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Abstract

A Distributed False Data Injection Cyber-Attack Detection in
Discrete-Time Nonlinear Multi-Agent Systems Using Neural Networks

Seyed Amirreza Mousavi

In this thesis we study a detection method for the false data injection (FDI) attack class

on discrete-time nonlinear multi-agent systems. The thesis considers and models three

types of FDI attacks on multi-agent communication channels, including sensor channel,

actuator channel, and neighbouring channel. To estimate the dynamics nonlinearity of

each agent, we exploit a radial basis function neural network (RBFNN). We consider a

leader-follower multi-agent system, where the communication between agents is modeled

with an undirected graph. We proposed the weight tuning law for the RBFNN and

introduced an NN-based distributed control law for each agent. The objective of each

agent is to follow the leader and maintain the desired formation along the trajectory. We

used the Lyapunov stability analysis to prove the uniform ultimate boundedness (UUB)

of the formation error and neural network (NN) weights matrix and show that the multi-

agent system reaches the desired w while following the leader.

Moreover, we proposed a distributed attack detection method to detect the FDI attack

on each agent’s sensor, actuator, and neighbouring communication channel. We designed

an observer to estimate the state of each agent and used its estimation to form the residual

signal for each agent. Using Lyapunov stability analysis, we show that when the system

is reached its desired formation, the residual signal is UUB. We obtained abound for

the residual signal and considered the bound as the attack detection threshold. We also

provided the attack detectability condition for each agent.

The simulation results in MATLAB and Coppeliasim simulation environment are pro-

vided to demonstrate the performance of the detection methodology, proposed distributed

control law, and neural network nonlinearity estimator, including three examples.
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Chapter 1

Introduction

1.1 Literature Review

Cyber-Physical Systems (CPSs) are the integration of computation units and communi-

cation networks with physical processes [1]. In recent years, much attention has been

devoted to studying CPSs due to their modern engineering applications such as traffic

networks [2], [3], power systems [4], [5], Internet of things, and multi-agent systems [6].

Most of the aforementioned systems are connected to the Internet and wireless communi-

cation networks through communication channels that attackers can penetrate and change

the transmitted data.

Various cyber-attack detection methods have been proposed in the literature of CPSs.

In [7], a sensor coding mechanism is used to detect stealthy data injection attacks, which

is designed by an intelligent attacker with a system model knowledge. In [8], a strategy is

proposed to estimate and compensate attacks in the forward link of a nonlinear CPS. The

proposed method is using nonlinear control theory with applied neural networks to develop

cyber-attack observers for multi-agents. In [9], an adaptive framework is developed for

the control design of cyber-physical systems in the presence of simultaneous adversarial

sensor and actuator attacks. Authors in [10] investigated the attack detection problem

of setpoint attacks on CPS and proposed a control architecture exploiting a command
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governor to detect the setpoint attack on networked control systems. Most of the works in

cyber-attack detection are devoted to single-agent systems, while multi-agent systems can

be a potential target for attackers because they possess too many communication channels

and have extensive use in critical infrastructure.

With the development of computation and communication technologies, multi-agent

systems have received significant attention from researchers due to their various applica-

tions in large-scale critical infrastructures such as smart grids systems, water distribution

networks, telecommunication networks, and transportation systems [2–6]. Multi-agent sys-

tems are connected through communication channels that increase their vulnerability to

external cyber-attacks. Security concerns related to these systems include physical security

and cyber security, and combined cyber-physical threats. Various types of cyber-attacks

have been reported in recent years [11–13], , which can deteriorate physical systems’

performance and ultimately lead to failures or unsafe behavior. As a result, significant

attention has been devoted to study the security of multi-agent systems. In multi-agent

systems, we consider that each agent has three types of communication channels: (i) actu-

ator channel, which transfers the control signal from the controller to the plant; (ii) sensor

channel, which transfers the system output (the sensor measurements) from the agent

plant to the controller; and (iii) neighboring communication channels through which each

agent receives neighbors’ data. These vulnerable communication channels are prone to

cyber-physical attacks [14,15].

Cyber-attack detection methods have been proposed in the literature for linear multi-

agent systems [15–17]. In [15], the problem of cyber-attacks detection on the communi-

cation network of linear interconnected systems and multi-agent systems governed by a

consensus-based control was investigated, and a distributed residual-based attack detection

method was proposed for the attack detection on the neighboring communication channels.

Authors in [16], proposed a data-driven switching controller to obtain the resilient control

for the discrete-time linear multi-agent network under unconfined cyber-attacks. In [17],
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the attack detection problem for the interconnected stochastic systems was studied, where

centralized and decentralized detection strategies for detecting attacks are developed, and

the detection performances are characterized. In [18], authors presented a distributed

False Data Injection (FDI) attack detection strategy for networked robots controlled by

a distributed observer–controller scheme. A vector of residuals was introduced based on

the designed observer, where fault detectability and isolability conditions were derived.

Results in [19] offer a distributed fault detection filtering approach for a class of

continuous-time, nonlinear, multi-agent systems with uncertainties, measurement noise,

and disturbances. In [20], a distributed event-triggered consensus problem for continuous-

time, nonlinear, multi-agent systems with general directed communication topology un-

der cyber-attacks has been addressed. Some distributed methods for attack detection in

multi-agent systems have been recently proposed [21–26]. Most of the works consider

linear or continuous models for multi-agent systems. Moreover, some methods assume

that each agent is aware of the entire topology of the multi-agent system (centralized ap-

proach), [14, 18]. In this thesis, we consider a discrete-time nonlinear multi-agent system

controlled by a displacement-based controller where each agent has access to its neighbors’

information.

While some results in the literature assume that the neighboring communication chan-

nels are safe and investigate the cyber-attack detection problem on the actuator and sensor

channels [21,27,28], other works consider that all the agents are safe, and the attacker can

breach and compromise only the neighboring communication channels [15,29,30]. In this

thesis, we assume that sensors, actuators, and neighboring communication channels can

be simultaneously attacked, which is different from existing results in the literature.

1.2 Thesis Motivation and Contributions

In this thesis, we propose a cyber-attack detection method that relies on locally available

information and communicated data by neighboring agents. We present a cyber-attack
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detection method in discrete-time, nonlinear multi-agent systems with an unknown non-

linearity in system dynamics using a neural network (NN)-based observer. Through Lya-

punov stability analysis, a threshold is obtained for the proposed residual-based detector

to detect agents’ communication channels’ attacks. We also developed a displacement-

based method to maintain the desired formation. The Lyapunov stability theory is used

to prove the uniform ultimate boundedness (UUB) of the formation error and to provide

a bound for the formation error.

In multi-agent systems, consensus and formation control are two essential problems of

interest. In consensus control, agents interact locally in order to reach a common value

of a certain state [31]. The formation is defined as a configuration in a space where

each agent is at the desired distance or angle from its neighbors [32]. In this thesis, the

attack detection problem is addressed for the formation control of a class of discrete-time,

nonlinear multi-agent systems. In the displacement-based formation control of multi-

agent systems, it is necessary for each agent to communicate with its neighboring agents

to achieve the formation objective [33]. However, communication channels are vulnerable

to cyber-attacks. By changing the communication channels data, agents can receive the

corrupted data, which can disturb the formation and cause collisions. Therefore, the

security of the communication channels data is of paramount importance.

The attack model studied in this thesis is a false data injection attack on the actua-

tor channel, sensor channel, and neighboring communication channels. Due to unknown

nonlinearity in the system dynamics, the attacker is unable to know the agents’ system

dynamics. As a result, the covert attack studied in [23,34] cannot be applied here.

Compared with the literature on cyber-attack detection in multi-agent systems, the

main contributions of this thesis can be summarized as follows:

(i) An NN observer-based attack detection scheme for uncertain, discrete-time, nonlinear

multi-agent systems is developed, and UUB of detection residual of each agent is

proven.
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(ii) The attack detectability condition is derived when three different types of commu-

nication channels are under FDI attacks. A distributed, NN-based observer and the

controller for the formation control of discrete-time, nonlinear multi-agent systems

are established.

(iii) The NN-based controller is used to compensate for unknown nonlinearities in the

dynamics of discrete-time multi-agent systems, where UUB of formation error and

NN weights estimation errors are rigorously proven.

(iv) It is demonstrated that the proposed system can detect FDI attacks on commu-

nication channels of multi-agent systems by implementing the proposed method in

MATLAB and CoppeliaSim robot simulation environment.

