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Abstract

Studies in Mechanism Design

Rouzbeh Ghouchani, Ph.D.
Concordia University, 2021

This thesis consists of three studies on mechanism design with and without monetary transfers.
Following a brief introductory chapter, the second chapter contributes to the auction design
literature and studies bidders with heterogeneous risk attitudes. The third and fourth chapters
focus on matching couples to jobs without monetary transfers. The third chapter proposes a new
method of preference aggregation for couples that enter the labour market together, and the fourth
chapter proposes a new mechanism that accommodates couples in entry-level labour markets which
relies on the preference aggregation studied in the third chapter.

In the second chapter I study the sale of a single indivisible good to two bidders with
heterogeneous attitudes towards risk. Optimal auctions for risk neutral or risk averse bidders
have been studied in the literature, but bidders are assumed to be either risk neutral or risk averse.
My objective is to study the heterogeneity of bidders in terms of their risk attitude. In my model
the valuations of the bidders are private information, however, one bidder is risk averse with a
publicly known degree of risk aversion, while the other bidder is risk neutral. I derive the revenue
maximizing Bayesian incentive compatible auction in this environment.

The third chapter focuses on the aggregation of a couple’s preferences over their respective
jobs when they enter a centralized labor market jointly, such as the market for assigning hospital
residencies to medical students. Usually in such markets couples need to submit joint preferences
over pairs of residency positions. Starting from two individual preference orderings over positions,
we first study the Lexicographic and the Rank-Based Leximin rules, and then propose a family
of aggregation rules, the k-Lexi-Pairing rules, and provide an axiomatic characterization of these
rules. The parameter k indicates the degree of selfishness for one partner (and altruism for the
other partner), with the least selfish Rank-Based Leximin rule at one extreme and the most selfish
Lexicographic rule at the other extreme. Since couples care about geographic proximity, we also
identify a simple parametric family of preference aggregation rules, (k, t)-Lexi-Pairing rules, which
also reflect the couple’s preference for togetherness.

In the fourth chapter we study centralized entry-level labour markets with couples and require
couples to submit only (k, t)-Lexi-Pairing joint preferences as their input to the matching procedure.
We introduce a new matching mechanism which takes advantage of the known preference structure
of the joint preferences submitted by couples. This mechanisms resolves the cycles that typically
arise in matching procedures with couples by working with the parameter t which indicates the
degree of preference to be employed in the same geographic area for a couple. We also analyze the
stability and efficiency properties of this new mechanism for couples’ markets. This is the first study
that takes into account how couples form their paired preference orderings when participating in a
centralized matching procedure, and the first mechanism which makes explicit use of the preference
aggregation parameters that indicate the preferences of couples for togetherness.
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Chapter 1

Introduction

1.1 Optimal Seller’s Revenue With Asymmetric Bidders

In the first study (Chapter 2), I consider an environment with a single indivisible object and two

bidders. The valuations of the bidders are private information, so the bidders know that they

can behave strategically. The bidders have asymmetric attitudes towards risk. One bidder is risk

averse with a publicly known degree of risk aversion, while the other bidder is risk neutral. My

objective is to study the selling mechanism that maximizes the seller’s expected revenue. Since

the bidders can behave strategically, any successful selling mechanism must have the property that

it induces the bidders to be truthful in their report of respective valuations in the equilibrium.

The equilibrium notion that is widely used in the literature is the notion of Bayesian Incentive

Compatibility. It requires that truthful reporting by any bidder maximize his expected utility

under the assumption that all other bidders are reporting truthfully. The expectation is computed

with respect to the bidder’s prior belief. In short, truthful reporting must constitute Bayes Nash

equilibrium for the underlying incomplete information games. A successful selling mechanism

also have the property that it is individually rational or in other words it induces the bidders to

participate in the mechanism voluntarily. In this environment I derive the revenue maximizing

Bayesian incentive compatible auction.

I identify two regions in the valuation space marked by cut-off valuations θ∗, θ̄ with θ∗ < θ̄ ⩽ 1.

There is no allocation if both bidders report values less than θ∗. Between
[︁
θ∗, θ̄

]︁
region, the risk

neutral bidder wins the object. Thus, the auction would be as if there is a single risk neutral bidder.
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Above the cut-off point θ̄, the object is allocated to the bidder with the higher valuation, thus, the

auction is an all-pay auction that , it is deterministic. The payments for the bidders are completely

determined by their respective allocation probability functions.

1.2 Preference Aggregation for Couples

In the second study (Chapter 3), we study the aggregation of a couple’s preferences over their

respective jobs when they enter a centralized labor market jointly, such as the market for assigning

hospital residencies to medical students. Usually in such markets couples need to submit joint

preferences over pairs of jobs, but it has not been studied previously how couples form their joint

preference orderings.

The preference aggregation issue for a couple has not been addressed by the social choice

theory literature either, which mainly focuses on aggregating preferences over social outcomes.

Our problem formally differs from the preference aggregation literature in several aspects. The

aggregation for couples has two preference rankings over individual positions as input, and a joint

preference ranking over pairs of positions as an output. Our model also differs from usual models in

that we only have two agents, while preference aggregation is typically considered for an arbitrary

number of agents. This makes our task simpler, but it also renders tie-breaking more important

since ties arise frequently with two agents only. Finally, in the labor market context we need

to worry about complements in couples’ preferences due to geographical considerations, which is

absent from the preference aggregation literature and only pertains to aggregating preferences over

private assignments with complementarities.

Starting from two individual preference orderings over individual jobs, we first study the

Lexicographic and the Rank-Based Leximin rules, and then propose a family of aggregation rules,

the k-Lexi-Pairing rules, and provide an axiomatic characterization of these rules. There are two

parameters, k and t, for selfishness and togetherness respectively. The parameter k indicates the

degree of selfishness for one partner (and altruism for the other partner), with the least selfish

Rank-Based Leximin rule at one extreme and the most selfish Lexicographic rule at the other

extreme. This parameter can also be seen as a trade-off parameter between the two partners. Since
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couples care about geographic proximity, we also identify a simple parametric family of preference

aggregation rules which build on the k-Lexi-Pairing rules and reflect the couple’s preference for

togetherness.

1.3 Matching Couples in the Labour Market

In the third study (Chapter 4), we consider how to match couples in a centralized labour market

by making use of the information about the couples’ preference aggregation as studied in Chapter

3. For example, the National Resident Matching Program (NRMP) in the US assigns thousands of

medical school graduates to hospital residency positions through a central clearing house each year.

Such markets with couples pose notoriously difficult market design questions, since the existence of

a stable matching is no longer guaranteed in the presence of couples, and the matching algorithm

itself has to accommodate couples. While the matching algorithm that is currently used in the

NRMP works quite well in practice, as demonstrated by simulations and justified by findings for

large markets, it does not select a stable matching even when the preferences are responsive (which

means, essentially, that hospital jobs are not complements), and thus a stable matching exists.

The main reason for this issue is that couples wish to work in the same geographical area, which

introduces complementarities in their preferences. Consequently, algorithms for couples markets

tend to lead to inefficient outcomes or even wastefulness, and they tend to cycle if the algorithm

attempts to circumvent wastefulness.

We propose a new mechanism, the Lexi Couples mechanism, for couples markets which is shown

to be non-wasteful. Couples are required to submit only their individual preference orderings and

the two parameters k and t, expressing the trade-offs between the partners and their preferences

for togetherness, respectively. Thus, the mechanism satisfies informational efficiency and calculates

the paired preferences based on these inputs, using the (k, t)-Lexi-Pairing rules from Chapter 3.

Moreover, the mechanism makes explicit use of the togetherness parameter in order to resolve the

arising cycles effectively. The Lexi Couples mechanism is shown to be responsive-stable, which

means that if all couples have responsive preferences the mechanism selects a stable matching, a

property that is not satisfied by the NRMP algorithm. Specifically, when all couples have responsive

preferences, the Lexi Couples mechanism coincides with the Deferred Acceptance mechanism and
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picks the doctor-optimal matching.
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Chapter 2

Optimal Seller’s Revenue with

Asymmetric Bidders

2.1 Introduction

The problem of finding the revenue-maximizing selling scheme for allocation of resources is a well

studied problem. Consider the selling of a single indivisible object by a seller. In the most

standard formulation of the problem, each potential bidder’s valuation for the object is private

information. Consequently, the bidders know that by behaving strategically, they can extract rent

(because of their private information) from the seller. Any selling scheme that sets to maximize

the revenue of the seller, must therefore provide adequate incentives to the bidder to report their

private information truthfully in equilibrium.

At the same time the selling mechanism or scheme (throughout the paper, I use the two terms

interchangeably), must induce the bidders to voluntarily participate in the scheme.

The equilibrium notion for truth-telling, that is widely used in the literature is Bayesian

Incentive Compatibility (BIC). BIC requires truth-telling to maximize the expected utility being

computed with respect to the bidder’s prior belief and under the assumption that all other bidders

are reporting their private information truthfully.

When there is a single indivisible object for sale, a selling mechanism that has been widely

studied in the literature is an auction mechanism. Beginning with Harris and Raviv (1981 (a))
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[12] and Harris and Raviv, (1981 (b)) [13] there have been a plethora of papers studying optimal

auctions. In his classic paper on auctions, Myerson (1981) [30] studies optimal auction for a single

indivisible object under the following assumptions, (a) the bidders are risk neutral, (b) the bidders

have no budget constraints (i.e. no income effect) and (c) the bidders are symmetric in the sense

that the only asymmetry in the bidders’ preferences arrive through their private valuations. Since

the classic result by Myerson, a vast number of papers have addressed the issue of optimal auction

after relaxing some of the assumptions listed above. In particular, Matthews(1983) [29] and Maskin

and Riley (1984) [28] consider selling an indivisible object when all bidders are risk averse. however,

in either setting, the bidders are symmetric in the sense that the bidders have identical attitudes

towards risk.

In the present paper, I continue this line of research and study optimal auctions in an

environment where bidders are asymmetric in their attitudes towards risk. More specifically, I

consider a simple benchmark model where there is one risk neutral bidder (n) and one risk averse

bidder (a). The identity of the risk neutral bidder and the risk averse bidder as well as the utility

function representing their preferences is commonly known. The valuation of the bidders are

private information. The bidders drew their valuations identically and independently from a one

dimensional set Θ. Since the bidders are asymmetric in their attitudes towards risk, they have to

be treated asymmetrically. To capture this feature, I consider an all pay auction format which has

been done in many other papers in optimal auction in different context (see for example Laffont

and Robert (1996) [26]).

In this environment, I characterize the optimal auction as an all-pay auction. My main results

are the following. I identify two regions in the valuation space marked by cut-off valuations θ∗, θ̄

with θ∗ < θ̄ ⩽ 1. If both bidders report values less than θ∗ the object is not allocated. If the reported

valuation of the risk neutral bidder lies in the region
[︁
θ∗, θ̄

]︁
, the risk neutral bidder is awarded the

object. Thus, in this region, the auction proceeds as if there is a single risk neutral bidder. Beyond

the cut-off point θ̄, the object is allocated to the bidder with the higher valuation, thus, the auction

is an all-pay auction that , unlike in Matthews (1983) [29] is deterministic. The payments for the

bidders are completely determined by their respective allocation probability functions.

My result, contrasts with the result by Matthews (1983) [29] , in the sense that unlike

Matthews(1983) [29] , my optimal mechanism is deterministic. In this sense, my result is more
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in accord with the result by Myerson(1981) [30] that characterizes the optimal mechanism for risk

neutral bidders. However the cutoff types and the interpretation of the cutoff types are different in

my model. Moreover, in my model, there exist significant region in the valuation space where the

object is allocated to the risk neutral bidder irrespective of whether he is of the higher valuation

or not. Consequently the asymmetry in the bidders attitude towards risk introduces significant

inefficiency in my model. Moreover the expected payoff to the seller in my model is lower than the

expected payoff when both bidders are risk neutral or when both bidders share the same attitude

towards risk. To summarize, the presence of the risk-averse bidder reduces competition in my

model. For a significant range of valuations, the optimal mechanism takes the form of a monopoly

fixed price. In this “lower” range of valuation, the risk averse bidder is not competitive and the

object is allocated to the risk neutral bidder. Beyond a high threshold valuation, the mechanism

takes the form of a competitive auction.

The literature on optimal auctions with risk averse bidders originates with the seminal papers

by Matthews (1983) [29] and Maskin and Riley (1984) [28]. Both papers consider optimal allocation

when the bidders are risk averse, but have identical attitudes towards risk. In my paper, I consider

the preference for the risk averse bidder to be identical to the one present in Matthews (1983)

[29]. I introduce asymmetry, by incorporating one additional risk-neutral bidder. In the context of

aversion, Hu et.al. (2010) [15] consider a model where bidders and seller have asymmetric attitude

towards risk, but they focus on revenue comparison between first and second price auctions. More

recently Hu et.al. (2018) [16] study ascending price English auctions where bidders have asymmetric

attitude towards risk. To the best of my knowledge there has been no paper that has considered

optimal selling mechanisms with bidders with asymmetric attitude towards risk.

Relatedly, there is an extensive literature on optimal auctions with asymmetric bidders.

However, the focus in that literature is on asymmetry that arises from budget constraint (see for

example, Pai and Vohra (2014) [31] , and the references therein). More recently there has been a

small literature on auctions with non-quasilinear preferences (see for example, Kazumura et.al(2020)

[19] and the references therein). Notice that, in my model there is obvious non-quasilinearity , since

one bidder is risk averse. However, the focus of this strand of literature is on more general non

quasilinear preferences. On the other hand in my model, my focus is on a specific problem with

one risk averse bidder and one risk neutral bidder, and my aim is to study the consequences on the

7



optimal selling mechanism in this simple model.

The paper is organized as follows. In section 2 I introduce the model. In section 3 I derive the

seller’s problem and present my results in section 4. Section 5 concludes.

2.2 Model

Risk neutral seller sells one unit of an indivisible object. The seller’s cost of producing the object

is set at 0. There are two potential buyers, i = {a, n}. where I denote by a the risk-averse bidder

and by n the risk-neutral bidder. Each bidder knows his own private valuation but is unaware of the

realized valuation of the other bidder. Each bidder i ∈ {a, n} draws his private valuation or “type”

θi identically and independently from the set Θ = [0, 1] according to the distribution function F (.).

We assume F (.) is differentiable everywhere with f(.) = F ′(.). In addition the distribution F (.)

satisfies monotone hazard rate condition, i.e., f(θ)
1−F (θ) is non-decreasing in θ. All the information

mentioned above is common knowledge.

For the risk neutral bidder n the utility from wealth level x is given by un(x) = x. On the other

hand, the risk averse bidder a has a preference given by constant absolute risk aversion (CARA)

utility function. In other words, for bidder a the utility from wealth level x is given by

ua (x) = 1 − e−Rx

R

where R ≥ 0 is the parameter for risk aversion. I assume that there exists a R̄ > 0, such that

R ∈ [0, R̄]. Since there is only one risk averse bidder, we drop the subscript a from ua, to economize

on notation, and simply denote the utility function of the risk averse bidder as u(.).

Following Myerson (1981) [30], we restrict our attention to the direct selling mechanisms.

Definition 1: (Direct Selling Mechanism) A direct selling mechanism is a collection

⟨pi (., .) , qi (., .)⟩i∈{a,n} where for each qi : [0, 1]2 → [0, 1] and for each i ∈ {a, n}, pi : [0, 1]×[0, 1] → R

with the restriction that for all (θa, θn) ∈ [0, 1] × [0, 1],

0 ≤ qa(θa, θn) + qn(θa, θn) ≤ 1.

8



In a direct selling mechanism each bidder i is asked to report his type θi to the seller. Given a vector

of reports (θa, θn), for each bidder i, qi(θa, θn) is the probability with which bidder i is allocated

the object. For each vector of types (θa, θn) ∈ [0, 1] × [0, 1], pi(θa, θn) is the payment for bidder i.

Given that the two bidders are asymmetric in their attitudes towards risk, we restrict our attention

to the case where for each bidder i, and for any vector of types (θi, θj), i ̸= j, pi(θi, θj) = pi(θi). In

other words, the payment function for each bidder depends only on his reported type.

In the determination of an optimal selling mechanism the crucial elements are expected

probabilities of allocation for the two bidders. Below I specify the expected allocation probability

expressions for the two bidders.

Suppose that the risk averse bidder a reports type θ̂a to the mechanism. Then expected allocation

probability of bidder a in the mechanism, denoted as Qa is,

Qa

Ä
θ̂a

ä
=

∫︂ 1

0
qa

Ä
θ̂a, θ
ä
f (θ) dθ. (1)

Likewise the expected allocation probability of bidder n, denoted by Qn, when he reports θ̂n is

Qn

Ä
θ̂n

ä
=

∫︂ 1

0
qn

Ä
θ, θ̂n

ä
f (θ) dθ. (2)

Given the expected allocation probability, I now present the expected utility for the two bidders.

The expected utility of the risk-neutral bidder n, (denoted by Un), who is of type θn and reports

θ̂n is,

Un

Ä
θn, θ̂n

ä
= Qn

Ä
θ̂n

ä
un

Ä
θn − pn

Ä
θ̂n

ää
+
Ä
1 −Qn

Ä
θ̂n

ää
un

Ä
θn − pn

Ä
θ̂n

ää
= Qn

Ä
θ̂n

ä Ä
θ̂n − pn

Ä
θ̂n

ää
+
Ä
1 −Qn

Ä
θ̂n

ää Ä
−pn

Ä
θ̂n

ää
= Qn

Ä
θ̂n

ä
θn − pn

Ä
θ̂n

ä
. (3)

The expected utility of the risk averse bidder a, (denoted by Û), who is of type θa and reports
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θ̂a is,

Ûa

Ä
θa, θ̂a

ä
= Qa

Ä
θ̂a

ä
u
Ä
θa − pa

Ä
θ̂a

ää
+
Ä
1 −Qa

Ä
θ̂a

ää
u
Ä
θa − pa

Ä
θ̂a

ää
.

(4)

Following Matthews (1983) [29], I now make a monotonic transformation of Û , that will be

easier to work with. For any θ, define,

ψ(θ,Q(θ)) = − 1
R
ln
î
1 −Q

Ä
θ̂
ä

+Q
Ä
θ̂
ä
u′
Ä
θ̂
äó
. (5)

Now noting that, 0 ≤ Û(θ, θ̂) < 1 for all θ, θ̂, I define, for every θ, θ̂, U(θ, θ̂) as follows:

U(θ, θ̂) = − 1
R

ln
î
−RÛ

Ä
θ, θ̂
ä

+ 1
ó
.

Then from equation (5) we can write,

Ua(θa, θ̂a) = ψ(θa, Qa(θ̂a)) − pa(θ̂a). (6)

Here, for any y ≥ 0 and any Q ∈ [0, 1], ψ(y,Q) is the certainty equivalence of the lottery offering

y with probability Q and 0 with probability 1 −Q.

Equipped with the expected allocation probabilities, I can now proceed to the issue of incentives.

All our constraints as well as the analysis of optimality will be conducted in terms of the expected

allocation probabilities Qi’s and the payment functions pi’s. To that end, I will call a collection

⟨Qa, Qn, pa, pn⟩ a scheme. My first objective will be to find the optimal scheme. Finding an

optimal scheme is not enough to characterize an optimal selling mechanism; I need then, to find

the appropriate qi’s that generate the optimal Qi’s. In other words, I need to find the appropriate

qi’s that implement Qi’s. Next I turn to the incentive issues.

2.2.1 Incentive Compatibility Constraints

One primary requirement for any scheme ⟨Qa, Qn, pa, pn⟩ is to provide appropriate incentives to

the bidders to report their private valuations truthfully in equilibrium. The equilibrium concept

10



that is standard in the literature is Bayesian incentive compatibility (BIC). Truthtelling is required

to maximize the expected utility of every bidder under the assumption that all other bidders

are reporting truthfully. Expected utility is computed with respect to the expected allocation

probabilities specified by the scheme i.e., the Qi’s. In short, truthtelling is required to be a Bayes

Nash equilibrium of the underlying incomplete information game. Formally,

Definition 2: (BIC) A scheme ⟨Q, p⟩ ≡ ⟨Qa, Qn, pa, pn⟩ is BIC if for every bidder i ∈ {a, n}, and

every θi, θ
′
i,

Ui(θi, θi) ≥ Ui(θ′
i, θi). (7)

Denote by Vi(θi) = Ui(θi, θi) the indirect expected utility function of bidder i of valuation θi from

telling the truth.

The following celebrated lemma from Myerson (1981) [30], provides a characterization of the

incentive compatibility of a scheme for the risk-neutral bidder.

Lemma 1. (Myerson (1981)). Let ⟨Q, p⟩ be a scheme. The scheme ⟨Q, p⟩ is BIC for the risk

neutral bidder if and only if,

1. the expected allocation probability Qn for the risk neutral bidder is nondecreasing in the risk

neutral bidder’s type; that is, for every θ, θ′ ∈ [0, 1],

θ > θ′ ⇒ Qn(θ) ≥ Qn

(︁
θ′)︁ . (8)

2. For every θ ∈ [0, 1], the following integral condition is satisfied:

Vn (θ) = Vn (0) +
∫︂ θn

0
Qn (x) dx. (9)

The above lemma is a well known result and I skip the proof. Instead, I now turn to the

characterization of incentive compatibility for the risk averse bidder. For the risk averse bidder,

recall that for any θ ∈ [0, 1], Va(θ) = Ua(θ, θ) = ψ(θ,Qa(θ)) − pa(θ). Also note that, for any
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θ ∈ [0, 1] ,

ψ1(θ,Qa(θ)) = ∂

∂θ
ψ(θ,Qa(θ))

= 1
1 + 1−Qa(θ))

Qa(θ)u′(θ)

.

