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Abstract

Proximal Policy Optimization for Formation Control and Obstacle Avoidance in Multi-Agent Systems

Priyam Sadhukhan

In this thesis, deep reinforcement learning (DRL) is used for intelligent formation con-

trol and obstacle avoidance in multi-agent systems through reward shaping. The objective

of this work is to study the application of proximal policy optimization (PPO) algorithm

for maneuvering a formation of agents around obstacles. Each agent in the multi-agent

system is modeled as a holonomic second-order integrator and the formation is allowed

to shrink while maintaining its shape in order to navigate around obstacles and take the

geometric centroid of the formation towards the goal. We investigated both angle-based

rewards and bearing-based rewards. Experiments were carried out in a two-dimensional

simulation environment with different number of agents and multiple obstacles between

the formation and the goal. Curriculum learning was used to train the agents in environ-

ments with different initializations for the agents, goal and obstacles. Simulation results

show the effectiveness of the different reward schemes.
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Chapter 1

Introduction

1.1 Formation Control with Deep Reinforcement

Learning

Multi-agent formation control involving obstacle avoidance is a challenging task. There

are many established traditional control methods designed for this purpose, including con-

sensus control (Dong, Yu, Shi, & Zhong, 2015), sliding mode control (Zhang, Zhang, &

Han, 2021), adaptive control based on fuzzy logic (Z. Peng, Wang, & Wang, 2018), and

neural network control (Lu, Zhang, Shen, & Zhang, 2019). However, in recent years, deep

reinforcement learning (DRL) has been successfully applied for safe, adaptive, multi-agent

formation control in (Khan et al., 2019), (Yao et al., 2020) and (Y. Zhou et al., 2019). In

this thesis, we propose a new method based on DRL for formation control and obstacle

avoidance.
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1.2 Literature Review

There are several results that are related to our approach, including (Lin, Yang, Zheng,

& Cheng, 2019), where multiple agents are taught to navigate around obstacles through

centralized training and decentralized execution and (W. Zhao et al., 2020), which trains

independent policies for a group of fixed-wing UAVs using proximal policy optimization

(PPO) and value function sharing. Local and global maps are generated in (Tan, Fan, Pan,

& Manocha, 2020), which are then processed by a convolutional neural network (CNN) for

safe navigation of large number of agents using PPO. A trust-region policy optimization

(TRPO)-based approach was used in (Mohseni-Kabir, Isele, & Fujimura, 2019) to combine

the outputs for each agent’s own objective and that of the group for safe and successful

navigation. In (Nguyen, Hatua, & Sung, 2019), collision-free navigation of multiple agents

was achieved through multi-agent PPO and multi-agent TRPO but without any formation

constraints. Another application of DRL-based flocking was presented in (Yan, Bai, Zheng,

& Guo, 2020), where PPO was used along with reward shaping to achieve safe navigation.

In (Y. Zhou et al., 2019), a deep deterministic policy gradient (DDPG) was used, along

with a momentum term, for optimizing the value function to achieve formation control and

obstacle avoidance. The counterfactual advantage function was used in (Hong & Wang,

2019) to train cooperative agents towards similar objectives. Multi-agent deep determinis-

tic policy gradients (MADDPG) was used in (Jiao & Oh, 2019) for multi-agent navigation,

where a recurrent neural network (RNN) was used to create vector embeddings from the

observation of individual agents. Safety constraints for multi-agent navigation were satis-

fied in (Khan et al., 2019) by combining velocity obstacle (VO) method with MADDPG.

In (Zhu et al., 2020), MADDPG was used, alongside prioritized experience replay (PER),

for flocking maintenance and obstacle avoidance. Large scale flocking of a swarm of UAVs

using DDPG is presented in (Wang, Wang, & Zhang, 2018) through local communication

2



with its immediate neighbors. A centralized critic is used for cooperative formation con-

trol in (Zuo, Han, & Han, 2010) along with hindsight experience replay (HER) to navigate

multiple unicycle models to a given goal position. Fast and optimal navigation of multiple

agents was achieved in (Semnani, Liu, Everett, de Ruiter, & How, 2020) using a combina-

tion of actor-critic and traditional path planning methods.