1.3 Publication

• A. Mousavi, K. Aryankia, and R. R. Selmic, ”Cyber-attack detection in

discrete-time nonlinear multi-agent systems using neural networks,” In

2021 IEEE Conference on Control Technology and Applications (CCTA).

IEEE, 2021. [35]

we presented an observer-based attack detection method to detect FDI attacks in

neighboring communication channels of discrete-time, nonlinear multi-agent systems

when the leader-follower graph topology is strongly connected.

• R. R. Selmic, A. Mousavi, and K. Aryankia, “A Distributed FDI Cyber-

Attack Detection in Discrete-Time Nonlinear Multi-Agent Systems Using

Neural Networks” In European Journal of Control (Under review). [36]

In this paper, we study a more general attack detection problem for a class of

discrete-time, nonlinear multi-agent systems when their sensor, actuator, and neigh-

boring communication channels are simultaneously compromised by cyber-attacks.

The leader-follower graph topology is assumed to contain a spanning tree with the
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leader as its root. We also provide a rigorous proof that the residual signal and

formation error are UUB.

1.4 Thesis Overview

This thesis is organized as follows:

• In Chapter 2, the main concepts and definitions used along the thesis are defined

and presented. Moreover, the basis of formation control and neural network are

summarized and reviewed.

• In Chapter 3 an NN is developed to approximate the unknown nonlinearity dynam-

ics of each agent, and a distributed displacement-based controller is proposed to

maintain the desired formation. The Lyapunov stability analysis is used to prove

the UUB of formation error.

• In Chapter 4, a distributed observer is proposed for the attack detection purpose,

and the Lypunoc analysis is used to prove the UUB of attack detection residual.

Moreover, the attack detectability condition is given.

• In Chapter 5, the performance of the proposed cyber-attack detection method is

demonstrated through the simulation results in MATLAB and CoppeliaSim.

• In Chapter 6, the conclusion of this thesis, by summarizing the proposed results, is

provided, and the future research directions are outlined.
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Chapter 2

Preliminaries and Definitions

2.1 Graph Theory

In multi-agent systems, interaction among the agents is usually modeled by graphs. This

thesis considers the weighted undirected graph to model interactions and communication

among agents [37]. Let an undirected graph G be given by G = (V , E), where the set of

vertices is V = {υ1, υ2, ..., υN}, and the set of edges is E ⊆ V ×V . An edge in G is denoted

by a pair (υi, υj). In the multi-agent system, the node υi denotes the i -th agent, and an

unordered pair of (υi, υj) ∈ E , if the agent i and agent j can communicate with each other.

Nodes i and j is are neighbors if (υj, υi) ∈ E .

Definition 1. The neighbor set of i-th agent, Ni = {j|(υj, υi) ∈ E} is the set of all

adjacent agents to the agent i.

Non-negative symmetric matrix A = [aij] is adjacency matrix, where aij > 0 whenever

there is an edge between and between node i and node j, otherwise aij = 0. Clearly,

for undirected graphs aij = aji. Throughout this thesis, it is assumed that there are no

self-loops, i.e., aii = 0, and the graph topology is fixed. The element aij is the weight

7



between nodes υi and υj. The weighted degree of node υi, d(υi), is defined as follows:

d(υi) =
∑
j∈Ni

aij. (1)

The degree matrix ∆ ∈ RN×N is defined as ∆ = diag(d(υi)), and the Laplacian is defined

as L = ∆−A. A path from node i to node j is a sequence of successive edges in the form

of {(υi, υm), (υm, υp), ..., (υk, υj)}. An undirected graph is said to have a spanning tree, if

there exists a path from a node (called the root) to every other node in the graph [38].

We use υl to annotate the leader of the multi-agent system, which generates a reference

signal for other nodes to follow. The leader only sends the information to other agents and

cannot receive any information from other agents. We define the leader-followers graph

as a graph that contains all followers and the leader. We consider that the leader-follower

graph topology contains a spanning tree with the root node being the leader.

2.2 Notation

In this thesis, x+ represents one-step ahead state, tr(.) denotes the trace of matrix, and

1N ∈ RN is the vector of 1’s. For an arbitrary matrix A, σ̄(A) denotes the maximum

singular value of the matrix and σ(A) denotes the minimum singular value of the matrix

A. For a vector x the notation ||x|| denotes Euclidean norm and the Frobenius norm of a

matrix A is ||A||F =
√
tr(ATA). With In, we denote an n × n identity matrix. With ⊗

we denote a Kronecker product.

2.3 Formation Control of Multi-Agent Systems

In multi-agent systems, formation control refers to the design of a control law to stabilize

each agent’s position with respect to its neighbours in order to maintain a predefined

geometrical shape [39]. In the formation control of multi-agent systems, the interaction
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among agents determines agents’ control variables and sensed variables [33]. A general

categorization of formation control includes position-based control, displacement-based

control, and distance-based control [40].

Position-based control: In the position-based formation control of multi-agent systems,

each agent actively controls its position, and each agent reaches its desired positions with-

out interacting with other agents. In the position-based control, each agent senses its

positions with respect to a global coordinate system to control its positions to achieve the

desired formation prescribed by the desired framework with respect to the global coordi-

nate system. As a result, this type of formation control requires high sensing capability

while the interaction among the agents is unnecessary. Interactions among the agents

can be considered. In the position-based control, interactions among agents improves the

control performance and maintains the formation along with the system trajectory [33].

Displacement-based control: In displacement-based formation control of the multi-

agent system, each agent maintains the desired relative position (displacements) from its

neighbors. It is assumed that all of the agents’ local reference frames are aligned, i.e.

agents’ coordinate systems are orientation-aligned local coordinate systems [41]. In this

approach, the control variable of each agent is its neighbors’ displacement, and each agent

controls its relative position with respect to its neighboring agents [42].

Distance-based control: In distance-based formation control of multi-agent systems,

each agent controls the inter-agent distances of its neighboring agents. In distance-based

formation control, agents need to interact to maintain their formation as a rigid body, and

interaction topology among agents is usually described by graph rigidity or persistence [43].

Since agents control only their inter-agent distances to achieve the predefined desired

distances, this type of formation control requires less sensing capability than other methods

[33]. Agents can measure the relative positions of their adjacent agents within the local

coordinate frames, and adjust the norms of the relative positions to control their formation

[42]. On the other hand, this method requires many interactions among agents, which plays

9



Position-based Displacement-based Distance-based

Control variables Absolute position
Relative positions

of neighbors
Norms of relative positions of neighbors

(Interagent distances)

Coordinate systems Global coordinate
Orientation-aligned

local coordinate systems
Local coordinate systems

Table 1: Comparison of different types of formation control.

a crucial role in the control of multi-agent systems.

In Table 1, we compare the diffident types of formation control [33,42]. Displacement-

based control is moderate in terms of both sensing capability and interaction topology

compared to the other approaches. In this thesis, we consider a leader-followers multi-

agent system. We consider that all agents measure their states with respect to a global

coordinate system. The control objective is to maintain the desired formation along their

trajectory and follow the leader. In the leader-followers scenario, the leader knows the

reference trajectory, and other agents should follow the leader while maintaining the de-

sired formation. To achieve this goal, we use the displacement-based control approach.

The consensus-based formation control can be categorized as a displacement-based control

where the desired relative displacements of agents are set to zero.

2.4 Discrete-Time Nonlinear Multi-Agent Systems

In this thesis, we consider that the physical system is modeled as a nonlinear, discrete-

time, multi-agent system that consists of N agents. The dynamics of each agent is given

by

x+
i = fi(xi) + ui + wi, i ∈ {1, 2, .., N}, (2)

where xi ∈ Rn is the system state, ui ∈ Rn is the control input, and w ∈ Rn is the

disturbance. Nonlinear functions fi(.) ∈ Rn → Rn is assumed to be locally Lipschitz. We

also consider that the nonlinear dynamics fi and disturbance wi are unknown. The overall
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system dynamics can be written as

x+ = f(x) + u+ w, (3)

where the stacked state vector is x = [xT
1 , ..., x

T
N ]

T ∈ RnN , f(x) = [fT
1 (x1), ..., f

T
N(xN)]

T ∈

RnN → RnN , stacked control input u = [uT
1 , ..., u

T
N ]

T ∈ RnN , and w = [wT
1 , ..., w

T
N ]

T ∈ RnN .

Assumption 1. The unknown disturbance w is bounded by ||w|| ≤ wM , with wM a fixed

bound.

The leader dynamics is defined as follows:

x+
l = fl(xl), (4)

where fl ∈ Rn, and satisfies the following assumption.