The following lemma from Matthews (1983, Lemma 4, page 378,) [29] characterizes the incentive

compatibility for the risk averse bidder.

Lemma 2. (Matthews, (1983)). A scheme ⟨Q, p⟩ is BIC for the risk averse bidder, if and only if,

1. for all θ, θ′ ∈ [0, 1],

θ > θ′ ⇒ Qa(θ)
1 −Qa(θ) ≥ Qa(θ′)

1 −Qa(θ′) . (10)

2. for all θ ∈ [0, 1],

Va (θa) = Va (0) +
∫︂ θa

0
ψ1 (z,Qa (z)) dz. (11)

Note that,

Qa(θ) ≥ Qa(θ′) ⇒ Qa(θ)
1 −Qa(θ) ≥ Qa(θ′)

1 −Qa(θ′) .

The above two lemmas are standard and well established in the literature and I skip the proofs.

From (9) one obtains the payment function for the risk neutral bidder: for every θ ∈ [0, 1],

pn (θ) = pn (0) + θQn (θ) −
∫︂ θ

0
Qn (z) dz. (12)

Likewise, from (11), one notices that the expected allocation probability for the risk-averse

bidder completely specifies the payment function for him. Formally, for any θ ∈ [0, 1],

Ua(θ, θ) = Va(θ) = ψ(θ,Qa(θ)) − pa(θ)

⇒ pa(θ) = ψ(θ,Qa(θ)) − Va(θ).

Substituting (11) into the above equation we obtain,

pa (θ) = pa (0) + ψ (θ,Qa (θ)) −
∫︂ θ

0
ψ1 (z,Qa (z)) dz. (13)
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I now turn to the second set of constraints that are important- namely, the requirement that

bidders must be induced to participate in the mechanism voluntarily.

2.2.2 Individual Rationality Constraints

The individual rationality (IR) constraints impose the restriction that each bidder of each type gets

at least as much utility from participating in the auction as from not participating. The payoff

from the outside option of not participating is normalized to zero. Formally,

Definition 3: (IR) A scheme ⟨Q, p⟩, staisfies individual rationality if for every bidder i ∈

{a, n}, and for every type θ,

Vi(θ) = Ui(θ, θ) ≥ 0. (14)

The above two sets of constraints – the BIC constaints and the IR constrainst are not the only

constraints one needs to take into account. It has to be the case that the scheme must be feasible.

I next turn to the feasibility constraint.

2.2.3 Feasibility Constraint

Definition 4: Feasibility Constraint (F) A scheme ⟨Qa, Qn, pa, pn⟩ satisfies feasibility

constraint (F), if for every θ ∈ [0, 1],

∫︂ 1

θ
Qa(α)dF (α) +

∫︂ 1

θ
Qn(α)dF (α) ≤ 1 −

ï∫︂ θ

0
dF (α)

ò2
= 1 −

[︁
F (θ)

]︁2 (15)

In other words,

Y (θ) = 1 −
[︁
F (θ)

]︁2 −
∫︂ 1

θ
Qa(α)dF (α) −

∫︂ 1

θ
Qn(α)dF (α) ≥ 0 (16)

with Y (1) = 0.

The left hand side of (15) is the expected probability that the object is allocated to a bidder

with type θ which must be less than or equal to the probability that at least one bidder has a type

θ (see, Border (1991) [3]). The general condition is for all possible subsets of [0, 1], however as it is

shown in Border (1991) [3], this is equivalent to (15).
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2.3 Seller’s problem

If the seller uses a scheme ⟨Qa, Qn, pa, pn⟩ then the expected payoff obtained from a risk averse

bidder of type θ is pa(θ). Likewise, the expected payment from a risk neutral bidder of valuation

θ is pn(θ). Therefore the seller’s expected revenue is,

R =
∫︂ 1

0
pa (θ) f (θ) dθ +

∫︂ 1

0
pn (θ) f (θ) dθ. (17)

Replacing the values of pa(θ) and pn(θ) we obtain,

R =
∫︂ 1

0

Å
θ − 1 − F (θ)

f (θ)

ã
Qn (θ) f (θ) dθ

+
∫︂ 1

0

Å
ψ (θ,Qa (θ))
ψ1 (θ,Qa (θ)) − 1 − F (θ)

f (θ)

ã
ψ1 (θ,Qa (θ)) f (θ) dθ.

(18)

Notice in this case, the seller’s problem is an optimal control problem. The problem of the seller

is to maximize (18) by choosing control functions Qn and Qa. Also, note that the Qa and Qn

completely determine the payment functions pa and pn. Thus the seller’s objective is to maximize

(18) subject to the incentive compatibility constraints for the risk neutral and risk averse bidders,

the individual rationality constraints and the feasibility constraint (8), (9), (10), (11), the set of IR

constraints, (14) and (15). Of these the integral condition in the incentive compatibility constraints

(9) and (11) have already been incorporated in the objective function. The remaining constraints

are the monotonicity as part of the incentive compatibility constraints (8) and (10), the individual

rationality constraints and the feasibility constraint. I will solve the relaxed problem involving only

the feasibility constraint and ignoring the monotonicity constraints and the individual rationality

constraints and then establish that the solution satisfies the monotonicity and individual rationality

constraints.

Let us recall the feasibility constraint, (16): for all θ ∈ [0, 1],

Y (θ) ≥ 0.

14



In the seller’s maximization problem, Y is the state variable with equation of motion

Y ′(θ) =
[︂
Qn(θ) +Qa(θ) − 2F (θ)

]︂
f(θ) with Y (1) = 0. (19)

For (Qa, Qn) to be implementable, the constraints Y (θ) ≥ 0 and (19) are necessary as shown in

Matthews (1983) [29] and Maskin and Riley (1984) [28]. For implementation it is necessarily the

case that ∀i ∈ {a, n},

0 ⩽ Qi(θ) ⩽ 1. (20)

The solution, if it exists, will be in terms of (Qa, Qn). TheQis completely determine the payment

functions pis and together ⟨Qi, pi⟩i∈{a,n} will constitute an optimal scheme. The scheme then has

to be shown to be feasible by showing that there exist actual allocation probability functions qis

that implement the Qis.

In order to do so, following Maskin and Riley (1984) [28] and Matthews (1983) [28] , we will

need to impose a further regularity condition.

Definition 4: Regularity Condition (RC) For any R ∈ [0, R̄], the term u(θ) − 1−F (θ)
f(θ) is

increasing in θ ∈ [0, 1]. In other words, for any θ, α ∈ [0, 1], θ > α,

u(θ) − 1 − F (θ)
f(θ) ≥ u(α) − 1 − F (α)

f(α) . (21)

We denote by τ(θ) the following:

τ(θ) = u(θ) − 1 − F (θ)
f(θ) (22)

In addition we need to define two other variables. For any θ ∈ [0, 1], define γ(θ) as follows:

γ(θ) = θ − 1 − F (θ)
f(θ) .

Thus γ(θ) is the virtual valuation of a bidder of type θ. The second variable is defined as follows:
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for any θ ∈ [0, 1], define,

α(θ) = u(θ)
u′(θ) − 1 − F (θ)

f(θ) (23)

It is immediate that for any θ ∈ (0, 1),

τ(θ) < γ(θ) < α(θ). (24)

A first step in our maximization of the objective function (18) subject to the constraint (15) is to

define the Hamiltonian,

H(θ,Qa, Qn, Y, µ) =
Å
θn − 1 − F (θ)

f (θ)

ã
Qn (θn) f (θ)

+
Å
ψ (θa, Qa (θa))
ψ1 (θa, Qa (θa)) − 1 − F (θ)

f (θ)

ã
ψ1 (θa, Qa (θa)) f (θ)

+ µ(θ)
[︂
Qn(θ) +Qa(θ) − 2F (θ)

]︂
f(θ), (25)

and the extended Hamiltonian or the Lagrangian,

L = H + ηY (θ) .

Here µ is the co-state variable corresponding to the equation of motion condition (19), and η

is the Lagrange multiplier corresponding to the feasibility condition (16). Note that when Qi’s

are chosen to maximize H, for fixed (θ, Y, µ) the maximized Hamiltonian is concave in Y . We

now invoke, Theorem 8 in Seierstad and Sydsaeter (1977, page 380) [35] to say the following: The

constraint conditions (20), (16) and (19) along with the conditions listed below are necessary and

sufficient for an optimal solution to exist. The conditions are as follows:

(i). for any θ,

µ′ (θ) = − ∂L

∂Y
= −η, µ (0) ≤ 0, µ (0)Y (0) = 0. (26)

(ii). if µ is discontinuous at θ, then θ is an entry or exit point of an interval upon which Y = 0

and

µ(θ−) > µ(θ+) (27)
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(iii). for any θ,

η (θ) ≥ 0, η (θ)Y (θ) = 0. (28)

(iv). H(θ, Y (θ), (Qi(θ))i∈{a,n}, µ(θ)) is continuous.

(v). At the solution (Q∗
n, Q

∗
a), for all θ ∈ [0, 1],

H(θ, Y (θ), (Q∗
i (θ))i∈{a,n}, µ(θ)) ⩾ H(θ, Y (θ), (Qi(θ))i∈{a,n}, µ(θ)). (29)

We are now in a position to state and prove our results.

2.4 Result

I present two propositions. In Proposition (1), I characterize the optimal scheme ⟨Q∗
a, Q

∗
n, p

∗
a, p

∗
a⟩

and in Proposition (2), I show the existence of the associated qi’s.

One more function needs to be defined. Recall that for any θ

γ(θ) = θ − 1 − F (θ)
f(θ) .

Definition 5: For any θ, α ∈ [0, 1] such that 0 ≤ γ(α) ≤ 1, define,

x (θ, γ(α)) =
u (θ) −

√︂
(u (θ))2 − 4γ(α)

Ä1−F (θ)
f(θ)

ä
u′ (θ)

2γ(α) . (30)

Given our regularity condition (RC), (condition (21)), it is easy to verify that, for any α such

that 0 ≤ γ(α) ≤ 1, x (θ, γ(α)) is well defined. I now state the main result in the paper.

Proposition 1. In my model, the optimal feasible scheme ⟨Q∗
a, Q

∗
n, p

∗
a, p

∗
n⟩ takes the following form:

there exist cutoff valuations θ∗, θ̄, such that θ∗ < θ̄, and such that,
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1. for the risk neutral bidder, n

Q∗
n (θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, if θ < θ∗

F (θ̄), if θ∗ ≤ θ < θ̄

F (θ), otherwise.

(31)

2. for the risk averse bidder, a

Q∗
a (θ) =

⎧⎪⎪⎨⎪⎪⎩
0, if θ ≤ θ̄

F (θ), otherwise.
(32)

3. The cutoffs θ∗ and θ̄ are defined as follows:

(a) the cutoff θ∗ is such that,

γ(θ∗) = θ∗ − 1 − F (θ∗)
f(θ∗) = 0. (33)

(b) the cut-off θ̄ is such that,
1 − x

(︁
θ, γ(θ̄)

)︁
1 − u′(θ) = F (θ̄). (34)

4. The payment functions are determined through Q∗
n and Q∗

a as follows:

p∗
n (θ) = p∗

n (0) + θQ∗
n (θ) −

∫︂ θ

0
Qn (α) dα (35)

p∗
a (θ) = p∗

a (0) + ψ (θ,Q∗
a (θ)) −

∫︂ θ

0
ψ1 (α,Q∗

a (α)) dα (36)

Proof. As noted above, concentrating on the first order conditions for the Hamiltonian would suffice.

For any Q and any y , with 0 ≤ Q ≤ 1, note that,

ψ2(y,Q) = ∂

∂Q
ψ(y,Q) = u(y)

1 −Q+Qu′(y)

and ψ12(y,Q) = ∂2

∂Q∂y
ψ(y,Q) = u′(y)

(1 −Q+Qu′(y))2 .
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Now, for any fixed θ, µ, Y , and if Qn, Qa > 0, the Hamiltonian first order conditions are as follows.

Qn : ∂

∂Qn
H = 0 ⇒ θ − 1 − F (θ)

f(θ) + µ(θ) = 0. (37)

Qa : ∂

∂Qa
H = 0 ⇒ ψ2(θ,Qa(θ)) − 1 − F (θ)

f(θ) ψ12(θ,Qa(θ)) + µ(θ) = 0. (38)

From (37), we obtain that if Qn > 0, then at the optimum,

µ(θ) = 1 − F (θ)
f(θ) − θ. (39)

Note that µ(θ) > 0 for θ < θ∗ and for θ > θ∗, µ(θ) < 0.

We first turn to the problem of the risk-averse bidder. Note that in equation (38) −µ is the

opportunity cost to the seller for not selling the object to another bidder. Denote γ = −µ. In order

to analyse the problem of the risk averse bidder, I begin with the case where there is no opportunity

cost i.e., no capacity constraint. In other words, γ = −µ = 0. In this case, from the Hamiltonian

we obtain

Qa(θ) = Q̄a(θ, γ = 0) =
1 − 1−F (θ)

f(θ)
u′(θ)
u(θ)

1 − u′(θ) . (40)

The above equation (40), provides two cut-off valuations θ0 and θ̄0 such that, for all θ ∈ (θ0, θ̄0)

such that, (i) Q̄a(θ, γ = 0) is strictly increasing in in θ, (ii) Q̄a(θ0, γ = 0) = 0 and (iii) Q̄a(θ̄0, γ =

0) = 1. Thus for a seller with zero opportunity cost (no capacity constraint), the optimal allocation

probability for the risk averse bidder is given by Q̄a(θ, γ = 0) if θ ∈ (θ0, θ̄0). On the other hand the

optimal allocation probability is 0 if θ < θ0 and is 1, if θ ≥ θ̄0.

Now fix γ = −µ at some positive level, i.e., γ > 0. We continue to assume that there is no

capacity constraint. This may happen, either because, there is only the risk averse bidder a, that

there is more than one unit to sell. The interpretation of γ is the following: the seller, with no

capacity constraint will incur a cost γ if he sells the object to the risk averse bidder. Assuming
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Qa > 0, from the first order condition (38), we obtain,

Q̄a(θ, γ) =
1 −

u(θ)−
√︂

(u(θ))2−4γ
Ä 1−F (θ)

f(θ)

ä
u′(θ)

2γ

1 − u′ (θ)

= 1 − x(θ, γ)
1 − u′(θ) . (41)

The above equation, provides two cutoff valuations θγ and θ̄γ such that the optimal allocation

probability of the risk averse bidder takes the following form,

Q̄a(θ, γ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, if θ < θγ

1−x(θ,γ)
1−u′(θ) , if θγ ≤ θ < θ̄γ

1, otherwise.

(42)

For each fixed value of γ, Q̄a(θ, γ) is nondecreasing in θ. Moreover, Q̄a(θ, γ) is strictly increasing

in θ within the range, θγ ≤ θ < θ̄γ . Also note that Q̄a(θ, γ) decreases with γ, that is γ1 > γ2 ⇒

Q̄a(θ, γ1) ≤ Q̄a(θ, γ2) for any θ ∈ [0, 1]. Recalling that we have defined γ(θ) = θ − 1−F (θ)
f(θ) , we now

define θ̄ to be such that,

Q̄a(θ̄, γ(θ̄)) = F (θ̄). (43)

Set γ̄ = γ(θ̄). The interpretation is that , without any capacity constraint a seller with cost

γ(θ̄) would assign the risk averse bidder with valuation θ̄, the probability F (θ̄) of obtaining the

unit. In other words, in the absence of any capacity constraint, a seller would assign a bidder of

type θ̄ the probability of F (θ̄) of obtaining the unit, and if he assigns the object to the risk averse

bidder, incurs a cost of γ̄ = γ(θ̄) = θ̄ − 1−F (θ̄)
f(θ) . I define the valuation θ as,

Q̄a(θ, γ(θ̄)) = 0. (44)

We make two observations. First, it is immediate that θ < θ̄. Secondly, since Q is decreasing

in γ, and increasing in θ for each fixed γ, a simple fixed point argument reveals that θ̄ exists. Two

cases may occur.

Case I: : θ̄ = 1.
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In this case, note γ(θ̄) = 1, and Q̄(θ, 1) = 0. i.e. the cost is too high for the object to be

allocated to the risk averse bidder. This is the only case where θ = θ̄ = 1 and Q̄(θ, 1) = 0.

case II: θ̄ < 1.

In this case θ < θ̄ and Q̄(θ, γ(θ̄)) is strictly increasing in θ in the interval θ < θ < θ̄.

To summarize, we have defined Q̄a(θ, γ(θ̄)), as follows :

Q̄(θ, γ(θ̄)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, if θ ≤ θ

1−x(θ,γ(θ̄))
1−u′(θ) , if θ < θ < θ̄

F (θ), otherwise.

(45)

Notice that over the range θ < θ < θ̄, Q̄(θ, γ(θ̄)) is the optimal allocation probability, as obtained

from the first order condition, for a seller with cost γ̄ = γ(θ̄). That is, in the absence of any capacity

constraint, a seller will assign to a risk averse bidder of type θ ∈ (θ, θ̄), a probability Q̄(θ, γ(θ̄)) of

getting the object, and would incur a cost of γ̄ = γ(θ̄) in the event the object is assigned to the

bidder.

We now turn to the problem for the risk neutral bidder and see how the unit capacity constraint

affects the allocation probabilities. From the first order condition (37), we obtain, that if Qn > 0,

γ(θ) = −µ(θ) = θ − 1 − F (θ)
f(θ) .

Since µ(θ) ≤ 0 for all θ, the constraint 0 ≤ Qn ≤ 1, immediately implies that for θ ≤ θ∗, the

optimal allocation probability for the risk neutral bidder is zero, i.e., Q⋆
n(θ) = 0 for θ ≤ θ∗.

Moreover, it is immediate that θ∗ < θ0 ≤ θ. So whenever the type of the risk-averse bidder is

less than θ and the type of the risk neutral bidder is θ > θ∗, the revenue of the seller is maximized

by allocating the object to the risk neutral bidder. Thus for θ ∈ (θ∗, θ],

Q∗
n(θ) = F (θ). (46)

Now we come to the crucial part of the analysis. Consider a type θ for the risk neutral bidder

such that θ ≤ θ < θ̄. From the first order condition for the risk neutral bidder, (37), we obtain
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that at the optimum, the opportunity cost to the seller of allocating the object to the risk neutral

bidder is,

γ(θ) = −µ(θ) = θ − 1 − F (θ)
f(θ) .

That is for a risk neutral bidder with type θ, if the seller allocates the object, he incurs an

opportunity cost of γ(θ) = θ − 1−F (θ)
f(θ) . On the other hand, if the seller allocates the object to

the risk averse bidder with positive probability, he incurs a cost of γ̄ = γ(θ̄). Now,

θ < θ̄ ⇒ γ(θ) < γ(θ̄) = γ̄.

This implies, that it is always optimal for the seller to allocate the object to the risk-neural bidder

of type θ. Since θ arbitrarily chosen, this implies that for all θ, it is optimal for the seller to allocate

the object to the risk neutral bidder. In other words,

Q∗
n(θ) = F (θ̄) if, θ ≤ θ̄. (47)

The above equation in turn implies that,

Q∗
a(θ) = 0 if, θ ≤ θ̄. (48)

Now at θ̄, the opportunity costs for the two types of bidders coincide. Consequently, for any θ > θ̄,

the optimal scheme is to allocate the object to the bidder of the higher type. That is for all

i ∈ {a, n},

Q∗
i (θ) = F (θ) if θ > θ̄. (49)

Combining the analyses for the risk-averse and the risk neutral bidder we arrive at the optimal

allocation probabilities as follows:

1. for the risk averse bidder, a

Q∗
a (θ) =

⎧⎪⎪⎨⎪⎪⎩
0, if θ ≤ θ̄

F (θ), otherwise.
(50)
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2. for the risk neutral bidder, n

Q∗
n (θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, if θ < θ∗

F (θ̄), if θ∗ ≤ θ < θ̄

F (θ), otherwise.

(51)

Note that both Q⋆
a and Q⋆

n are non-decreasing in θ.

The payment functions are determined from the expected allocation probabilities as follows:

p∗
n (θ) = p∗

n (0) + θQ∗
n (θ) −

∫︂ θ

0
Qn (α) dα

p∗
a (θ) = p∗

a (0) + ψ (θ,Q∗
a (θ)) −

∫︂ θ

0
ψ1 (α,Q∗

a (α)) dα. (52)

We now complete the proof. Define µ⋆ as

µ⋆(θ) =

⎧⎪⎪⎨⎪⎪⎩
0, if θ ≤ θ̄

1−F (θ)
f(θ) , otherwise.

The constraints, (20) and (19) are satisfied by construction. Moreover Y ≥ 0, so the constraint

(16) holds. The Hamiltonian, composed of Y, µ⋆, Q∗
a and Q⋆

n is continuous in θ. More over, with

respect to Q∗
n, the relevant part of the Hamiltonian is concave in Q∗

n. Likewise, with respect to Q∗
a

the relevant part of the Hamiltonian is concave in Q∗
a. Hence Q⋆

n, Q∗
a maximize the Hamiltonian.

