diameter, 
Pressure, Length, Service 

Type, Number of 
hydrants, … 

Probability of Failure  

Shi et al., 2018 

Multiple Linear 
Regression, ANN, 

Random Forest, SVM, 
Stack Regression 

Soil Resistivity, pH, 
Sulfide, Soil Moisture, 

Wall Thickness 
Condition assessment 

Shirzad and Safari, 2019 
Multivariate Adaptive 
Regression, Random 

Forest 

Diameter, Length, Pipe 
Depth, Age, Hydraulic 

Pressure 
Rate of Failures  

 Almheiri et al., 2020 
Ridge Regression, ANN, 

Ensemble Decision Trees 
Material, Length, 

Diameter 
Time to Failure 

Giraldo-González and 
Rodríguez, 2020 

ANN, Naïve Bayes, 
Gradient Boosting, SVM 

Age, Diameter, Length, 
Failure Records, 

Operational Attributes 
Probability of Failure 

Robles-Velasco et al., 
2020 

Logistic Regression, SVM 

Material, Diameter, Age, 
Length, Connections, 
Pressure Fluctuation, 

Total number of failures 

Probability of Failure 

Snider and McBean, 
(2018) 

ANN, XGBOOST, Random 
Forest 

Installation Year, Length, 
Diameter, Soil Type, 
Lining Status, Total 
number of failures 

Time to Subsequent 
Failures 

 

In summary, the abovementioned studies tried to employ different factors affecting the 
deterioration process of water pipes. However, the number of case studies was limited, and the 
authors applied the model to a few utilities. Therefore, it is not justifiable to utilize one global 
approach for all utilities, and each network must be investigated separately. Additionally, most 
of these studies did not consider censored information related to replaced pipes or the pipes 
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installed before collecting information. Accordingly, Snider and McBean (2020) recommended 
that these state-of-the-art models be integrated with more advanced statistical models such as 
survival analysis to have a better long-term plan for maintaining and keeping water networks in 
a desirable condition. Finally, many of these studies did not integrate the results into GIS files 
and did not consider some of the most critical factors, such as hydraulic pressure or joint types.  

2.6 FACTORS AFFECTING PIPES DETERIORATION 
 
A good understanding of the different factors that affect pipe failure is key to analyzing pipe 
deterioration. This can also help data scientists create more reliable predictive models and 
thereby decrease the cost of maintenance and replacement of water mains (Barton et al., 
2019). 
 
Shamir and Howard  classified pipe deterioration factors into four main categories: 
1. Age of pipes and their manufacturing quality, including pipe components such as connectors 
and material. 
2. Environmental factors, such as frost load, traffic load, and pipe-soil interaction; 
3. Installation practices;  
4. Operational conditions, such as water pressure as well as water hammer. 
 
Kleiner and Rajani classified deterioration factors into three categories: static, dynamic, and 
operational. Static factors are those related to physical characteristics which do not change 
significantly over time, such as diameter, material, wall thickness, installation practices, and soil 
type. On the other hand, dynamic factors change over time, such as temperature, soil moisture, 
soil electrical resistivity, bedding condition, age, and dynamic loadings. Additionally, cathodic 
protection, replacement, previous failures, and water pressure are operational factors. This 
aligns with the InfraGuide (2003) definition of operational factors, including internal and 
transient pressure, water quality, leakage, flow velocity, backflow potential, and O&M 
practices. However, some of the factors defined as static by Kleiner and Rajani can change over 
time, with deterioration and material build-ups, such as diameter and wall thickness. 
 
Based on a review of previous studies, Barton et al. (2019) categorized the most important 
factors into three groups: intrinsic, operational, and environmental factors. The authors 
explored factors impacting the most commonly used pipe materials (Cast and Spun Iron, Ductile 
Iron, PVC, Polyethylene, Steel, and Asbestos Cement). This classification is similar to that of 
Shamir and Howard (1979) but groups age, manufacturing quality, installation practices, and 
other initial pipe characteristics into intrinsic factors. Given its simplicity and broad applicability, 
the current study will follow the Barton et al. (2019) classification. 
 
Barton also analyzed the interaction and effectiveness of different factors on each other. For 
instance, a dramatic seasonal change could lead to decreasing or increasing soil moisture. This 
may lead to ground movement and cause premature failure. The following sections explore 
each factor and its impact on main breaks based on a literature review.   
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2.6.1 INTRINSIC FACTORS 
 
2.6.1.1 MATERIAL 

 
Various types of pipe materials have different probabilities of failure. For example, iron-based 
pipes (Cast Iron, Spun Iron, and Pit Cast Iron) are more prone to internal corrosion due to 
weaker structural integrity (Clair and Sinha, 2014). Cast Iron (CI)  was introduced as a pipe 
material around the beginning of the 19th century when iron was molten and cast in sand molds 
(Clair and Sinha, 2014). However, the casting process could lead to a non-uniform thickness, 
which is more prone to failure. To mitigate the challenges associated with CI, spun gray iron 
was released during the 1930s. Later, Ductile Iron (DI) and Steel pipes were introduced as 
alternatives which were typically more resistant to failure.  The main difference between CI and 
DI is the shape of graphite, which is spherical in DI, and flakes in CI pipes (Barton et al., 2019). 
This makes DI structurally tougher compared to spun and cast iron.  Steel pipes, however, are 
generally stronger than DI but less resistant to corrosion. Therefore, DI is typically preferred for 
pipe diameter between 300 to 800 mm, and ST pipes for over 800 mm. Concrete-based pipes 
such as Asbestos Cement (AC) are more corrosion resistant but less flexible and may fail more 
easily with underground movement than DI and steel pipes (Mordak and Wheeler, 1988). In 
recent decades polyvinyl chloride (PVC) has emerged as a popular pipe material and an 
alternative to AC pipe (Barton et al., 2019; Røstum, 2000). PVC is much more resistant to 
corrosion and more flexible than AC. PVC pipes also have generally lower manufacturing costs 
and more straightforward installation. Polyethylene (PE) pipes are another plastic pipe option 
that can withstand higher pressures than PVC and are thus more durable (Barton et al., 2019). 

 Folkman (2012) reported that approximately 80% of pipes installed in the USA and Canada 
were a combination of CI (28%), DI (28%), and PVC pipes 23%. This statistic then was confirmed 
by similar research (Folkman, 2018), which indicated that just over 90% of current pipes are CI 
(28%), DI (28%), PVC (22%), and AC (13%), and the remainder of pipes utilized were denoted by 
HDPE, steel, molecularly oriented PVC (PVCO), concrete steel cylinder (CSC), and other 
materials. 

2.6.1.2  PIPE AGE 
 

Watermain rate of failure was initially conceptualized to have an exponential or linear 
relationship with age (Shamir and Howard, 1979). However, other studies have proven that the 
impact of age on failure is complex (Andreou, 1986; Andreou et al., 1987a; Jeffrey, 1985). For 
example, Andreou et al. (1987)  reported that failure rates differ by pipe vintage due to changes 
in manufacturing, standards, and construction practices. For instance, new casting methods led 
to grey cast iron pipes with thinner walls which became more prone to failure when exposed to 
corrosive soil and external loads (Røstum, 2000).  

In some cases, the failure rate is high at the beginning of the bathtub curve mentioned before 
due to improper installation, improper bedding, or pipe deficiency. In one study carried out by 
Folkman in 2018 on data from various utilities in Canada and the USA, the average failure age 
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was reported to be around 50 years. Barton et al. (2019)  noted that the failure rate has steady 
progress in some types of pipes, e.g., PE and PVC due to their different structures. Plastic-based 
pipes are not prone to electrochemical corrosion. Therefore, there is no specific mechanism for 
these pipes to experience structure deterioration over time (Task Committee on Water Pipeline 
Condition Assessment, 2017). Thus, age can be used as an indicator of the continued impact of 
environmental variables, when more information is not available. However, accounting for the 
conditions that lead to failure at different ages should produce better results. 

2.6.1.3  PIPE DIAMETER 
 

The pipe break rate has been found to be higher in smaller pipes than larger pipes (Kettler and 
Goulter, 1985).  Larger pipes generally have thicker walls and more reliable joints, making them 
more resistant to ground movement and corrosion (Wengström, 1993).  Their failure will also 
undoubtedly lead to more significant consequences than smaller pipes, which also means they 
are more likely to receive preventative maintenance and rehabilitation. Furthermore, smaller 
pipes are more common in water distribution systems, and more data is available on them. 
Folkman found that almost 67% of pipes across the US and Canada diameter less than 200 mm. 
Hence, it is important to include smaller pipes in failure analyses and consider diameter as a 
factor. 

2.6.1.4 JOINT SYSTEMS 
 

Joint failure is one of the frequent types of failures for water distribution networks. A few 
studies reported that 15% and 16% of PVC pipes on average fail as a result of joint failure 

(Dingus et al. 2002; Burn et al. 2005). In addition, Folkman (2018) highlighted that joints could 
be one of the main sources of leakage. Fittings and joints can be an integral part of a network, 
built as a pipe, or non-integral, connecting the ends of two pipes. Joints can also be categorized 
as rigid or flexible. Rigid joints are less flexible and more likely to fail due to dynamic conditions, 
such as ground movement, traffic load, and water pressure. 

Moreover, this type of joint is susceptible to failure due to poor installation and corrosion at the 
connections  (Ruchti, 2017).  Flexible joints, on the other hand, allow the pipe to move 
marginally when confronting dynamic conditions.  Accordingly, flexible joints are more 
desirable in areas where ground movement is likely (Barton et al., 2019; Ruchti, 2017). 
Nevertheless, poor installation and sudden ground movement may still lead this type of joint to 
fail.   

2.6.1.5 PIPE COATING AND LINING 

 

Coating (outer surface) and lining (inner surface) are methods typically used to protect pipes 
against corrosion (InfraGuide, 2003; Mordak and Wheeler, 1988). These methods were first 
used to protect CI pipes and later DI and steel  (Barton et al., 2019).  AC pipes are only 
recommended to be coated where soils surround them with a pH below 6.0, although concrete 
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is generally naturally resistant to corrosion (Trew et al., 1995). Various types of lining and 
coating can be applied to different materials, such as bitumen, cement mortar, synthetic resin, 
PE sleeve, Epoxy, cathodic protection, and coal tar. AC pipe, for instance, is generally coated in 
bitumen or coal tar. (Farrow et al., 2017). It should be mentioned that the deterioration process 
of pipes could be affected by different types of protections; thus, the provided information is of 
significant importance for infrastructure analysts (Barton et al., 2019). 

2.6.1.6 MANUFACTURING DEFECTS 
 

A wide range of defects may increase the likelihood of pipe failure (Barton et al., 2019), such as 
non-uniform wall thickness, porosity, inclusions, micro-cracks, and so forth. For instance, 
porosity emerges when air is trapped in the mold while molten iron is solidifying. Similar 
defects can also occur in PVC pipes. These imperfections may cause a weakened point, micro-
cracks, or even a fracture. Additionally, in some types of pipes, these deficiencies result in 
strength reduction. The problem may be addressed by considering stricter quality control 
criteria and enhancing the quality of manufacturing. In order to mitigate these defects, more 
stringent quality control may be taken into consideration. 

2.6.1.7 PIPE DAMAGE FROM HANDLING, STORAGE, AND THIRD PARTIES 
 

After manufacturing, pipes may still be damaged in storage, transportation, installation, and 
operation. As Barton et al. mentioned, the coating of pipes can be damaged due to poor 
handling. This means cracks and dents could emerge on the coating layer. It was also noted that 
some types of pipes, for example, DI, may easily dent under excessive force due to the wall's 
thinness. AC pipes and other various metal pipes are also likely to be damaged in poor handling 
conditions. 

Moreover, most plastic pipes are susceptible to embrittlement while exposed to ultraviolet light 
for an extended period (Barton et al., 2019). Hence, the storage process of these pipes is vital. 
Third-party activities around the pipes can also affect their structure (Røstum, 2000). For 
example, excavation in the vicinity of a pipeline may alter the bedding shape, leading to 
differential settlement and eventually failure. 

2.6.1.8  LENGTH 
 

The effect of this attribute has been investigated in many studies before (Andreou et al., 1987b; 
Andreou, 1986; Aydogdu and Firat, 2015; Kleiner and Rajani, 2001, 2002; Philip and Aljassmi, 
2020; Rajani and Kleiner, 2001; Rajeev et al., n.d.). Not only to find the impact of this factor but 
also for data engineering purposes and creating rate of failures. Philip and Aljassmi (2020) 
found length as an attribute that should be taken into account while trying to make a predictive 
model. Aydogdu and Firat (2015) noted that the failure rate was higher for pipes with lengths of 
0 to 200 m. Therefore, the present study utilized length for creating the current rate of failure. 
This attribute has also been used as an input variable for creating classification models.  
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2.6.2 ENVIRONMENTAL FACTORS 
 
2.6.2.1 SOIL MOISTURE, GROUND MOVEMENT AND HIGH TEMPERATURE 
 

Soil moisture is an environmental factor that may cause different types of failures, such as 
corrosion and ground movement. One study found the pipe rate of failure to be highest during 
mid to end of summer (Gould et al., 2011).  During this period, soil moisture is reduced, leading 
to soil shrinkage and ground movement and shrinkage. This movement would lead to a higher 
rate of circumferential breaks. In another study, the soil moisture deficit (SMD) contributed to 
the higher rate of failure, especially during summer for Asbestos Cement pipes (Pritchard et al., 
2013). Wols and Thienen (2014) reported a similar result considering temperature and lack of 
rainfall. The failure rate for AC and steel pipes was higher in the summer than in other seasons.  
Barton et al.(2019) found that the pipe rate of failure was lowest during the spring season when 
soil is typically wet, and ground movement is less likely to happen. Similarly, it is generally 
highest at the end of summer and beginning of fall, when SMD is highest (Chan et al., 2005).  

In addition to shrinkage, other soil-related movements include sand washout and compaction 
(Pritchard and Hallett, 2013). One study found that the frequency of failures had a temporal-
spatial relationship with the failures that happened previously, especially in sandy soils. Sand 
wash-out is a common challenge that may lead to pipe failure in a long time. Moreover, the 
natural process of soil compaction and construction of poor bedding and foundation would 
typically lead to differential settlement, leading to premature pipe failures  (Wols et al., 2014). 
With the effects of climate change and increased drought periods, pipe differential settlement 
is recommended that climate changes and the likely surge of the drought period will probably 
increase the effect that differential settlement has on pipes failures (Wols and Thienen, 2014a).  

 

2.6.2.2 OTHER CORROSION-RELATED SOIL CHARACTERISTICS (PH, RESISTIVITY, CORROSIVITY, ETC.) 
 

Corrosion is one of the main causes of pipe deterioration (Barton et al., 2019).  Folkman 
reported that corrosion accounts for approximately 28% of pipe failures. Wasim et al. also 
noted that soil corrosivity is one of the most contributing factors to metal pipe deterioration. It 
has also been the primary cause of the deterioration of CI water mains (Wang et al., 2016). The 
deterioration of metallic pipes, especially CI, can be observed external or internal corrosion 
(Rajani and Kleiner, 2013). External corrosion happens due to soil-pipe interactions, whereas 
internal corrosion is a result of water-pipe interactions.  Corrosion, in the end, may affect the 
material integrity of a pipe by weakening the wall thickness, which may lead to failure (Barton 
et al., 2019; Doyle et al., 2003). Soil characteristics, such as pH, electrical resistivity, moisture 
content, and sulfates, directly impact the grade and type of corrosion (Doyle et al., 2003). 
Depending on the location of the study, these soil characteristics may vary noticeably. The 
given figure indicates different factors which contribute to external corrosion of water mains 
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(Wasim et al., 2018) (Figure 2.10). Figure 2.11 also depicts the corrosiveness scoring of soil, 
published by AWWA (Doyle et al., 2003). 

 

FIGURE 2.10 - FACTORS LEADING TO CORROSION OF WATER MAINS (WASIM ET AL., 2018) 
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FIGURE 2.11 - AWWA SOIL CORROSIVENESS SCORING SYSTEM (ANSI/AWWA C105/A21.5-99) 

Corrosion is categorized into two main types: graphitization and corrosion pitting. 
Graphitization usually happens in CI pipes, and it happens when graphite in iron alloy reacts 
with iron oxide (Barton et al., 2019). On the other hand, corrosion pitting happens in different 
types of steel and iron pipes. Although graphitization cannot be readily detected, it strongly 
affects the structure of the pipe, leading to mechanical failure (Ruchti, 2017). The corrosion of 
CI Pipes leads to thickness decrease, pitting, and the emergence of graphitic areas. This 
graphitic area, in some cases, makes visual inspection difficult. Therefore, the inspection could 
be done when the layer is removed (Wang et al., 2018).  

The pH value is also considered to be another factor that affects corrosion of CI water mains 
either indirectly or directly (Wang et al., 2018). Other studies indicated that when the soil pH 
decreases, the rate of corrosion increases (Petersen and Melchers 2012; Kreysa and Schütze 
2008; Nesicet al. 1996). It was also mentioned that the corrosion rate is not related to pH when 
soil pH is over 5. Generally, soil with a lower pH rate is considered more corrosive than soil with 

Soil characteristics Points*

Resistivity ** (Ω.cm)
     < 700 10

     700 - 1000 8

     1000 - 1200 5

     1200 - 1500 2

     1500 - 2000 1

     > 2000 0

pH
     0 - 2 5

     2 - 4 3

     4 - 6.5 0

     6.5 - 7.5 ***0

     7.5 - 8.5 0

     > 8.5 3

Redox Potential
     > + 100 mV 0

     +50 to +100 mV 3.5

     0 to +50 mV 4

     Negative 5

Sulphides
     Positive 3.5

     Trace 2

     Negative 0

Moisture
     Poor drainage, continuously wet 2

     Fair drainage, generally moist 1

     Good drainage, generally dry 0

* Ten points means that soil is corrosive to grey or ductile cast 

iron pipe: protection is indicated

** Based on single-probe at pipe depth or water-saturated soil 

box.

*** If sulphides are present and low or negative redox-potential 

results are ontained, give three points for this range.



50 | P a g e  

 

a higher degree of pH. Nevertheless, soil with a pH of 5.5 to 8.5 may cause extreme corrosion in 
some specific environments (Doyle et al., 2003). 

Since corrosion is an electrochemical reaction, soil resistivity is known to play an important role 
in the corrosion of underground pipes (Doyle et al., 2003). Soil resistivity measures how 
resistant a specific type of soil is to the flow of electricity. McMullen (1982) suggested a linear 
relationship between pipe failure and soil characteristics and proposed a model applied to the 
water distribution network of Des Moines, Iowa. The researchers found that 94% of failures 
were attributed to soil with less than 2000 Ω-cm saturated resistivity, confirming corrosion as a 
major driver of deterioration.  Another study found that pipe expected service life reduced by 
28 years for every 1000 Ω cm decrease in soil resistivity (Kleiner and Rajani, 2001). However, 
McMullen (1982) noted that soil resistivity might not be constant since it is affected by many 
factors, such as road salting, acid rain, and temperature. (Bhattarai, 2013)(TABLE 2.6). 

 TABLE 2.6 – THE RATE OF SOIL CORROSIVITY BASED ON SOIL RESISTIVITY (BHATTARAI, 2013) 

Soil Resistivity (Ω.cm) Soil Corrosivity Rate 

> 20,000 Essentially non-corrosive 

10,000 – 20,000 Mildly Corrosive 

5,000 – 10,000 Moderately Corrosive 

3,000 – 5,000 Corrosive 

1,000 – 3,000 Highly Corrosive 

<1,000 Extremely Corrosive 

 

In addition to the factor mentioned above, some other factors such as stray current, the 
pressure of the atmosphere, and temperature could influence the process of corrosion in Cast 
Iron pipes. For instance,  the temperature is believed to expedite corrosion reaction (Doyle et 
al., 2003). In addition, Gummow and Eng reported that the stray current became a major factor 
that led to electrolysis in buried water pipes due to the advent of electrical transit networks in 
North America. Hence, these factors should also be taken into consideration when analyzing 
corrosion in Cast Iron pipes.  

2.6.2.3 SEASONALITY 
 

The effect of unexpected and drastic seasonal changes has been investigated in previous 
studies and reported strongly correlating with the rate of failure. Failure rates have been 
reported to be higher during summer and fall, in which the weather is dry, especially for PVC 
and AC pipes, or during freezing winters for Iron and Steel pipes. The inverse condition is also 
reported for wet and mild weathers for fall and winter, respectively (Fuchs-Hanusch et al., 
2013; Gould et al., 2011; Laucelli et al., 2014; Pritchard and Hallett, 2013; Wols and van 
Thienen, 2014). The failure rate is also reported to be higher in rigid mains up to 200 mm 
throughout the winter season, and one study found that the circular crack is more prevalent in 
pipes with the size of 150 mm during the summer season (Andreou et al., 1987a, 1987b; Fuchs-
Hanusch et al., 2013). One specific study showed that seasonal changes do not significantly 
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impact pipes at depths of greater than 1 meter, particularly for larger pipes (Wengström, 1993). 
This is because larger pipes generally fail under pressure and not the movement of the ground, 
which may happen due to seasonal alteration. Wols and Thienen (2014) reported the most 
important weather features that may affect the deterioration process of water mains as 
temperature, frost, and deficit which typically happens as a result of seasonal changes; 
however, the consequences of these factors may vary geographically, and it usually depends on 
the type of materials (Gould et al., 2011; Laucelli et al., 2014). 

2.6.2.4 COLD TEMPERATURE 
 

The temperature may affect the deterioration process of water mains. Accordingly, many 
studies analyzed the failures caused by temperature changes in different seasons (Fuchs-
Hanusch et al., 2013; Gould et al., 2011; Hu and Hubble, 2007; Rajani and Kleiner, 2001), which 
indicates that approximately 60% of failures would happen during the winter season (Rezaei et 
al., 2015).  One study in the Netherlands found that different materials have different reactions 
to temperature, and Iron is reported to be the most vulnerable material for cold temperature 
(Wols et al., 2019). During cold winter, soil moisture may cause frost heave (Barton et al., 
2019). This frost is reported to have a significant impact on pipes laid down shallower than 0.5 
to 1 meter, depending on the duration of the frost (Pritchard and Hallett, 2013). In addition, 
bedding type may affect the impact of frost heave, leading to a higher rate of failure in water 
mains (Bruaset and Sægrov, 2018). These studies indicate the importance of temperature and 
its effect on the deterioration of water pipes. Therefore, it is worth including this feature in the 
prediction of future failures. 

 
2.6.3 OPERATIONAL FACTORS  
 
2.6.3.1 INTERNAL WATER PRESSURE 
 

One study in 2019 reported the effectiveness of changes in water pressure which may increase 
the probability of failure (Barton et al., 2019).  Changing operational pressure from consumer 
usage to the alteration in the network by management leads to a fluctuation in the current 
pressure, leading to fatigue failures (Rezaei et al., 2015). One conducted study in Zagreb 
represented the impact of pressure regulation on decreasing pipe failures by around 17%, 
which was clear for PVC and Iron pipes (Iličić, 2009). Water hammer (Transient surge pressure) 
also occurs due to operational events such as testing fire hydrant or pumping station failure. 
This additional pressure causes sudden changes in operational pressure inside the network, 
resulting in failures (Barton et al., 2019; Martínez-Codina et al., 2016). Martínez-Codina et al. in 
2016 listed a range of materials such as metal and cement to be considered while taking 
pressure into account and reported that tolerance of pressure might lead to a higher rate of 
failures in larger diameter pipes, particularly in the places that resistance of pipes has 
weakened as a result of corrosion and micro cracks. One study investigated the fact that the 
smaller pipes are less prone to failures due to the alteration of operational pressure since they 
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typically do not experience a high rate of transient surge pressure (Ruchti, 2017). The studies 
mentioned above have emphasized the significance of operational pressure within the network. 
Accordingly, this factor should be considered important, especially for transmission networks 
where the water pressure may cause drastic internal pressure. 

2.6.3.2 PREVIOUS FAILURES  

 

The importance of previous failures has been investigated in previous studies. Clark et al. (1982) 
reported that initial breaks might result in subsequent failures that are located, 
spatiotemporally, close to the previous failures.  Previous studies have proven that 22% of 
failures happened within the proximity (1 m) of previous incidents, and also 42% of these 
failures happened in the one-day interval after initial failure (Goulter et al., 1993; Goulter and 
Kazemi, 1988). Therefore, considering historical failures in water main failure prediction models 
is critical.  
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3. METHODOLOGY  

This study applied various steps to predict water main deterioration, ranging from defining 
objectives, data collection, cleaning, and preparation, applying different models, evaluating and 
comparing models. These steps are shown in Figure 3.1 and described in more detail in the 
following sections. The methodology follows the Cross-Industry Standard Process for Data 
Mining (CRISP-DM). This process was introduced by ESPRIT (European Strategic Program on 
Research in Information Technology) (Swamynathan, 2019; Verdhan, 2020) as a global solution 
that does not consider any domain-dependent assumptions. The CRISP-DM includes business 
understanding, data understanding, data preparation, modeling, evaluation, and deployment.  

 

FIGURE 3.1 – FLOWCHART OF METHODOLOGICAL STEPS 
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3.1 DATA COLLECTION AND BUSINESS UNDERSTANDING 
 

Each water utility provided two datasets, a water main inventory and a historical record of 
water main breaks. More details regarding the datasets and available attributes are provided in 
Appendix A. In order to better understand the available data as well as the priorities and 
challenges of the utilities, three workshops were organized with the National Water and 
Wastewater Benchmarking Initiative (NWWBI). During these meetings, three prediction targets 
were found to be preferred by the participating utilities. First and foremost, the probability of 
failure was chosen as the most important target since it can be directly used in asset 
management risk analyses. In order to predict this target, classification algorithms were 
selected. Some utilities were also interested in predicting age at first failure and rate of failure. 
The first failure is useful in estimating the expected service life of water mains since the 
likelihood of failure increases once a pipe has broken. The rate of failure can also be applied in 
estimating yearly maintenance and repair needs. These two targets were predicted with 
regression models. Details about the three targets and the models developed for each are 
provided in the following sections. 

 

3.2 DATA UNDERSTANDING AND DATA PREPARATION 
 

Data cleaning is one of the most important steps in the data mining process and can also be one 
of the most time-consuming. This step started with the development of metadata tables to 
describe the available raw data and ensure all information would be interpreted correctly in the 
following steps, from primary datasets. A wide range of attributes was provided for each 
dataset, which varied between different utilities since not all utilities collect various features 
related to the pipeline. However, some of these attributes, such as material and diameter, are 
common between inventory datasets and breaks datasets. It should be noted that the datasets 
employed in this study are collected from thirteen different municipalities across Canada. In 
order to reach a better understanding of all provided attributes, different metadata tables were 
created for different utilities. For each metadata table, some columns were defined in order to 
develop consistency between datasets. These columns are as follows, and for each column, a 
related description is provided (TABLE 3.1): 

1.  TITLE: This column includes the actual name of the attribute in the raw dataset, and it 
was created to compare the existence of different attributes between utilities and use 
the column as a reference for each dataset for further application.  

2. Description: A brief explanation about the attribute to better perceive the value of the 
feature  

3. Type: Type of attributes are provided in this column. For instance, categorical, 
polynomial, and numerical formats are defined for different features.  



55 | P a g e  

 

4. Name: This column is one of the most important ones, including the defined name for 
each attribute. This importance is because some attributes had different names within 
the dataset, although having the same values. In order to address this challenge, the 
“Name” column was created, which creates consistency between the datasets, and all 
required columns for the analysis at the end will have these names that are defined in 
the “Name” column.  

5. Unit: This column includes units pertinent to different attributes  

6. Range: The distribution of values for different attributes is included in this column  

7. Category: If a specific attribute is a categorical type, different categories are listed in 
this column 

TABLE 3.1 – SAMPLE OF METADATA TABLE  

TITLE Description Type Name Unit Range Category 

HISTKEY 
Work Order 

Number 
Numerical ( Discrete) WONumber N.A 

30099-
1211812 

N.A 

ADDDTTM 
Work Order 

Created Date 
Numerical ( Date ) WODate Date - N.A 

COMPKEY 
Water Main Asset 

ID 
Numerical ( Discrete ) AssetID N.A 1-938898 N.A 

INITDTTM 
Work Order 

Initiated Date 
Numerical ( Date ) BreakDate Date - N.A 

MODDTTM 
Last Date Work 

Order 
Numerical ( Date ) WOmodification Date - N.A 

SCHEDDTTM 
Scheduled Work 

Data 
Numerical ( Date ) ScheduledWork Date - N.A 

STARTDTTM Work Started Date Numerical ( Date ) WOstart Date - N.A 

 

According to the provided metadata tables, inconsistencies and possible problems were 
detected from the data. A unique name is defined for each category, and unique IDs are 
identified for further matching break and inventory information. Any inconsistencies and 
outliers identified and removed from data. 

The next step after creating the metadata table was creating cleaned data for all attributes 
within different datasets.  This step has been performed in order to create groups of consistent 
values among all utilities. Almost all attributes were cleaned, and detailed categories were 
defined for different features. For instance, different categories with the same values were 
created in terms of material or cause and nature of failures, and there were significant 
inconsistencies within different datasets. Some utilities had these attributes as 
codes (which were not decoded at the beginning). This issue made the cleaning process more 
challenging. In addition, some causes of failures are not related to the natural deterioration 
or might not be related to the pipe itself. These elemental failures are not directly related 
to the pipe itself. Thus, some unique names were defined to distinguish these defects 
from pipe-related ones, which will be discussed in more detail. This cleaning process has led to 
an array of consistent datasets that can be efficiently utilized in data analysis.   
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The next step was applying these metadata tables and cleaned values to the main datasets. To 
do so, Power BI software has been used. All columns have been cleaned, and values are 
replaced with cleaned values that were created in the second step.  

Additionally, some attributes are not available in all utilities. Therefore, these features are kept 
for each utility separately; however, while merging all cities, these attributes may be removed 
since their existence may affect the reliability and accuracy of the predictive models. Roughness 
and HGL, for instance, are among these attributes which are specific to some utilities. After 
cleaning the cause and nature of failures, this step has been the most time-consuming data 
preprocessing step. This is since all utilities should have been cleaned and made ready to start 
the preliminary analysis.  

Supervised models that predict whether or not a pipe will fail or the probability of failure 
requires data on failed and non-failed pipes. Thus, the two available datasets, inventory, and 
breaks were merged for each utility. A unique ID was identified for each utility in order to 
match the two datasets. If a unique ID was unavailable or the matching percentage was low, 
GIS data was used to spatially join the datasets. The years of historical break data available for 
each city are listed in TABLE 3.2, as well as the matching percentages.  

TABLE 3.2 – PERCENTAGE OF PIPE ID MATCHED BETWEEN INVENTORY AND HISTORICAL FAILURES  

Utility Years of Breaks 
% 

Matched 
Note 

Barrie 1951-2019 98 - 

Calgary 1956-2019 94 - 

Kitchener 1985-2018 86 - 

Halifax 1979-2019 99 - 

Markham 1900-2018 88 - 

Saskatoon 1988-2019 100 Matched In QGIS 

St John's 1988-2018 100 Matched In QGIS 

Vancouver 2010-2019 100 Matched In QGIS 

Victoria 1985-2019 95 Matched In QGIS 

Waterloo 2018 87 - 

Winnipeg 1919-2019 100 Matched In QGIS 

Region of 
Waterloo 

1987-2019 94 - 

Region of 
Durham 

1974-2020 99 - 

 

Among all classification models,XGBOOST, and among all materials, cast iron was selected to 
compare the results between all networks. In addition to all utilities, one global model including 
all networks was also created. The result of this model indicated how the accuracy of each 
network might affect the Global accuracy. Therefore, this could be one of the primary reasons 
that a uniform model can not be chosen easily.  
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To analyze all utilities together, the thirteen utility datasets were merged. Four new columns 
were added to each utility dataset before merging them in order to maintain the identity of 
each. The four identifying columns are as follows:  

1. Index: This column is a unique numerical identifier for the whole dataset.  

2. Utility: This is the name of the utility, e.g. Vancouver.  

3. Abbrev: This column includes the abbreviation of each utility’s name, e.g. VAN for 
Vancouver.It is used for creating the UtilityID.  

4. UtilityID: This is a unique pipe ID. It combines Abbrev and PipeID. The latter is 
available in the dataset and is specific to each utility. Its format is defined by the 
utility. 

 

After completing the data cleaning process, the most important attributes were kept for 
modeling. These attributes included the following: 

- Material ( Cast Iron, Ductile Iron, Polyvinyl Chloride (PVC), Asbestos Cement, Copper, 
Polyethylene, Galvanized Steel, Concrete, High-Density Poly Ethylene (HDPE), steel, and 
Lead) 

- Diameter 

- Pipe Depth 

- Break Depth 

- Joint Type (Ring, Lead, Welded, Universal, Collar, Gasket, Mechanical) 

- Installation Date and Installation Year 

- Failure Date 

- Failure Month 

- Replacement Year 

- Soil Type (Clay, Sand, Gravel, Silt, Granular, Marsh, Muck, and Rock) 

- Bedding Type (Granular, Concrete) 

- Surface Type (e.g., asphalt, gravel, water, concrete) 

- Protection Status 

- Lining Status 
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- Lining Material (e.g., Cement Mortar, Epoxy) 

- Protection Material (e.g., Concrete, PE) 

- Lining Year 

- Coating (e.g., fiberglass reinforced plastics, Concrete) 

- Anode Type (Zinc, Magnesium) and Anode Status 

- Casing Material (e.g., Styrofoam, Polystyrene) 

- Service Type (e.g., Distribution, Transmission) 

- Failure Type (e.g., circumferential, hole, crack) 

- Failure Cause (e.g., corrosion, temperature change); and 

- Roughness 

Followings are the explanations about the most important attributes, for which a significant 
amount of time spent: 

- Material:  One of the most critical factors contributing to different failures is material. 
Various types of pipes have different resistance against failure. For example, Cast Iron is 
more prone to failure (Barton et al. 2019). The manufacturing methods for different 
pipes have altered remarkably over the decades (Røstum, 2000). Therefore, according 
to previous studies, the impact of different materials should be analyzed deeply since 
this factor may change the pattern of failure. Almost all utilities` datasets include this 
attribute, which should be considered while analyzing the deterioration process. In 
order to clean this column, explicit categories have been defined for all utilities. 
 
Most utilities had this attribute in their datasets in a different way. For example, one of 
the datasets (Hamilton) used a different way to indicate the Cast Iron pipe (CISPIT1, 
CISP1, etc.). However, all of these inconsistent defined names for all cities have been 
changed to groups of pipes with consistent names. Moreover, in order to better 
understand the material itself, a full name has been used instead of an abbreviation. 
Finally, some datasets included different materials for one specific data point. In this 
case, only the first-mentioned material was taken into analysis, and the remaining were 
removed. In the case that material was missing from a data point, GIS was used to 
replace its value. 
 

- Diameter: According to previous studies, pipe break rate was found to be higher in 
smaller pipes than larger pipes. That is, there is an inverse relationship between 
Diameter and Break rate (Kettler and Goulter (1985); Andreou et al. (1987); Andreou S. 
A. (1986)). Being installed with thicker wall and more reliable connections, larger pipes 
are more resistant to ground movement and corrosion (Wengström 1993).  
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Nonetheless, smaller pipes are more prevalent in water distribution networks. Folkman 
(2018) represented that approximately 67% of pipes across Canada and the US have a 
diameter of less than 200 mm. Hence, it is important to know the frequency of different 
sizes within the network. In this study, almost all cities provided the size of water pipes. 
However, some utilities included the size of pipe in British Standard (inch) and some in 
Metric (mm). Therefore, all of these metrics have been changed to (mm) to create a 
consistent attribute. 
 

- FailureType: The cleaning process of this column has been the most challenging part of 
preprocessing. All utilities provided different formats for this attribute. Not only failure 
related to the nature of pipe included, but also components failures (Joint, etc.) included 
in this attribute. In some cases, the cause of failure is included in this part incorrectly. 
Therefore, all of these inconsistencies have had to be removed in order to make this 
attribute efficient. A few utilities provided a small group of categories for this part. 
However, some utilities such as St.John`s provided a complicated explanation for this 
attribute, including sentences, phrases, and so forth. This is the reason that made this 
step the most time-consuming part. In some cities, corrosion was included in the type of 
failure. Thus, it had to be transferred to the cause of failure. Overall, wide variety of 
categories were created for this attribute, which may be utilized in further analysis. 
Given is the small list of defined categories for Nature of Failure after the cleaning 
process. 
 

 
- Circumferential 
- Longitudinal 
- Split 
- Crack 
- Blowout 
- Break 
- Leak 
- And … 

 
There have also been some utilities that provided more than one nature of failure for 
different data points. These inconsistencies have also been tackled by creating mixed 
values, which is common among all utilities. Some of these unique categories are as 
follows: 
 

- Circumferential/Longitudinal 
- Hole/Split 
- And … 

 
As previously mentioned, there have been some failures that are not directly related to 
the pipe itself. These values can be found within the original datasets as follows: 
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Clamp, Plug, Saddle, Gasket, Elbows, Copper, Joint, Flange, Valve, Fitting, Ring, and so 
forth 
Sleeve and Clamp have been allocated to the “Repairs” category among these elemental 
failures. Gasket, Joint, Flange, Fitting, Ring, Elbows, and Copper have been related to the 
“Joint and Fitting” category, and something like Saddle has to be defined to be in the 
“Not on Main” Category. Overall, there are four main categories after the cleaning 
process for the nature of failures. 
 

- Pipe-related failures (Circumferential, Crack, Longitudinal, Hole, Blowout, etc.) 
- Joint and Fitting 
- Repairs 
- Not on Main 
 

- FailureCause: Similar to FailureType, cleansing this attribute has been a challenge, and 
the cleaning process has been done similar to that of FailureType. One of the main 
challenges in this part turns back to Corrosion, which was included in the nature of the 
failure. Corrosion is believed to be the cause of failure. Accordingly, corrosion was 
replaced and removed to failure cause for those utilities that included corrosion in 
nature of failure. There are some main categories for this part as follow: 
 

 
- Accident 
- Corrosion 
- Temperature 
- Deterioration 
- Improper Installation 
- Improper Bedding 
- Differential Settlement 
- And … 
 

- CoatingMaterial and LiningMaterial: Coating and Lining are approaches that are usually 
employed to protect water mains against corrosion (InfraGuide, 2003; Mordak, J. and 
Wheeler, J., 1988). Generally, steel pipes, iron pipes, and materials more prone to 
failure are coated and lined (Barton et al., 2019). However, coating and lining are not 
generally used for PVC and PE pipes since their characteristics make them more resilient 
to corrosion (Barton et al., 2019). AC pipes are recommended to be coated, where 
surrounded by soils with a pH value of below 6.0, although concrete is generally 
resistant to corrosion naturally. Various types of lining and coating can be applied to 
different materials, such as bitumen, cement mortar, synthetic resin, PE sleeve, Epoxy, 
cathodic protection, and coal tar. According to what had been provided by utilities, a 
group of materials was defined for this attribute. These materials are consistent among 
all utilities. 
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- CM (Cement) 
- Epoxy 
- Coal Tar 
- Polyurea 
- Concrete 
- CIP (Cured in place) 
- Foam 
- Y-Jacket 
- Urecon 
- HDPE 
- And … 

 

Most of the datasets provided by the utilities contained significant percentages of missing 
values that must be handled before further analyses. In the majority of cases, missing values 
were filled by assuming the values from adjacent pipes in GIS were applicable. Nevertheless, 
even after this approach, some attributes still included missing values. Replacing some of these 
values was straightforward. For instance, missing lining material classes were found to occur 
mostly for pipes with no lining, according to their lining status. Thus, the material in these cases 
was replaced with “Unlined.” This logic was also applied to protection type, coating type, and 
other similar attributes. 

Those pipes were removed from the dataset if general assumptions could not be made based 
on available GIS data and other attributes. If a particular attribute had more than 10% of 
missing values, they were removed entirely from the analysis. Coding in python was used to 
quickly detect and replace any missing values within the datasets instead of Microsoft Excel.  

After data is cleaned and preprocessed, it must be prepared for the specific models that will be 
applied. A specific dataset was created for each type of algorithm and target, i.e., regression 
(rate of failure and age at first failure) and classification (probability of failure).  

