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ABSTRACT 

 

Title:  The spatial ecology of climate influences species distributions: the case of North American 

amphibians 

Author: Gabrielle Lea Rimok 

 

Species distributions are largely determined by three main drivers: abiotic environmental 

conditions, dispersal, and biotic interactions. Because abiotic environmental conditions determine 

habitat suitability, they also have direct implications on the capacity of species to disperse and how 

species interact with one another in space. However, it is specifically the variability in abiotic 

environmental conditions (i.e., environmental heterogeneity) and how they are spatially structured 

(i.e., environmental spatial autocorrelation - ESA) that determines whether or not a habitat, or even 

a landscape, is environmentally suitable for species establishment. Environmental heterogeneity 

itself is spatially structured; where environmental conditions/features that are closer together in 

space tend to be more similar than those farther apart. As such, the spatial structure of 

environmental features (i.e., ESA) mimics dispersal networks because spatial patterns in 

environmental heterogeneity affect the strategies and energetic costs (and their associated fitness 

consequences) involved in movement and dispersal among patches. At broad spatial scales, species 

distributions are shaped by environmental conditions, namely, those of climate. Climatic 

conditions thus also impose important physiological and life history constraints on species and in 

accordance with environmental features, are also often heterogeneous and spatially structured. Yet, 

how they affect and contribute to species distributions remains unknown. Here, we use species 

distribution models (SDMs) in a novel framework in which we demonstrate for the first time, the 

influence of climate heterogeneity (within and between patches) and climate spatial structure on 

species distributions. We evaluated six different SDMs testing both the individual and combined 

effects of climate variables (i.e., between and within-patch climate heterogeneity and climate 

spatial structure) on species distributions, using 301 North American amphibian species as a case 

study. Our results demonstrate that a model using climate spatial structure as a predictor alone 

explained species distributions better than any other model in the majority of species. Although a 

model including both climate heterogeneity (within and between-patch) and climate spatial 

structure as predictors was only the best model for a handful of species, we provide critical evidence 

that there is added value in considering climate spatial structure when fitting different SDMs for 
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the same species. Most importantly, we demonstrate that climate spatial structure and heterogeneity 

are important mechanisms driving species distributions in North America. 
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INTRODUCTION 

The main drivers of species distributions can be broadly attributed to abiotic habitat 

suitability, dispersal capacity, and biotic interactions (e.g., mutualism, competition, etc.) (Menge 

and Olson 1990; Guisan and Zimmermann 2000; Guisan and Thuiller 2005; Elith and Leathwick 

2009; Ai et al. 2013; Shen et al. 2013; Guisan et al. 2017). Of the three, abiotic habitat suitability 

(i.e., suitability of abiotic environmental conditions) is likely to be the most relevant in driving 

species distributions because of its direct implications on dispersal capacity and biotic interactions 

(Dormann et al. 2007; Ai et al. 2013; Stein et al. 2014; Guisan et al. 2017). To support this, consider 

the following: for dispersal capacity, if the abiotic environmental conditions between 

environmentally suitable habitats are extremely unsuitable, then they present a dispersal barrier, 

thereby limiting the distribution and possible range expansion of the given species (Guisan et al. 

2017). For biotic interactions, consider two species with similar habitat and environmental 

requirements; that is, similar niche breadths (sensu Hutchinson 1957). If both species were to 

occupy a same habitat having optimal (i.e., preferred) abiotic environmental conditions, then they 

would have to compete with one another for space and access to resources within the given habitat 

(Stein et al. 2014; Guisan et al. 2017). Ultimately, however, the populations of both species will be 

limited by the geographic extent of these suitable environmental features (Stein et al. 2014; Guisan 

et al. 2017). Thus, these two examples provide strong arguments for the role that abiotic 

environmental conditions play in driving species distributions. More specifically, they emphasize 

the importance of relationship species have with the features of their abiotic environment. 

Species have a strong relationship with their abiotic environment because environmental 

features themselves have intricate spatial structures that form the complex landscape mosaics we 

observe in nature (Legendre et al. 2005). As an illustrative example, think of a landscape as a 

10,000-piece puzzle; each piece being defined by its unique physical attributes. Individually, each 

piece contributes valuable information about the image illustrated on the puzzle. Some pieces that 

are positioned closer together in space may share strong similarities with one another than would 

be expected by chance (i.e., positive spatial autocorrelation), while other similar pieces may be 

positioned further apart (i.e., negative spatial autocorrelation) (Legendre 1993; Fortin et al. 2006; 

2013). The spatial structure that exists among pieces – a mosaic of different colors, shapes, and 

patterns – is what contributes to the complex image forming the puzzle (Dufour et al. 2006). 
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Likewise, patches (i.e., habitats delimited by a set environmental conditions/features in a given 

geographic space) within landscapes contain environmental features that may or may not be shared 

by nearby patches, depending on how they are oriented, configured, and distributed in space and 

time (note here that only space is considered for this study) (Ricklefs 2004; Esparza-Orozco 2020). 

This complex and systematic (non-random) variation is termed spatial autocorrelation (SA) and is 

described as both linear and non-linear functions of the joint variation between environment and 

spatial positioning of patches within a landscape (Dray et al. 2006, Griffith and Peres-Neto 2010). 

The variation in how environmental features differ from one another is known as environmental 

heterogeneity (Shen et al. 2013; Donelle 2018). 

Taken together, both the heterogeneity and spatial structure of environmental 

features/conditions are expected to affect species distributions and their relationship with the 

abiotic environment (Palmer and Dixon 1990; Peres-Neto et al. 2012; Ai et al. 2013; Shen et al. 

2013; Stein et al. 2014; Basile et al. 2016; Monteiro et al. 2017; Araújo et al. 2018; Leibold and 

Chase 2018). Empirical and theoretical work on how environmental heterogeneity underlies 

species and community dynamics emphasize, almost without exception, how much variation exists 

among patches (i.e., magnitude of variation; but see Büchi et al. 2009; Shen et al. 2013; Stein et al. 

2014; Basile 2016; Monteiro et al. 2017; Donelle 2018). Nonetheless, environmental heterogeneity 

is spatially structured (autocorrelated) as the norm rather than at random (Donelle 2018). Two 

landscapes can be similar in their environmental heterogeneity (i.e., variance among patches) but 

differ in how their environmental features (resources and non-resources) are structured in space 

(Peres-Neto et al. 2012). Spatial autocorrelation corresponds to the size of distributions of suitable 

and unsuitable patches and how smooth their transitions (differences) are as a function of distance 

among patches in a landscape. Under weak spatial autocorrelation, patches vary more 

(probabilistically) in their environmental features in relation to one another (i.e., smaller clusters 

of patches having similar environmental conditions); whereas strong autocorrelation represents 

large clusters of patches composed of similar environmental conditions. The steepness of 

environmental variation among clusters of patches can also be described by a statistical 

representation of spatial autocorrelation. In many cases, the spatial structure of environmental 

features mimics dispersal networks because spatial patterns of environmental heterogeneity affect 
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the strategies and energetic costs (and associated fitness consequences) involved in movement and 

dispersal among patches (Peres-Neto et al. 2012; Shen et al. 2013).  

 It is expected then that species’ environmental tolerances and affinities have been shaped 

over ecological and even evolutionary time as functions of the spatial structure of the environment 

(i.e., Environmental Spatial Autocorrelation – ESA) (Kassen 2002; Vellend 2010; Katayama et al. 

2014; Donelle 2018). For example, resource generalists may be less sensitive and, consequently, 

adapted to environmentally heterogeneous landscapes regardless of landscape ESA, whereas 

resource specialists are expected to be more sensitive to the size of environmental clusters in a 

landscape (Büchi and Vuilleumier 2014). This is because of energetic costs involved in dispersal. 

Because ESAs represent how abrupt, sharp, or predictable changes in environmental conditions 

can be in space, movement and dispersal costs are expected to be higher in landscapes having weak 

ESAs (i.e., more abrupt transitions among patches). As a result, because generalists have wide 

niche-breaths, their energetic costs are expected to be lower while dispersing through landscapes 

with weak ESA (Büchi and Vuilleumier 2014; Donelle 2018). Generalists also benefit from the 

availability of multiple habitat types and reduced competition with specialists (Kassen 2002; Büchi 

and Vuilleumier 2014; Vellend 2010; Donelle 2018). Due to their narrow niche-breadths, 

specialists should perform better where ESA is stronger because they contain greater clusters of 

similar patches (Büchi and Vuilleumier 2014; Donelle 2018).  

At broad spatial scales, species distributions are largely determined by abiotic 

environmental conditions, notably, those of climate (Guisan et al. 2017; Tordoni et al. 2020). 

Likewise to environmental conditions, climatic features are also often spatially structured and 

fragmented (Fujiwara and Takada 2017; D’Amen et al. 2017; Fournier et al. 2020). Climate 

conditions impose important physiological and life history constraints on species. As such, we 

expect that the spatial configuration and variability of climatic conditions should also underly 

species distributions and the structure of their communities. Indeed, a recent study exploring how 

the frequency of climatic types (i.e., the commonality or rarity of climatic conditions) affects 

biodiversity corroborates this hypothesis (Fournier et al. 2020). They demonstrated that patches 

containing rare climates (which were shown to be more spatially dispersed), yield a larger 

proportion of generalists in relation to specialist species (Fournier et al. 2020). Adapting to rare 

resources and environmental features is evolutionarily costly (Kassen 2002). Species with wide 
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niche-breadths (generalists) should then tend to be favored in rare climates in relation to specialist 

species that should outcompete generalists in more frequent climates (Fournier et al. 2020). Taken 

together, ESA should be an important factor because of the way it can constrain or facilitate species 

responses to environmental heterogeneity and, moreover, mediate the co-existence of species that 

vary in niche requirements and breadths (i.e., generalists versus specialists) and dispersal 

capacities.  