Moreover, whenever, Y (θ) > 0, µ⋆(θ) = 0. Define -η⋆ to be the left derivative of µ⋆. Also note

whenever, µ⋆ is positive, Y (θ) = 0. Therefore η⋆(θ)Y (θ) = 0, as desired. This completes the

proof.

We still need to show the existence of qi’s that implement the Q∗
i ’s. In addition we need to show

that the second set of ignored constraints – the IR constraints (14), are satisfied. We establish this

in our next result.

Proposition 2. When there are two bidders, one risk averse and one risk neutral with the

identities of the risk averse and risk neutral bidder commonly known, the optimal selling mechanism
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⟨qn, qa, pa, pn⟩ takes the form of an all pay auction. The bidders submit non-refundable bids. The

allocation probabilities, i.e. the qis, i ∈ {a, n} are determined as follows:

1. For the risk neutral bidder n, there are two subcases depending on whether the valuation/type

of the risk averse bidder θa < θ̄ or θa > θ̄. We list the two cases separately.

(a) Case 1: θa < θ̄: In this case,

q∗
n(θa, θn) =

⎧⎪⎪⎨⎪⎪⎩
0, if θn < θ∗

1, otherwise.
(53)

(b) Case 2: θa > θ̄. In this case,

q∗
n(θa, θn) =

⎧⎪⎪⎨⎪⎪⎩
0, if θn < θa

1, otherwise.
(54)

2. For the risk averse, bidder, q∗(θa, θn) = 0 if θa < θ̄. On the other hand, if θa > θ̄ then,

q∗
a(θa, θn) =

⎧⎪⎪⎨⎪⎪⎩
0, if θa < θn

1, otherwise.
(55)

3. The payment functions are given by,

p∗
n (θ) = p∗

n (0) + θQ∗
n (θ) −

∫︂ θ

0
Q∗

n (α) dα (56)

and

p∗
a (θ) = p∗

a (0) + ψ (θ,Q∗
a (θ)) −

∫︂ θ

0
ψ1 (α,Q∗

a (α)) dα (57)

The Q∗a and Q∗
n functions are as defined in equations (50) and (51) respectively. Moreover

the above selling mechanism is individually rational.

Proof. First observe that for any (θa, θn) ∈ [0, 1]2, 0 ≤ q∗
i (θa, θn) ≤ 1 for all i. Moreover, whenever

24



q∗
i (θa, θn) = 1, q∗

j (θa, θn) = 0 for j ̸= i. This establishes that

q∗
a(θa, θn) + q∗

n(θa, θn) ≤ 1. (58)

Moreover, q⋆
i , i ∈ {a, n}, generate the expected allocation probabilities Q∗

i ’s . Hence the optimal

selling scheme in Proposition (1) is implementable by my selling mechanism. It remains to be

shown now is that the selling mechanism is individually rational.

Establishing individual rationality for the risk neutral bidder is straight forward. Note that for

the risk neutral bidder,

Vn (θ) = Vn (0) +
∫︂ θ

0
Q∗

n(x)dx. (59)

We have already established that Q∗
n is non decreasing in θ. So IR requires that for any θ < θ∗,

p⋆
n = 0. This implies Vn(0) = 0 and since Q⋆

n is non-decreasing, Vn(θ) ≥ 0 for all θ. This establishes

individual rationality.

Note that if θ∗ < θ < θ̄, the risk neutral bidder gets the object for sure and his payment is

a fixed fee θ∗F (θ̄). For θ > θ̄, p⋆
n(θ) = θ∗F (θ̄) + tn(θ) where θ∗F (θ̄) + tn(θ) satisfy the integral

condition, (12).

We now turn to the issue of individual rationality for the risk averse bidder . Note that for the

risk averse bidder of type θ,

Va (θ) = Va (0) +
∫︂ θ

0
ψ1 (z,Qa (z)) dz (60)

Since the risk averse bidder is not allocated the object with positive probability if θ ≤ θ̄, IR

constraint for the risk averse bidder implies, p∗
a(θ) ≤ 0, for θ ≤ θ̄. This forces, p∗

a(θ) = 0 for θ ≤ θ̄.

Now 0 ≤ ψ1 (z,Qa (z)) ≤ 1 for all z ∈ [0, 1]. Consequently,

Va(θ) = 0 +
∫︂ θ

θ̄
ψ1 (z,Qa (z)) dz ≥ 0. (61)

This establishes individual rationality for the risk averse bidder and completes the proof.
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2.5 Conclusion

In this paper, I have studied the optimal mechanism for selling an indivisible object when there is

one risk neutral and one risk averse bidder. My results show that there is a “significant region”

in the valuation space where the risk averse bidder, in short the presence of the risk averse bidder

limits competition. The interesting issue is how the optimal mechanism deals with this. It does so

by incorporating features of, both a competitive auction, forcing bidders to compete in the higher

range of valuations, and monopoly fixed pricing for the risk neutral bidder in the lower range of

valuations where the risk averse bidder is not competitive. The determination of the high threshold,

beyond which both bidders are competitive, is subtle and not immediate.

In this paper, I have studied a very simple model where there are two bidders whose attitudes

towards risk are different by commonly known. There are many directions in which the model can

be advanced. One obvious one is to introduce many bidders with heterogeneous attitude towards

risk. A more subtle problem is to consider the same problem as above, but where the risk aversion

parameter is not common knowledge. This second problem then becomes a problem of designing a

successful selling mechanism where types are multi-dimensional. The difficulty is that the literature

on multi-dimensional mechanism design is sparse, and a number of open questions remain. I plan

to address some of these issues in my future research.

One important issue that has not been covered in my paper is a comparative static analysis—for

example, what happens if one changes the risk aversion parameter for the risk averse agent? I can

provide a precise answer to that question. Note that, if the risk aversion parameter goes down,

the middle interval in my model will shrink, and in the limit will disappear, and we are back in

the setup of Myerson (1981) [30]. However, there is room for a more general comparative static

analysis which is of independent interest, and I hope to address some of these questions in future

work.
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Chapter 3

Preference Aggregation for Couples

3.1 Introduction

Finding jobs has become more complicated due to the increase in the number of couples who are

interested in entering the labor market together. Since there used to be many more men than

women seeking positions, only a few couples would apply for jobs simultaneously. This is no

longer the case today, which has considerable implications for centralized entry-level labor markets

such as the medical residency matches in the US, the UK, and Canada. The National Resident

Matching Program (NRMP) in the US, the most prominent example of such a labor market, assigns

thousands of medical school graduates to hospital intern positions through a central clearing house

each year (Roth 1984 [32], Roth and Peranson 1999) [34]. As discussed by Roth and Peranson

(1999) [34] and Klaus et al. (2007) [23], among others, if the centralized matching procedure does

not accommodate couples’ wishes to find jobs in the same geographical area, then they might prefer

to apply for positions directly, instead of going through the centralized matching system which may

easily assign them jobs that are far away from each other, leaving the couple unhappy.

Beyond the workings of the matching algorithm itself, a more fundamental issue is that a

stable matching may not even exist (Roth 1984 [32], Cantala 2004 [7]). Klaus and Klijn (2005)

[22] demonstrate that if both couples and hospitals have responsive preferences then there is

always a responsive preference extension for which a stable matching exists, and show that

responsive preferences constitute a maximal preference domain in this sense to guarantee the

existence of a stable matching (see also Klaus et al. 2009 [24]). Responsiveness means that
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unilateral improvements according to the preference of one partner are beneficial for the couple.

Khare et al. (2018) [21] characterize the responsive preferences of couples under which a stable

matching always exists. Even under the milder requirements of Klaus and Klijn (2005) [22],

existence of a stable matching can only be achieved when couples’ preferences are responsive,

and responsiveness essentially reduces the couple’s joint preferences to two independent individual

preferences. This rules out the complementary preferences of couples over jobs that arise due

to distance considerations, the most salient characteristic of couples’ preferences, which is not

surprising since some substitutability condition is typically required for the existence of a stable

matching.

Dutta and Massó (1997) [9] studies externalities in preferences and provides possibility results

for couples under specific preference restrictions. An alternative approach of relaxing the stability

requirement is presented by Jiang and Tian (2013) [17]. Khare and Roy (2018) [20] pursues further

the issue of the existence of stable matchings in markets with couples when preferences are not

responsive. Delacrétaz (2019) [8] and Sidibé (2020) [37] are other recent studies that are relevant

for the couples’ matching problem, as they study matching with agents of different sizes (i.e., agents

may require multiple items on the other side of the market). Even if a stable matching with couples

exists at a given preference profile, it is not guaranteed that an algorithm will be able to identify

and choose a stable matching at such a preference profile. Klaus et al. (2007) [23] show that the

new NRMP algorithm (see also Roth and Peranson (1999) [34] ) may not reach an existing stable

matching, even when couples’ preferences are responsive. They also demonstrate that the new

NRMP algorithm may be manipulable by couples acting as singles.

Centralized labor markets with explicitly recognized couples, such as the NRMP and the

Canadian Resident Matching Service (CaRMS) today, require participating couples to report their

joint preference orderings over pairs of positions, and the relevant matching theory literature takes

these joint preferences to be exogenously given. However, an overlooked issue is that given the

two partners’ respective preferences over individual positions, it is not necessarily clear what the

couple’s joint preferences are. It is natural for each partner to be aware of their individual preference

ordering over the jobs, but it is not obvious that couples know or understand well their preferences

over pairs of positions which reflect the preferences of both partners even without geographical

considerations, and especially when it comes to incorporating the complementary nature of the two
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positions.

The preference aggregation issue for a couple has not been addressed by the social choice

theory literature either, which mainly focuses on aggregating preferences over social outcomes.

Our problem formally differs from the preference aggregation literature in several aspects. The

aggregation for couples has two preference rankings over individual positions as input, and a joint

preference ranking over pairs of positions as an output. Standard preference aggregation rules going

back to Arrow (1963) [1] take identical inputs and turn them into an output of the same form as the

inputs. In the preference aggregation literature social outcomes are typically public in nature and

individuals care about all aspects of the outcome. Some work has been done on economic domains

assuming selfishness (i.e., individuals care about their own allocation only) which are surveyed in

Bossert and Weymark (2008) [5] and Le Breton and Weymark (2011) [27]. Bordes and Le Breton

(1990) [4] study Arrow consistency in various matching models. Kalai and Ritz’s (1980) [18] setup

comes closest to ours, since they study the same preference aggregation model as us, but with

n agents. Unlike us, they focus only on Arrow social welfare functions. Clearly, our model also

differs from usual models in that we only have two agents, while preference aggregation is typically

considered for an arbitrary number of agents. This makes our task simpler, but it also renders tie-

breaking more important since ties arise frequently with two agents only. Finally, and importantly,

in the labor market context we need to worry about complements in couples’ preferences due to

geographical considerations, which is absent from the preference aggregation literature and only

pertains to aggregating preferences over private assignments with specific restricted externalities

arising from a preference for compatibility of the private assignments.

In this paper we study how to form a joint preference ordering by aggregating a couple’s

respective individual preferences over single jobs. Can we find consistent, efficient, and fair

methods to aggregate the two individual preferences? This aggregation is of interest since reaching

a consensus, a feasible compromise that reflects the couple’s preferences, may be difficult. We

believe, furthermore, that a clear preference aggregation method is not only of relevance to couples

when submitting their joint preferences, but it could also play a role in the matching procedure

itself, if the matching algorithm is modified accordingly. If couples were restricted to submitting

joint preferences with a simplified structure, captured by a handful of parameters only which still

allow couples the freedom to express their joint preferences, it may become possible to design
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more effective matching mechanisms, which would take advantage of the clear structure of the

preferences submitted by couples. In addition to being able to construct better matching algorithms,

a parametric family of a couple’s preferences may also help with the evaluation of the performance

of the matching algorithm as a function of different parameter values submitted by participating

couples. In light of the severe difficulties with stability and incentives in the presence of couples, as

demonstrated by the extant literature, our hope is that such an approach may turn out to be useful.

Thus, one of the contributions of this paper is that it initiates this new approach to matching with

couples, in addition to proposing and analyzing specific families of preference aggregation rules for

couples.

We start by considering two interesting pairing rules in this setting, the Lexicographic

(serially dictatorial) and the Rank-Based Leximin rules. In our terminology lexicographic means

that preferences are lexicographic in the way they prioritize the two partners, as opposed to

lexicographically considering different aspects of the respective individual rankings of jobs. In

the absence of cardinal utilities which would be difficult to elicit, and if elicited would further

escalate the incentive problems for the matching rule, our aggregation rules are based on the ordinal

rankings of individual positions by the two partners and rely on a comparison of these rank numbers

between them. Comparing rank numbers and differences in rank numbers may be unusual, given

that the elicited preferences are ordinal in nature, but such comparisons based on rank numbers

are inevitable in this setting if we don’t want to restrict ourselves to serial dictatorships exclusively,

hence the name “Rank-Based” Leximin rule.

Both aggregation rules (or pairing rules, as we refer to them) are characterized by appealing

normative axioms. The characterization of the Lexicographic rule is a classic one and follows

from Kalai and Ritz (1980) [18] , while the Rank-Based Leximin rule is characterized by a new

set of axioms in our setting (Theorem 1). We then identify a class of pairing rules, the General

Lexi-Pairing rules, which includes both the Lexicographic and the Rank-Based Leximin rules, and

argue that it is desirable to further narrow down this set of rules when studying couples’ preference

aggregation choices and their incentives in labor markets, in order to restrict the couple to report

a member of a simple but flexible family of preferences. We propose a family of aggregation

rules parameterized by k, the k-Lexi-Pairing rules, which yields a ranking of paired positions for

a couple prior to taking into account the complementarities in preferences. The parameter k
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represents the degree to which one partner is favored, which indicates the degree of “selfishness” for

this partner, where the least selfish leximin preference aggregation is at one extreme, and the most

selfish lexicographic preference aggregation is at the other extreme. Symmetrically, k also shows the

extent of “altruism” of the other partner, with the least altruistic rule being the leximin preference

aggregation, and the most altruistic the lexicographic aggregation. Given that the aggregation

problem is symmetric in the two partners, we assume that the partners are interchangeable and

simplify our exposition by omitting the symmetric case where partner 1 is altruistic and partner 2

is selfish.

We provide an axiomatic characterization of k-Lexi-Pairing rules (Theorem 2), which shows

that these are the only rules satisfying a natural efficiency requirement (Strong Pareto) and an

axiom requiring a uniform degree of concessions that determines when to take into account the

partner’s preferences ahead of one’s own preferences (k-Compromise), together with a consistent

tie-breaking axiom (k-Threshold-Consistency). Furthermore, we introduce a general framework

for considering geographic location and proximity, and propose a modification of Lexi-Pairing

rules which is based on a togetherness parameter that we introduce, which allows the couple to

incorporate their subjective preferences for the proximity of their respective jobs. Preferences for

proximity have been considered by Dutta and Massó (1997) [9] and by Khare and Roy (2018) [20] in

the simple form of preference for getting positions at the same firm or hospital, while Cantala (2004)

[7] and Sethuraman et al. (2018) [36] offer more general but still limited geographic considerations.

We introduce two natural axioms for modifying the joint preferences of the couple to reflect their

preference for proximity, which are satisfied by our proposed aggregation rules for couples, the

Couple-Lexi-Pairing rules, and find that the characterization result of Theorem 2 still holds in

essence when we modify the axioms to take into account the togetherness parameter.

In the formal exposition we use the terminology of medical residency matching and call the

two partners in a couple doctors, while the jobs are referred to as hospitals. Nonetheless, the

analysis is relevant for couples in any centralized labor market which involves matching not only

single individuals but also couples to jobs. Moreover, all the results pertain to a general two-agent

preference aggregation problem over private alternatives, except for the findings in Section 7 which

focuses on geographic considerations, and thus it is specific to couples in labor markets.
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3.2 Setup

There is a set of q hospitals H, and two doctors denoted by i ∈ {1, 2}. We assume that each hospital

has at least two positions, where each position of a hospital h ∈ H is assumed to be identical. Thus,

we regard H × H as the set of of paired hospital positions, given that positions at each hospital

are the same, and (h1, h2) ∈ H ×H indicates a pair of positions where h1 denotes the position for

doctor 1 and h2 denotes the position for doctor 2. Note that if h1 = h and h2 = h for some h ∈ H

then both doctors are matched to a position at the same hospital. Although we refer to “hospital

pairs” throughout the paper for simplicity, it is understood that a hospital pair may consist of two

positions at the same hospital.

Each doctor has a strict preference ordering over the set of hospitals H, indicating the doctor’s

individual preferences over the hospitals. The individual preference ordering of doctor i ∈ {1, 2} is

expressed by the ranking of each hospital hi, denoted by ri(hi) ∈ {1, . . . , q}, where ri(hi) < ri(h′
i)

means that doctor i prefers hospital hi to h′
i, since hi has a lower rank number than h′

i. We assume

that each hospital position is acceptable to both doctors, since each doctor would rather get a job

than remain unmatched. Let R denote the set of individual hospital rankings. For each doctor

i ∈ {1, 2}, let ri ∈ R denote a particular ranking of all hospitals in H by doctor i. Let P denote the

set of strict preference orderings over the ordered pairs of hospitals, that is, the set of aggregated

preference orderings of paired hospital positions. Then P ∈ P is a strict preference ordering over

H ×H and represents the joint preferences of the two doctors.

A pairing rule is a preference aggregation function for two doctors, which maps from two strict

individual preference orderings of individual hospital positions to one strict preference ordering of

paired hospital positions. Formally, a pairing rule is a function φ : R × R → P, specifying the

preference aggregation of the respective individual hospital rankings of the two doctors. We will

also use the notation (h1, h2)P (h′
1, h

′
2) to indicate that (h1, h2) is preferred to (h′

1, h
′
2) in the joint

preferences P ∈ P.

3.3 The Lexicographic Rule: No Interpersonal Comparisons

We begin with the Strong Pareto axiom, which would naturally be satisfied by the aggregated

preferences when there are no complementary preferences over hospital positions. As usual, (h′
1, h

′
2)
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Pareto-dominates (h1, h2) if r1(h1) ⩾ r1(h′
1) and r2(h2) ⩾ r2(h′

2), with at least one strict

inequality.

Strong Pareto. P satisfies Strong Pareto at (r1, r2) if, for all (h1, h2) and (h′
1, h

′
2) such that

(h′
1, h

′
2) Pareto-dominates (h1, h2), (h′

1, h
′
2)P (h1, h2). A pairing rule φ satisfies Strong Pareto if for

all (r1, r2) ∈ R×R, φ(r1, r2) satisfies Strong Pareto.

Strong Pareto is closely related to the responsiveness notions for doctors used by Klaus and

Klijn (2005) [22] and Khare et al. (2018) [21] , although their models are slightly different from ours.

We consider Strong Pareto our most basic axiom, since it simply says that whenever there is an

agreement between the two partners over two hospital pairs, the aggregation honors their common

preferences. The question is how to rank two hospital pairs when the partners disagree over their

rankings based on their individual hospital matches, and some of the other axioms directly address

this case.

Given that we only have ordinal preferences as input, which is consistent with the matching

theory literature, imposing an independence of irrelevant alternatives (IIA) axiom may not

necessarily be deemed too restrictive, even though it implies the lack of interpersonal comparisons.

When IIA is combined with Strong Pareto, we immediately get Arrow’s impossibility result since

only a serial dictatorship rule satisfies both axioms, given that the aggregate preferences need to be

transitive. We refer to serial dictatorships as lexicographic rules, since they prioritize one partner

over the other in a lexicographic manner. Klaus and Klijn (2005) [22] refers to the same as the

leader-follower responsive preferences.

Independence of Irrelevant Alternatives (IIA). A pairing rule φ satisfies Independence of

Irrelevant Alternatives if the following holds for all (h1, h2), (h′
1, h

′
2) ∈ H×H and (r1, r2), (r̄1, r̄2) ∈

R×R, where P = φ(r1, r2) and P̄ = φ(r̄1, r̄2). If

(i) both r1 and r̄1 rank h1 and h′
1 in the same way,

(ii) both r2 and r̄2 rank h2 and h′
2 in the same way, and

(iii) (h′
1, h

′
2)P (h1, h2)

then (h′
1, h

′
2)P̄ (h1, h2).
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In the following definition of the Lexicographic rule, we assume without loss of generality that

doctor 1 is the first dictator (or the leader), that is, doctor 1 is the partner whose preferences

always dominate the other’s.

Lexicographic rule

Fix (r1, r2) ∈ R × R and let P denote the paired preference ordering φ(r1, r2), where φ is the

Lexicographic rule. Then for (h1, h2), (h′
1, h

′
2) ∈ H × H, (h′

1, h
′
2)P (h1, h2) if one of the following

two cases holds:

1. r1(h1) > r1(h′
1);

2. r1(h1) = r1(h′
1) and r2(h2) > r2(h′

2).

This is the Lexicographic rule favoring doctor 1. If doctor 1 prefers h′
1 to h1, or if h′

1 = h1 and

doctor 2 prefers h′
2 to h2 then the pair (h′

1, h
′
2) is preferred to the pair (h1, h2) according to the

joint preferences.

Proposition 1. (Characterization of the Lexicographic rule)

A pairing rules satisfies Strong Pareto and IIA if and only if it is the Lexicographic rule.

This is Arrow’s famous impossibility theorem adopted to our setting. We omit the

straightforward proof of the proposition which also follows from Kalai and Ritz (1980) [18] .