The rate of failure (number of breaks per year per length) is an important deterioration 
indicator. In order to predict the current rate of failure, i.e., of the latest break year, both the 
current rate of failure and the previous rate of failure were calculated. The current rate of 
failure was calculated based on the number of failures in the latest break year divided by the 
length of the pipe. The previous rate of failure, on the other hand, included all previous failures 
and age. This age is the same age at the current break and not necessarily the most recent age. 
The age at first failure was simply calculated as the difference between the first break year and 
the pipe install year for both targets, and only broken pipes were analyzed. 

For classification models, the target variable was defined as to break status. This is a binary 
attribute, 0 – not broken and 1 – broken. Thus, both broken and non-broken pipes were 
analyzed, and the datasets were merged. Ages of broken pipes were calculated based on the 
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break year, while ages of non-broken pipes were calculated based on the most recent year of 
break data available. 

 
3.3 MODEL SELECTION AND TOOLS 
 

In order to conduct this study, several tools have been applied and are described below. 

- Python: In order to write the programming codes, python language was selected as it is 
the state-of-the-art tool for machine learning problems. The final edition of version 3 of 
python was installed and employed for this study. 

- Jupyter notebook: The Jupyter Notebook is a well-known open-source web application 
that allows data scientists to create codes and make visualization. The notebook can be 
used for data cleaning, statistical modeling, visualization, and machine learning 
purposes. 

- Scikit-Learn: The Scikit-learn is a free machine learning library for python programming, 
including different classification, regression, and clustering algorithms. This library also 
consists of different evaluation metrics that could help better evaluate the accuracy of 
the models. 

- Matplotlib: Matplotlib is a graphical platform for Python and its numerical libraries, 
such as Numpy. This platform, along with seaborn were used for making visualizations. 

- Seaborn: Seaborn is a visualization library created based upon Matplotlib and is 
integrated with Pandas library in python. 

- Numpy: This library is integrated with Pandas and Python language, and it contains a 
valuable range of mathematical functions, matrices, and arrays. 

- Pandas: A library built on top of python programming language that can be employed 
for data manipulation and perform analytical tasks. 

- Power BI: This tool is a business analytic produced by Microsoft Corporation, and it can 
be used to create dashboards, merge and clean the datasets, using Python codes for 
visualizations, and many other intelligent tools that facilitate the prediction process. 

- QGIS: QGIS is a free, open-source geographical platform that can be used for analyzing 
geospatial information. Some of the missing values within this study were handled in 
QGIS based on the information provided as shapefiles. The plug-in used for this step is 
known as “Joint to the nearest sample.”  

Explanations about different algorithms have been provided in chapter 2 of this study. Based on 
the previous studies and trial and error, XGBOOST, ANN, Random Forest, and Logistic 
Regression were selected for classification models, which aimed to predict the probability of 
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failures. Furthermore, for regression analysis, XGBOOST, ANN, Random Forest, and ElasticNet 
regression were chosen.  

As previously mentioned, there was not enough information for the minority class (broken 
pipes) in some cases (e.g., Region of Waterloo). In order to tackle this challenge, the Synthetic 
Minority Oversampling Technique (SMOTE) was utilized to increase the number of broken pipes 
artificially. 

In order to evaluate classification models, the n-fold cross-validation approach was selected 
due to its popularity and robustness. Based on the cross-validation results, various metrics were 
extracted. Firstly, a confusion matrix was produced, and different metrics were created based 
on this matrix. Accuracy, precision, recall, and most importantly, F1-Score metrics were used 
for final evaluation. It is worth mentioning that for classification models, especially for 
imbalanced datasets, F1-Score is the best metric that can be used since it effectively considers 
both majority and minority classes. 

For the evaluation of regression models, Root Mean Squared Error (RMSE) and R-Squared have 
been employed, and the performance of all models was compared to find the best predictive 
algorithm. 

Finally, in each step and for all models, the RandomizedSearhCv from Scikit-learn was utilized 
for finding the best parameters. All explanations about the hyperparameters for all models and 
other critical information are provided in Appendix B. This includes the hyperparameters 
related to Random Forest (RF), Logistic Regression (LR), XGBOOST, Elastic Net Regression (ER), 
Artificial Neural Networks (ANN), and SMOTE.  

 

3.4 DEPLOYMENT 
 

Last but not least is the deployment. In order to address this step, the results were collected 
and compared. Then, based on this comparison, the best model was selected. For instance, for 
classification models, the results of XGBOOST were integrated into the dataset. Subsequently, 
the final dataset was merged to the GIS file and visualized the results on the map. It should be 
mentioned that GIS was only used for a few cities such as Saskatoon, Winnipeg, and St. John’s. 
Using these maps would help specialists to perform well within decision-making processes.  
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4. AVAILABLE DATASETS 
 

Data for this study was collected from thirteen utilities across Canada, including Vancouver, 
Victoria, St. John’s, Saskatoon, Calgary, Kitchener, Barrie, Winnipeg, Markham, Waterloo, 
Region of Waterloo, Region of Durham, and Halifax. Each utility provided two datasets - either 
as spreadsheets or GIS shapefiles - pipe inventory and historical water main break records. The 
first includes all existing pipes within the network and their characteristics, whereas the second 
lists breaks, and the failure record includes only broken pipes. Details of the datasets are 
described in the following sections. Values presented were calculated based on the clean data.  

All available attributes in the inventory files for each utility are shown in TABLE 4.1. All utilities 
provided diameter, length, material, and installation year. Thus, this attribute is common 
among all networks. Additionally, some attributes such as ownership, lining status, and lining 
material were collected by most networks. However, most of the networks across Canada did 
not collect some characteristics such as average soil resistivity, soil type, land type, and surface 
type. Calgary, for instance, is the only network that collected average soil resistivity. In addition, 
Victoria and Barrie are the only networks that provided hydraulic grade line (HGL) and Casing 
Material, respectively. In the given table, all networks can be compared based on the provided 
features. 

Moreover, different materials were installed within various networks across Canada. The given 
table shows the contribution of each material to the inventory files (TABLE 4.2). As shown in the 
table, PVC pipes account for more than 40% of the total length of all networks, followed by cast 
iron and ductile iron with more than 21% contribution for each. Nonetheless, PVC is not the 
most popular material for all networks. For instance, based on the available datasets, cast iron 
accounts for the most significant portion of the network in Vancouver and Victoria, more than 
45%. Alternatively, ductile iron is the most frequently installed material in Halifax, Kitchener, 
and St. John’s. Asbestos cement is also another material that has been used in some of the 
networks more frequently. Therefore, it is clear that the predominant materials vary among all 
utilities.  

Finally, another table has been provided, which shows the percentage of each material within 
all networks, based on the number of failures they experienced. For example, cast-iron makes 
up 51.67% of entire failures recorded. This shows the severity of the deterioration process of 
this material. Ductile iron and PVC pipes are other materials that experienced more failures 
than other pipes ( 

TABLE 4.3). For example, in Calgary, the number of failures for PVC is higher than that of cast 
iron and ductile iron. Therefore, based on the provided historical failures, different patterns 
were detected for each network. More details about each utility are provided separately in the 
Appendix A. 
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TABLE 4.1 – AVAILABLE ATTRIBUTES FOR ALL UTILITIES (INVENTORY) 

Utility 
D

ia
m

e
te

r 

M
at

e
ri

al
 

Jo
in

t 
Ty

p
e

 

In
st

al
la

ti
o

n
 Y

e
ar

 

R
e

p
la

ce
d

 Y
e

ar
 

R
e

p
la

ce
d

 S
ta

tu
s 

O
w

n
e

rs
h

ip
 

Le
n

gt
h

 

Li
n

in
g 

Y
e

ar
 

Li
n

in
g 

St
at

u
s 

Li
n

in
g 

M
at

e
ri

a
l 

St
at

u
s 

C
o

at
in

g 
M

at
e

ri
al

 

R
o

u
gh

n
e

ss
 

P
ro

te
ct

io
n

 S
ta

tu
s 

P
ro

te
ct

io
n

 Y
e

ar
 

P
ip

e
 D

e
p

th
 

Se
rv

ic
e

 T
yp

e
 

B
e

d
d

in
g 

Ty
p

e
 

Su
rf

ac
e

 T
yp

e
 

So
il 

T
yp

e
 

B
re

ak
 R

at
e

 

B
re

ak
 N

u
m

b
e

r 

H
G

L 

**
R

e
st

ra
in

e
d

 

C
as

in
g 

M
at

e
ri

a
l 

**
*D

e
ad

 E
n

d
 

A
ve

ra
ge

 S
o

il 
R

e
si

st
iv

it
y 

Barrie ✔ ✔ - ✔ - - - ✔ - - - ✔ - - ✔ - - ✔ - - - - - - ✔ ✔ - - 

Calgary ✔ ✔ - ✔ - - - ✔ - - - - - - - - - - - - - ✔ ✔ - - - ✔ ✔ 

Halifax ✔ ✔ - ✔ - - - ✔ - ✔ ✔ - - - - - - - - - - - - - - - - - 

Kitchener ✔ ✔ - ✔ - - - ✔ ✔ ✔ ✔ ✔ - - - - - - - - - - - - - - - - 

Markham ✔ ✔ - ✔ - - ✔ ✔ ✔ ✔ - - - ✔ ✔ ✔ ✔ - - - - - - - - - - - 

Region of 
Durham 

✔ ✔ - ✔ - - ✔ ✔ ✔ ✔ ✔ ✔ - - ✔ ✔ - - - ✔ - - - - - - - - 

Region of 
Waterloo 

✔ ✔ - ✔ - - ✔ ✔ ✔ ✔ ✔ - - ✔ - - ✔ - ✔ ✔ ✔ - - - - - - - 

Saskatoon ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ - ✔ - - - - - - - - - - - - - - - - - 

St. John’s ✔ ✔ - ✔ - - - ✔ - - - - - ✔ - - - - - - - - - - - - - - 

Vancouver ✔ ✔ - ✔ - - ✔ ✔ - - ✔ ✔ ✔ - - - - ✔ - - - - - - - - - - 

Victoria ✔ ✔ - ✔ - - ✔ ✔ - ✔ ✔ ✔ - ✔ - - - - - - - - - ✔ - - - - 

Waterloo ✔ ✔ - ✔ - - ✔ ✔ ✔ ✔ ✔ - - - - - - ✔ - - - - - - - - - - 

Winnipeg ✔ ✔ ✔ ✔ - - ✔ ✔ - - - ✔ ✔ - - - - - - - - - - - - - - - 

 **Restrained means pipe is prevented from axial displacement         *** a pipe that is no longer used or an isolated pipe from normal water flow 
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TABLE 4.2 – PERCENTAGE LENGTH OF EACH MATERIAL WITHIN EACH UTILITY (INVENTORY) 

Utility 
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Asbestos 
Cement 

0.13% 1.27% 2.64% 0.86% 1.07% 0.50% 7.27% 29.61% 0.15% - 0.20% 0.34% 24.20% 6.804% 

Brass - - - 0.005% - - - - - - - - - 0.000% 

Cast Iron 11.50% 15.06% 12.96% 27.63% 23.13% 4.66% 7.10% 17.88% 41.89% 48.54% 45.94% 29.68% 26.08% 21.197% 

Concrete 3.53% 5.06% 9.82% 5.36% 4.66% 5.82% 16.25% - 0.65% 0.79% - 0.03% 0.03% 4.148% 

Copper 2.32% 0.33% 0.07% 0.39% 0.06% 1.62% 0.04% 2.74% 0.26% 0.46% 0.47% 0.07% 1.28% 0.766% 

Cross Linked 
Polyethylene 

0.11% - - 0.04% - 0.02% - - 0.03% - - - - 0.009% 

Ductile Iron 26.85% 20.12% 16.43% 59.36% 37.21% 18.58% 25.57% 0.10% 46.47% 44.12% 40.22% 15.12% 1.42% 21.664% 

Galvanized Iron - - - - - - - - - - 0.08% - - 0.001% 

Galvanized Steel 0.40% - - 0.001% - - - - - - - - - 0.016% 

HDPE 0.87% 0.00% 0.00% 0.17% 0.36% 0.45% 0.31% 0.07% 0.00% 0.08% 2.70% 0.43% 0.01% 0.153% 

PCCP - - - - - - - - - - - - 0.00% 0.000% 

Polybutylene - - - - - 0.11% - - - - - - 0.01% 0.009% 

Polyethylene - 0.76% 0.09% - - 0.02% 0.26% 0.46% 0.02% 0.01% 0.08% 0.05% 0.10% 0.277% 

PVC 54.30% 54.36% 57.99% 5.62% 31.43% 66.36% 42.92% 44.79% 10.53% 0.04% 7.83% 54.29% 46.83% 43.128% 

PVCB - - - - 0.07% - - - - - - - - 0.000% 

PVCF - 0.02% - - 0.03% - - 0.05% - - - - - 0.008% 

PVCO - - - - 1.96% - - - - - 1.44% - - 0.026% 

Stainless Steel - - - 0.06% - - - - - - - - - 0.005% 

Steel 0.00% 3.04% - 0.52% 0.02% 1.85% 0.28% 4.30% - 5.95% 1.04% - 0.04% 1.789% 

Grand Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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TABLE 4.3 - PERCENTAGE OF EACH MATERIAL BASED ON THE HISTORICAL FAILURES (BREAK FILES) 

Utility 
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Asbestos Cement - 1.11% 2.30% 0.38% 0.40% 0.46% 3.13% 19.40% 0.31% 0.76% 0.31% - 15.42% 7.37% 

Brass - - - 0.03% - - - - - - - - - 0.00% 

Cast Iron 56.81% 33.79% 52.85% 91.60% 75.56% 44.42% 41.32% 36.54% 86.26% 90.18% 56.80% 82.56% 69.37% 51.67% 

Concrete 0.55% 0.14% 1.46% 0.20% 0.25% 0.18% 3.82% - 0.06% 0.11% - 0.11% 0.07% 0.21% 

Copper 2.38% 0.04% 0.03% 0.08% 0.05% 0.28% - 0.14% 0.44% 0.86% 0.21% - 0.03% 0.11% 

Cross Linked 
Polyethylene 

0.63% - - - - - - - - - - - - 0.01% 

Ductile Iron 27.34% 25.81% 30.95% 7.06% 21.15% 49.37% 31.94% 0.10% 12.06% 3.67% 28.35% 14.11% 3.58% 15.73% 

Galvanized - - - - - - - - 0.06% - - - - 0.00% 

Galvanized Iron - - - - - - - - - - 0.10% - - 0.00% 

Galvanized Steel 6.97% - 0.23% - - 0.07% - - - - - - - 0.11% 

HDPE 0.16% - - - 0.05% 0.07% - 0.04% 0.12% 0.11% 1.86% 0.11% 0.00% 0.03% 

Polybutylene - - - - - - - - - - - - 0.01% 0.00% 

Polyethylene - 1.03% - - - 0.07% - 0.24% - - 0.21% - 0.00% 0.42% 

PVC 5.15% 37.71% 12.18% 0.64% 2.54% 5.09% 17.36% 40.45% 0.56% 0.22% 7.63% 3.11% 11.47% 23.67% 

PVCF - 0.00% - - - - - 0.01% - - - - - 0.00% 

PVCO - - - - - - - - - - 2.47% - - 0.02% 

Steel - 0.37% - - - - 2.43% 3.07% 0.12% 4.10% 2.06% - 0.06% 0.65% 

Grand Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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TABLE 4.4 –RANGE OF NUMERICAL AND CATEGORICAL VALUES AMONG UTILITIES 

 

Material Length (m) 
Diameter 

(mm) 
Installation 

Year 
Installed 

after 1990 
Failure 

Year 

Failed 
Since 
2010 

Lining 
Material 

Percentage 
Lined 

CI PVC DI AC Other 
        

Barrie 12% 54% 27% 0% 7% 0.1 - 3008 19 - 1250 1891 - 2019 73% 1951 - 2020 31% - - 

Calgary 15% 54% 20% 1% 9% 0.05 – 993.85 12 - 3000 1900 - 2019 51% 1955 - 2019 15% - - 

Halifax 28% 6% 59% 1% 7% 0.03 - 3620 19 - 1500 1856 - 2019 41% 1956 - 2019 32% 
CM, Polyurea, 

Unlined 
48.25% 

Kitchener 23% 32% 37% 1% 7% 0.01 – 83.46 25 - 1200 1887 - 2018 47% 1985 - 2018 42% 
CM, EPOXY, 

Unlined 
0.34% 

Markham 5% 66% 19% 1% 10% 0.82 – 3779 25 - 1800 1938 - 2019 63% 1979 - 2019 11% - 12.83% 

Region of 
Durham 

13% 58% 16% 3% 10% 
0.15 – 

4169.73 
25 - 2100 1900 - 2020 52% 1972 - 2020 24% 

CIP, CM, 
Unlined 

14.30% 

Region of 
Waterloo 

7% 43% 26% 7% 17% 0.06 – 6977 38 - 1200 1850 - 2019 48% 1987 - 2019 55% CM, Unlined 32.82% 

Saskatoon 18% 45% 0% 30% 8% 0.2 - 1581 25 - 1350 1906 - 2019 39% 1958 - 2019 17% 
CIP, HDPE, 

and PE 
1.81% 

St. John’s 42% 11% 46% 0% 1% - 12 - 1400 1892 - 2017 36% 1988 - 2018 27% - - 

Vancouver 49% 0% 44% 0% 7% 0.09 - 2210 20 - 1950 1892 - 2020 37% 2009 - 2020 99% - - 

Victoria 46% 8% 40% 0% 6% 0.15 - 716 19 - 990 1888 - 2016 24% 1985 - 2019 31% 
CM, EPOXY, 

HDPE, Unlined 
4.70% 

Waterloo 30% 54% 15% 0% 1% 0.09 – 644 25 - 450 1850 - 2018 41% 2000 - 2020 55% 
CM, Epoxy, 

HDPE, Unlined 
11.41% 

Winnipeg 26% 47% 1% 24% 1% 0.01 – 996.59 19 - 1050 1882 - 2020 47% 1919 - 2019 20% - - 
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FIGURE 4.1 – PERCENTAGE OF PIPE INSTALLED IN DIFFERENT YEARS BASED ON THE AVAILABLE INFORMATION 

 

The given figure indicates the percentage of each material installed in various years within all 
utilities (Figure 4.1). As seen in the graph, cast iron was the predominant type of material from 
the beginning of the pipe installation until the early 70s. From then, however, ductile iron and 
PVC pipes have become more prevalent, with PVC pipes being installed more frequently in 
recent years. Based on the available information, PVC pipes are more prone to failure during 
the early stage of their lives. Considering this pattern and performing an in-depth analysis is 
required in order to better understand the failure pattern related to this pipe. In doing so, 
practitioners and asset management planners would be able to prepare short or long-term 
replacement and maintenance practices regarding PVC pipes. 

The given chart shows the frequency of various sizes within provided information (Figure 4.2). 
Apparently, smaller pipes contribute to a significant proportion of existing networks. 150-mm 
pipes account for almost one-third of all pipes. This size is then followed by 200-mm and 300-
mm mains, with 24% and 16% contribution, respectively. 

Furthermore, another bar chart has been created, which shows an increase in the rate of 
failures among the entire available datasets within this project (Figure 4.3). As mentioned in 
previous studies, the rate of failure for a certain type of pipe has undergone a significant 
increase. This pattern emphasizes the importance of prediction in order to ameliorate the 
current condition. This could be achieved by combining predictive analysis and managerial 
practices, which facilitate the maintenance of the precious water networks. 
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FIGURE 4.2 – PERCENTAGE OF EACH SIZE WITHIN THE ENTIRE DATASETS FOR ALL UTILITIES 

 

FIGURE 4.3 – PERCENTAGE OF FAILURES IN DIFFERENT YEARS BASED ON THE AVAILABLE INFORMATION 

 

As discussed before, one of the primary challenges in this study was the imbalanced nature of 
some of the datasets. TABLE 4.5 shows the number of available pipes and break records for 
each city, as well as the ratio between broken and non-broken pipes. The table indicates that 
Waterloo, Region of Waterloo, and Vancouver are among the utilities with fewer failure records 
provided. For instance, Vancouver has a significantly imbalanced format with a ratio of 1.24% 
between non-broken and broken pipes. The effect of this ratio can be seen in the results of 
classification models. The utility with a lower ratio represented exceptionally low accuracy.  
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TABLE 4.5 – NUMBER OF PIPES AND BREAKS FOR EACH UTILITY 

Utility 
Number of Pipes 

 
Number of 

Breaks 

 
Number of Broken Pipes 

The ratio of 
Broken to Non-

Broken 

Saskatoon 35,630 14,152  5,103 (13:100) 

Winnipeg 114,824 26,631  10,056 (9:100) 

Kitchener 14,561 2,348  987 (7:100) 

Markham 10,802 2,926  628 (6:100) 

Waterloo 7,565 925  446 (6:100) 

Region of Waterloo 5,139 292  105 (2:100) 

Region of Durham 22,414 6,578  2,026 (11:100) 

Calgary 55,561 36,396  9,180 (9:100) 

Vancouver 67,522 927  835 (9:1000) 

Victoria 3,319 977  836 (15:100) 

Halifax 14,436 6,381  5,936 (16:100) 

St. John’s 8,983 1,626  1,460 (10:100) 

Barrie 6,522 1,297  1,240 (6:100) 

 

TABLE 4.6 – RATIO OF BROKEN PIPES TO NON-BROKEN PIPES IN CLASSIFICATION DATASETS 

Utility 
All 

Materials 
CI HDPE PVC DI AC ST CON CO 

Barrie 0.06 1.01 - 0.01 0.07 - - - - 

Calgary 0.09 0.51 - 0 0.15 0.24 0.02 0.02 - 

Halifax 0.16 0.67 - 0.03 0.05 - - 0.03 - 

Kitchener 0.07 0.30 - 0.00 0.05 - - - - 

Markham 0.06 1.50 - 0.01 0.28 - - 0.01 - 

Region of Durham 0.10 0.81 - 0.01 0.25 0.19 - 0.01 - 

Region of Waterloo 0.02 0.10 - - - - - - - 

Saskatoon 0.13 0.47 - 0.01 - 0.20 0.26 - 0.03 

St. John`s 0.10 0.24 - 0.00 0.03 - - - - 

Vancouver 0.01 0.02 - - 0.00 - - - - 

Victoria 0.15 0.27 0.01 0.08 0.07 - - - - 

Waterloo 0.06 0.19 - 0.00 0.06 - - - - 

Winnipeg 0.09 0.43 - 0.00 0.37 0.00 - - - 
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The given tables compare the range of available numerical attributes based on all the available 
information. It should be mentioned that the first table shows descriptive statistics for 
inventory files, and the following table indicates this information for historical failures TABLE 
4.7, TABLE 4.8. 

 

TABLE 4.7 – DESCRIPTIVE STATISTICS FOR ALL UTILITIES INCLUDING NUMERICAL ATTRIBUTES - INVENTORY 

Descriptive 
Statistics 

Diameter 
(mm) 

Length 
(m) 

InstallYear 
Average 

SoilResistivity 
(ohm-meter) 

Roughness 
(µ) 

PipeDepth 
(m) 

Count of Values 360514 362882 354886 16179 12217 8471 

mean 223.48 53.25 - 2489.15 102.70 1.13 

std 128.95 97.46 - 1480.25 34.77 0.50 

min 12 0 1850 597 10 0 

25% 150 2.5 1967 1636 57 0.85 

50% 200 14.20 1987 2092 120 0.85 

75% 250 76.70 2002 2843 120 1.75 

max 3000 6977.83 2020 25000 178 4.20 

 

 

TABLE 4.8 - DESCRIPTIVE STATISTICS FOR ALL UTILITIES INCLUDING NUMERICAL ATTRIBUTES - BREAK 

Descriptive 
Statistics 

Failure 
Year 

Pipe 
Depth 

(m) 

Diameter 
(mm) 

Lining 
Year 

Protection 
Year 

Length 
(m) 

count 77759 7526 29463 1858 2141 8218 

mean - 2.52 196.31 - - 171.05 

std - 1.76 92.93 - - 145.93 

min 1919 0.02 13 1970 1985 0.041 

0.25 1988 1.83 150 1980 2009 83.49 

0.5 1997 2.74 150 2003 2014 134.85 

0.75 2008 2.9 200 2009 2017 226.70 

max 2020 54.00 1950 2019 2019 2105.96 
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5. RESULTS  
 
This section of this study presents the final results of the deterioration models and compares 
them across cities.  

5.1 CLASSIFICATION 
 

Four classification machine learning models were applied to predict water main probability of 
failure: random forest, XGBOOST, logistic regression, and artificial neural networks. The cross-
validation method was used for the evaluation process. Accordingly, 80% of the dataset was 
selected for training and validation and 20% for testing. The models were evaluated based on 5-
fold cross-validation, and the average of all folds was considered the final output. Results of all 
models are compared for each utility in TABLE 5.1. These models were created for all materials. 
The attributes included in each model differ by utility, depending on data availability.  

Overall, from the table, it is clear that XGBOOST algorithm provided better performance for 
nine utilities. Due to its complex learning process, this model can detect the most intricate 
patterns within the datasets. XGBOOST is the developed and more regularized version of the 
gradient boosting method (Swamynathan, 2019). This method, specifically, employs gradient 
descent to build sequential decision trees that decline residuals (Snider and McBean, 2018). For 
two utilities, the random forest also performed similarly to XGBOOST algorithm in the Region of 
Durham and Halifax. With an F1-Score of 87%, Saskatoon achieved the highest accuracy among 
all utilities.  

Furthermore, ANN also indicated relatively desirable results for some of the cities. For instance, 
the ANN model for Vancouver and the Region of Waterloo performed more accurately than 
other algorithms, with F1-Score of 26% and 19%, respectively. The accuracy of the models for 
these utilities is significantly low due to their imbalanced data. Moreover, other networks such 
as St. John’s, Waterloo, and Victoria did not show desirable results, with an F1-Score of 64%, 
55%, and 55%, respectively. For Victoria and St. John’s, the lower accuracy was not related to 
the ratio of datasets. This was because the algorithms could not find appropriate patterns for 
predictions, requiring more analytical processes to improve the models. Finally, logistic 
regression, although in some cases powerful to detect broken pipes, did not provide a desirable 
accuracy. 

These algorithms have been created and learned based on different hyperparameters, 
optimized for each utility using RandomizedSearchCV and GridSearchCV. A detailed explanation 
of this process and the resulting hyperparameters is described in Appendix B and K. 
Nonetheless, some algorithms, such as ANN, may provide better accuracy with further tuning. 
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TABLE 5.1 –RESULTS OF CLASSIFICATION MODELS FOR ALL UTILITIES AND ALL MATERIALS 

Utility 
Random Forest XGBOOST LR ANN 

A F1 R A F1 R A F1 R A F1 R 

Saskatoon 96%  80%  70% 97%  87% 81% 95%  76% 67% 97%  85% 79% 

Winnipeg 96% 70% 58% 86% 75% 66% 94% 54% 43% 96% 73% 65% 

Kitchener 96% 64% 48% 96% 63% 51% 96% 59% 44% 96% 66% 52% 

Waterloo 95% 46% 31% 95% 55% 42% 94% 36% 24% 95% 51% 38% 

*Region of Waterloo 98% 8% 4% 97% 7% 4% 71% 11% 70% 97% 19% 13% 

Region of Durham 98% 85% 75% 97% 85% 78% 97% 81% 71% 87% 83% 77% 

Calgary 98% 86% 79% 98% 88% 82% 97% 81% 71% 98% 87% 81% 

*Vancouver 99% 16% 9% 99% 26% 16% 67% 5% 91% 99% 26% 16% 

Victoria 90% 52% 35% 90% 55% 40% 88% 45% 32% 88% 35% 21% 

St. John’s 93% 52% 37% 94% 64% 52% 78% 38% 72% 93% 52% 41% 

Halifax 95% 79% 69% 95% 79% 72% 94% 75% 68% 95% 79% 72% 

Barrie 97% 72% 62% 97% 71% 66% 97% 68% 57% 97% 73% 66% 

Markham 98%  85%  76% 98%  85%  77% 98%   81% 72% 98%  86%  80% 

* Imbalanced Datasets (Note: Results in bold are the best performing models for each utility) A: Accuracy, R: 

Recall, F1: F1-Score 

All models were developed with three approaches: (1) predicting deterioration of all materials, 
(2) predicting deterioration of all materials and applying SMOTE, and (3) predicting 
deterioration of only cast-iron pipes. TABLE 5.2 compares the results for these three approaches 
applied to XGBOOST for each utility. Comparing all provided results indicates how each model 
could perform differently among entire networks and various materials. Moreover, the 
provided results manifest how an imbalanced dataset could considerably affect the overall 
performance of a classification model. As can be seen with using SMOTE, no significant 
enhancement was found in this study, except for the Region of Waterloo. The F1-Score for this 
network increased from 7% to 28%. Appealing is the effect of creating categories by materials. 
Almost in all utilities, the performance of XGBOOST increased from AM category to the cast iron 
category. This indicates that the material can be used for creating homogenous groups of pipes. 
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The results for other materials are provided in Appendix H. If sufficient information is available 
for a specific type of pipe, it is easier for the models to find a pattern that leads to higher 
performance. The availability of information should be sufficient for both broken and non-
broken pipes. For instance, in the Saskatoon network, since the historical failure for all pipes 
was relatively adequate, XGBOOST achieved an F1-Score of 81%. On the other hand, in some 
utilities where data for a predominant type of material is not enough, the result was 
unsatisfactory. This emphasizes the importance of data availability and data collection for 
future predictions. Logistic regression was the model that showed its power to predict broken 
pipes where data is not available. Nevertheless, this model was not able to detect non-broken 
pipes efficiently. Therefore, the overall performance of this model did not indicate enough 
reliability. 

TABLE 5.2 –RESULTS OF XGBOOST MODELS FOR ALL UTILITIES UNDER THREE APPROACHES 

Utility 
AM SMOTE Cast Iron 

A F1 R A F1 R A F1 R 

Saskatoon 97% 87% 81% 96% 82% 84% 94% 89% 86% 

Winnipeg 86% 75% 66% 94% 68% 84% 87% 75% 69% 

Kitchener 96% 63% 51% 90% 54% 80% 91% 78% 73% 

Waterloo 95% 55% 42% 94% 61% 69% 91% 67% 58% 

*Region of Waterloo 97% 7% 4% 96% 28% 30% 87% 31% 22% 

Region of Durham 97% 85% 78% 97% 82% 82% 91% 89% 84% 

Calgary 98% 88% 82% 94% 81% 89% 93% 90% 88% 

*Vancouver 99% 26% 16% 91% 12% 65% 99% 28% 17% 

Victoria 90% 55% 40% 89% 57% 52% 87% 70% 56% 

St. John’s 94% 64% 52% 91% 58% 69% 90% 72% 68% 

Halifax 95% 79% 72% 93% 78% 84% 87% 82% 81% 

Barrie 97% 71% 66% 95% 67% 79% 82% 83% 82% 

Markham 98% 85% 77% 98% 80% 79% 94% 95% 90% 

* Imbalanced Dataset (NOTE: RESULTS IN BOLD ARE THE BEST PERFORMING MODELS FOR EACH UTILITY) A: 

Accuracy, R: Recall, F1: F1-Score 
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In another step of the classification model, a Global model was created based on all available 
information. For this Global method, three primary attributes which were common among all 
utilities were chosen; length, diameter, and age. For this step, only cast iron (CI) material was 
chosen for the analysis. 

TABLE 5.3 – COMPARISON OF GLOBAL AND UTILITY SPECIFIC XGBOOST MODELS FOR CAST IRON PIPES 

System 

XGBOOST (Global 
Application) 

XGBOOST (Each network 
Separately with length, age, 

diameter) 

XGBOOST (Each network 
Separately) 

A F1 R A F1 R A F1 R 

**Global 90% 72% 61% 90% 72% 61% 90% 72% 61% 

Saskatoon 97% 95% 92% 90% 83% 78% 94% 89% 86% 

Winnipeg 91% 83% 78% 87% 76% 68% 87% 75% 69% 

Kitchener 98% 94% 90% 90% 77% 72% 91% 78% 73% 

Waterloo 98% 93% 88% 90% 65% 58% 91% 67% 58% 

*Region of Waterloo 100% 98% 97% 89% 43% 33% 87% 31% 22% 

Region of Durham 99% 99% 98% 91% 88% 84% 91% 89% 84% 

Calgary 97% 95% 92% 94% 90% 87% 93% 90% 88% 

*Vancouver 99% 48% 32% 98% 17% 10% 99% 28% 17% 

Victoria 99% 98% 96% 85% 65% 59% 87% 70% 56% 

St. John’s 97% 93% 88% 89% 70% 66% 90% 72% 68% 

Halifax 98% 97% 96% 86% 81% 80% 87% 82% 81% 

Barrie 99% 99% 98% 82% 83% 82% 82% 83% 82% 

Markham 100% 99% 100% 94% 95% 90% 94% 95% 90% 

* Imbalanced Dataset (NOTE: RESULTS IN BOLD ARE THE BEST PERFORMING MODELS FOR EACH UTILITY) ** Global 

model includes age, diameter, material, and target (broken or non-broken) 

TABLE 5.3 compares the result of the Global model and its application to other utilities with the 
application of XGBOOST to each network separately. There are two primary columns within the 
table: Global Application and Each network separately. The Global model was created in the 
former, and the outcome was tested on the other utilities. As shown in the table, the Global 
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model has an accuracy of 90% and an F1-Score of 72%. This model was then applied to other 
networks, and results can be noticed in the table. It should be noted that the Global model was 
created and compared to the result of the application of XGBOOST to each network separately, 
which means that the models were created for each network separately. 

According to the results, creating one Global model based on the specific material (Cast iron in 
this case) for all datasets and applying it to another network – separately - may be a practical 
process. For instance, a model created only for Saskatoon for cast iron pipes has an F1-Score of 
89%. However, when the Global model was applied to the Saskatoon network, the F1-Score 
increased to 95%. This pattern can be noticed for all utilities within the table. In particular, 
there is a significant improvement from 31% to 98% for the Region of Waterloo. 

Vancouver, another utility with an imbalanced dataset, underwent an increase in F1-Score 
when applying the Global model. It should be noted that although the improvement can be 
seen, all models should be meticulously examined in order to find out about any overfitting and 
underfitting within the models. 

Overall, it seems that the number of available data points plays an important role in prediction. 
Since the available information for the Global model is sufficient, the accuracy increased due to 
the efficient training process. 

Figure 5.1 represents the contribution of each attribute to the learning process of XGBOOST, for 
Cast Iron pipes. As seen in the given bar chart, age at first failure plays an important role with a 
contribution of almost 78% to the prediction. On the other hand, length and diameter with 12% 
and 10% are not as significant as age in the global model. As previously discussed, age's 
importance has been investigated in many studies before. Accordingly, the result of this study 
emphasizes that age could be considered an important factor for future prediction. 

 

FIGURE 5.1 – CONTRIBUTION OF EACH ATTRIBUTE TO CREATING THE GLOBAL MODEL 

In addition to analyzing all materials and cast iron pipes within different steps, classification 
models were also created for other types of materials. Overall, in the case where a failure 
record is available for a specific pipe, the machine learning algorithms are better able to find a 
pattern. However, in the case where data is not collected or is not available sufficiently, a 
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model is less likely to detect a specific pattern that can be used for future prediction. In this 
study, for instance, historical failure information related to the cast iron, ductile iron, and 
asbestos cement pipes is relatively adequate. Thus, the algorithms provided better results. On 
the other hand, some pipes such as PVC and HDPE experienced less rate of failures compared 
to others. This is the reason why machine learning models find the prediction for this type of 
materials less efficient, with having lower performance. The comparison between the results of 
different materials is provided in appendix H. 

 

Furthermore, these algorithms predict the probability of failure of each pipe and can thus also 
be visualized in GIS. Mapping the results facilitates their understanding and communication. It 
can also improve the transparency of the machine learning outputs, which can sometimes be 
seen as a “black-box.” Example maps are shown below for Saskatoon. Figure 5.2 shows the host 
spot locations within the Saskatoon water main network. The most critical areas can be 
detected and managed more efficiently based on this map. Another map, on the other hand, 
indicates each segment individually (Figure 5.3). 

 

 

FIGURE 5.2 – MAP OF PROBABILITY OF FAILURE HOT SPOTS (SASKATOON) 
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FIGURE 5.3 – MAP OF PROBABILITY OF FAILURE (SASKATOON) 

Overall, the material has the most significant influence on the prediction. However, the type of 
material may vary between different utilities. For instance, PVC pipes may have the highest 
effect in one network (Saskatoon, Winnipeg, Waterloo, Region of Waterloo), but other utility 
cast iron pipes (Region of Durham, Calgary, Halifax, Barrie). Age, length, and lining status were 
also found to have a considerable impact. For instance, in Kitchener, age and length were found 
to be the most influential attributes. Alternatively, in Markham, lining age with more than 50% 
contribution was found to have the highest impact on the prediction process. The effect of each 
attribute on the learning and prediction processes can be found in Appendix C. 

5.2 REGRESSION 
 

This section compares the results achieved for all networks for regression analysis. Two targets 
were defined for regression models: age at first failure and the current rate of failures. Four 
algorithms were applied for each target: random forest, XGBOOST, ANN, and ElasticNet. These 
models were then compared using different regression metrics – RMSE, R-Squared - and related 
results are provided in more detail. Models were developed to predict the deterioration of all 
materials or specifically cast iron.  In some cases, there are not sufficient cast iron pipes for 
creating the model. In these cases, the regression models were only applied to all materials. It 
should also be noted that the regression models focus strictly on broken pipes. Thus, 
imbalanced data is not an issue. Cross-validation was also applied here for evaluation. For this 
purpose, 75% of the entire dataset was allocated to the training and validation split and 25% to 
the testing split. Moreover, similar to that of classification, 5-fold cross-validation was chosen 
for evaluating the models. 
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5.2.1 AGE AT FIRST FAILURE 

 

TABLE 5.4 compares the results achieved from regression analysis for the prediction of age at 

the first failure. As previously discussed, the results for regression problems are not desirable 

enough. Overall, the random forest algorithm was the best model for the majority of the 

networks. For instance, for the Region of Waterloo, random forest with an RMSE of 14.46 and 

an R-Squared of 0.67 performed better than other models. Alternatively, in Winnipeg, results 

for XGBOOST and random forest were relatively close. XGBOOST also provided the best result 

for Waterloo utility With an R-Squared of 0.42. 

TABLE 5.4 – RESULTS OF REGRESSION MODELS PREDICTING AGE AT FIRST FAILURE FOR ALL UTILITIES 

Utility 
ElasticNet Random Forest XGBOOST ANN 

RMSE R2 RMSE R2 RMSE R2 RMSE R2 

Saskatoon 17.85 0.47 17.82 0.48 17.93 0.47 17.86 0.47 

Winnipeg 19.82 0.45 19.48 0.47 19.55 0.47 21.86 0.33 

Kitchener 11.33 0.38 11.29 0.39 11.68 0.34 11.35 0.38 

Waterloo 11.79 0.16 10.57 0.32 9.82 0.42 11.75 0.164 

Region of Waterloo 21.47 0.29 14.46 0.67 17.42 0.53 22.43 0.22 

Region of Durham 15.07 0.18 14.91 0.20 15.18 0.17 15.11 0.18 

Calgary 16.53 0.12 16.53 0.12 16.66 0.11 16.57 0.12 

Vancouver 16.18 0.32 15.67 0.36 16.39 0.304 15.38 0.39 

Victoria 18.47 0.30 17.26 0.38 17.96 0.33 18.60 0.28 

St. John’s 18.13 0.23 17.60 0.27 178.9 0.24 12.92 - 

Halifax 18.45 0.20 17.15 0.31 17.50 0.28 19.84 0.07 

Barrie 14.79 0.29 14.22 0.35 16.01 0.17 14.46 0.32 

Markham 11.18 0.15 11.05 0.17 11.64 0.08 12.29 - 

NOTE: RESULTS IN BOLD ARE THE BEST PERFORMING MODELS FOR EACH UTILITY 
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More importantly, it should be noted that comparing the results between all cities is not an 
appropriate method since each utility has a different material composition and average age at 
first failure. Furthermore, each utility is affected by different factors, which makes the 
comparison more challenging. In order to better understand how well each model fits the 
dataset, the given bar chart is prepared, which shows the average age at failure for different 
utilities (Figure 5.4). 

 

FIGURE 5.4 – AVERAGE AGE AT FIRST FAILURE FOR ALL UTILITIES  (ALL MATERIALS) 

In order to further evaluate the difference among materials, box plots of age at first failure 
were also created for cast iron, PVC, and ductile iron (Figure 5.5, Figure 5.6, Figure 5.7). 