As such, species distributions should then vary as a function of niche breadth, dispersal 

capacity, and the strength of ESA of a given landscape. In landscapes with weak ESA, we might 

expect that the distributions of species overlap one another strongly and be located in and around 

clusters of suitable climatic/environmental conditions, where there is a larger proportion species 

distributions for species with strong dispersal capacities and wide niche-breadth than species with 

weak dispersal capacities and narrow niche-breaths (Donelle 2018; Fournier et al. 2020). 

Distributions for strong dispersers and species with wide niche-breadths may then generally be 

larger than the distributions of their counterparts and may be generally broader in area than the 

geographic extent of climatic/environmental clusters with suitable conditions. Conversely, we 

might expect that the distributions of species in landscapes with strong ESA only somewhat overlap 

one another and tend to closely follow the geographic extent of clusters of suitable 

climatic/environmental conditions. For poor dispersers and species with narrow niche-breadths, 

their distributions may overlap one another to some degree, but will mostly be partitioned within 

the geographic extent of clusters with suitable climatic/environmental conditions, facilitating 

coexistence (Büchi and Vuilleumier 2014; Donelle 2018; Leibold and Chase 2018). In landscapes 

with strong ESA, these species are also likely to occur in a greater proportion relative to their non-

dispersal limited and wide-niche breadth counterparts because they are superior competitors 

(Donelle 2018). However, species with wide niche-breadth and strong dispersal capacities will 

likely have distributions that frequently overlap those of their dispersal-limited and narrow niche-

breadth counterparts in both landscapes with strong and weak ESA. This is because they are, in 

general, more resistant to unsuitable climatic/environmental conditions (Büchi and Vuilleumier 

2014). Their resistance to these unsuitable conditions allows their distributions to be much broader, 

encompassing a greater geographic area, thereby allowing them to seek and establish themselves 

at vacant sites more readily (Büchi and Vuilleumier 2014; Donelle 2018).  



 

5 

 

Because environmental/climatic heterogeneity and spatial structure have direct 

implications on dispersal and niche-breadth, as detailed above, they consequently also interact with 

processes of community assembly (e.g., species sorting, dispersal, coexistence) (Cornell and 

Lawton 1992; Chesson 2000; Ricklefs 2004; Dufour et al. 2006; Peres-Neto et al. 2012; Katayama 

et al. 2014; Stein et al. 2014; Araújo et al. 2018; Esparza-Orozco et al. 2020). For instance, species 

sorting posits that at low dispersal rates, species are sorted in the landscape according to their habit 

preferences and availability of resources (Leibold et al. 2004; Vellend 2010; Esparza-Orozco 

2020). Thus, for a landscape to support species with low dispersal capacities, it should have strong 

ESA because connectivity between suitable sites is facilitated, which consequently decreases 

energetic costs related to dispersal (Donelle 2018). Most importantly, a landscape with strong ESA 

would facilitate species coexistence because for species to persist, they must partition their 

resources (Chesson 2000; Mouquet and Loreau 2002; Vellend 2010; Logue et al. 2011; Donelle 

2018; Ben-Hur and Kadmon 2020). As such, the interactions between dispersal, species 

interactions, differences in species niches (position and tolerance), and environmental 

heterogeneity are complex and generate much of the contingency observed in ecological 

populations and communities (Catford et al. 2021; Leibold et al. 2021).   

The goal of this paper is to test the hypothesis that the spatial structure of climate features 

is relevant in explaining species distributions. We use species distributions models (SDMs) to 

estimate the contributions of climate heterogeneity among patches, climate variation within 

patches, and the spatial structure of climate (note here that ‘patches’ hereafter refers to 

georeferenced cells containing species occurrence and climate data). Species distribution models, 

otherwise known as Climate Envelope Models among other names (Elith and Leathwick 2009; 

Jarvie and Svenning 2018), quantitatively relate empirical observations of species occurrences to 

the environmental characteristics that define their occupied niche (Guisan and Thuiller 2005; 

Mielke et al. 2020). Fundamentally, SDMs infer that the distribution and size of terrestrial species’ 

ranges are governed by the distribution of climate patches within landscapes (Pearson and Dawson 

2003; Elith and Leathwick 2009; Garcia et al. 2014; Guan et al. 2020). Spatial autocorrelation and 

consequently, ESA, have been historically treated as a statistical nuisance in SDMs and models of 

biodiversity across space (e.g., variation in beta-diversity in relation to environmental features 

across space); an effect needing to be controlled and accounted for in these models (Legendre 1993; 
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Perry et al. 2002; Griffith and Peres-Neto 2006; Dormann et al. 2007; Record et al. 2013). As such, 

ESA is then treated as a confounding variable, resulting from the correlation between spatial and 

environmental parameters, and when present in model residuals, affects tests of significance and 

uncertainty in model parameter estimates (Legendre 1993; Perry et al. 2002; Griffith and Peres-

Neto 2006; Peres-Neto and Legendre 2010; Record et al. 2013). Failure to account for spatial 

autocorrelation in model parameters (e.g., climate variables) can lead to dubious predictions and 

incorrect conclusions, resulting in a misleading narrative about the preferred niche characteristics 

of a given species (Mielke et al. 2020). As such, the spatial structure of environmental features in 

ecological models is usually discarded as a nuisance and only the sources of environmental 

heterogeneity that are not spatially structured are interpreted. Another goal of controlling for 

autocorrelation is to improve model transferability to other landscapes that may present very 

different spatial autocorrelation structures in their environmental (climatic) features (Araújo et al. 

2005). 

Beyond the statistical challenges generated by spatial autocorrelation, as discussed above, 

there is strong indirect evidence that the spatial structure of environmental features should be an 

important factor in dictating species distributions and the composition of communities. Indeed, the 

shared predicted variation between spatial predictors and environmental features in the variation 

partitioning of species distributions and beta-diversity models is often strong (Legendre 1993; 

Cottenie 2005; Diniz-Filho and Bini 2005; Beisner et al. 2006; Peres-Neto et al. 2006; Costa et al. 

2007; Huang et al. 2011; Peres-Neto et al. 2012; Rojas-Ahumada et al. 2012; Provete et al. 2014; 

Donelle 2018; Hsiung et al. 2017; Kumar et al. 2019). There are many ways to build these spatial 

predictors (e.g., Dray et al. 2006; Griffith and Peres-Neto 2006; Dormann et al. 2007). They capture 

what we refer to as latent spatial structures, by building spatial functions (e.g., Fourier spectral 

decomposition, spatial polynomials, splines spatial covariance matrices, spatial eigenvectors) that 

are included in the model to capture spatial autocorrelation in species distributions (e.g., Cottenie 

2005; Griffith and Peres-Neto 2006) or attenuate residual variation while fitting SDMs (e.g., 

Dormann et al. 2007). In this sense, currently used spatial functions represent unknown sources 

(latents) of variation in SDMs and community models because they do not represent the spatial 

variation of environmental predictors (climatic features), but rather, the variation in the response 

(e.g., species distribution, beta-diversity). These latent spatial functions represent global spatial 
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autocorrelation (average spatial structure for a given environmental feature) and, as such, cannot 

describe the location of clusters of similar and dissimilar patches. Moreover, many of these global 

function models only represent positive autocorrelation as the source generating bias in statistical 

models. However, negative autocorrelation can be also important in driving species and community 

dynamics (Biswas et al. 2017). Finally, global spatial autocorrelation functions mix both positive 

and negative autocorrelation patterns, which can lead to an absence of spatial autocorrelation, given 

they globally negate each other statistically (Dray 2011). 

Here, instead, we propose using Local Indicators of Spatial Association (LISA) to quantify 

the joint covariance (i.e., similarity) between neighbouring patches and their climate features 

(Anselin 1995). We use the local Moran’s I (LMI) coefficient of spatial correlation to describe the 

spatial patterning of climatic variables and use them as predictors in ecological models. Popular 

applications of LMI include identifying spatial clusters, patterns, and hotspots of chemical 

elements in urban soils and forests (see Zhang et al. 2008; Fu et al. 2014; Yuan et al. 2018; 

Tepanosyan et al. 2019) and examining how model residuals are spatially clustered and distributed 

in ecological models (see Zhang et al. 2005; Osborne et al. 2007; Smulders et al. 2010). Figure 1 

provides an overview of the proposed framework for a fictional simulated species that prefers warm 

temperatures but is only present in patches within large clusters of warm temperatures. In addition 

to climate heterogeneity (changes across patches) and local SA, we also considered climate 

heterogeneity within patches, quantified via the standard deviation of climate predictors within 

geographic cells (see Choi et al. 2014; Singh and Goyal 2016).  

In addition to the proposed new framework for SDMs that considers additional predictors 

(i.e., beyond the commonly used climate heterogeneity among patches) based on local spatial 

autocorrelation of climate features and climate heterogeneity within patches, we provide an 

empirical test of its performance using amphibians as a case study. Of all vertebrate classes, 

amphibians are the most threatened by extinction, thereby highlighting their importance in 

ecological research (Catenazzi 2015). Their semi-aquatic and semi-terrestrial life history 

additionally renders them as unique and relevant bioindicators of environmental health and quality 

(Bishop et al. 2012). Amphibians are also highly sensitive to and strongly affected by climatic 

conditions, particularly precipitation and temperature (Corn 2005; Lannoo 2005; Rodríguez et al. 

2005; Qian et al. 2007; Diniz-Filho et al. 2008; Brodman 2009; Hof 2010; Qian 2010; Huang et al. 
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2011; Silva et al. 2011; Ortiz-Yusty et al. 2013; Cohen et al. 2016; Araújo et al. 2018). Variation 

(i.e., spatial structure and heterogeneity) in climatic conditions can have important biological 

consequences on their fitness, dispersal, persistence, adaptability, richness, and diversity, making 

them a well-suited organismal group for this study (Blaustein et al. 1994; Alford and Richards 

1999; Wind 1999; Boone et al. 2003; Lannoo 2005; Rodríguez et al. 2005; Smith and Green 2005; 

Brodman 2009; Miller et al. 2018; Joly 2019). Finally, amphibians are the vertebrate class with the 

highest proportion of data-deficient species (Howard and Bickford 2014). This makes them an 

especially pertinent taxonomic class on which to test our new modelling framework because we 

can expect similar if not stronger results in other vertebrate classes not affected by a lack of 

available data (such as birds and mammals) (Titley et al. 2017). Accordingly, we thus predict that 

the inclusion of both within-patch climate heterogeneity and climate spatial structure as 

explanatory variables in SDMs (in addition to the standard use of climate heterogeneity among 

patches) will strongly contribute to explaining the distributions of amphibian species. 