Arguably, in our setting a serial dictatorship is not as undesirable as in other contexts. First

of all we have private outcomes, so if agents are selfish and only care about their own allocations

then having a consensus over ranking two hospital pairs is more likely than in the public outcome

setting. Secondly, we only have two agents, and thus favoring one over the other is not nearly as

extreme as favoring one agent over all other agents when the number of agents is large. Thirdly,

in the couple preference aggregation problem specifically, it may be desirable for the two spouses

to favor one of them over the other, since the two partners wish to cooperate with each other and

there may be consensus that one partner’s preferences should “weigh” more than the other’s due

to various reasons. For example, if one is likely to face a tougher job market than the other, or

if one spouse has a bigger need for a good job placement than the other for any reason, then the

other partner may consent to favoring this partner’s preferences.
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Nonetheless, the Lexicographic rule is an extreme asymmetric pairing rule, and we want to

study other pairing rules that treat agents more symmetrically. For this we need to assume that

we can make some interpersonal comparisons, which will amount to treating the ordinal rankings

of the agents as comparable utility levels, since we do not have information about preference

intensities.1 In the next section we consider axioms that ask for interpersonal comparisons based

on the respective preference ranks and aim to ensure some degree of equity between the two partners,

together with some utilitarian notions of efficiency.

3.4 Equity and the Rank-Based Leximin Rule

We start by presenting some desirable fairness and efficiency properties of pairing rules based on

the comparisons of preference rank numbers. All the axioms from here on are defined for a specific

pair of individual rankings (r1, r2), and a pairing rule φ satisfies an axiom if for all (r1, r2) ∈ R×R,

the paired ranking φ(r1, r2) satisfies the axiom at (r1, r2).

First we introduce a few preliminary notions and terminology. Given (r1, r2) ∈ R×R, (h′
1, h

′
2)

cross-dominates (h1, h2) if r1(h1) ⩾ r2(h′
2) and r2(h2) ⩾ r1(h′

1), with at least one inequality,

but (h′
1, h

′
2) does not Pareto-dominate (h1, h2). Moreover, (h′

1, h
′
2) dominates (h1, h2) if (h′

1, h
′
2)

either Pareto-dominates or cross-dominates (h1, h2). We will also say that there is no dominance

relation between two hospital pairs if neither dominates the other. For a given (h1, h2), let Σ =

r1(h1)+r2(h2) be the sum of the two rankings, and let g = |r1(h1)−r2(h2)| be the gap between the

two rankings, i.e., the absolute value of the difference between the two rankings. In the following,

let Σ,Σ′, Σ̃, . . . denote the sum of (h1, h2), (h′
1, h

′
2), (h̃1, h̃2), . . . respectively. Similarly, let g, g′, g̃, . . .

denote the corresponding gaps.

Cross-Dominance. P satisfies Cross-Dominance at (r1, r2) if, for all (h1, h2) and (h′
1, h

′
2) such

that (h′
1, h

′
2) cross-dominates (h1, h2), (h′

1, h
′
2)P (h1, h2).

Dominance. P satisfies Dominance at (r1, r2) if, for all (h1, h2) and (h′
1, h

′
2) such that (h′

1, h
′
2)

dominates (h1, h2), (h′
1, h

′
2)P (h1, h2).

1Bossert and Weymark (2004) [6] provide a comprehensive treatment of the literature on social choice with
interpersonal utility comparisons.
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Cross-Dominance requires that a hospital pair that cross-dominates another one is preferred

to the other hospital pair. Dominance requires that a hospital pair that dominates another one

is preferred to the other hospital pair. Note that Dominance is equivalent to the conjunction of

Strong Pareto and Cross-Dominance. Dominance is also known as Suppes-Sen dominance in more

general settings.

For (h1, h2) ∈ H ×H, let

Max ≡ max (r1(h1), r2(h2));

Min ≡ min (r1(h1), r2(h2)).

For (h′
1, h

′
2) ∈ H ×H, let

Max′ ≡ max (r1(h′
1), r2(h′

2));

Min′ ≡ min (r1(h′
1), r2(h′

2)).

With this notation in hand, we note that if (h′
1, h

′
2) dominates (h1, h2) then Max ⩾ Max′ and Min

⩾ Min′, which can be checked directly.

Limited Equity. P satisfies Limited Equity at (r1, r2) if, for all (h1, h2) and (h′
1, h

′
2) such that

there is no dominance relation between them, g > g′ implies (h′
1, h

′
2)P (h1, h2).

Equal-Sum Equity. P satisfies Equal-Sum Equity at (r1, r2) if, for all (h1, h2) and (h′
1, h

′
2) such

that Σ = Σ′, g > g′ implies (h′
1, h

′
2)P (h1, h2).

Observe that if (h′
1, h

′
2) dominates (h1, h2) then Σ > Σ′. Thus, if the sums of two hospital

pair rankings are equal (Σ = Σ′) then there is no dominance relation between them, and therefore

Limited Equity implies Equal-Sum Equity. We will show next that the only pairing rule that

satisfies Strong Pareto, Cross-Dominance and Limited Equity is a rule which closely resembles the

leximin rule in contexts where agents are assumed to have interpersonally comparable utilities.

Although we do not have utilities in our model, only ordinal rankings, if we want to make some

interpersonal comparisons then the ordinal rank numbers have to be treated as utility levels that

can be compared. We will define the Rank-Based Leximin rule in our setup next.

Rank-Based Leximin rule
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Fix (r1, r2) ∈ R×R and let P denote the joint preference ordering φ(r1, r2), where φ is the Rank-

Based Leximin rule. Given (r1, r2), for (h1, h2) and (h′
1, h

′
2) ∈ H × H, let Max, Min, Max′ and

Min′ be defined as above. Then (h′
1, h

′
2)P (h1, h2) if one of the following three cases holds:

1. Max > Max′;

2. Max = Max′ and Min > Min′;

3. Max = Max′, Min = Min′ and r1(h1) > r1(h′
1).

The Rank-Based Leximin rule first compares the ranks of the two lower-ranked hospitals

respectively in each of two hospital pairs and chooses the hospital pair with the more preferred

lower-ranked hospital in terms of the ordinal rank numbers. If this comparison leads to a tie then

it compares similarly the two higher-ranked hospitals, and if this also leads to a tie than it chooses

on the basis of doctor 1’s preferences. This means that the definition follows the convention that

when comparing two symmetric pairs with ranks (x, y) and (y, x), where x ̸= y, what we will refer

to as symmetric opposites from now on, then the rule always favors doctor 1, that is, if x < y then

(x, y) is preferred to (y, x) in the aggregate preferences, since doctor 1 prefers the hospital with

rank x to the hospital with rank y. This implies that Max = Max′ and Min = Min′, and in this case

r1(h1) > r1(h′
1) leads to (h′

1, h
′
2)P (h1, h2). Although a less systematic favoring of one agent over

the other would be slightly more equitable, we make this assumption in 3. for ease of exposition.

Our characterization of the Rank-Based Leximin rule is stated next. Note that since all three

axioms are compatible with anonymity (the agents’ names don’t matter), the conjunction of these

axioms does not necessarily break the “tie” between two hospital pairs that are symmetric opposites,

and we use the same convention in the characterization as for the rule itself, favoring doctor 1 over

doctor 2 in such cases. The proof of the theorem is in the Appendix.

Theorem 1. (Characterization of the Rank-Based Leximin rule)

A pairing rule satisfies Strong Pareto, Cross-Dominance and Limited Equity if and only if it is the

Rank-Based Leximin rule.

Equivalently, we could also state that a pairing rules satisfies Dominance and Limited Equity if

and only if it is the Rank-Based Leximin rule. The combination of the axioms in the theorem gives
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us a good intuitive idea about the Rank-Based Leximin rule. When there is a dominance relation

between two hospital pairs, the rule ranks the dominating pair higher, indicating its efficiency

properties. When there is no dominance relation between two hospital pairs, the rule ranks the

hospital pair with the lower gap higher, which reflects that the aggregation rule prefers treating

the two partners more equitably in these cases in terms of their preference ranks. Note also that

Cross-Dominance has a rank-based fairness component as well, in the spirit of Rawls’ ‘behind a veil

of ignorance’ concept. It is also worth noting that the requirements of the axioms are compatible

with each other in the sense that they lead to a transitive aggregate preference ordering.

Example 1. We provide examples of pairing rules to establish the independence of the three axioms

in Theorem 1. The examples are given for q = 4, but similar examples can be found for higher

numbers of hospitals as well. The orderings in Table 3.1 are in descending order of preference, and

since they are indicated in terms of rank numbers, an ordering of all rank pairs entirely describes

a pairing rule for all different rankings of hospitals.2 The first column in Table 3.1 shows the

Rank-Based Leximin rule, denoted by PL, and the difference from this rule is indicated in bold in

the other columns. P̄ is an example where Limited Equity is not satisfied but Dominance is. This

is an additive (or Borda) rule, since any pair with a lower sum is ranked ahead of a pair with a

higher sum, which immediately implies that Dominance is satisfied. This rule also satisfies Equal-

Sum Equity, which demonstrates that Limited Equity cannot be weakened to Equal-Sum Equity

in the characterization in Theorem 1. P̃ is a pairing rule which satisfies Limited Equity and Cross-

Dominance but not Strong Pareto, and P̂ is a pairing rule which doesn’t satisfy Cross-Dominance

but satisfies the other two axioms. We note that the axioms in Theorem 1 are independent as

long as q ≥ 3, but for q = 3 Limited Equity can be replaced by Equal-Sum Equity. For q = 2 the

Rank-Based Leximin rule is characterized by Dominance alone.
2This is possible because all these rules are neutral, that is, the hospitals’ names don’t matter.
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PL

1, 1

1, 2

2, 1

2, 2

1, 3

3, 1

2, 3

3, 2

3, 3

1, 4

4, 1

2, 4

4, 2

3, 4

4, 3

4, 4

P̄

1, 1

1, 2

2, 1

2, 2

1, 3

3, 1

2, 3

3, 2

1,4

4,1

3,3

2, 4

4, 2

3, 4

4, 3

4, 4

P̃

1, 1

1, 2

2, 1

2, 2

3,1

2,3

1,3

3, 2

3, 3

1, 4

4, 1

4,2

3,4

2,4

4, 3

4, 4

P̂

1, 1

1, 2

2, 1

2, 2

1, 3

2,3

3,1

3, 2

3, 3

1, 4

4, 1

2, 4

4, 2

3, 4

4, 3

4, 4

Table 3.1: Independence of the axioms in Theorem 1

3.5 Quasi-Equitable Pairing Rules

We are also interested in rules that are less extreme than either the Lexicographic rule or the

Rank-Based Leximin rule. Thus, we want to study a class of rules which includes both of these

pairing rules, among others. These rules are necessarily lopsided, treating one agent better than

the other, and we relax Limited Equity to allow for more asymmetry in the treatment of the two

partners. We will follow the convention used before, which favors doctor 1 over doctor 2 when the

rule treats the two partners asymmetrically.

Quasi-Equity. P satisfies Quasi-Equity at (r1, r2) if, for all (h1, h2) and (h′
1, h

′
2) such that there

is no dominance relation between them, g > g′ and (h1, h2)P (h′
1, h

′
2) imply that r1(h1) < r1(h′

1).
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This axiom allows to escape the conclusion of Limited Equity, namely (h′
1, h

′
2)P (h1, h2), only

if doctor 1 prefers h1 to h′
1. It is easy to see that Limited Equity implies Quasi-Equity, and

thus it follows from Theorem 1 that the Rank-Based Leximin rule satisfies Quasi-Equity. The

Lexicographic rule (favoring doctor 1) also satisfies Quasi-Equity, which can be verified as follows.

If (h1, h2)P (h′
1, h

′
2) for the Lexicographic rule at some (r1, r2) then r1(h1) ≤ r1(h′

1) is implied

immediately. To rule out r1(h1) = r1(h′
1), note that in this case there is a dominance relation

between (h1, h2) and (h′
1, h

′
2), contrary to the premise of the axiom. Therefore, since both the

Rank-Based Leximin and the Lexicographic rules satisfy Strong Pareto, Strong Pareto together

with Quasi-Equity captures a family of pairing rules which includes both of these rules. We call

this family of pairing rules General Lexi-Pairing rules. We omit the straightforward proof which

demonstrates that the General Lexi-Pairing rules, as defined below, are the only rules which satisfy

Strong Pareto and Quasi-Equity.

General Lexi-Pairing rules

Fix (r1, r2) ∈ R×R and let P denote the paired preference ordering φ(r1, r2), where φ is a General

Lexi-Pairing rule. Let (h1, h2), (h′
1, h

′
2) ∈ H × H. Then (h′

1, h
′
2)P (h1, h2) if either one of the

following holds:

1. (h′
1, h

′
2) Pareto-dominates (h1, h2);

2. there is no dominance relation between (h1, h2) and (h′
1, h

′
2), g > g′, and r2(h2) − r1(h1) <

r2(h′
2) − r1(h′

1).

Proposition 2. A pairing rule satisfies Strong Pareto and Quasi-Equity if and only if it is a

General Lexi-Pairing rule.

We can explain the family of General Lexi-Pairing rules intuitively in terms of a directed graph

which shows all “immediate” Pareto-dominance relationships, where immediate means that only

one doctor’s allocation is different between the two hospital pairs, and this doctor’s ranking of the

two hospitals only differs by one, where the directed edge points toward the less preferred pair

(with the higher rank number). This graph is presented in Figure 1 for the case of 4 hospitals,

where the hospital pairs are represented by their rank numbers. If a hospital pair (h1, h2) can

be reached from another hospital pair (h′
1, h

′
2) by following a sequence of directed edges, then we
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call (h′
1, h

′
2) a predecessor of (h1, h2) in the graph. Clearly, if (h′

1, h
′
2) is a predecessor of (h1, h2)

then it Pareto-dominates (h1, h2). Furthermore, we can see that the middle “column“ (with g = 0)

contains all pairs of the form (r, r), which are pairs that assign the same-ranked hospital to both

partners, and hospital pairs to the left of this column are the hospital pairs which are better for

doctor 1, while hospital pairs to the right of this middle column are better for doctor 2 in terms of

the respective rank numbers.

The top-ranked pair for all General Lexi-Pairing rules is the pair of first-ranked hospitals for

the two doctors respectively: (1, 1). Point 1. in the definition of General Lexi-Pairing rules says

that Strong Pareto is satisfied by the rule, and Strong Pareto implies that starting from (1, 1) the

pairing rule “traverses” the graph, although not necessarily following directed edges but picking up

each vertex (i.e., each hospital pair), eventually ending this procedure with (q, q). This determines

an ordering of the hospital pairs and thus identifies a neutral pairing rule. In order to ensure that

Strong Pareto is satisfied, whenever the next vertex is picked each predecessor of this vertex in the

graph has to have been picked already. Intuitively, the Lexicographic rule “keeps to the left” in the

graph when picking vertices, subject to Strong Pareto, given that the left side favors agent 1, while

the Rank-Based Leximin rule “keeps to the middle.”

In order to find all General Lexi-Pairing rules, the only restriction regarding the order of picking

vertices in the graph, in addition to Strong Pareto (i.e., ensuring that all predecessors in the graph

had been already picked for each pair), as specified in point 2. of the definition of General Lexi-

Pairing rules, is that if there is no dominance relation between (h1, h2) and (h′
1, h

′
2), the gap is

smaller for (h′
1, h

′
2) than for (h1, h2), and (h′

1, h
′
2) is to the left of (h1, h2) in the graph, indicating

that agent 1 is favored relatively more by (h′
1, h

′
2) than by (h1, h2), then (h′

1, h
′
2) is ranked ahead of

(h1, h2). Apart from this restriction, any other ordering of hospital pairs satisfying Strong Pareto

leads to a General Lexi-Pairing rule. This restriction rules out, for example, the additive rule P̄

presented in Example 1 since, for instance, this restriction implies that (3, 3) is ranked ahead of

(4, 1) by any General Lexi-Pairing rule.
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Figure 3.1: Immediate Pareto-dominance graph when q = 4

3.6 The Lexi-Pairing Rules

The family of General Lexi-Pairing rules is large and contains members that are not very desirable.

One example of such a General Lexi-Pairing rule is the following. Let the aggregated preference

ordering start with (1, 1, ), (1, 2), (1, 3), (1, 4), as in the Lexicographic rule, and let the rest of the

ordering follow the ordering of the pairs in the Rank-Based Leximin rule. This pairing rule satisfies

Strong Pareto (use the graph in Figure 1 to easily verify this) and Quasi-Equity. However, this rule

is rather inconsistent in its treatment of the two partners. In order to gain some consistency for

pairing rules and reduce this family of rules to a subfamily whose members possess a clear structure,

we introduce two more (classes of) properties of pairing rules to ensure a consistent compromise

between the partners. The extent of equity between the partners is represented by the parameter k.
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k-Compromise. Given k ∈ {0, . . . , q − 1}, P satisfies k-Compromise at (r1, r2) ∈ R ×R if for all

(h1, h2) and (h′
1, h

′
2) such that r1(h1) < r1(h′

1) and r2(h2) > r2(h′
2) :

1. r1(h′
1) < r2(h2) − k implies that (h′

1, h
′
2)P (h1, h2), and

2. r1(h′
1) > r2(h2) − k implies that (h1, h2)P (h′

1, h
′
2).

Unlike Strong Pareto, this axiom is relevant when there is a disagreement between the two doctors:

doctor 1 prefers h1 to h′
1 and doctor 2 prefers h′

2 to h2. The parameter k shows the degree to which

one partner is willing to compromise and take into account the other partner’s preferences over

hospital matches ahead of her own preferences and represents the degree of selfishness/altruism. In

our exposition doctor 1 is always the selfish or favored partner and doctor 2 is always the altruistic

or non-favored partner, but the symmetric case where doctor 1 is altruistic and doctor 2 is selfish

applies equally.

The axiom focuses on the rank of the worse alternative for each doctor, h′
1 and h2 respectively

in the definition. When k = 0, if h′
1 has a lower rank number than h2 then (h′

1, h
′
2)P (h1, h2) and

vice versa, and there is as much compromise between the two doctors as possible. When k = q− 1

then doctor 1 is always favored and there is no compromise at all. In general, taking into account

the selfishness/altrusim level k, if the less preferred alternative of doctor 1 has a relatively lower

rank number compared to the rank number of the less preferred alternative of doctor 2 (in the two

doctors’ respective preferences), then the hospital pair less preferred by doctor 1 is ranked above

the other hospital pair by the joint preference ordering P . In sum, this is an axiom that requires

consistency regarding how each doctor compromises in favor of her partner, which is based on the

ranking of alternatives. One can think of this as a consistent degree of selfishness or altruism, or

”uniform” concession in terms of preference rank differences.

In order to show that k-Compromise is indeed a stronger requirement than Quasi-Equity, we

prove the following result.

Proposition 3. Let k ∈ {0, . . . , q − 1}. Then k-Compromise implies Quasi-Equity.

Proof. Let φ satisfy k-Compromise for some k ∈ {0, . . . , q − 1}. Suppose that φ does not satisfy

Quasi-Equity. Specifically, suppose that there exists (r1, r2) ∈ R × R such that for (h1, h2) and
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(h′
1, h

′
2), with no dominance relation between them, we have g′ > g, (h′

1, h
′
2)P (h1, h2) where P

denotes φ(r1, r2), and r1(h′
1) ⩾ r1(h1).

Since there is no Pareto-dominance, r1(h′
1) > r1(h1), and thus no Pareto-dominance implies

r2(h2) > r2(h′
2). Then, if r1(h′

1) > r2(h2) − k, k-Compromise implies that (h1, h2)P (h′
1, h

′
2).

Therefore, r1(h′
1) ⩽ r2(h2) − k, and hence no cross-dominance implies that r1(h′

1) < r2(h2). In

sum,

r2(h2) > r1(h′
1) > r1(h1). (62)

Since r2(h2) > r1(h′
1), no cross-dominance implies r2(h′

2) > r1(h1). Then, in sum,

r2(h2) > r2(h′
2) > r1(h1). (63)

Finally, note that (1) and (2) imply that g′ < g, which is a contradiction.

The next axiom pertains to the preference ordering of hospital pairs in the special case of a

“tie,” based on the selfishness/altruism parameter k.

k-Threshold-Consistency. Given k ∈ {0, . . . , q − 1}, P satisfies k-Threshold-Consistency at

(r1, r2) ∈ R × R if for all (h1, h2) and (h′
1, h

′
2) such that r1(h1) < r1(h′

1), r2(h2) > r2(h′
2) and

r1(h′
1) = r2(h2) − k, (h′

1, h
′
2)P (h1, h2) if and only if r1(h1) > r2(h′

2) − k.

The axiom states that if the less-preferred hospital of doctor 1, h′
1, relatively ties in terms of

ranking with the less-preferred hospital of doctor 2’s hospital, h2, taking into account k as the

degree of selfishness/altruism, then (h′
1, h

′
2) is preferred to (h1, h2) if and only if the better option

of doctor 1, h1, has a higher rank number relatively, given k, than the better option of doctor

2, h′
2. For k = 0, when the less preferred alternative of each doctor has the same rank number,

(h′
1, h

′
2)P (h1, h2) if and only if the more preferred alternative of doctor 1, h1, has a rank number

which is higher than the rank number of the more preferred alternative of doctor 2, h′
2.

These two axioms together with Strong Pareto lead to a parametric family of rules which includes

both the Lexicographic and the Rank-Based Leximin rules. We call these pairing rules k-Lexi-

Pairing rules (or Lexi-Pairing rules, for short).
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k-Lexi-Pairing rules ψk (k ∈ {0, . . . , q− 1})

Fix k ∈ {0, ..., q−1} and (r1, r2) ∈ R×R and let P k denote the paired preference ordering ψk(r1, r2).