Assumption 2. The unknown leader dynamics fl(xl) is bounded by ||fl(xl)|| ≤ FM , with

a fixed bound FM . The leader trajectory xl is in a bounded region, i.e., ||xl(t)|| < XM ,∀t,

with XM a constant bound.

Assumption 3. The leader trajectory xl is in a bounded region, i.e., ||xl(t)|| < XM ,∀t,

with XM a constant bound.

Assumption 4. The leader-follower graph topology is a weighted undirected connected

graph that contains a spanning tree with the root node being the leader.

Definition 2 ([44]). Consider the following nonlinear system

x+ = F (x, t), (5)

where x denotes the system state, and F is a nonlinear function. Let the initial time be

t0, and the initial condition be x(t0) = x0. The solution of (5) is said to be uniformly

ultimately bounded (UUB), if for all initial states x0, there exists a b ∈ R and a time

Tf (c, x0) ∈ Z+ such that ||x|| ≤ b for all t ≥ t0 + Tf .
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2.5 Cyber-Attack Classification

Attacks in multi-agent systems can be categorized as attacks on agents (nodes) and attacks

on communication links (edges) [45]. Manipulating agents’ sensors and actuators’ data

are considered as an attack on the node. Changing and jamming the neighboring data

in a multi-agent system can be considered as an attack on edge. In the attack on nodes,

the attacker injects disruptive signals into the sensor or actuator channels of the agents.

In addition, sensor spoofing can be considered in this category. In an edge attack, the

attacker launches a false signal into the neighboring communication channels of an agent

to interfere with the original signal before it reaches the receiver or the attacker keeps the

neighboring communication channel busy to avoid the transmission of the original signal.

In this thesis, we study the FDI attack on sensor channel and actuator channel of

agents as an attack on nodes and study the FDI attack on neighboring communication

channels of multi-agent systems as the attacks on edges.

2.5.1 Attack Model

This thesis focuses on the class of FDI attacks that alter the data transmitted through

communication channels. Different FDI attacks can be performed according to the at-

tacker’s available resources. In this thesis, we focus on the detection of FDIs attacks on

the sensor, actuator, and neighboring channels.

In this subsection, different types of FDI attack on distributed multi-agent systems

are modeled [14]. We consider that the attacker has access to the agent communication

channels, and it can change the actuator, sensor and neighboring communication channels

data of each agents.

i) Attack on the actuator channel: Each agent uses the actuator channel to send

its control input to the plant, and the attacker can perform the FDI attack on this channel
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and change the control input. The attack on the actuator channel can be modelled as

uc
i = ui + κiu

a
i , (6)

where uc
i is the corrupted control input, ua

i is the attacker signal, and flag κi = 1 when

there is an attack in the actuator channel (κi = 0 in the attack-free case),

κi =


1, if agent i is under actuator attack,

0, otherwise.

(7)

ii) Attack on the sensor channel: The system output is sent to the controller

through the sensor channel, and the attacker can change the sensor data by injecting

some false data into the sensor channel. We consider that the system’s state is measurable

by sensors [46]. As a result, the attack on the sensor channel can be modelled as follows:

xc
i = xi + λix

a
i , (8)

where xc
i is the corrupted sensor data, xa

i is the attacker signal, and flag λi = 0 when there

is not an attack on sensor channel, otherwise λi = 1,

λi =


1, if agent i is under sensor attack,

0, otherwise.

(9)

Since the controller uses the sensor data to generate control input, by corrupting the

sensor channel data, the attacker can affect the control input.

iii) Attack on neighboring communication channels: We consider that each

agent’s control input is a function of the agent’s sensor data and its neighboring data.

Define ζi as aggregated outputs of i-th agent’s neighbors. The agent i receives the data

from its neighboring communication channels (see Fig. 1). The i-th agent’s control input
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Figure 1: System architecture of the agent i.

can be expressed by a known function Fi as follows:

ui = Fi(xi, ζi). (10)

Let x̄j denotes the sensor measurement of the agent j that is sent to its neighbors,

including agent i ∈ Nj. Attack on neighboring communication channel of agent i occurs

when the attacker changes the sensor data of agent j ∈ Ni by injecting x̄a
ji. Therefore,

neighboring communication channel of agent i, in the presence of attacks, can be modelled

as [15]:

x̄c
ji = x̄j +Ψi

jx̄
a
ji, (11)

where x̄c
ji is the corrupted sensor data that agent i receives form agent j, and flag Ψi

j = 1

when there is an attack on neighboring communication channels and the attacker change

the data that agent i receives form agent j, otherwise Ψi
j = 0,

Ψi
j =


1, if the attacker change the data that agent i receives form agent j,

0, otherwise.

(12)
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Agent i Agent j

Other agents

+

Figure 2: Multi-agent system under attack in neighboring communication channel.

When the attacker, by injecting x̄a
ji, changes x̄j to x̄

c
ji, the ζi is changed to ζci . Therefore,

we have the following expression for the corrupted control input of agent i:

u′
i = Fi(xi, ζ

c
i ), (13)

where u′
i is the i-th agent’s control input, which has been affected by the attack on the

agent’s neighboring communication channels. Consequently, an attack on neighboring

communication channels affects the agent’s control input.

Remark 1. The x̄j is the sensor data that agent j sends to its neighbors and it is equal

to xj.

All types of attacks can compromise the agent’s control input, which can lead to de-

grading the control performance, formation and possibly causing collision between agents.

Remark 2. Note that an attack on the actuator channel directly affects the agent plant,

and an attack on the sensor and neighboring communication channels directly affects the

controller and observer (see Fig. 1).

We propose a distributed, residual-based attack detection method to detect the stated

types of attacks. The attack detection method’s objective is to enable each agent to
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detect attacks in its communication channels. By exploiting the proposed attack detection

method, each agent can detect attacks on its sensor channel, actuator channel, and its

neighboring communication channels.

2.6 Neural Networks

Neural networks are modelled based on the nervous system, with the neuron as the basic

unit. In the context of the control system, neural networks have vast applications such

as system identification, and nonlinearity estimation and adaptive control of nonlinear

control systems. In this subsection, we provide a brief background on neural networks

(NN) and model an NN to exploit it in closed-loop control systems. In the closed-loop

control systems, NN can provide stabilizing controls for the system and maintain all its

weights bounded.

2.6.1 Radial Basis Function Neural Networks

One of the most significant capabilities of neural networks is the function approximation

property. NN is used to cope with the demand for controlling the uncertain and unknown

nonlinear control systems using the capability of learning online through the stable closed-

loop control process and exploiting the learned knowledge in the control tasks to improve

the control performance and assure the stability of the closed-loop system.

The main feature of adaptive control is to approximate the unknown functions through

online adjustment of controller parameters. This feature helps a designer to achieve the

desired level for control performance. However, adaptive control’s adjusting ability is lim-

ited since it needs to recalculate (or re-adapt) the controller parameters even for repeating

the same control task.

Using the adaptive neural network enables us to approximate the unknown nonlinearity

of system dynamics. Moreover, the adaptive tuning law establishes the boundedness of

the neural network weights matrix in closed-loop systems. To derive the adaptive law, we
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Figure 3: Gaussian activation function.

proposed to use the Lyapunov stability theorem.

In this thesis we used the RBF network for the function approximation, which is

developed in [47]. The RBF networks belong to the class of linear in parameter neural

networks. By considering the RBFNN input as x = [x1, ..., xn]
T ∈ R

n, its output as

y = [y1, ..., ym]
T ∈ Rm and ϑ neurons in hidden layers over a compact set Ωx ⊂ R

n, the

RBFNN can be expressed as

yi =
ϑ∑

j=1

wijϕj(x) = wT
i φ(x), i = 1, ...,m, (14)

where wi = [wi1, wi2, . . . , wiϑ]
T is the weight vector where wij is the weight between neuron

j and output i. The activation function ϕi(x) is a radial basis function with qi ∈ R
n as the

center of the activation function, and pi as the width of the Gaussian functions. Moreover

φ(x) = [ϕ1(x), ..., ϕϑ(x)]
T , and the Gaussian activation function is defined as

ϕi(x) = exp

[
− (x− qi)

T (x− qi)

p2i

]
, i = 1, 2, . . . , ϑ. (15)

By defining the weights matrix W = [w1, ..., wm] the RBFNN can be re-written as
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Input Layer Output LayerHidden Layer

Figure 4: RBF neural network.

f(x) = W Tφ(x). (16)

In the next chapter, the described RBFNN is used for the approximation of the un-

known system dynamics.
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Chapter 3

A Formation Control Design for

Discrete-Time Nonlinear

Multi-Agent Systems

3.1 Problem Formulation

For the multi-agent described by (2), consisting of one leader and N followers, the objective

of the system is to reach the desired formation shape and maintain the desired form along

their trajectory. As a result, the objective of each agent can be defined as to reach a

desired relative position with respect to its neighbouring agents while following the leader.