The average age at first failure for cast-iron pipes ranges from 20 for Markham to around 60 for 
the Region of Waterloo and Winnipeg. This value is generally lower for ductile iron pipes. It is 
also lower for PVC, but the variance is markedly greater. This is likely due to the fact that PVC 
has become more popular in recent decades, and most PVC pipes have not yet reached the end 
of their useful life. 
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FIGURE 5.5 – AVERAGE AGE AT FIRST FAILURE IN ALL UTILITIES (CAST IRON) 

 

FIGURE 5.6 - AVERAGE AGE AT FIRST FAILURE IN ALL UTILITIES (DUCTILE IRON) 
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FIGURE 5.7 – AVERAGE AGE AT FIRST FAILURE IN ALL UTILITIES (PVC) 

All regression models are able to provide the influence of each attribute on the prediction 
process. In this study, each feature's importance was provided based on the result of the 
random forest as the best model for the prediction of number age at first failure. Different 
attributes have different contributions to learning and prediction in various networks. Given bar 
charts in Appendix C provide more information regarding the impact of different input 
variables. In most networks, the material was found to be highly influential. 

Nonetheless, joint type, length, and diameter are also among the most critical attributes. For 
instance, in Saskatoon, the lead joint has the highest contribution to age at first failure, 
followed by cast iron material. Or, in Markham and Barrie, length was found to have the highest 
contribution to learning and prediction. Lining age has a significant effect on the Waterloo 
network. Victoria and Halifax indicated that diameter could be another influential attribute in 
some of the networks. As seen, different attributes should be scrutinized for each network 
separately. 

 

5.2.2 CURRENT RATE OF FAILURE 

 

The table below compares various regression models used to predict the current rate of failure, 
considering different utilities (TABLE 5.5). For most utilities, XGBOOST indicated a better 
performance compared to other models and showed a desirable accuracy. The random forest 
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also performed relatively well in most cases, and for some cities was the best predictive model. 
However, a few critical points should be mentioned here. It is not justifiable to compare all 
utilities based on the given scores since each network behaves differently and should be 
analyzed individually. For instance, based on the available information, Winnipeg's average 
current rate of failure is 0.082 per meter for the entire network. The RSME score for Winnipeg 
is 0.045 based on the XGBOOST result. Comparing RMSE and the average current rate of failure 
shows that the model is relatively acceptable since RMSE is almost half of the average rate of 
failure. 

TABLE 5.5 - RESULTS OF REGRESSION MODELS PREDICTING RATE OF FAILURE FOR ALL UTILITIES  

Utility 
ElasticNet Random Forest XGBOOST ANN 

RMSE R2 RMSE R2 RMSE R2 RMSE R2 

Saskatoon 0.125 0.176 0.028 0.959 0.028 0.959 0.054 0.848 

Winnipeg 0.443 0.033 0.138 0.906 0.045 0.990 0.703 - 

Kitchener 1.067 0.293 0.519 0.833 0.383 0.909 0.396 0.902 

Waterloo 0.059 0.119 0.040 0.580 0.030 0.782 0.047 0.443 

Region of Waterloo 0.260 0.074 0.114 0.821 0.120 0.801 0.246 0.169 

Region of Durham 0.024 0.092 0.012 0.783 0.012 0.784 0.023 0.145 

Calgary 0.020 0.152 0.007 0.903 0.005 0.957 0.018 0.326 

Vancouver 0.245 0.126 0.034 0.983 0.036 0.980 0.090 0.883 

Victoria 0.010 0.021 0.004 0.843 0.003 0.904 0.015 - 

St.John’s 0.025 0.249 0.011 0.839 0.006 0.951 0.020 0.497 

Halifax 0.100 0.080 0.043 0.832 0.029 0.920 0.052 0.751 

Barrie 0.012 - 0.004 0.496 0.003 0.599 0.007 - 

Markham 0.008 - 0.003 0.809 0.003 0.874 0.020 - 

NOTE: RESULTS IN BOLD ARE THE BEST PERFORMING MODELS FOR EACH UTILITY 

ERROR! NOT A VALID BOOKMARK SELF-REFERENCE. shows the average rate of failure for each 

network and can be used for better evaluating the RMSE of each model. The average current 

rate of failure for the Barrie network is 0.011, with an RMSE score of 0.003. Thus, since average 

current failure is significantly lower in this network, the result can not be compared with 

Winnipeg, which experienced a higher rate of failure. Or, in Winnipeg, more historical 
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information could have been collected that led to a higher failure rate. In a nutshell, the results 

from regression analysis should be interpreted with the help of practitioners from the industry. 

TABLE 5.6 – AVERAGE OF CURRENT RATE OF FAILURES FOR ALL UTILITIES 

Utility 
Average of Current Rate of Failure 

(Number of failures/ Meter) 

Barrie 0.011 

Calgary 0.013 

Region of Durham 0.013 

Halifax 0.023 

Kitchener 1.01 

Markham 0.009 

Region of Waterloo 0.085 

Saskatoon 0.07 

St. John’s 0.019 

Vancouver 0.174 

Victoria 0.012 

Waterloo 0.023 

Winnipeg 0.082 

 

The most important features for predicting the current rate of failure are the length and 
number of previous failures. The number of previous failures was removed from the analysis 
after creating the dependent variable. However, length was kept in this part of the study. 
Keeping length in the analysis increased the accuracy of the model. Consequently, in most 
cities, length was found to be highly influential in the final results. However, no specific 
overfitting was found for the models. 

Other attributes do not significantly affect the final result, indicating that length may not be 
used for creating the target attribute, or even it should have been removed. 

 

5.4 COMPARE RESULTS TO PREVIOUS STUDIES 
 

Given tables compare the result of previous studies and one sample from this project. As seen 
within the tables, different studies achieved various performances. This difference is primarily 
due to the different algorithms used for each project. For instance, earlier studies in 1982 used 
simple linear regression, which considers each explanatory variable independently within the 
calculation. The authors in these studies suggested that the impact of all variables on each 
other should be analyzed precisely, as they seem to have an underlying relationship. On the 
other hand, other studies employed more complicated algorithms that use intricate 
mathematical steps to decrease the error and find the most likely pattern within the datasets. 



86 | P a g e  

 

These models have proven to be more reliable, and they are also capable of providing the most 
accurate prediction, if possible.  Furthermore, the other difference between the current study 
and the previous studies is the number of available attributes, which varies among different 
projects.  

Moreover, in terms of performance, the result of this study is comparable with previous 
studies. However, it did not show the best performance.  

For the probability of failure, on the other hand, this study achieved better results compared to 
some of the recent studies. F1-Score in this study for the city of Saskatoon is 85% as opposed to 
the lower performance achieved by the mentioned studies. 

For the rate of failure also, the approach of creating the target (dependent variable) was unique 
to this study. Nevertheless, the result of the present study indicated better performance when 
compared to some of the older studies. This could be as a result of having sufficient historical 
information for some of the utilities. The more information is collected, the better pattern can 
an algorithm find within the dataset. 

Seemingly, as time elapses and more advanced algorithms are introduced, the accuracy and 
performance of the models are also enhanced. 

TABLE 5.7 – COMPARING THE RESULTS OF PREVIOUS STUDIES (AGE TO FIRST FAILURE) 

Approach Authors Accuracy 

Linear 
Regression 

Clark et al. 
(1982) 

R2 = 0.23 

Linear 
Regression 

McMullen 
(1982) 

R2 = 0.375 

Ridge 
Regression 

Almheiri et al., 
(2020) 

R2 = 0.9 

ANN 
Almheiri et al., 

(2020) 
R2 = 0.84 

EDT 
(Ensemble 

Decision Tree) 

Almheiri et al., 
(2020) 

R2 = 0.88 

ANN 
Snider and 

McBean, (2018) 
R2 = 0.76 

XGBOOST Present Study R2 = 0.67 
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TABLE 5.8 – COMPARING THE RESULTS OF PREVIOUS STUDIES (RATE OF FAILURE) 

Approach Authors Accuracy 

Linear 
Regression 

Yamijala et al. 
(2009) 

R2 = 0.12 

Linear 
Regression 

Asnaashari et 
al. (2009) 

R2 = 0.52 to 0.88 

Linear 
Regression 

Giraldo-
González et al. 

(2020) 
R2 = 0.693 

Poisson 
Regression 

Giraldo-
González and 

Rodríguez, 
(2020) 

R2 = 0.923 

Poisson 
Regression 

Asnaashari et 
al. (2009) 

R2 = 0.71 to 0.95 

Linear 
Regression 

Bubtiena et al. 
(2011) 

R2 = 0.737 

Linear 
Regression 

Asnaashari et 
al. (2013) 

R2 = 0.75 

EPR 

Giraldo-
González and 

Rodríguez, 
(2020 

R2 = 0.877 

Poisson 
Regression 

Giraldo-
González and 

Rodríguez, 
(2020 

R2 = 0.923 

Linear 
Regression 

Kettler & 
Goulter (1985) 

R2 = 0.93 and 0.88 

Weibull, 
Poisson and 

Yule 

Martins et al. 
(2013) 

MAE = 0.127 to 0.245 

XGBOOST Present Study R2 = 0.958 
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TABLE 5.9  – COMPARING THE RESULT OF PREVIOUS STUDIES ( PROBABILITY OF FAILURE) 

Approach Authors Accuracy 

Naiev Bayes 

Giraldo-
González & 
Rodríguez, 

(2020) 

F1-Score = 25.66% 

Artificial Neural 
Networks (ANN) 

Giraldo-
González & 
Rodríguez, 

(2020 

F1-Score = 42.10% 

SVM 

Giraldo-
González & 
Rodríguez, 

(2020 

F1-Score = 66.67% 

Gradient 
Boosting 

Giraldo-
González & 
Rodríguez, 

(2020 

F1-Score = 72% 

XGBOOST Present Study F1- Score = 85% 
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CONCLUSIONS 
 

6.1 SUMMARY AND CONCLUSIONS 
 

Drinking water networks are buried underground and cannot be easily assessed. Therefore, it is 

not feasible to frequently assess the condition of entire networks. Predictive deterioration 

models provide a cost-effective solution. Applying physical models requires a comprehensive, 

detailed dataset which is usually unavailable. Nevertheless, many statistical models have been 

developed thus far in order to find a global and efficient method to better predict the condition 

and evaluate the remaining useful life of a pipe. Nonetheless, the lack of a uniform model is still 

an obstacle for applying these models in practice.  

Accordingly, this thesis focused on applying the most advanced machine learning models to 

predict the probability of failure, age at first failure, and the current rate of failures for thirteen 

utilities across Canada in order to better assess their broad accuracy and applicability. Data was 

collected from thirteen cities, including Saskatoon, Vancouver, Region of Waterloo, Waterloo, 

Region of Durham, Winnipeg, Markham, Halifax, Calgary, St.John’s, Kitchener, Barrie, and 

Victoria. Results for all cities were then compared to evaluate how different algorithms perform 

with changing the utility. 

Foremost, it should be mentioned that almost 80% of the project duration was dedicated to 

data cleaning. This step is critical, as having a comprehensive and problem-free dataset plays a 

vital role in the modeling process and future prediction. In order to have consistent datasets, 

unique values were defined for all attributes. These attributes include but are not limited to 

material, soil type, failure type, failure cause, and lining material. After cleaning the datasets 

and replacing unique values, missing values were found and replaced based on the information 

provided in GIS files. 

To predict the probability of failure,  XGBOOST, random forest (RF), artificial neural networks 

(ANN), and logistic regression (LR) were applied. XGBOOST showed the best performance, 

according to accuracy and F1-Score. One of the other advantages of these classification models 
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is the ability to provide information about the influence of each attribute in final prediction and 

during the learning process. Based on the results of classification models, material, lining status 

(lining material), age, and length were found to be the most influential factors to the learning 

and prediction steps. In previous studies, the material was frequently found as an important 

factor that emphasizes the importance of this attribute in this project. Age also has always been 

a controversial factor in many studies. Depending on the predominant type of material within 

each network, the importance of age may vary. However, this attribute indicated that it could 

be used for future prediction. HGL and Roughness were also concluded to have an impact on 

the process. However, only a few cities provided this information. It should be said that the 

contribution of each material as the most important factor varies among all utilities. For 

instance, cast iron plays a more important role in one network than ductile iron, and in other 

networks, vice versa. 

Moreover, in the case where sufficient information about the broken pipe was not available, 

logistic regression also indicated a high performance in detecting the broken pipes. However, it 

was not able to find the non-broken pipes precisely. Therefore, the overall results did not show 

performing satisfactorily. 

As mentioned previously, classification models are able to provide the probability of belonging 

to each class, which in this case is the probability of failure. Moreover, it should be noted that 

the model's performance shows its power to predict the classes. Therefore, the probability of 

failure calculated by each model should be interpreted based on the model's performance. 

Some of the utilities provided imbalanced datasets for classification models where the number 

of broken pipes was significantly fewer than non-broken pipes. In this case, Synthetic Minority 

Oversampling Technique (SMOTE) was applied to make the datasets more balanced. This would 

help models learn from all available classes within the dataset more efficiently by creating 

artificial data points. However, the results of this model indicated that even with oversampling 

technique, tackling challenges regarding imbalanced datasets could be a demanding and 

unfruitful process. This method worked better where the datasets were significantly 

imbalanced, such as the Region of Waterloo network. The ratio of broken to non-broken pipes 
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in this network was 2:100, which can be considered significantly imbalanced. Nevertheless, it 

should be noted that the oversampling or undersampling methods are justifiable for the 

domains that the imbalanced format of the dataset is atypical. However, having these types of 

datasets in the water domain is normal, and it is recommended to keep the dataset unchanged. 

Accordingly, a few studies mentioned that undersampling and oversampling techniques 

improve the performance of the mode. However, as mentioned before, data manipulation, 

which may lead to changing the pattern, is not recommended. 

In order to evaluate how homogeneity impacts the model accuracy, cast iron pipes were 

selected as a uniform group. Applying the model to cast iron pipes revealed that making a 

homogenous group of pipes would enhance the model performance. However, it is critical that 

both classes have sufficient recorded information for an efficient and accurate classification 

model. For instance, for cast iron pipes, the available information is desirably enough to have a 

good model. On the other hand, for PVC pipes and HDPE pipes, there is not enough information 

for broken pipes. This is why making a uniform group depends on different criteria that should 

be taken into account. Otherwise, some materials may cause a decline in the model`s 

performance due to a lack of data, as seen in this study. The results at the end of the 

appendices compare the performance of different models for various materials. 

  

More importantly, based on the explanatory data analysis, cast iron and ductile iron pipes seem 

to be experiencing a significantly higher rate of deterioration. Therefore, further analysis should 

focus on these pipes. Asbestos cement pipes also showed a high rate of failure in some utilities. 

However, the contribution of this material to the failure among all networks is not comparable 

to that of cast iron, ductile iron, and PVC pipes.  

Interestingly, failures related to PVC pipes have been recorded mainly during the early stage of 

their life cycles. Therefore, many factors may be evaluated to manage these pipes better to 

prevent future early failures. Furthermore, it should be mentioned that many failures pertained 
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to joint and fitting failures. However, these failures were excluded from this study since the 

primary focus of this thesis was to assess the natural deterioration of water pipes. 

Furthermore, one global model was created, for cast iron pipes, based on the available 

information for all utilities. The output of this model was then tested on other cities, and a 

significant enhancement was noticed, especially for utilities that are suffering from a lack of 

adequate historical information. Seemingly, creating one model with a significant number of 

data points would be a feasible approach. However, many criteria should be checked in order 

to ensure the reliability of this Global model, such as controlling bias-variance trade-off. For 

example, for the Region of Waterloo, the accuracy of the model was considerably low. 

Nonetheless, using the Global model for the prediction enhanced the performance and 

indicated a higher accuracy and F1-Score for this network. It should be noted that length, 

diameter, and age were selected as common attributes among all networks for creating the 

global model. Age with almost 80% contribution was found to be the most important factor 

during the learning process. 

Finally, the results of the classification models with the output of probability of failure 

(classification models are capable of predicting classes. However, it is possible to extract the 

probability of belonging to each class) were combined with GIS files. This gives a visualized map 

including the pipes, showing the probability of failure for each individual pipe. With this map, 

practitioners would be able to detect the most critical areas of the city and prioritize 

maintenance steps based on the criticality of a specific pipeline.  

Regression models were also applied to the datasets to predict age at first failure. ElasicNet, 

random forest, artificial neural networks, and XGBOOST were utilized and compared. 

Unfortunately, the results of these models do not show satisfactory performance. Nonetheless, 

random forest indicated a better performance in this step, with an R-Squared of 0.67 for the 

Region of Waterloo, which indicated the best performance among all utilities. Moreover, 

creating a homogenous group of pipe (cast iron) did not significantly enhance the model`s 

performance. In addition, material, length, and diameter were found to be the most influential 
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factors in this step. Finally, anode status was found to be relatively important in the utilities 

that provided this attribute. 

Finally, regression models were applied to the datasets in order to predict the current rate of 

failures. As previously mentioned, this target variable was created based on the length of pipes 

and the previous number of failures. ElasicNet, random forest, artificial neural networks, and 

XGBOOST were utilized and compared in this part. In most cases, the accuracy of the models 

was considerably high, except for ElasticNet regression, which did not perform well compared 

to others. XGBOOST, like the classification part, indicated the best performance with a relatively 

high R-Squared score. It should be mentioned that this step should be considered a preliminary 

study for predicting the current rate of failure with this method. Although the previous number 

of failures was removed from the study, length was kept. Keeping length made this attribute 

highly influential in predicting the current rate of failure, and without considering length, the 

accuracy of the models would drop significantly.  

Overall, XGBOOST provided better results for classification and regression models. Due to its 

complex learning process, this model can detect the most intricate patterns within the datasets. 

XGBOOST is the developed and more regularized version of the gradient boosting method 

(Swamynathan, 2019). This method, specifically, employs gradient descent to build sequential 

decision trees that decline residuals (Snider and McBean, 2018). This algorithm is reported to 

have less susceptibility to noises and outliers and a shorter time for the training process (Snider 

and McBean, 2020a). This could be the primary reason for making this algorithm outperform 

other models. Nevertheless, the ANN algorithm indicated that it could be a serious contender 

for the XGBOOST model. More information about this algorithm can be found in chapter 2 of 

this project. In addition, for both classification and regression models, attributes that indicated 

colinearity within datasets were removed. 

Finally and most importantly, tools utilized for conducting this project are found significantly 

practical. For example, python, as one of one the most growing tools for coding, has proven to 

be applicable for machine learning in this domain. In addition, power BI and GIS tools also 

provided relatively satisfactory outcomes in this project and may be applied for future studies. 
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6.1 LIMITATIONS 

 

This study included a variety of input variables for both classification and regression models—

however, the data varied by the utility. Thus, the same type of model applied to different cities 

cannot be easily compared since the inputs are different. Furthermore, data on both broken 

and non-broken pipes were required for classification models. However, some information such 

as soil type was only collected for broken pipes in certain utilities. This also limited the ability to 

apply this data.  

Some of the broken pipes within this study were replaced during the maintenance process. 

However, information regarding these pipes was not available. Thus, these pipes were removed 

from the analysis. Future utility data collection should maintain historical pipe records to 

improve statistical models further. 

The step of hyperparameters tuning was time-consuming since many parameters should have 

been tuned and evaluated for different models among all utilities. Nonetheless, all efforts have 

been made to find the best parameters for each model. However, this tuning process could 

have been done more profoundly and rigorously, especially for ANN and XGBOOST models. For 

example, finding the most optimum number of hidden layers and perceptrons is the most 

challenging process of the ANN model and could be further tuned. 

 

5.2 FUTURE RECOMMENDATIONS 
 

Based on the results and limitations of the present study, the following future areas of research 

and improvement to practice are recommended. 

Data Collection  
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- Include soil-related attributes such as soil corrosivity, soil resistivity, moisture, and pH. 

These attributes should be collected for all available pipes, not only broken pipes. In 

most cases, some information was only collected for broken pipes in this study, which is 

not enough to achieve a comprehensive approach. 

- Records of replaced pipes should not be removed from the datasets. This historical data 

should be maintained by utilities as it can further improve the accuracy of statistical 

deterioration models. 

- Weather information can be collected and integrated into historical failure records in 

order to find out how different weather conditions may affect the deterioration process 

of water mains. As previously mentioned in the literature review, different seasons have 

various impacts on the pipe deterioration process. This emphasized the integration of 

weather information into historical records. 

Modeling 

- Use dimensionality reduction approaches to eliminate attributes that are not highly 

influential in the prediction. This method decreases the time required for training and 

increases the flexibility of the model to be tuned more efficiently. 

- The developed models provided satisfactory predictions, which were the result of model 

tuning and validation for each utility. To avoid overfitting and underfitting, future 

models should focus on these steps.  

- The influence of length on the current rate of failure should also be further investigated 

since this was found to be an important factor.  
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APPENDIX A – DATA DESCRIPTION (ALL CITIES IN DETAIL) 
 

Saskatoon – Saskatchewan 

 

Inventory File 

 

Saskatoon water pipeline, as one of the largest networks, is located in Saskatchewan province 
in Canada. This city has a population of around 246 thousand with a land area of about 228 
square kilometers. The raw inventory file of Saskatoon includes 35,630 pipe segments with a 
variety of collected features, such as Diameter, Material, Joint Type, Installation Year, Replaced 
Year, Replaced Status, Ownership, Length, Lining Year, and Lining Material. The given table 
provides more details about the ranges and values of the attributes mentioned above (TABLE 
0.1). 

TABLE 0.1 – AVAILABLE ATTRIBUTES WITHIN SASKATOON INVENTORY DATASET 

Attribute Unit Range/Values 

Diameter mm 25 - 1350 

Material Text 
PVC, AC, CI, ST, PE, 

HDPE, DI, CON, PVCF 

Join Type Text 

Rubber 

Universal 

Lead 

Mechanical 

Grooved 

Threaded 

Welded 
 

Installation Year Year 1906 - 2019 

Replaced Year Year 1928 - 2018 

Replaced Status Binary Yes/No 

Ownership Binary Yes/No 

Length m 0.2 - 1581 
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Lining Year Year 2004 - 2017 

Lining Material Text CIP, HDPE, and PE 

 

All above information included within the datasets is extracted from the network GIS files 
(shapefiles). Figure 0.1 illustrates the GIS map of the Saskatoon water main network. 

 

FIGURE 0.1 – SASKATOON WATER DISTRIBUTION NETWORK (GIS FILE PROVIDED BY CITY OF SASKATOON) 

 

The city of Saskatoon owns 1,193 kilometers of water mains, which consists of PVC (46%), 
Asbestos Cement (31%), Cast Iron (16%), Steel (3%), and other (Copper, PE, HDPE, PVCF, Ductile 
Iron - 3%). The given figure shows the percentage of each material based upon joint type and 
percentage of total length (Figure 0.2). As can be seen, Rubber is the most popular joint type for 
PVC and other materials. However, threaded is reported to have been the most frequent type 
for asbestos cement pipe. For Cast Iron, there is no specific pattern, although lead and 
Universal joints seem to be the methods that have been used more frequently for this material. 
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FIGURE 0.2 – PERCENTAGE OF EACH MATERIAL BASED ON LENGTH AND JOIN TYPE WITHIN SASKATOON NETWORK 
(INVENTORY FILE) 

As previously mentioned, pipes were installed from 1906 to 2019 in the Saskatoon network. 
The frequency of different pipe materials installed in different time intervals can be seen in 
Figure 0.3. As can be seen from the stack chart, from 1900 to 1960, Cast Iron was a predominant 
material installed in Saskatoon. It should be noted that from 1940 to 1960, Asbestos Cement 
was as much popular as Cast Iron. Afterward, AC experienced a significant increase for 20 years, 
between 1960 and 1980. However, after introducing PVC pipes, the city of Saskatoon seems to 
have decided to focus on installing this material, as it has demonstrated a substantial surge 
from 1980 to 2019, with being a primary material to be installed.  

Another important attribute provided by the Saskatoon city is diameter, and it ranges from 25 
mm to 1350 mm. As can be seen from the chart (Figure 0.4), most pipes range from 150 to 300, 
typically related to the water distribution network. Pipes with 150 mm are the most frequent 
size used by Saskatoon utility.  

 

FIGURE 0.3 – PERCENTAGE OF EACH MATERIAL PER TOTAL LENGTH BASED ON INSTALLATION YEAR (SASKATOON – 
INVENTORY) 
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FIGURE 0.4 – PERCENTAGE OF EACH MATERIAL BASED ON SIZE AND TOTAL LENGTH (SASKATOON) 

In addition, some of the pipes were either lined during their life cycles, or even installed lined 
since the beginning, and some pipes remained unlined during their entire lives. More than 90% 
of pipe reported to have remained unlined, and only around 10% have lining protection. CIP 
(cured in place), HDPE (high density polyethylene), and PE are the lining types that have been 
used in Saskatoon.  

 
Break File 

 

Historical failure records were provided as a break file by utilities. After the data cleaning 
process, the Saskatoon break file comprises 7,083 data points, and the given figure indicates 
the percentage of each material that experienced failure within the network (Figure 0.5). 
According to historical records, cast iron pipes account for just over 46% of the total failures, 
followed by AC and PVC pipes, with 41.66% and 7.5%, respectively. Steel material makes up 
only 4% of all failure records, and other materials account for only 1% of instances. It should be 
mentioned that a significant proportion of failure records, in terms of material and diameter, 
has been extracted from the inventory GIS file due to having many missing values in the break 
file. 

The provided failure records included material, diameter, failure date, and pipe depth. More 
attributes are added from the inventory file to calculate the failure rate, age at failure, and the 
probability of failure. It is worth mentioning that the number of failures for each unique pipe ID 
is from 1 to 21 failures within the Saskatoon network. For example, there exists a Cast Iron pipe 
that has experienced 21 failures during its life cycle. Figure 0.5 demonstrates the percentage of 
each material based on different types of failures. As it can be seen from the chart, hole and 
circumferential failures are the most frequent types among others. For instance, the hole is the 
most frequent type of failure for PVC, cast iron, and asbestos cement. It is worth mentioning 
that a significant proportion of pipes do not include the type of failure. Therefore, these 
unknown failures were named “Other”. 
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FIGURE 0.5 - PERCENTAGE OF EACH MATERIAL IN THE NETWORK AND THEIR CORRESPONDING FAILURES (BREAK 
FILE – SASKATOON) 

Failures are provided from 1958 to 2019 for the Saskatoon network. Figure 0.6 shows the 
percentage of total failures in each year for different types of materials. 

 

FIGURE 0.6 – PERCENTAGE OF CONTRIBUTION OF EACH YEAR IN FAILURE RECORD BASED ON THE MATERIALS 
(SASKATOON – BREAK FILE) 
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Winnipeg – Manitoba 

 

Inventory File 

 

Winnipeg, situated in Manitoba province, is another robust data set analyzed in this research. 
The population of this city is registered as approximately 705 thousand, based on the 2016 
Census.  The land area of this city is around 464 square kilometers.  Furthermore, the base 
inventory file of Winnipeg consists of 114,824 segments, and various variables are provided 
such as material, diameter, joint type, status, status date, ownership, length, install year, and 
coating material. The provided table demonstrates the range and categories for the mentioned 
attributes in more detail (TABLE 0.2). 

 

TABLE 0.20.2 - AVAILABLE ATTRIBUTES WITHIN WINNIPEG INVENTORY DATASET 

Attribute Unit Range/Values 

Diameter mm 19 - 1050 

Material Text 
PVC, AC, CI, ST, PE, HDPE, DI, CO, 

CON, PCCP, PB 

Join Type Text 

Rubber 

Universal 

Lead 

Mechanical 

Grooved 

Threaded 

Welded 
Bell and Spigot 

Bell 
Flange 

Flared end 
Gasket 
Socket 

 

Installation Year Year 1882 - 2020 

Ownership Binary Yes/No 

Length m 0.01 – 996.59 

Status Text Active/InActive 
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Coating Material Text 
Asbestos, Concrete, FRC, 

polyethylene, Styrofoam, Urecon, 
and Y-jacket 

 

As previously mentioned, the GIS version of the inventory file was utilized to create a robust 
dataset where missing values are available. The given map has been extracted from the GIS file, 
which shows the complexity of the Winnipeg network (Figure 0.7). 

 

FIGURE 0.7 - WINNIPEG WATER DISTRIBUTION NETWORK (GIS FILE PROVIDED BY CITY OF WINNIPEG) 

Winnipeg water networks consist of 3,117 kilometers of pipes, among which 48.77% are made 
from PVC. AC and CI pipes account for 23.73% and 26.08%, respectively, and the remainder of 
almost 2% belong to other materials.  
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FIGURE 0.8 – DIFFERENT TYPES OF MATERIALS WITHIN WINNIPEG INVENTORY BASED ON TOTAL LENGTH AND 
JOINT TYPES 

Provided information revealed that pipes were installed from 1882 to 2020 in the Winnipeg 
network. Installation of different materials experienced the same trend as in the Saskatoon 
network. Cast Iron pipes seem to have been the most frequent type of materials from 1882 to 
1960, peaking during the 1950s. AC pipes also underwent a dramatic surge from 1946 to 1985. 
From 1986, however, PVC became the predominant material within this network (Figure 0.9).  

 

FIGURE 0.9 - PERCENTAGE OF EACH MATERIAL PER TOTAL LENGTH BASED ON INSTALLATION YEAR (WINNIPEG – 
INVENTORY) 

In terms of diameter, the Winnipeg network comprises ranges from 19 to 1050 mm. The bar 
chart below shows that most pipes within the network fall in diameter between 150 and 300 
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mm. Other sizes account for a small proportion of the entire network (Figure 0.10). It should be 
noted that almost all pipes within the network are uncoated.  

 

FIGURE 0.10 - PERCENTAGE OF EACH MATERIAL BASED ON SIZE AND TOTAL LENGTH (WINNIPEG) 

 
 
 
Break File 

 

The failure dataset provided by Winnipeg city consists of 26,631 pipes. Among this amount of 
records, almost 69% of failures are related to CI pipes. AC pipes also have a contribution of 
around 15.40% to the total amount of breaks. PVC and Ductile Iron make up 11.75% and 3.72% 
of historical failures, respectively. Several attributes are provided with break records, such as 
failure date, failure type, soil type, and land use. However, soil type and land use have been 
removed from the analysis since they include a significant amount of missing values. Holes 
seem to have been the most frequent type of failure within the Winnipeg network. Cast Iron 
and PVC also experienced a considerable rate of failures related to joint and fittings. 
Circumferential crack, however, is the predominant type of failure for AC pipes (Figure 0.11). 
There are many missing values for the type of failures within the Winnipeg network. Thus, 
these missing values were named “Other.” The following bar chart gives the percentage of each 
material in the network and its corresponding number of failures. 
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FIGURE 0.11 – PERCENTAGE OF EACH MATERIAL IN THE NETWORK AND THEIR CORRESPONDING FAILURES (BREAK 
FILE – WINNIPEG) 

Failures records have been collected from 1919 to 2019 and provided with the dataset. From 
the chart below, it is clear that collecting information experienced a significant surge after 
1989, with CI as a material that has undergone a significant number of failures. For AC pipes, 
there is a fluctuation in the number of failures recorded. Overall, it is clear that CI pipes are in 
an extreme deterioration process, and they should be prioritized towards any asset 
management practices. Figure 0.12 indicates the number of failures for different materials in 
different periods. 
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FIGURE 0.12 – NUMBER OF FAILURES FOR DIFFERENT MATERIALS IN DIFFERENT YEARS (WINNIPEG) 

Kitchener – Ontario 

 

Inventory File 

 

Kitchener is another utility analyzed in this study and is located in Ontario province, Canada. 
Based on the 2016 census, the population of this city was reported to be around 233 thousand 
inhabitants, with a land area of about 137 square kilometers.  

After cleaning, the inventory file of Kitchener included 14,561 pipes, including different input 
variables such as diameter, material, installation year, status, length, lining status, lining year, 
and lining material. The given table lists all attributes along with the range of provided values 
(TABLE 0.3). 

 

TABLE 0.30.3 - AVAILABLE ATTRIBUTES WITHIN KITCHENER INVENTORY DATASET 

Attribute Unit Range/Values 

Diameter mm 25 - 1200 

Material Text 
AC, CI, CON, CO, DI, 

HDPE, PVC, PVCB, PVCO, 
ST 
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Installation Year Year 1887 - 2018 

Status Binary Active, Inactive 

Length m 0.01 – 83.46 

Lining Status Binary Yes, No 

Lining Year Year 1977 - 2014 

Lining Material Text CM, EPOXY, Unlined 

 

 

Figure 0.13 shows the percentage of each material based on the total length within the 
Kitchener network. The graph indicates that ductile iron pipe accounts for 37.21% of the entire 
network, followed by PVC, with a 31.43% contribution. Cast iron is another frequently used pipe 
within this network with almost 23.13% contribution to the total length. 

 

 

FIGURE 0.13 – DIFFERENT TYPES OF MATERIALS WITHIN KITCHENER INVENTORY BASED ON THE TOTAL LENGTH 

 

Collected information revealed that pipes were installed in this network from 1887 to 2018. 
From the beginning until the '60s, cast iron was the primary material within this network. 
However, ductile iron altered the trend as it became the primary material utilized in Kitchener 
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from the `60s to the early `90s. Moreover, PVC pipe seems to have been the predominant pipe 
within this network during the 20th century. Nonetheless, from 1987 to 1992, concrete pipe 
showed an increase in installation for this network (Figure 0.14).  

 

FIGURE 0.14 - PERCENTAGE OF EACH MATERIAL PER TOTAL LENGTH BASED ON INSTALLATION YEAR (KITCHENER - 

INVENTORY) 

Regarding diameter, this network includes different sizes, ranging from 25 mm to 1200 mm. 
However, pipes with the size of 150 mm are the most frequent ones in the network with a 45% 
contribution to total length, for which cast iron, PVC, and ductile iron are equally distributed. 
300 and 200 mm pipes are in the following position, accounting for 25% and 13% of the entire 
network, respectively (Figure 0.15). 
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FIGURE 0.15 - PERCENTAGE OF EACH MATERIAL BASED ON SIZE AND TOTAL LENGTH (KITCHENER) 

 
Break File 

 

After cleaning, the excel file for the break records included 2,346 pipes in the Kitchener 
network. A significant proportion of failures are related to cast iron pipes, accounting for over 
75% of total failures. Ductile iron is also with 25% contribution to total failures is the following 
material. The given bar chart indicates the proportion of each material in the network based on 
the number of failures and type of failures (Figure 0.16). As seen in the graph, most pipes do not 
have the type of failure or cause of failures, as shown by “Other” in the chart. Nonetheless, for 
cast iron and ductile iron, circumferential failures were the most frequent type of failure. 
Several attributes were provided along with this dataset, including status, pipe depth, anode 
status, failure date, failure type, failure cause, and soil type.  
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FIGURE 0.16 – PERCENTAGE OF EACH MATERIAL IN THE NETWORK AND THEIR CORRESPONDING FAILURES (BREAK 
FILE – KITCHENER) 

 

The city of Kitchener provided failures records from 1985 to 2018, showing cast iron as a 
material that experienced a considerable number of failures compared to other materials. It 
seems that collecting information has undergone an increase from 1997 to date (Figure 0.17). 

 

FIGURE 0.17 – NUMBER OF FAILURES FOR DIFFERENT MATERIALS IN DIFFERENT YEARS (KITCHENER) 
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Markham – Ontario 

 

Inventory File 

 

With a population of around 329 thousand and a land area of 212.35 square kilomteres, 
Markham is located in the Ontario province, Canada. After data cleaning and preparation, this 
utility included 10,802 pipe segments with a total length of approximately 1,261 kilometers. 
Additionally, as shown in the given table, diameter, material, roughness, installation year, 
ownership, length, lining and protection status, lining and protection year, and pipe depth are 
the attributes provided within the excel file (TABLE 0.4). 

 

TABLE 0.40.4 - AVAILABLE ATTRIBUTES WITHIN MARKHAM INVENTORY DATASET 

Attribute Unit Range/Values 

Diameter mm 25 - 1800 

Material Text 
AC, CI, CON, CO, CLPE, DI, HDPE, PE, 

PB, PVC, ST 

Roughness Text 39 - 187 

Installation Year Year 1938 - 2019 

Ownership Binary Yes, No 

Length m 0.82 – 3779 

Lining Status Binary Yes, No 

Protection Status Binary Yes, No 

Lining Year Year 1996 - 2011 

Protection Year Year 1992 - 2015 

Pipe Depth m 0.85 – 4.20 
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PVC pipe is the most frequently installed material within the Markham network, accounting for 
66.36% of the total length. This material is followed by ductile iron that makes up 18.58% of the 
entire network. Concrete and cast iron pipes are other types of materials that have been used, 
with 5.82% and 4.66% contribution, respectively. It is worth mentioning that the use of cast iron 
pipe in this network is not comparable to other networks in this study. The percentage of other 
types of materials is shown within the given pie chart (Figure 0.18). 

 

 

FIGURE 0.18 - DIFFERENT TYPES OF MATERIALS WITHIN MARKHAM INVENTORY BASED ON THE TOTAL LENGTH 

From the beginning of the data collection until the mid-60s, a mixture of materials was used in 
the Markham network, including cast iron, steel, and ductile iron pipes. However, from 1965 
until 1980, ductile iron was the most desirable material in this network. Since then, PVC seems 
to have become the predominant material used for water networks in the Markham utility 
(Figure 0.19). 
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FIGURE 0.19 - PERCENTAGE OF EACH MATERIAL PER TOTAL LENGTH BASED ON INSTALLATION YEAR (MARKHAM - 

INVENTORY) 

Figure 0.20 shows the distribution of pipes based on the size and their materials within the 
network. As shown in the graph, smaller pipes account for a significant portion of the entire 
network. For example, 150-mm pipes are the most frequently used in the network with almost 
32% contribution, followed by 200 and 300 mm pipes. It should be noted that PVC, cast iron, 
and ductile iron have the highest contribution for smaller pipes. However, for larger pipes, 
concrete and steel pipes seem to be more prevalent within this network. 
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FIGURE 0.20 - PERCENTAGE OF EACH MATERIAL BASED ON SIZE AND TOTAL LENGTH (MARKHAM) 

 

Break File 

 

The final excel file for the Markham network included 2,926 failures record. Ductile iron 
accounts for more than 45% of the total failures in the network, followed by cast iron and PVC 
pipes with 39% and 13% contribution. For ductile iron, the hole is the most frequent type of 
failure. Also, some failures known as “Not on main” in this study relate to ductile iron, such as 
saddle failure. However, the pattern is different for cast iron, with circumferential and hole as 
the most frequent failures in this network. Saddle failure also has a notable contribution to cast 
iron failures. The given bar chart indicates the portion of each material in the network based on 
the total number of failures and type of failures (Figure 0.21). 
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FIGURE 0.21 - PERCENTAGE OF EACH MATERIAL IN THE NETWORK AND THEIR CORRESPONDING FAILURES (BREAK 

FILE – MARKHAM) 

 

Failures record provided from 1979 to 2019 in Markham utility. The given bar chart shows that 
the number of failures has undergone a downward trend, gradually declining from 1994 to 
2018. As previously mentioned, cast iron and ductile iron experienced the most failures 
recorded within this utility. 

 

 

FIGURE 0.22 - NUMBER OF FAILURES FOR DIFFERENT MATERIALS IN DIFFERENT YEARS (MARKHAM) 
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Waterloo – Ontario 

Inventory File 

 

Waterloo is a city situated in Ontario province, Canada. This city has a population of around 113 
thousand and a land area of around 64 square kilometers. Waterloo pipeline consists of 7,565 
pipes with a total length of around 433 kilometers. Diameter, material, service type, installation 
year, ownership, length, lining status, lining material, and lining year are the attributes in the 
final cleaned dataset. The range of these features can be found in the given table (TABLE 0.5). 

 

TABLE 0.50.5 - AVAILABLE ATTRIBUTES WITHIN WATERLOO INVENTORY DATASET 

Attribute Unit Range/Values 

Diameter mm 25 - 450 

Material Text AC, CI, CON, CO, DI, HDPE, PE, PVC 

Service Type Text Distribution, Transmission 

Installation Year Year 1850 - 2018 

Ownership Binary Yes, No 

Length m 0.09 – 644 

Lining Status Binary Yes, No 

Lining Material Text CM, Epoxy, HDPE, Unlined 

Lining Year Year 1999 - 2013 

 

Regarding the distribution of each material in the network, PVC is the most installed type. This 
material contributes to 54.29% of the entire network. Cast iron is the following material, which 
accounts for 29.68% of the total pipes. Finally, with 15.12% of the total length of the inventory 
file, ductile iron is another material used in the Waterloo network. Figure 0.23 shows the 
percentage of each material in the network based on the total length. 
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FIGURE 0.23 - DIFFERENT TYPES OF MATERIALS WITHIN WATERLOO INVENTORY BASED ON THE TOTAL LENGTH 

From the beginning of the data collection in this network until the early 70s, cast iron was the 
most popular material. Then, from 1974 to 1984, ductile iron became the prevalent type of 
material in this utility. However, same as other utilities, from 1984 to date, PVC pipes have 
been the predominant type of material in the network. The distribution of different materials 
based on the installation year is provided in the given chart (Figure 0.24). 