 

METHODS 

Amphibian data 

We obtained occurrence data for amphibians from the International Union for the Conservation of 

Nature (IUCN) in the form of global digital distribution (range) maps (IUCN 2018). IUCN range 

maps are the sole global-scale range maps available for amphibians, making them the leading 

authority as a comprehensive broad-scale taxonomic and geographic database for this vertebrate 

class (Di Marco et al. 2017). These range maps are commonly used in global and regional scale 

macroecological analyses in the biogeography, ecology, evolution, and conservation planning and 

management of amphibians (Ficetola et al. 2014; Di Marco et al. 2017).  

Climate data 

We obtained high spatial resolution (i.e., 5 x 5 km) gridded climate data in the form of 19 

bioclimatic variables (referred to here on as ‘bioclim data’) from WorldClim (see APPENDIX I 

for more details). These 19 bioclim variables encompass annual trends, seasonality, and limiting 

or extreme climatic factors, in which 11 relate to temperature, and the remaining 8, to precipitation 
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(Fick and Hijmans 2017). These data represent the average climatic conditions from the years 1970 

to 2000 and are the most used in SDMs (Fick and Hijmans 2017).  

Data preparation 

Both the IUCN range maps and WorldClim datasets were manipulated to have the same 

spatial resolution of 50 x 50 km with matching origins, with the WorldClim data containing 100 

equally-spaced geo-referenced data points within each 50 x 50 km cell. Using the sp (Pebesma and 

Bivand 2005) and sf  R packages (Pebesma 2018) to spatially align the datasets to North America, 

both global-scaled datasets were reprojected from the Pseudo-Mercator projection (EPSG: 3857) 

to the Azimuthal Equidistant projection, centered at the centroid of the continent. Only data lying 

within the boundary of continental North America and Hawaii were retained. Initially, the global 

IUCN range maps used here contained data for 6491 amphibian species, and after reducing their 

global extent to that of continental North America, 301 species remained. Next, the bioclim data 

were further reduced to match the extent of the amphibian data, which excludes the arctic and parts 

of northern Canada and Alaska. To match the resolution of the bioclim data to that of the IUCN, 

the mean (�̅�) was calculated across all 100 5 x 5 km cells encompassed within each 50 x 50 km 

“supercell” (Fig. 2) out of 7035 supercells0 

. This variation across supercells in their mean values �̅� represent climate heterogeneity 

across geographic supercells and is the most used in SDMs. Climate heterogeneity within 

geographic supercells was based on the standard deviation 𝒔 (hereafter referred as SD) across the 

100 5 x 5 km cells for each supercell (Fig. 2). These manipulations resulted in a single geo-

referenced value for the Mean �̅� and SD for each of the 19 bioclim variables lying within each 50 

x 50 km geographic supercell. 

We used Local Moran’s I to estimate the local spatial autocorrelation (LSA) for each 

climate (bioclim) variable for each geographic supercell i as: 

𝐼𝑖(𝐿𝑆𝐴) =
𝑋𝑖 − �̅�

𝑠𝑖
2 ∑ 𝜔𝑖𝑗(𝑋𝑗 − �̅�)

𝑛

𝑗=1,𝑗≠𝑖

 

where 𝑋𝑖 is the value of a given mean climate variable within the focal geographic supercell i (i.e., 

mean across all 100 5 x 5 km cells within a 50 x 50 km supercell), �̅� represents the average value 
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for the climate variable of interest across all geographic cells (i.e., North America), 𝑠𝑖
2

 is the 

variance of climate values of all geographic cells excluding the focal cell i (see below), and 

𝑋𝑗  represents the value of the variable at all other cells, excluding the focal site 𝑋𝑖  (i.e., where 𝑗 ≠

ⅈ). 𝜔𝑖𝑗 represents the weighted inverse of the pairwise distances (1/𝑑𝑖𝑗) between sites ⅈ and 𝑗. One 

can certainly consider other functions of the geographic distance (e.g., negative exponential) that 

better represent how species perceive the size of grains of their environments. Future 

implementations could consider other functions and assess which ones best fit with the species of 

interest. For completion, 𝑠𝑖
2

is calculated as: 

𝑠𝑖
2 =

∑ (𝑋𝑗 − �̅�)
2𝑛

𝑗=1,𝑗≠𝑖

𝑛 − 1
 

where n is the total number of geographic cells (here North America). Thus, 𝐼𝑖 defines the Local 

Moran’s I (LMI) for each given georeferenced cell containing bioclim data for a given climate 

variable (Anselin 1995; Zhang et al. 2008) (see Fig. 2). Because we considered 19 climate 

variables, we have a local 𝐼𝑖 for each of the 7035 supercells for each climate variable. A high 

positive LMI value indicates that a given supercell (𝑿𝒊) has a high number of surrounding 

supercells (spatial cluster) with similar values. Conversely, a high, but negative LMI value 

indicates that the given site under observation (𝑿𝒊) is clearly different in its value in relation to the 

values of neighbouring sites (𝑿𝒋) (Anselin 1995; Zhang et al. 2008; Yuan et al. 2018). These can 

also form spatial clusters, but they are isolated from one another. These clusters can describe high 

values in low value neighbourhoods (hotspots) or low values in high value neighbourhoods (cool 

spots) (Anselin 1995; Zhang et al. 2008; Yuan et al. 2018).  

 The climate data for species distribution modelling resulted in a total of 7035 50 x 50 km 

supercells containing the mean (i.e., mean (Mean) values across all 100 5 x 5 km cells within each 

7035 supercell of 50 x 50 km, representing environmental heterogeneity between supercells), the 

standard deviation (standard deviation (SD) for the 100 5 x 5 km cells within each 7035 supercell 

of 50 x 50 km, representing environmental heterogeneity within supercells) and the Local Moran’s 

I (LSA) for each geographic supercell. Again, the species data were occurrences for 301 amphibian 

species across all 7035 geographic supercells.   
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Generation of background data for SDMs  

The amphibian IUCN range maps are presence-only data. To be used in many of the 

statistical procedures to fit SDMs, they must also contain ‘absences’ (often referred as to pseudo-

absences or background absences in the SDM literature). Background absences represent the 

climatic conditions at sites (here supercells) where species have not been recorded as present 

(Peterson et al. 2011; Araújo et al. 2019; Warren et al. 2021). Background data were produced for 

each species separately within three circular buffers representing 40%, 60%, and 80% of the 

maximum geographic distance between all pairwise cells (i.e., supercells) where that species 

occurs. These pairwise distances were calculated using the Great Circle distance (a geodesic 

distance metric) on unprojected data using the 1983 North American Datum (NAD83, EPSG: 

4269), a geographic coordinate reference system. Calculating pairwise distances in space using 

projected data uses Euclidean distance, which assumes that the surface is planar. Taking the 

Euclidean distance over a geodesic surface projected onto a planar surface would cause distortions 

in these calculated distances (see Flater 2010).  

A single background point was then generated for each occurrence of each species, and this 

process was randomly generated 100 times, resulting in 100 unique possible backgrounds per 

occurrence, for each species, across 3 buffers. The climate information (�̅�, SD and LSA) for where 

the species was present and for each of the background supercells (absences) were collated together 

and used to fit an SDM (see next section). As such, 300 models (100 background data and 3 buffers) 

were fit for each species. When a given species had less than the minimum of 50 presences, we 

resampled additional presences from existing ones so that each species had at least 100 

observations (presences plus background absences). For example, if a species had 35 presences, 

then we would sample 65 background points so that combined the species data had 100 

observations (supercells). This was done to avoid model saturation (i.e., few observations 

compared to the number of predictors) when the number of present cells was too small in relation 

to the number of predictors. Note, that if we consider all climate variables, we obtain 19 x 3 = 57 

predictors (i.e., 19 climate variables times three types of predictors: Mean, SD, and LSA). Here, 

we used logistic regression to fit SDMs (see next section) which can handle well 57 predictors for 

100 observations or more. Depending on the perimeter of a given buffer, in some cases we had no 

empty cells available from which to sample background points for a particular presence. In this 
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case, these presences were recorded as such and other presences with potential background points 

outside of the original buffer were used to account for the difference. 

Species Distribution Models 

 Species distribution models were estimated using a Bayesian logistic regression model 

(model implemented after Gelman and Hill 2007) assuming a normal distribution of residuals (i.e., 

normal priors) and a prior mean for the coefficients equal to zero. We used a Bayesian approach 

for pragmatic reasons such as avoiding convergence issues that often occur with standard logistic 

regression applied to modelling species distributions. In addition, the standard maximum likelihood 

approach tends to overestimate the regression coefficients when the number of cells occupied by a 

species is small in relation to the number of background points (Hefley and Hooten 2015). The 

model was fit using the arm package (version 1.11.2; Gelman and Su 2016) in the R programming 

environment (version 4.1.1) (R Core Team 2021). Six models with different combinations of the 

three classes of predictor variables were estimated for each of the 301 species and are represented 

as presence/background (P/B) ~ : (1) all mean �̅� bioclim variables (climate heterogeneity across 

geographic supercells), (2) standard deviation s (SD) of all bioclim variables (i.e., climate 

heterogeneity within geographic supercells, i.e., local heterogeneity), (3) Local Moran’s I for all 

the mean bioclim variables (i.e., local spatial autocorrelation (LSA)), (4) the mean �̅� and standard 

deviation (SD) of all bioclim variables (i.e., climate + climate heterogeneity within cells), (5) the 

mean �̅� and local spatial autocorrelation (LSA) of all bioclim variables (i.e., climate + local climate 

spatial structure), and (6) the mean �̅�, standard deviation (SD) and local spatial autocorrelation  

(LSA) of all bioclim variables (i.e., climate + climate heterogeneity within cells + climate local 

spatial structure). Prior to their inclusion in each of the models, all climate variables were 

standardized to a mean of 0 and unit variance.  