We designed a distributed control law such that the relative position between neighbouring

agents i and j converges to the bounded, desired, relative inter-agent displacement dij:

xi − xj → dij, i, j ∈ {1, ..., N}. (17)

We define the desired, relative inter-agent displacement between agent i and the leader as

di. As a result we can represent dij = di−dj as a desired relative inter-agent displacement

between agent i and agent j. We define the tracking error between the agent i and the
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leader as

δi = xl − xi − di. (18)

The local formation error of i-th agent is given by

ei =
∑
j∈Ni

aij(xj − xi − dji) + bi(xl − xi − di), (19)

where bi is the direct gain from the leader to agent i and bi ≥ 0, with bi > 0 for at least

one agent. Consequently, there exists at least one agent (i-th) such that the leader sends

its information to it, i.e. bi ̸= 0.

Remark 3. The existence of a communication link between the leader and at least one of

the agents is a standard consideration that can be seen in the formation control problem

of multi-agent systems [48–51]. This consideration relaxes Assumption 5 in [52], where

authors considered that the agents are aware of the leader’s information.

Let e = [eT1 , ..., e
T
N ]

T ∈ RnN , and matrix B = diag(bi). Similar to [53], the global form

of formation error is given by

e = −[(L+B)⊗ In](x− 1N ⊗ xl − d), (20)

where d = [dT1 , ..., d
T
N ]

T ∈ RnN . Since we considered bi ̸= 0 for at least one agent, matrix

L + B is full-rank and invertible [51]. The desired relative position between agents and

the leader is bounded by ||d|| < dM , with dM a fixed bound.

By defining the stacked tracking error as δ = [δT1 , ..., δ
T
N ]

T ∈ RnN the global formation

error can be rewritten as

e = −[(L+B)⊗ In]δ. (21)

The global formation error dynamics is given by

e+ = −[(L+B)⊗ In](f(x) + u+ w − 1N ⊗ x+
l − d). (22)
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Lemma 1 ([51]). Let the undirected graph contains a spanning tree, with the leader as a

root and ∃bi ̸= 0. Then, ||δ|| ≤ ||e||/σ(L+B).

Lemma 2. Let L̄ ∈ Rn×n be a positive definite symmetric matrix. Select a positive

diagonal matrix K ∈ Rn×n such that σ̄(K) < 1/σ̄(L̄), and define

P = I −KL̄. (23)

Then, ||P || < 1.

Proof. Let σ̄(K) < 1/σ̄(L̄), and λi(KL̄) be i-th eigenvalue of KL̄. Using the fact that for

a positive definite symmetric matrix A, λmax(A) ≤ σ̄(A) [54], one has

λi(KL̄) ≤λmax(K)λmax(L̄) ≤ σ̄(K)σ̄(L̄) < 1. (24)

As matrix KL̄ is a positive definite matrix, it follows that 0 < λi(KL̄) < 1, for i ∈

{1, ..., n}, which implies 0 < λi(P ) < 1. For a symmetric matrix P , one can get ||P || =√
λmax(P TP ) = |λmax(P )|, and consequently ||P || < 1.

Remark 4. Note that if di = 0 for i ∈ {1, ..., N} in (18), the formation control setup

becomes a consensus problem [33], where the result of this thesis can still be applied.

3.2 Nonlinearity Dynamics Estimation Using Neural

Network

To design a controller for the multi-agent system (2), it is required to approximate the

nonlinearity fi(xi). To approximate the unknown nonlinear dynamics, each agent has an

RBFNN.

It has been proven in [55] that an RBF network (16), with sufficiently large number

of nodes ϑ and appropriately placed node centers and variances, can approximate any
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continuous function fi(x) : Ωx → Rm over a compact set Ωx ⊂ Rn to an arbitrary accuracy

as

fi(xi) = W T
i ϕi(xi) + ϵi ∀x ∈ Ωx (25)

where the Wi ∈ Rϑi×n is the desired constant unknown weights matrix, ϕi(xi) ∈ Rϑi×n is

an NN activation function, and ϵi is the NN approximation error. The approximation of

the overall dynamics nonlinearity f(x) = [fT
1 (x1), ..., f

T
N(xN)]

T can be written as

f(x) = W Tϕ(x) + ϵ, (26)

where the overall ideal NN weights matrix W is defined as W = diag(W1, ...,WN), ϕ(x) =

[ϕT
1 (x1), ..., ϕ

T
N(xN)]

T , and ϵ = [ϵT1 , ..., ϵ
T
N ]

T .

The estimation of the nonlinearity in the dynamics of multi-agent systems using RBFNN

is given by

f̂i(xi) = Ŵ T
i ϕi(xi), (27)

where Ŵi is the current estimated NN weights matrix. The overall nonlinearity f(x) over

a compact set Ω can be estimated as follows:

f̂(x) = Ŵ Tϕ(x), (28)

where the estimation of the ideal weights matrix Ŵ is defined as Ŵ = diag(Ŵ1, ..., ŴN).

The ideal weight vector W is an artificial quantity required for analytical purposes, and

is defined as the value of Ŵ that minimizes |ϵ| for all x ∈ Ωx ⊂ Rn, i.e.

W ≜ arg min
W∈Rϑ×m

{
sup
x∈Ωx

∣∣∣f(x)− Ŵ Tϕ(x)
∣∣∣} (29)

From (15) one can write ||ϕ(x)|| ≤ ϕM , with a fixed bound ϕM . Considering sufficiently

large number of neurons, the NN approximation error ϵ is bounded, i.e., ||ϵ|| ≤ ϵM [47].

We use a standard assumption [48,56–58] as follows:
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Assumption 5. Unknown ideal NN weights matrix W is bounded, i.e., ||W ||F ≤ WM ,

with a fixed bound WM .

3.3 Control Design

Based on the defined control objective for the leader-followers multi-agent system (2)

which is maintaining the desired formation along the trajectory, and by considering the

estimation of unknown nonlinearity f̂i(xi) as (27), for each agent we propose the following

distributed control law

ui = −f̂i(xi) + xi + kiei, (30)

where the positive diagonal matrix ki ∈ Rn×n is the control gain. By using (27), the

control law (30) can be rewritten as

ui = −Ŵ T
i ϕi(xi) + xi + kiei, (31)

or in the stacked form as

u = −Ŵ Tϕ(x) + x+Ke, (32)

where K = diag(k1, ..., kN). By defining W̃i = Wi − Ŵi, the function estimation error is

given by

f̃(x) = f(x)− f̂(x) = W̃ Tϕ(x) + ϵ, (33)

with W̃ = diag(W̃i) being the NN weights matrix estimation error. Let the observer error

x̃i = xi − x̂i be the attack detection residual. Then, one can obtain the residual dynamics

as

x̃+
i = Gix̃i + W̃ T

i ϕi(xi) + ϵi + wi + ei. (34)
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Let x̃ = [x̃T
1 , ..., x̃

T
N ]

T ∈ RnN . The stacked residual dynamics is given by

x̃+ = Gx̃+ W̃ Tϕ(x) + w + ϵ+ e, (35)

where G = diag(G1, ..., GN) ∈ RnN×nN . Motivated by [59], let us consider the NN weights

tuning law as follows

Ŵ+
i =Ŵi + αϕi(xi)h̄

T
i − FiŴi, (36)

where constant α > 0, Fi = γIϑi
, with 0 < γ < 1, and

h̄i = W̃ T
i ϕi(xi) + ϵi + wi. (37)

Theorem 1. Consider a multi-agent system in the absence of attack that is modelled

by a weighted undirected graph, with agents modelled by (2), under the Assumptions 1-5.

Select the control law (31), and the NN weights matrix tuning law (36). If the following

conditions hold

σ̄(K) <
1

σ̄(L̄)
, (38)

α <
1

ϕ2
M

, (39)

with L̄ = (L+B)⊗ In, and P = INn −KL̄, then the formation error and the NN weights

matrix estimation error are UUB, with practical bounds given by (56) and (59) respectively.