For (h1, h2) ∈ H ×H, let

Max ≡ max (r1(h1), r2(h2) − k);

Min ≡ min (r1(h1), r2(h2) − k).

For (h′
1, h

′
2) ∈ H ×H, let

Max′ ≡ max(r1(h′
1), r2(h′

2) − k);

Min′ ≡ min (r1(h′
1), r2(h′

2) − k).

Then (h′
1, h

′
2)P k(h1, h2) if one of the following three cases holds:

1. Max > Max′;

2. Max = Max′ and Min > Min′;

3. Max = Max′, Min = Min′ and r1(h1) > r1(h′
1).

It is important to note that the definition of k-Lexi-Pairing rules assigns a strict preference

ordering P to every (r1, r2) ∈ R×R for each rule ψk, since the definition always specifies a strictly

preferred hospital pair from any two distinct hospital pairs (h1, h2) and (h′
1, h

′
2): if Max ̸= Max′

then case 1. applies, if Max = Max′ and Min ̸= Min′ then case 2. applies, and if Max = Max′ and

Min = Min′ then if both r1(h1) = r1(h′
1) and r2(h2) = r2(h′

2) then the two hospital pairs are the

same, and if r1(h1) = r2(h′
2), r2(h2) = r1(h′

1), and r1(h1) = r1(h′
1) then again the two hospital pairs

are the same. Hence, we must have r1(h1) = r2(h′
2), r2(h2) = r1(h′

1), and r1(h1) ̸= r1(h′
1) (what

we call symmetric opposites) and then case 3. applies. Moreover, transitivity of the preference

relation can also be verified easily, since both the > and the ⩾ relations are transitive on the set of

natural numbers.

There are q Lexi-Pairing rules in total, allowing a couple to choose from a range of q pairing rules

which connect the seemingly unrelated Rank-Based Leximin and Lexicographic rules. When k = 0

the k-Lexi-Pairing rule is the Rank-Based Leximin rule, when k = q − 1 it is the Lexicographic

rule, and all other Lexi-Pairing rules in-between are less extreme, where k represents the degree

of selfishness of doctor 1 (and the degree of altruism of doctor 2). When comparing two hospital
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pairs in the two doctors’ own respective preference rankings, k represents the willingness of doctor

1 to switch the order of the two hospital pairs in question when doctor 1 is relatively better off

than doctor 2 in terms of individual hospital rankings in the preferred hospital pair, so that doctor

1 would be worse off and her partner would be better off after switching. As k increases, doctor 1

is less and less willing to make this switch, which makes doctor 1 more selfish and doctor 2 more

altruistic. At the more symmetric end of the range, the Rank-Based Leximin rule is as fair between

the two partners as possible within this family of pairing rules. There is no completely symmetric

pairing rule in general, since in the case of symmetric opposites such as (1, 3) and (3, 1), one hospital

pair has to be ranked above the other in a strict joint preference ordering. The Rank-Based Leximin

pairing rule, as we defined it, always favors one partner over the other in such cases, but otherwise

it treats the two doctors symmetrically in terms of their individual preference rankings and the

asymmetric treatment between the two partners is minimal.

We present an example of Lexi-Pairing rules next. This example shows all four Lexi-Pairing

rules in terms of the rank numbers when there are four hospitals.

Example 2. Let q = 4. Then there are four Lexi-Pairing rules when doctor 1 is selfish,

corresponding to k ∈ {0, 1, 2, 3}. The top-ranked pair for all Lexi-Pairing rules (as noted before for

General Lexi-Pairing rules) is (1, 1) and the last-ranked pair is (4, 4). The second-ranked pair is

(1, 2) for each, but the third choice is (2, 1) when k = 0 (Rank-Based Leximin rule), and (1, 3) when

k = 3 (Lexicographic rule). For each parameter k Table 2 displays the joint preference ordering P k

when doctor 1 is selfish and doctor 2 is altruistic.

The family of k-Lexi-Pairing rules consists of efficient and consistent pairing rules, each of which

is uniquely described by the axioms of Strong Pareto, k-Compromise, and k-Threshold-Consistency.

We will state our main result next, which provides a characterization of each of the Lexi-Pairing

rules. The proof of the theorem is relegated to the Appendix.
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k = 0 k = 1 k = 2 k = 3

P 0

1, 1

1, 2

2, 1

2, 2

1, 3

3, 1

2, 3

3, 2

3, 3

1, 4

4, 1

2, 4

4, 2

3, 4

4, 3

4, 4

P 1

1, 1

1, 2

2, 1

1, 3

2, 2

2, 3

3, 1

1, 4

3, 2

2, 4

3, 3

3, 4

4, 1

4, 2

4, 3

4, 4

P 2

1, 1

1, 2

1, 3

2, 1

2, 2

1, 4

2, 3

2, 4

3, 1

3, 2

3, 3

3, 4

4, 1

4, 2

4, 3

4, 4

P 3

1, 1

1, 2

1, 3

1, 4

2, 1

2, 2

2, 3

2, 4

3, 1

3, 2

3, 3

3, 4

4, 1

4, 2

4, 3

4, 4

Table 3.2: Lexi-Pairing rules when q = 4

Theorem 2. (Characterizations of Lexi-Pairing rules)

Let k ∈ {0, ..., q − 1}. A pairing rule satisfies Strong Pareto, k-Compromise, and k-Threshold-

Consistency if and only if it is the k-Lexi-Pairing rule.

Now we verify whether the three axioms in the theorem are independent of each other for k ∈

{0, . . . , q − 1}. Strong Pareto pertains to the pairwise ranking of hospital pairs over which the

two doctors have no disagreement, while the other two axioms pertain to the pairwise ranking of

hospital pairs over which the two doctors disagree. Hence, Strong Pareto is independent of the

other two axioms, since comparisons when the partners are in agreement always need to be made.

Similarly, k-Compromise is independent of the other two axioms, since comparisons when agents

are not in agreement and their rank numbers do not tie always need to be made. However, it

47



turns out that k-Threshold-Consistency is not needed when k = q− 1. k-Threshold-Consistency is

used a lot when k is small, since the more symmetric treatment of the partners results in lots of

ties, but as k increases there are fewer instances where such ties occur. For instance, we can see

that in Example 1 there are 9 instances where the ranking of adjacent hospital pairs is determined

by 0-Threshold-Consistency in the Rank-Based Leximin ordering P 0, there are 6 such instances

in P 1 where 1-Threshold-Consistency is invoked, and only 2 instances in P 2 where 2-Threshold-

Consistency is needed to pin down the joint preference ordering. Finally, the Lexicographic rule

has zero such instances. This is always the case for the Lexicographic rule for an arbitrary number

of hospitals q, because r1(h′
1) = r2(h2) − k is never satisfied when k = q − 1, which can be seen

as follows. Given that r1(h1) < r1(h′
1), it follows that r1(h′

1) ⩾ 2, and since r2(h2) ⩽ q we have

r2(h2) − (q− 1) ⩽ 1. Thus, r1(h′
1) ̸= r2(h2) − (q− 1), and (q− 1)-Threshold-Consistency is satisfied

vacuously. It is clear, however, that r1(h′
1) = r2(h2) − k is possible for all k ∈ {1, . . . , q − 2}, so

k-Threshold-Consistency is only redundant for the Lexicographic rule and is needed for all the other

Lexi-Pairing rules, as it is independent of the other two axioms for any k less than q − 1. Since

preferences over hospital pairs are specified under each of these mutually exclusive scenarios by any

well-defined pairing rule for all k ∈ {1, . . . , q−2}, there is no redundant axiom in the corresponding

characterizations.

Below we state two corollaries of Theorem 2 which show the characterizations of the Rank-

Based Leximin and Lexicographic rules, providing alternative characterizations to Proposition 1 and

Theorem 1. Let Compromise be the special case of k-Compromise with k = 0, and let Threshold-

Consistency be the special case of k-Threshold-Consistency with k = 0. These axioms, which are

used to characterize the Rank-Based Leximin rule, are particularly simple.

Corollary 3. A pairing rule satisfies Strong Pareto, Compromise, and Threshold-Consistency if

and only if it is the Rank-Based Leximin rule.

Let Lexicographic-Compromise be the special case of k-Compromise with k = q− 1. Note that,

as shown above, for k = q−1 we have r1(h′
1) ⩾ 2 and r2(h2)−(q−1) ⩽ 1. Thus, r1(h′

1) > r2(h2)−k

always holds and Lexicographic-Compromise (which offers no compromise at all, as we will see)

can be stated simply as follows.

Lexicographic-Compromise. P satisfies Lexicographic-Compromise at (r1, r2) ∈ R×R if for all
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(h1, h2) and (h′
1, h

′
2) such that r1(h1) < r1(h′

1) and r2(h2) > r2(h′
2), (h1, h2)P (h′

1, h
′
2).

This axiom together with Strong Pareto renders the characterization of the Lexicographic rule,

stated below, straightforward.

Corollary 4. A pairing rule satisfies Strong Pareto and Lexicographic-Compromise if and only if

it is the Lexicographic rule.

3.7 Geographic Constraints and Preferences for Being Together

A couple would typically prefer hospital positions that are close to each other, and in this section

we explore the constraints that couples face when trying to find positions in the same geographic

area. The geographic constraints may be given by a partition of the set of hospitals H, where each

member represents a geographic area, or more generally we can use a graph, with the hospitals as

vertices and the edges representing the compatibility of two hospitals in terms of togetherness for

couples. It may be the case that hospitals h and h′ are close enough to each other, and hospitals h′

and h′′ are also close enough to each other, to be acceptable to couples to have positions at h and

h′ respectively, and also at h′ and h′′ respectively, but not at h and h′′, which would be deemed to

be too far from each other. Also, some hospitals may be close enough to an airport with a good

connection to some other airports, for example, and thus two hospitals near airports that are well

connected would be considered compatible for a couple, but different hospitals further away from the

airports in two different cities may not be considered compatible for a couple. We can summarize

the hospital compatibility information by a set G ⊂ H × H which consists of compatible hospital

pairs for couples (a set of ordered pairs of hospitals or, equivalently, a set of edges in the associated

directed graph), and denote the set of incompatible hospital pairs by Ḡ, where G ∩ Ḡ = ∅ and

G∪ Ḡ = H ×H. If (h, h′) ∈ G then getting positions at hospitals h and h′ respectively for a couple

is considered compatible in terms of geographic constraints, while if (h, h′′) ∈ Ḡ then positions at h

and h′′ for a couple are not considered compatible. This defines a binary relation over H, which is

assumed to be reflective (for all h ∈ H, (h, h) ∈ G) and symmetric (for all (h, h′) ∈ G, (h′, h) ∈ G

also holds). Note that transitivity, however, does not necessarily hold, as argued above.

Although couples may have their own subjective opinions about which hospital pairs are close

enough to be considered geographically compatible, for simplicity we take G to be a primitive of
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the model, and thus assume that any couple would deem the same hospital pairs compatible. Note

that all previous papers that study a couple’s preference for togetherness in the matching theory

literature assume, at least implicitly, that geographical constraints are exogenously given, and our

setup encompasses all different geographic considerations in the literature. One simple way is to

assume that couples only find two positions close enough to each other if they are at the same

hospital, as seen in Dutta and Massó (1997) [9] and Khare and Roy (2018) [20] . This is a very

specific case of our setup, where G is described by a partition of the set of hospitals into geographical

areas with a single hospital in each geographical area. Another special case of our setup is explored

by Cantala (2004) [7] and Sethuraman et al. (2018) [36] , where hospitals are partitioned into

regions and regions are assumed to have a common preference ranking by all couples.

We will introduce next two basic criteria that any paired preference ordering with geographic

considerations based on G, denoted by PG, should satisfy with respect to the paired preference

ordering P which does not account for geographic constraints. These axioms together are related

to the ’responsiveness violated for togetherness’ (RVT) condition of Khare and Roy (2018) [20] ,

but in their paper togetherness always means that the couple gets placed at the same hospital.

Geographic Invariance. Let P and PG be two paired preference orderings over H × H. PG

satisfies Geographic Invariance with respect to P if the following two conditions hold:

1. for all (h1, h2) ∈ G and (h′
1, h

′
2) ∈ G, (h1, h2)PG(h′

1, h
′
2) if and only if (h1, h2)P (h′

1, h
′
2);

2. for all (h1, h2) /∈ G and (h′
1, h

′
2) /∈ G, (h1, h2)PG(h′

1, h
′
2) if and only if (h1, h2)P (h′

1, h
′
2).

Given two pairing rules φ and φG, φG satisfies Geographic Invariance with respect to φ if for all

(r1, r2) ∈ R×R, φG(r1, r2) satisfies Geographic Invariance with respect to φ(r1, r2).

Geographic Invariance expresses that the only valid preference reversals compared to the original

paired preference ordering of the couple which does not take into account geographic preferences

are ones based on the geographic constraints given by G.

Togetherness. Let P and PG be two paired preference orderings over H × H. PG satisfies

Togetherness with respect to P if for all (h1, h2) ∈ G and (h′
1, h

′
2) /∈ G, if (h1, h2)P (h′

1, h
′
2) then

(h1, h2)PG(h′
1, h

′
2).
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Given two pairing rules φ and φG, φG satisfies Togetherness with respect to φ if for all (r1, r2) ∈

R×R, φG(r1, r2) satisfies Togetherness with respect to φ(r1, r2).

The axiom of Togetherness requires that if a hospital pair is ranked by P ahead of another

hospital pair, and the former pair is geographically compatible while the latter is not, then

the former pair be still preferred by PG to the latter, since the latter, due to the geographic

incompatibility of the two hospitals, should only be ranked lower, not higher, when the joint

preferences of the couple take into account geographic considerations.

Although G is not subject to a couple’s subjective preferences and is assumed to be exogenously

given, this doesn’t mean that couples have to have the same kind of preferences over the geographic

constraints. We allow couples to attribute different levels of importance to togetherness, and to

this end introduce a togetherness parameter, denoted by t, which captures the extent to which a

couple considers incompatible hospital pairs relatively less desirable when compared to compatible

hospital pairs. Specifically, we use modified “rank numbers” based on t, denoted by r̂i for doctor

i ∈ {1, 2}, instead of the original rank numbers ri. Although we still work with individual rank

numbers of hospitals r̂1 and r̂2, due to the geographic constraints these are no longer the actual

rank numbers of individual hospitals, instead, these are functions of a hospital pair, which allows

for taking into account the geographic compatibility of the hospitals. Introducing the togetherness

parameter t into k-Lexi-Pairing rules leads to the (k, t)-Couple-Lexi-Pairing rules as defined below.

Note that in this more general framework the Lexi-Pairing preference orderings no longer satisfy

responsiveness, as defined for couples by Khare et al. (2018), among others.

(k, t)-Couple-Lexi-Pairing rules ψ(k,t)

Fix k, t ∈ {0, ..., q − 1} and let (r1, r2) ∈ R×R.

Define r̂1 and r̂2 based on (r1, r2) as follows. Given t ∈ {0, . . . , q − 1}, for all (h1, h2) ∈ H ×H,

1. if (h1, h2) ∈ G then r̂1(h1, h2) = r1(h1) and r̂2(h1, h2) = r2(h2);

2. if (h1, h2) ∈ Ḡ then r̂1(h1, h2) = r1(h1)+ t+ϵ and r̂2(h1, h2) = r2(h2)+ t+ϵ, where 0 < ϵ < 1.

For (h1, h2) ∈ H ×H, let

Max ≡ max (r̂1(h1, h2), r̂2(h1, h2) − k);
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Min ≡ min (r̂1(h1, h2), r̂2(h1, h2) − k).

For (h′
1, h

′
2) ∈ H ×H, let

Max′ ≡ max(r̂1(h′
1, h

′
2), r̂2(h′

1, h
′
2) − k);

Min′ ≡ min (r̂1(h′
1, h

′
2), r̂2(h′

1, h
′
2) − k),

Let P (k,t) denote the paired preference ordering ψ(k,t)(r1, r2). Then (h′
1, h

′
2)P (k,t)(h1, h2) if one of

the following three cases holds:

1. Max > Max′;

2. Max = Max′ and Min > Min′;

3. Max = Max′, Min = Min′, and r̂1(h1, h2) > r̂1(h′
1, h

′
2).

Geographically incompatible hospital pairs are less preferred, since their respective rank numbers

are increased by t+ ϵ. Adding ϵ is needed to avoid potential ties in the rankings of hospital pairs,

and the incompatible hospital pair is defined to be less preferred in case of a tie. For example, if the

hospitals with original rank numbers (1, 3) are incompatible (i.e., not in G) and t = 2, then without

adding ϵ the rankings of these hospitals would become (3, 5), which is the same as a compatible

hospital pair (a hospital pair in G) that has the rank number pair (3, 5) originally, and this would

make these two hospital pairs indistinguishable when trying to rank them in the joint preferences.

As a tie-breaker, adding ϵ causes the geographically compatible hospital pair to be preferred by

both doctors to the geographically incompatible pair, but clearly this could be modified easily to

reflect a preference for the incompatible hospital pair by subtracting ϵ instead of adding it.

The togetherness parameter t ∈ {0, . . . , q − 1} expresses the preferences of a couple to obtain

compatible positions in terms of geographic constraints. If t = 0 then the couple does not care

about being together and the paired preference ordering is unchanged (since ϵ < 1), regardless

of G. At the other extreme, if t = q − 1 then each compatible pair of hospitals is preferred to

each non-compatible pair of hospitals, while leaving all the other preference orderings unchanged.

There are other cases between these two extremes which may more realistically depict a couple’s

preferences than either extremes, and the parameter t allows to systematically and consistently

reduce the ranking of incompatible hospital pairs, while keeping other preference orderings the
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same. A higher value of t indicates that the couple finds it more important to find geographically

compatible jobs, but note that the preference ordering may not necessarily change when the value

of t changes, depending on the original preferences and on G.

It should be clear that 1 ⩽ r̂i ⩽ q + t + ϵ and need not be natural numbers. While these are

unusual “rank numbers,” they allow us to simply apply the method of the Lexi-Pairing rules to

these modified rank numbers which are based on G and the parameter t, expressing the couple’s

preference for togetherness.

Example 3. Let H = {a, b, c, d}. Since q = 4, there are four Lexi-Pairing rules when doctor 1

is selfish, as shown in Example 2. Let doctor 1’s individual preference ordering over hospitals be

(a, b, c, d), where r1(a) = 1, r1(b) = 2, and so on. Let doctor 2’s individual preference ordering

over hospitals be (a, c, d, b), where r2(a) = 1, r2(c) = 2, and so on. Assume also that hospitals

a and b are in one geographic area, and hospitals c and d are in a different geographic area.

Therefore, G = {(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d)}, where the first hospital is doctor

1’s assigned hospital, and the second hospital is doctor 2’s assigned hospital. Let the togetherness

parameter be t = 1. Table 3 shows the k-Lexi-Pairing ordering for the given preferences favoring

doctor 1 in the first column, denoted by P k, and the (k, 1)-Couple-Lexi-Pairing ordering for the

given preferences favoring doctor 1 in the second column, denoted by P (k,1). The geographically

incompatible hospital pairs are indicated in bold letters.
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k = 0 k = 1 k = 2 k = 3

P 0 P (0,1)

a, a a, a

a, c b, a

b, a a, c

b, c c, c

a, d c, d

c, a b, c

b, d a, b

c, c b, b

c, d a, d

a, b d, c

d, a c, a

b, b b, d

d, c d, d

c, b d, a

d, d c, b

d, b d, b

P 1 P (1,1)

a, a a, a

a, c b, a

b, a a, c

a, d a, b

b, c c, c

b, d b, b

c, a a, d

a, b c, d

c, c b, c

b, b b, d

c, d d, c

c, b c, a

d, a d, d

d, c c, b

d, d d, a

d, b d, b

P 2 P (2,1)

a, a a, a

a, c b, a

a, d a, b

b, a a, c

b, c b, b

a, b a, d

b, d c, c

b, b c, d

c, a b, c

c, c b, d

c, d d, c

c, b c, a

d, a d, d

d, c c, b

d, d d, a

d, b d, b

P 3 P (3,1)

a, a a, a

a, c a, b

a, d b, a

a, b a, c

b, a b, b

b, c a, d

b, d c, c

b, b c, d

c, a b, c

c, c b, d

c, d d, c

c, b c, a

d, a d, d

d, c c, b

d, d d, a

d, b d, b

Table 3.3: Couple-Lexi-Pairing orderings when q = 4 and t = 1

Now we modify the axioms that characterize the Lexi-Pairing rules, so that they reflect the

preferences of couples for being together, given the geographic constraints represented by G. For

each of the three axioms below and for each (r1, r2) ∈ R×R, define r̂t
1 and r̂t

2 as a function of t, as

before. Thus, for all t ∈ {0, . . . , q − 1}:

1. if (h1, h2) ∈ G then r̂t
1(h1, h2) = r1(h1) and r̂t

2(h1, h2) = r2(h2);

2. if (h1, h2) ∈ Ḡ then r̂t
1(h1, h2) = r1(h1)+ t+ϵ and r̂t

2(h1, h2) = r2(h2)+ t+ϵ, where 0 < ϵ < 1.

t-Strong Pareto (Strong Pareto with t-togetherness). Given t ∈ {0, . . . , q − 1}, P satisfies t-

Strong Pareto at (r1, r2) ∈ R × R if, for all (h1, h2) and (h′
1, h

′
2) such that r̂t

1(h1, h2) ⩾ r̂t
1(h′

1, h
′
2)
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and r̂t
2(h1, h2) ⩾ r̂t

2(h′
1, h

′
2) with at least one strict inequality, (h′

1, h
′
2)P (h1, h2).