Deep Q networks (DQN) were used in (X. Zhou, Wu, Zhang, Guo, & Liu, 2019), in

which a formation of agents is taught to flexibly navigate around obstacles and in (Oury Di-

allo & Sugawara, 2020), for formation control of several agents by training them solely on

their own local observations. In (Sui, Pu, Yi, & Tan, 2018), double DQN were used for

leader-follower formation control and obstacle avoidance. Navigation and collision avoid-

ance for a multi-agent system was achieved in (Jun, Kim, & Lee, 2019) by using the joint

vector of actions for each objective.

1.3 Motivation and Contribution

In this work, we propose a DRL-based method for multi-agent formation control that

allows to flexibly maintain its shape while navigating around obstacles for an arbitrary

number of agents.

The contributions of this thesis are:

i. Angle-based and bearing-based reward functions that allow the agents to loosely

maintain the shape of the formation while navigating around obstacles.

ii. Simulation results of our approaches for different number of agents.

iii. Comparison of results for individual and team rewards for the angle-based approach.

iv. Comparison of results for the angle-based and bearing-based approaches involving

individual rewards.
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In comparison with previous works such as (X. Zhou et al., 2019), (Hong & Wang,

2019), (Y. Zhou et al., 2019), (Lin et al., 2019), (W. Zhao et al., 2020) that use DRL for

formation control and achieve multi-agent formation by maintaining a predefined distance

between agents or by setting lower and upper bounds on the allowable distance between

agents, we address the problem of maintaining the shape of the formation in terms of angles

and bearings, while varying the formation size.
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Chapter 2

Preliminaries

This chapter provides the relevant information necessary to understand the methods

implemented in this thesis.

2.1 Partially Observable Markov Decision Process

A Markov Decision Process (MDP) (Sutton & Barto, 2018) is a framework used to

define a reinforcement learning (RL) problem for a single agent which consists of a tuple

< S,A,T,R,γ >, where S is the global state, A is the action space, T (st ,at ,st+1) = P(st+1 |

st ,at) is the state transition probability for choosing action at ∈ A in state st ∈ S and receiv-

ing the immediate reward rt ∈ R according to the reward function R(st ,at ,st+1) for every

time-step t. The discounted return for horizon H, with a discount factor γ ∈ (0,1], is given

by

Rdt =
H

∑
ts=t

γ
ts−trts . (1)

This framework is only viable under full observability, where the global state S is avail-

able to the agent. A Partially Observable Markov Decision Process (POMDP) (Sutton &
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Barto, 2018) is a generalization of an MDP where only the local observation ot+1 ∈ O is

available to the agent and it consists of the tuple < S,A,T,R,Ω,O,γ >, where Ω = P(ot+1 |

st+1,at) determines the observation ot+1 in state st+1. In order to deal with the partial ob-

servability, a recurrent neural network (RNN) is utilized (Hausknecht & Stone, 2017) that

includes a Long Short Term Memory (LSTM) or Gated Recurrent Unit (GRU) layer.

2.2 Actor-Critic Methods

Actor-critic consists of an actor function and a critic or a value function. In the case

of DRL, functions are approximated by neural networks. The critic is used to calculate

the action value Q(s,a) while the actor generates a policy πθ . For a given policy πθ , at

time step t, the corresponding action value, advantage, and value functions are respectively

given by

Q(st ,at) = E
at∼πθ

[rt + γVψ(st+1)] , (2)

A(st ,at) = [Q(st ,at)−Vψ(st)] , (3)