Proof. Consider the following Lyapunov function candidate

V =
1

c
eT e+

1

α
tr(W̃ T W̃ ), (40)
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where c = σ̄2(L̄)+σ̄2(L̄)σ̄2(P̄ )
1−σ̄2(P )

. From Lemma 2, one can conclude that c > 0. Let us define

µ = w + ϵ. (41)

From Assumption 1, µ is bounded by

||µ|| ≤ µM , (42)

where µM = ϵm + wM . Moreover, let us define

ν = 1N ⊗ xl − 1N ⊗ fl(xl). (43)

Then one has

||ν|| ≤ νM , (44)

where νM can be obtained using Assumptions 2 and 3. By defining

θ = W̃ Tϕ(x), (45)

from (22) the first difference of Lyapunov function candidate V1 = 1
c
eT e is derived as

follows:

∆V1 =− 1

c
eT (I − P TP )e− 2

c
θT L̄TPe− 2

c
µT L̄TPe− 2

c
νT L̄TPe+

1

c
θT L̄T L̄θ

+
2

c
θT L̄T L̄µ+

2

c
θT L̄T L̄ν +

1

c
µT L̄T L̄µ+

1

c
νT L̄T L̄ν +

1

c
µT L̄T L̄ν,

(46)

and from (36), the first difference of Lyapunov function candidate V2 = 1
α
tr(W̃ T W̃ ) is

derived as

∆V2 =
1

α
tr[−2αW̃ TϕϕT W̃ − 2αµϕT W̃ + 2γW̃ TFŴ + α2W̃ TϕϕTϕϕT W̃

+ 2α2W̃ϕϕTϕµT − 2αW̃ϕϕTFŴ + α2µϕTϕµT − 2αµϕTFŴ + Ŵ TF TFŴ ],

(47)
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From (46) and (47), the first difference of Lyapunov function candidate is obtained as

∆V =− 1

c
eT (I − P TP )e− 2

c
θT L̄TPe− 2

c
µT L̄TPe− 2

c
νT L̄TPe+

1

c
θT L̄T L̄θ +

2

c
θT L̄T L̄µ

+
2

c
θT L̄T L̄ν +

1

c
µT L̄T L̄µ+

1

c
νT L̄T L̄ν +

1

c
µT L̄T L̄ν +

1

α
tr[−2αW̃ TϕϕT W̃

− 2αµϕT W̃ + 2γW̃ TFŴ + α2W̃ TϕϕTϕϕT W̃ + 2α2W̃ϕϕTϕµT − 2αW̃ϕϕTFŴ

+ α2µϕTϕµT − 2αµϕTFŴ + Ŵ TF TFŴ ].

(48)

Reorganizing the terms in (48), yields

∆V ≤− 1

c
eT (I − P TP )e− 2

c
θT L̄TPe− 2

c
µT L̄TPe− 2

c
νT L̄TPe+

1

c
θT L̄T L̄θ

+
2

c
θT L̄T L̄µ+

2

c
θT L̄T L̄ν +

1

c
µT L̄T L̄µ+

1

c
νT L̄T L̄ν + αϕ2

Mµ2
M +

2

c
µT L̄T L̄ν

− (2− αϕTϕ)θT θ − 2(1− αϕTϕ)θTµ+
1

α
tr[γ2Ŵ T Ŵ + 2γW̃ T (W − W̃ )

+ 2αγµϕT (W̃ −W )].

(49)

Consider any two vectors v1 and v2 ∈ RnN ; applying Young’s inequality and Cauchy

inequality, one can write vT1 v2 ≤
a1||v1||2

2a2
+ a2||v2||2

2a1
, where a1 and a2 are positive constants.

From this one can write

−2

c
θT L̄TPe ≤ 2

c
σ̄(L̄)σ̄(P )

( a1
2a2

||θ||2 + a2
2a1

||e||2
)
, (50)

where a1 = 2σ̄(P )σ̄(L̄), and a2 = 1− σ̄2(P ). Using the following equation

1

c
σ̄2(L̄) +

1

c
σ̄(L̄)σ̄(P )

a1
a2

= 1, (51)
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and considering (50), (49) can be written as

∆V ≤− 1

2c
[1− σ̄2(P )]eT e− 2

c
µT L̄TPe− 2

c
νT L̄TPe+

σ̄2(L̄)

c
(µM + νM)2 + 2γϕMWMµM

+ αϕ2
Mµ2

M − (1− αϕTϕ)θT θ − 2(1− αϕTϕ)θTµ+ 2γθTµ+
2

c
θT L̄T L̄µ+

2

c
θT L̄T L̄ν

+
1

α
tr[γ2Ŵ T Ŵ + 2γW̃ T (W − W̃ )].

(52)

By defining BM = 1−αϕ2
M , Γ1 = 1+γ+ σ̄2(L̄)

c
, and Γ2 =

σ̄2(L̄)
c

and completing the squares

for θ, we have

∆V ≤− 1

2c
[1− σ̄2(P )]eT e− 2

c
µT L̄TPe− 2

c
νT L̄TPe−BM ||θ − Γ1

BM

µM − Γ2

BM

νM ||2

+
1

BM

(Γ1µM + Γ2νM)2 − 1

α
[γ(2− γ)||W̃ ||2F − 2γ(1− γ)WM ||W̃ ||F − γ2W 2

M ]

+
σ̄2(L̄)

c
(µM + νM)2 + 2γϕMWMµM + αϕ2

Mµ2
M .

(53)

Now by completing the squares for W̃ , one can have

∆V ≤−BM ||θ − Γ1

BM

µM − Γ2

BM

νM ||2 +− 1

α
γ(2− γ)

[
||W̃ ||F − 1− γ

2− γ
WM

]2
− 1

c

[
1

2
(1− σ̄2(P ))||e||2 − 2Λ1||e|| − Λ2

]
,

(54)

where Λ1 = σ̄(L̄)σ̄(P )(µM + νM), and Λ2 is

Λ2 =σ̄2(L̄)(µM + νM)2 + 2cγϕMWMµM + αcϕ2
Mµ2

M +
c

BM

(Γ1µM + Γ2νM)2 +
c

α

γ

2− γ
W 2

M

]
.

(55)

Then, ∆V < 0 as long as (38), and (39) hold, and the quadratic term for e in (54) is

positive which is guaranteed when

||e|| >2Λ1 +
√

4Λ2
1 + 2(1− σ̄2(P ))Λ2

1− σ̄2(P )
≜ eM . (56)
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Similarly by reorganizing terms in (53) and completing square for e, one can obtain

∆V ≤− 1

2c
(1− σ̄2(P ))||e− 2

1− σ̄2(P )
σ̄(L̄)σ̄(P )(µm + νm)||2 −BM ||θ − Γ1

BM

µM

− Γ2

BM

νM ||2 − 1

α
[γ(2− γ)||W̃ ||2F − 2γ(1− γ)WM ||W̃ ||F − ξ],

(57)

with

ξ =γ2W 2
M + α(µM + νM)2 + α2ϕ2

Mµ2
M + 2αγϕMWMµM +

α

B2
M

(Γ1µM + Γ2νM)2. (58)

Then, ∆V < 0 as long as (38), and (39) hold, and the quadratic term for W̃ in (54) is

positive which is guaranteed when

||W̃ ||F >
γ(1− γ)WM +

√
γ2(1− γ)2W 2

M + γ(2− γ)ξ

γ(2− γ)
≜ W̃M . (59)

We conclude that ∆V is negative outside a compact set as long as (38) and (39)

are satisfied and either (56) or (59) holds. According to a standard Lyapunov extension

theorem [44], this demonstrates that the formation error and NN weights matrix estimates

error are UUB. Lemma 1 shows that the tracking error vector δ(t) is bounded. That means

all agents follow the leader while maintaining the desired formation.

If either (56) or (59) holds, ∆V is negative and V decreases. Therefore, (56) and

(59) provide practical bounds for the formation error and the NN weight estimation error

respectively.

In this chapter, we defined the objective of a leader-followers multi-agent system as

reaching a desired relative position with respect to its neighbouring agents while following

the leader. We used an RBFNN to approximate the agent’s unknown nonlinearity dynam-

ics and designed a distributed control law to realize this objective. A Lyapunov stability

analysis was used to prove the UUB of formation error and show that the stated objective

is met.
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Chapter 4

Attack Detection

In this chapter, we propose a detection method that enable each agent to detect FDI cyber-

attacks in its sensor, actuator, and neighbouring communication channel. The designed

attack detection method is capable of detecting these attacks separately and a combination

of them. We propose a distributed observer for each agent, that is used to form a residual

signal. We then design an attack detection threshold by applying the Lyapunov analysis.