As a case study, we contrasted in greater detail two SDM specifications for an amphibian 

species (i.e., the Great Plains toad, Anaxyrus cognatus) that had a large distribution (i.e., 1107 

occurrences), but not extensive enough for its realized niche to be represented by its range: 1) a 

predictive model using only the mean climate variables; and 2) a predictive model using all 

variables (i.e., climate, climate heterogeneity, and climate spatial structure).  

Model comparisons  
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 We compared the fitted models using the Akaike information criterion (AIC) (Akaike 

1974). Note again that 300 models (100 background data and 3 buffers) were fit for each species. 

Because AIC can only be contrasted among models sharing the same response variable (i.e., using 

the exact same presences plus background absences), we compared models using ranked AICs as 

follows. For each unique combination of presence and background data, we ranked the AICs for 

the six SDM specifications (i.e., resulting from the combination of the three classes of predictors; 

see above). The models with best fit (lowest AIC) received the highest rank (=1) and the model 

with the lowest performance received the lowest rank (= 6). We then took the mean of ranks across 

unique combinations of presence and background data for each buffer for each species. Because 

climatic suitability and preference varies greatly among amphibian species, their response to 

climate, climate heterogeneity, and climate spatial structure also vary. As such, we then calculated 

the proportion (in percentage) of species associated to each of the six ranks for each SDM 

specification. Two scenarios were considered to represent the results: scenario 1) all 301 species 

(P = 301); and scenario 2) 127 species having 50 or more presences and 900 or less presences (50 

≤ P ≤ 900). Scenario 2 was created to evaluate the results of the SDMs when filtering for species 

with too few presences (≤ 50) and a disproportionately large number of presences (≥ 900). Both 

scenarios were evaluated for each of the three buffers. Because we used species range maps (IUCN 

based), the number of presences represents the size of species ranges. Comparing model 

performance across buffers and species range sizes provides a better exploration of model 

consistency for the six SDM specifications.   

It is also costumery in SDMs to use performance metrics based on classification errors (e.g., 

AUC, i.e., area under the curve, ROC, i.e., receiver operating characteristic curve, number of true 

positives, true negatives, false positives, and false negatives). Although these metrices can be 

robust while estimating the discrimination power of one model (i.e., discriminating between 

presences and absences; but see Hand and Anagnostopoulos 2013), they are not sensitive when 

comparing across two nested models (i.e., modelling the same response variable). For the extended 

case study based on Anaxyrus cognatus, we estimated different performance metrics including the 

true positive rate (i.e., model sensitivity or TPR – the number of cells where species is predicted as 

present and is present), true negative rate (i.e., model specificity or TNR – the number of cells 

where species is predicted as absent and is absent) and balanced accuracy (i.e., (TPR + TNR)/2).   
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To estimate these performance metrics, predicted probability values need to be transformed 

into predicted presences and absences. This is done by applying a threshold probability value in 

which any predicted probability above the threshold is transformed into a presence and any 

predicted probability below the threshold is transformed into an absence. Note, however, that the 

number of occupied geographic cells over the total number of cells dictates the probability in which 

an uninformative model (i.e., none of the predictors are informative while predicting the species) 

can predict a species (Olden et al. 2002). Because models are composed of a mix of informative 

and uninformative predictors, individual threshold values need to be determined for any given 

model (Nenzén and Araújo 2011). Here, we used a repeated cross validation routine to estimate the 

probability threshold that optimized the ROC of a particular model (i.e., maximizing TPR while 

minimizing False Positive Rate, i.e., – the number of cells where a species is predicted as present 

is actually absent). Other performance metrics led to similar thresholds for our case study species. 

We resampled 50% of the data (i.e., presences and background data) to fit the model (calibration 

phase) and the remaining 50% for predicting the probability of presence in each supercell 

(validation phase). The data were resampled randomly in such a way that the proportion of 

presences and absences were similar between the training and validation sets. We repeated the 

cross validation 500 times, producing 500 sets of predicted probability values of presence. The 

same background data were used in the repeated cross-validation; other background data led to 

very similar results. We then calculated the median predicted probability value across the 500 sets 

for each supercell. Based on these median values, we then calculated the ROC for each probability 

threshold varying from 0.001 to 1.000 (at 0.001 steps, i.e., 1000 thresholds). The threshold that 

maximized ROC was used to transform all the predicted probability values into either presence or 

absence. For each of the 500 models based on this threshold, we calculated the true positive rate, 

true negative rate, and the balanced accuracy. We have also estimated the threshold for each 

validation set separately instead of using the median across sets but results were nearly identical. 

For this extended case study (of the species Anaxyrus cognatus), we have also compared the levels 

of spatial autocorrelation in model residuals between the two model specifications used (i.e., 

predictive model using only the mean climate predictors (heterogeneity across supercells) versus a 

predictive model using all classes of predictors (between-patch climate heterogeneity, within-patch 

climate heterogeneity, and climate spatial structure). Describing spatial patterns in residual 

autocorrelation using a correlogram based on global Moran’s I (across different spatial scales) is a 
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common procedure in SDM-based studies, and it allows for describing how and at which 

geographic scales different models contrast in their model performance.   

Within-model coefficient comparisons 

 Model coefficients were also evaluated to explore the variation in predictor relevance across 

different SDM specifications (i.e., different combinations of the three classes of predictor variables 

as explained early). Similarly to the ranking process used on model AICs, the absolute values of 

coefficients were ranked within-model and the median across the 100 background data for each 

species and spatial buffer was used to evaluate the distribution of coefficients across all species at 

once. Only models 1 (climate heterogeneity across geographic supercells), 2 (climate heterogeneity 

within geographic supercells), 3 (local spatial autocorrelation), and 6 (all three classes of 

predictors) were considered for this analysis. Given models 1, 2, and 3 have 19 coefficients each, 

the largest coefficient in each model was assigned a rank of 1 (i.e., highest rank) and the smallest 

coefficient was assigned a rank of 19 (i.e., lowest rank). For model 6 having 57 coefficients, the 

largest coefficient was assigned a rank of 1 and the smallest coefficient was assigned a rank of 57. 

Note again that coefficients were ranked based on their absolute values. Median values of ranks 

within model types across all their 100-background data (for each species and spatial buffer size) 

were used to estimate overall importance for each predictor. Model intercepts for all four models 

were excluded from the results. To explore species responses to predictors, we employed a 

hierarchical cluster analysis to group species based on the similarities of their responses to the 

predictors used in the last SDM specification (i.e., model with all climate predictors (Mean + SD  

+ LSA)). Predictors were then ordered according to their importance (i.e., median values of ranks 

across the 100-background data), measured by their coefficient medians across species using a 

heatmap. We have also calculated ranks for negative and positive coefficients separately. The 

results for the absolute and signed rankings were very similar and we opted for the latter as they 

were easier to represent in plots that accentuated and distinguished the importance of coefficients. 

The hierarchical cluster analysis was run using hclust from the stats R package (R Core Team 2021; 

version 4.1.1). Figures and plots were created and represented using the ggplot2 (Wickham 2016; 

version 3.3.5) and lattice (Sarkar 2008; version 0.20.44) R packages. 
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RESULTS 

Overall model comparisons 

 The SDM using only local spatial autocorrelation predictors outperformed, on average, the 

5 other model specifications regardless of the spatial buffer used to fit them (Fig. 3). SDMs based 

on mean climate variables (i.e., heterogeneity among geographic supercells) ranked second overall 

in their performance and SDMs containing only the standard deviation of climate (i.e., 

heterogeneity within geographic supercells) ranked last. Figure 3 provides more detailed 

information on how the six model specifications contrasted against one another. The SDM based 

on spatial autocorrelation ranked as the best model (lowest AIC) in 30.56%, 33.89% and 38.54% 

all species (i.e., scenario 1) across all spatial buffers (40%, 60% and 80%, respectively; Fig. 4; 

Table 1). These results were consistent regardless of the species range sizes (Table 1). The model 

considering only the mean climate (mean values between supercells) consistently ranked second 

place as the model cumulatively ranking first, second, and third best-fitted model in (minimum) 

56.7% to (maximum) 78.7% of species (Fig.4; Table 1), across all spatial scales (i.e., buffers). It is 

interesting to note that the SDM considering all predictors had the worst performance, on average, 

when considering all species (Fig. 3; Fig. 4; Table 1; Table A1 in APPENDIX II), but not for 

species with intermediate ranges, where SDMs considering only climate heterogeneity within sites 

(i.e., cells) (SD) ranked as the worst model (Table 1).   

Within-model coefficient comparisons 

 Here, we contrasted how predictors ranked within SDMs for four of the SDM specifications 

that were the most important in contrasting their performance. Figure 5 presents the rank variation 

across SDMs and species for the models considering only predictors characterizing heterogeneity 

among geographic supercells, heterogeneity within geographic supercells, or local spatial 

autocorrelation, whereas Figure 6 presents rank variation in coefficients across species for the 

model considering all three of these classes of predictors. With increasing buffer size, the 

coefficients ranking highest and lowest in their medians tended to remain constant (Fig. 5; Fig. 6). 

The order between the first and last ranked predictors did tend to vary with increasing buffer sizes 

for each model. For all models, the 60% and 80% buffers varied the least in their order of predictors 

than under 40% buffer (Fig. 5). Across SDM specifications, however, the bioclimatic predictors 
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(e.g. BIO1, BIO2, BIO3, etc. (see APPENDIX I)) ranking first through last differed across models. 