 

FIGURE 0.24 - PERCENTAGE OF EACH MATERIAL PER TOTAL LENGTH BASED ON INSTALLATION YEAR (WATERLOO - 

INVENTORY) 
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In terms of size, pipes with a diameter of 150 mm are the most frequent ones in the network. 
This size accounts for almost 45% of the entire utility. Diameter of 300 mm and 200 mm with 
26% and 21% contribution, respectively, are the primarily other installed diameter in the 
networks. The majority of these pipes are related to the distribution network. The given bar 
chart shows the contribution of each diameter to the total length of pipes in the network 
(Figure 0.25). 

 

 

FIGURE 0.25 - PERCENTAGE OF EACH MATERIAL BASED ON SIZE AND TOTAL LENGTH (WATERLOO) 

 
Break File 

 

Waterloo network did not provide the failure type of the recorded failures. Therefore, the given 

graph is prepared only based on the total length of pipes within the network. The graph shows 

that cast iron pipes experienced the highest number of failures in this network, accounting for 

almost 83% of total failures (Figure 0.26). This material is followed by ductile iron, with around 

14% of the total number of failures recorded in the network. 
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FIGURE 0.26 - PERCENTAGE OF EACH MATERIAL IN THE NETWORK (BREAK FILE – WATERLOO) 

 

FIGURE 0.27 - NUMBER OF FAILURES FOR DIFFERENT MATERIALS IN DIFFERENT YEARS (WATERLOO) 

 

Failures were provided from 2000 to 2020 for the Waterloo network. The given graph shows a 
fluctuation in the number of failures for different years. However, as previously discussed, cast 
iron underwent the highest failure rate in this network (Figure 0.27).  
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Region of Waterloo – Ontario  

 

Inventory File 

 

Region of Waterloo is a metropolitan area located in the Ontario province, Canada. With a 
population of around 523 thousand and a land area of above 1,300 square kilometers, this 
network consists of 5,139 pipes. These pipes have different attributes such as diameter, 
material, installation year, ownership, length, lining status, lining material, lining year, 
roughness, bedding type, surface type, soil type, and pipe depth. It should be noted the total 
length of this network is above 430 kilometers. The given table indicates more information 
regarding these attributes (TABLE 0.6). 

TABLE 0.60.6 - AVAILABLE ATTRIBUTES WITHIN REGION OF WATERLOO INVENTORY DATASET 

Attribute Unit Range/Values 

Diameter mm 38 - 1200 

Material Text 
AC, CI, CON, CO, DI, HDPE, PE, PVC, 

ST 

Installation Year Year 1850 - 2019 

Ownership Binary Yes, No 

Length m 0.06 – 6977 

Lining Status Binary Yes, No 

Lining Material Text CM, Unlined 

Lining Year Year 1974 - 2004 

Roughness µ 110 - 150 

Bedding Type Text Concrete, Granular 

Surface Type Text 
Asphalt, Concrete, Exposed, Grass, 

Gravel, Road, Water 

Soil Type Text Granular, Gravel 

Pipe Depth m 0.5 - 4 

 

PVC and ductile iron are the most frequently used materials within this network, accounting for 
almost 43% and 25.57% of the toal length. Concrete is the following material with a 16.25 
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contribution. Cast iron and asbestos cement are equally distributed within the network, with 
almost 7% of the total length for each (Figure 0.28). 

 

FIGURE 0.28 - DIFFERENT TYPES OF MATERIALS WITHIN REGION OF WATERLOO INVENTORY BASED ON THE TOTAL 

LENGTH 

Similar to other networks, cast iron was the predominant material before 1968, along with 
small portions of concrete and asbestos cement pipes. However, from 1968 to 1985, ductile 
iron was more popular compared to other materials in this network. A mixture of materials has 
been used from 1985 to date, with PVC having the highest contribution followed by concrete 
material. The distribution of different materials based on the installation year is provided in the 
given chart (Figure 0.29). 
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FIGURE 0.29 - PERCENTAGE OF EACH MATERIAL PER TOTAL LENGTH BASED ON INSTALLATION YEAR (REGION OF 

WATERLOO - INVENTORY) 

Regarding diameters, pipes are more normally distributed within this network. Therefore, 
different diameter ranges can be seen in the given graph, from 100 mm to 1200 mm. For 
instance, pipes with the size of 450 mm account for almost 30% of the entire network, and 
ductile iron and PVC are the primary material for this size. For smaller pipes like 150-mm and 
200-mm pipes, however, PVC is the predominant material. As the size increases, concrete pipe 
seems to be more desirable within the Region of Waterloo network (Figure 0.30).  

 

FIGURE 0.30 - PERCENTAGE OF EACH MATERIAL BASED ON SIZE AND TOTAL LENGTH (REGION OF WATERLOO) 
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Break File 

 

The final excel file for the Region of Waterloo included only 292 failures record. Cast iron 
accounts for almost 40% of the total failure in the network, followed by ductile iron and PVC 
pipes with 33% and 20% contribution. The majority of failures are provided without cause and 
nature of failures. However, from the available information, most failure for cast iron pipes is 
related to joint and fitting failures in this network. For ductile iron, on the other hand, joint 
failure and circumferential failure were more frequent. The given figure provides the 
distribution of different materials based on the total number of failures and the nature of 
failures (Figure 0.31). 

 

FIGURE 0.31 - PERCENTAGE OF EACH MATERIAL IN THE NETWORK AND THEIR CORRESPONDING FAILURES (BREAK 

FILE – REGION OF WATERLOO) 

Failures for the Region of Waterloo were collected from 1987 to 2019. Figure 0.32 depicts the 
number of failures in different years based on different materials. 
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FIGURE 0.32 - NUMBER OF FAILURES FOR DIFFERENT MATERIALS IN DIFFERENT YEARS (REGION OF WATERLOO) 

Region of Durham – Ontario 

 

Inventory File 

 

The region of Durham is situated in the Ontario province, Canada. With a population of around 
645 thousand and a land area of above 2,523 square kilometers, this network consists of 22,414 
pipes. These pipes have different attributes such as diameter, material, installation year, 
ownership, length, lining status, lining material, lining year, surface type, protection status, 
protection year, and status. It should be noted that the total length of this network is above 
2,638 kilometers. The given table indicates more information regarding these attributes (TABLE 
0.7). 

 

TABLE 0.70.7 - AVAILABLE ATTRIBUTES WITHIN REGION OF DURHAM INVENTORY DATASET 

Attribute Unit Range/Values 

Diameter mm 25 - 2100 

Material Text AC, CI, CON, CO, DI, PE, PVC 

Installation Year Year 1900 - 2020 

Ownership Binary Yes, No 
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Length m 0.15 – 4169.73 

Lining Status Binary Yes, No 

Lining Material Text CIP, CM, Unlined 

Lining Year Year 1970 - 2019 

Surface Type Text 
Asphalt, Concrete, Creek, Ease, Field, 

Grass, Gravel, Rail, Stone 

Protection Status Binary Yes, No 

Protection Year Year 1985 - 2019 

Status Text Active, Inactive 

 

 

The predominant material in this network is cast iron, which accounts for almost 50% of the 
total length. However, ductile iron and PVC are other frequently installed materials in this 
network. Ductile iron has 33.71% and PVC 11.93% contribution to the total length of pipes 
(Figure 0.33).  

 

FIGURE 0.33 - DIFFERENT TYPES OF MATERIALS WITHIN REGION OF DURHAM INVENTORY BASED ON THE TOTAL 

LENGTH 

The given figure depicts the distribution of each material installed in different years. As can be 
seen from 1905 to the 60s, cast iron was the most prevalent type of material in Durham. 
However, from the 60s to mid-80s, ductile iron was installed more frequently in this network. 
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Since then, PVC has become the primary material in this network. Interestingly, the number of 
installations declined significantly from 1982 to date (Figure 0.34). 

 

FIGURE 0.34 - PERCENTAGE OF EACH MATERIAL PER TOTAL LENGTH BASED ON INSTALLATION YEAR (REGION OF 

DURHAM - INVENTORY) 

150-mm pipes account for almost 60% of the network, with cast iron being the most frequent. 
Other sizes such as 200 and 300 pipes only make up over 10% of the total length of pipes in this 
network. Figure 0.35 shows how different diameters are distributed within the Durham utility. 

 

FIGURE 0.35 - PERCENTAGE OF EACH MATERIAL BASED ON SIZE AND TOTAL LENGTH (REGION OF DURHAM) 
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Break File 

 

The final cleaned dataset includes 6,578 failure records. Among these failures, cast iron is the 
material the experienced the highest number of failures in the Region of Durham. This material 
solely accounts for more than 50% of the recorded failures. Circumferential failure is the 
predominant type of failure for cast iron pipes, followed by the hole and joint-related failures. 
Ductile iron also makes up 30% of failures in this network, and hole is the primary type of 
failure for this material. The given bar chart shows the contribution of each material to total 
failures based on the number of failures and type of failures (Figure 0.36). 

 

FIGURE 0.36 - PERCENTAGE OF EACH MATERIAL IN THE NETWORK AND THEIR CORRESPONDING FAILURES (BREAK 

FILE – REGION OF DURHAM) 

As shown in the given histogram chart, the number of failures in this network experienced a 
peak in 1994, then leveled off and declined steadily. Meanwhile, the given graph shows that 
cast iron pipes are experiencing a significant number of failures, as previously discussed (Figure 
0.37). 
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FIGURE 0.37 - NUMBER OF FAILURES FOR DIFFERENT MATERIALS IN DIFFERENT YEARS (REGION OF DURHAM) 

 

Calgary – Alberta 

 

Inventory File 

 

This utility is among the largest networks in this study. Calgary is a large metropolitan located in 
the Alberta province, Canada. With over 1,300,000 inhabitants, this city is the 4th largest city in 
Canada, based on the 2016 census. The final dataset of Calgary includes 55,561 pipes, with 
different attributes such as diameter, material, installation year, length, dead-end, average soil 
resistivity, break number, and break rate. The total length of this network is approximately 
5,277 kilometers. The given table lists all attributes and the range of their values (TABLE 0.8). 

 

TABLE 0.80.8 - AVAILABLE ATTRIBUTES WITHIN CALGARY INVENTORY DATASET 

Attribute Unit Range/Values 

Diameter mm 12 - 3000 

Material Text 
AC, CI, CON, CO, DI, PE, PVC, PVCF, 

ST 



138 | P a g e  

 

Installation Year Year 1900 - 2019 

Length m 0.05 – 993.85 

Dead End Binary Yes, No 

Average Soil Resistivity ohm-meter 597 - 2500 

Break Number Number 0 - 28 

Break Rate Rate/m 0 – 99.98 

 

PVC pipe with 54.36% of the total length of this network has the highest contribution. Ductile 
iron and cast iron are the following materials in this network, which account for 20.12% and 
15.06%, respectively. Around 10% of the network belongs to concrete, steel, Polyethylene, and 
asbestos cement pipes (Figure 0.38). 

 

FIGURE 0.38 - DIFFERENT TYPES OF MATERIALS WITHIN CALGARY INVENTORY BASED ON THE TOTAL LENGTH 

It is clear that at the beginning of the 20th century, a significant number of cast iron pipes were 
installed. Then the number of installations declined until 1945, followed by an abrupt increase. 
From 1945 to 1965, cast iron was the primary material installed within this network. With the 
introduction of ductile iron, this material then became the predominant type in Calgary until 
1980. Ever since, like other utilities, PVC has gained more popularity among other materials 
(Figure 0.39). 
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FIGURE 0.39 - PERCENTAGE OF EACH MATERIAL PER TOTAL LENGTH BASED ON INSTALLATION YEAR (CALGARY - 

INVENTORY) 

Turning to diameter, pipes from 150 mm to 300 mm are the majority of the network. 
Seemingly, with increasing the size of the diameter use of concrete and steel pipes has become 
more popular. 150-mm pipes with more than 28% of contribution to total length are the mostly 
employed size. 

 

FIGURE 0.40 - PERCENTAGE OF EACH MATERIAL BASED ON SIZE AND TOTAL LENGTH (CALGARY) 

Break File 

 

After preparing and cleaning the dataset, broken pipes included 36,396 segments. Again, PVC 
and cast iron are the materials that underwent the most failures in the Calgary network, with 
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37% and 34% contribution (Figure 0.41). Circumferential failure is the primary type of failure for 
cast iron pipes. For PVC and ductile iron, however, the hole is the paramount nature of the 
failure. It should be mentioned that these materials experienced a significant number of failures 
related to joint and fittings. Furthermore, this dataset includes break number, failure date, soil 
type, corrosion degree, soil condition, status, material, diameter, failure type, failure cause, 
coating status, protection status, and anode type as explanatory variables. 

 

FIGURE 0.41 - PERCENTAGE OF EACH MATERIAL IN THE NETWORK AND THEIR CORRESPONDING FAILURES (BREAK 

FILE – CALGARY) 

Looking at the given graph reveals that the number of failures increased significantly from 1956 
to the mid-'80s, with a peak in 1982. Then, the rate of failures declined steadily from 1986 to 
2006, then almost leveled off. Figure 0.42 indicates the number of failures in each year based on 
the materials. 

 

FIGURE 0.42 - NUMBER OF FAILURES FOR DIFFERENT MATERIALS IN DIFFERENT YEARS (CALGARY) 
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Vancouver – British Columbia 

Inventory File 

 

With a population of more than 2,463,000, Vancouver is the third-largest city in Canada, 
located in British Columbia province. This city has a land area of 2,878 square kilometers, and 
the inventory file of this network consists of 67,522 pipe segments. The total length of this 
network, including all pipes, is around 1,626 kilometers. Moreover, different attributes were 
provided with the excel file of Vancouver, including diameter, material, installation year, length, 
status, ownership, service type, coating material, and lining material. The list of these attributes 
and their values is provided in the given table (TABLE 0.9). 

 

TABLE 0.90.9 - AVAILABLE ATTRIBUTES WITHIN VANCOUVER INVENTORY DATASET 

Attribute Unit Range/Values 

Diameter mm 20 - 1950 

Material Text CI, CON, CO, DI, HDPE, PE, PVC, ST 

Installation Year Year 1892 - 2020 

Length m 0.09 - 2210 

Status Text Active, Inactive 

Ownership Binary Yes, No 

Service Type Text Distribution, Facility, Transmission 

Coating Material Text 
Coal Tar, Concrete, Epoxy, Foam, PB, 

Uncoated 

Lining Material Text 
CM, Coal Tar, Epoxy, Polyurea, 

Unlined 
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FIGURE 0.43 - VANCOUVER WATER DISTRIBUTION NETWORK (GIS FILE PROVIDED BY CITY OF VANCOUVER) 

With 48.54% and 44.12% contribution, cast iron and ductile iron are frequently installed 
materials within the Vancouver network. Steel pipes account for almost 5.95 of the total length 
of this network, and other materials make up just small portions of the total length. The given 
pie chart provides more information about all materials installed in this utility (Figure 0.44). 

 

FIGURE 0.44 - DIFFERENT TYPES OF MATERIALS WITHIN VANCOUVER INVENTORY BASED ON THE TOTAL LENGTH 
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FIGURE 0.45 - PERCENTAGE OF EACH MATERIAL PER TOTAL LENGTH BASED ON INSTALLATION YEAR (VANCOUVER - 

INVENTORY) 

Smaller pipes are more prevalent in this network than larger diameters. For instance, 150-mm 
and 200-mm pipes with almost 70% of the total length have the highest contribution. For the 
former, cast iron seems to be more popular in this network. However, for the latter, ductile iron 
was used more frequently. Furthermore, 300-mm pipes account for almost 20% of the total 
length in this utility. The given charts indicate the distribution of each material within this 
network based on the installation year and size of the pipes (Figure 0.45; Figure 0.46). 

 

FIGURE 0.46 - PERCENTAGE OF EACH MATERIAL BASED ON SIZE AND TOTAL LENGTH (VANCOUVER) 
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Break File 

 

The final cleaned file of recorded failure only included 927 pipes, most of which are cast iron, 
about 90%. The majority of failures for cast iron pipes are circumferential failures and a small 
portion related to joint and fitting failures. Failure date, service type, diameter, ownership, 
length, status, soil type, joint type, pipe depth, material, installation year, failure cause, and 
failure type are the attributes provided by the city of Vancouver. The given chart shows the 
percentage of each material based on the number of failures recorded in this network (Figure 
0.47). Another figure also depicts the distribution of each material based on the number of 
failures in different years (Figure 0.48). Failure was provided from 2009 to 2020 for this network. 

 

FIGURE 0.47 - PERCENTAGE OF EACH MATERIAL IN THE NETWORK AND THEIR CORRESPONDING FAILURES (BREAK 

FILE – VANCOUVER) 
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FIGURE 0.48 - NUMBER OF FAILURES FOR DIFFERENT MATERIALS IN DIFFERENT YEARS (VANCOUVER) 

Victoria – British Columbia 

 

Inventory File 

 

Victoria is another network located in British Columbia province with a population of about 367 

thousand with a land area of approximately 696 square kilometers. The inventory file of this 

network after cleaning includes 3,319 pipes with different input variables. These attributes and 

their ranges are provided in the given table (TABLE 0.10). Moreover, according to the available 

information, the total length of this network is approximately 332 kilometers. 

TABLE 0.100.10 - AVAILABLE ATTRIBUTES WITHIN VICTORIA INVENTORY DATASET 

Attribute Unit Range/Values 

Diameter mm 19 - 990 

Material Text 
AC, CI, CO, DI, GI, HDPE, PE, PVC, 

PVCO, ST 

Installation Year Year 1888 - 2016 

Length m 0.15 - 716 

Status Text Active, Inactive 

Ownership Binary Yes, No 

HGL Text 72 - 116 
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Roughness µ 26 - 140 

Lining Material Text CM, EPOXY, HDPE, Unlined 

Lining Status Binary Yes, No 

 

 

FIGURE 0.49 - VICTORIA WATER DISTRIBUTION NETWORK (GIS FILE PROVIDED BY CITY OF VICTORIA) 

Cast iron and ductile iron account for a significant proportion of total pipes installed in this 
network, with 45.94% and 40.22% contribution to the total length. PVC with a 7.83% 
contribution is the following material. The given pie chart shows all materials within the 
inventory file based on the percentage of total length (Figure 0.50). 

 

FIGURE 0.50 - DIFFERENT TYPES OF MATERIALS WITHIN VICTORIA INVENTORY BASED ON THE TOTAL LENGTH 

Figure 0.51 represents the distribution of different materials in terms of installation in different 

years. From 1888 to 1961, cast iron was the predominant type of material, same as other 

networks. However, since then, ductile iron has become the most popular type of pipe in the 
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Victoria network. Furthermore, according to the available information, 150-mm pipes are the 

most frequently used in this network. It seems that for larger pipes, HDPE material was 

employed. Figure 0.52 shows the distribution of different sizes in the Victoria network. 

 

FIGURE 0.51 - PERCENTAGE OF EACH MATERIAL PER TOTAL LENGTH BASED ON INSTALLATION YEAR (VICTORIA - 

INVENTORY) 

 

FIGURE 0.52 - PERCENTAGE OF EACH MATERIAL BASED ON SIZE AND TOTAL LENGTH (VICTORIA) 

 
Break File 

 

The failure record of Victoria consists of 977 pipes with different attributes such as failure date, 
material, diameter, failure type, and failure cause. Almost 57% of these failures are related to 



148 | P a g e  

 

cast iron pipes, with circumferential failure as the most frequent nature of the failure. Other 
failures reported in this network are split and longitudinal crack. Finally, ductile iron and PVC 
are the following materials with the highest failure rate after cast iron pipes (Figure 0.53).  

 

FIGURE 0.53 - PERCENTAGE OF EACH MATERIAL IN THE NETWORK AND THEIR CORRESPONDING FAILURES (BREAK 

FILE – VICTORIA) 

Failure for this network was provided from 1985 to 2019, as shown in the given graph. This 
graph also shows the distribution of the number of failures based on different materials and 
years of failure (Figure 0.54). 
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FIGURE 0.54 - NUMBER OF FAILURES FOR DIFFERENT MATERIALS IN DIFFERENT YEARS (VICTORIA) 

 

Halifax– Nova Scotia 

Inventory File 

 

Halifax is another utility situated in Nova Scotia province, Canada. Based on the 2016 census, 
the population of this city is around 403 thousand, with a total land area of 5,490 square 
kilometers. The final inventory file of this network consists of 14,436 pipes with a total length of 
approximately 1,566 kilometers. The excel file of this network included a variety of input 
variables for the modeling process, such as material, diameter, installation year, length, lining 
material, and lining status. The range of these attributes is listed in the given table (TABLE 0.11). 

TABLE 0.110.11 - AVAILABLE ATTRIBUTES WITHIN HALIFAX INVENTORY DATASET 

Attribute Unit Range/Values 

Diameter mm 19 - 1500 

Material Text 
AC, Brass, CI, CON, CO, CLPE, DI, GST, 

HDPE, PVC, SST, ST 

Installation Year Year 1856 - 2019 
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Length m 0.03 - 3620 

Lining Material Text CM, Polyurea, Unlined 

Lining Status Binary Yes, No 

 

Ductile iron seems to have been the most frequently installed material within this network, 
which accounts for almost 60% of the total length. Same as other utilities, cast iron has also 
been a popular pipe type with a 27.63% contribution. PVC and concrete are other types of 
materials used in this network, with over 5% contribution for each (Figure 0.55). 

 

 

FIGURE 0.55 - DIFFERENT TYPES OF MATERIALS WITHIN HALIFAX INVENTORY BASED ON THE TOTAL LENGTH 

Figure 0.56 shows the distribution of installation of each material within Halifax utility. As shown 
in the chart, cast iron was the predominant material from the beginning until the early '70s. 
Ever since, however, ductile iron has played a critical role in this network, with the highest 
contribution to the installation. Concrete and PVC are other materials used in this network, as 
can be noticed from the given bar chart. 

 



151 | P a g e  

 

 

FIGURE 0.56 - PERCENTAGE OF EACH MATERIAL PER TOTAL LENGTH BASED ON INSTALLATION YEAR (HALIFAX - 

INVENTORY) 

Different ranges of diameter have been used in this network. However, smaller pipes have been 
installed more frequently. For instance, 200-mm pipes were the most popular size in this 
network, with over 32% of the total length. 150-mm and 300-mm pipes are in the following 
positions, which account for 20% and 15% of the total length in the Halifax network. The given 
figures indicated the distribution of each material based on its length and size. 

 

FIGURE 0.57 - PERCENTAGE OF EACH MATERIAL BASED ON SIZE AND TOTAL LENGTH (HALIFAX) 
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Break File 

 

After cleaning, the excel file related to broken pipes included 6,381 pipes, with cast iron as the 
pipe that experienced the highest number of failures, with almost 90% of total records. Thus, 
circumferential failure is the most frequent nature of failures for this pipe. Meanwhile, ductile 
iron with almost 8% of total failures is the following material in this network (Figure 0.58). It 
should be mentioned that there are only two primary attributes within this file for Halifax, 
which are failure date and failure type. Other features such as material and diameter were 
extracted from the inventory file for this city. 

 

FIGURE 0.58 - PERCENTAGE OF EACH MATERIAL IN THE NETWORK AND THEIR CORRESPONDING FAILURES (BREAK 

FILE – HALIFAX) 

Finally, Figure 0.59 shows the number of failures that occurred in different years. As can be 
seen, cast iron pipes experienced a higher failure rate than other materials in every individual 
year.  
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FIGURE 0.59 - NUMBER OF FAILURES FOR DIFFERENT MATERIALS IN DIFFERENT YEARS (HALIFAX) 

St. John’s - Newfoundland and Labrador 

 

Inventory File 

 

This network is located in Newfoundland and Labrador province, Canada. The population of this 
city is around 205 thousand, and its total land area is approximately 445 square kilometers. The 
final inventory file of this network includes 8,983 pipe segments, with a total length of 628 
kilometers. Diameter, material, installation year, length, roughness are among the attributes 
provided by this city. 

TABLE 0.120.12 - AVAILABLE ATTRIBUTES WITHIN ST. JOHN’S INVENTORY DATASET 

Attribute Unit Range/Values 

Diameter mm 12 - 1400 

Material Text 
AC, CI, CON, CO, CLPE, DI, HDPE, PE, 

PVC 

Installation Year Year 1892 - 2017 

Length m 0.016 - 4767 

Roughness µ 10 - 150 
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FIGURE 0.60 – ST. JOHN’S WATER DISTRIBUTION NETWORK (GIS FILE PROVIDED BY CITY OF ST. JOHN’S) 

Ductile iron has the highest contribution to this network based on the total length, with almost 
46.47% of the entire length. On the other hand, cast iron and PVC account for almost 41.89% 
and 10.53% of this network, respectively. There are also other materials, distribution of which 
can be found in the given pipe chart (Figure 0.61). 

 

 

FIGURE 0.61 - DIFFERENT TYPES OF MATERIALS WITHIN ST. JOHN’S INVENTORY BASED ON THE TOTAL LENGTH 
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The given chart shows the percentage of total length installed in different years since the data 
collection has started in this network. As shown, from 1892 to 1970, cast iron was 
predominantly installed in this network. Then, however, ductile iron was the material with 
more popularity in St.John’s, from 1970 to 2008. Since then, PVC has played a vital role in this 
utility (Figure 0.62). 

 

FIGURE 0.62 - PERCENTAGE OF EACH MATERIAL PER TOTAL LENGTH BASED ON INSTALLATION YEAR (ST. JOHN’S - 

INVENTORY) 

Size of 150,200 and 300 mm have been used more frequently in this network compared to 
other diameters. For 150-mm pipes, cast iron seems to have been more popular than other 
materials. However, for 200-mm and 300-mm pipes, ductile iron was installed more than other 
materials. The given bar chart shows the frequency of each material in this network, based on 
the total length and size of the pipes (Figure 0.63). 

 

FIGURE 0.63 - PERCENTAGE OF EACH MATERIAL BASED ON SIZE AND TOTAL LENGTH (ST. JOHN’S) 
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Break File 

 

The failure record of St. John’s consists of 1,626 pipes with different attributes such as failure 
date,  material, diameter, failure type, failure cause, and pipe depth. Almost 85% of these 
failures are related to cast iron pipes, with circumferential and longitudinal failures as the most 
frequent nature of the failures. Other failures reported in this network are split and longitudinal 
crack. Finally, ductile iron is the material with the highest failure rate after cast iron pipes, 
accounting for 10% of the recorded failures (Figure 0.64). 

 

FIGURE 0.64 - PERCENTAGE OF EACH MATERIAL IN THE NETWORK AND THEIR CORRESPONDING FAILURES (BREAK 

FILE – ST. JOHN’S) 

Last but not least is the number of failures that occurred in different years. Failures were 
reported from 1988 to 2018 for this network. The contribution of each material in this period 
can be found in the given chart. As previously discussed, cast iron experienced more failures 
than other materials in this network (Figure 0.65). 
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FIGURE 0.65 - NUMBER OF FAILURES FOR DIFFERENT MATERIALS IN DIFFERENT YEARS (ST. JOHN’S) 

 

Barrie - Ontario 

 

Inventory File 

 

Barrie is another city located in Ontario province, Canada. This city has a population of around 
212 thousand and a land area of 898 square kilometers. The final inventory file of this utility 
includes 6,522 pipes with a total length of approximately 749 kilometers. This city provided a 
range of attributes for conducting this research, including service type, material, diameter, 
protection status, length, status, casing material, restrained and install year. The range of these 
attributes can be seen in the given table (TABLE 0.13). 

TABLE 0.130.13 - AVAILABLE ATTRIBUTES WITHIN BARRIE INVENTORY DATASET 

Attribute Unit Range/Values 

Service Type Text Distribution, Service, Transmission 

Material Text 
AC, CI, CON, CO, CLPE, DI, GST, HDPE, 

PVC, ST 

Diameter mm 19 - 1250 
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Protection Status Binary Yes, No 

Length m 0.1 - 3008 

Status Text Active, Inactive 

Casing Material Text 
Concrete, No casing, Polyethylene, 

Polystyrene, Steel, StyroFoam, 
Tunnel 

Restrained Binary Yes, No 

Install Year Year 1891 - 2019 

 

PVC pipes have been installed more frequently than other materials in this network, which 
accounts for 54.30% of the total length. Ductile iron with 26.58% contribution is the other 
material that has been used widely. Cast iron with 11.50% is the third material in this network. 
It should be noted that there are also other materials, and a percentage of them are listed in 
the given pie chart (Figure 0.66). 

 

FIGURE 0.66 - DIFFERENT TYPES OF MATERIALS WITHIN BARRIE INVENTORY BASED ON THE TOTAL LENGTH 

Figure 0.67 shows the distribution of each material based on the installation year in this 

network. Like other utilities, cast iron was first the predominant material in Barrie. However, 

from 1972 to date, ductile iron and PVC have been the most frequently installed materials in 

this utility. 
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FIGURE 0.67 - PERCENTAGE OF EACH MATERIAL PER TOTAL LENGTH BASED ON INSTALLATION YEAR (BARRIE - 

INVENTORY) 

Similar to other utilities, smaller pipes played a vital role in this network, with 150-mm pipes as 
the most popular, accounting for almost 45% of total length. Moreover, 200-mm and 300-mm 
pipes are the following sizes that have been used in this network more frequently than other 
diameters. 

 

FIGURE 0.68 - PERCENTAGE OF EACH MATERIAL BASED ON SIZE AND TOTAL LENGTH (BARRIE) 

 

 



160 | P a g e  

 

Break File 

The failure record of this network consists of 1,297 pipe segments with different attributes such 
as failure date, material, diameter, failure type, failure cause, anode status, break number, and 
pipe depth. Almost 87% of these failures are related to cast iron pipes, with circumferential and 
longitudinal failures as the most frequent natures of the failures. Other failures reported in this 
network are split and hole. Finally, ductile iron is the material with the highest failure rate after 
cast iron pipes, accounting for 12% of the recorded failures. The given bar chart shows the 
percentage of each material that failed in this network based on the failure type (Figure 0.69). 

 

FIGURE 0.69 - PERCENTAGE OF EACH MATERIAL IN THE NETWORK AND THEIR CORRESPONDING FAILURES (BREAK 

FILE – BARRIE) 

Based on the available historical information - 1951 to 2014 - the number of failures increased 
steadily in this network, with a peak in 2014. Then the number of failures experienced an 
abrupt decline from 2014 to date. This could be related to applying different practices to 
maintain the network or directly related to other factors such as age. 

 

FIGURE 0.70 - NUMBER OF FAILURES FOR DIFFERENT MATERIALS IN DIFFERENT YEARS (BARRIE) 
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APPENDIX B – ALGORITHMS AND HYPERPARAMETERS 
 

Random forest hyperparameter (Classification and regression) 

Random Forest has different parameters that could be tuned based on the desired outcomes. 
The given figure indicates the entire parameters and their default values based on the Scikit-
learn library for random forest classifier (Figure 0.1). 

 

FIGURE 0.1 – RANDOM FOREST CLASSIFIER HYPERPARAMETERS (HTTPS://SCIKIT-
LEARN.ORG/STABLE/MODULES/GENERATED/SKLEARN.ENSEMBLE.RANDOMFORESTCLASSIFIER.HTML) 

Some of these parameters have remained unchanged during the modeling process. However, a 
few important ones that may avoid overfitting have been employed and explained in this 
section. 

- n_estimators (default = 100):  

This parameter shows the number of trees utilized to learn the base model. As previously 
mentioned, the output of RF is average or the majority vote of numbers of trees. Thus, finding 
an appropriate number of trees can be considered the most important step. 

- Criterion (default = “gini”):   

The criterion function calculates the splitting quality during the learning process. The default is 
gini for the Gini impurity and entropy for the information gain. Therefore, either of these two 
methods should be evaluated in order to find the most efficient one. 

- max_depth (default = None): This parameter defines the depth or level of splitting for 
each tree in the Forest. If it remains as None, the trees are expanded until all nodes 
reach the maximum impurity or until each node contains fewer samples than defined 
“min_samples_split.” 

- min_samples_split (default = 2): This parameter is typically used for controlling 
overfitting. The digit number shows how many samples should remain in each node in 
order to continue the splitting process. If there are fewer samples in each node than the 
defined value, the splitting process will stop. In this study, this parameter is used for the 
datasets that contain a higher number of samples 
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- max_features (default = “auto”):. This parameter defines the number of variables that 
are considered during the splitting process. Different values may be allocated based on 
the availability of different attributes such as auto, sqrt, log2, int, float, and None. 

auto = sqrt (n_features) 

sqrt = sqrt (n_features) 

log2 = log2 (n_features) 

None = n_feature  

For instance, if max_features is defined as “sqrt” and nine variables are available, the number 
of features utilized in the analysis would be 3. 

 

FIGURE 0.2 - RANDOM FOREST REGRESSOR HYPERPARAMETERS (HTTPS://SCIKIT-
LEARN.ORG/STABLE/MODULES/GENERATED/SKLEARN.ENSEMBLE.RANDOMFORESTREGRESSOR.HTML) 

Figure 0.2 represents different parameters for random forest regressor. Except for criterion that 
is different for regression problems, other hyperparameters are similar to the random forest 
classifier.  

- Criterion (default = “squared_error”): This parameter also measures the quality of each 
split. Mean squared error (MSE), Mean absolute error (MAE) may be used for the 
evaluation of the splitting process 

These are the most critical parameters that should be tuned essentially in order to achieve the 
most satisfactory results. The RandomizedSearchCV tool in Python is the best choice to find the 
best parameters that lead to higher accuracy. This tool is explained in more detail in the 
different dedicated sections. 

 

Logistic Regression hyperparameters (Classification) 

 

Logistic regression as a binary classifier also has several parameters that may require a tuning 
process.  



163 | P a g e  

 

 

FIGURE 0.3 – LOGISITC REGRESSION HYPERPARAMETERS (HTTPS://SCIKIT-
LEARN.ORG/STABLE/MODULES/GENERATED/SKLEARN.LINEAR_MODEL.LOGISTICREGRESSION.HTML) 

Similar to RF, most of the parameters were kept unchanged during the process. However, some 
of them have been tuned, which are as follows: 

- penalty (default = l1): This parameter indicates the type of penalty that is taken into 
account during the process. Different values can be defined for penalty parameters such 
as l1, l2, elasticnet, and none. Increasing the number of variables would cause 
complexity during the modeling process and probably would lead to overfitting. 
Regularization is a well-known technique that can be employed to prevent overfitting. 
Scikit-learn provides LASSO (l1), Ridge (l2), and Elasticnet (l1 and l2) regression to 
overcome overfitting. Due to the increasing intricacy of the model, the coefficient`s size 
escalates significantly, and applying the penalty term to the magnitude of the 
coefficients would handle this challenge (Swamynathan, 2019). The LASSO (l1) 
regression tries to minimize the coefficients of those variables that have a minor impact 
on the model. The Ridge regression (Tikhonov or l2), on the other hand, guides 
coefficients to be close to zero as much as possible but not zero itself. This penalty can 
be used when many variables add insignificant values to the model's accuracy 
individually but enhance efficiency and accuracy overall. Therefore, these variables 
cannot be excluded from the analysis (James et al., 2013; Swamynathan, 2019). The 
Elasticnet regression is a model that combines both LASSO and Ridge regression to find 
the best values for corresponding coefficients for different input variables. 

- solver (default = “lbfgs”): This parameter is typically utilized in optimization problems. 
The algorithms that may be used for this parameter are sag, saga, lbfgs, and newton-cg. 

sag: this method employs Stochastic Average Gradient descent. Speed-wise, sag is faster than 
other solvers and is recommended to be used for large datasets (a large number of data points 
and a large number of variables).   

saga: is a variant of the sag algorithm. It only supports elasticnet regression penalty terms. 

lbfgs: this is an optimization algorithm and is related to quasi-Newton, and Broyden-Fletcher-
Goldfarb-Sahnno. This algorithm is typically used for small datasets. 

 

Some of the solvers mentioned above merely work with either l1 penalty or l2 penalty. 
Therefore,  this point should be taken into account during the modeling process. 
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XGBOOST (Classification and Regression) 

 

Extreme Gradient Boosting (XGBOOST) is another state-of-the-art algorithm explained in detail 
in the previous chapter. Like other models, XGBOOST also has a bundle of hyperparameters, 
some of which should be explained in more detail. Following are the most influential 
parameters that should be considered during the tuning process. It should be noted that other 
parameters may be adjusted based on the accuracy and the outputs that practitioners are 
seeking. 

 

- min_child_weight (default = 1): The minimum sum of weights related to all instances 
which is required in a child. If the step of partitioning step leads to a node with the sum 
weight of less than min_child_weight, then the partitioning will stop. The value for this 
parameter could be 0 to infinity. 

- Booster (default = gbtree): This parameter defines the booster used for the partitioning 
process. It could be gbtree, gblinear, or dart. 

- eta (default = 0.3): This parameter is the learning rate (step size shrinkage) used during 
the update of each booster, and it helps prevent overfitting. The value can be in the 
range of 0 to 1. 

- Lambda (default =1): This is Ridge term (l2 regularization), with a default value of 1 

- alpha (default = 0): This is parameter is LASSO term (l1 regularization). It should be 
noted that increasing both lambda and alpha would make the model more conservative. 

- gamma (default = 0): This parameter defines the minimum loss reduction in order to 
make a subsequent partition on a leaf node. Same as lambda and alpha, increasing 
gamma would also make the model more conservative. 

It should be mentioned that finding the best parameters for XGBOOST is time-consuming and 
should be done meticulously. 

Artificial Neural Networks (Multi-Layer Perceptron) 

 

The underlying concepts of ANN were explained in the previous chapter in precise detail. In 
addition, the Multi-Layer Perceptron (MLP) algorithm from Scikit-learn has been employed in 
this study. The given figures provided from Scikit-learn documentation indicate all 
hyperparameters that can be tuned for the MLP algorithm (Figure 0.4; Figure 0.5). In the 
following section, some of the most important parameters are briefly explained. 
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FIGURE 0.4 – MULTI-LAYER PERCEPTRON CLASSIFIER (HTTPS://SCIKIT-
LEARN.ORG/STABLE/MODULES/GENERATED/SKLEARN.NEURAL_NETWORK.MLPCLASSIFIER.HTML) 

 

FIGURE 0.5 - MULTI-LAYER PERCEPTRON REGRESSOR (HTTPS://SCIKIT-
LEARN.ORG/STABLE/MODULES/GENERATED/SKLEARN.NEURAL_NETWORK.MLPREGRESSOR.HTML) 

- hidden_layer_sizes: (default = (100,)): Represents the number of neurons in ith layer of 
the MLP. For example, (25,15,) defines a model with two hidden layers with 
corresponding neurons, 25 and 15 for the first and second layers, respectively. 

- activation (default = “relu”):   activation parameter determines the activation function 
discussed before. These functions could be sigmoid, tanh, and relu. However, there are 
other activation functions, but only these three have been used during the tuning 
process. 

Sigmoid is a mathematical function with an output range between 0 and 1 (Figure 0.6)(Verdhan, 
2020). This function is usually used for binary classification in the output layer. However, it can 
also be used within the hidden layers. 

 

FIGURE 0.6 – SIGMOID ACTIVATION FUNCTION (VERDHAN, 2020)  
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tanh or Tangent hyperbolic is an altered version of the sigmoid with a range between -1 and +1. 
This method is 0 based and is usually used for hidden layers (Verdhan, 2020).  

 

 

FIGURE 0.7 -  TANH FUNCTION (VERDHAN, 2020) 

relu or Rectified Linear Unit is probably the most renowned activation function and is known for 
its simplicity. F(X) = max(x,0): this function provides the output of x for x>0, otherwise, 0 would 
be the output. The simplicity of ReLU makes it very straightforward and fast to train, and it is 
usually used for hidden layers. 

 

 

FIGURE 0.8 – RELU FUNCTION (VERDHAN, 2020) 

Either of these functions can be chosen based on the results of cross-validation and evaluation 
metrics. 