4.1 Attack Detection Method

For a distributed cyber-attack detection, each agent has a dedicated NN-based observer

that generates the residual signal. We propose the following observer to estimate the i-th

agent’s states


x̂+
i = Ŵ T

i ϕi(xi) + ui −Gi(xi − x̂i)−
∑
j∈Ni

aij(xj − xi − dji) + bi(xl − xi − di),

x̂i(0) = xi(0),

(60)

where the diagonal matrix with nonnegative elements Gi ∈ Rn×n is the observer gain. The

observer dynamics has a neural network part, a standard observer part, and a part that

depends on graph topology.
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The system reaches its desired formation if no attack is injected into the system. We

propose here a method to detect attacks. As a result, the following theorem is given.

Theorem 2. Consider a multi-agent system that has reached the desired formation (i.e.,

||e|| ≤ eM) in the absence of an attack with the observer (60). If the following condition

holds

σ̄(G) <
1
√
η
, (61)

with η = 1 + (1 − αϕ2
M)−1, then, the residual x̃ is UUB, with practical bounds given by

(72).

Proof. Consider the desired formation is achieved if there is no injected attack to the multi-

agent system, (i.e., ||e|| ≤ eM). Let us define the following Lyapunov function candidate

V = V1 + V2, (62)

where V1 = x̃T x̃, and V2 = 1
α
tr(W̃ T W̃ ). By considering (41), (43), and (45), the first

difference of Lyapunov function candidate is given by

∆V = ∆V1 +∆V2. (63)

From (35) one can derive ∆V1 as follows:

∆V1 =(x̃+)T x̃+ − x̃T x̃ = −x̃T [I −GTG]x̃+ 2x̃TGT θ + 2θT e+ 2x̃TGTµ+ 2x̃GT e

+ θT θ + 2θTµ+ µTµ+ eT e+ 2µT e.

(64)

By defining F = diag(Fi), we use (36) to obtain ∆V2

∆V2 =
1

α
tr[(W̃+)T W̃+ − W̃ T W̃ ] =

1

α
tr[−2αW̃ TϕϕT W̃ − 2αµϕT W̃ + 2γW̃ TFŴ

+ α2W̃ TϕϕTϕϕT W̃ + 2α2W̃ϕϕTϕµT − 2αW̃ϕϕTFŴ + α2µϕTϕµT

− 2αµϕTFŴ + Ŵ TF TFŴ ].

(65)
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Thus, from (64) and (65) one we can write ∆V as:

∆V =2θTGx̃− x̃T [I −GTG]x̃+ 2θT e+ 2x̃TGT e+ 2θTµ + θT θ + 2x̃TGTµ+ 2µT e

+ µTµ+ eT e+
1

α
tr[−2αW̃ TϕϕT W̃ − 2αµϕT W̃ + 2γW̃ TFŴ

+ α2W̃ TϕϕTϕϕT W̃ + 2α2W̃ϕϕTϕµT − 2αW̃ϕϕTFŴ + α2µϕTϕµT

− 2αµϕTFŴ + Ŵ TF TFŴ ].

(66)

Reorganizing the terms in (66) yields

∆V ≤− (1− αϕTϕ)θT θ − 2(1− αϕTϕ)θTµ+ 2θT e+ 2θTµ+ 2θTGx̃− x̃T [I −GTG]x̃

+ 2x̃TGT e+ 2x̃TGTµ+ µTµ+ αϕTϕµTµ+ eT e+ 2µT e+
1

α
tr[γ2Ŵ T Ŵ

+ 2γW̃ T (W − W̃ ) + 2αγµϕT (W̃ −W )].

(67)

Completing the squares for θ, and considering Assumption 3, one can write

∆V ≤− (1− αϕTϕ)||θ − 1

1− αϕTϕ
Gx̃− γ + αϕTϕ

1− αϕTϕ
µ− 1

1− αϕTϕ
e||2

− x̃T
[
I − (1 +

1

1− αϕTϕ
)GTG

]
x̃+ 2(

γ + 1

1− αϕTϕ
)x̃TGTµ+ 2ηx̃TGT e

+ (−2γ +
(1 + γ)2

1− αϕTϕ
)µTµ+ 2(

γ + 1

1− αϕTϕ
)µT e+ ηeT e

− 1

α
[γ(2− γ)||W̃ ||2F − 2γ(1− γ)WM ||W̃ ||F − γ2W 2

M ] + 2γ||ϕ||WMµM .

(68)

Completing the squares for W̃ , considering (68), and using the fact that ||ϕ(x)|| ≤ ϕM ,

one has

∆V ≤− (1− αϕTϕ)||θ − 1

1− αϕTϕ
Gx̃− γ + αϕTϕ

1− αϕTϕ
µ− 1

1− αϕTϕ
e||2

− (1− ησ̄2(G))

[
||x̃||2 − 1

1− ησ̄2(G)
(2ρ1||x̃||+ ρ2)

]
− 1

α
γ(2− γ)

[
||W̃ ||F − 1− γ

2− γ
WM

]2
,

(69)
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with

ρ1 =(
γ + 1

1− αϕ2
M

)σ̄(G)µM + ησ̄(G)eM , (70)

where eM is derived using the result of Theorem 1 and is given by (56). Moreover,

ρ2 =2γµMWM +
1

α

γ

2− γ
W 2

M + (−2γ +
(1 + γ)2

1− αϕ2
M

)µ2
M + 2µM(

γ + 1

1− αϕ2
M

)eM + ηe2M . (71)

Then, ∆V < 0 as long as (61) holds, and the quadratic term for x̃ in (69) is positive which

is guaranteed when

||x̃|| >ρ1 +
√

ρ21 + (1− ησ̄2(G))ρ2
1− ησ̄2(G)

≜ π. (72)

In general ∆V is negative outside a compact set as long as (61) is satisfied and (72) holds.

According to a standard Lyapunov extension theorem [44], this demonstrates that the

residual is UUB.

If (72) holds, ∆V is negative and V decreases. Therefore, these provide practical bound

π for the residual signal.

Remark 5. Theorem 2 shows that when the multi-agent system reaches the desired for-

mation, in the absence of attacks, the residual is UUB, with the bound π ( [44], Theorem

2.4.6). Thus, under an attack-free condition, one has ||x̃|| ≤ π. Therefore, we consider π

as the attack detection threshold.

4.2 Attack Detectability Condition

The scalar π is the threshold for the stacked detection residual of a multi-agent system.

For an arbitrary vector x̃ = [x̃T
1 , ..., x̃

T
N ]

T , recall the norm inequality property ||x̃i|| ≤ ||x̃||.

Therefore, the scalar π given by (72) is selected as each agent’s residual’s threshold. The
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detection threshold π guarantees that

||x̃i|| ≤ π, (73)

when no attack affects the agents communications channels. Therefore, each agent local

detection algorithm checks whether condition (73) is satisfied.

Let us define the variable si, as the overall effect of attacks on residual signal of the

i-th agent, which is given by

si =κiu
a
i + λiGix

a
i + f̂i(xi)− f̂i(xi + λix

a
i ) +

∑
j∈Ni

aij(Ψ
i
jx̄

a
ji − λix

a
i ) + bi(Ψ

i
lx̄

a
li − λix

a
i ).

(74)

The following theorem determines the attack detectability condition.

Theorem 3. Consider a multi-agent system (2) that is modelled by an undirected graph.

Select the control law (31), and the NN observer (60). An agent detects FDI attacks if the

following inequality holds

||
k−1∑
l=0

Gk−l−1
i si|| > π + ||

k−1∑
l=0

Gk−l−1
i (W̃ T

i ϕ(xi) + ei + ϵi + wi)||. (75)

Proof. Let us consider ūi as the control input of i-th agent when the agent is under sensor

and neighboring channels’ attacks. From (30), ūi can be written as

ūi =− f̂i(xi + λix
a
i ) + xi + λix

a
i + ki

∑
j∈Ni

aij(x̄j +Ψi
jx̄

a
ji

− xi − λix
a
i − dji) + bi(x̄l +Ψi

lx̄
a
li − xi − λix

a
i − di).