Vψ(st) =
H

∑
ts=t

E
πθ

(
γ

ts−trts
)
, (4)

where Vψ(st) is the state value function for a finite horizon H and denotes the expected

value of the return Rdt for state st while following policy πθ . The advantage of taking

action at in state st is A(st ,at), and θ , ψ are the parameters of the actor and critic networks

respectively. The actor network is then updated based on the action value and the state

value using the following equations

∇θ J(πθ ) = E
τ∼πθ

[ H

∑
t=0

∇θ logπθ (at | st)(Q(st ,at)−Vψ(st))
]
, (5)

θ ← θ +αθ ∇θ J(πθ ) (6)
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where αθ is the learning rate of the actor network. The critic is updated through regression

by minimizing the following mean squared error

K(Vψ) = E
τ∼πθ

[ H

∑
t=0

(R̂t−Vψ(st))
2] , (7)

ψ ← ψ−βψ∇ψK(Vψ) , (8)

where, βψ is the learning rate of the critic network and R̂t is the value target.

2.3 λ -return and Generalized Advantage Estimation

The value target R̂t can be a n-step return given by

R̂(n)
t =

n−1

∑
i=0

(γ irt+i + γ
nVψ(st+n)) , (9)

where n acts as a trade-off between the bias and variance present in the return (X. B. Peng,

Abbeel, Levine, & van de Panne, 2018). The output of Vψ(st+n) is biased during learning.

A greater value of n results in a smaller value of the coefficient γn at the cost of a higher

variance in the return. This is due to multiple terms containing rt , which may have random

values due to stochasticity of the policy and environment dynamics.

A better method for achieving this trade-off is the λ -return (Sutton & Barto, 2018)

which is given by

R̂(λ )
t = (1−λ )

∞

∑
n=1

λ
n−1R̂(n)

t , (10)

where λ is a decay parameter for the exponentially weighted average of n-step returns.

7



Using the λ -return, (Schulman, Moritz, Levine, Jordan, & Abbeel, 2018) introduced Gen-

eralized Advantage Estimation (GAE) in which the advantage is calculated as

Â(λ )
t (s,a) =

∞

∑
i=0

(γλ )i
δt+i , (11)

δt = rt + γVψ(st+1)−Vψ(st) , (12)

where δt is the Temporal Difference (TD) error.

2.4 Proximal Policy Optimization and KL-Divergence

The PPO algorithm (Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017) is used

to learn a stable stochastic policy πθ for continuous control tasks. It uses multiple steps of

stochastic gradient descent (SGD) to perform the following policy update

θk+1 = argmax
θ

E
τ∼πθ

[L(s,a,θk,θ)] , (13)

L(s,a,θk,θ) = min
(

πθ (a | s)
πθk(a | s)

Aπθk
,

clip
(

πθ (a | s)
πθk(a | s)

,1− ε,1+ ε

)
Aπθk

)
,

(14)

where ε is a clipping parameter as described in Spinning Up in DeepRL (Achiam, 2018)

by OpenAI. This encourages πθ to stay close to the current policy πθk during the update

process.

The KL-Divergence between the current policy πθk and the updated policy πθ is given

by

DKL(πθk ,πθ ) = E
s∼πθk

[
DKL(πθk(· | s) || πθ (· | s))

]
. (15)

8



2.5 Non-stationarity and Parameter Sharing

In case of multi-agent RL, where each agent has its own policy, non-stationarity is

introduced during the training process as each agent learns its individual policy, which may

not be identical to the others policies. This violates the requirements of an MDP and can be

rectified with parameter sharing, which can take multiple forms. In this thesis, we utilize

parameter sharing and use a single common policy for all the homogeneous agents.

2.6 Curriculum Learning and Unit Bearing Vector

Curriculum Learning (Yao et al., 2020) is an effective method for training a policy to

perform a complicated task by decomposing it into easier sub-tasks. The agent is then

trained on each sub-task which gradually increases the difficulty of its overall objective.