 

- Solver (default = “adam”): This parameter is used for optimization. Adam, sgd, and lbfgs 
are the algorithms that can be used for optimization.  
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Sgd stands for stochastic gradient descent, and adam is another method based on sgd that 
other developers have introduced. Adam works well with large datasets in terms of validation 
and training time. 

lbfgs is a method of optimization from the family of quasi-Newton 

 

- alpha (default = 0.0001): This parameter is l2 penalty and is used for optimization  

- momentum (default = 0.9): This parameter is used for updating the gradient descent 
when tries to minimize the cost function. 

It should be noted that hyperparameters for both classification and regression neural networks 
are the same and can be found using RandomizedSearchCV or GridSearchCV approaches. 

Elasticnet Regression 

 

Elasticnet regression is a combination of Ridge regression (ℓ2) and LASSO regression (ℓ1). This 
combination helps the model learn where few of the coefficients` weights are zero (LASSO) 
while keeping the settings of Ridge regression. In addition, this model would be helpful where 
there are, for instance, two highly correlated variables. In this case, LASSO would probably pick 
one of these attributes, whereas Elasticnet may select both variables (James et al., 2013; Rebala 
et al., 2019; Swamynathan, 2019; Scikit-learn Documentation). Figure 0.9 from Scikit-learn 
documentation shows all hyperparameters for this algorithm. Also, the most critical parameters 
of Elasticnet are as follow: 

 

FIGURE 0.9 – ELASTICNET HYPERPARAMETERS (HTTPS://SCIKIT-
LEARN.ORG/STABLE/MODULES/GENERATED/SKLEARN.LINEAR_MODEL.ELASTICNET.HTML) 

- alpha (default = 1): Constant that multiplies the penalties. According to Scikit-learn 
documentation, if this value is considered to be 0, it would be equivalent to an ordinary 
least square, which Linear Regression solves. 

- l1_ratio (default = 1): This parameter incorporate two penalty terms, ℓ1 and ℓ2. The 
range of this parameter is between 0 and 1. If 0, then the penalty would be l1, and if it 
equals 1, the penalty would be l1. For the range between 0 and 1, the combination of 
both penalties is used. 

- max_iter (default=1000): Th maximum number of iterations could be done during the 
modeling process.  
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K-means Clustering 

 

Cluster analysis is reported to have been the most popular unsupervised learning approach 
(Verdhan, 2020). This method typically partitions a dataset based on the similarity among the 
data points. In the water domain, this method can be applied for creating homogenous groups 
of pipes. This homogeneity can be based on different attributes such as material, diameter, 
length, and other available features. The clustering method was first introduced in the 1930s in 
the area of anthropology and psychology (Swamynathan, 2019). 

K-Means is one of the most well-known approaches among clustering methods. This algorithm 
is an exquisite and straightforward method for partitioning a dataset into K discrete and un-
overlapping clusters (James et al., 2013). In order to apply this method, first, the proper 
number of K should be determined; then K-means algorithm will go through the dataset and 
allocate each cluster to each data point. The provided figure indicates the clustering approach 
with the K-means method based on different values of K (Figure 0.10). 

 

FIGURE 0.10 – K-MEANS CLUSTERING METHOD BASED ON DIFFERENT K(JAMES ET AL., 2013) 

 

Following are the main two steps performed during the application of K-means clustering: 

1- The number of K is defined. The K is the number of centroids used in K-means 
clustering. Then each data point is assigned to the nearest cluster. The centroid 
is the mathematical mean position of all data points. 

2- In the next step, the centroid is recalculated based on the average coordinates of 
all the data points. It should be mentioned that K-Means is created based on 
Euclidean distance. 
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FIGURE 0.11 – EUCLIDEAN DISTANCE EQUATION (SWAMYNATHAN, 2019) 

 

 

FIGURE 0.12 – K-MEANS CLUSTERING PARAMETRS (HTTPS://SCIKIT-
LEARN.ORG/STABLE/MODULES/GENERATED/SKLEARN.CLUSTER.KMEANS.HTML) 

 

The only parameter that has been adjusted in this study is the number of K (or n_clusters). 

Classification and regression evaluation metrics 

 

The main objective of developing a machine learning model is to predict the future (Verdhan, 
2020). Hence, the most crucial step before deploying final models is the evaluation to find the 
best predictive model. Furthermore, evaluating the models helps specialists to better opt for 
the most efficient algorithm. It should be mentioned that this step typically varies between 
classification and regression models as each method has different evaluation metrics. The 
following sections provide more information regarding each metric and the way that they are 
calculated.  

Confusion matrix (Accuracy, Precision, Recall, and f-score) 

 

Confusion Matrix is a specifically designed table that is utilized to evaluate any classification 
algorithms (Swamynathan, 2019). This matrix is one of the most well-known approaches that 
can be used for either a binary classification or multiclass classification and is also represented 
as a two by two table for binary classifications (Verdhan, 2020). This method is an appropriate 
way to measure the efficiency of a machine learning model. From this matrix, various metrics 
can be extracted to evaluate the model performance. These metrics, for instance, could be 
accuracy, precision, recall, and f1-score, which are explained in the following sections. Figure 
0.13 gives more insight regarding the confusion matrix and the values included in this table.  
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  Predicted 

 
 

Negative 
(False) 

Positive 
(True) 

Actual 

Negative 
(False) 

True Negative 
(TN) 

False Positive 
(FP) 

Positive 
(True) 

False Negative 
(FN) 

True Positive 
(TP) 

 

FIGURE 0.13 – BASE CONFUSION MATRIX FOR A BINARY CLASSIFIER 

Before going into more detail about the evaluation metrics, the values within the matrix should 
be clearly explained.  

- True Negative or TN: This value is an indicator for Actual FALSE observations that are 
predicted correctly as False or Negative 

- False Positive or FP: This value is an indicator for Actual FALSE observations that are 
mispredicted as True or Positive 

- False Negative or FN: This value is an indicator for Actual TRUE observations that are 
mispredicted as False or Negative 

- True Positive or TP: This value is an indicator for Actual TRUE observations that are 
predicted correctly as True or Positive 

An acceptable model should have a relatively higher TN and TP than FN and FP (Verdhan, 2020). 
Furthermore, from the mentioned terminologies above, several metrics can be extracted. 
Following are the most important metrics for evaluation of a classification model: 

- Accuracy: This metric indicates that how many or what percentage of predictions are 
made correctly. (when considering imbalanced data, this metric is not an appropriate 
choice) 

- Precision: This metric shows that what percentage of positive predictions is correct 

- Recall (Sensitivity or True-positive rate): This indicator shows what percentage of 
positive observations are caught by the model. 

- F1 Score: F1 is a harmonic mean of Precision and Recall. For any imbalanced dataset, 
this is the best choice to evaluate the model. (Swamynathan, 2019; Verdhan, 2020) 
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- False-positive rate: This metric is an indicator that shows what percentage of actual 
False is predicted as True. 

- AUC/ROC: Receiving operating characteristics curve (ROC) is employed for comparing 
different predictive models. This metric is a plot between True Positive Rate (TPR) and 
False Positive Rate (FPR). AUC, or the area under the ROC curve, is a measure that 
shows the goodness of the fit. This metric can be used as a final evaluation step where 
the result of classifiers are significantly close (Verdhan, 2020). 

The given table provides more information about all metrics that can be calculated based on 
the confusion matrix (TABLE 0.1). 

TABLE 0.10.1 – CLASSIFICATION PERFORMANCE METRICS (SWAMYNATHAN, 2019)  

 

 

MAE, MSE, RMSE, R-Squared 

 

The difference between predicted values and actual conservations is called error which is made 
during the prediction step. This error should be minimized to achieve the best model. There are 
several approaches to evaluate the robustness of a regression model based on the error 
produced by the predictive models. These approaches are briefly explained in the following 
sections.  

- Mean Absolute Error (MAE): From the name can be inferred that this metric is the 
average of absolute differences between predictions and actual values. The model tries 
to minimize this value 
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 𝑀𝐴𝐸 =
∑( |𝑦̂𝑖 − 𝑦𝑖|)

𝑛
 (12) 

 

Where: 

 𝑦𝑖 is the actual value; 𝑦̂𝑖 is the predicted value; and n is the number of observations 

- Mean Squared Error (MSE): This metric indicates the average of the squared error. 

 𝑀𝑆𝐸 =
∑( |𝑦̂𝑖 − 𝑦𝑖|)

2

𝑛
 (13) 

 

- Root Mean Squared Error (RMSE): The square root of MSE is known as RMSE. This 
metric should be used to find out how close the predicted values and actual values are. 

 𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 (14) 

 

- R-Squared or R2: It shows the total portion of the variance in the dependent variable, 
and it is one of the most popular metrics for evaluating a regression model. This value 
falls between  0 and 1 (Swamynathan, 2019). The closer this value is to 1, the more 
accurate the regression model is 

 𝑆𝑆𝑇 (𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑡𝑜𝑡𝑎𝑙) =  (𝑦𝑖 − 𝑦̅)2 (15) 

 

 𝑆𝑆𝑅 (𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑎𝑢𝑟𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠) =  (𝑦̂𝑖 − 𝑦̅)2 (16) 

 

 𝑅 − 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 =  
∑𝑆𝑆𝑅

∑𝑆𝑆𝑇
=  

∑(𝑦̂𝑖 − 𝑦̅)2

∑(𝑦𝑖 − 𝑦̅)2
 (17) 

 

Where:  

𝑦̅  is the mean of dependent variables 

It should be noted that the interpretation of these metrics significantly relies on the domain 
that the model is created based on its dataset. 
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Validation method (n-fold cross-validation) – Train, Validate, and test 

(This section is provided based on information on Scikit-learn documentation site) 

 

It is an unjustifiable action if the same dataset is used for both training and testing the model. 
This type of model usually does not perform well on an unseen dataset, which is called 
overfitting. In order to prevent this phenomenon, a specific part of the dataset is held out as a 
test set. Learning the pattern on the training dataset, the predictive model then tests the model 
on the test samples. For instance, an algorithm can be trained on 80% of the dataset and tested 
on the remaining 20%. Nonetheless, a model created based on training and test set is still prone 
to overfitting. One way to address this challenge is to put another part of a dataset as a 
validation set. The model is then learned based on the training set and validated with the 
validation set. Should the results be satisfactory, then the model can be evaluated on the test 
set. 

An important downside of partitioning a dataset into three parts is that the number of 
instances declines substantially, which can be used for the learning process. A well-known 
solution to this issue is a method so-called cross-validation. In this method still, a test set should 
be put aside for the final evaluation. However, the validation set is no longer required when 
employing the cross-validation method. In the method called k-fold cross-validation, the 
training set is divided into k parts. Then a model is learned using k – 1 folds from the training 
set. The remaining fold of data is validated based on the output model. The model is trained 
and validated k times, and the result is eventually the average of the numbers calculated in the 
recurring loop. Financially-wise, this method could be expensive even though it employs as 
many data points as possible during the training process. Figure 0.14Error! Reference source 
not found. indicates the concept of cross-validation, which is extracted from Scikit-learn 
documentation.  

 

FIGURE 0.14 – CROSS-VALIDATION SCHEME BASED ON SCIKIT-LEARN DOCUMENTATION 
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GridsearchCV and RandomizedsearchCV 

 

- GridsearchCV:  For a specific machine learning model, it is possible to define a list of 
hyperparameters that are worth trying. Using GridsearchCV provided by Scikit-learn, the 
model is built based on all possible combinations of defined parameters (Swamynathan, 
2019). The best combination is selected based on the previously mentioned cross-
validation method. However, the GridsearchCV method is computationally expensive 
when the number of parameters increases. For example, consider 5-fold cross-validation 
for three parameters and each parameter with six predefined values. The number of 
combinations for this Gridsearch would be 3645, one of which should be selected as the 
best combination. Given figure indicates all parameters that GridsearchCV can use. The 
most critical parameters are the estimator (base model, such as the 
RandomForestClassifier), scoring (can be f1 score for classifications), CV (number of 
folds for cross-validation, and param_grid (dictionary including desired parameters). 

 

 

FIGURE 0.15 – GRIDSEARCHCV HYPERPARAMETERS (HTTPS://SCIKIT-
LEARN.ORG/STABLE/MODULES/GENERATED/SKLEARN.MODEL_SELECTION.GRIDSEARCHCV.HTML) 

 

- RandomizedSearchCV:  As from the name can be inferred, numerical parameters can be 
defined as a range, unlike GridsearchCV, so that the algorithm would be able to search 
for the best parameters randomly. The number of iteration and combinations that can 
be used is readily defined. However, the iteration number should be adjusted carefully 
as missing the best parameters in this method is very likely to happen. Almost all 
parameters are similar to that of GridSearchCV except for a few parameters. 
param_distribution (dictionary including desired parameters and ranges), and n_iter 
(number of parameters sampled) are among these parameters. The given figure shows 
the parameters for Random Search, based on Scikit-learn documentation. 
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FIGURE 0.16 - RANDOMIZEDSEARCHCV HYPERPARAMETERS (HTTPS://SCIKIT-
LEARN.ORG/STABLE/MODULES/GENERATED/SKLEARN.MODEL_SELECTION.RANDOMIZEDSEARCHCV.HTML) 

Based on the number of data points and the time required for the modeling process, one of the 
mentioned methods is used for different utilities in this study. 

 

An Endeavour for handling imbalanced datasets using Smote method 

 

As previously discussed in chapter 2 of this study, the existence of an imbalanced dataset is an 
inevitable part of data analytic and machine learning. Nonetheless, some oversampling and 
under sampling methods, such as Synthetic Minority Oversampling Technique (SMOTE), can be 
used to cope with imbalanced datasets. The algorithm performs the oversampling technique to 
rebalance the base training set. Instead of simply duplicating the minority class data points, the 
principle idea of SMOTE is to produce artificial instances (Fernandez et al., 2018). The new 
sample is produced based on the similarity between several minority class samples with a 
determined distance. This algorithm is created based on the feature space instead of the data 
space, which means that the algorithm is learned and created based on the features` values. 
For instance, assume Xi is a minority class`s sample, a base sample for creating artificial 
samples. Based on the distance metric (Euclidean Distance), several nearest neighbors (Xi1 to 
Xi4) are selected from the training part of the dataset. Eventually, an interpolation is performed 
to create new synthetic samples (r1 to r4) based on the nearest neighbors (Figure 0.17). 

 

FIGURE 0.17 – CREATING SYNTHETIC INSTANCES IN THE SMOTE ALGORITHM (FERNANDEZ ET AL., 2018) 

Using this approach may help to overcome the challenges caused by the imbalanced dataset. 
Results regarding the impact of SMOTE on the accuracy of the models are provided in chapter 5 
of this study.  
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Normalization 

In some cases, the unit of provided input variables may vary; therefore, the modeling results 
may be skewed toward those variables with higher values (Swamynathan, 2019). For instance, 
in this study, age and length have different ranges of values, four years and 1000 m, 
respectively. Therefore, transforming these values to the same range would overcome the 
skewing issue. 

The Standardization (z-score) method has been employed for this study, making the mean value 
0 and the standard deviation 1 (Swamynathan, 2019). Given equation shows that how a value 
can be standardized based on this assumption.  

 

 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑋 =  
( 𝑥 − 𝑚𝑒𝑎𝑛 )

(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)
 (18) 

 

StandardScaler function from Scikit-Learn was used for this step of the study. Therefore, all 
values were transformed to the same range for the models that required standardization. One 
of the models, for instance, is ANN that requires normalization before the learning process. 

 

Dummy Variables 

 

In order to be able to run algorithms in python, the categorical attributes, for instance, 
material, should have been transformed to a new numerical format. Hence, wherever the value 
of the categorical attribute is present, one is given to the cell; otherwise, 0 is given to that cell 
(Swamynathan, 2019; Verdhan, 2020). Thus, for instance, if the cast iron pipe exists for a 
specific data point, then that cell is given 1, else it would be 0. For this purpose, the 
‘get_dummies’ function from python has been used. 

 

Overfitting and Underfitting Control 

 

When creating a predictive model, overfitting and underfitting are common challenges 
(Verdhan, 2020), and they are often called bias-variance tradeoffs. Underfitting happens when 
the model cannot learn a desirable pattern while being trained, and the model is weak. On the 
other hand, overfitting is the case when a model learns patterns from the dataset more 
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accurately, although the result for the test set does not show satisfactory performance. The 
given figures provide the concept of overfitting and underfitting (Figure 0.18; Figure 0.19).  

 

FIGURE 0.18 – UNDERFITTING WHEN A VERY SIMPLE MODEL HAS BEEN PRODUCED (VERDHAN, 2020) 

 

FIGURE 0.19 – OVERFITTING WHERE A VERY INTRICATE MODEL HAS BEEN PRODUCED (VERDHAN, 2020) 

 

There are different approaches to find out whether there is either overfitting or underfitting for 
the created models. One of these methods is plotting the F1-Score for training and test sets 
based on specific criteria. 

The random forest as an example was chosen to make this step more clear to perceive. As 
previously mentioned, there are several hyperparameters for random forest algorithm. 
However, maximum depth is the one that may control overfitting and underfitting conditions. 
Therefore, when the model is created based on different parameters, it is also tested based on 
the different values for maximum depth. Therefore, this model was analyzed in two steps: 
based on the F1-Score and the improvement to detect correct values (improve misclassification 
values). 

The given figure is created based on the random forest algorithm, which plots F1-Score as the 
most critical metric in this study versus maximum depth defined for the model (Figure 0.20). It is 
evident that, although insignificant, overfitting does exist in this case. For example, after a 
depth of 8, the result for the test set worsened compared to the training set. Therefore, this 
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graph shows that the number for maximum depth should be increased carefully in order to 
prevent overfitting. 

 

FIGURE 0.20 – TEST RANDOM FOREST MODEL FOR OVERFITTING AND UNDERFITTING, BASED ON THE F1-SCORE 

(MARKHAM) 

 

Furthermore, the random forest model also was analyzed based on the number of 
misclassification values. The given line graph plots number of misclassified values and the 
maximum depth defined for the random forest algorithm (Figure 0.21). 

An improvement can be seen when the depth of trees increases. This enhancement starts with 
over 120 misclassified data points for a depth of one, and the number of misclassified samples 
declines abruptly, as depth surges from 1 to 7, reaching a minimum of around 35 misclassified 
instances. However, no significant improvement can be noticed from the depth of 7 to above 
within the graph. This indicates that there is no need to use a maximum depth of more than 7 
in this study. Thus, other hyperparameters may be tuned in order to decrease the number of 
misclassified samples. 

This test only considers maximum depth, which is insufficient to ensure that the model over fits 
or under fits the dataset. Therefore, all influential hyperparameters should be evaluated. 
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FIGURE 0.21 - TEST RANDOM FOREST MODEL FOR OVERFITTING AND UNDERFITTING, BASED ON THE NUMBER OF 

MISCLASSIFIED SAMPLES (MARKHAM) 

APPENDIX C – CLASSIFICATION RESULTS (ALL CITIES IN DETAIL) 

Saskatoon 

 

In this section, results related to the city of Saskatoon are provided. After cleaning and 
preparing the classification dataset, 32,306 pipes remained, including different attributes; 
diameter, material, joint type, length, lining material, lining status, lining age, age, and more 
importantly, target (dependent variable). 

PVC pipe is the most frequent type in terms of material, which accounts for 56.56% of non-
broken pipes, followed by asbestos cement and cast iron with 28.11% and 12.39% contribution. 
However, cast-iron makes up 48.77% among broken pipes, slightly more than asbestos cement 
material with a 46.28% contribution. It is worth mentioning that other materials within the 
Saskatoon network have a small proportion. The lack of sufficient information for these types of 
pipes would decrease the accuracy of the final predictive model. Nonetheless, all materials 
have been used for the modeling process in the 1st step. Furthermore, the most frequent 
materials have also been analyzed separately, and related results are provided in the appendix 
part of this study. The following bar chart represents more information considering different 
materials within this classification dataset (Figure 0.1). 
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FIGURE 0.1 - PERCENTAGE OF EACH MATERIAL FOR BOTH CLASSES (0,1) BASED ON TOTAL PERCENTAGE OF EACH 
CLASS (SASKATOON) 

 

As previously mentioned, there are 32,306 pipes within the network, including 28,635 non-
broken pipes (class 0) and 3,671 broken pipes (class 1). Dataset is split into train, validation, and 
test set (train, validation = 80%, test = 20%). After the splitting process, there are 5,731 non-
broken pipes and 731 broken pipes for the test set. Given is the confusion matrix which has 
been prepared based on the evaluation of the test (TABLE 0.1). Explicitly can be seen that the 
XGBOOST classifier was able to detect the highest number of broken pipes. However, random 
forest predicted non-broken pipes more accurately, with the number of 5,700. 

TABLE 0.10.1  - CONFUSION MATRIX FOR ALL MATERIALS (SASKATOON) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 172 559 

Actual 
1 142 589 

0 5700 31 0 5686 45 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1  242 489   1 153 578 

0  5658 73  Actual 0 5675 56 

      
     

0 = None-Broken 
     1 = Broken 
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From the extracted results, XGBOOST was found to be the best algorithm to detect a pattern in 
the dataset with accuracy and F1-score of 97% and 89%, respectively (TABLE 0.2). In order to 
find out how a homogenous group of pipes could affect the accuracy, other materials were 
analyzed separately. The result for cast iron pipes shows approximately a similar accuracy to 
that of all materials. 

SMOTE has also been applied to the entire dataset, including all materials, to determine 
whether the overall accuracy can be improved. The results represented that SMOTE method 
decreased the model`s performance, showing that oversampling methods do not necessarily 
improve the evaluation scores. For instance, the F1-Score for XGBOOST declined from 89% to 
83% in the SMOTE method, or the ANN model's result remained unchanged. The ANN 
algorithm with an 85% F1-score has the most satisfactory performance for SMOTE algorithm. 
Other results regarding different materials are provided in the Appendix section. 

 

TABLE 0.20.2 – CLASSIFICATION RESULTS (SASKATOON) 

Algorithm 
Accuracy F1 - Score 

AM SMOTE Cast Iron AM SMOTE Cast Iron 

Random Forest 96%   95% 92%  85%  81%  86% 

XGBOOST 97% 96% 94% 89% 83% 89% 

Logistic Regression 95% 90% 86% 78% 66% 78% 

ANN 97%  97%  92%  85%  85%  86% 

       * AM = All Materials,  
* SMOTE = All metrials with SMOTE method  

 
    

 

FIGURE 0.2 – AVERAGE OF PROBABILITY OF FAILURE BASED ON AGE (SASKATOON) 
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Winnipeg 

 

The most comprehensive dataset has been provided by Winnipeg utility. After the cleaning 
process, this dataset includes 102,631 samples containing different variables such as material, 
diameter, length, coating material, age, and the target variable. 

Similar to Saskatoon's, PVC pipes have the highest contribution to non-broken pipes, which is 
67.85%. For broken pipes, cast iron accounts for almost 70.35% of the historical records, 
followed by asbestos cement pipes and ductile iron, with 22.19% and 4.29% in successive. 
However, again for the majority of materials, no adequate information is available. Therefore, 
the results for these specific materials are not as much reliable as, for instance, cast iron and 
asbestos cement pipes. Machine learning algorithms are typically sensitive to cases where 
enough information is not available since they cannot learn a pattern from the datasets 
efficiently and adequately. Below is the figure that shows the percentage of each material 
based on their classes (Figure 0.3). 

 

FIGURE 0.3 - PERCENTAGE OF EACH MATERIAL FOR BOTH CLASSES (0,1) BASED ON TOTAL PERCENTAGE OF EACH 
CLASS (WINNIPEG) 

 

From the entire data points within the dataset, 94,498 pipes are non-broken, and 8,133 are 
broken. Thus, even though the dataset format may be considered imbalanced, many broken 
pipes can be employed in the learning process. As discussed before, 20% of these pipes belong 
to the test set, including 18,898 class 0 pipes and 1,629 class 1 pipes. Confusion for all materials 
is provided below, which compares the power of prediction between various models (TABLE 
0.3). Again the XGBOOST algorithm showed better performance for detecting broken pipes 
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(class 1), and random forest with an infinitesimal difference could predict the maximum 
number of non-broken pipes. 

Nonetheless, the XGBOOST classifier for all materials and cast iron pipes indicated a better 
performance with an F1-Score of 74% and 75%, respectively (TABLE 0.4). Like Saskatoon, the 
ANN was the best model for the SMOTE algorithm with an F1-Score of 73%, which remained 
unchanged for Winnipeg. F1-Score decreased from AM to SMOTE, indicating that SMOTE may 
not be used where there is sufficient information for the minority class. 

TABLE 0.30.3 - CONFUSION MATRIX FOR ALL MATERIALS (WINNIPEG) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 651 978 

Actual 
1 563 1066 

0 18786 112 0 18730 168 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 929 700   1 577 1052 

0 18644 254 Actual 0 18709 189 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.40.4 - CLASSIFICATION RESULTS (WINNIPEG) 

Algorithm 
Accuracy F1 - Score 

AM SMOTE Cast Iron AM SMOTE Cast Iron 

Random Forest 96% 92% 87% 72% 62% 74% 

XGBOOST 96% 94% 87% 74% 68% 75% 

Logistic Regression 94% 87% 77% 54% 52% 65% 

ANN 96% 96% 86% 73% 73% 74% 

       * AM = All Materials,  
* SMOTE = All metrials with SMOTE method  
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FIGURE 0.4 - AVERAGE OF PROBABILITY OF FAILURE BASED ON AGE (WINNIPEG) 

Kitchener 

 

In this section, results related to the city of Kitchener located in Ontario province are provided. 
This dataset consists of 14,568 segments and various input variables such as Material, 
LiningMaterial, Diameter, LiningStatus, Length, Age, LiningAge, and more importantly, the 
target attribute. 
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For non-broken pipes, PVC and DI have the highest frequency in the network, with 40% and 
37%, in successive, followed by CI pipes with a 16.65% contribution. The PVCP and Concrete 
pipes are among the other materials with having a small proportion of the inventory records 
(Figure 0.5). 

On the other hand, CI with 69.52% of the entire incidents is a predominant type of material for 
broken pipes. Ductile Iron is another material with a relatively significant number of recorded 
failures, 27.52%, followed by PVC with 2% involvement. Thus, cast Iron pipes seem to be in an 
extreme deterioration condition among most of the networks in this study.  

 

FIGURE 0.5 - PERCENTAGE OF EACH MATERIAL FOR BOTH CLASSES (0,1) BASED ON TOTAL PERCENTAGE OF EACH 
CLASS (KITCHENER) 

For the Kitchener network, 13,587 pipes are non-broken, and 981 are collected as broken. 
Therefore, this dataset may be assumed to be an imbalanced type. With a 20% test size, the 
number of broken pipes is 210, and the non-broken pipe is 2,704.  

 

TABLE 0.50.5 - CONFUSION MATRIX FOR ALL MATERIALS (KITCHENER) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 109 101 

Actual 
1 103 107 

0 2701 3 0 2680 24 

Logistic Regression Predicted ANN Predicted 
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0 1 0 1 

Actual 
1 117 93   1 100 110 

0 2692 12 Actual 0 2689 15 

      
     

0 = None-Broken, 1 = Broken 
      

For the Kitchener dataset (AM), ANN showed the accuracy and F1-score of 96% and 66%, 
respectively. Thus, this algorithm is considered to be the best one for this network when 
considering all materials. However, when the dataset was partitioned based on different 
materials, Cast Iron showed a higher F1-score, although it showed a lower accuracy than all 
materials. Therefore, the XGBOOST is the best classifier for Cast Iron pipes in the Kitchener with 
an F1-score of 78%. SMOTE method was also utilized for having better accuracy. However, this 
method did not show a good performance. 

Furthermore, the SMOTE method does not perform well with all kinds of imbalanced datasets. 
Hence, the results should always be compared to determine whether the oversampling method 
can improve the algorithm's performance. The given figure compares different models based 
on the accuracy and F1-score (TABLE 0.6). 

TABLE 0.60.6 - CLASSIFICATION RESULTS (KITCHENER) 

Algorithm 
Accuracy F1 - Score 

AM SMOTE Cast Iron AM SMOTE Cast Iron 

Random Forest 96% 86% 91% 64% 46% 77% 

XGBOOST 96% 90% 91% 63% 54% 78% 

Logistic Regression 96% 83% 89% 59% 42% 73% 

ANN 96% 96% 90% 66% 66% 77% 

* AM = All Materials,  

      * SMOTE = All metrials with SMOTE method 

     

Markham 

 

Kitchener is another utility analyzed in this study, with 10,786 pipes within the classification 
dataset. There are different input variables for this part of the study, including material, 
diameter, length, lining status, protection status, protection age, lining age, and finally, target 
variable. 
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Among non-broken pipes, PVC pipes are the predominant type of material with 79.51%, 
followed by ductile iron with a 12.37% contribution. Other materials account for small 
proportions of non-broken pipes. Furthermore, considering broken pipes, ductile iron with 
54.98% is the primary type of material that experienced more failures than others. This material 
is followed by cast iron and PVC pipes with 32.95%, and 9.62% recorded failures, respectively. 
The given figure compares both class 0 and class 1 in terms of material frequency (Figure 0.6). 

 

FIGURE 0.6 - PERCENTAGE OF EACH MATERIAL FOR BOTH CLASSES (0,1) BASED ON TOTAL PERCENTAGE OF EACH 
CLASS (MARKHAM) 

The number of failures experienced a peak for pipes with the age of 10 to 30. From this, it can 
be inferred that younger pipes are experiencing most failures within the Markham network. 
However, it should be noted that the distribution of age may vary among different utilities 
based on the pre-defined framework for data collection. More importantly, most of the failures 
happened during the in-usage step of the Bathtub curve. 

There are 10,786 segments within the classification dataset, among which 10,173 are non-
broken pipes and 613 are broken pipes. From these numbers, it is clear that the type of dataset 
can be considered as imbalanced. Like other utilities, the confusion matrix is created based on a 
20% test set, including 2,030 pipes in class 0 and 128 pipes in class 1. From the given table, it 
can be noticed that the accuracy scores for all groups are relatively similar, with 98% for all 
materials. However, when the models are compared with F1-Score, ANN showed a better 
performance with 86%. For all materials using SMOTE algorithm, ANN again indicated a better 
performance with an 86% F1-Score, showing that the performance of ANN usually stays 
unchanged between all categories as opposed to other algorithms, which shows decreasing 
accuracy when using SMOTE. Furthermore, logistic regression represented a better 
performance for CI pipes with 96% of F1-Score despite all models having approximately similar 
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scores for this group of analysis. The following table demonstrates the overall accuracy of these 
classifiers, and more information is provided in the appendix section of this study (TABLE 0.7; 
TABLE 0.8). 

TABLE 0.70.7 - CONFUSION MATRIX FOR ALL MATERIALS (MARKHAM) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 32 96 

Actual 
1 30 98 

0 2028 2 0 2026 4 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 36 92   1 26 102 

0 2024 6 Actual 0 2023 7 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.80.8 - CLASSIFICATION RESULTS (MARKHAM) 

Algorithm 
Accuracy F1 - Score 

AM SMOTE Cast Iron AM SMOTE Cast Iron 

Random Forest 98% 98% 94% 84% 83% 95% 

XGBOOST 98% 98% 94% 85% 80% 95% 

Logistic Regression 98% 96% 96% 81% 70% 96% 

ANN 98% 98% 93% 86% 86% 94% 

* AM = All Materials,  
      * SMOTE = All metrials with SMOTE method 

     

Waterloo 

 

Like other cities, followed by the data cleaning process, the classification dataset was prepared 
to calculate the probability of failure for the Waterloo network. This dataset consists of 7,532 
pipes with different attributes such as diameter, material, length, lining status, lining material, 
lining age, age, and the target variable. 
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Various types of materials have been installed in Waterloo, a list of which can be seen in the 
given figure. PVC pipes account for almost 58.45% of the non-broken pipes, followed by CI and 
DI, which make up 26.13% and 14.80%, respectively. The CI pipes, once more, DI pipes are the 
most frequent type, with 81.71% and 15.28%, among total broken pipes.  

 

FIGURE 0.7 - PERCENTAGE OF EACH MATERIAL FOR BOTH CLASSES (0,1) BASED ON TOTAL PERCENTAGE OF EACH 
CLASS (WATERLOO) 

As previously mentioned, the target variable includes two classes; class 0 and class 1. Among 
the entire pipes, 7,100 are related to class 0 or non-broken, and 432 pipes are related to class 1 
or broken pipes. Thus, 20% of these pipes belong to the test set with 1,402 pipes for class 0 and 
105 pipes for class 1. Therefore, the following confusion matrix was prepared from this test set, 
and XGBOOST represented a better performance in predicting broken pipes (TABLE 0.9). 

TABLE 0.90.9 - CONFUSION MATRIX FOR ALL MATERIALS (WATERLOO) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 72 33 

Actual 
1 61 44 

0 1397 5 0 1392 10 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 1 80 25   1 65 40 
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0 1392 10 Actual 0 1391 11 

      
     

0 = None-Broken 
     1 = Broken 
      

Due to the imbalanced format of the dataset, the predictive models were not able to show 
satisfactory performance. Logistic regression with an F1-score of 36% was the weakest classifier 
for AM and SMOTE categories. XGBOOST, however, indicated a better F1-Score among these 
algorithms. Accuracy and F1-Score for XGBOOST are 95% and 55% for all materials, and in the 
best case, F1-Score for cast iron pipes is 67%. Comparing the results between different 
categories indicates that partitioning pipe into homogenous groups may increase the 
performance of machine learning models. Results related to other models are provided in the 
table (TABLE 5.19), and further information is found in the appendix section. 

 

TABLE 0.100.10 - CLASSIFICATION RESULTS (WATERLOO) 

Algorithm 
Accuracy F1 - Score 

AM SMOTE Cast Iron AM SMOTE Cast Iron 

Random Forest 95% 93% 89% 46% 59% 56% 

XGBOOST 95% 94% 91% 55% 61% 67% 

Logistic Regression 94% 83% 83% 36% 42% 58% 

ANN 95% 95% 89% 51% 52% 58% 

* AM = All Materials,  

      * SMOTE = All metrials with SMOTE method 

     

Region of Waterloo 

Region of Waterloo is another network that has been analyzed carefully. This network includes 
4,517 pipes with different characteristics such as material, length, diameter, lining status, lining 
material, lining age, age, and the target variable. 

Among non-broken pipes, PVC is the most frequent type with almost 50% of the total, followed 
by ductile iron, concrete, cast iron, and asbestos cement with 27.83%, 8.40%, 7.29%, and 
5.39%, respectively. For broken pipes, however, ductile iron experienced more failures with a 
37.76% contribution. Cast iron also accounts for almost 32.65% of broken pipes. It should be 
noted that the number of broken pipes compared to non-broken pipes is significantly fewer, 
and this shape of the dataset caused significant challenges while learning the models. The given 
figure indicates the frequency of each material based on different break statuses (Figure 0.8). 
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FIGURE 0.8 - PERCENTAGE OF EACH MATERIAL FOR BOTH CLASSES (0,1) BASED ON TOTAL PERCENTAGE OF EACH 
CLASS (REGION OF WATERLOO) 

 

As previously discussed in previous chapters, having an imbalanced dataset may cause some 
challenges for various algorithms during the learning process. For example, there is a minority 
class and a majority class in most classification problems. Should the rate of these classes be 
worse than 1:10, then that dataset can be considered imbalanced. 

Here, the Region of Waterloo has such a structure based on the information, with a rate of 
1:50. From all pipes, 4,419 are reported as non-broken, and merely 98 unique pipes were 
reported as broken. Turning this dataset into a train, validation, and test set would result in 23 
broken pipes and 881 non-broken pipes, leading to difficulty for the algorithms to learn a logical 
and satisfactory pattern from broken pipes. 

The given confusion matrix compares the results of all four models for the Region of Waterloo 
network. It can be seen that random forest, XGBOOST, and ANN could not correctly predict the 
broken pipes, and there is a significant misclassification rate. The logistic regression model, 
however, was able to predict 16 broken pipes out of 23. This indicates that in some cases, 
where the dataset is significantly imbalanced, this algorithm is more powerful to detect broken 
pipes. Nonetheless, it was not able to detect the non-broken pipes correctly. Overall, ANN 
indicated a better performance in the prediction of both classes with an F1-Score of 19%. 
However, when SMOTE method was applied to overcome challenges related to imbalanced 
format, XGBOOST indicated a better performance with a 28% F1-Score. Finally, random forest 
with an F1-Score of 57% for cast iron pipes and Accuracy of 92% was the best predictive model. 
Other values can be found in the given tables and the appendix (TABLE 0.11; TABLE 0.12). 
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TABLE 0.110.11 - CONFUSION MATRIX FOR ALL MATERIALS (REGION OF WATERLOO) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 22 1 

Actual 
1 22 1 

0 881 0 0 877 4 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 7 16   1 20 3 

0 628 253 Actual 0 876 5 

      
     

0 = None-Broken 
     1 = Broken 
      

 

TABLE 0.120.12 - CLASSIFICATION RESULTS (REGION OF WATERLOO) 

Algorithm 
Accuracy F1 - Score 

AM SMOTE Cast Iron AM SMOTE Cast Iron 

Random Forest 98% 92% 92% 8% 21% 57% 

XGBOOST 96% 96% 87% 7% 28% 31% 

Logistic Regression 71% 72% 72% 11% 11% 33% 

ANN 97% 97% 86% 19% 19% 38% 

       * AM = All Materials,  
* SMOTE = All metrials with SMOTE method 

     

Region of Durham 

 

Region of Durham, with 21,344 pipes within the prepared classification file, is among the most 
extensive networks. In addition, there are different input variables such as material, lining 
material, lining status, protection status, length, diameter, age, lining age, protection age, and 
dependent variable, the target. 
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Same as the majority of the networks, PVC is the most frequent type among non-broken pipes, 
with almost 70% of the whole pipes. However, cast iron is the pipe the experienced failure 
more frequently than other pipes, with a 54.87% contribution among broken pipes. Ductile iron 
is another material that makes up almost 35% of the total recorded failures. The contribution of 
other materials is shown in the given figure (Figure 0.9). 

  

FIGURE 0.9 - PERCENTAGE OF EACH MATERIAL FOR BOTH CLASSES (0,1) BASED ON TOTAL PERCENTAGE OF EACH 
CLASS (REGION OF DURHAM) 

 

From the entire available pipes, 19,332 are reported as non-broken and 2,012 as broken. 
Therefore, from this amount, 3,887 and 382 pipes are non-broken and broken, respectively, 
and they belong to the 20% test set. Evaluation of the model on the test indicates satisfactory 
results for all categories. With 297 correctly classified broken pipes, XGBOOST showed the best 
performance among these classifiers, although the results are relatively similar. For instance, 
random forest and XGBOOST with an F1-Score of 85% are the best classifiers. Moreover, the 
accuracy of these two models is 98% and 97%, respectively. On the other hand, random forest 
and XGBOOST have the highest F1-Score for cast iron pipes which is 89%, and ANN, with only 
1% difference, with the F1-Score of 88%, is in the following position (TABLE 0.13, TABLE 0.14). 

 

TABLE 0.130.13 - CONFUSION MATRIX FOR ALL MATERIALS (REGION OF DURHAM) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 
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Actual 
1 95 287 

Actual 
1 85 297 

0 3877 10 0 3865 22 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 110 272   1 88 294 

0 3866 21 Actual 0 3858 29 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.140.14 - CLASSIFICATION RESULTS (REGION OF DURHAM) 

Algorithm 
Accuracy F1 - Score 

AM SMOTE Cast Iron AM SMOTE Cast Iron 

Random Forest 98% 96% 91% 85% 80% 89% 

XGBOOST 97% 97% 91% 85% 82% 89% 

Logistic Regression 97% 91% 89% 81% 65% 86% 

ANN 97% 97% 90% 83% 83% 88% 

       * AM = All Materials,  
* SMOTE = All metrials with SMOTE method 

     

Calgary 

 

After making the classification dataset for Calgary, the number of pipes is 55,462, including 
broken and non-broken pipes. PVC is the most frequent pipe for non-broken pipes with 60.88% 
of class 0. DI and CI follow this material with 18.89% and 10.45% contributions, respectively. For 
class 1 or broken pipes, however, cast iron with 61.36% experienced the most failures. In 
addition, 32.75% of the broken pipes are related to ductile iron pipes (Figure 0.10). 
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FIGURE 0.10 - PERCENTAGE OF EACH MATERIAL FOR BOTH CLASSES (0,1) BASED ON TOTAL PERCENTAGE OF EACH 
CLASS (CALGARY) 

 

Based on the available information, 51,029 pipes are non-broken, and 4,433 are reported to 
have broken. Therefore, 20% was selected for evaluation as a test size, including 10,211 non-
broken and 882 broken pipes. Once more, XGBOOST indicated a better performance based on 
the given confusion matrix, with an accuracy score of 98% and an F1-Score of 88%, for all 
materials (TABLE 0.15). However, when the SMOTE method was used, ANN represented better 
performance with an F1-Score of 89%, as opposed to other models that experienced a decline 
in the overall performance. Finally, random forest, XGBOOST, and ANN performed similarly 
with an F1-Score of 90% for cast iron pipes. It should be noted that cast iron pipes results 
related to logistic regression were also desirable with an F1-Score of 86%.  