If climate heterogeneity within geographic supercells (SD of climate) and local spatial 

autocorrelation of the mean climatic variables across geographic supercells (LSA of climate) had 

no influence on the response of species distributions in North America, then the rank and order of 

each predictor would, on average, remain the same across all models and species. For model 1, the 

highest and lowest ranked predictors (Mean 13 and Mean 12, respectively; Fig. 5A) across buffers 

in increasing order of size were different than those of model 2 (SD 14 and SD 5, respectively; Fig. 

5B), model 3 (LSA 7 and LSA 15/13/15, respectively; Fig. 5C), and model 6 (mean: mean 14 and 

mean 8; SD: SD 11/18/7 and SD 5; LSA: LSA 14/7/7 and LSA 15/18/13, respectively; Fig. 6).  

 A heatmap displaying the average of ranked coefficients for the model with all predictors 

further demonstrates that predictors from all three classes of predictors can be relevant in predicting 

species distributions (Fig. 8). This model’s (i.e., model 6) heatmap predictors are not grouped by 

predictor type but are instead ordered by the importance of each predictor to the overall model 

across species (Fig. 8). It is interesting to note that the first and last third of predictors (respectively 

ranking as high and low) appear to have proportionally larger species clusters than the mid-ranked 

predictors, across all buffers (Fig. 8). This indicates that the most relevant and most irrelevant 

predictors are shared among many different groups of species whereas there is a lot of variation in 

species responses regarding coefficients with intermediate predictive power (Fig. 8).   

Case study – predictive performance and mapping  

 Predictions of the probability of presence for the Great Plains toad (A. cognatus) varied 

quite drastically between the mean model (model 1) and the all-variable model (model 6), and 

across each buffer (Fig. 9). As the buffer size increased for both predictive models, the uncertainty 

in the predictions of the probability of presence and absence decreased, as illustrated by the 

decreasing radius of yellow (signifying probability of presence values around 0.4 - 0.6) in the 

prediction maps (Fig. 9). It is evident that model 6 is the best predictive model for the probability 

of presence in this species due to the overall higher certainty in its values for predicted presences 

and absences (Fig. 9). Compared to the predictions of model 1 (climate heterogeneity among 

supercells), model 6 (with all predictors) had a much narrower halo of probability values that 

indicate neither the presence nor absence of the species (i.e., the uncertainty prediction zone 

displayed by the range of colors from light blue to orange; Fig. 9), and this halo shrinks in size as 
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buffer size increases. As buffer size increases for model 1 (climate heterogeneity among 

supercells), the extreme north-west predictions in the probability of presence of this species in 

North America begin disappearing (Fig. 9). This signal is further amplified by model 6 (i.e., with 

all predictors) where these predictions are simply non-existent. Conversely, model 6 predicts with 

mid-high certainty that A. cognatus is likely to be present in Hawaii and the intersection between 

the north-western most corner of British Columbia and the south-western most corner of Alaska, 

whereas these predictions are absent from model 1 (Fig. 9).  

  Metrics (i.e., balanced accuracy, True Positive Rate (TPR)/sensitivity, and True Negative 

Rate (TNR)/specificity) evaluating the performance of both predictive models corroborate the 

results above (Fig. 10). The balanced accuracy for the all-variable predictive model (i.e., model 6: 

median = ~92.5%, 94.0%, 94.5%; Fig. 10) is noticeably greater than that of the mean predictive 

model (i.e., model 1: median = ~88.5%, 89.0%, 90.0%; Fig. 10) for the 40%, 60%, and 80% buffers, 

respectively. Likewise, the TPR and the TNR were also greater in the all-variable predictive model 

(median TPR: ~87.0%, 92.5%, 94.0%; median TNR: ~87.0%, 96.0%, 94.0%; Fig.10) than in that 

of the mean model (median TPR: ~84.0%, 87.5%, 88.0%; median TNR: ~84.5%, 91.5%, 93.0%; 

Fig. 10) for the 40%, 60%, and 80% buffers, respectively. Precision metrics for both predictive 

models generally increased in accuracy with increasing buffer sizes. 

The predictive model with the least spatial autocorrelation in the residuals for A. cognatus 

was model 6. Incorporating climate heterogeneity within-geographic supercells and local spatial 

autocorrelation of the mean climate (i.e., SD of the bioclim variables and LSA of the mean bioclim 

variables, respectively) with the standard inclusion of climate heterogeneity between-geographic 

supercells (mean bioclimatic variables) effectively removed residual spatial autocorrelation, 

whereas it was still present under just the mean model (Fig. 11). This reduction in spatial 

autocorrelation in model 6 was further achieved with increasing buffer size. This was also true in 

the mean predictive model; spatial autocorrelation in the residuals reduced as a function of 

increasing buffer size.  
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DISCUSSION 

 Through this study, we demonstrate for the first time the importance of including the spatial 

structure of climate, such as climate heterogeneity (within-cell) and climate local spatial 

autocorrelation as predictors in species distribution models. We evaluated six different models 

testing both the individual and combined effects of various types of climate variables (i.e., climate 

heterogeneity among supercells (Mean), climate heterogeneity within supercells (SD), and climate 

local spatial autocorrelation (LSA)) on species distributions. This allowed us to explore the relative 

contributions of these predictors to model fit, the estimation of model coefficients, explaining 

species responses, and to predicting the probability of presence in the species Anaxyrus cognatus.  

As a very large number of biodiversity analyses test specific ecological hypotheses of interest and 

produce forecasting models based on fitting statistical relationships (see Guisan and Thuiller 2005), 

our results clearly demonstrate that our new class of predictors should always be considered in 

these analyses and models. Beyond demonstrating their relevance, our proposed predictors are 

particularly straightforward to implement. As such, our models are also practical in the sense that 

they can be readily implemented by biodiversity researchers, managers, and conservation planners.   

General remarks on model performance and comparison 

 Across the 301 amphibian species evaluated, we found that, contrarily to our predictions 

(see Introduction), a model including all climate predictors (i.e., Mean + SD + LSA) did not always 

best explain the distributions of species in North America. However, it did for several species. 

There are a few potential explanations for this. The first, is statistical in nature; 154 species had a 

small number of occurrences (i.e., below 50) and of these, 55 had less than five occurrences. 

Though we compensated for this by both generating a greater proportion of pseudo-absences to 

actual presences and resampling additional occurrences from already existing ones, we obtained 

results for these species using data that were deficient in terms of sample sizes. This can lead to 

low statistical power and Type II error (Button et al. 2013). Ultimately, this affects our ability to 

correctly state whether the results obtained for these low occurring species corroborates or not our 

predictions, as the results may be due to chance alone (Colquhoun 2014).  

 The following two explanations are more ecological in nature; for the 20 out of 301 

amphibian species having many occurrences (i.e., over 900), a model including all climate 
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predictors (i.e., model 6; see Methods) may not have better explained the response in their 

distributions because their realized niche may already be explained by the range of their 

occurrences. That is, they are at equilibrium with climate as they occur in all possible climatically 

suitable habitats and are, therefore, absent from those that are not (Araújo et al. 2005). Thus, for 

these species, it is not expected that the addition of spatial climatic predictors to the model explain 

their distributions better than the SDM using only the standard bioclimatic variables (i.e., climate 

heterogeneity among supercells) as model parameters. This is because these standard bioclimatic 

variables already sufficiently explain the climatic conditions governing their distributions (Araújo 

et al. 2005). The next explanation naturally pertains to species lying somewhere in between, with 

not too few but not too many occurrences. Each of these individual species responds differently to 

the climatic landscape. For some amphibian species, such as those with no distributional responses 

to climate heterogeneity and spatial structure, local-scale environmental heterogeneity may be what 

governs species richness (Couto et al. 2016). Thus, it is possible that the distributions and 

assemblages of these species are not influenced by broad-scale spatial structure in climate (such as 

climate heterogeneity within cells and climate local spatial autocorrelation). To this end, it may be 

more appropriate to consider spatial climatic predictors at the local scale (i.e., on the basis of 

microclimate) to evaluate their relative contributions to species distributions at fine spatial scales 

(Dufour et al. 2006; Couto et al. 2016). This is especially true when considering the body size, 

dispersal capacity, and thermal regulatory ability of the species or taxonomic group in question 

(Dufour et al. 2006; but see Pincebourde et al. 2016). In particular, we might expect the 

distributions of these amphibians to be more affected by climatic variation at fine spatial scales 

because they may have stronger dispersal limitations (e.g. strong dependence on moisture, aquatic 

life history or adult phase) and/or a strong reliance to specific climatic/environmental conditions 

(Provete et al. 2013; Couto et al. 2016; Pincebourde et al. 2016). In a similar vein, we might then 

expect that terrestrial species in general that have dispersal limitations and that are constrained to 

particular environmental features (e.g., a marsh, prairie grasslands) be more sensitive to spatial 

climatic processes at fine spatial scales than at broad spatial scales (Pincebourde et al. 2016). Even 

though our framework of utilizing climate spatial structure is clearly not applicable to all species, 

it has proven to be important to many. This was not always the case for most species with the model 

based on all climate predictors (i.e., Mean, SD, and LSA; model 6) at once. However, utilizing any 

of the spatial climatic variables (i.e., SD or LSA of climate) alone (i.e., models 2 and 3) or in 
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combination (models 4 and 5) with climate heterogeneity among supercells (i.e., mean bioclim 

variables), has demonstrated to be substantial in model performance and coefficient estimation, 

and most importantly, in explaining the distributions of species via model performance (i.e., AIC) 

(see Fig. 4; Table 1). In particular, the model uniquely utilizing local spatial autocorrelation of 

climate (i.e., model 3) was ranked as the best fitted model in a larger proportion of species than 

any other model. This was consistent across all buffer sizes and under both scenarios evaluated 

(see methods and see Fig. 4; Table 1). In fact, trends observed in species responses under the 

scenario including all 301 species were amplified under scenario 2 (i.e.,  species having between 

50 and 900 occurrences), because we accounted for possible loss in statistical power and increased 

Type II errors by removing species with less than 50 and more than 900 occurrences (i.e., scenario 

2; removing small sample sizes) (Button et al. 2013). For instance, under the 60% buffer in scenario 

1, ~10% of species ranked model 6 as the best fitted model. This was slightly accentuated under 

scenario 2, where ~11% of species ranked model 6 as the best fitted model (see Fig. 4; Table 1). 