The unit bearing vector (S. Zhao & Zelazo, 2017) for an agent i, directed from the agent

i to the agent j, is given by

gi
j ,

p j−pi

‖p j−pi‖
, (16)

where, pi and p j are the positions of agents i and j, respectively.

9



Chapter 3

Problem Formulation

In this chapter, we formulate the problem and model the agents used in simulation

experiments in subsequent chapters.

3.1 Problem Formulation

A network of n homogeneous agents is considered, with agents modeled using the

second-order dynamics. We frame the problem of navigating the team of agents while

maintaining the shape of their formation as a POMDP. At each time-step t, the n agents

produce the joint action at = (a1
t ,a

2
t , ...,a

n
t ) after receiving their individual local observation

ot = (o1
t ,o

2
t , ...,o

n
t ), which is computed from the common policy πθ : ot ×at → [0,1]. The

individual actions ai
t are generated by sampling from the distribution defined by πθ , where

θ represents the policy parameters. Considering the reward function R : S×A→R and the

discount factor γ , the expected discounted return for the multi-agent system over a finite

horizon H is given by

J(π) = E
τ∼pπθ

(τ)

( H

∑
t=0

γ
tR(st ,at)

)
, (17)

10



where, τ = (s0,o0,a0, ...,sH ,oH ,aH) is the trajectory of the team and pπθ
(τ) is its distribu-

tion, obtained by following policy πθ under the state transition distribution T (st ,at ,st+1)

and observation model Ω(st ,ot). Our objective is to learn the optimal policy πθ∗ given by

πθ∗ = argmax
πθ

J(πθ ) ,

s.t. pπθ
(τ) = p(s0)p(o0 | s0)πθ (a0 | o0)

H−1

∏
t=0

[p(st+1 | st ,at)p(ot+1 | st+1)πθ (at+1 | ot+1)] ,

(18)

where, the parameters p(s0), p(o0 | s0), p(st+1 | st ,at), p(ot+1 | st+1) are all equal to 1 since

the environment and the robot dynamics are both deterministic and without any noise.

3.1.1 Modeling the Agents

Agent dynamics: We model n agents as homogeneous robots with identical masses and

second-order dynamics. They can traverse the two-dimensional map by applying forces

along the x-axis and y-axis at each time step. Each robot is represented as a body of mass

m whose kinematic model is given by a second-order integrator

ṗ
p̈

=

0 1

0 0


p
ṗ

+
 0

1/m

F , (19)

where p = (x, y) is the coordinate of the robot and F = (Fx, Fy) is the force applied by the

robot along the corresponding axes. The maximum velocity of the robot is vmax.

The second-order model is a natural choice for common robotic systems where the con-

trol input is the actuation force. The methods presented in this thesis will also be effective

for other dynamics such as first-order models as well as damped models, and will require a

separate policy to be trained for the different dynamics.

11



Sensors: Each robot is equipped with an omnidirectional 1D distance sensor that can sep-

arately detect obstacles and other robots along with their approximate distances within a

sensing range ls. Each robot’s sensor measurements consist of b×d distance measurements

grouped into b bins, where each bin has a sensor density of d. This is achieved by rotating

an array of d sensors spaced θs =
( 360

b×d

)
degrees apart at a predefined angular velocity ωs.

Each robot also has access to its own velocity and acceleration measurements along

each axis, and equipped with a sensor for a positioning system, either local or global.

Figure 3.1: Robot formation moving around obstacles

Communication: The communication topology for n robots can be represented as an undi-

rected graph G, which consists of a pair (V,E), where V = {1,2, . . . ,n} is the set of vertices

and E ⊂ (V ×V ) is the set of undirected edges such that a vertex pair (i, j) ∈ E implies

( j, i) ∈ E. The neighborhood of vertex i is Ni = { j ∈V | (i, j) ∈ E}. It is assumed that the

communication graph is static and connected.