TABLE 0.150.15 - CONFUSION MATRIX FOR ALL MATERIALS (CALGARY) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 189 693 

Actual 
1 157 725 

0 10181 30 0 10167 44 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 257 625   1 169 713 

0 10172 39 Actual 0 10171 40 

      
     

0 = None-Broken, 1 = Broken 
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TABLE 0.160.16 - CLASSIFICATION RESULTS (CALGARY) 

Algorithm 
Accuracy F1 - Score 

AM SMOTE Cast Iron AM SMOTE Cast Iron 

Random Forest 98% 95% 93% 86% 74% 90% 

XGBOOST 98% 96% 93% 88% 80% 90% 

Logistic Regression 97% 90% 91% 81% 58% 86% 

ANN 98% 98% 93% 87% 87% 90% 

       * AM = All Materials,  
* SMOTE = All metrials with SMOTE method 

     

Vancouver 

 

Vancouver is another network with a significant imbalanced dataset, and consequently, the 
results are not satisfactory. This network consists of 63,236 pipes, most of which are non-
broken, and only a small proportion of these pipes are broken. Different input variables are 
prepared for this network, such as diameter, length, coating material, lining material, age, and 
the target variable. The predominant materials within this network are ductile iron and cast 
iron, in both class 0 and class 1. Ductile iron is the most frequent type, with 55% non-broken 
pipes, followed by cast iron with 43.74%. Furthermore, most pipes within break records are 
made from cast iron, with almost 90% of total broken pipes (Figure 0.11). 

 

FIGURE 0.11 - PERCENTAGE OF EACH MATERIAL FOR BOTH CLASSES (0,1) BASED ON TOTAL PERCENTAGE OF EACH 
CLASS (VANCOUVER) 
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From the entire data points within this network, 62,654 pipes are non-broken, and only 582 are 
broken. Unfortunately, this makes Vancouver`s dataset significantly imbalanced, leading to a 
low-score performance. For the evaluation step, 125 broken pipes and 12,523 non-broken pipes 
were selected randomly. Learning a logical pattern for broken pipes is significantly complex for 
any algorithm in this case, where there is no sufficient information for one class. 

As can be seen from the given table, random forest, XGBOOST, and ANN were able to predict 
only 20 broken pipes correctly while mispredicting 105 pipes incorrectly (TABLE 0.17). In this 
case, logistic regression, however, was able to predict 114 broken pipes out of 125 correctly 
while losing accuracy for the prediction of non-broken pipes, compared to other models. 
Eventually, XGBOOST and ANN, with 26% F1-Score, indicated a better performance than others 
(TABLE 0.18). Moreover, for cast iron also, XGBOOST was able to achieve 28% performance for 
the F1-score, which is not a desirable result for future prediction. 

TABLE 0.170.17 - CONFUSION MATRIX FOR ALL MATERIALS (VANCOUVER) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 105 20 

Actual 
1 105 20 

0 12503 20 0 12513 10 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 11 114   1 105 20 

0 8362 4161 Actual 0 12517 6 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.180.18 - CLASSIFICATION RESULTS (VANCOUVER) 

Algorithm 
Accuracy F1 - Score 

AM SMOTE Cast Iron AM SMOTE Cast Iron 

Random Forest 99% 82% 99% 16% 8% 26% 

XGBOOST 99% 91% 99% 26% 12% 28% 

Logistic Regression 67% 67% 65% 5% 5% 7% 

ANN 99% 99% 98% 26% 26% 26% 

       * AM = All Materials,  
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* SMOTE = All metrials with SMOTE method 

 

Victoria 

 

The final classification file of Victoria included 3,149 pipes. In addition, this network provided 
various variables such as material, diameter, HGL (Hydraulic Grade Line), length, lining material, 
lining status, age, and target. As previously mentioned in the literature, HGL and water pressure 
are among the attributes that should be studied in more detail since not much information has 
been collected regarding these attributes in most utilities in Canada. Nonetheless, this attribute 
was provided by Victoria. 

As shown in the given graph, for the non-broken group (class 0), cast iron and ductile iron are 
the most frequent pipes for this utility, with almost 41% of the total for each (Figure 0.12). The 
other material in this category is PVC and HDPE, accounting for 8.94% and 3.47%, respectively. 
On the other hand, cast iron with 73.41% and ductile iron with 18.54% are the most frequent 
materials for broken pipes. The percentage of other materials can be found in the given bar 
graph (Figure 0.12). 

 

FIGURE 0.12 - PERCENTAGE OF EACH MATERIAL FOR BOTH CLASSES (0,1) BASED ON TOTAL PERCENTAGE OF EACH 
CLASS (VICTORIA) 

 

In this network, there are 2,739 non-broken pipes and 410 broken pipes. Like other utilities, 
considering 20% for the test set, the number of broken pipes is 93, and non-broken 537.  

Results for this utility did not show a good performance. However, XGBOOST, another time, 
was able to detect more broken pipes than other models and became the best classifier for this 
network. More details about the performance of these models are found in the given confusion 
matrix (TABLE 0.19). 
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TABLE 0.190.19 - CONFUSION MATRIX FOR ALL MATERIALS (VICTORIA) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 60 33 

Actual 
1 56 37 

0 535 2 0 532 5 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 63 30   1 59 34 

0 526 11 Actual 0 524 13 

      
     

0 = None-Broken 
     1 = Broken 
      

XGBOOST, with an accuracy of 90% and F1-Score of 55%, has proven to be the best algorithm 
for all materials. For the SMOTE method and the cast iron group, this algorithm demonstrated 
the highest performance compared to others, with an F1-Score of 57% and 70%, in successive. 
The following table shows the accuracy and F1-Score for all algorithms (TABLE 0.20). 

TABLE 0.200.20 - CLASSIFICATION RESULTS (VICTORIA) 

Algorithm 
Accuracy F1 - Score 

AM SMOTE Cast Iron AM SMOTE Cast Iron 

Random Forest 90% 82% 88% 52% 53% 69% 

XGBOOST 90% 89% 87% 55% 57% 70% 

Logistic Regression 88% 79% 85% 45% 53% 59% 

ANN 89% 89% 87% 49% 49% 68% 

       * AM = All Materials,  
* SMOTE = All metrials with SMOTE method  

     

 

 

Halifax 
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The final classification file for Halifax, after cleaning and merging, consists of 12,999 pipes. This 
file has different variables such as material, length diameter, lining status, lining material, age, 
and the target variable. Given bar chart compares different materials in both class 0 and class 1 
(Figure 0.13). Ductile iron and cast iron are the most frequent materials in both classes. For non-
broken pipes, ductile iron accounts for almost 67% of the total, and cast iron makes up 21%. 
However, cast iron has the most recorded failures for broken pipes, with over 83% of the total. 
This material is followed by cast iron with just over 10% of total failures.   

 

FIGURE 0.13 - PERCENTAGE OF EACH MATERIAL FOR BOTH CLASSES (0,1) BASED ON TOTAL PERCENTAGE OF EACH 
CLASS (HALIFAX)  

From all pipes within the network, 11,164 pipes are in class 0 and 1,835 in class 1. Moreover, 
based on the 20% assumption, there are 369 broken and 2,231 non-broken pipes in the test set. 
This time, almost all algorithms indicated satisfactory performance. Random forest, XGBOOST, 
and ANN were able to predict 264 broken pipes correctly, which resulted in 95% accuracy and 
79%  F1-Score. Logistic regression with 75% F1-Score was the weakest model (TABLE 0.21; TABLE 
0.22). When SMOTE method was applied to all materials, the accuracy of all models worsened, 
but not ANN, which remained at 79%. For cast-iron pipes, however, the accuracy of all models 
decreased while the F1-Score improved. ANN was the best algorithm for the group of cast iron 
pipes with an 86% F1-Score.  
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TABLE 0.210.21 - CONFUSION MATRIX FOR ALL MATERIALS (HALIFAX) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 115 254 

Actual 
1 105 264 

0 2207 24 0 2194 37 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 118 251   1 105 264 

0 2184 47 Actual 0 2198 33 

      
     

0 = None-Broken 
     1 = Broken 
      

 

TABLE 0.220.22 - CLASSIFICATION RESULTS (HALIFAX) 

Algorithm 
Accuracy F1 - Score 

AM SMOTE Cast Iron AM SMOTE Cast Iron 

Random Forest 95% 93% 89% 79% 76% 85% 

XGBOOST 95% 93% 87% 79% 78% 82% 

Logistic Regression 94% 85% 89% 75% 61% 85% 

ANN 95% 95% 90% 79% 79% 86% 

       * AM = All Materials,  
* SMOTE = All metrials with SMOTE method 

     

St. John’s 

 

St. John’s is another utility in this study, including 8,863 pipes after cleaning and preparing the 
classification dataset. In addition, this city provided a variety of attributes such as material, 
diameter, roughness, length, age, and the target variable. 

Three materials are the predominant types of the entire network for non-broken pipes. First, 
ductile iron with 48.95% is the most frequent material within the network for class 0. This 
material is then followed by cast iron with 36.15% and PVC pipe with 13.99% contribution to 
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the total non-broken pipes. Broken pipes, however, follow an inverse pattern, with having cast 
iron as the most frequent material that has experienced more failure in the network, with 83% 
of failure records. Finally, ductile iron is another frequent material that accounts for almost 
15.25% of total failures (Figure 0.14). 

 

FIGURE 0.14 - PERCENTAGE OF EACH MATERIAL FOR BOTH CLASSES (0,1) BASED ON TOTAL PERCENTAGE OF EACH 
CLASS (ST. JOHN’S) 

For class 0 and class 1 of the classification file, there are different numbers of pipes. For non-
broken, 8,030 pipes, and for broken pipes, 833 pipes are recorded in the file. After creating a 
test split for the evaluation process, 170 broken and 1,603 non-broken pipes can be found. The 
Given confusion matrix was prepared based on the test set. XGBOOST, similar to most cities 
that have been explained thus far, detected the most broken pipes, with 89 correctly classified 
in class 1. 

Interestingly, comparing the results from all cities indicates that random forest seems to be 
able to detect the most number of non-broken pipes among all classifiers. For instance, in this 
case, this algorithm was able to classify 1,594 non-broken pipes correctly and merely nine pipes 
incorrectly. However, overall, all models did not show relatively satisfactory results, based on 
the classification metrics. 

TABLE 0.230.23 - CONFUSION MATRIX FOR ALL MATERIALS (ST. JOHNS’S) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 107 63 

Actual 
1 81 89 

0 1594 9 0 1584 19 
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Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 47 123   1 100 70 

0 1257 346 Actual 0 1576 27 

      
     

0 = None-Broken, 1 = Broken 
     XGBOOST for the first category (all materials), SMOTE, and cast iron have proven to be the best 

algorithm with 94%, 91%, and 90%, respectively (TABLE 0.24). However, as the dataset is 
imbalanced, F1-Score is of significant importance. This metric for XGBOOST, is 64% for the first 
category, 58% for SMOTE, and 72% for cast iron pipes. The critical point here is that making a 
homogenous group of pipes would lead to higher accuracy. Some of the other materials in the 
network were also analyzed separately.  Related results are provided in the appendix, and it 
makes the comparison easier. The given table indicates the accuracy and F1-Score for all 
models in the claasification step (TABLE 0.24).  

TABLE 0.240.24 - CLASSIFICATION RESULTS (ST. JOHNS’S) 

Algorithm 
Accuracy F1 - Score 

AM SMOTE Cast Iron AM SMOTE Cast Iron 

Random Forest 93% 84% 89% 52% 47% 63% 

XGBOOST 94% 91% 90% 64% 58% 72% 

Logistic Regression 78% 78% 68% 38% 39% 46% 

ANN 93% 93% 88% 52% 54% 59% 

       * AM = All Materials,  
* SMOTE = All metrials with SMOTE method 

     

Barrie 

 

This network consists of 5,183 pipes for the classification file. Material, diameter, protection 
status, length, casing material, restrained, age, and the target are the variables prepared for 
this dataset. 

For class 0 of this study, PVC is the most frequent type of material. This material contributes to 
almost 68% of pipes that experienced no failure, and ductile iron follows PVC with around 
23.43%. Cast iron and copper pipes are the other utilized materials equally distributed among 
non-broken pipes, with almost 4% contribution. 
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For broken pipes, on the other hand, the same trend as some of the other utilities can be 
noticed. Cast iron, once more, is the material that has experienced at least one failure more 
than any other materials within Barrie`s network. This material accounts for just over 60% of 
class 1. Furthermore, ductile iron is the second material that makes up 26.25% of total broken 
pipes. PVC and copper are the other materials with a relatively small proportion of the total 
broken pipes (Figure 0.15). 

 

FIGURE 0.15 - PERCENTAGE OF EACH MATERIAL FOR BOTH CLASSES (0,1) BASED ON TOTAL PERCENTAGE OF EACH 
CLASS (BARRIE) 

 

Among the entire pipes, 4,882 are non-broken, and 301 pipes experienced at least one failure. 
From this number, 61 broken pipes and  976 non-broken pipes belong to the test set for the 
evaluation process. From the prepared confusion matrix, ANN and XGBOOST were able to 
predict the same number of broken pipes correctly. However, ANN was able to find more non-
broken pipes based upon the analysis. As a result, the accuracy for XGBOOST and ANN is 97%, 
and the F1-Scores are 71% and 73%, respectively, indicating a better performance for the ANN 
algorithm. ANN was also the best predictive model for SMOTE method with an F1-Score of 73%. 
However, for cast-iron pipes, random forest and logistic regression represented a better 
performance with an accuracy of 85% and F1-Score of 85% for both models. Given tables 
provides more information regarding the results, and more results can be found in the 
appendix (TABLE 0.25; TABLE 0.26). 

TABLE 0.250.25 - CONFUSION MATRIX FOR ALL MATERIALS (BARRIE) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 23 38 

Actual 
1 21 40 

0 969 7 0 964 12 

Logistic Regression Predicted ANN Predicted 
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0 1 0 1 

Actual 
1 26 35   1 21 40 

0 969 7 Actual 0 967 9 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.260.26 - CLASSIFICATION RESULTS (BARRIE) 

Algorithm 
Accuracy F1 - Score 

AM SMOTE Cast Iron AM SMOTE Cast Iron 

Random Forest 97% 96% 85% 72% 70% 85% 

XGBOOST 97% 95% 82% 71% 67% 83% 

Logistic Regression 97% 89% 85% 68% 49% 85% 

ANN 97% 97% 78% 73% 73% 79% 

       * AM = All Materials,  
* SMOTE = All metrials with SMOTE method 
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Feature Importance Figures 

 

 

 

FIGURE 0.16 - THE MOST IMPORTANT FEATURES BASED ON XGBOOST RESULTS (SASKATOON) 

 

FIGURE 0.17 - THE MOST IMPORTANT FEATURES BASED ON XGBOOST RESULTS (WINNIPEG) 
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FIGURE 0.18 – THE MOST IMPORTANT FEATURES BASED ON XGBOOST RESULTS (KITCHENER) 

 

FIGURE 0.19 - THE MOST IMPORTANT FEATURES BASED ON XGBOOST RESULTS (MARKHAM) 

 

FIGURE 0.20 - THE MOST IMPORTANT FEATURES BASED ON XGBOOST RESULTS (WATERLOO) 
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FIGURE 0.21 - THE MOST IMPORTANT FEATURES BASED ON XGBOOST RESULTS (REGION OF WATERLOO) 

 

FIGURE 0.22 - THE MOST IMPORTANT FEATURES BASED ON XGBOOST RESULTS (REGION OF DURHAM) 

 

FIGURE 0.23 - THE MOST IMPORTANT FEATURES BASED ON XGBOOST RESULTS (CALGARY) 
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FIGURE 0.24 - THE MOST IMPORTANT FEATURES BASED ON XGBOOST RESULTS (VANCOUVER) 

 

FIGURE 0.25 - THE MOST IMPORTANT FEATURES BASED ON XGBOOST RESULTS (VICTORIA) 

 

FIGURE 0.26 - THE MOST IMPORTANT FEATURES BASED ON XGBOOST RESULTS (HALIFAX) 
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FIGURE 0.27 - THE MOST IMPORTANT FEATURES BASED ON XGBOOST RESULTS (ST. JOHNS’S) 

 

 

FIGURE 0.28 - THE MOST IMPORTANT FEATURES BASED ON XGBOOST RESULTS (BARRIE) 

 

APPENDIX D - CONFUSION MATRIX FOR SMOTE METHOD AND CAST IRON PIPES 
 

TABLE 0.10.1 - CONFUSION MATRIX FOR ALL MATERIALS – SMOTE METHOD (SASKATOON) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 105 626 

Actual 
1 114 617 

0 5529 202 0 5597 134 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 
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Actual 
1  84 647    1  153 578  

0  5144 587  Actual 0  5675 56  

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.20.2 - CONFUSION MATRIX FOR CAST IRON (SASKATOON) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 67 294 

Actual 
1 52 309 

0 797 18 0 793 22 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1  65 296   1 62 299 

0  712 103  Actual 0 783 32 

      
     

0 = None-Broken 
     1 = Broken 
      

 

 
TABLE 0.30.3 - CONFUSION MATRIX FOR ALL MATERIALS – SMOTE METHOD (WINNIPEG) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 205 1424 

Actual 
1 260 1369 

0 17366 1532 0 17852 1046 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 176 1453   1 577 1052 

0 16370 2528 Actual 0 18709 189 

      
     



212 | P a g e  

 

0 = None-Broken 
     1 = Broken 
      

TABLE 0.40.4 - CONFUSION MATRIX FOR CAST IRON (WINNIPEG) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 394 704 

Actual 
1 351 747 

0 2580 110 0 2554 136 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 298 800   1 366 732 

0 2134 556 Actual 0 2531 159 

      
     

0 = None-Broken 
     1 = Broken 
      

 
 
 

TABLE 0.50.5 - CONFUSION MATRIX FOR ALL MATERIALS – SMOTE METHOD (KITCHENER) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 30 180 

Actual 
1 43 167 

0 2319 385 0 2463 241 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 32 178   1 100 110 

0 2240 464 Actual 0 2689 15 

      
     

0 = None-Broken 
     1 = Broken 
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TABLE 0.60.6 - CONFUSION MATRIX FOR CAST IRON (KITCHENER) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 38 94 

Actual 
1 35 97 

0 440 17 0 438 19 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 40 92   1 34 98 

0 430 27 Actual 0 434 23 

      
     

0 = None-Broken 
     1 = Broken 

 
 

      
TABLE 0.70.7 - CONFUSION MATRIX FOR ALL MATERIALS – SMOTE METHOD (MARKHAM) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 25 103 

Actual 
1 27 101 

0 2012 18 0 2006 24 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 18 110   1 26 102 

0 1953 77 Actual 0 2023 7 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.80.8 - CONFUSION MATRIX FOR CAST IRON (MARKHAM) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 1 4 38 Actual 1 4 38 
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0 26 0 0 26 0 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 3 39   1 3 39 

0 26 0 Actual 0 24 2 

      
     

0 = None-Broken 
     1 = Broken 
      

 
TABLE 0.90.9 - CONFUSION MATRIX FOR ALL MATERIALS – SMOTE METHOD  (WATERLOO) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 27 78 

Actual 
1 33 72 

0 1320 82 0 1342 60 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 15 90   1 65 40 

0 1167 235 Actual 0 1393 9 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.100.10 - CONFUSION MATRIX FOR CAST IRON (WATERLOO) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 42 31 

Actual 
1 31 42 

0 362 7 0 359 10 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 1 20 53   1 41 32 
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0 312 57 Actual 0 363 6 

      
     

0 = None-Broken 
     1 = Broken 

 
 
 

     TABLE 0.110.11 - CONFUSION MATRIX FOR ALL MATERIALS – SMOTE METHOD (REGION OF WATERLOO) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 14 9 

Actual 
1 16 7 

0 827 54 0 861 20 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 7 16   1 20 3 

0 632 249 Actual 0 876 5 

      
     

0 = None-Broken 
     1 = Broken 
      

 

TABLE 0.120.12 - CONFUSION MATRIX FOR CAST IRON (REGION OF WATERLOO) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 5 4 

Actual 
1 7 2 

0 61 1 0 60 2 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 4 5   1 58 4 

0 46 16 Actual 0 6 3 

      
     

0 = None-Broken 
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1 = Broken 
      

TABLE 0.130.13 - CONFUSION MATRIX FOR ALL MATERIALS – SMOTE METHOD (REGION OF DURHAM) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 54 328 

Actual 
1 69 313 

0 3772 115 0 3821 66 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 44 338   1 88 294 

0 3567 320 Actual 0 3858 29 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.140.14 - CONFUSION MATRIX FOR CAST IRON (REGION OF DURHAM) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 39 167 

Actual 
1 32 174 

0 283 4 0 276 11 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 34 172   1 32 174 

0 266 21 Actual 0 272 15 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.150.15 - CONFUSION MATRIX FOR ALL MATERIALS – SMOTE METHOD (CALGARY) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 
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Actual 
1 75 807 

Actual 
1 102 780 

0 9720 491 0 9917 294 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 78 804   1 167 715 

0 9130 1081 Actual 0 10163 48 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.160.16 - CONFUSION MATRIX FOR CAST IRON (CALGARY) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 93 467 

Actual 
1 70 490 

0 1039 12 0 1016 35 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 111 449   1 99 461 

0 1019 32 Actual 0 8 1043 

      
     

0 = Non-Broken 
     1 = Broken 
      

 
TABLE 0.170.17 - CONFUSION MATRIX FOR ALL MATERIALS – SMOTE METHOD  (VANCOUVER) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 12 113 

Actual 
1 49 76 

0 9331 3192 0 11410 1113 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 
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Actual 
1 48 77   1 105 20 

0 11358 1165 Actual 0 12517 6 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.180.18 - CONFUSION MATRIX FOR CAST IRON (VANCOUVER) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 79 14 

Actual 
1 77 16 

0 5493 2 0 5490 5 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 22 71   1 78 15 

0 3581 1914 Actual 0 5489 6 

      
     

0 = None-Broken 
     1 = Broken 

 
 

      
TABLE 0.190.19 - CONFUSION MATRIX FOR ALL MATERIALS – SMOTE METHOD  (VICTORIA) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 30 63 

Actual 
1 45 48 

0 454 83 0 511 26 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 17 76   1 59 34 

0 421 116 Actual 0 524 13 

      
     

0 = None-Broken 
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1 = Broken 
      

TABLE 0.200.20 - CONFUSION MATRIX FOR CAST IRON (VICTORIA) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 30 38 

Actual 
1 26 42 

0 215 4 0 209 10 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 37 31   1 30 38 

0 213 6 Actual 0 213 6 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.210.21 - CONFUSION MATRIX FOR ALL MATERIALS – SMOTE METHOD (HALIFAX) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 71 298 

Actual 
1 71 298 

0 2110 121 0 2130 101 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 61 308   1 105 264 

0 1896 335 Actual 0 2198 33 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.220.22 - CONFUSION MATRIX FOR CAST IRON (HALIFAX) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 
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Actual 
1 53 238 

Actual 
1 56 235 

0 458 30 0 444 44 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 52 239   1 46 245 

0 456 32 Actual 0 456 32 

      
     

0 = None-Broken 
     1 = Broken 

 
 

      
TABLE 0.230.23 - CONFUSION MATRIX FOR ALL MATERIALS – SMOTE METHOD (ST. JOHNS’S) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 46 124 

Actual 
1 53 117 

0 1370 233 0 1488 115 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 48 122   1 98 72 

0 1263 340 Actual 0 1580 23 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.240.24 - CONFUSION MATRIX FOR CAST IRON (ST. JOHNS’S) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 67 69 

Actual 
1 44 92 

0 570 14 0 555 29 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 
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Actual 
1 37 99   1 75 61 

0 393 191 Actual 0 573 11 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.250.25 - CONFUSION MATRIX FOR ALL MATERIALS – SMOTE METHOD (BARRIE) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 11 50 

Actual 
1 13 48 

0 945 31 0 942 34 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 8 53   1 21 40 

0 872 104 Actual 0 967 9 

      
     

0 = None-Broken 
     1 = Broken 
      

TABLE 0.260.26 - CONFUSION MATRIX FOR CAST IRON (BARRIE) 

Random Forest 
Predicted 

XGBOOST 
Predicted 

0 1 0 1 

Actual 
1 7 31 

Actual 
1 7 31 

0 31 4 0 29 6 

Logistic Regression 
Predicted 

ANN 
Predicted 

0 1 0 1 

Actual 
1 6 32   1 8 30 

0 30 5 Actual 0 27 8 

      
     

0 = None-Broken 
     1 = Broken 
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APPENDIX E – REGRESSION RESULTS (ALL CITIES IN DETAIL) 

Saskatoon 

 

- Age at First Failure 

After cleaning and preparing the dataset for age to the first failure, Saskatoon had 3,332 pipes. 
This dataset includes a range of input variables such as material, diameter, length, age, lining 
material, lining status, lining age, and joint type. 

Asbestos cement and cast iron are the materials that experienced the highest amount of failure 
within the network (at least one failure), accounting for 45.95% and 45.63%, respectively. Steel 
is another material that makes up 5.77% of the dataset. Other materials have not experienced 
significant failures throughout their life cycles. The given pie chart indicates the percentage of 
each material that experienced at least one number of failures within the Saskatoon network 
(Figure 0.1). 

 

FIGURE 0.1 – PERCENTAGE OF EACH MATERIAL WITHIN REGRESSION ANALYSIS (AGE TO FIRST FAILURE) - 
SASKATOON 

What is essential and should be noted here is the average age to the first failure for various 
kinds of materials. For example, the average age to the first failure is higher for cast iron pipes 
compared to others, with a value of 46.64. Additionally, steel pipes and asbestos cement are 
the following materials, with 40 and 22.62, respectively. PVC pipes, however, have the lowest 
average age to failure, 10.24. The average age to the first failure for this pipe in the inventory 
file is around 17 years, including both broken and non-broken pipes.  Provided is the box plot 
showing age distribution to first failure for different materials (Figure 0.2). 
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FIGURE 0.2 – DISTRIBUTION OF AGE TO FIRST FAILURE BASED ON TYPE OF MATERIAL (SASKATOON) 

Results from regression analysis show moderate satisfaction, although these models should be 
enhanced for further application. Nevertheless, for AM category, all models represent a 
somewhat similar result with an RMSE of 17.9. However, random forest indicated a better 
performance with an MSE of 317.6 and an R-Squared of 0.48. For cast-iron pipes, on the other 
hand, the random forest had a better performance with an R-Squared of 0.49 and MSE 317.6. 
Finally, it should be noted that results for random forest and XGBOOST are relatively alike 
(TABLE 0.1). 

 

TABLE 0.10.1 – REGRESSION METRICS – AGE TO FIRST FAILURE (SASKATOON) 

Algorithm 
RMSE MSE R - Squared 

AM Cast Iron AM Cast Iron AM Cast Iron 

ElasticNet 17.9 20.3   318.8 411.4  0.47 0.45 

Random Forest 17.8 19.7 317.6 387 0.48 0.49 

XGBOOST 17.9 19.7 321.5 387.2 0.47 0.49 

ANN 17.9  20.0  319 403.4   0.47 0.46  

* AM = All Materials 

 

Given scatter plot shows the correlation between actual age to the first failure and predicted 
age to the first failure based on XGBOOST result. The shape of the chart shows that the model 
did not perform well for the prediction. 
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FIGURE 0.3 – REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – XGBOOST) – SASKATOON 

 

 

- Current Rate of Failure 

Furthermore, as previously mentioned current rate of failures was also analyzed separately. The 
attributes used in this part of the study are material, diameter, length, age, lining material, 
lining status, lining age, joint type, the previous rate of failures, and the current rate of failures, 
which is the target of the study. The number of pipes is the same as the previous step. 
However, here age is the age at the most recent failure. Therefore, the most recent failure 
could be the nth failure that a pipe experienced. The given figure shows the average current 
rate of failure for the pipes within the network based on different attributes and plotted versus 
the age of pipes (Figure 0.4). 



225 | P a g e  

 

 

FIGURE 0.4 – AVERAGE OF CURRENT RATE OF FAILURE BASED ON AGE (SASKATOON) 

 

This step indicated that ElasticNet regression does not perform well on the dataset, with an 
RMSE of 0.13 and an R-Squared of 0.18 (for AM category). Furthermore, for cast iron pipes, also 
ElasticNet represents a low R-Squared of 0.12. Other models, however, performed 
satisfactorily. For example, random forest and XBOOST with an RMSE of 0.03 and 0.11 for AM 
and cast iron categories, respectively, indicated the best performance. However, the result of 
these algorithms decreased when considering only cast-iron pipes—random forest and 
XGBOOST both from R-Squared of 0.96 to 0.71. ANN also indicated a relatively desirable score 
for both categories, RMSE of 0.05 and 0.13 for AM and cast iron categories. The performance of 
ANN also declined while creating the model for cast iron pipes (TABLE 0.2). 

TABLE 0.20.2 – REGRESSION METRICS – CURRENT RATE OF FAILURE (SASKATOON) 

Algorithm 
RMSE R - Squared 

AM Cast Iron AM Cast Iron 

ElasticNet 0.13 0.20 0.18 0.12 

Random Forest 0.03 0.11 0.96 0.71 

XGBOOST 0.03 0.12 0.96 0.71 

ANN 0.05 0.13 0.85 0.62 

                           * AM = All Materials 
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The given plot depicts the correlation between the actual current rate of failures and the 
predicted current rate of failures created based on the random forest result (Figure 0.5). 

 

FIGURE 0.5 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – RANDOM FOREST) - SASKATOON 

 

Winnipeg 

 

- Age at First Failure 

With one of the largest datasets, this network includes 6,913 pipes that experienced at least 
one number of failures. This dataset consists of a range of input variables such as material, 
diameter, joint type, length, coating materials, and age of pipe at first failure. From the given 
chart, it is clear that cast iron pipe accounts for 65.34% of this file, with the highest number of 
failures (Figure 0.6). Asbestos cement is another type of material with almost 29.64% 
contribution to the failures. Finally, PVC and ductile iron are the following materials with 2.63% 
and 2.31%, respectively. 
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FIGURE 0.6 - PERCENTAGE OF EACH MATERIAL WITHIN REGRESSION ANALYSIS (AGE TO FIRST FAILURE) – 
WINNIPEG 

The given chart shows the distribution of age to the first failure based on different materials 
within the network (Figure 0.7). From the information below, cast iron with an average of 59.11 
has the highest age to the first failure, followed by steel pipes with 52.71. Asbestos cement and 
ductile iron are the following materials, with average age to failure of 29.81 and 26.07, in 
successive. PVC pipes seem to have experienced the first failure during their early life cycle 
stage with a value of 13.86. This pipe is more prone to failure when it is young compared to 
others. The susceptibility of PVC pipes to failure during the early stage could have different 
causes based on the site of the study, which requires more investigations. 

 

FIGURE 0.7 - DISTRIBUTION OF AGE TO FIRST FAILURE BASED ON TYPE OF MATERIAL (WINNIPEG) 
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Results from the analytical process indicate an unsatisfactory performance for all algorithms, 
considering age to the first failure (TABLE 0.3). Nonetheless, random forest and XGBOOST 
models performed better compared to EassticNet and ANN. For AM category, these two 
algorithms showed a similar accuracy with an RMSE score of 19.5 and an R-squared of 0.47.  

For cast-iron pipes also random forest and XGBOOST with an RMSE of 21.6 had the best 
performance. It should be noted that the accuracy of the models declined when a homogenous 
group of pipe (Cast Iron) was analyzed. For instance, in this case, for the random forest, RMSE 
increased from 19.5 to 21.6 shows that not a similar group of pipes necessarily enhances the 
results. Results for other models can be found in the table. 

TABLE 0.30.3 - REGRESSION METRICS (WINNIPEG) 

Algorithm 
RMSE MSE R - Squared 

AM Cast Iron AM Cast Iron AM Cast Iron 

ElasticNet  19.8 22  393  479.4 0.45  0.3 

Random Forest 19.5 21.6 379.5 467.5 0.47 0.31 

XGBOOST 19.5 21.6 382.3 468.1 0.47 0.31 

ANN 21.9  21.9  477.7  481.1  0.34  0.3  

* AM = All Materials 

 

The provided regression plot from the seaborn library in python shows that XGBOOST, one of 
the best models for this network, could not find an appropriate pattern for this dataset (Figure 
0.8). As shown in the table, R-Squared for XGBOOST is 0.47, which is relatively low for making a 
prediction (TABLE 0.3). 



229 | P a g e  

 

 

FIGURE 0.8 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – XGBOOST) - WINNIPEG 

- Current Rate of Failure 

The current rate of failure was also analyzed for this utility. In this step, material, diameter, 
joint type, length, coating material, age, the previous rate of failure (PreviousRoF), and, more 
importantly, the current rate of failure (CurrentRoF) were utilized as input variables. This 
network shows that the average rate of failure is higher during the early stage and final stage of 
the life cycle, compared to the Bath-Tub curve mentioned in the previous chapters. The given 
chart shows the distribution of the average of the current rate of failures based on the age to 
the most recent failure (Figure 0.9). 

 

FIGURE 0.9 - AVERAGE OF CURRENT RATE OF FAILURE BASED ON AGE (WINNIPEG) 

Considering the RMSE score and R-Squared, XGBOOST indicated the best performance for both 
categories. For AM category, an RMSE score of 0.05 and R-Squared of 0.99 was the accuracy of 
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the XGBOOST model. ANN model, however, did not perform well, with an RMSE score of 0.70. 
Therefore, this model was not able to calculate R-Square for AM category (TABLE 0.4).  

For cast-iron pipes also with an R-Squared of 0.97, XGBOOST represented the best 
performance. On the other hand, ANN and random forest indicated a relatively good 
performance for the cast iron category with 0.84 and 0.91 for R-Squared, respectively. It is 
worth mentioning that some of these algorithms are significantly sensitive to hyperparameter 
tuning, meaning that the accuracy of ANN, for instance, may or may not increase with only 
changing the number of nodes or hidden layers. Therefore, playing around and finding the best 
hyperparameters for the neural network may require more time, and also it is an expensive 
process. 

 

TABLE 0.40.4 – REGRESSION METRICS – CURRENT RATE OF FAILURE (WINNIPEG) 

Algorithm 
RMSE R - Squared 

AM Cast Iron AM Cast Iron 

ElasticNet 0.44 0.34 0.03 0.05 

Random Forest 0.14 0.05 0.91 0.91 

XGBOOST 0.05 0.06 0.99 0.97 

ANN 0.70 0.14 N.A 0.84 

                           * AM = All Materials 

The given regression graph plotted the observed rate of failure versus the predicted rate of 
failure, based on the XGBOOST results. It can be seen that the model was able to find a good 
pattern for this dataset. However, to put this model in practice, more investigation is required 
to ensure the reliability of the performance (Figure 0.10). 
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FIGURE 0.10 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – XGBOOST) - WINNIPEG 

 

Kitchener 

 

- Age at First Failure 

For regression analysis, this network consists of 917 unique pipes with at least one number of 
failures, including different attributes such as anode status, material, lining material, diameter, 
lining status, length, lining age, and age. 

Once more, cast iron is the most frequent type of material within the prepared file, with 
69.03% of the total. Ductile iron follows this material with a little more than a quarter of total 
pipes, 27.70%, and PVC only accounts for 2.29% of this network. The percentage of all materials 
can be seen in the given pie chart in more detail (Figure 0.11). Copper has a minor contribution 
to failures in Kitchener, with only 0.11% of overall failures. Only pipe with at least one failure 
was considered in this part of the study, and only the first failure was used for this dataset. 
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FIGURE 0.11 - PERCENTAGE OF EACH MATERIAL WITHIN REGRESSION ANALYSIS (AGE TO FIRST FAILURE) - 
KITCHENER 

In terms of average age to the first failure, cast iron shows a higher value, 49.61 years. This 
material in the majority of utilities shows the highest average age to the first failure. Cast iron 
then is followed by asbestos cement and ductile iron with an average of 42.17 and 34.54, 
respectively. Copper, concrete, and PVC are other materials with a lower age average to the 
first failure. PVC has the lowest average, which is approximately 11.19 years that is relatively 
young. The given chart compares the average age to the first failure for all materials within this 
network (Figure 0.12), showing age distribution. 

 

FIGURE 0.12 - DISTRIBUTION OF AGE TO FIRST FAILURE BASED ON TYPE OF MATERIAL (KITCHENER) 

Comparing the results given in the chart below shows that the random forest algorithm had the 
best performance for predicting age to the first failure, with an RMSE score of 11.3 and R-
Squared of 0.39, for AM category (TABLE 0.5). Moreover, the Random forest indicated a better 
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accuracy for the cast iron group with an RMSE of 13.0 and R-Squared of 0.30. It should be noted 
that XGBOOST showed the lowest accuracy for AM category, with an R-Squared of 0.34 and an 
RMSE of 11.7. The ANN, however, indicated the worst performance of cast iron pipes. 

 

TABLE 0.50.5 - REGRESSION METRICS (KITCHENER) 

Algorithm 
RMSE MSE R - Squared 

AM Cast Iron AM Cast Iron AM Cast Iron 

ElasticNet 11.3  13.2  128.5  175.4 0.38  0.28 

Random Forest 11.3 13.0 127.5 168.5 0.39 0.30 

XGBOOST 11.7 13.9 136.7 192.7 0.34 0.21 

ANN 11.4  14  128.9  196.1  0.38  0.19  

* AM = All Materials 

 

The correlation between the observed and predicted age to the first failure can be seen in the 
given graph (Figure 0.13). 

 

FIGURE 0.13 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – RANDOM FOREST) – KITCHENER 

 

- Current Rate of Failure 
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After cleaning and preparing the dataset for the current rate of failures, the following input 
variables remained in the analysis: anode status, material, lining material, diameter, lining 
status, age, lining age, the current rate of failures, and previous rate of failures. 

As can be seen in the given chart, the trend for the average current rate of failure is similar to 
that of Winnipeg (Figure 0.14). Apparently, the rate of failure is higher during 1st stage and final 
stage of pipes within the network. This indicates that pipes are more prone to failure in these 
two stages. 

 

FIGURE 0.14 - AVERAGE OF CURRENT RATE OF FAILURE BASED ON AGE (KITCHENER) 

The given table below compares the result of different models (TABLE 0.6). For example, the 
ElasticNent model did not show a satisfactory performance with a low R-Squared, 0.29. 
However, XGBOOST and ANN indicated a relatively high accuracy for AM category, with an R-
Squared of 0.91.  

Furthermore, for cast-iron pipes, ANN performed better than other models with an RMSE of 
0.32 and an R-Squared of 0.73. Finally, although not being the best model, random forest 
indicated a relatively similar performance to ANN and XGBOOST. Therefore, based on the 
XGBOOST results, a regression plot was prepared to compare the predicted and actual values 
(Figure 0.15). 

TABLE 0.60.6 – REGRESSION METRICS – CURRENT RATE OF FAILURE (KITCHENER) 

Algorithm 
RMSE R - Squared 

AM Cast Iron AM Cast Iron 

ElasticNet 1.07 0.60 0.29 0.05 

Random Forest 0.52 0.34 0.83 0.70 

XGBOOST 0.38 0.33 0.91 0.71 

ANN 0.40 0.32 0.91 0.73 
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                           * AM = All Materials 

 

FIGURE 0.15 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – XGBOOST) - KITCHENER 

Markham 

 

- Age at First Failure 

Markham city consists of 591 unique pipes with at least one failure. This utility includes 
different features, including material, diameter, length, lining status, pipe depth, protection 
status, protection age, lining age, and the target variable, age. 