(76)

From (2), (6), and (76) the system dynamics under sensor, actuator, and neighboring
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channels attacks can be written as

x+
i = f(xi) + ūi + κiu

a
i + wi. (77)

From (8), (11), and (60) the observer dynamics under attack can be written as

x̂+
i =f(xi + λix

a
i ) + ūi −Gi(xi + λix

a
i )−

∑
j∈Ni

aij(x̄j +Ψi
jx̄

a
ji

− xi − λix
a
i − dji) + bi(x̄l +Ψi

lx̄
a
li − xi − λix

a
i − di).

(78)

Considering the detection residual, and from (77) and (78), the residual dynamics can be

derived as

x̃+
i = Gix̃i + W̃ T

i ϕ(xi) + ϵi + wi + ei + si. (79)

The response of residual signal (34) under attack, when xi(0) = x̂i(0), can be written

as

x̃i =
k−1∑
l=0

Gk−l−1
i (W̃ T

i ϕ(xi) + ei + ϵi + wi + si). (80)

Using triangle inequality, one has

||x̃i|| ≥||
k−1∑
l=0

Gk−l−1
i si|| − ||

k−1∑
l=0

Gk−l−1
i (W̃ T

i ϕ(xi) + ei + ϵi + wi)||. (81)

If the following condition is satisfied

||
k−1∑
l=0

Gk−l−1
i si|| − ||

k−1∑
l=0

Gk−l−1
i (W̃ T

i ϕ(xi) + ei + ϵi + wi)|| > π, (82)

then, the residual exceeds the threshold, i.e., ||x̃i|| > π, which implies the following attack

detectability condition

||
k−1∑
l=0

Gk−l−1
i si|| > π + ||

k−1∑
l=0

Gk−l−1
i (W̃ T

i ϕ(xi) + ei + ϵi + wi)||. (83)
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This completes the proof.

Note that in practice, it is sufficient that

||x̃i|| > π, (84)

for agent i to affirm that an attack has occurred in its communication channels.

Remark 6. The overall attack effect si can be due to any type of attacks mentioned earlier

including some combination of them.

In this chapter, we developed a distributed attack detection method for detecting FDI

attacks in sensor, actuator, and neighbouring communication channels of the discrete-

time multi-agent systems with unknown nonlinearity dynamics. We used the Lyapunov

stability analysis to prove the UUB of attack detection residual when the system reached

the desired formation and provided a practical attack detection threshold. Moreover, an

attack detectability condition is provided to determine the detection of attacks.
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Chapter 5

Numerical Simulation and

Implementation

In this section, we provide three examples of nonlinear multi-agent systems control and

being under FDI attack. In the first example, we consider four different attack scenarios

on the discrete-time nonlinear multi-agent system with unknown dynamics in the MAT-

LAB environment. We evaluate our proposed control law in the attack-free scenario and

attack detection method on under-attack scenarios. In the second example, we consider a

multi-agent system of UGVs and implement two different attack scenarios on neighboring

communication channels of the multi-agent system. We use the MATLAB environment

to validate the UGVs detection systems and their behavior under attack conditions. In

the third example, we used the CoppeliaSim simulation environment to emulate a real-life

scenario. We implemented the first scenario of the second example in the CoppeliaSim

and investigated the behavior of UGVs under attack in this environment.

5.1 Simulation Results

We conducted numerical simulations to evaluate the performance of the proposed attack

detection method.
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Figure 5: Communication topology and formation shape.

Example: Consider a multi-agent system with the leader and five agents as followers,

modeled by the undirected graph as shown in Fig. 5. We consider the dynamics of each

agent as [44]:

x+
i =

⎡
⎢⎣ βixi2

1+x2
i2

βixi1

1+x2
i2

⎤
⎥⎦+ ui + wi, i ∈ {1, 2, .., 5}, (85)

where xi = [xi1 xi2]
T . Variables xi1 and xi2 are the position in x and y coordinates,

respectively. We set β1 = 0.3, β2 = 0.5, β3 = 0.6, β4 = 0.9, and β5 = 1. In this simu-

lation, we select the control parameters ki = 0.4I2, and the observer gain as Gi = 0.1I2.

The initial conditions for the follower agents are: x1(0) = [1,−6]T , x2(0) = [1,−7]T , and

x3(0) = [1.5,−6]T , x4(0) = [0.5,−5]T , x5(0) = [1,−5]T . The disturbances in the dynam-

ics of each agent are given by w1 = [0.03, 0.01]T cos(3t), w2 = [0.02, 0.02]T sin(3t), w3 =

[0.01, 0.03]T cos(2t), w4 = [0.02, 0.03]T cos(4t), w5 = [0.02, 0.01]T sin(3t).

RBFNN is selected with 9 neurons, centers qj evenly spaced for each agent on [−1, 2]×

[−7,−4] grid, and Fi = 0.4I9, α = 0.01.

The desired formation and communication topology is shown in Fig. 5, and the desired

position of each agent with respect to the leader is given by

d1 = [−0.5, −0.5]T , d2 = [−1, −1]T , d3 = [−1, 0]T , d4 = [−1, 1]T ,

d5 = [−0.5, 0.5]T .

(86)
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In the example, we first investigate the performance of the proposed neural network-

based control law in an attack-free scenario for the multi-agent system (85). Then, we

provide four attack scenarios for the multi-agent systems to demonstrate the effectiveness

of the proposed attack detection method. We consider the leader trajectory as xl1 =

cos(t/15) + 2, xl2 = sin(t/15)− 6.

In the attack-free scenario, we validate that the multi-agent system reaches and main-

tains the desired formation with the proposed control law (31). Fig. 6 shows the system

trajectory along x and y coordinate in attack-free scenario, and Fig. 7 shows each agent

formation error which shows that it is UUB. Fig. 8 shows the Frobenius norm of the

neural network weights matrix.

Figure 6: Multi-agent system formation in attack-free case.

Now, we consider four attack scenarios. For the first attack scenario, we consider the

attacker injects false data on the agent 3 actuator channel

uc
3 = u3 + κ3u

a
3, (87)
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Figure 7: Formation error for all agents.
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Figure 8: Neural network matrix weights Frobenius norm for all agents.

where ua
3 = (1− exp (50− t))[0.7, 0.7]T , and

κ3 =


1, for 50 ≤ t ≤ 60

0, otherwise.

(88)

In Fig. 9, the effect of attack can be seen on the system formation. The residual signal

of agent 3, which is ||x̃3|| with the threshold π, is shown in Fig. 10. The attack increases

the residual signal of agent 3 and it exceeds the threshold.

For the second scenario, we consider that the attacker injects false data on the sensor

channel of agent 5
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Figure 9: System trajectory under attack with attack on the actuator channel of agent 3.
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Figure 10: Residual signal of agent 3 in case 1: attack on the actuator channel of agent 3.

xc
5 = x5 + λ5x

a
5, (89)

where xa
5 = [−2,−2.5]T , and

λ5 =


1, for 50 ≤ t ≤ 60

0, otherwise.

(90)
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Figure 11: System trajectory under attack. Attack on the sensor channel of agent 5.
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Figure 12: Residual signal of agent 5 in case 2: attack on sensor channel of agent 5.

In Fig. 11, the attack’s effect on the agent 5 sensor channel can be seen. The residual

signal of agent 5, ||x̃5||, increases during the attack and reveals the attack (Fig. 12).

For the third scenario, we consider the attacker performs the FDI attack on the neigh-

boring communication channels of agent 4. We consider that the attacker injects the

false data into the communication channel between agent 4 and agent 5, and the attacker
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changes the data that agent 4 receives from agent 5

x̄c
54 = x̄5 +Ψ4

5x̄
a
54, (91)

where x̄a
54 = [−2, 2cos(2t)]T , and

Ψ4
5 =


1 for 50 ≤ t ≤ 60

0 otherwise.

(92)

Figure 13: System trajectory under attack. Attack on the neighbouring communication
channel between agent 4 and agent 5.

Fig. 13 shows the effect of the attack on the neighboring communication channel of

agent 4, and the residual signal of agent 4 is shown in Fig. 14, which illustrates the

detection of the attack.

For the last scenario, we consider that the attacker breaches all channels and distorts

their data. The attacker injects the false data in the actuator channel of agent 3, in

the sensor channel of agent 5, and changes the data that agent 4 receives from agent
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Figure 14: Residual signal of agent 4 in case 3: attack on the neighbouring communication
channel of agent 4.

5. In fourth attack scenario, we simulated the multi-agent system (85) with previously

mentioned attack signals. In Fig. 15, the effect of mentioned attacks on the performance

of multi-agent system (85) is shown. Since agent 3, agent 4, and agent 5 are under attack,

the residual signals of these agents are shown in Fig. 16, indicating attacks’ detection.