This trend was better emphasized and evermore impressive for model 3 (LSA of mean bioclim 

variables), where under the same buffer for scenario 1, this model ranked as the best fitted model 

in ~33.9% of species, and in scenario 2, it ranked as the best fitted model in ~38.6% of species.  

Just for comparison, the standard SDM (i.e., model 1, mean of bioclimatic variables), 

ranked as the best-fitting model in only ~ 19.3% and 19.7 % of species under the same 60% buffer 

for scenarios 1 and 2, respectively. Had the spatial climate metrics (i.e., SD and LSA) utilized here 

not been important in explaining species distributions, then we would have expected poor model 

performance in these metrics across species. Along that same vein, we would then have also 

expected that the standard SDM (i.e., model 1) have the best overall performance across species. 

But that simply was not the case. Essentially, every spatial climate parameter applied in this study 

improved model performance for at least one species. The fact that model 1 did not actually rank 

as the first and alternated between being the second or third-best performing model demonstrates 

the importance of always considering models based on the new classes of proposed predictors (i.e., 

heterogeneity within geographic supercells and local spatial autocorrelation) in addition to the 

standard climate predictors (i.e., heterogeneity across geographic supercells).  
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Within-model coefficients 

 In the analysis ranking the coefficient estimates within-model across all iterations for all 

species, specifically for model 6 containing all classes of predictors, we observed that many of the 

coefficients that were ranked in species as having the most important contributions to their 

respective distributions were not uniquely attributed to predictors of the mean bioclim variables 

(i.e., predictors for climate heterogeneity among supercells) (see Fig.5; Fig. 6; Fig.7; Fig. 8). This 

is especially evident in the heatmap for all species (see Fig. 8) where, firstly, the highest ranked 

(e.g., top 10) predictors are a combination of the Mean, SD, and LSA of the climate. Secondly, 

there are numerous and large clusters of species in which the coefficients of these different 

predictors (i.e., Mean, SD, and LSA) were ranked as having the highest log-odds (i.e., probability) 

in explaining their distributions on the continent of North America. In essence, this means that the 

mean bioclim variables alone were not sufficient in predicting the distribution of a given species, 

further corroborating the importance of including additional spatial predictors of climate in SDMs 

(see General remarks on model performance and comparison section).  

Furthermore, it is not unexpected that some individual predictors (e.g., mean 14 (i.e., 

precipitation of the driest month), SD 11 (i.e., mean temperature of the coldest quarter), LSA 7 

(i.e., temperature annual range)) of each climate parameter evaluated cause stronger or weaker 

responses in each species, as evident by the cluster response of species to particular predictors (see 

Fig. 8). Species vary in their responses due to their individual ecological requirements, dispersal 

capacity, and life history (Büchi et al. 2009; Jimenez and Ricklefs 2014; Katayama et al. 2014; 

Provete et al. 2014; Pincebourde et al. 2016; Joly 2019; Guan et al. 2020). For instance, this would 

be akin to two species (X and Y) of frogs inhabiting a same landscape, where the distribution of 

species X is more affected by the heterogeneity of the temperature gradient within its habitat (i.e., 

SD of climate) than species Y. In the case of species Y, its distribution is more affected by the 

scattering of proximate and stably warm temperatures (i.e., LSA of climate) than that of species X 

(see Guan et al. 2020). However, though a given individual or a set of given individual predictors 

may explain the distribution of a given species better than others, it would be difficult to disentangle 

their effect without knowing their individual contributions and roles to the distribution of this 

species a priori. As such, we argue that it still be important to consider all bioclimatic variables 

rather than choose them selectively or arbitrarily. The evidence for this is derived from our 
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observations of the overall effect of each group (i.e., mean, SD, and LSA of the climate) of 

predictors. When taken altogether as a group of predictors of a same type (see Fig. 7), we observed 

that the overall effect of each group in general was important, at least in part, in explaining species’ 

distributions across all 301 species.  

Predictive models and residual spatial autocorrelation 

 To further illustrate the relevance of the new class of predictors that we are proposing, we 

selected a species (Anaxyrus cognatus) for which the inclusion of all spatial climate parameters 

(i.e., model 6) were important in its predictive model of the probability of presence. As discussed 

above (see Results and General remarks on model performance and comparison section of the 

Discussion), model 6 was not ranked as the model that performed best in most species. However, 

for some it was, and the Great Plains toad was one such species in which the inclusion of spatial 

parameters of climate greatly improved model predictions, as compared to just using the standard 

bioclimatic variables used in SDMs (i.e., between-patch climate heterogeneity) (see Fig. 9; Fig. 

10). Evidence in selecting the model with all classes of predictors (i.e., model 6) as the best 

predictive model may lie in the possibility that the mean predictive model (i.e., model 1) was not 

sensitive enough (because of the nature of the arithmetic mean) in detecting or identifying any 

underlying signals or trends in the variation of climate values across geographic supercells for 

which A. cognatus was recorded as absent. However, by including other spatial climate metrics 

that were more sensitive to the latter, it made for a model that was more robust in detecting possible 

suitable or unsuitable climate patches in which the species could occur. In fact, when visually 

comparing the two predictive models (Fig. 9), not only are the overpredicted probability of 

presence values in the north-western corner of North America absent from the all-variable 

predictive model, but the uncertainty around all the predictions in its probabilities of presence is 

significantly reduced as well. Again, this further corroborates the importance of not only between-

patch climate heterogeneity in improving the certainty and accuracy of this models’ (i.e., model 6) 

predicted values for this species, but also  climate heterogeneity within geographic supercells and 

climate local spatial autocorrelation (LSA). 

 The latter was only further supported by metrics evaluating model performance, such as 

balanced accuracy, the True Positive Rate (TPR) and the True Negative Rate (TNR) (see 

Introduction and Results; Fig. 10). In all of these, the all-variable predictive model outperformed 
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the mean predictive model. There were very clear differences between the performances of both 

models; in the mean predictive model, most values across all performance metrics fell between 

~84% to 93%, whereas values in the performance metrics for the all-variable predictive model fell 

between ~87% to 96%. Moreover, after evaluating spatial autocorrelation in the model residuals of 

both predictive models, we observed that, unsurprisingly to the results in the predicted probabilities 

of presence, the mean predicted model had both positive and negative spatial autocorrelation in its 

model residuals (see Fig. 11). This was less apparent in the all-variable predictive model where 

there were only trace amounts of both negative and positive spatial autocorrelation in its model 

residuals. Seeing as how the residuals of both predictive models are still spatially autocorrelated 

(as dismal as it may be in the case of the all-variable predictive model), however, further spatial 

analyses are encouraged to account for this. One of many possibilities and possible future 

applications of our framework is to mitigate this using spatial eigenfunction analysis with a 

variation partitioning scheme (Grifith and Peres-Neto 2006; Legendre and Legendre 2012). These 

such methods are being increasingly employed in the ecological literature to reduce spatial 

autocorrelation that is common to ecological community data (Griffith and Peres-Neto 2006; 

Legendre and Legendre 2012). 

Ecological significance 

    Our goal was to evaluate whether or not climate heterogeneity and climate spatial structure affect 

and contribute to the distributions of North American amphibian species. Our results demonstrate 

that spatial climatic processes such as climate heterogeneity (within and among geographic cells), 

and more specifically climate spatial structure, are important mechanisms underlying and 

modulating species distributions. Because the model using only climate local spatial 

autocorrelation (climate spatial structure) had the best fit in ~34% - 39% of species, it thus 

demonstrates its importance in explaining the current distributions of these species. Because our 

framework is very technical, in that it was a bulk analysis evaluating the responses of 301 

amphibian species to spatial climatic processes, we did not specifically evaluate the relationship 

between these spatial climatic processes and species-specific characteristics, such as niche-breadth, 

dispersal capacity, life history, environmental preferences (e.g., wetlands, forests.), etc. However, 

based on the mechanisms of environmental heterogeneity and environmental spatial structure in 

structuring ecological communities and species distributions (see Introduction), we expect similar 
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outcomes from spatial climatic processes. Namely, we would expect that species with strong 

dispersal capacities and wide niche-breadths have broad distributions in landscapes with weak 

climate spatial structure. They are generally more resistant to strong variations in climatic 

conditions which would otherwise render dispersal corridors for their dispersal-limited and narrow 

niche-breadth counterparts as being impassable (Büchi and Vuilleumier 2014; Donelle 2018). As 

a result, dispersal-limited species and species with narrow niche-breadths may not even be able to 

occur under these types of climatic conditions, and therefore, would have either very small 

distributions, or none at all. Because strong dispersers and species with wide niche breadths are not 

being outcompeted (by their counterparts who are stronger competitors in landscapes with strong 

climate spatial structure) in landscapes with weak climate spatial structure, they benefit from the 

availability of multiple habitat types, which allows them to have broad distributions (Büchi and 

Vuilleumier 2012; Büchi and Vuilleumier 2014; Donelle 2018). In landscapes with strong climate 

spatial structure, we might also expect the distributions of species with strong dispersal capacities 

and wide-niche breadths to be large enough to broadly encompass those of species with limited 

dispersal capacities and narrow-niche breaths. This is because they must seek refuge in sites with 

less desirable climatic conditions where their counter parts are absent. Lastly, we might also expect 

species with poor dispersal capacities and narrow niche-breadths to have small distributions that 

somewhat but not completely overlap one another in landscapes with strong climate spatial 

structures. This is because for them to persist, they must partition their climatic environment to 

coexist with one another (Donelle 2018). 