In this thesis, we assume n(Ni) ≥ 2 for every agent since that is required to maintain

a desired angle. We also define Ni
2 ⊆ Ni, where Ni

2 consists of exactly two neighbors that

are predefined for each agent during formation initialization. In the case where n(Ni)> 2,

the neighborhood specifications must not violate the feasibility of maintaning an agent’s

desired angle or bearing vectors to its two predefined neighbors in Ni
2.

12



Each agent also maintains its own local coordinate frame and calculates the distance

and direction to its respective neighbors, along with the centroid of the formation.

3.1.2 Modeling the Objectives

The agents are required to maintain the shape of their given formation as they maneuver

the formation centroid around obstacles as illustrated in Fig. 3.1. The desired orientation

of the agents is arbitrarily chosen as anti-clockwise and shown in Fig. 3.2. The objectives

are specified below.

Angle-based formation: The n robots are required to keep a desired formation where

robot i must maintain a desired angle β re f between the bearing vectors from itself to its

two adjacent neighbors in Ni
2, i.e. β̃ i = β re f −β i, where β i is the measured angle and β re f

is its desired value.

(a) Correct orientation (b) Incorrect orientation

Figure 3.2: Orientation of formation

Bearing-based formation: Alternatively, the n robots can also keep the desired formation

with a bearing-based approach, where robot i must maintain a desired bearing g
ire f
j towards

each of its two adjacent neighbors in Ni
2, i.e. g̃i

j = g
ire f
j − gi

j, where gi
j is the measured

bearing and g
ire f
j is its desired value.

Goal reaching: The goal is reached when ‖pg − pc‖ ≤ ηg , where pc and pg are the

positions of the formation centroid and goal respectively, and ηg is the radius of the goal

13



area. The centroid of the formation is given by

pc =
1
n

n

∑
i=1

pi. (20)

3.1.3 Modeling the System Constraints

Obstacle avoidance: Each robot i must be able to maintain a suitably small safe distance

ηo from the surface of any obstacle, including other agents, such that di
o ≥ dsa f e, where

di
o = ‖pi−po‖, ∀po ∈ O, where O is the set of all points on the surface of all obstacles

within sensing range of robot i. Each agent is penalized for coming in contact with an

obstacle or a non-neighboring agent but the simulation is not stopped.

Communication range: Each robot must stay within communication range of its two

neighbors, i.e. di
j < dre f < dcomm, ∀ j ∈ Ni, where dre f is the reference distance and dcomm

is the communication range. Each agent is penalized proportionally to the positive error

max(di
j−dre f , 0), and when di

j ≥ dcomm, communication between agents is still maintained

within the simulation.

3.1.4 Observation of an Individual Agent

Each agent’s observation oi
t consists of its own distance measurements li

t , which in-

cludes the distances towards all obstacles and agents excluding its neighbors, i.e. j /∈ Ni

with separate channels for obstacles and agents. In addition to these, every agent has access

to the following values (zi
t) along its x-axis and y-axis: its own velocity vi

t , relative distance

and velocity to its neighbors div
jt ,v

i
jt , ∀ j ∈ Ni, relative distance to goal div

gt , relative distance

of the formation centroid to goal cv
gt , along with its per-step change (cv

gt − cv
g(t−1)). Each

agent is also given the distances di
jt , ∀ j ∈Ni and its distance to the centroid of the formation

di
ct .

Error measurements ei
t are provided, including the reference distance error from each
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of its neighbors d̃i
jt = di

jt −dre f , ∀ j ∈ Ni. The distance error of an agent from the centroid

of the formation (ηc− di
ct) is given as well. The angular error β̃ i

t is also provided with

respect to the bearing vectors towards its two designated neighbors. The angular errors β̃
j

t ,

∀ j ∈ Ni
2 of its two neighbors are also provided.

Discrete binary values f i
t that act as flags are also given, including whether the agent is

in the correct orientation with its two neighbors and whether all the agents are within the

specified reference distance from their respective neighbors.