(k, t)-Compromise (k-Compromise with t-togetherness). Given k, t ∈ {0, . . . , q − 1}, P satisfies

(k, t)-Compromise at (r1, r2) ∈ R×R if for all (h1, h2) and (h′
1, h

′
2) such that r̂t

1(h1, h2) < r̂t
1(h′

1, h
′
2)

and r̂t
2(h1, h2) > r̂t

2(h′
1, h

′
2) :

1. r̂t
2(h′

1, h
′
2) < r̂t

1(h1, h2) − k implies that (h′
1, h

′
2)P (h1, h2), and

2. r̂t
2(h′

1, h
′
2) > r̂t

1(h1, h2) − k implies that (h1, h2)P (h′
1, h

′
2).

(k, t)-Threshold-Consistency (k-Threshold-Consistency with t-togetherness). Given k, t ∈

{0, . . . , q − 1}, P satisfies (k, t)-Threshold-Consistency at (r1, r2) ∈ R × R if for all (h1, h2) and

(h′
1, h

′
2) such that r̂t

1(h1, h2) < r̂t
1(h′

1, h
′
2), r̂t

2(h1, h2) > r̂t
2(h′

1, h
′
2) and r̂t

1(h′
1, h

′
2) = r̂t

2(h1, h2) − k,

(h′
1, h

′
2)P (h1, h2) if and only if r̂t

1(h1, h2) > r̂t
2(h′

1, h
′
2) − k.

Each of the above axioms, given a fixed togetherness parameter t ∈ {1, . . . , q − 1} and G, is

defined for a specific pair of individual rankings (r1, r2), and we will say that a pairing rule φ

satisfies an axiom if for all (r1, r2) ∈ R × R, the paired ranking φ(r1, r2) satisfies the axiom at

(r1, r2).

Proposition 4. (Properties of Couple-Lexi-Pairing rules)

Let k ∈ {0, . . . , q − 1}.

1. For all t ∈ {0, . . . , q − 1}, a pairing rule satisfies t-Strong Pareto, (k, t)-Compromise, and

(k, t)-Threshold-Consistency if and only if it is the (k, t)-Couple-Lexi-Pairing rule.

2. For all t, t̄ ∈ {0, . . . , q−1}, the (k, t)-Couple-Lexi-Pairing rule satisfies Geographic Invariance

with respect to the (k, t̄)-Couple-Lexi-Pairing rule.

3. For all t, t̄ ∈ {0, . . . , q − 1} such that t < t̄, the (k, t̄)-Couple-Lexi-Pairing rule satisfies

Togetherness with respect to the (k, t)-Couple-Lexi-Pairing rule.

Proof.

1. Characterization. This is a straightforward extension of the characterization in Theorem 2,

since it can be seen easily that the proof of Theorem 2 holds for any pair of rank numbers
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associated with paired hospital positions, and need not be the rank numbers of individual

hospital positions, as in Theorem 2. Although the modified r̂i(h1, h2) rank numbers for

i ∈ {1, 2} may not be natural numbers, the proof of Theorem 2 still holds with the modified

rank numbers as long as no two distinct hospital pairs have identical rank numbers. This

condition is automatically satisfied when the rank numbers are simply the individual hospital

ranks in the two respective individual preference orderings, but when more general rank

numbers are allowed such a tie may occur, which would make it impossible to distinguish

between the two hospital pairs with the same rank numbers for both hospital positions.

However, given that such ties cannot exist if the original individual rank numbers ri(hi) of

hospitals are used, a tie could only occur between a hospital pair (h1, h2) ∈ G and (h′
1, h

′
2) /∈ G,

and only when a given fixed t ∈ {0, . . . , q − 1} is added to the ranking of the incompatible

hospitals h′
1 and h′

2. Therefore, ties are prevented by the addition of ϵ to the rank numbers

of h′
1 and h′

2 and we can apply the proof of Theorem 2 to obtain this characterization result.

2. Geographic Invariance. Fix (r1, r2) ∈ R × R and let P (k,t) denote ψ(k,t)(r1, r2), where

ψ(k,t) is the (k, t)-Couple-Lexi-Pairing rule, and let P (k,t̄) denote ψ(k,t̄)(r1, r2), where ψ(k,t̄)

is the (k, t̄)-Couple-Lexi-Pairing rule. If (h1, h2) ∈ G and (h′
1, h

′
2) ∈ G then r̂t

1(h1, h2) =

r1(h1), r̂t
2(h1, h2) = r2(h2), r̂t

1(h′
1, h

′
2) = r1(h′

1), r̂t
2(h′

1, h
′
2) = r2(h′

2), r̂t̄
1(h1, h2) = r1(h1),

r̂t̄
2(h1, h2) = r2(h2), r̂t̄

1(h′
1, h

′
2) = r1(h′

1), and r̂t̄
2(h′

1, h
′
2) = r2(h′

2). Thus, (h1, h2)P (k,t̄)(h′
1, h

′
2)

if and only if (h1, h2)P (k,t)(h′
1, h

′
2). If (h1, h2) /∈ G and (h′

1, h
′
2) /∈ G then r̂t

1(h1, h2) =

r1(h1)+ t+ ϵ, r̂t
2(h1, h2) = r2(h2)+ t+ ϵ, r̂t

1(h′
1, h

′
2) = r1(h′

1)+ t+ ϵ, r̂t
2(h′

1, h
′
2) = r2(h′

2)+ t+ ϵ,

r̂t̄
1(h1, h2) = r1(h1) + t̄ + ϵ, r̂t̄

2(h1, h2) = r2(h2) + t̄ + ϵ, r̂t̄
1(h′

1, h
′
2) = r1(h′

1) + t̄ + ϵ, and

r̂t̄
2(h′

1, h
′
2) = r2(h′

2) + t̄+ ϵ, where 0 < ϵ < 1. Since adding a constant preserves the Max, the

Min and the rank comparisons, (h1, h2)P (k,t̄)(h′
1, h

′
2) if and only if (h1, h2)P (k,t)(h′

1, h
′
2).

3. Togetherness. Fix (r1, r2) ∈ R × R and let P (k,t) denote ψ(k,t)(r1, r2), where ψ(k,t) is the

(k, t)-Couple-Lexi-Pairing rule, and let let P (k,t̄) denote ψ(k,t̄)(r1, r2), where ψ(k,t̄) is the (k, t̄)-

Couple-Lexi-Pairing rule and t < t̄. If (h1, h2) ∈ G and (h′
1, h

′
2) /∈ G then r̂t

1(h1, h2) = r1(h1),

r̂t
2(h1, h2) = r2(h2), r̂t

1(h′
1, h

′
2) = r1(h′

1) + t + ϵ and r̂t
2(h′

1, h
′
2) = r2(h′

2) + t + ϵ, r̂t̄
1(h1, h2) =

r1(h1), r̂t̄
2(h1, h2) = r2(h2), r̂t̄

1(h′
1, h

′
2) = r1(h′

1) + t̄+ ϵ and r̂t̄
2(h′

1, h
′
2) = r2(h′

2) + t̄+ ϵ, where

0 < ϵ < 1. Thus, given the definition of (k, t)-Couple-Lexi-Pairing rules, it is straightforward
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to check that if (h1, h2)P (k,t)(h′
1, h

′
2) then (h1, h2)P (k,t̄)(h′

1, h
′
2).

3.8 Concluding Remarks

Apart from (k, t)-Couple-Lexi-Pairing rules, there are other natural ways to define preference

aggregation rules for couples who take into account geographic constraints. We propose the Lexi-

Pairing rules which have appealing efficiency and fairness properties and are very consistent in terms

of the compromises made between the two partners. Geographic preferences may also be defined

differently. For example, we could let couples leave top-ranked hospital pairs where they originally

are in the joint preference ordering and only reduce the joint ranking of individually lower-ranked

hospital pairs, expressing that a couple is less willing to sacrifice their individual hospital choices

if they can get very highly preferred hospitals, even when these hospitals are not in the same

geographic area. Our setup could also allow the two partners to use two different t-parameters

which are added to the rank numbers of incompatible hospital pairs, expressing that one partner

may value togetherness more than the other (although this could lead to divorce). Thus, if t1 > t2

then doctor 1 values togetherness more than doctor 2, and vice versa.

While there are many ways to aggregate couples’ individual preferences over pairs of jobs, our

intention was to propose and study specific intuitively appealing aggregation methods. According

to our proposed family of rules, if a couple is not sure about how to rank the job pairs but know their

individual rankings over jobs, the two partners would only need to negotiate about the compromise

parameter k and agree on their preferences over the level of togetherness to determine parameter t.

While this imposes constraints on the couple’s joint preference choices, the proposed Couple-Lexi-

Pairing rules offer a simple way to generate systematically aggregated paired preference rankings,

and the preference aggregation choices are clarified by their properties that are shown in this paper.

It is also important to note that the proposed (k, t)-Couple-Lexi-Pairing rules are informationally

simple when considering a couple’s reported preferences as an input to a centralized matching

system. When submitting the preferences of the couple to a clearing house such as the NRMP, a

couple would not need to report an entire preference ordering over hospital pairs, which may be

cumbersome and could lead to listing fewer hospital pairs than acceptable to the couple. Rather,

they would report their individual rankings over hospitals, just like any single applicant, and in

57



addition they would only need to report two parameters: k, to specify their joint compromise over

individual rankings, and t, to indicate their joint preference for geographic proximity. Furthermore,

the design of the matching mechanism may be able to exploit the simple structure and clarity of

couples’ preferences and produce more desirable outcomes for matching markets with couples.

Appendix

Proof of Theorem 1

Claim 1.1. The Rank-Based Leximin rule satisfies Limited Equity.

Proof. Fix (r1, r2) ∈ R × R and let P denote φ(r1, r2), where φ is the Rank-Based Leximin Rule.

Let (h1, h2) and (h′
1, h

′
2) be such that there is no dominance relation between them and g > g′. We

will show that then (h′
1, h

′
2)P (h1, h2).

Case 1: Max > Max′.

Then (h′
1, h

′
2)P (h1, h2).

Case 2: Max < Max′

Since g > g′, we must have Min < Min′. This implies that (h1, h2) dominates (h′
1, h

′
2), which is a

contradiction.

Case 3: Max = Max′

Then if Min′ ̸= Min there is a dominance relation between (h1, h2) and (h′
1, h

′
2), and thus Min =

Min′. This implies that g = g′, which is a contradiction.

Claim 1.2. The Rank-Based Leximin rule satisfies Cross-Dominance.

Proof. Fix (r1, r2) ∈ R×R and let P denote φ(r1, r2), where φ is the Rank-Based Leximin Rule. Let

(h1, h2) and (h′
1, h

′
2) be such that r1(h1) ⩾ r2(h′

2) and r2(h2) ⩾ r1(h′
1) with at least on inequality.

We will show that then (h′
1, h

′
2)P (h1, h2).

Case 1: Max > Max′

Then (h′
1, h

′
2)P (h1, h2).

Case 2: Max < Max′

Subcase 2.1: If Max′ = r1(h′
1) then, since r2(h2) ⩾ r1(h′

1), Max = r1(h1) and r2(h2) ⩾ r1(h′
1) >
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r1(h1). Thus, Max = r2(h2), which is a contradiction.

Subcase 2.2: If Max′ = r2(h′
2) then, since r1(h1) ⩾ r2(h′

2), Max = r2(h2) and r1(h1) ⩾ r2(h′
2) >

r2(h2). Thus, Max = r1(h1), which is a contradiction.

Case 3: Max = Max′

If Min > Min′ then (h′
1, h

′
2)P (h1, h2). Assume that Min ⩽ Min′.

Subcase 3.1: If Min = r1(h1) then either a) r1(h1) = r2(h′
2) and Min′ = r2(h′

2) or b) Min′ = r1(h′
1).

If a) holds then r2(h2) > r1(h′
1) and then Max′ ⩾ Min′ implies r2(h2) > r1(h′

1) ⩾ r2(h′
2) = r1(h1).

Then Max = r2(h2) ̸= Max′, which is a contradiction. Thus, b) holds. Therefore, Min′ = r1(h′
1)

and r1(h′
1) ⩾ r1(h1) ⩾ r2(h′

2). Thus, Min′ = r2(h′
2). Since Min′ = r1(h′

1), r2(h2) ⩾ r1(h′
1) =

r1(h1) = r2(h′
2). Then r2(h2) > r1(h′

1). However, this contradicts Max = Max′.

Subcase 3.2: If Min = r2(h2) then either a) r2(h2) = r1(h′
1) and Min′ = r1(h′

1) or b) Min′ = r2(h′
2).

If a) holds then r1(h1) > r2(h′
2) and then Max′ ⩾ Min′ implies r1(h1) > r2(h′

2) ⩾ r1(h′
1) = r2(h2).

Then Max = r1(h1) ̸= Max′, which is a contradiction. Thus, b) holds. Therefore, Min′ = r2(h′
2)

and r2(h′
2) ⩾ r2(h2) ⩾ r1(h′

1). Thus, Min′ = r1(h′
1). Since Min′ = r2(h′

2), r1(h1) ⩾ r2(h′
2) =

r2(h2) = r1(h′
1). Then r1(h1) > r2(h′

2). However, this contradicts Max = Max′.

Claim 1.3. If a pairing rule satisfies Strong Pareto, Cross-Dominance and Limited Equity, then

it is the Rank-Based Leximin rule.

Proof. Fix (r1, r2) ∈ R × R and let P denote φ(r1, r2), where φ satisfies Strong Pareto, Cross-

Dominance and Limited Equity. Let (h1, h2) and (h′
1, h

′
2) be two distinct hospital pairs.

If Max = Max′ and Min > Min′, (h′
1, h

′
2) dominates (h1, h2). Then Dominance implies that

(h′
1, h

′
2)P (h1, h2).

If Max = Max′ and Min = Min′ then, given that (h1, h2) ̸= (h′
1, h

′
2), we have symmetric

opposites: r1(h1) = r2(h′
2), r2(h2) = r1(h′

1) and r1(h1) ̸= r1(h′
1). Then, if r1(h1) > r1(h′

1) then

(h′
1, h

′
2)P (h1, h2) by convention.

If Max > Max′, we consider three cases regarding
∑︁

and
∑︁′. Note first that Max = Min

+g =
∑︁

− Min, and hence 2Max =
∑︁

+g. Similarly, 2Max′ =
∑︁′ +g′. Thus Max > Max′ if and

only if
∑︁

+g >
∑︁′ +g′.

Case 1:
∑︁

=
∑︁′

Then
∑︁

+g >
∑︁′ +g′ implies g > g′, and thus (h′

1, h
′
2)P (h1, h2) by Equal-Sum Equity.
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Case 2:
∑︁
>

∑︁′

Let (h̃1, h̃2) be such that M̃ax = Max′ + 1 and M̃in =
∑︁

− Max′ − 1. Note that M̃in is feasible,

since Min′ ⩾ 1,
∑︁′ ⩾ Max′ + 1 and thus

∑︁
>

∑︁′ implies that
∑︁
> Max′ + 1, and hence M̃in > 0.

Observe that
∑̃︁

=
∑︁

. We will show next that g̃ ⩽ g. Given that Max′ < Max, Max′ + 1 ⩽ Max.

Then 2Max′ + 2 ⩽ 2Max = Max − Min + Max + Min. This means that 2Max′ + 2 −
∑︁

⩽ Max −

Min, which is equivalent to g̃ ⩽ g, since g̃ = M̃ax−M̃in = Max′ +1−
∑︁

+ Max′ +1 = 2Max′ +2−
∑︁

and g = Max − Min.

Now note that Max′ < M̃ax. We will show that Min′ ⩽ M̃in. Since
∑︁
>

∑︁′,
∑︁′ +1 ⩽

∑︁
. Thus,

Min′+ Max′ + 1 ⩽
∑︁

and Min′ ⩽
∑︁

− Max′ − 1 = M̃in. Therefore, (h′
1, h

′
2) dominates (h̃1, h̃2) and

Dominance implies that (h′
1, h

′
2)P (h̃1, h̃2).

If g̃ < g then, given that
∑̃︁

=
∑︁

, Equal-Sum Equity implies (h̃1, h̃2)P (h1, h2). If g̃ = g,

either (h̃1, h̃2) = (h1, h2) or (h̃1, h̃2) and (h1, h2) are symmetric opposites. Since (h′
1, h

′
2) dominates

(h̃1, h̃2), it follows that in both cases (h′
1, h

′
2) dominates (h1, h2), and therefore (h′

1, h
′
2)P (h1, h2) by

Dominance.

Case 3:
∑︁
<

∑︁′

Given that
∑︁

<
∑︁′ , (h′

1, h
′
2) does not dominate (h1, h2). Since Max > Max′, (h1, h2) does not

dominate (h′
1, h

′
2). Now note that

∑︁
+g >

∑︁′ +g′ implies that g > g′. Thus, given that there is no

dominance relation between (h1, h2) and (h′
1, h

′
2), Limited Equity implies that (h′

1, h
′
2)P (h1, h2).

Finally, note that it follows from Claim 2.1 below that the Rank-Based Leximin rule satisfies

Strong Pareto (the k = 0 case in Claim 2.1). Together with this result, Claims 1.1, 1.2, and 1.3

prove Theorem 1.

Proof of Theorem 2

Claim 2.1. For all k ∈ {0, ..., q − 1} the k-Lexi-Pairing rule ψk satisfies Strong Pareto.

Proof. Let k ∈ {0, ..., q − 1}. Fix (r1, r2) ∈ R × R and let P k denote ψk(r1, r2). Let (h1, h2) and

(h′
1, h

′
2) satisfy r1(h1) ⩾ r1(h′

1) and r2(h2) ⩾ r2(h′
2), with at least one strict inequality. We need to

show that (h′
1, h

′
2)P k(h1, h2).

Case 1. r1(h1) > r1(h′
1) and r2(h2) > r2(h′

2)

Subcase 1.1: If r1(h1) ⩾ r2(h2) − k then Max = r1(h1) > r1(h′
1), and Max > r2(h′

2) − k. Thus,
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Max > Max′.

Subcase 1.2: If r1(h1) < r2(h2)−k then Max = r2(h2)−k > r1(h1) > r1(h′
1), and Max> r2(h′

2)−k.

Thus, Max > Max′.

Case 2. r1(h1) = r1(h′
1) and r2(h2) > r2(h′

2)

Subcase 2.1: If r1(h1) ⩾ r2(h2) − k, then Max = r1(h1) = r1(h′
1) and Max > r2(h′

2) − k. Thus,

Max′ = r1(h′
1) and Max = Max′. Furthermore, Min = r2(h2) − k, Min > r2(h′

2) − k, and since

Max′ = r1(h′
1), Min′ = r2(h′

2) − k. Thus, Min > Min′.

Subcase 2.2: If r1(h1) < r2(h2) − k then Max = r2(h2) − k, Max > r2(h′
2) − k > r1(h1) = r1(h′

1).

Thus, Max > Max′.

Case 3. r1(h1) > r1(h′
1) and r2(h2) = r2(h′

2)

Subcase 3.1: If r1(h1) > r2(h2) − k then Max = r1(h1) > r1(h′
1), and Max > r2(h′

2) − k. Thus,

Max > Max′.

Subcase 3.2: If r1(h1) ⩽ r2(h2) − k then Max = r2(h2) − k = r2(h′
2) − k ⩾ r1(h1) > r1(h′

1). Thus,

Max = Max′. Then, Min = r1(h1) and Min > r1(h′
1), which implies that Min > Min′.

Therefore, (h′
1, h

′
2)P k(h1, h2) in each case. Since this holds for all (r1, r2) ∈ R × R, for all

k ∈ {0, . . . , q − 1}, the k-Lexi-Pairing rule satisfies Strong Pareto.

Claim 2.2. For all k ∈ {0, . . . , q − 1}, the k-Lexi-Pairing rule satisfies k-Compromise.

Proof. Let k ∈ {0, . . . , q − 1}. Fix (r1, r2) ∈ R × R and let P k denote ψk(r1, r2). Let (h1, h2) and

(h′
1, h

′
2) satisfy r1(h1) < r1(h′

1) and r2(h2) > r2(h′
2).

Case 1: We will show that r1(h′
1) < r2(h2) − k implies (h′

1, h
′
2)P k(h1, h2).

Note first that r2(h2) − k > r1(h′
1) > r1(h1) and thus Max = r2(h2) − k.

Subcase 2.1: If Max′ = r1(h′
1) then r2(h2) − k > r1(h′

1) implies Max > Max′.

Subcase 2.2: If Max′ = r2(h′
2) − k then r2(h2) > r2(h′

2) implies Max > Max′.

Hence, (h′
1, h

′
2)P k(h1, h2) in both subcases.

Case 2: We will show that r1(h′
1) > r2(h2) − k implies (h1, h2)P k(h′

1, h
′
2).

Note first that r1(h′
1) + k > r2(h2) > r2(h′

2) and thus Max′ = r1(h′
1).

Subcase 1.1: If Max = r1(h1) then r1(h1) < r1(h′
1) implies Max < Max′.

Subcase 1.2: If Max = r2(h2) − k then r2(h2) − k < r1(h′
1) implies Max < Max′.