A note on buffer size in SDMs 

Our results demonstrate an important observation in the choice of buffer size used when 

sampling background data for the purposes of species distribution models; it is parameter 

warranting further attention. Though the goal of our study was not to specifically evaluate the effect 

of buffer size on model performance and fit, coefficient estimation, and prediction accuracy, we 

noticed that there were obvious and consistent trends between the latter and increasing buffer size 

(or the extent of the study region utilizing in pseudo-absence sampling). Few studies have 

specifically evaluated the effect of buffer size on model fit, performance, and prediction (Anderson 

and Raza 2010; but see Barve et al. 2011). However, we observed generally, that the medians in 

ranked model fit (AIC) across species decrease with increasing buffer size (see Fig. 3). We also 
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observed that patterns in species distributions (e.g., through our heatmap of the ranked coefficients 

among species; Fig. 8) and in the percentage of species in which certain models fit better than 

others (see Fig. 4) were amplified with increasing buffer size. This was particularly evident for our 

case study of A. cognatus, where the predictions of the probability of presence and metrics 

measuring the performance of both predictive models typically improved in accuracy with 

increasing buffer size as well. Not only were these signals more acute with increasing buffer size, 

but there also appeared to be less uncertainty in the results. We do not have any premise on which 

to support these findings in the current study, as this was not the goal of our paper. Specifically, 

further research as to the effects of various buffer sizes used in SDMs on metrics such as the True 

Skill Statistic (TSS), Area Under the Operator-Receiving Curve (AUC-ROC), Akaike Information 

Criterion, and performance (e.g., True Positive Rate, True Negative Rate, False Positive Rate, False 

Negative Rate, and balanced accuracy) of prediction models could provide some interesting 

avenues of exploration on the topic. As it stands, current research in SDMs does not provide support 

for the arbitrary selection of buffer size, nor any explanation for the possible consequence of using 

the selected buffer size on the results (e.g., Warren et al. 2021). A solid foundation has already 

been laid on this topic by Barve et al. (2011) and to some degree, Anderson and Raza (2010), but 

a lot more work is needed to fully understand the implications of our choice of buffer size on 

sampling pseudo-absences using presence-only data for SDMs. 

 

CONCLUSION 

We argue that even if a model considering all classes of predictors were not the best model 

across all species, we provide critical evidence that their usage become general practice when 

fitting and ranking different SDMs for the same species. We can only know if the species or 

multiple species under study are affected by spatial variability and patterns in climate by testing 

their effects and evaluating their relative contributions in explaining the distributional responses of 

species to climate. Furthermore, we should evaluate how and whether different predictors covary 

(i.e., spatial autocorrelation) and if they improve model predictability (Peres-Neto and Legendre 

2010; Monteiro et al. 2017); the subject of which would be important in future explorations and 

applications in the use of our framework in species distribution modelling. Future applications of 

our proposed framework could also explore the effects of other combinations of spatial climate 
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parameters (i.e., such as models 2, 3, 4, and 5) on the predictions of the probability of presence in 

other species, as a way of firstly, understanding the contributions of these explanatory variables to 

the predictions of a given species, and secondly, contrasting the predictions of each against one 

another and selecting the most parsimonious model. Another venue is to use standard model 

selection procedures (e.g., LASSO) even though they may bias our understanding of variable 

importance (Nathans et al. 2012). 

Lastly, our framework also has important implications in conservation. Here, were 

demonstrated through a case study, that the novel inclusion of within-patch climate heterogeneity 

and climate local spatial autocorrelation are important spatial climatic parameters that improve the 

performance and accuracy of predictive models in the predictions of the probability of presence in 

the Great Plains toad (Anaxyrus cognatus). Moreover, inclusion of these parameters even decreased 

residual spatial autocorrelation in the predictive model. Our study thus establishes that our standard 

inclusion of climate heterogeneity among geographic cells in SDMs may not be accurately 

predicting suitable localities in which a species of interest may be found or possibly disperse to in 

the future. Therefore, in the best interest of conserving species and allocating financial resources 

to their conservation, as well as improving our understanding of species distributions in a spatial 

context, our framework should be considered in future species distribution model applications. 
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Figure 1. Fictional example of the proposed modelling framework for a landscape with 2500 patches (50 x 

50 patches). This figure aims at facilitating the understanding of the proposed framework. (A) Map of a 

simulated climate variable (say average annual temperature) with an intermediate level of spatial 

autocorrelation. The zones within boxes represent large clusters of cells with similar temperatures that are 

relatively well isolated from other cell clusters with the same values. These clusters contain the cells with 

the largest local positive autocorrelation. (B) Map of local Moran’s I of temperature. Note that local 

autocorrelation values (negative or positive) relate to large clusters of cells regardless of whether they have 

relatively lower (blue) or warmer (red) temperatures. Boxes represent areas of positive autocorrelation only 

to facilitate visualization. Because temperatures were generated to be positively autocorrelated over the 

entire landscape, most cells have a positive local autocorrelation; (C) Cells occupied (black dots) by a 

species simulated on the basis of climate and local spatial autocorrelation. Species presences are mapped on 

the climate variable; (D) Species presences of the simulated species on the map of local spatial 

autocorrelation. Note that the species is present in cells with both relatively warm temperatures (red) and 

relatively high local spatial autocorrelation. (E) Predicted values from a logistic regression using only 

temperature as predictor and (F) predicted values considering both temperature and local autocorrelation as 

predictors. The predicted values based on a model with temperature only (panel A) would obviously predict 

its presence (high probabilities) in relatively warm sites (i.e., cells). However, when considering a model 

with both temperature and local autocorrelation, it suggests that the species occupies only large clusters of 

cells with relatively warm temperatures (contrast panels C, D and F). Small cell clusters of relatively warm 

temperatures do not seem to be able to sustain the fictional species.  
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Figure 2: Illustration of the methodology for preparing the WorldClim climate data to calculate climate 

heterogeneity between geographic cells (Mean), climate heterogeneity within geographic cells SD, and local 

Moran’s I (LSA). Spatial patterns were simulated using a spherical variogram model with mean zero and 

parameter phi = 0.05 (strong autocorrelation; panel A) and phi = 0.3 (intermediate autocorrelation; panel 

B). As in our study, the simulated landscape has geographic supercells of 50 x 50 km2 (100 cells in total 

instead of the 7035 cells as in North America). Each geographic supercell (50 x 50 km2) has climate values 

for 100 geographic cells of 5 x 5 km2. Values for these 100 cells are used to calculate mean (�̅�) and standard 
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deviation s for each supercell. The variation in mean values represent environmental heterogeneity across 

cells (patches) whereas the standard deviation represents climate heterogeneity within cells (i.e., local 

heterogeneity). The mean values �̅� are used to calculate local Moran’s I (spatial structure of climate) for 

each geographic supercell.   
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Figure 3: Ranked model fit (i.e., AIC) across amphibian species for all six species distribution model (SDM) 

specifications evaluated at different spatial scales for scenarios 1 (i.e., all 301 amphibian species) and 2 (i.e., 

127 amphibian species having between 50 and 900 presences). Each species had 300 models (100 

background data and three buffers) for each of the six SDM specifications. Model fit (i.e., AIC) was ranked 

for each of the 300 models for each species and for each SDM specification. The mean rank of each SDM 

specification over the 100 models for each buffer for each species was then calculated for (A) all 301 species 

(scenario 1) and (B) 127 species having between 50 and 900 occurrences (scenario 2). Rows A and B 

represent scenarios 1 and 2, respectively. Plot columns represent different spatial scales, where a given 

buffer size (i.e., 40%, 60%, and 80%, respectively) represents the radius (as a percentage of the maximum 

pairwise distances between a focal occurrence and each of its neighbours) within which background 

absences were sampled for species. Each SDM specification is colored accordingly for both scenarios and 

across all buffers, where blue = Mean model (i.e., model 1; between-patch climate heterogeneity), red = SD 

model (i.e., model 2; within-patch climate heterogeneity), yellow = SA model (i.e., model 3; climate local 

spatial autocorrelation), green = Mean + SD model (i.e., model 4; between-patch climate heterogeneity + 

within-patch climate heterogeneity), purple = Mean + LSA (i.e., model 5; between-patch climate 

heterogeneity + climate local spatial autocorrelation), and grey = Mean + SD + LSA (i.e., model 6; between-

patch climate heterogeneity + within-patch climate heterogeneity + climate local spatial autocorrelation). 
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Figure 4: Proportion (in percentage) of species under scenarios 1 (all 301 species) and 2 (127 species having 

between 50 and 900 occurrences) associated to mean rankings of model fit (i.e., AIC) for each of the six 

species distribution model (SDM) specifications at different spatial scales. Model fit for each SDM 

specification was ranked from smallest AIC (i.e., rank = 1) to largest AIC (i.e., rank = 6) across all 100 

backgrounds for each of the three buffers and for each species in scenario 1 and 2. The mean rank per SDM 

specification was then calculated for each species across each buffer in both scenarios and then the 

percentage of species associated to a given rank for each SDM specification was calculated. Rows represent 

scenarios, where panel (A) represents scenario 1 (all 301 amphibian species) and panel (B) represents 

scenario 2 (127 amphibian species having between 50 and 900 occurrences). Plot columns represent 

different spatial scales, where a given buffer size (i.e., 40%, 60%, and 80%, respectively) represents the 

radius (as a percentage of the maximum pairwise distances between a focal occurrence and each of its 

neighbours) within which background absences were sampled for species. Ranks are coloured and ordered 

by importance (i.e., high (lightest shade of blue = rank 1) to low (darkest shade of green = rank 6)). The 

SDM specifications are ordered and identified in the figure as follows: mean (i.e., model 1: between-patch 

climate heterogeneity), SD (i.e., model 2: within-patch climate heterogeneity), LSA (i.e., model 3: climate 

local spatial autocorrelation), Mean + SD (i.e., model 4: between-patch climate heterogeneity + within-

patch climate heterogeneity), Mean + LSA (i.e., model 5: between-patch climate heterogeneity + climate 

local spatial autocorrelation), and Mean + SD + LSA (i.e., model 6: between-patch climate heterogeneity + 

within-patch climate heterogeneity + climate local spatial autocorrelation).  
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Figure 5: Within-model median coefficients rankings across all amphibian species for species distribution 

model (SDM) specifications of the Mean, SD, and SA of climate at different spatial scales. Coefficients for 

each of the 100-background data and three buffers for each of the 301 amphibian species were ranked 

within-model from largest (rank = 1) to smallest (rank = 19). This was done for (A) the Mean model (i.e., 

model 1 – between-patch climate heterogeneity) in blue, (B) the SD  model (i.e., model 2- within-patch 

climate heterogeneity) in green, and (C) the LSA model (i.e., climate local spatial autocorrelation) in yellow. 