Lastly, each agent is provided with si
t , which includes its previous actions, reward and

the current time-step of the simulation. Continuous input values are standardized without

subtracting the mean by keeping a running standard deviation for each using Welford’s

parallel algorithm (Chan, Golub, & LeVeque, 1982).

Figure 3.3: Agent obsevations

The agent’s observations are also shown in Fig. 3.2, Fig. 3.3 and Table 3.1.
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Observation Definition

li
t Distance measurements to obstacles and non-neighboring agents

vi
t Velocity components

div
jt Distance components to neighbor

vi
jt Relative velocity components to neighbor

div
gt Distance components to goal

cv
gt Distance components of formation centroid to goal

(cv
gt −cv

g(t−1)) Per-step change of cv
g

di
jt Distance to neighbor

di
ct Distance to formation centroid

d̃i
jt Reference distance error from neighbor

(ηc−di
ct) Reference distance error from formation centroid

β̃ i
t Angular error with respect to bearing vectors towards two designated neighbors

β̃
j

t Angular error of neighbor

f i
t Binary flags indicating correct orientation and positive reference

distance error from neighbor

si
t Current time-step t and ai

t−1, ri
t−1

Table 3.1: Agent observations
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Chapter 4

Angle Based Reward

In this chapter, we provide the details of our first method and the corresponding results.

We do not use a RNN here since each agent only interacts with its neighboring agents and

some static obstacles. It is a POMDP but there is no change within the environment outside

the agent’s observation.

4.1 Methodology

We train a single policy that is shared by the homogeneous agents. Following (Lin et

al., 2019), we construct the team level policy from the joint actions of individual agents,

i.e. πT
θ
(ot) = [πθ (o1

t ),πθ (o2
t ), ...,πθ (on

t )]. However we use two different approaches for

constructing the reward function, the first involves rewarding each agent for its own action,

while the second one rewards each agent for the actions of the team as a whole. For this

method, each agent’s observation vector oi
t = [li

t ,z
i
t ,e

i
t ,s

i
t , f i

t ].
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4.1.1 Encoding Desired Specifications as Reward Functions

Rewarding each agent for its own actions

We consider vmax as the maximum velocity of each agent and define the following

reward functions

angle
ri
t =−

‖β f −β i
t+1‖

mang
, (21)

re f
ri
t =−

1
n(Ni) ∑

j∈Ni

max(di
j(t+1)−dre f , 0)

mre f
, (22)

goalrt =


rreached, if cg(t+1) ≤ ηg

k1 +
cgt−cg(t+1)

∆t.vmax
, otherwise ,

(23)

coll
ri
t =


r j, if di

j(t+1) ≤ 2Ra ,∀ j 6= i

ro, if di
o(t+1) < dsa f e

0, otherwise ,

(24)

move
ri
t =−arccos

(< vi
t ,v

i
t+1 >

‖vi
t‖‖vi

t+1‖

)
, (25)

where, Ra is the radius of an agent and β f ,mang,dre f ,mre f ,rreached,r j,ro,dsa f e,∆t,vmax are

constants. Eqn. (25), as given in (Lin et al., 2019), encourages the agents to generate

smooth trajectories by penalizing sharp turns.

Then at every time-step, the reward function ri
t for each agent can be expressed as

ri
t = Kangle

angle
ri
t +Kre f

re f
ri
t i +Kgoal

goalrt

+Kmove
move

ri
t +Kcoll

coll
ri
t , i = 1,2, ...,n ,

(26)

where, Kangle,Kre f ,Kgoal,Kmove,Kcoll are constants.
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Rewarding each agent for the actions of the team

We consider the average of the individual rewards for each agent as the reward of the

team and define the following

goal
rT
t = goalrt , (27)

angle
rT
t = avg

(
angle

ri
t | ∀i

)
, (28)

re f
rT
t = avg

(
re f

ri
t | ∀i

)
, (29)

move
rT
t = avg

(
move

ri
t | ∀i

)
, (30)

coll
rT
t =


r j, if di

j(t+1) ≤ 2Ra , j 6= i ,∀i

ro, if di
o(t+1) < dsa f e ,∀i

0, otherwise .