Hence, (h1, h2)P k(h′
1, h

′
2) in both subcases.
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Therefore, k-Compromise is satisfied in each case. Since this holds for all (r1, r2) ∈ R × R, for

all k ∈ {0, . . . , q − 1}, the k-Lexi-Pairing rule satisfies k-Compromise.

Claim 2.3. For all k ∈ {0, . . . , q − 1}, the k-Lexi Pairing rule satisfies k-Threshold-Consistency.

Proof. Let k ∈ {0, ..., q − 1}. Fix (r1, r2) ∈ R × R and let P k denote ψk(r1, r2). Let (h1, h2) and

(h′
1, h

′
2) satisfy r1(h1) < r1(h′

1), r2(h2) > r2(h′
2) and r1(h′

1) = r2(h2) − k.

Then r1(h1) < r1(h′
1) = r2(h2) − k and thus Max = r2(h2) − k. Also, r1(h′

1) = r2(h2) − k >

r2(h′
2) − k and thus Max′ = r1(h′

1). Therefore, Max = Max′. Moreover, Min = r1(h1) and

Min′ = r2(h′
2) − k. .

Case 1: r1(h1) > r2(h′
2) − k

Then Min > Min′ and (h′
1, h

′
2)P k(h1, h2).

Case 2: r1(h1) < r2(h′
2) − k

Then Min < Min′ and (h1, h2)P k(h′
1, h

′
2).

Case 3: r1(h1) = r2(h′
2) − k

Then Min = Min′ and, since r1(h1) < r1(h′
1), (h1, h2)P k(h′

1, h
′
2).

Therefore, k-Threshold-Consistency is satisfied in each case. Since this holds for all (r1, r2) ∈

R×R, for all k ∈ {0, . . . , q − 1}, the k-Lexi-Pairing rule satisfies k-Threshold-Consistency.

Claim 2.4. Let k ∈ {0, . . . , q − 1}. If a pairing rule satisfies Strong Pareto, k-Compromise, and

k-Threshold-Consistency then it is the k-Lexi-Pairing rule.

Proof. Let k ∈ {0, . . . , q − 1} and let (h1, h2), (h′
1, h

′
2) ∈ H × H such that (h1, h2) ̸= (h′

1, h
′
2). Let

Max, Min, Max′ and Min′ be defined as before. We consider four scenarios (I-IV) depending on

the values these take.

I. Max = r1(h1), Min = r2(h2) − k, Max′ = r1(h′
1), Min′ = r2(h′

2) − k

Case 1: Let Max > Max′. Then r1(h1) > r1(h′
1).

Subcase 1.1: If r2(h2) ⩾ r2(h′
2) then (h′

1, h
′
2)P1(h1, h2) by Strong Pareto.

Subcase 1.2: If r2(h2) < r2(h′
2) then, since Max′ ⩾ Min′ implies r1(h′

1) ⩾ r2(h′
2) − k, we have

r1(h1) > r2(h′
2) − k. Thus, (h′

1, h
′
2)P1(h1, h2) by k-Compromise.

Case 2: Let Max = Max′ and Min > Min′. Then r1(h1) = r1(h′
1) and r2(h2) > r2(h′

2). Then

(h′
1, h

′
2)P1(h1, h2) by Strong Pareto.
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Case 3: Let Max = Max′ and Min = Min′. Then r1(h1) = r1(h′
1) and r2(h2) = r2(h′

2). Thus,

(h1, h2) = (h′
1, h

′
2), which is ruled out.

II. Max = r2(h2) − k, Min = r1(h1), Max′ = r2(h′
2) − k, Min′ = r1(h′

1)

Case 1: Let Max > Max′. Then r2(h2) > r2(h′
2).

Subcase 1.1: If r1(h1) ⩾ r1(h′
1) then (h′

1, h
′
2)P1(h1, h2) by Strong Pareto.

Subcase 1.2: If r1(h1) < r1(h′
1) then, since Max′ ⩾ Min′ implies r2(h′

2) − k ⩾ r1(h′
1), which means

r2(h′
2) ⩾ r1(h′

1) + k, we have r2(h2) > r1(h′
1) + k. Thus, r1(h′

1) < r2(h2) − k and (h′
1, h

′
2)P1(h1, h2)

by k-Compromise.

Case 2: Let Max = Max′ and Min > Min′. Then r2(h2) = r2(h′
2) and r1(h1) > r1(h′

1). Then

(h′
1, h

′
2)P1(h1, h2) by Strong Pareto.

Case 3: Let Max = Max′ and Min = Min′. Then r2(h2) = r2(h′
2) and r1(h1) = r1(h′

1). Thus,

(h1, h2) = (h′
1, h

′
2), which is ruled out.

III. Max = r2(h2) − k, Min = r1(h1), Max′ = r1(h′
1), Min′ = r2(h′

2) − k

Case 1: Let Max > Max′. Then Max > Max′ ⩾ Min′ and thus r2(h2) > r2(h′
2).

Subcase 1.1: If r1(h1) ⩾ r1(h′
1) then (h′

1, h
′
2)P (h1, h2) by Strong Pareto.

Subcase 1.2: If r1(h1) < r1(h′
1) then, since Max > Max′, r2(h2) − k > r1(h′

1) and thus

(h′
1, h

′
2)P (h1, h2) by k-Compromise.

Case 2: Let Max = Max′ and Min > Min′. Then Max ⩾ Min >Min′ and thus r2(h2) > r2(h′
2).

Subcase 2.1: If r1(h1) ⩾ r1(h′
1) then (h′

1, h
′
2)P (h1, h2) by Strong Pareto.

Subcase 2.2: If r1(h1) < r1(h′
1), Max = Max′ implies r2(h2) − k = r1(h′

1), and Min > Min′ implies

r1(h1) > r2(h′
2) − k, and thus (h′

1, h
′
2)P (h1, h2) by k-Threshold-Consistency.

Case 3: Let Max = Max′ and Min = Min′. Suppose that Max′ = Min′. Then (h1, h2) = (h′
1, h

′
2),

which is ruled out. Thus Max′ > Min′ = Min and r1(h′
1) > r1(h1). Also, Max > Min′ and thus

r2(h2) > r2(h′
2). Moreover, Max = Max′ implies r1(h′

1) = r2(h2) − k and Min = Min′ implies

r1(h1) = r2(h′
2) − k. Thus, (h1, h2)P (h′

1, h
′
2) by k-Threshold-Consistency.

IV. Max = r1(h1), Min = r2(h2) − k, Max′ = r2(h′
2) − k, Min′ = r1(h′

1)

Case 1: Let Max > Max′. Then Max > Min′ and thus r1(h1) > r1(h′
1).

Subcase 1.1: If r2(h2) ⩾ r2(h′
2) then (h′

1, h
′
2)P (h1, h2) by Strong Pareto.
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Subcase 1.2: If r2(h2) < r2(h′
2) then, since Max > Max′, r1(h1) > r2(h′

2) − k and thus

(h′
1, h

′
2)P (h1, h2) by k-Compromise.

Case 2: Let Max = Max′ and Min > Min′. Then Max > Min′ and thus r1(h1) > r1(h′
1).

Subcase 2.1: If r2(h2) ⩾ r2(h′
2) then (h′

1, h
′
2)P (h1, h2) by Strong Pareto.

Subcase 2.2: If r2(h2) < r2(h2), Max = Max′ implies r1(h1) = r2(h′
2) − k, and Min > Min′ implies

r2(h2) − k > r1(h′
1), and thus (h′

1, h
′
2)P (h1, h2) by k-Threshold-Consistency.

Case 3: Let Max = Max′ and Min = Min′. Suppose that Max′ = Min′. Then (h1, h2) = (h′
1, h

′
2),

which is ruled out. Thus Max′ > Min′ = Min and r2(h′
2) > r2(h2). Also, Max > Min′ and thus

r1(h1) > r1(h′
1). Moreover, Max = Max′ implies r1(h1) = r2(h′

2) − k and Min = Min′ implies

r1(h′
1) = r2(h2) − k. Thus, (h′

1, h
′
2)P (h1, h2) by k-Threshold-Consistency.

Claims 2.1, 2.2, 2.3 and 2.4 together prove Theorem 2.
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Chapter 4

Matching Couples in the Labour

Market

4.1 Introduction

After finishing medical school, doctors in the United States, Canada and the UK, among many

other countries, are required to take up medical residency positions in hospitals. The NRMP

(National Resident Matching Program) in the Unites States has been much studied as one of the

applications of matching theory, and other examples of matching problems of university graduates

to entry-level positions in labour markets are also well-known, such as the assignment of law clerks

and the allocation of traineeships to teachers in different countries. The matching problem in such

centralized labour markets is further complicated by the presence of couples in the same market.

Couples often wish to coordinate their assigned positions in order to stay in the same geographical

area, which means that their preferences exhibit complementarities.

The algorithm that was successfully used by the NRMP since 1952 suffered a crisis of confidence

in the 1990’s, since it used the hospital-proposing Deferred Acceptance algorithm (Gale and Shapley,

1962 [11]) which favored hospitals at the expense of the medical doctors and was manipulable by

doctors. Moreover, with the increase of women in the medical profession, the quickly growing

number of couples in the NRMP match also contributed to this breakdown of the centralized system,

as the existence of stable matchings in a market with couples cannot be guaranteed (Roth, 1984
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[32] ; Cantala, 2004 [7]; Klaus and Klijn, 2005 [22] ; Hatfield and Kominers, 2017 [14]), and couples

were forced to find jobs outside the centralized residency match. Subsequently, Roth and Peranson

redesigned the NRMP matching algorithm in the mid 1990’s and the new mechanism, the Applicant

Proposing Algorithm which is still used today, enables couples to submit their preferences jointly

Roth and Peranson (1999) [34]. The new design also involved switching to the doctor-proposing

Deferred Acceptance algorithm, and it tried to reduce the effects of the stability and incentive issues

that seem to be inevitable in markets with couples. Although Roth and Peranson (1999) [34] shows,

by way of simulations, that their mechanism works well in practice and frequently finds a stable

matching in the NRMP, Klaus et al. (2007) [23] demonstrates that the redesigned NRMP algorithm

nonetheless suffers from severe stability and incentive issues, at least in theory. Specifically, they

show that the algorithm may not select a stable matching even when preferences are responsive

and hence a stable matching exists, and they also demonstrate that there are preference profiles at

which a couple can manipulate by pretending to be singles. Despite these drawbacks, the successful

practical use of the new NRMP algorithm is justified by an increasing number of papers studying

large markets with complementarities or couples (see, e.g., Kojima et al. 2013 [25] and Ashlagi et

al. 2014 [2]).

Klaus and Klijn (2005) [22] shows that for couples markets with strictly unemployment averse

couples the domain of responsive preferences where all hospitals are considered acceptable in the

associated individual preferences is a maximal domain for the existence of stable matchings. This

is a negative result because the typical couple’s preferences with complementarities rules out

responsiveness. Responsive preferences imply that the couple prefers joint assignments that are

reached by a unilateral improvement for one of the two partners, but this is exactly ruled out when

the joint preferences of a couple reflect a preference for geographical proximity for their positions.

Khare et al. (2018) [21] builds on these previous results and characterize the exact responsive

preferences of couples under which a stable matching always exists, while Khare and Roy (2018)

[20] studies the existence of stable matchings in couples markets when preferences do not satisfy

responsiveness. Dutta and Massó (1997) [9] imposes very specific preference restrictions and show

the existense of stable matchings, and Jiang and Tian (2013) [17] studies a relaxation of the stability

concept to obtain positive results.

In this paper we propose a new mechanism for matching couples in the labour market using
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the (k, t)-Lexi-Pairing rules introduced in Chapter 3. Thus, couples form their paired preference

ordering based on their individual preference orderings, using only two criteria. One criterion

shows the level of willingness to sacrifice a good position in order for the worse-off partner to

get a better position, and the other one reflects the level of eagerness for the couple to stay in

the same geographical area, even if this means sacrificing some of the individually higher-ranked

options in order to stay together. This means that the input of the couples is restricted to two

parameters in addition to their individual preference orderings: parameter k shows the degree to

which one partner is favored over the other, and parameter t indicates the extent to which the

couple prioritizes the proximity of their jobs.

Even though some of the information about the actual preferences may be lost with these

restrictions, it is nonetheless desirable to restrict the couples’ preference input in this manner

for multiple reasons. First, couples may not know how to aggregate their individual preferences,

and this offers a clear method to identify their joint preferences. Second, this restriction means

informational simplicity and efficiency when submitting the preferences, which generates the entire

list of paired preference choices, which is likely to be longer than what couples would submit if

they were asked to rank hospital pairs (which is the current practice for the NRMP and other

similar matches). This could increase the efficiency of the matching. Third, and this is the most

important advantage of this method in the current context, these restrictions ensure a clear and

simplified structure of the couples’ preferences, which may not only be conducive to designing a

transparent mechanism, but can also be used directly by the mechanism. This is indeed the case

for the proposed Lexi Couples mechanism, and consequently the main novelty of our contribution is

that this is the first time that the desirable level of togetherness in the joint preference orderings of

couples is directly utilized in the algorithm in order to mitigate the occurrence of cycles and reach

stability. We show that the Lexi Couples mechanism satisfies responsive-stability, which means

that a stable matching is selected at every responsive preference profile, and we also establish that

the mechanism is non-wasteful, which is a non-trivial property of algorithms for matching markets

with couples.
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4.2 Model and Definitions

A set of doctors is matched to a set of hospitals in a many-to-one matching. The set of hospitals is

denoted by H. Each hospital h ∈ H has a finite capacity qh ≥ 2, that is, each hospital has at least

two positions. Multiple positions at each hospital are identical. We denote the set of doctors by

D and let D = F ∪M ∪ S, where F, M and S are pairwise disjoint sets with |F | = |M |. A couple

is c = (f,m) ∈ (F × M) such that the set of couples C is given by a bijection between F and M .

The doctors in set S are single doctors. We refer to members of a couple as partners.

4.2.1 Preferences

We introduce the preferences of doctors and hospitals next. For a set X, let L(X) be the set of

linear orders, i.e., complete, transitive, and antisymmetric binary relations over X. An element

P ∈ L(X) is called a preference over X, and R denotes the weak part of P .

Hospitals’ preferences

For each hospital h ∈ H, a preference of h over individual doctors, denoted by P (h), is defined

as an element of L(D), and we refer to this as the strict preference ordering of the hospital over

individual doctors. We assume that each hospital prefers to have any doctor to a vacant position.

For each hospital h ∈ H, the feasible sets of doctors are given by {D′ ⊆ D : |D′ | ≤ qh}. A preference

over feasible sets of doctors for hospital h, denoted by P̃ (h), is given by a strict preference over the

feasible sets of doctors, and thus it is an element in L({D′ ⊆ D : |D′ | ≤ qh}).

Responsive preferences for hospitals

Now we introduce the responsive extension of a hospital’s preference over individual doctors to

feasible sets of doctors. This is a standard notion used in the literature (see, for example, Roth

(1985) [33]). Let h ∈ H and let Ph be a preference of h over individual doctors. Then, a preference

P̃h of h over feasible sets of doctors satisfies responsiveness with respect to P (h) if

1. the restriction of P̃h to individual doctors coincides with Ph, that is, for all d, d′ ∈ D, dP̃hd
′

if and only if dPhd
′, and

2. for all D′ ⊂ D and all d1, d2 ∈ D \ D′ such that |D′| < qh, we have (D′ ∪ d1)P̃h(D′ ∪ d2) if

and only if d1Phd2.
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We assume that each hospital h ∈ H has responsive preferences over feasible sets of doctors,

given the hospital’s preference over individual doctors. Let PH ≡ (Ph)h∈H .

Doctors’ preferences

For each doctor d ∈ D, a preference of d over hospitals, denoted by Pd, is defined as an element of

L(H), and we refer to this as the strict preference ordering of the doctors over hospitals. We assume

that each doctor finds each hospital acceptable, that is, prefers to be matched to any hospital rather

than remain unmatched. Let PD ≡ (Pd)d∈D.

Couples’ preferences

We have already defined the preferences of individual doctors, regardless of whether it is a single

doctor or a member of a couple. Now we define the preferences of couples c ∈ C, which are assumed

to be restricted to the Lexi-Pairing preferences studied in Chapter 3. We make this assumption in

order to restrict the input that can be submitted by couples to run the algorithm, which is similar

to restricting the preferences of hospitals to responsive preferences, allowing for a simple input and

informational efficiency.

Pairing rules

H ×H is the set of paired hospital positions. Given that multiple positions at each hospital are

the same, (hf , hm) ∈ H ×H indicates a pair of positions where hf denotes the position for doctor

f and hm denotes the position for doctor m. Note that since we assume that each hospital has

at least two positions, it is possible that hf = hm = h for all h ∈ H, and thus both doctors are

matched to a position at the same hospital.

Given that each doctor has individual preferences over the hospitals, as defined above, we can

express the individual preference ordering of doctor i ∈ D by the ranking of each hospital h, denoted

by ri(h) ∈ {1, . . . ,m}, where ri(h) < ri(h′) means that doctor i prefers hospital h to h′, since hi

has a lower rank number than h′. We assume that each hospital position is acceptable to both

doctors, that is, each doctor would rather get a job than remain unmatched. Let R denote the set

of individual hospital rankings. For each doctor i ∈ {f,m}, let ri ∈ R denote a particular ranking

of all hospitals in H by doctor i. Let P̂ denote the set of strict preference orderings over the ordered

pairs of hospitals, that is, the set of aggregated preference orderings of paired hospital positions.

Then P ∈ P̂ is a strict preference ordering over H ×H and represents the joint preferences of the
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two doctors.

A pairing rule is a preference aggregation function for two doctors, which maps from two strict

individual preference orderings of individual hospital positions to one strict preference ordering of

paired hospital positions. Formally, a pairing rule is a function φ : (R × R) → P̂, specifying the

preference aggregation of the respective individual hospital rankings of the two doctors. We will

also use the notation (hf , hm)P̂ (h′
f , h

′
m) to indicate that (hf , hm) is preferred to (h′

f , h
′
m) in the

joint preferences P̂ ∈ P̂.

k-Lexi-Pairing rules (k ∈ {0, . . . ,m− 1})

Fix k ∈ {0, ...,m− 1} and (rf , rm) ∈ R × R and let P̂ k denote the paired preference ordering for k.

For (hf , hm) ∈ H ×H, let

Max ≡ max (rf (hf ), rm(hm) − k);

Min ≡ min (rf (hf ), rm(hm) − k).

For (h′
f , h

′
m) ∈ H ×H, let

Max′ ≡ max(rf (h′
f ), rm(h′

m) − k);

Min′ ≡ min (rf (h′
f ), rm(h′

m) − k).

Then (h′
f , h

′
m)P k(hf , hm) if one of the following three cases holds:

1. Max > Max′;

2. Max = Max′ and Min > Min′;

3. Max = Max′, Min = Min′ and rf (hf ) > rm(h′
f ).

Before defining the couples’ preferences that take into account the geographical proximity of

the two hospital positions, let us mention that we also use the concept of responsive preferences

over hospital pairs by couples. Intuitively, a couple’s preferences are responsive if the unilateral

improvement of one partner’s job is seen is beneficial for the couple as well. Formally, responsive

preferences for couples are defined identically to the responsive preferences of hospitals, so we

skip the formal definition. Note that if a couple has Lexi-Pairing preferences then the couples’

preferences are responsive (see Chapter 3).
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Geographical compatibility

The geographical compatibility information is given by a set G ⊂ H × H which consists of

compatible hospital pairs for all couples. These are ordered pairs of hospitals or, equivalently, a

set of edges in a compatibility graph, and are given exogenously (that is, not couple-specific). We

denote the set of incompatible hospital pairs by Ḡ, where G ∩ Ḡ = ∅ and G ∪ Ḡ = H × H (i.e.,

Ḡ is the complement of G). If (h, h′) ∈ G then getting positions at hospitals h and h′ respectively

for a couple is considered compatible in terms of geographic constraints, while if (h, h′) ∈ Ḡ then

positions at h and h′ for a couple are not considered compatible. We assume that for all (h, h′) ∈ G,

(h′, h) ∈ G also holds. Naturally, for all h ∈ H, (h, h) ∈ G.

Although G is not subject to a couple’s subjective preferences, it doesn’t follow that couples

have to have the same kind of preferences over the geographic constraints. We allow couples to

attribute different levels of importance to geographical compatibility, and to this end introduce

a togetherness parameter, denoted by t, which captures the extent to which a couple considers

incompatible hospital pairs relatively less desirable when compared to compatible hospital pairs.

(k, t)-Couple-Lexi-Pairing rules

Fix k, t ∈ {0, ...,m− 1} and let (rf , rm) ∈ R × R.

Define r̂f and r̂m based on (rf , rm) as follows. Given t ∈ {0, . . . ,m− 1}, for all (hf , hm) ∈ H ×H,

1. if (hf , hm) ∈ G then r̂f (hf , hm) = rf (hf ) and r̂m(hf , hm) = rm(hm);

2. if (hf , hm) ∈ Ḡ then r̂f (hf , hm) = rf (hf ) + t + ϵ and r̂m(hf , hm) = rm(hm) + t + ϵ, where

0 < ϵ < 1.

For (hf , hm) ∈ H ×H, let

Max ≡ max (r̂f (hf , hm), r̂m(hf , hm) − k);

Min ≡ min (r̂f (hf , hm), r̂m(hf , hm) − k).