Ductile iron is the most frequent material within this network, accounting for 56.18% of the 
entire dataset. Cast iron follows ductile iron with a 32.99% contribution to total failures. PVC 
with only 8.63% is another frequent material within this network. The given pie charts provide 
more information regarding the percentage of each material (Figure 0.16). 
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FIGURE 0.16 - PERCENTAGE OF EACH MATERIAL WITHIN REGRESSION ANALYSIS (AGE TO FIRST FAILURE) – 
MARKHAM 

In this network, asbestos cement and concrete pipes have the highest average age to the first 
failure, with the value of 38.17 and 26, respectively. Furthermore, cast iron and steel pipes with 
the age of almost 22 are the following materials. On the other hand, PVC is the material with 
the minimum average age to the first failure, indicating the material's vulnerability during 
younger age. The given box plot indicates the distribution of age based on different materials in 
Markham (Figure 0.17). 

 

FIGURE 0.17 - DISTRIBUTION OF AGE TO FIRST FAILURE BASED ON TYPE OF MATERIAL (MARKHAM) 



237 | P a g e  

 

Analyzing the regression results shows the low accuracy for all models. For instance, the 
random forest is the best model for AM category, which provides prediction only with an RMSE 
score of 11.1 and the R-Squared of 0.17, which is significantly low. For cast-iron pipes, on the 
other hand, ElasticNet regression has the RMSE of 11.8, which is more desirable than other 
models. It should be noted that finding an efficient regression model for this city requires more 
investigation. The given table below represents more information about the accuracy of these 
algorithms (TABLE 0.7). 

TABLE 0.70.7 - REGRESSION METRICS (MARKHAM) 

Algorithm 
RMSE MSE R - Squared 

AM Cast Iron AM Cast Iron AM Cast Iron 

ElasticNet 11.2   11.8 124.9 138.8 0.15  N.A 

Random Forest 11.1 12.3 122.1 151.1 0.17 N.A 

XGBOOST 11.6 13.2 135.6 172.9 0.08 N.A 

ANN 12.3  11.9  151.1  140.5  N.A N.A  

* AM = All Materials 

 

 

Provided regression plot indicates how well the random forest model fits the dataset by 
comparing actual and predicted values (Figure 0.18). 

 

FIGURE 0.18 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – RANDOM FOREST) – MARKHAM 
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- Current Rate of Failure 

From the given chat, it is clear that there is a fluctuation for different ages, and no specific 
pattern can be seen (Figure 0.19). Nonetheless, pipes with ages around 5, 21, 36, and 58 have 
experienced more failures than others. 

 

FIGURE 0.19 - AVERAGE OF CURRENT RATE OF FAILURE BASED ON AGE (MARKHAM) 

Once more, the extracted results reveal the powerfulness of tree-based algorithms. For 
example, random forest and XGBOOST performed better than ELasticNet and ANN algorithms 
(TABLE 0.8). The RMSE for these two models is the same, which is 0.003 for AM category. 
However, in terms of R-Squared, XGBOOST performed better than random forest, with a score 
of 0.87. The ANN was the worst model for this network, with an RMSE of 0.02. This algorithm 
did not provide a logical R-Squared in this step. 

It is essential to find out how well a regression model fits the dataset. In order to do so, a 
regression plot has been prepared, which compares the actual value and the predicted current 
rate of failures within Markham`s network (Figure 0.20). 

TABLE 0.80.8 – REGRESSION METRICS – CURRENT RATE OF FAILURE (MARKHAM) 

Algorithm 
RMSE R - Squared 

AM Cast Iron AM Cast Iron 

ElasticNet 0.008 0.003 N.A 0.38 

Random Forest 0.003 0.004 0.81 N.A 

XGBOOST 0.003 0.003 0.87 0.43 
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ANN 0.02 0.02 N.A N.A 

                           * AM = All Materials 

 

 

FIGURE 0.20 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – XGBOOST) - MARKHAM 

Waterloo 

 

- Age at First Failure 

Waterloo is another network that has been analyzed in terms of age to first failure and the 
current failure rate. This network comprises 432 unique pipes for this step of the analysis, and 
for this part, it includes diameter, material, lining age, lining status, lining material, length, and 
age to the first failure. About 81.71% of the total pipes belong to the cast iron material, 
followed by ductile iron, which accounts for 15.28% of the dataset. PVC and HDPE have a small 
proportion with 2.78% and 0.23%, respectively (Figure 0.21). 
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FIGURE 0.21 - PERCENTAGE OF EACH MATERIAL WITHIN REGRESSION ANALYSIS (AGE TO FIRST FAILURE) – 
WATERLOO 

For this network, cast iron has the highest average age to the first failure, and HDPE has the 
minimum average age, with 49.3 and 18 years, respectively. Ductile iron and PVC are the other 
materials existing in this network, and the distribution of each can be seen within the given bar 
chart (Figure 0.22). 

 

FIGURE 0.22 - DISTRIBUTION OF AGE TO FIRST FAILURE BASED ON TYPE OF MATERIAL (WATERLOO) 

Comparing all results shows that XGBOOST has the best performance for AM category with an 
RMSE of 9.8 and R-Squared of 0.42. On the other for cast iron pipes, ANN showed a better 
accuracy compared to others. This algorithm with an RMSE of 10.5 and an R-Squared of 0.34 
was the best model. Other values can be found within the given table (TABLE 0.9). The following 
regression plot shows how accurate XGBOOST is by comparing actual and predicted values 
(Figure 0.23). 
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TABLE 0.90.9 - REGRESSION METRICS (WATERLOO) 

Algorithm 
RMSE MSE R - Squared 

AM Cast Iron AM Cast Iron AM Cast Iron 

ElasticNet  11.8 12.8  138.9  164.5 0.16  0.02 

Random Forest 10.6 11.4 111.8 130.8 0.32 0.22 

XGBOOST 9.8 11.9 96.4 143.2 0.42 0.15 

ANN 11.8  10.5   138 110.6  0.16 0.34  

* AM = All Materials 

 

 

FIGURE 0.23 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – XGBOOST) – WATERLOO 

 

- Current Rate of Failure 

Additionally, several input variables were employed for the current rate of failure, containing 
diameter, material, lining status, lining material, length, lining age, age at most recent failure, 
the previous rate of failures, and the current rate of failures. It should be noted that the 
average current rate of failure has experienced a fluctuation depending on different ages. From 
the given chart, it can be seen that from installation, the current rate of failure increased until 
36 (Figure 0.24). This trend then changed, and the average current rate of failures declined. 
However, there is a significant peak for pipes over 107 related to the wear-out phase of the 
bathtub curve. 
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FIGURE 0.24 - AVERAGE OF CURRENT RATE OF FAILURE BASED ON AGE (WATERLOO) 

For AM category, once more, XGBOOST depicted a better performance than other models, with 
RMSE and R-Squared of 0.03 and 0.78, respectively. On the other hand, ElasticNet was the 
weakest model for this category. Moreover, the random forest and ANN results were not 
desirable models with R-Squared of 0.58 and 0.44, in successive (TABLE 0.10). 

It should be noted that, in this utility with partitioning the dataset based on material, the 
overall performance of all models increased relatively. For instance, the random forest`s R-
Squared increased from 0.58 for AM category to 0.73 for cast iron pipes, indicating that the 
partitioning step may increase the accuracy in some cases. 

TABLE 0.100.10 – REGRESSION METRICS – CURRENT RATE OF FAILURE (WATERLOO) 

Algorithm 
RMSE R - Squared 

AM Cast Iron AM Cast Iron 

ElasticNet 0.06 0.05 0.12 0.16 

Random Forest 0.04 0.03 0.58 0.73 

XGBOOST 0.03 0.02 0.78 0.88 

ANN 0.05 0.03 0.44 0.66 

                           * AM = All Materials 

Similar to other utilities, a regression plot was prepared for the best model, the XGBOOST 
algorithm, in this case (Figure 0.25). 
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FIGURE 0.25 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – XGBOOST) - WATERLOO 

Region of Waterloo 

 

- Age at First Failure 

For this utility, after the cleaning process, several input variables remained for regression 
analysis. These attributes include material, diameter, length, lining status, lining material, lining 
age, and age to the first failure. This network consists of merely 92 unique pipes that 
experienced at least one failure. The significantly low number of broken pipes made both 
classification and regression analysis more challenging.  

Ductile iron accounts for 38.04% of these pipes, and cast iron makes up 34.78% of the total. 
PVC, asbestos cement, and concrete are the other materials with 14.13%, 6.52%, and 6.52% 
contribution to total failures, respectively (Figure 0.26).  
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FIGURE 0.26 - PERCENTAGE OF EACH MATERIAL WITHIN REGRESSION ANALYSIS (AGE TO FIRST FAILURE) – REGION 
OF WATERLOO 

 

Like most utilities, the cast iron pipe has the highest average years to the first failure, 59. This 
number for asbestos cement and concrete is 43.83 and 33.17, in successive. PVC pipes, 
however, experienced failures in the early stage of their life cycles, with an average of 14.77 
years to the first failure (Figure 0.27). 

 

FIGURE 0.27 - DISTRIBUTION OF AGE TO FIRST FAILURE BASED ON TYPE OF MATERIAL (REGION OF WATERLOO) 
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It should be noted that since the number of cast iron pipes was not sufficient, only AM 
category, which includes all material, was analyzed for the Region of Waterloo. In this section, 
ANN algorithm showed the worst accuracy with an RMSE of 22.4 and an R-Squared of 0.22. The 
random forest model, however, depicted a relatively good score. With the RMSE of 14.5 and 
the R-Squared of 0.68, this algorithm was the most efficient one. Results for other algorithms 
are provided in the following table (TABLE 0.11). Given regression plot also provides more 
insight regarding the accuracy of the random forest as the best model for the Region of 
Waterloo (Figure 0.28). 

TABLE 0.110.11 - REGRESSION METRICS (WATERLOO) 

Algorithm 
RMSE MSE R - Squared 

AM Cast Iron AM Cast Iron AM Cast Iron 

ElasticNet 21.5   - 461.2   -  0.29  - 

Random Forest 14.5  - 209.2  - 0.68  - 

XGBOOST 17.4  - 303.6  - 0.53  - 

ANN 22.4   - 503.1   - 0.22   - 

* AM = All Materials 

 

FIGURE 0.28 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – RANDOM FOREST) – REGION OF 
WATERLOO 
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- Current Rate of Failure 

Furthermore, this utility was also analyzed for the current rate of failure. Length, material, 
diameter, lining status, lining material, lining age, age at the most recent failure, the previous 
rate of failure, and the current failure rate are the input variables for this step. Since this utility 
is a young network, the average current rate of failure is higher for younger pipes, and this can 
be seen from the given graph. The graph shows that pipes aged around 20 experienced more 
failures than others (Figure 0.29). 

 

  

FIGURE 0.29 - AVERAGE OF CURRENT RATE OF FAILURE BASED ON AGE (REGION OF WATERLOO) 

 

According to the results, random forest performed better than other algorithms. This can be 
seen with the R-Squared of 0.82 and the RMSE of 0.11. ElasticNet and ANN were the worst 
algorithms in this step, with the R-Squared of 0.07 and 0.17, respectively. XGBOOST, although 
not the best, had a comparatively good result compared to the random forest (TABLE 0.12).  

 

TABLE 0.120.12 – REGRESSION METRICS – CURRENT RATE OF FAILURE (REGION OF WATERLOO) 

Algorithm 
RMSE R - Squared 

AM Cast Iron AM Cast Iron 

ElasticNet 0.26 N.A 0.07 N.A 

Random Forest 0.11 N.A 0.82 N.A 
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XGBOOST 0.12 N.A 0.80 N.A 

ANN 0.25 N.A 0.17 N.A 

                           * AM = All Materials 

 

FIGURE 0.30 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – RANDOM FOREST) – REGION OF 
WATERLOO 

Region of Durham 

 

- Age at First Failure 

The final regression file for the Region of Durham includes 1,221 pipes, including different input 
variables; surface type, material, length, lining material, diameter, protection status, lining 
status, age, lining age, and protection age. 

Two primary materials account for almost 95% of the entire network. The first one is cast iron 
pipe, making up 60.85%, and ductile iron that makes up 35.30% of the recorded failures. Other 
materials with insignificant failure can be noticed within the given pie chart (Figure 0.31).  
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FIGURE 0.31 - PERCENTAGE OF EACH MATERIAL WITHIN REGRESSION ANALYSIS (AGE TO FIRST FAILURE) – REGION 
OF DURHAM 

 

Cast iron with an average age of 38.48 experienced failures later in its life cycle compared to 
other materials. Concrete, in this case, has the youngest average age, which is 14.2. Asbestos 
cement, ductile iron, and PVC follow cast iron with an average of 36.17, 24.47, and 16.97 years. 
A box plot is created to show how age to the first failure is distributed among different 
materials (Figure 0.32). 

 

FIGURE 0.32- DISTRIBUTION OF AGE TO FIRST FAILURE BASED ON TYPE OF MATERIAL (REGION OF DURHAM) 
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For the Region of Durham, regression models did not indicate desirable results, as can be seen 
from the given table. Among these models, random forest with the RMSE of 14.9 and the R-
Squared of 0.20 had the best performance for AM category (TABLE 0.13). This model also for 
cast iron pipe represented the best performance. Moreover, ElasticNet and ANN with an RMSE 
of 15.1 had better performance compared to XGBOOST. Having an R-Squared of 0.07 and an 
RMSE of 17.5, XGBOOST showed the worst performance for cast iron pipes. It should be noted 
that the accuracy of models declined after partitioning the dataset. A regression plot was 
created based on the random forest result comparing actual and predicted values (Figure 0.33). 

 

TABLE 0.130.13 - REGRESSION METRICS (REGION OF DURHAM) 

Algorithm 
RMSE MSE R - Squared 

AM Cast Iron AM Cast Iron AM Cast Iron 

ElasticNet 15.1  16.9  227.1  288.1 0.18  0.13 

Random Forest 14.9 16.7 222.4 280.4 0.20 0.15 

XGBOOST 15.2 17.5 230.3 306.9 0.17 0.07 

ANN 15.1 17  228.3  288.5  0.18  0.13  

* AM = All Materials 

 

 

FIGURE 0.33 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – RANDOM FOREST) – REGION OF 
DURHAM 
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- Current Rate of Failure 

For the prediction of the current rate of failures, many input variables have been used for this 
network. These attributes consist of surface type, material, length, lining material, diameter, 
protection status, lining status, age, lining age, protection age, the previous rate of failures, and 
the current rate of failures. 

The given chart indicates the average current rate of failure based on pipe age. Two peaks can 
be noticed within the graph. The first is at age ten which is around 0.06 per meter, and the 
other is around 86, which is relatively high, 0.14 per meter. This result indicates that the failure 
rate in the early and wear-out phases is higher than in the in-usage stage (Figure 0.34). 

 

FIGURE 0.34 - AVERAGE OF CURRENT RATE OF FAILURE BASED ON AGE (REGION OF DURHAM) 

The results for this step are relatively satisfactory, although the performance was not desirable 
for some models. For instance, the best models for the AM category were the random forest 
and XGBOOST, with similar RMSE and R-Squared scores, 0.012 and 0.78, respectively. For cast 
iron also, these two algorithms performed better than ElasticNet and ANN. Nevertheless, 
random forest with an R-squared of 0.85 indicated the best results for the cast iron group 
(TABLE 0.14). Moreover, the given regression plot indicates how random forest can fit the 
dataset in terms of prediction (Figure 0.35). 

TABLE 0.140.14 – REGRESSION METRICS – CURRENT RATE OF FAILURE (REGION OF DURHAM) 

Algorithm 
RMSE R - Squared 

AM Cast Iron AM Cast Iron 

ElasticNet 0.024 0.012 0.09 0.18 
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Random Forest 0.012 0.005 0.78 0.85 

XGBOOST 0.012 0.007 0.78 0.69 

ANN 0.033 0.014 0.15 N.A 

                           * AM = All Materials 

 

FIGURE 0.35 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – RANDOM FOREST) – REGION OF 

DURHAM 

Calgary 

 

- Age at First Failure 

Calgary, as discussed previously, owns one of the most robust datasets. This network includes 
3,913 uniques pipes with at least one failure. This network`s dataset includes different input 
variables: material, length, diameter, age, coating status, protection status, anode type, 
average soil resistivity, and dead-end. It should be noted that a significant proportion of the file 
is allocated to the cast iron pipes, with a 66.39% contribution. Ductile iron accounts for almost 
29.26% of the whole records, and asbestos cement with 2.68% is third. The given pie chart 
indicates the percentage of each material within the regression file (Figure 0.36). 

Additionally, according to the available information, copper has the highest average age for the 
first failure, around 48.5 years. Meanwhile, concrete and cast iron are the following materials 
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with an average of 32.83 and 31.65, respectively. Finally, polyethylene has the lowest number, 
8.5, indicating that this material is significantly prone to failure when in the early stage of the 
bathtub curve. The distribution of age to the first failure for all materials can be seen within the 
given box plot (Figure 0.37). 

 

FIGURE 0.36 - PERCENTAGE OF EACH MATERIAL WITHIN REGRESSION ANALYSIS (AGE TO FIRST FAILURE) – 

CALGARY 

 

 

FIGURE 0.37 - DISTRIBUTION OF AGE TO FIRST FAILURE BASED ON TYPE OF MATERIAL (CALGARY) 
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Results for the Calgary network are provided in the given table. As can be seen, no models 
indicated a good performance, and they all performed somewhat similarly. For instance, the 
RMSE score for all models is around 16.5. Models for this city require further enhancement in 
order to become reliable and feasible in the real world (TABLE 0.15). As an example, the 
ElasticNet regression's low accuracy can be noticed in the given regression plot (Figure 0.38). 

 

TABLE 0.150.15 - REGRESSION METRICS (CALGARY) 

Algorithm 
RMSE MSE R - Squared 

AM Cast Iron AM Cast Iron AM Cast Iron 

ElasticNet 16.5  19.7  273.2  386.0  0.12 N.A 

Random Forest 16.5 19.8 273.4 390.4 0.12 N.A 

XGBOOST 16.7 20.2 277.5 406.1 0.11 N.A 

ANN 16.6  19.8  274.7  390.1  0.12  N.A  

* AM = All Materials 

 

FIGURE 0.38 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – ELASTICNET) – CALGARY 

- Current Rate of Failure 

For predicting the current rate of failure following attributes have been utilized: material, 
length, diameter, age, coating status, protection status, anode type, average soil resistivity, 
dead-end, the previous rate of failure, and the current rate of failure. As can be seen within the 
given bar chart, the younger the age to the most recent failure is, the higher the current rate of 
failure is in this network, experiencing a peak around 17. Nonetheless, there are a few peaks in 
the wear-out phase of the network. These peaks are for pipes that are around the age of 77 and 
over the age of 100. This trend could be related to the deterioration process of water mains 
during older age. 
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FIGURE 0.39 - AVERAGE OF CURRENT RATE OF FAILURE BASED ON AGE (CALGARY) 

Comparing the results of regression models reveals high accuracy for tree-based algorithms; 
random forest, and XGBOOST. For example, for AM category, the RMSE score is 0.007 and 
0.005 for random forest and XGBOOST, respectively, and the corresponding R-Squared values 
are 0.90 and 0.96. Thus, XGBOOST has proven to be the best model for predicting this 
network's current rate of failures. 

Moreover, for the cast iron group, XGBOOST performed better than other models with an R-
Squared of 0.98. On the other hand, elasticNet regression for both categories indicated the 
weakest accuracy. The given table below compares the regression metrics for all algorithms 
(TABLE 0.16). 

TABLE 0.160.16 – REGRESSION METRICS – CURRENT RATE OF FAILURE (CALGARY) 

Algorithm 
RMSE R - Squared 

AM Cast Iron AM Cast Iron 

ElasticNet 0.02 0.016 0.15 0.21 

Random Forest 0.007 0.004 0.90 0.94 

XGBOOST 0.005 0.002 0.96 0.98 

ANN 0.018 0.014 0.33 0.35 

                           * AM = All Materials 



255 | P a g e  

 

 

FIGURE 0.40 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – XGBOOST) – CALGARY 

Vancouver 

 

- Age at First Failure 

Although considered one of the largest networks across Canada, this network includes a small 
number of unique pipe IDs. Only 709 pipes recorded experienced at least one failure. The 
available attributes for this network in this step of the study are pipe depth, service type, 
diameter, length, material, coating material, lining material, and age to the first failure. Cast 
iron is the most frequent type of material within the regression file, with an 88.15% 
contribution. The following material is ductile iron that accounts for only 7.48% of total records. 
Steel pipes, also with 3.39%, are the following frequent material within the network. 

 

FIGURE 0.41 - PERCENTAGE OF EACH MATERIAL WITHIN REGRESSION ANALYSIS (AGE TO FIRST FAILURE) – 

VANCOUVER 



256 | P a g e  

 

Steel pipes have the highest average age to the first failure within the available information, 
with the value of 77.13, which is relatively high compared to other cities. Cast iron, also with 
64.14, has a relatively high average compared to other materials within the network. The 
average age to the first failure for this network is somewhat high compared to other utilities 
(Figure 0.42). 

 

 

FIGURE 0.42 - DISTRIBUTION OF AGE TO FIRST FAILURE BASED ON TYPE OF MATERIAL (VANCOUVER) 

According to the results for Vancouver, no regression algorithms were performed satisfactorily. 
On the other hand, ANN has the highest accuracy for AM category with the R-Squared of 0.39 
and RMSE of 15.4. However, random forest indicated a better result for the cast iron group 
than other models with RMSE of 12.9 and R-Squared of 0.23. Nonetheless, it should be noted 
that these values are not as much reliable as they should be for applying to real-world cases. 
The given table below compares the results of these algorithms (TABLE 0.17). Looking at the 
given regression plot also emphasized the weakness of ANN, even as the best model for Calgary 
(Figure 0.43). 

TABLE 0.170.17 - REGRESSION METRICS (VANCOUVER) 

Algorithm 
RMSE MSE R - Squared 

AM Cast Iron AM Cast Iron AM Cast Iron 

ElasticNet  16.2 13.0  261.9  168 0.32  0.22 

Random Forest 15.7 12.9 245.4 166.4 0.36 0.23 

XGBOOST 16.4 13.6 268.6 185.7 0.30 0.14 

ANN  15.4 13.1  236.6  172.3  0.39  0.20  
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* AM = All Materials 

 

 

FIGURE 0.43 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – ANN) – VANCOUVER 

- Current Rate of Failure 

 

The input variables for the current rate of failure in Vancouver are different from other cities 
since they do not include previous failure rates. This is because the first failure for each pipe is 
just reported in a specific year, which means that the most recent failure in this file is the first 
failure for all pipes. Therefore, only the current rate of failure has been calculated and added to 
the dataset. Accordingly, the following are the input variables for the city of Vancouver: pipe 
depth, service type, diameter, length, material, coating material, lining material, the current 
rate of failures, and age at most recent failure. The Given bar chart indicates that younger pipes 
experienced more failure than older pipes (Figure 0.44). 
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FIGURE 0.44 - AVERAGE OF CURRENT RATE OF FAILURE BASED ON AGE (VANCOUVER) 

TABLE 0.180.18 – REGRESSION METRICS – CURRENT RATE OF FAILURE (VANCOUVER) 

Algorithm 
RMSE R - Squared 

AM Cast Iron AM Cast Iron 

ElasticNet 0.245 0.223 0.01 0.10 

Random Forest 0.034 0.024 0.98 0.99 

XGBOOST 0.036 0.027 0.98 0.97 

ANN 0.090 0.079 0.88 0.89 

                           * AM = All Materials 

Considering the results, however, regression models performed better than the first step of the 
study, which was the prediction of the age at the first failure. For instance, random forest and 
XGBOOST showed a significantly high performance with an R-Squared of 0.98. This metric for 
the ANN model is 0.88, which is relatively desirable. It should be noted that ElasticNet indicated 
a low accuracy for AM category, with an R-Squared of 0.01. 

On the other hand, random forest resulted in better accuracy for the cast iron group with an R-
Squared of 0.99, which is significantly high. However, no considerable improvement can be 
seen with partitioning the dataset based on material in the cast iron group. Random forest and 
ANN`s R-Squared increased by merely 0.01. The given figure shows the goodness of fit for the 
random forest model (Figure 0.45). 
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FIGURE 0.45 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – RANDOM FOREST) – VANCOUVER 

Victoria 

 

- Age at First Failure 

Victoria water network includes 397 unique pipes with at least one failure record. These pipes 
are provided with several attributes: material, HGL, diameter, length, lining material, lining 
status, and age to the first failure. For this part of the study, cast iron accounts for almost 75% 
of total failure, followed by ductile iron with an 18.89% contribution. As can be seen in the 
given pie chart, other materials make up for a small proportion of recorded failures (Figure 
0.46).  
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FIGURE 0.46 - PERCENTAGE OF EACH MATERIAL WITHIN REGRESSION ANALYSIS (AGE TO FIRST FAILURE) – 

VICTORIA 

The given box plot provides information about age distribution to the first failure based on 
different materials (Figure 0.47). For example, steel pipes recorded the highest value, which is 
around 84 years. This value for cast iron and ductile iron is 57 and 32, respectively. The average 
failure age for other materials can be found in the given chart. 

 

 

FIGURE 0.47 - DISTRIBUTION OF AGE TO FIRST FAILURE BASED ON TYPE OF MATERIAL (VICTORIA) 

Results from regression analysis revealed that random forest, for AM category, had the best 
performance with an RMSE of 17.3 and R-Squared of 0.38. XGBOOST and ANN with R-Squared 
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of 0.33 and 0.38, respectively, are in the following positions. For cast-iron pipes, however, 
ElasticNet regression provided a better result with an R-Squared of 0.30. ANN, for cast iron, did 
not have a desirable result (TABLE 0.19). 

TABLE 0.190.19 - REGRESSION METRICS (VICTORIA) 

Algorithm 
RMSE MSE R - Squared 

AM Cast Iron AM Cast Iron AM Cast Iron 

ElasticNet 18.4   19.2 339.5  369.5 0.30  0.30 

Random Forest 17.3 20.0 298.1 401.0 0.38 0.24 

XGBOOST 17.9 22.7 322.6 517.7 0.33 0.02 

ANN  18.6  23.2 346.1  552.9  0.28   0.00 

* AM = All Materials 

 

FIGURE 0.48 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – RANDOM FOREST) – VICTORIA 

- Current Rate of Failure 

The current rate of failure was also analyzed for the city of Victoria. The given histogram shows 
the average current rate of failure based on the age at most recent failure (Figure 0.49). As 
shown, a fluctuation can be noticed for different ages. Seemingly, the rate of failure during the 
early stage and wear-out stage of the bathtub curve is higher than the in-usage period. A range 
of input variables has been used for this part of the analysis in this network: material, HGL, 
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diameter, length, lining material, lining status, age, the previous rate of failure, and the current 
rate of failure (dependent variable). 

 

FIGURE 0.49 - AVERAGE OF CURRENT RATE OF FAILURE BASED ON AGE (VICTORIA) 

ElasticNet regression did not present a desirable performance for this network, and with an R-
Squared of 0.02, it was the weakest model. Tree-based models, on the other hand, indicated 
higher scores. XGBOOST, with an RMSE of 0.003 and an R-Squared of 0.90, was able to predict 
the rate of failures more accurately. The random forest also with 0.84 R-Squared, after 
XGBOOST, was the best predictive model in Victoria. Additionally, for cast iron pipe, XGBOOST 
and random forest with an R-Sqaured of 0.35 and 0.27, respectively, indicated a better 
performance than other algorithms. Interestingly, homogeneity decreased the power of the 
model in prediction. Provided is the table that shows the regression metrics for all models 
(TABLE 0.20). Figure 0.50 also plots the predicted current rate of failure versus the actual current 
rate of failure.  

TABLE 0.200.20 – REGRESSION METRICS – CURRENT RATE OF FAILURE (VICTORIA) 

Algorithm 
RMSE R - Squared 

AM Cast Iron AM Cast Iron 

ElasticNet 0.01 0.05 0.02 0.03 

Random Forest 0.004 0.04 0.84 0.27 

XGBOOST 0.003 0.04 0.90 0.35 

ANN 0.015 0.05 N.A 0.03 

                           * AM = All Materials 
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FIGURE 0.50 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – XGBOOST) – VICTORIA 

 

Halifax 

 

- Age at First Failure 

Halifax network consists of 1,835 unique pipes that experienced at least one failure. Length, 
diameter, material, age, lining status, and lining material were used as input variables for the 
regression analysis of Halifax. Based on the given information, 85.50% of the total pipes in the 
regression file are related to cast iron material. Ductile iron is the following material that failed 
more frequently than other materials, with 12.26% of failures recorded. Conversely, PVC with a 
0.98% contribution is among the lowest recorded failures (Figure 0.51).  
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FIGURE 0.51 - PERCENTAGE OF EACH MATERIAL WITHIN REGRESSION ANALYSIS (AGE TO FIRST FAILURE) – HALIFAX 

As previously mentioned, the number of years to the first failure is the target of the prediction 
in this step. Accordingly, the given box plot was created to show the distribution of age at the 
first failure for different materials. For example, cast iron and asbestos cement pipes have the 
highest average age at first failure, 42 and 37.5, respectively. On the other hand, PVC with 
16.33 was the pipe with the lowest age at first failure. The distribution of age for other 
materials is provided as follows (Figure 0.52). 

 

FIGURE 0.52 - DISTRIBUTION OF AGE TO FIRST FAILURE BASED ON TYPE OF MATERIAL (HALIFAX) 

Regression models did not provide satisfactory results for the prediction of age at first failure. 
However, looking at the graph reveals that tree-based models performed better compared to 
ElasticNet and ANN models. For AM category, random forest with an RMSE of 17.2 and an R-
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Squared of 0.31 was the best model. Conversely, ANN indicated the worst performance with 
the R-Squared of 0.08. 

Furthermore, for the cast iron category, random forest with an RMSE and R-Squared of 18.5 
and 0.16, respectively, provided better results than other models. The given table depicts more 
information about the results achieved in this part of the study (TABLE 0.21). 

TABLE 0.210.21 - REGRESSION METRICS (HALIFAX) 

Algorithm 
RMSE MSE R - Squared 

AM Cast Iron AM Cast Iron AM Cast Iron 

ElasticNet  18.5 19.2  340.6  367.266  0.20 0.09 

Random Forest 17.2 18.5 294.2 341.2 0.31 0.16 

XGBOOST 17.5 18.6 306.1 346.7 0.28 0.14 

ANN 19.8  18.6  393.7  346.1  0.08  0.14  

* AM = All Materials 

 

The given plot compares the predicted age at the first failure and the actual age at the first 
failure for the Halifax network (Figure 0.53). 

 

FIGURE 0.53 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – RANDOM FOREST) – HALIFAX 
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- Current Rate of Failure 

As shown in the given chart, the average current rate of failure is higher among the younger 
pipes (Figure 0.54). This can be seen with a peak around the age of 6 and 20. However, it should 
be mentioned that the current rate of failure is highly related to the length, and considering age 
alone is not as reliable. For this part of the study, length, diameter, material, lining material, 
lining status, the current rate of failure, the previous rate of failure, and age were employed as 
input variables. 

 

FIGURE 0.54 - AVERAGE OF CURRENT RATE OF FAILURE BASED ON AGE (HALIFAX) 

 

For this network, random forest, XGBOOST, and ANN indicated satisfactory results. However, 
XGBOOST performed relatively better than the other two algorithms for both categories; AM 
and cast iron. The R-Squared and RMSE for XGBOOST are 0.92 and 0.029, respectively. The 
accuracy of XGBOOST declined when analyzing cast iron pipes, indicating that other criteria are 
also required for making uniform groups, and material alone is not enough. For instance, R-
Squared decreased from 0.92 to 0.56 for XGBOOST model. Other results can be found in the 
given table (TABLE 0.22).  

TABLE 0.220.22 – REGRESSION METRICS – CURRENT RATE OF FAILURE (HALIFAX) 

Algorithm 
RMSE R - Squared 

AM Cast Iron AM Cast Iron 

ElasticNet 0.10 0.11 0.08 0.01 

Random Forest 0.043 0.091 0.83 0.34 

XGBOOST 0.029 0.744 0.92 0.56 
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ANN 0.052 0.093 0.75 0.31 

                           * AM = All Materials 

Figure 0.55 was prepared based on the random forest results. As can be seen, this model was 

able to predict the current rate of failure with relatively desirable accuracy. 

 

FIGURE 0.55 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – XGBOOST) – HALIFAX 

St. John’s 

 

- Age at First Failure 

After cleaning and preparing the regression dataset, St. John’s includes 833 unique pipes with 
at least one historical failure. There are different input variables along with this dataset, such as 
material, length, diameter, roughness, and age at the first failure. 

Furthermore, cast iron pipes with 83.19% of recorded failures have the highest contribution. 
Ductile iron follows this material and accounts for 15.25% of total data points. The given pie 
chart provides more information about the frequency of all materials within the St. John’s 
network (Figure 0.56). 
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FIGURE 0.56 - PERCENTAGE OF EACH MATERIAL WITHIN REGRESSION ANALYSIS (AGE TO FIRST FAILURE) – 

ST.JOHN’S 

Cast iron has the highest value considering the average age at first failure, which is 51.39 years. 
PVC pipes, however, experienced a minimum number of years to the first failure in this 
network. The average for PVC is around seven years. Moreover, ductile iron and asbestos 
cement pipes are after cast iron, with values of 25.25 and 23.5, respectively (Figure 0.57). 

 

FIGURE 0.57 - DISTRIBUTION OF AGE TO FIRST FAILURE BASED ON TYPE OF MATERIAL (ST.JOHN’S) 

The given table below compares the results of different regression models (TABLE 0.23). The 
ANN model performed better for AM category than others, as seen from RMSE and MSE scores, 
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12.3 and 352.5, respectively. However, this model did not provide a logical R-Squared score. On 
the other hand, the results for cast iron pipes were relatively close. Nonetheless, random forest 
with an RMSE score ok 18.5 and an R-Squared of 341.8 indicated a better accuracy than other 
models. 

TABLE 0.230.23 - REGRESSION METRICS (ST. JOHN’S) 

Algorithm 
RMSE MSE R - Squared 

AM Cast Iron AM Cast Iron AM Cast Iron 

ElasticNet 18.1  19.1  328.6  365.3 0.23  N.A 

Random Forest 17.6 18.5 309.7 341.8 0.27 0.06 

XGBOOST 18.0 20.4 323.3 417.7 0.24 N.A 

ANN  12.3  18.8 151.1  352.5  N.A   0.035 

* AM = All Materials 

 

FIGURE 0.58 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – RANDOM FOREST) – ST.JOHN’S 

- Current Rate of Failure 

Regression analysis indicated that the current rate of failures for young-age pipes and old-age 
pipes is higher compared to mid-age pipes. A peak can be seen for age around 75, with the 
average current rate of failure of 0.25 per meter. In this step, several input variables were 
employed for the prediction, such as diameter, roughness, length, material, age, the previous 
rate of failure, and the current failure rate. The given figure shows the average of the current 
rate of failure based on the age at most recent failure in St. John’s (Figure 0.59) 
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FIGURE 0.59 - AVERAGE OF CURRENT RATE OF FAILURE BASED ON AGE (ST. JOHN’S) 

For AM category, XGBOOST indicated the best performance among all algorithms, with an 
RMSE of 0.006 and an R-squared of 0.95. For the cast iron group, also, this model performed 
better than others with an R-Squared of 0.98. Moreover, the performance of this model and 
random forest increased when used for the cast iron group. For XGBOOST from 0.95 to .098, 
and for random forest from 0.84 to 0.89. However, for the ANN model and Elasticnet, R-
Squared worsened. Results of this part can be seen in the given table (TABLE 0.24). 

TABLE 0.240.24 – REGRESSION METRICS – CURRENT RATE OF FAILURE (ST. JOHN’S) 

Algorithm 
RMSE R - Squared 

AM Cast Iron AM Cast Iron 

ElasticNet 0.025 0.024 0.25 0.20 

Random Forest 0.011 0.009 0.84 0.89 

XGBOOST 0.006 0.004 0.95 0.98 

ANN 0.020 0.022 0.50 0.34 

                           * AM = All Materials 
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FIGURE 0.60 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – XGBOOST) – ST.JOHN’S 

 

Barrie 

- Age at First Failure 

Barrie is the final network analyzed in terms of regression. The total number of pipes in the final 
file is 261, including different input variables such as anode status, soil type, material, diameter, 
protection status, casing material, restrained, and, more importantly, age at first failure. Cast 
iron makes up 63.22% of total data points. Meanwhile, ductile iron and PVC are the most 
frequent type after cast iron, with 24.52% and 7.28% contribution to all pipes with at least one 
failure. The percentage of other materials can be noticed in the given graph (Figure 0.61). 
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FIGURE 0.61 - PERCENTAGE OF EACH MATERIAL WITHIN REGRESSION ANALYSIS (AGE TO FIRST FAILURE) – BARRIE 

 

The galvanized steel, which accounts for almost 2.30% of total pipes with at least one failure, 
has the highest average age at the first failure, 51.83 years. The distribution of other materials 
based on the average age can be seen in the given box plot (Figure 0.62). 

 

 

FIGURE 0.62 - DISTRIBUTION OF AGE TO FIRST FAILURE BASED ON TYPE OF MATERIAL (BARRIE) 



273 | P a g e  

 

The provided table shows the final results of the regression analysis for Barrie. Again, random 
forest demonstrated the best performance for AM category with an RMSE of 14.2 and an R-
Squared of 0.35. ANN also showed good accuracy with the R-Squared of 0.32 compared to 
random forest. For the cast iron group, however, XGBOOST is the best model. The RMSE and R-
Squared for XGBOOST are 16.5 and 0.25, in successive (TABLE 0.25). 

 

TABLE 0.250.25 - REGRESSION METRICS (BARRIE) 

Algorithm 
RMSE MSE R - Squared 

AM Cast Iron AM Cast Iron AM Cast Iron 

ElasticNet 14.8  18.6  218.8  345.6 0.29  0.05 

Random Forest 14.2 17.0 202.2 289.9 0.35 0.20 

XGBOOST 16.0 16.5 256.3 272.9 0.17 0.25 

ANN 14.4  19.9  209.0  396.3  0.32  N.A  

* AM = All Materials 

 

The given regression plot compares the predicted value and actual value of age at the first 
failure, and it shows that even random forest with the best performance can not find a rational 
pattern for the Barrie network (Figure 0.63). 

 

FIGURE 0.63 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – RANDOM FOREST) – BARRIE 
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- Current Rate of Failure 

Regarding the current rate of failure analysis in Barrie, several input variables were used. These 
variables consist of pipe depth, anode status, service type, material, diameter, protection 
status, length, casing material, restrained, age, the current rate of failure, and previous rate of 
failure. Based on the available information, the average current rate of failure is higher during 
the early-stage bathtub curve. Several peaks can be seen within the given graph, around age 8 
and 18. The following graph shows the average current failure rate based on the most recent 
failure age (Figure 0.64). 

 

FIGURE 0.64 - AVERAGE OF CURRENT RATE OF FAILURE BASED ON AGE (BARRIE) 

The given table shows the result of regression analysis based on the different metrics (TABLE 
0.26). As shown, for AM category, XGBOOST indicated a better performance with an R-Squared 
of 0.60. The accuracy of this model then declined for the cast iron group and dropped to 0.343. 
The random forest, however, experienced an inverse performance. The accuracy of this model 
increased from 0.50 for AM category to 0.67 for the cast iron group. This indicates that the 
performance of each model may vary among different categories, and one uniform model can 
be employed for all groups of pipes.  