The median coefficient was taken over the 100-background data of each buffer, for each of the 19 model 

coefficients of each SDM specification across all species, giving a total of 301 median ranked coefficients 

per predictor and buffer, one for each species. Plot columns represent different spatial scales, where a given 

buffer size (i.e., 40% - lightest colour shade, 60% -medium colour shade, and 80% - darkest colour shade) 

represents the radius (as a percentage of the maximum pairwise distances between a focal occurrence and 

each of its neighbours) within which background absences were sampled for species. Rows represent the 

three (i.e., Mean, SD, and LSA) SDM specifications. Predictors (X-axis) of each SDM specification at each 

spatial scale, are ordered by importance, from most to least important. 
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Figure 6: Within-model median coefficients rankings across all amphibian species for the species 

distribution model (SDM) specification with all climate predictors (i.e., Mean + SD  + LSA) at different 

spatial scales. For this model (i.e., model 6 – between-patch climate heterogeneity + within-patch climate 

heterogeneity + climate local spatial autocorrelation), coefficients for each of the 100-background data and 

three buffers for each of the 301 amphibian species were ranked within-model from largest (rank = 1) to 

smallest (rank = 57). The median coefficient was then taken over the 100-background data of each buffer, 

for each of the 57 model coefficients of this model across all species, giving a total of 301 median ranked 

coefficients per predictor in each buffer, one for each species. Predictors (along the x-axis) at each spatial 
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scale are coloured according to type (i.e., Mean = blue, SD = green, LSA = yellow) and are ordered within-

group by importance, from most to least important. Plot rows represent different spatial scales, where a 

given buffer size (i.e., 40% - lightest colour shade, 60% -medium colour shade, and 80% - darkest colour 

shade) represents the radius (as a percentage of the maximum pairwise distances between a focal occurrence 

and each of its neighbours) within which background absences were sampled for species.  
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Figure 7: Group overall within-model median coefficients rankings across all amphibian species for each 

predictor type (i.e., Mean , SD, and LSA) of the species distribution model specification with all climate 

predictors at different spatial scales. For this model (i.e., model 6 – between-patch climate heterogeneity + 

within-patch climate heterogeneity + climate local spatial autocorrelation), coefficients of each predictor for 

each of the 100-background data and three buffers for each of the 301 amphibian species were ranked 

within-model from largest (rank = 1) to smallest (rank = 57). The coefficients were then grouped by 

predictor type (i.e., Mean, SD, or LSA) and the median (ranked coefficient) of each predictor (19 per type) 

was taken across all 100-background data for each species and each buffer, giving a total of 301 median 

ranked coefficients per predictor in each buffer, one for each species. Predictors (along the x-axis) at each 

spatial scale are coloured according to type (i.e., Mean= blue, SD = green, LSA = yellow). Plot columns 

represent different spatial scales, where a given buffer size (i.e., 40% - lightest colour shade, 60% -medium 

colour shade, and 80% - darkest colour shade) represents the radius (as a percentage of the maximum 

pairwise distances between a focal occurrence and each of its neighbours) within which background 

absences were sampled for species. 
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Figure 8: Heatmaps of amphibian species clustered by their response to within-model median coefficients 

rankings for the species distribution model (SDM) specification with all climate predictors (i.e., Mean  + 

SD + LSA) at different spatial scales. For this model (i.e., model 6 – between-patch climate heterogeneity 

+ within-patch climate heterogeneity + climate local spatial autocorrelation), coefficients for each of the 

100-background data and three buffers for each of the 301 amphibian species were ranked within-model 

from largest (rank = 1) to smallest (rank = 57). The median of the ranked coefficients was then taken over 

the 100-background data of each buffer, for each of the 57 model predictors of this model across all species, 

giving a total of 301 (median ranked) coefficients (i.e., one for each of the 301 species) for each of the 57 
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predictors in each buffer. The heatmap is a result of a hierarchical cluster analysis performed to group 

species based on the similarities in their responses to the 57 predictors of this SDM specification. Predictors 

along the x-axis were then ranked by their median ranked coefficient values from smallest (rank = 1) to 

largest (rank = 57) ranked median coefficient and ordered from most important (highest rank) to least 

important (lowest rank). Coefficients (one for each of the 301 amphibian species), are colored based on their 

median ranked value within each predictor. Plot rows represent different spatial scales, where a given buffer 

size (i.e., 40%, 60%, and 80%) represents the radius (as a percentage of the maximum pairwise distances 

between a focal occurrence and each of its neighbours) within which background absences were sampled 

for species.  
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Figure 9: Predictions for the probability of presence in Anaxyrus cognatus (Great Plains toad) on 

continental North America and Hawaii for the predictive species distribution model (SDM) specifications 

for both the Mean and the all-predictor (i.e., Mean + SD + LSA) climate models at different spatial scales. 

Columns represent the two SDM specifications; Mean (i.e., between-patch climate heterogeneity; left), and 

Mean + SD + LSA (i.e., between-patch climate heterogeneity + within-patch climate heterogeneity + climate 

local spatial autocorrelation; right). Plot rows represent different spatial scales, where a given buffer size 

(i.e., 40%, 60%, and 80%) represents the radius (as a percentage of the maximum pairwise distances between 

a focal occurrence and each of its neighbours) within which background absences were sampled for species. 

The x and y-axes represent the longitude and latitude (respectively) coordinates of the geographic supercells 

(in decimal degrees (DD)) over which the predictions for the probability of presence have been made. The 

colour scalebar represents predicted absences (0 = blue) to presences (1 = red). Intermediate colours in the 

scalebar (light blue to orange = values > 0 and < 1) represent uncertainties in the predictions of presences 

and absences. 
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Figure 10: Measures of model performance for the predictive species distribution model (SDM) 

specifications for both the Mean and the all-predictor (i.e., Mean + SD  + LSA) climate models at different 

spatial scales for Anaxyrus cognatus (Great Plains toad) on continental North America and Hawaii. Model 

performance was evaluated using three metrics: True Positive Rate (TPR) (i.e., number of cells where the 

species is predicted as present and is present), True Negative Rate (TNR) (i.e., the number of cells where 

the species is predicted as absent and is absent), and the balanced accuracy (i.e., (TPR + TNR)/2). Rows (y-

axes) represent the metrics of model performance for each predictive SDM specification. The x-axis 

represents the predictive SDM specifications evaluated (i.e., Mean (blue) = between-patch climate 

heterogeneity, and mean + SD + LSA (green) = between-patch climate heterogeneity + within-patch climate 

heterogeneity + climate local spatial autocorrelation). Plot columns represent different spatial scales, where 

a given buffer size (i.e., 40% - lightest colour shade, 60% - medium colour shade, and 80% - darkest colour 

shade) represents the radius (as a percentage of the maximum pairwise distances between a focal occurrence 

and each of its neighbours) within which background absences were sampled for species.  
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Figure 11: Comparison of the spatial autocorrelation of model residuals between both predictive species 

distribution model (SDM) specifications at different spatial scales for the case study species Anaxyrus 

cognatus (Great Plains toad). The predictive models tested were of the Mean (i.e., between-patch climate 

heterogeneity) climate variables (in blue) and the all-variable model (i.e., between-patch climate 

heterogeneity + within-patch climate heterogeneity + climate local spatial autocorrelation) (in green) for all 

7035 geographic supercells representing all continental North American and Hawaii. Plot columns represent 

different spatial scales, where a given buffer size (i.e., 40%, 60%, and 80%) represents the radius (as a 

percentage of the maximum pairwise distances between a focal occurrence and each of its neighbours) 

within which background absences were sampled for species. Residual spatial autocorrelation here, is 

represented as a correlogram based on global Moran’s I. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

53 

 

TABLES 

 



 

54 

 

APPENDIX I 

The 19 bioclimatic variables from WorldClim (Fick and Hijmans 2017) used in this thesis are 

listed as the following: 

BIO1 = Annual Mean Temperature 

BIO2 = Mean Diurnal Range (Mean of monthly (max temp – min temp)) 

BIO3 = Isothermality (BIO2/BIO7)*100 

BIO4 = Temperature Seasonality (standard deviation*100) 

BIO5 = Max Temperature of Warmest Month 

BIO6 = Min Temperature of Coldest Month 

BIO7 = Temperature Annual Range (BIO5-BIO6) 

BIO8 = Mean Temperature of Wettest Quarter 

BIO9 = Mean Temperature of Driest Quarter 

BIO10 = Mean Temperature of Warmest Quarter 

BIO11 = Mean Temperature of Coldest Quarter 

BIO12 = Annual Precipitation 

BIO13 = Precipitation of Wettest Month 

BIO14 = Precipitation of Driest Month 

BIO15 = Precipitation Seasonality (Coefficient of Variation) 

BIO16 = Precipitation of Wettest Quarter 

BIO17 = Precipitation of Driest Quarter 

BIO18 = Precipitation of Warmest Quarter 

BIO19 = Precipitation of Coldest Quarter 

When referencing the Mean (�̅�), SD (s), and LSA of the bioclim variables throughout the text, 

they designate the mean (i.e., between-patch climate heterogeneity), standard deviation (within-

patch climate heterogeneity), and spatial autocorrelation (climate local spatial autocorrelation) of 

each of the 19 bioclim variables listed above. 
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APPENDIX II 

 