For (h′
f , h

′
m) ∈ H ×H, let

Max′ ≡ max(r̂f (h′
f , h

′
m), r̂m(h′

f , h
′
m) − k);

Min′ ≡ min (r̂f (h′
f , h

′
m), r̂m(h′

f , h
′
m) − k),

Let P (k,t) denote the paired preference ordering. Then (h′
f , h

′
m)P (k,t)(hf , hm) if one of the following

three cases holds:
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1. Max > Max′;

2. Max = Max′ and Min > Min′;

3. Max = Max′, Min = Min′, and r̂f (hf , hm) > r̂f (h′
f , h

′
m).

Geographically incompatible hospital pairs are less preferred, since their respective rank numbers

are increased by t+ ϵ. Adding ϵ is needed to avoid potential ties in the rankings of hospital pairs,

and the incompatible hospital pair is defined to be less preferred in case of a tie.

The togetherness parameter t ∈ {0, . . . ,m − 1} expresses the preferences of a couple to obtain

compatible positions in terms of geographic constraints. If t = 0 then the couple does not care

about being together and the paired preference ordering is unchanged (since ϵ < 1), regardless

of G. At the other extreme, if t = m − 1 then each compatible pair of hospitals is preferred to

each non-compatible pair of hospitals, while leaving all the other preference orderings unchanged.

There are other cases between these two extremes which may more realistically depict a couple’s

preferences than either extremes, and the parameter t allows to systematically and consistently

reduce the ranking of incompatible hospital pairs, while keeping other preference orderings the

same. A higher value of t indicates that the couple finds it more important to find geographically

compatible positions, but note that the preference ordering may not necessarily change when the

value of t changes, depending on the original preferences and on G.

We assume that each couple (f,m) ∈ C has (k, t)-Couple-Lexi-Pairing preferences over pairs of

hospitals. Let PC ≡ (P(f,m))(f,m)∈C .

Preference profile

A preference profile is a triple ((Ph)h∈H), (Pd)d∈D, (kc, tc)c∈C) consisting of the hospitals’

preference profile, the doctors’ preference profile, and for each couple c the parameters kc and

tc.

4.2.2 Basic Notions

Matching

This is a many-to-one two-sided matching market which consists of hospitals and doctors. Each

hospital is matched to at most as many doctors as its quota. Doctors maybe single or form couples.
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Each single doctor is matched to a hospital or remains single, and each couple is matched to a pair

of hospitals, or one or both partners remain single. We will define matchings below formally, where

we don’t distinguish between single doctors and doctors who are members of a couple.

We will say that a doctor remains unmatched if the doctor is matched to ∅. A doctor may be

matched either to a hospital h ∈ H or to ∅. A matching µ is a mapping from H ∪D to H ∪D ∪ ∅

such that:

• for all h ∈ H, µ(h) ⊆ D with |µ(h)| ≤ qh,

• for all d ∈ D, µ(d) ∈ H ∪ ∅,

• for all d ∈ D and all h ∈ H, µ(d) = h if and only if d ∈ µ(h).

Mechanism

A mechanism assigns a matching to every preference profile.

4.2.3 Axioms

We define next the relevant axioms for mechanisms.

Individual rationality. A matching µ is individually rational if all single doctors and couples

weakly prefer their assignment in µ to being unassigned. Formally, for all doctors d ∈ D, µ(d)Rd∅

and for all c = (f,m)), (µ(f), µ(m))Rc(∅, ∅).

Blocking coalitions. Fix a preference profile. Given a single doctor a, a hospital h, and a

matching µ, (h, a) blocks µ if h and a prefer each other compared to their assignments at µ. Then

(h, a) is a blocking coalition for µ.

We will say that hospital h ∈ H would prefer to be assigned a doctor d ∈ D compared to its

assignment at µ if it prefers replacing a doctor in the set of doctors µ(h) by d or if |µ(h)| < qh. We

will also say that hospital h ∈ H would prefer to be assigned a pair of doctors {d, d′} ⊂ D compared

to its assignment at µ if it prefers replacing a pair of doctors in the set of doctors µ(h) by d and d′

or, if |µ(h)| < qh, it prefers replacing a doctor in µ(h) by either d or d′, or if |µ(h)| < qh − 1.

Given a couple c = (f,m), a pair of distinct hospitals (hf , hm), and a matching µ, ((hf , hm), c)

blocks µ if c prefers (hf , hm) compared to its assignment at µ, and
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1. if µ(x) ̸= hx for both x ∈ {f,m}, then hf would prefer to be assigned f and hm would prefer

to be assigned m compared to its assignment at µ,

2. if µ(x) = hx and µ(y) ̸= hy for x, y ∈ {f,m}, then hy would prefer to be assigned y compared

to her assignment at µ.

Then ((hf , hm), c) is a blocking coalition for µ.

Given a couple c = (f,m), a hospital h, and a matching µ, (h, c) blocks µ if c prefers (h, h)

compared to its assignment at µ, and h would prefer to be assigned {f,m} compared to its

assignment at µ. Then (h, c) is a blocking coalition for µ.

Stability. A matching is stable at a given preference profile if it satisfies individual rationality and

has no blocking coalition. A matching mechanism is stable if it assigns a stable matching to all

preference profiles.

Klaus and Klijn (2005) [22] shows that for couples markets with strictly unemployment averse

couples, the domain of responsive preferences for couples where all hospitals are considered

acceptable in the associated individual preferences is a maximal domain for the existence of stable

matchings. Since we also assume that couples are strictly unemployment averse, the existence

of a stable matching can only be guaranteed in our model if couples’ preferences are responsive.

Therefore, we cannot require that the mechanism satisfy the standard axiom of stability, and we

weaken stability to the following.

Responsive-stability. A matching mechanism is responsive-stable if it assigns a stable matching

to all preference profiles where each couple’s preferences are responsive.

A standard basic efficiency axiom is non-wastefulness.

Non-wastefulness. A matching is non-wasteful at a given preference profile if

1. there is no unfilled hospital position which is preferred by a single doctor to her assignment

at this matching, and

2. there is no unfilled hospital position which is preferred by a couple in the sense that if one

partner in the couple was assigned this hospital position while the other partner kept his/her

current assignment then the couple would prefer the resulting hospital pair to their joint

assignment at this matching, given their joint preferences.
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A matching mechanism is non-wasteful if it assigns a non-wasteful matching to all preference

profiles.

Finally, we define informational efficiency. Informational efficiency is a practical feature of

mechanisms for couples markets, since couples’ preferences could be difficult to both establish and

to transmit, if an entire ranking over hospital pairs is required, which is typical for most mechanisms

accommodating couples in entry-level labour markets. We restrict the number of parameters to

two, to be concrete, but it should be clear that this number could be higher as long as the number

of parameters remains “small,” where the specification of “small” depends on the context.

Informational efficiency. A matching mechanism is informationally efficient if the reported

preferences by each couple consist of the two respective individual rankings of hospitals by the two

partners, and in addition only x ≤ 2 parameters need to be reported by each couple.

4.3 The Lexi Couples Mechanism

In this section we introduce a new mechanism, our proposed solution to the couples’ matching

problem. This mechanism, which we refer to as the Lexi Couples Mechanism, relies on the (k, t, )-

Couple-Lexi-Pairing preferences submitted by couples. It is based on the Deferred Acceptance

mechanism of Gale and Shapley (1962) [11] , and we refer the reader to this paper for a definition

of the Deferred Acceptance mechanism (we skip the well-known definition here, since it appears in

countless other papers).

Lexi Couples Mechanism:

The mechanism consists of iterative steps. First we need the following definitions to introduce the

mechanism.

Eligibility. A doctor is eligible for a hospital in a given step if either the doctor has not yet been

rejected by the hospital in any previous step or if the doctor is declared eligible again after the last

previous rejection by this hospital. A couple is eligible for a hospital pair in a given step if both

partners are eligible for their respective hospitals in this step.

Cycle. There is a cycle if there exists a doctor who leaves a hospital position without being rejected

by the hospital in a particular step, and in a later step this doctor proposes to this hospital again.
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This later step will be called the step in which the cycle is completed. Note that only a partner in

a couple leaves a hospital position initially without being rejected by the hospital, although this

can trigger a single doctor to do the same in a later step, due to updating the eligibility status of

doctors, as we will see in the description of the mechanism. Thus, a cycle is always initiated by a

couple. We will refer to this couple as the couple that is responsible for the cycle. The responsible

couple for each cycle is unique.

Fix a preference profile ((Ph)h∈H , (Pd)d∈D, (kc, tc)c∈C).

Step 1: Each single doctor applies to her highest-ranked hospital, and each couple applies to their

jointly highest-ranked hospital pair. Hospitals accept applicants one at a time, filling positions

up to their capacity, based on their preference ordering over individual doctors. Acceptances are

temporary and matched applicants can be replaced by new applicants in later steps.

Step k : Each single doctor who was rejected in step k − 1 applies to her highest-ranked eligible

hospital, and each couple with a partner who was rejected in step k − 1 applies to their jointly

highest-ranked eligible hospital pair. Hospitals consider both temporarily matched doctors and new

applicants, and accept them one at a time, filling positions up to their capacity, based on their

preference ordering over individual doctors. Acceptances are temporary and matched applicants

can be replaced by new applicants in later steps.

Note that this implies that the rejection of a partner may lead to a vacant position left behind by

the other partner who was not rejected by the hospital he/she was temporarily matched to. If there

is such a vacant hospital position, left behind by a doctor who was not rejected by this hospital,

then the most preferred suitable doctor who has been rejected by this hospital is considered eligible

by this hospital in the next step. Here any single doctor is suitable, and any partner is suitable

if this partner was assigned this vacant hospital position then together with the other partner’s

current assignment in Step k the resulting hospital pair would be preferred by the couple to their

joint assignment in Step k, given their joint preferences.

If there is a step in which at least one cycle is completed, reduce the parameter t by 1 for

the responsible couple for each cycle, and go back to Step 1 and run the algorithm again with

this modified preference profile in which all the preferences are the same as before, except for the

reduction in t for the relevant couple(s).
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Keep iterating these steps.

End: If no proposals are rejected in a step, then each doctor is matched to the hospital they are

currently matched to, which determines the final matching. Note that, depending on the number of

hospital positions and doctors, it is possible that some doctors remain unmatched or some hospital

positions remain vacant. ⋄

Now we need to verify that the mechanism is well-defined. Specifically, we will show that the

reduction in the parameter t that is called for in case of a cycle is always feasible. Note that a couple

that is responsible for a cycle does not have responsive preferences, since one of the partners in this

couple leaves behind a vacant position even though this partner was not rejected by the hospital

in question. Suppose that a couple (f,m) that is responsible for a cycle is temporarily matched

to (hf , hm) when hm rejects partner m, while hf accepts f . Given that m’s next choice where

m is accepted is h′, we need to show that the couple prefers (hf , h
′) to (h′′, h′) for any hospital

h′′ ̸= hf such that h′′ has not rejected f yet, given that the couple has responsive preferences.

Suppose that the couple (f,m) prefers (h′′, h′) to (hf , h
′) and has responsive preferences. Then,

by responsiveness, f prefers h′′ to hf . This is a contradiction, since h′′ hasn’t rejected f yet and

f is matched to hf . Therefore, if a couple is responsible for a cycle then this couple cannot have

responsive preferences in the current step of the procedure. This means that t > 1 for this couple,

since t = 0 implies that the couple has responsive preferences. A symmetric argument applies to

the cases where hf rejects partner f . Therefore, the required reduction of the t parameter is always

feasible and the Lexi Couples mechanism is well-defined.

Next, we provide an example to demonstrate how the Lexi Couples mechanism works.

Example 4. There are four hospitals, h1, h2, h3, h4, each with two positions to fill. There are four

single doctors, d1, d2, d3, d4, and one couple, (f1,m1), with parameters k = 0 and t = 2. Hospitals

h1 and h2 are in one region, and h3 and h4 are in another region.

The preferences of individual doctors over hospitals:

f1: h1, h2, h3, h4 m1: h3, h1, h4, h2

d1: h2, . . . d2: h1, . . . d3: h2, h1, . . . d4: h2, h3, . . .

Hospitals’ preferences over doctors:

h1: d3, d2,m1, f1, . . . h2: d1, f1, d3, d4, . . . h3: d4,m1, f1, . . . h4 : . . .
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Applying the (0, 2)-Lexi-Pairing rule, the couple’s paired preference ordering is

(f1,m1) : (h1, h1), (h2, h1), (h3, h3), (h3, h4), (h1, h3), (h1, h2), (h4, h3), (h2, h2), (h4, h4), (h2, h3), . . .

Round 1: t = 2

Step h1 h2 h3 h4

1 f1, m1, d2 d1, d3, d4 h1 rejects f1 and h2 rejects d4

2 m1, d2 f1, d1, d3 d4 h2 rejects d3

3 m1, d2, d3 f1, d1 d4 h1 rejects m1

4 d2, d3 d1 f1, m1, d4 h3 rejects f1

5 d2 d1, d3 f1, d4 m1 d3 is eligible for h2

6 m1, d2 f1, d1, d3 d4 m1 is eligible for h1; h2 rejects d3 : Cycle

At t = 1, (f1,m1) : (h1, h1), (h2, h1), (h1, h3), (h3, h3), (h2, h3), . . .

Round 2: t = 1

Step h1 h2 h3 h4

1 f1, m1, d2 d1, d3, d4 h1 rejects f1 and h2 rejects d4

2 m1, d2 f1, d1, d3 d4 h2 rejects d3

3 m1, d2, d3 f1, d1 d4 h1 rejects m1

4 d2, d3 d1 f1, m1, d4 h3 rejects f1

5 d2 f1, d1, d3 m1 , d4 d3 is eligible for h2, h2 rejects d3

6 m1, d2, d3 f1, d1 d4 m1 is eligible for h1; h1 rejects m1 : Cycle

At t = 0, (f1,m1) : (h1, h3), . . .

Round 3: t = 0

Step h1 h2 h3 h4

1 f1, d2 d1, d3, d4 m1 h2 rejects d4

2 f1, d2 d1, d3 m1, d4 Final Matching

Since t = 0, this is the DA outcome, equivalent to having two single doctors instead of the couple.
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Next, we consider new preferences for d3, namely d3: h2, h4, . . .

Round 1: t = 2

Step h1 h2 h3 h4

1 f1, m1, d2 d1, d3, d4 h1 rejects f1 and h2 rejects d4

2 m1, d2 f1, d1, d3 d4 h2 rejects d3

3 m1, d2 f1, d1 d4 d3 Final Matching

Here the couple is assigned the compatible hospital pair (h2, h1), which is ranked higher in the

couple’s joint preference ordering than their DA assignment (h1, h3), which is not compatible.

4.4 Properties of the Lexi Couples Mechanism

First we note that since all hospitals are acceptable to all the doctors, and all the doctors are

acceptable to all the hospitals, the Lexi Couples mechanism is trivially individually rational. It is

also informationally efficient, as stated below.

Theorem 3. (Informational Efficiency)

The Lexi Couples Mechanism is informationally efficient.

Proof. Since couples are required to submit (k, t)-Couple-Lexi-Pairing preferences to participate in

the centralized matching using the Lexi Couples mechanism, it is immediate that the mechanism is

informationally efficient, since the (k, t)-Couple-Lexi-Pairing preferences of a couple are completely

described by the two respective individual preference orderings of the partners over hospitals and

by the two parameter values k and t.

We will show next that the Lexi Couples mechanism is responsive-stable.

Theorem 4. (Responsive-Stability)

The Lexi Couples mechanism is responsive-stable.

Proof. If each couple has responsive preferences then none of the doctors leave a hospital behind

without being rejected by this hospital, just like in the Deferred Acceptance mechanism. Therefore,
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there are no cycles in the mechanism, as shown above. Furthermore, note that the responsive

preferences of couples imply that couples apply to hospitals exactly as if the two partners were

single doctors. Thus, the mechanism is equivalent at such a preference profile to the doctor-

proposing Deferred Acceptance mechanism and selects the doctor-optimal matching. Since the

doctor-optimal matching is stable (Gale and Shapley, 1962 [11] ), the Lexi Couples Mechanism is

responsive-stable.

The Lexi Couples mechanism produces the same matching as the Deferred Acceptance

mechanism when all couples have responsive preferences. This means that the matching is non-

wasteful at these profiles since the Deferred Acceptance mechanism is stable and stability implies

non-wastefulness. However, if some couples have non-responsive preferences, not only a stable

matching may not exist, but also the selected matching may not be non-wasteful, given that some

doctors may leave a hospital behind in the procedure without being rejected by this hospital, and

thus it is not clear whether the mechanism is non-wasteful. We prove next that it is.

Theorem 5. (Non-Wastefulness)

The Lexi Couples mechanism is non-wasteful.

Proof. Suppose that the Lexi Couples mechanism is wasteful. Then there exists a preference profile

at which a hospital position is unfilled in matching µ that is assigned to this preference profile by

the Lexi Couples mechanism, and either

1. there is a single doctor who prefers this hospital position to her assignment in µ, or

2. there is a couple who prefers this hospital position in the sense that if one partner in the couple

was assigned this hospital position while the other partner kept his/her current assignment

then the couple would prefer the resulting hospital pair to their joint assignment in µ, given

their joint preferences.

Let this hospital be h. Then there exists a step in the procedure at this preference profile such that

this hospital position at h is left behind by a doctor without being rejected by hospital h, since

otherwise the position at h would not be unfilled in µ, given that there is a doctor who desires this

open hospital position, whether it is a single doctor or a partner in a couple in one of the above
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listed two scenarios. Assume without loss of generality that this hospital position at h is not filled

in any step after this step, which means that this is the last step in the procedure where a doctor

leaves behind a position at h without being rejected by h. Now note that in the Lexi Couples

mechanism the most preferred suitable doctor who has been rejected by h becomes eligible for h,

and this doctor, say d, applies to h in the next step. This means that either d or a different doctor

who is preferred by h to d is accepted by h for this open position in the next step of the procedure,

contradicting our assumption that this hospital position is not filled after this step. Therefore, the

Lexi Couples mechanism is non-wasteful.

4.5 Conclusion: Extensions and Open Questions

We proposed a new mechanism for use in entry-level labour markets where couples are present.

The novelty of this new mechanism is that it does not require couples to submit entire preference

orderings over pairs of hospitals positions, but instead it asks for the submission of only two

parameters from each couple in addition to their individual preference rankings over hospital

positions. This feature does not only ensure the informational efficiency of the mechanism, both

in terms of formulating the couples’ preferences and information transmission, but it is also used

in the construction of the mechanism, leading to further desirable properties of the proposed Lexi

Couples mechanism. In particular, this mechanism satisfies the stability property of responsive-

stability and it is also non-wasteful. Stability is notoriously difficult to establish for markets with

complementarities, and the presence of couples is a prominent case of complementarities in the

preferences due to geographical considerations, so even the weak stability property of responsive-

stability is difficult to achieve. Most notably, the redesigned NRMP algorithm Roth and Peranson

(1999) [34] does not satisfy responsive-stability, which is demonstrated by Klaus et al. (2007) [23].

Non-wastefulness is also a basic requirement, but it is well-known that in matching markets with

distributional restrictions it is often difficult to satisfy it together with other basic criteria (see, for

example, Ehlers et al., 2014 [10] ). In couples markets it is also a non-trivial requirement, because

it is natural for the algorithm to require that one member of a couple leave a position behind to

coordinate with the other member, a feature which not only tends to induce cycles but also may

easily lead to vacant positions that somebody else might desire. If these issues are not resolved
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satisfactorily then the mechanism may not be well-defined, or it may allow for wasteful outcomes.

The Lexi Couples mechanisms resolves both of these issues successfully, even for small markets.

Moreover, we can extend the results presented here in a straightforward manner to other

informationally efficient mechanisms which use pairing rules for the couples’ preference aggregation

that are different from the Lexi-Pairing rules. One example is an additive pairing rule which takes

the sum of the rankings of the two-hospitals to determine the joint rankings: the higher the sum

of the rank numbers, the lower the pair is in the preference ordering. With adequate tie-breaking

and with the additional transformation of the preferences according to a togetherness parameter

which would be applied exactly the same way as done for Lexi-Pairing rules, we get a different

mechanism. Such mechanisms are still informationally efficient, and they can be shown to be

responsive-stable and non-wasteful as well, similarly to the Lexi Couples mechanism, as proved by

Theorems 2 and 3. Moreover, we could extend Theorems 2 and 3 further by using an arbitrary

responsive pairing rule for the couples’ preference aggregation prior to applying the togetherness

parameter. This is a more flexible mechanism in terms of the allowable preferences for couples

while it retains the properties of responsive-stability and non-wastefulness, but it is no longer

informationally efficient, since the entire preference ordering over pairs of positions would need to

be reported by the couples in addition to the togetherness parameter value, and these preferences

would still need to be restricted to responsive preferences.

Remaining open questions concern the incentive properties of the mechanism. We conjecture

that couples cannot benefit from pretending to be singles in the Lexi Couples mechanism, which is

an incentive property that does not hold for the algorithm used by the NRMP, as shown by Klaus

et al. (2007) [23]. Since in our proposed mechanism this amounts to a couple reporting t = 0 for the

togetherness parameter instead of their true positive parameter value, and it appears intuitively

that lowering the value of the togetherness parameter is unlikely to improve a couple’s assignments,

we believe that a positive result in this direction can be established in future work. However, unlike

the normative properties which are somewhat robust with respect to how the couples’ aggregate

their preferences, as argued above, it seems more likely that the attributes of the pairing rules used

by couples will impact the incentive properties of the resulting mechanism.
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