TABLE 0.260.26 – REGRESSION METRICS – CURRENT RATE OF FAILURE (BARRIE) 

Algorithm 
RMSE R - Squared 

AM Cast Iron AM Cast Iron 

ElasticNet 0.012 0.008 N.A 0.18 

Random Forest 0.004 0.005 0.50 0.67 

XGBOOST 0.003 0.007 0.60 0.343 

ANN 0.007 0.008 N.A 0.227 

                           * AM = All Materials 
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FIGURE 0.65 - REGRESSION PLOT (COMPARE OBSERVATION AND PREDICTION – XGBOOST) – BARRIE 

 

Feature Importance for Regression Models (Age at First Failure) 

 

 

FIGURE 0.66 – FEATURE IMPORTANCE – REGRESSION ( AGE AT FIRST FAILURE – SASKATOON ) 
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FIGURE 0.67 - FEATURE IMPORTANCE – REGRESSION ( AGE AT FIRST FAILURE – WINNIPEG ) 

 

FIGURE 0.68 - FEATURE IMPORTANCE – REGRESSION ( AGE AT FIRST FAILURE – KITCHENER ) 
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FIGURE 0.69 - FEATURE IMPORTANCE – REGRESSION ( AGE AT FIRST FAILURE – MARKHAM ) 

 

FIGURE 0.70 - FEATURE IMPORTANCE – REGRESSION ( AGE AT FIRST FAILURE – WATERLOO ) 
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FIGURE 0.71 - FEATURE IMPORTANCE – REGRESSION ( AGE AT FIRST FAILURE – REGION OF WATERLOO ) 

 

FIGURE 0.72 - FEATURE IMPORTANCE – REGRESSION ( AGE AT FIRST FAILURE – REGION OF DURHAM ) 
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FIGURE 0.73 - FEATURE IMPORTANCE – REGRESSION ( AGE AT FIRST FAILURE – CALGARY ) 

 

FIGURE 0.74 - FEATURE IMPORTANCE – REGRESSION ( AGE AT FIRST FAILURE – VANCOUVER ) 
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FIGURE 0.75 - FEATURE IMPORTANCE – REGRESSION (AGE AT FIRST FAILURE – VICTORIA) 

 

FIGURE 0.76 - FEATURE IMPORTANCE – REGRESSION ( AGE AT FIRST FAILURE – HALIFAX ) 
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FIGURE 0.77 - FEATURE IMPORTANCE – REGRESSION ( AGE AT FIRST FAILURE – ST. JOHN’S ) 

 

FIGURE 0.78 - FEATURE IMPORTANCE – REGRESSION (AGE AT FIRST FAILURE – BARRIE) 
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APPENDIX F – CORRELATION MATRIX (SPEARMAN – CLASSIFICATION MODELS) 

 
Spearman correlation analysis has been conducted to find any significant correlation between 
numerical attributes. For example, for Saskatoon, the given correlation matrix indicates the 
correlation score between age at the first failure and other attributes for broken pipes (class 1). 
For asbestos cement pipes and threaded joint types, there are correlation scores of -0.42 and -
0.43, respectively. This negative correlation shows that when joint type is threaded or pipe is 
asbestos cement, the age at the first failure is lower than in other situations. However, this 
correlation is not considered as strong since its value is below -0.5. 

On the other hand, the correlation scores for cast iron pipes and lead joint are positive, with the 
score 0.49 and 0.52, respectively, indicating that the age at the first failure is higher whenever 
these two features are available. Correlation scores for other materials and other attributes can 
be found in the given matrix (Figure 0.1). It should be noted that this matrix only belongs to the 
broken pipes. 

 

 

Figure 0.1 – Spearman correlation analysis for class 1 or broken pipes (Saskatoon) 
 
The Spearman analysis was also applied to Winnipeg`s classification dataset, and no significant 
correlation was found between the numerical attributes )Figure 0.2). Among broken pipes, only 
cast iron is somewhat correlated with age at the first failure, with a score of 0.52, showing that 
age at first break increases where cast iron does exist. The given figure shows how attributes 
within the Calgary network for broken pipes are correlated. 
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Figure 0.2 - Spearman correlation analysis for class 1 or broken pipes (Winnipeg) 
 
 
 
For Kitchener, from the correlation matrix that has been produced based on Spearman 
Correlation Analysis, there is no significant correlation between input variables and the age at 
the first failure (Figure 0.3). The highest positive correlation is related to the cast iron material 
with the value of 0.52, which somewhat correlates with age at the first failure. This value shows 
that when cast iron is installed, the age at the first failure increases, although this does not 
show any specific causations. Moreover, ductile iron with a score of -0.45 seems to have a weak 
inverse correlation with age at the first failure. 

 

Figure 0.3 – Spearman correlation analysis for class 1 or broken pipes (Kitchener) 
 
In Markham, Spearman Correlation Analysis indicated no significant correlation between age at 
the first failure and other input variables in the classification dataset. Nonetheless, a weak 
correlation between PVC and age at the first failure can be noticed, with a value of -0.27. 
Therefore, the given matrix is recommended to better understand the correlation between age 
at the first failure and other attributes (Figure 0.4). Same as before, this matrix is created based 
on only broken pipes. 
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Figure 0.4 - Spearman correlation analysis for class 1 or broken pipes (Markham) 
 
 
 
 

 

 

 

The followings are the correlation matrixes prepared for other utilities in this study. 

 

 

Figure 0.5 - Spearman correlation analysis for class 1 or broken pipes (waterloo) 
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Figure 0.6 - Spearman correlation analysis for class 1 or broken pipes (Region of waterloo) 
 
 

 

FIGURE 0.7 - SPEARMAN CORRELATION ANALYSIS FOR CLASS 1 OR BROKEN PIPES (REGION OF DURHAM) 

 
 
 
 
 
 
 

 

FIGURE 0.8 - SPEARMAN CORRELATION ANALYSIS FOR CLASS 1 OR BROKEN PIPES (CALGARY) 
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FIGURE 0.9 – SPEARMAN CORRELATION ANALYSIS FOR CLASS 1 OR BROKEN PIPES (VANCOUVER) 

 

 

FIGURE 0.10 - SPEARMAN CORRELATION ANALYSIS FOR CLASS 1 OR BROKEN PIPES (VICTORIA) 

 

 

 

FIGURE 0.11 - SPEARMAN CORRELATION ANALYSIS FOR CLASS 1 OR BROKEN PIPES (HALIFAX) 
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FIGURE 0.12 - SPEARMAN CORRELATION ANALYSIS FOR CLASS 1 OR BROKEN PIPES (ST. JOHN’S) 

 

 

FIGURE 0.13 - SPEARMAN CORRELATION ANALYSIS FOR CLASS 1 OR BROKEN PIPES (BARRIE) 
 
 
 
 
 
 
 

APPENDIX G – CORRELATION MATRIX (SPEARMAN – REGRESSION MODELS – AGE 

AT FIRST FAILURE) 

 

Spearman correlation analysis results are similar to the classification problem since they 
consider age at first failure. However, due to differences in the structure of both datasets, the 
scores for correlation vary a little bit. Given matrix depicts that whenever a joint type is a lead, 
the number of years to the first failure increases, with a score of 0.56 (Figure 0.1). Same pattern 
for cast iron material with a smaller score, which is 0.48. These scores can be related to a weak 
correlation. 
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On the other hand, when the material is asbestos cement or the joint type is threaded, age at 
the first failure tends to decline. This can show that these factors may have an adverse effect on 
the pipe deterioration process. 

 

Figure 0.1 – Spearman correlation – Age to first failure (Regression – Saskatoon) 
 

 

Analyzing the correlation between different attributes with the Spearman analysis shows a 
strong correlation between age and first failure and lead joins, with an uphill score of 0.64. Cast 
iron pipe also indicates a positive correlation, although moderate, and the score is 0.54. 

Like Saskatoon, asbestos cement negatively correlates with age, indicating that this pipe has 
experienced its first failure at a younger age. Moreover, the Collar joint also shows a similar 
pattern. The score for asbestos cement pipe and collar joint are -0.41 and -0.40, respectively. 
More correlation scores can be found in the given matrix below (Figure 0.2). 

 

 

Figure 0.2 - Spearman correlation – Age to first failure (Regression – Winnipeg) 
 
 

The given figure is prepared based on the Spearman correlation analysis. Cast iron and ductile 
iron pipes have a positive and negative correlation with age, with a score of 0.52 and -0.45, 
respectively. In this case, anode status has a weak positive correlation with age at first failure, 
with a score of 0.37. PVC pipes show a very weak correlation with age in this network (Figure 
0.3). 
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Figure 0.3 - Spearman correlation – Age to first failure (Regression – Kitchener) 
 

 

No significant correlation was found between age at first failure and the available attributes for 
the Markham network. The only noticeable correlations belong to PVC pipe and length, with a 
score of -0.25 and -0.16, respectively. However, these scores are considered a very weak 
correlation and do not show anything specific (Figure 0.4). 

 

Figure 0.4 - Spearman correlation – Age to first failure (Regression – Markham) 
 

Figure 0.5 shows the results of the Spearman correlation analysis. With a score of 0.38, the cast 
iron pipe has a weak uphill correlation with age at first failure, which is insignificant. Ductile iron 
and PVC also negatively correlated with age, -0.28 and -0.27, in successive. 

 

Figure 0.5 - Spearman correlation – Age to first failure (Regression – Waterloo) 

 

The Spearman correlation analysis found a strong correlation between age at first failure and 
cast iron pipes, with a score of 0.65. This score indicates the increase in the age at first failure 
when cast iron pipes exist. Conversely, PVC and ductile iron pipes show a weak negative 
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correlation with age at first failure. The score for PVC pipe is -0.48 and for ductile iron -0.34 
(Figure 0.6). 

 

 

Figure 0.6 - Spearman correlation – Age to first failure (Regression – Region of Waterloo) 
 
 

 

Durham`s attributes did now show any significant correlation with age at first failure. 
Nonetheless, there is a weak upward correlation between age and cast-iron pipe, which is 0.32. 
Correlation scores for other variables are given in the given figure (Figure 0.7). 

 

 

FIGURE 0.7 - SPEARMAN CORRELATION – AGE TO FIRST FAILURE (REGRESSION – REGION OF DURHAM) 

Correlation analysis was applied to the Calgary regression dataset. The given matrix shows no 
marked correlation between age at first failure and input variables (Figure 0.8). Nevertheless, 
cast iron with a score of 0.28 has the highest correlation with age. 
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Figure 0.8 - Spearman correlation – Age to first failure (Regression – Calgary) 
 

 

Cement mortar lining seems to have a moderate downward correlation score with age at first 
failure in the Vancouver network, with a score of -0.57. Therefore, the effect of this variable 
should be analyzed carefully for the network, and it may require in-site investigation. 
Conversely, unlined pipes have a moderate positive correlation with age at first failure, 0.54. 

In terms of material, cast iron and ductile iron have a positive and negative correlation, with a 
score of 0.30 and -0.40, respectively. Correlation scores for other attributes can be found in the 
given matrix (Figure 0.9). 

 

Figure 0.9 - Spearman correlation – Age to first failure (Regression – Vancouver) 
 

 

A weak correlation was found between age at first failure and other variables in the Victoria 
network. However, it is worth mentioning that cast iron with a positive correlation of 0.46 has 
the most considerable correlation with the years to the first failure. Ductile iron also has a 
moderate correlation of -0.43 with the target of this study. As mentioned before, other 
attributes have no or very weak correlation with the dependent variable (Figure 0.10). 
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FIGURE 0.10 - SPEARMAN CORRELATION – AGE TO FIRST FAILURE (REGRESSION – VICTORIA) 

 

The given figure reveals that lining status has a moderate negative correlation with age at the 
first failure, with a score of -0.42 (Figure 0.11). However, comparing the results for Halifax with 
other utilities indicated that lining conditions should be investigated more carefully and in more 
detail. Cement mortal, for instance, with a moderate correlation score of -0.42, is among the 
attributes with the highest correlation. Regarding material, cast iron and ductile iron have weak 
scores of 0.31 and -0.29, respectively. 

 

 

Figure 0.11 - Spearman correlation – Age to first failure (Regression – Halifax) 
 

Based on the Spearman correlation analysis, some materials were found to have a moderate 
correlation with age at first failure. For instance, cast iron pipe with a score of 0.52 indicated 
the highest correlation with age, followed by ductile iron with a negative correlation of -0.48. 
Furthermore, other input variables such as diameter and material indicated a very weak 
correlation score of -0.26 and -0.24, respectively (Figure 0.12).  
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Figure 0.12  - Spearman correlation – Age to first failure (Regression – St. John’s) 
 

 

Most of the attributes with Barrie seem to have a weak correlation with age at the first failure. 
For instance, cast iron pipe indicated the highest correlation score, 0.40, with age at the first 
failure, followed by PVC with a weak downward score of -0.30. The correlation scores for other 
attributes can be seen in the given figure (Figure 0.13). 

 

 

FIGURE 0.13 - SPEARMAN CORRELATION – AGE TO FIRST FAILURE (REGRESSION – BARRIE) 
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APPENDIX  H – COMPARING ALL CLASSIFICATION RESULTS 
 

 

 
FIGURE 0.1 – COMPARING RESULTS FOR DIFFERENT GROUPS (VICTORIA – CLASSIFICATION MODELS) 

 

 
FIGURE 0.2 - COMPARING RESULTS FOR DIFFERENT GROUPS (REGION OF WATERLOO – CLASSIFICATION MODELS) 

 
 

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

All Materials 90% 94% 35% 52% 90% 88% 40% 55% 88% 73% 32% 45% 88% 90% 21% 35%

Cast Iron 88% 90% 56% 69% 87% 81% 62% 70% 85% 84% 46% 59% 87% 86% 56% 68%

HDPE

PVC 96% 100% 50% 67% 96% 100% 50% 67% 81% 25% 75% 38% 92% 50% 25% 33%

Ductile Iron 95% 0% 0% 0% 93% 0% 0% 0% 74% 12% 62% 20% 93% 20% 8% 11%

Cluster 0 87% 91% 48% 63% 86% 78% 55% 64% 85% 78% 48% 60% 87% 85% 53% 65%

Cluster 1 95% 100% 6% 11% 95% 100% 11% 20% 70% 11% 61% 18% 92% 9% 6% 7%

Cluster 2

Cluster 3 75% 0% 0% 0% 67% 0% 0% 0% 67% 0% 0% 0% 67% 0% 0% 0%

Not Enough Information,
Only One Broken Pipe

Not Enough Information,
Only One Broken Pipe

Logisitic Regression ANN
COMPARISON

Random Forest XGBOOST

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

All Materials 98% 100% 4% 8% 97% 20% 4% 7% 71% 6% 70% 11% 97% 38% 13% 19%

Cast Iron 92% 80% 44% 57% 87% 50% 22% 31% 72% 24% 56% 33% 86% 43% 33% 38%

COMPARISON
Random Forest XGBOOST Logisitic Regression ANN
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FIGURE 0.3 - COMPARING RESULTS FOR DIFFERENT GROUPS (BARRIE – CLASSIFICATION MODELS) 

 
FIGURE 0.4 - COMPARING RESULTS FOR DIFFERENT GROUPS (SASKATOON – CLASSIFICATION MODELS) 

 
FIGURE 0.5  - COMPARING RESULTS FOR DIFFERENT GROUPS (MARKHAM – CLASSIFICATION MODELS) 

 

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

All Materials 97% 84% 62% 72% 97% 77% 66% 71% 97% 83% 57% 68% 97% 82% 66% 73%

Cast Iron 85% 89% 82% 85% 82% 84% 82% 83% 85% 86% 84% 85% 78% 79% 79% 79%

Copper 92% 0% 0% 0% 92% 33% 50% 40% 68% 0% 0% 0% 97% 0% 0% 0%

PVC 100% 0% 0% 0% 99% 25% 33% 29% 74% 1% 33% 1% 42% 0% 33% 1%

Ductile Iron 97% 88% 50% 64% 96% 83% 36% 50% 96% 83% 36% 50% 96% 83% 36% 50%

Cluster 0 100% 0% 0% 0% 100% 0% 0% 0% 72% 1% 100% 1% 99% 0% 0% 0%

Cluster 1 93% 92% 65% 76% 93% 90% 67% 77% 92% 88% 65% 75% 94% 89% 74% 81%

Cluster 2 91% 0% 0% 0% 94% 50% 50% 50% 54% 0% 0% 0% 89% 0% 0% 0%

Cluster 3 Only non-broken pipes

COMPARISON
Random Forest XGBOOST Logisitic Regression ANN

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

All Materials 96% 94% 70% 80% 97% 93% 81% 87% 95% 87% 67% 76% 97% 91% 79% 85%

Cast Iron 92% 94% 80% 86% 94% 93% 86% 89% 86% 74% 82% 78% 92% 90% 83% 86%

Copper 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

PVC 99% 0% 0% 0% 99% 0% 0% 0% 64% 1% 59% 2% 99% 0% 0% 0%

AC 96% 99% 79% 88% 96% 95% 80% 86% 95% 97% 71% 82% 96% 96% 79% 86%

Steel 89% 69% 75% 72% 91% 71% 83% 77% 87% 68% 54% 60% 92% 74% 83% 78%

Cluster 0 90% 90% 90% 90% 92% 91% 94% 92% 89% 89% 90% 90% 89% 92% 87% 89% All lined

Cluster 1 91% 92% 73% 82% 90% 88% 75% 81% 83% 67% 78% 72% 90% 87% 77% 82% Unlined

Cluster 2 99% 91% 36% 51% 99% 67% 36% 47% 99% 33% 18% 23% 99% 67% 36% 47% Unlined

Cluster 3 97% 98% 81% 88% 96% 96% 80% 87% 95% 97% 74% 84% 97% 97% 82% 89% Unlined

COMPARISON
Random Forest XGBOOST Logisitic Regression ANN

Note

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

All Materials 98% 98% 76% 85% 98% 96% 77% 85% 98% 94% 72% 81% 98% 94% 80% 86%

Cast Iron 94% 100% 90% 95% 94% 100% 90% 95% 96% 100% 93% 96% 95% 93% 95% 94%

Concrete

PVC 99% 0% 0% 0% 99% 0% 0% 0% 77% 3% 83% 5% 99% 0% 0% 0%

Ductile Iron 97% 99% 89% 94% 97% 99% 91% 94% 95% 95% 83% 89% 96% 94% 88% 91%

Cluster 0 99% 100% 5% 9% 99% 33% 5% 8% 80% 5% 86% 9% 99% 40% 10% 15% All lined

Cluster 1 97% 98% 87% 92% 98% 96% 93% 94% 97% 96% 87% 91% 96% 89% 91% 90% DI

Cluster 2

Cluster 3 91% 95% 90% 93% 94% 100% 90% 95% 96% 100% 93% 96% 93% 97% 90% 94% CI

Not enough class one

Not Enough Samples for brokn pipes

COMPARISON
Random Forest XGBOOST Logisitic Regression ANN
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FIGURE 0.6 - COMPARING RESULTS FOR DIFFERENT GROUPS (REGION OF DURHAM – CLASSIFICATION MODELS) 

 
FIGURE 0.7 - COMPARING RESULTS FOR DIFFERENT GROUPS (HALIFAX – CLASSIFICATION MODELS) 

 
 

 
FIGURE 0.8 - COMPARING RESULTS FOR DIFFERENT GROUPS (KITCHENER – CLASSIFICATION MODELS) 

 

Note

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

All Materials 98% 97% 75% 85% 97% 93% 78% 85% 97% 93% 71% 81% 97% 91% 77% 83%

Cast Iron 91% 98% 81% 89% 91% 94% 84% 89% 89% 89% 83% 86% 90% 92% 84% 88%

Asbestos Cement 96% 83% 62% 71% 97% 86% 75% 80% 96% 83% 62% 71% 94% 62% 62% 62%

Concrete 99% 0% 0% 0% 99% 0% 0% 0% 82% 2% 50% 5% 99% 0% 0% 0%

PVC 99% 0% 0% 0% 99% 0% 0% 0% 72% 2% 46% 3% 99% 0% 0% 0%

Ductile Iron 94% 94% 78% 85% 94% 92% 78% 84% 93% 84% 84% 84% 93% 90% 79% 84%

Cluster 0 99% 0% 0% 0% 99% 0% 0% 0% 71% 1% 42% 2% 99% 0% 0% 0% Unlined Pipes

Cluster 1 93% 100% 81% 89% 91% 93% 83% 88% 91% 96% 77% 86% 91% 91% 84% 87% Unlined Pipes

Cluster 2 93% 94% 75% 83% 93% 90% 79% 84% 93% 94% 73% 82% 93% 89% 80% 84% Lined Pipes

Cluster 3 100% 0% 0% 0% 98% 0% 0% 0% 78% 2% 100% 4% 100% 0% 0% 0% Unlined Pipes

COMPARISON
Random Forest XGBOOST Logisitic Regression ANN

Note

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

All Materials 95% 91% 69% 79% 95% 88% 72% 79% 94% 84% 68% 75% 95% 89% 72% 79%

Cast Iron 89% 89% 82% 85% 87% 84% 81% 82% 89% 88% 82% 85% 90% 88% 84% 86%

Concrete 93% 0% 0% 0% 93% 0% 0% 0% 68% 9% 40% 14% 51% 3% 20% 5%

PVC 95% 0% 0% 0% 95% 0% 0% 0% 60% 6% 50% 11% 93% 0% 0% 0%

Ductile Iron 97% 0% 0% 0% 97% 47% 20% 28% 79% 8% 62% 13% 97% 17% 5% 8%

Cluster 0

Cluster 1 98% 96% 64% 77% 97% 92% 63% 74% 97% 92% 57% 71% 97% 92% 64% 75% Lined pipes

Cluster 2 99% 0% 0% 0% 99% 0% 0% 0% 85% 8% 100% 14% 97% 0% 0% 0%

Cluster 3 94% 90% 80% 85% 93% 88% 81% 84% 93% 89% 80% 84% 93% 89% 80% 84%

Only Copper found in this cluster, only class 0

COMPARISON
Random Forest XGBOOST Logisitic Regression ANN

Note

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

All Materials 96% 97% 48% 64% 96% 82% 51% 63% 96% 89% 44% 59% 96% 88% 52% 66%

Cast Iron 91% 85% 71% 77% 91% 84% 73% 78% 89% 77% 70% 73% 90% 81% 74% 77%

PVC 100% 0% 0% 0% 100% 0% 0% 0% 66% 1% 75% 2% 99% 0% 0% 0%

Ductile Iron 95% 50% 4% 7% 95% 33% 100% 15% 77% 12% 63% 21% 95% 25% 2% 4%

Cluster 0 93% 87% 78% 82% 90% 74% 82% 78% 90% 79% 73% 76% 93% 86% 77% 81% Unlined Pipes

Cluster 1 100% 0% 0% 0% 100% 0% 0% 0% 74% 1% 75% 2% 99% 0% 0% 0% Unlined Pipes

Cluster 2 95% 40% 4% 7% 94% 31% 17% 22% 76% 12% 65% 20% 95% 23% 6% 9% Unlined Pipes

Cluster 3 80% 100% 33% 50% 70% 0% 0% 0% 70% 50% 33% 40% 30% 30% 100% 46% Lined Pipes

COMPARISON
Random Forest XGBOOST Logisitic Regression ANN
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FIGURE 0.9 - COMPARING RESULTS FOR DIFFERENT GROUPS (ST. JOHN’S – CLASSIFICATION MODELS) 

 
FIGURE 0.10 - COMPARING RESULTS FOR DIFFERENT GROUPS (CALGARY – CLASSIFICATION MODELS) 

 

 
FIGURE 0.11 - COMPARING RESULTS FOR DIFFERENT GROUPS (VANCOUVER – CLASSIFICATION MODELS) 

Note

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

All Materials 93% 88% 37% 52% 94% 82% 52% 64% 78% 26% 72% 38% 93% 72% 41% 52%

Cast Iron 89% 83% 51% 63% 90% 76% 68% 72% 68% 34% 73% 46% 88% 85% 45% 59%

PVC

Ductile Iron 97% 50% 8% 13% 96% 33% 15% 21% 66% 7% 81% 13% 97% 50% 12% 19%

Cluster 0 97% 0% 0% 0% 97% 17% 4% 7% 70% 7% 75% 13% 97% 33% 4% 7%
Majority

ductile iron

Cluster 1 87% 86% 41% 55% 89% 78% 63% 70% 71% 37% 71% 49% 88% 87% 43% 57%

Cluster 2

Cluster 3

Not enough broken pipes

All Concrete - Not enough class 1

All PVC - Not enough class 1

COMPARISON
Random Forest XGBOOST Logisitic Regression ANN

Note

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

All Materials 98% 96% 79% 86% 98% 94% 82% 88% 97% 94% 71% 81% 98% 95% 81% 87%

All Materials - ASR 95% 96% 83% 89% 95% 94% 85% 89% 94% 96% 81% 88% 95% 95% 83% 89%

Cast Iron 93% 97% 83% 90% 93% 93% 88% 90% 91% 93% 80% 86% 93% 98% 82% 90%

Ductile Iron 97% 90% 84% 86% 96% 89% 83% 86% 95% 75% 90% 82% 96% 89% 84% 86%

PVC 100% 0% 0% 0% 100% 0% 0% 0% 70% 1% 93% 1% 95% 50% 7% 12%

AC 99% 96% 100% 98% 99% 96% 100% 98% 98% 92% 100% 96% 97% 88% 95% 91%

Concrete 98% 0% 0% 0% 99% 100% 33% 50% 73% 5% 67% 10% 97% 0% 0% 0%

Steel 99% 67% 50% 57% 99% 40% 50% 44% 86% 4% 75% 8% 98% 20% 50% 29%

Cluster 0 94% 98% 84% 90% 94% 95% 86% 90% 92% 95% 82% 88% 93% 95% 85% 90% Mostly Cast Iron

Cluster 1 97% 90% 87% 88% 97% 91% 85% 88% 94% 73% 91% 81% 97% 89% 87% 88% Mostly Ductile Iron

Cluster 2 98% 0% 0% 0% 99% 100% 40% 57% 72% 4% 60% 7% 98% 0% 0% 0% Mostly Concrete

Cluster 3 100% 100% 8% 14% 100% 43% 12% 18% 81% 2% 88% 3% 100% 62% 19% 29%

COMPARISON
Random Forest XGBOOST Logisitic Regression ANN

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

All Materials 99% 100% 9% 16% 99% 67% 16% 26% 67% 3% 91% 5% 99% 77% 16% 26%

Cast Iron 99% 88% 15% 26% 99% 76% 17% 28% 65% 4% 76% 7% 98% 71% 16% 26%

Ductile Iron 100% 0% 0% 0% 100% 0% 0% 0% 62% 0% 29% 0% 100% 0% 0% 0%

Cluster 0 100% 0% 0% 0% 100% 0% 0% 0% 60% 0% 60% 0% 46% 0% 60% 0%

Cluster 1 98% 86% 6% 12% 98% 45% 10% 16% 65% 3% 72% 6% 98% 45% 11% 17%

Cluster 2

Cluster 3

Only Broken Pipes

Only Broken Pipes

COMPARISON
Random Forest XGBOOST Logisitic Regression ANN



298 | P a g e  

 

 

 
FIGURE 0.12 - COMPARING RESULTS FOR DIFFERENT GROUPS (WATERLOO – CLASSIFICATION MODELS) 

 

 
FIGURE 0.13 -  COMPARING RESULTS FOR DIFFERENT GROUPS (WINNIPEG – CLASSIFICATION MODELS)

Note

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

All Materials 95% 87% 31% 46% 95% 81% 42% 55% 94% 71% 24% 36% 95% 78% 38% 51%

Cast Iron 89% 82% 42% 56% 91% 81% 58% 67% 83% 48% 73% 58% 89% 84% 40% 58%

PVC

Ductile Iron 94% 67% 13% 22% 93% 50% 20% 29% 77% 16% 60% 26% 94% 67% 27% 38%

Cluster 0 91% 96% 47% 63% 89% 75% 53% 62% 83% 50% 75% 60% 87% 72% 41% 52% Unlined Pipes

Cluster 1

Cluster 2 94% 89% 44% 59% 94% 77% 56% 65% 81% 32% 72% 44% 89% 48% 56% 51% Lined Pipes

Cluster 3 95% 80% 27% 40% 95% 100% 27% 42% 73% 17% 73% 27% 95% 83% 33% 48% Unlined Pipes

Unlined Pipes - Not enough broken pipes

Not enough broken pipes

COMPARISON
Random Forest XGBOOST Logisitic Regression ANN

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

All Materials 96% 91% 58% 70% 96% 86% 66% 75% 94% 73% 43% 54% 96% 85% 65% 73%

Cast Iron 87% 87% 63% 73% 87% 83% 69% 75% 77% 59% 73% 65% 86% 82% 67% 74%

PVC 100% 100% 2% 4% 100% 14% 2% 3% 72% 1% 75% 2% 75% 0% 16% 0%

Ductile Iron 93% 87% 87% 87% 92% 86% 84% 85% 84% 65% 82% 72% 92% 85% 85% 85%

AC 100% 100% 2% 4% 100% 14% 2% 3% 72% 1% 75% 2% 75% 0% 16% 0%

Copper

Cluster 0 100% 95% 53% 68% 100% 91% 51% 65% 99% 78% 38% 51% 100% 92% 54% 68%

Cluster 1 96% 95% 64% 77% 96% 93% 66% 77% 95% 92% 56% 70% 96% 91% 64% 75%

Cluster 2

Cluster 3 86% 85% 64% 73% 87% 84% 70% 77% 77% 60% 72% 66% 86% 83% 68% 75%

Uncoated - Not enough broken pipes

StyroFoam - only class 0

COMPARISON
Random Forest XGBOOST Logisitic Regression ANN
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APPENDIX I –  PYTHON CODES FOR CLASSIFICATION MODELS 
 

## Import tools  

 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

import statistics 

from scipy import stats 

from sklearn.metrics import plot_confusion_matrix, classification_report, 

plot_roc_curve, plot_precision_recall_curve, accuracy_score, recall_score, 

precision_score, roc_auc_score, f1_score, auc 

 

# define Data Frame 

 

df = pd.read_csv("../Data/Cleaned_Classification_New.csv") 

 

# plot correlation matrix 

 

corr_matrix = df.corr(method = 'spearman') 

fig, ax = plt.subplots(figsize = (8,5), dpi = 200) 

ax = sns.heatmap(corr_matrix,annot = True, linewidths = 0.5, fmt =".2f",cmap 

= "YlGnBu") 

 

# plot the number of each class 

 

plt.figure(figsize = (6,4), dpi = 200) 

sns.countplot(data = df, x = "Target"), print(df["Target"].value_counts()) 

 

# change categorical attributes to dummy variables 

 

df_ = pd.get_dummies(df) 

 

corr_df = pd.get_dummies(df).corr() 

 

# plot correlation matrix including all categorical attributes 

 

corr_matrix = df_.corr(method = 'spearman') 

fig, ax = plt.subplots(figsize = (25,15), dpi = 300) 

ax = sns.heatmap(corr_matrix,annot = True, linewidths = 0.5, fmt =".2f",cmap 

= "YlGnBu") 

 

# define X and y for prdiction  
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X = df_.drop("Target", axis = 1) 

y = df_["Target"] 

 

Random Forest RandomizedSearchCV 

from sklearn.ensemble import RandomForestClassifier 

 
## Create Splits for RandomizedSearchCV 

 

from sklearn.model_selection import train_test_split 

 

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2, 

random_state=101) 

 

base_rf_model = RandomForestClassifier() 

 

 
# define a range of parameteres for Random Forest model to be used in 

RandomizedSearchCV 

 

param_grid = 

{"n_estimators":np.arange(64,300,4),"max_depth":[5,6,7,8,9,10],"criterion":["

gini","entropy"],"warm_start":[True,False],"max_features":["auto","sqrt","log

2"]} 

 

 

 

from sklearn.model_selection import RandomizedSearchCV 

 

rf_grid_model = 

RandomizedSearchCV(base_rf_model,param_distributions=param_grid,cv=5,verbose=

3, scoring = "f1",n_iter=20) 

 
## Fit model 

 
%%time 

rf_grid_model.fit(X_train,y_train) 

 
## Extract best parameters found by Random Forest 

 
rf_grid_model.best_params_ 

 
# make prediction 

 

rf_pred_grid = rf_grid_model.predict(X_test) 

 
# Classification Reprt 

 
print(classification_report(y_test,rf_pred_grid)) 
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# Plot Confusion Matrix 

 

plt.figure(figsize = (20,8)) 

plot_confusion_matrix(rf_grid_model,X_test,y_test); 

 

# Defince different metrics for evaluation 

 

accuracy_rf_grid = accuracy_score(y_test,rf_pred_grid) 

f1_rf_grid = f1_score(y_test,rf_pred_grid) 

precision_rf_grid = precision_score(y_test,rf_pred_grid) 

recall_rf_grid = recall_score(y_test,rf_pred_grid) 

auc_rf_grid = roc_auc_score(y_test, rf_grid_model.predict_proba(X_test)[:, 

1]) 

 
# Plot 1st Tree of Random Forest 

 

 

rf_tuned = RandomForestClassifier(n_estimators=148,max_depth=7, 

criterion="gini",max_features="sqrt",warm_start=True) 

rf_tuned.fit(X_train,y_train) 

from sklearn.tree import plot_tree 

from sklearn import tree 

plt.figure(figsize=(80,15), dpi = 150) 

tree.plot_tree(rf_tuned.estimators_[1],feature_names=X.columns, filled = 

True,fontsize=7, class_names= True); 

 

 

 

Visualize the most important features (Random Forest) 

rf_tuned.feature_importances_ 

imp_feats_rf_grid = pd.DataFrame(data=rf_tuned.feature_importances_,  

                index = X.columns,columns = ["Feat Imp"]) 

imp_feats_rf_grid = imp_feats_rf_grid.sort_values("Feat Imp", ascending = 

False ) 

imp_feats_rf_grid 

 

# print out the most important features as a bar plot 

 

plt.figure(figsize = (10,3), dpi = 200) 

sns.barplot(data = imp_feats_rf_grid, x = imp_feats_rf_grid.index, y = "Feat 

Imp") 

plt.xticks(rotation=90); 
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APPENDIX J – PYTHON CODES FOR REGRESSION MODELS 
 

## Import tools  

 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

import statistics 

from scipy import stats 

# define Data Frame 

 

df = pd.read_csv("../Data/Regression-ROF-New.csv") 

 

# plot correlation matrix 

 

corr_matrix = df.corr(method = 'spearman') 

fig, ax = plt.subplots(figsize = (10,5), dpi = 200) 

ax = sns.heatmap(corr_matrix,annot = True, linewidths = 0.5, fmt =".2f",cmap 

= "YlGnBu") 

 

# change categorical attributes to dummy variables 

 

df_ = pd.get_dummies(df) 

 

corr_df = pd.get_dummies(df).corr() 

 

# define X and y for prdiction  

 

X = df_.drop("CurrentRoF", axis = 1) 

y = df_["CurrentRoF"] 

 

Artificial Neural Networks (ANN) – Multi Layer Perceptron 

Regressor (MLPRegressor) 

from sklearn.neural_network import MLPRegressor 

 

## Create Splits for RandomizedSearchCV 

 

np.random.seed(60) 

from sklearn.model_selection import train_test_split 

 

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.25, 

random_state=101) 
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# scale dataset into uniform range of values 

# we do fit scalar only on X_train 

 

np.random.seed(60) 

from sklearn.preprocessing import StandardScaler 

scaler = StandardScaler() 

scaled_X_train = scaler.fit_transform(X_train) 

scaled_X_test = scaler.transform(X_test) 

 

base_NN_model = MLPRegressor() 

 

np.random.seed(60) 

# define a range of parameteres for MLPRegressor model to be used in 

RandomizedSearchCV 

 

param_grid =  

{"hidden_layer_sizes":[(22,),(22,20,),(22,20,20,18,14,),(22,21,15,8,)],"activ

ation":["relu","logistic","tanh"],"solver":["adam","sgd","lbfgs"],"alpha":[0.

001,0.0001,0.002,0.02,0.00001,0.005],"learning_rate":["adaptive","invscaling"

,"constant"],"max_iter":[2500,5000],"warm_start":[True,False],"momentum":[0.1

,0.001,0.002,0.005,0.3,0.6,0.9],"early_stopping":[True]} 

 

 

from sklearn.model_selection import RandomizedSearchCV 

 

NN_grid_model = 

RandomizedSearchCV(base_NN_model,param_distributions=param_grid,cv=5,verbose=

3, scoring= "neg_mean_squared_error",n_iter=60) 

 

# Fit Model 

np.random.seed(60) 

NN_grid_model.fit(scaled_X_train,y_train) 

 

NN_grid_model.best_estimator_ 

 

# make prediction 

NN_pred_grid = NN_grid_model.predict(scaled_X_test) 

 

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score 

 

MAE_NN = mean_absolute_error(y_test,NN_pred_grid) 

MAE_NN 

 

MSE_NN = mean_squared_error(y_test,NN_pred_grid) 
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MSE_NN 

 

r2_NN = r2_score(y_test,NN_pred_grid) 

r2_NN 

 

RMSE_NN = np.sqrt(MSE_NN) 

RMSE_NN 

 

print({"MAE": MAE_NN,"MSE":MSE_NN,"R2":r2_NN,"RMSE":RMSE_NN}) 

 

# plot adaboost regression graoh for Age to first Failure 

plt.figure(figsize=(6,4),dpi=200) 

sns.regplot(x = y_test,y = NN_pred_grid) 

 

APPENDIX K – HYPER PARAMETERS (CLASSIFICATION MODELS) 
 

TABLE 0.10.1 – RANDOM FOREST HYPERPARAMETERS (ALL MATERIALS) 

 

 

n_estimators max_depth max_features criterion

Saskatoon 148 10 sqrt gini

Winnipeg 236 10 auto gini

Kitchener 272 10 log2 gini

Markham 250 9 auto gini

Waterloo 100 9 auto gini

Region of Waterloo 100 8 auto gini

Region of Durham 110 9 auto gini

Calgary 100 9 sqrt entropy

Vancouver 100 20 log2 entropy

Victoria 100 9 sqrt entropy

Halifax 100 9 auto entropy

St. John`s 100 9 auto gini

Barrie 100 9 auto gini

Random Forest Hyper parameters ( All materials Category)
Utility
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TABLE 0.20.2 - XGBOOST HYPERPARAMETERS (ALL MATERIALS) 

 
 
 
 

TABLE 0.30.3 – LOGISTIC REGRESSION HYPERPARAMETERS (ALL MATERIALS) 

 
 

 
 

sampling

method
min_child_weight lambda gamma eta alpha

Saskatoon gradient_based 0.42 0.895 0.267 0.371 0.216

Winnipeg gradient_based 0.397 0.166 0.319 0.216 0.035

Kitchener uniform 0.1 0.5 0.1 0.3 0.1

Markham uniform 0.25 1 0.3 0.3 0.25

Waterloo gradient_based 0.25 0.5 0.3 0.3 0.25

Region of Waterloo uniform 0.25 0.5 0.05 0.5 0.25

Region of Durham gradient_based 0.25 1 0.1 0.3 0.1

Calgary gradient_based 0.25 0.5 0.3 0.3 0.25

Vancouver gradient_based 0.25 0.25 0.1 0.3 0.1

Victoria uniform 0.5 1 0.3 0.3 0.25

Halifax gradient_based 0.25 0.5 0.1 0.3 0.1

St. John`s gradient_based 0.1 1 0.3 0.5 0.1

Barrie uniform 0.25 0.25 0.3 0.3 0.1

Utility
XGBOOST Hyper parameters ( All materials Category)

solver penalty class_weight C

Saskatoon lbfgs none dict 0.448

Winnipeg lbfgs none dict 0.653

Kitchener newton-cg none dict 1

Markham newton-cg none dict 1

Waterloo newton-cg none dict 1

Region of Waterloo sag none balanced 1

Region of Durham newton-cg none dict 1

Calgary newton-cg none dict 1

Vancouver newton-cg l2 balanced 1

Victoria newton-cg none dict 1

Halifax saga l1 dict 1

St. John`s newton-cg l2 balanced 1

Barrie newton-cg l2 dict 1

Utility
Logistic Regression Hyper parameters ( All materials Category)
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TABLE 0.40.4 – ARTIFICIAL NEURAL NETWORKS (ANN) HYPERPARAMETERS (ALL MATERIALS) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

solver momentum max_iter
learning_ra

te

hidden 

layer
alpha

activation

function

Saskatoon lbfgs 0.3 2500 adaptive (26,) 0.001 logistic

Winnipeg lbfgs 0.3 2500 constant (26,) 0.0001 relu

Kitchener lbfgs 0.3 2500 constant (19,) 0.0001 relu

Markham lbfgs 0.3 2500 invscaling (19,) 0.0001 relu

Waterloo lbfgs 0.001 5000 invscaling (18,) 0.002 relu

Region of Waterloo lbfgs 0.9 2500 adaptive (16,14,) 0.02 relu

Region of Durham lbfgs 0.3 2500 constant (18,) 0.005 relu

Calgary lbfgs 0.9 2500 adaptive (14,12,) 0.002 relu

Vancouver lbfgs 0.9 2500 adaptive (21,19,) 0.02 relu

Victoria lbfgs 0.005 2500 adaptive (20,) 0.005 relu

Halifax lbfgs 0.005 2500 adaptive (20,) 0.005 relu

St. John`s lbfgs 0.001 5000 invscaling (14,14,) 0.005 relu

Barrie lbfgs 0.3 2500 invscaling (23,) 0.0001 relu

Utility
ANN Hyper parameters ( All materials Category)