Consequently, all the attacked agents can detect the attack by the proposed detection

method as all the attacked agents’ residuals exceed the threshold during the attack, as

shown in Fig. 16.

Example 2 : In this example, we consider a multi-agent system of UGVs and implement

two different attack scenarios. We consider four UGVs. One is considered the leader, and

the others are the follower agents, modelled by single-integrator dynamics, similar to [23].

x+
i = xi + sin(xi) + ui, (93)

where xi = [xi1 xi2]
T . Variables xi1 and xi2 are the position in x and y coordinates,

respectively and ui ∈ R2 is the control input.

By considering fi(xi) = xi+ sin(xi) as the unknown nonlinearity, the UGVs dynamics

can be expressed as follows:

x+
i = fi(xi) + ui. (94)
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Figure 15: System trajectory when agent 3, 4, and 5 are under attack; combination of the
three different types of attacks.
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Figure 16: Residual signal of under attacked agents.

We used the controller (30), and observer (34) for each UGV and used the proposed

attack detection method for detecting FDI attack in the communication channels of each

agent.

In this example, we consider the control parameters ki = 0.5I2, and the observer gain

as Gi = 0.15I2. The initial conditions for the follower agents are: x1(0) = [1.5,−7]T ,
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Figure 17: Communication topology and formation shape.

x2(0) = [1,−7.5]T , and x3(0) = [1.5,−7.5]T . RBFNN is selected with 9 neurons, centers

qj evenly spaced on [1, 4]× [−8,−2] for each agent, and Fi = 0.35I9, α = 0.01.

We consider the following leader trajectory xl1 = 0.03t + 3, and xl2 = 0.03t − 3.

The desired formation and communication topology is shown in Fig. 17, and the desired

position of each agent with respect to the leader is given by

d1 = [−1, 1]T , d2 = [−2, 0]T , d3 = [−1, 1]T . (95)

Fig. 18a shows the system in the attack-free case, which illustrates reaching the desired

formation. In the following, we consider two attack scenarios on neighboring communi-

cation channels of agents. In the first attack scenario, we consider that the leader signal

is under attack, and the attack changes the leader signal by injecting false data on the

communication channel between the leader and UGV 1. As a result, UGV 1 receives cor-

rupted data from the leader.We consider the following leader trajectory xl1 = 0.03t + 3,

and xl2 = 0.03t− 3. The desired formation and communication topology is shown in Fig.

17, and the desired position of each agent with respect to the leader is given by

x̄c
l1 = x̄l +Ψ1

l x̄
a
l1, (96)
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where x̄a
l1 = [−1.4sin(t/6), cos(t/5)]T , and

Ψ1
l =


1 for 40 ≤ t ≤ 50

0 otherwise.

(97)

Fig. 18b shows the effect of this attack on the multi-agent systems. Since all agents

receive the leader signal directly or indirectly, the attack affects all the agents and changes

the desired formation. Since the leader is the neighbour of agent one, the neighbouring

communication channel of UGV 1 is under attack. Fig. 19a shows the residual signal of

UGV 1, which indicates the detection of the attack.

In the second scenario, we consider that the neighbouring channels of agents 2 and 3

are under FDI attacks, and the attacker changes the sensor data that UGV 2 and UGV 3

receive from UGV 1 as follows: 
x̄c
12 = x̄1 +Ψ2

1x̄
a
12,

x̄c
13 = x̄1 +Ψ3

1x̄
a
13,

(98)

where x̄a
12 = [−1.2sin(t), cos(t/15)]T , x̄a

13 = [−0.5, cos(t/3)]T , and

Ψ3
1 = Ψ2

1 =


1, for 40 ≤ t ≤ 50

0, otherwise.

(99)

In this case, the neighboring communication channels of both UGVs 2 and 3 are under

attack. The effect of this attack on the multi-agent system can be seen in Fig. 18c. The

residual of UGV 2 and UGV 3 are displayed on Fig. 19b which are showing the detection

of attack on both UGVs.

Example 3 : In this example, we implement the first scenario of the Example 2 in

the Coppeliasim environment. The CoppeliaSim (formerly V-REP) is a virtual robot

experimentation platform used to validate this thesis’s theoretical results. The simulation
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(a) (b)

(c)

Figure 18: System trajectory. (a) system trajectory in attack-free case. (b) System
trajectory under attack in the first scenario when agent 1 neighboring channel is under
attack. (c) System trajectory under attack in the second scenario when agents 2 and 3
neighboring channels are under attack.

software CoppeliaSim enables us to have a real robot dynamics emulation that is close

to the real robot platform. Four mobile robots (Pioneer P3-DX) are considered, one as

the leader and the others are the follower robots (see Fig. 20). They are modeled by the

dynamics (93). The control parameters are the same as that in example 2. In this attack

scenario, the attacker injects the false data to the neighbouring communication between

the leader and robot 1 to change the system formation to its desired formation (see Fig.

21).
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(a) (b)

Figure 19: Residual signal. (a) Residual signal of agent 1 in the first scenario. (b) Residual
signal of agents 2 and 3 in the second scenario.

Figure 20: Schematic of Pioneer P3-DX robot.

The control input ui in (93) is allocated to the left and right wheels using the following

transfer matrix [60].

⎡
⎢⎣vRi

vLi

⎤
⎥⎦ =

⎡
⎢⎣sinθi + l

2c
cosθi sinθi − l

2c
cosθi

sinθi − l
2c
cosθi sinθi +

l
2c
cosθi

⎤
⎥⎦ ui, (100)

where l is the distance between the two driving wheels, and we consider c = l/2. We

consider the following leader trajectory xl1 = 0.1t, and xl2 = −2. The desired formation

is the same as Fig. 21, and the desired position of each agent with respect to the leader is

same as (95). Fig. 22 shows the initial positions of robots in the CoppeliaSim simulation

environment. In the attack scenario, the neighbouring communication channel between

leader and robot 1 is under FDI attack. In Fig. 23a robots are shown when they reach the
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Figure 21: Example 3 desired formation shape and under attack formation.

Figure 22: Four Pioneer P3-DX robots in the CoppeliaSim environment.

desired formation in the Coppeliasim environment, and Fig. 23b shows the multi-agent

system under attack, indicating attacker changes the formation to its desired formation.

Fig. 24 shows the generated residual signal of robots 1, 2 and 3 in the CoppeliaSim

environment, which shows the detection of the attack. Since the formation is changed,

all the agents detect the attack. The video of this simulation can be found here 1, which

shows the disordering of the desired formation under attack and maintaining the formation

before the attack and forming the formation again when the attack is over.

1https://www.dropbox.com/s/tgdcqt5nyalpe3d/thesis.mp4?dl=0
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(a) (b)

Figure 23: CoppeliaSim environment. (a) The multi-agent system reached to the desired
formation. (b) The multi-agent system under attack.

(a) (b)

(c)

Figure 24: Residual signals. (a) Residual signal of robot 1. (b) Residual signal of robot
2.(c) Residual signal of robot 3.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

We developed a distributed cyber-attack detection method for a class of discrete-time,

nonlinear, heterogeneous, multi-agent systems in a formation control setting. We inves-

tigated the false data injection attack on agents’ communication channels and proposed

an NN-based observer to form a residual signal for each agent to detect attacks on its

actuator, sensor, and neighboring communication channels. The Lyapunov stability anal-

ysis was used to prove the UUB of residual signal and obtain a practical bound as an

attack detectability threshold. Moreover, we proposed a formation control for a class of

discrete-time, nonlinear multi-agent systems and proved the UUB of the formation error.

The simulation results were presented different types of attacks on the sensor, actuator,

and neighboring communication channels of agents, as well as a combination of them. The

proposed detection method cannot identify the type of attack. Further work is required

to identify the type of attack after the attack has been detected.

6.2 Future Work

Some suggestions for future research in this area are outlined below:
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• The proposed attack detection architecture lacks identification of the type of attacks.

For future work, extending the attack detection method to classify the attack on the

sensor, actuator, and neighboring communication channels of multi-agent systems

can be considered.

• Design an attack mitigation action to decrease the effect of attacks on the system

or develop a controller for attack compensation once the attack is detected by the

proposed detection method.

• Develop the result of this research for the multi-agent systems modelled with the

directed graph topology.

• The proposed attack detection threshold is conservative; designing a less conservative

threshold can be another extension to this work.

• Develop a method to distinguish between the system fault and cyber-attack on

communication channels.
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