(31)

Then at every time-step, the reward function ri
t for each agent can be expressed as

ri
t = Kangle

angle
rT
t +Krange

range
rT
t i +Kgoal

goal
rT
t

+Kmove
move

rT
t +Kcoll

coll
rT
t , i = 1,2, ...,n .

(32)

4.1.2 Neural Network Structure

The Actor and Critic used are two separate neural networks for function approximation.

The Actor outputs two values, which are the means µx,µy for x-axis and y-axis respectively.

The output forces Fx,Fy are obtained by sampling from the two independent Gaussian dis-

tributions produced from µx,µy and a fixed standard deviation σ . Orthogonal initialization

is used for all layers.

• Actor network: The Actor network has the structure given in Fig. 4.1. It has 3 layers

with 512 neurons in the first layer, 256 neurons in the second layer and 2 outputs.
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All the layers have Tanh activation function. The output of the last layer is scaled by

0.01 when using reward scheme defined in section 4.1.1.

Figure 4.1: Actor network

• Critic network for individual value function: For the policy trained with the individ-

ual reward funciton, the Critic network has the strucutre given in Fig. 4.2. It has 4

layers with 512 neurons and Tanh activation function in the first three layers and 1

output with linear activation.

Figure 4.2: Individual critic network

• Critic network for team value function: For the policy trained with the team reward

funciton, the Critic network has the strucutre given in Fig. 4.3. It has 5 layers with

512 neurons and Tanh activation function in the first four layers and 1 output with
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linear activation. The output of the second layer is averaged for each agent and passed

through the next three layers.

Figure 4.3: Team critic network

4.2 Simulation Setup

For the simulation setup, the Pygame and Pymunk libraries are used to create the sim-

ulation environment for the multi-agent system. Pymunk is a 2D rigid body pysics library.

The Rllib module (Liang et al., 2018) of the Ray library along with the Pytorch library

are used to train the multiple RL agents within a containerized Linux-based Singularity

environment. The simulation environment is a 2D graphical game world in R2, created in

Python 3 with a collection of stationary obstacles and the n agents to be controlled. For this

method, we consider n = 3. The goal area is shown as a large green ring shown in Fig. 3.1.

Each pixel width is taken to be 1cm.

The hardware setup consits of a high performance computing (HPC) cluster that can

run multiple experiments in parallel. The processor used is Intel Xeon Gold 6130@2.1

GHz.
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4.3 Training

We use each reward scheme to train four policies with different random seeds to account

for the effects of randomness and the results are aggregated. We refer to the policies trained

using the two reward schemes given in sections 4.1.1 and 4.1.1 as Policy 1 and Policy 2

respectively. In each instance, all agents share the common policy which is learned using

the Actor and Critic framework. The shared Actor-Critic architecture is used to emulate

parameter sharing between all the agents and also to counter the non-stationarity in MARL

which is usually experienced during decentralized learning of each agent’s policy. Every

agent receives a partial observation oi
t ∈ si

t at each time-step t. The time interval of the

simulation ∆t = 0.3s. Training is carried out in three stages using curriculum learning. The

objective for each stage remains the same where the agents are required to navigate around

obstacles to reach a specified goal while maintaining the shape of the formation. Agents

are allowed to come in contact with each other.

Team specifications: Each holonomic agent is equipped with a 360◦ distance measurement

sensor of range 1.5m with measurements taken θs = 4◦ apart such that b = 10,d = 9 and

ωs = 60rad/s. The radius Ra of each agent is 0.2m with maximum linear velocity vi
max =

0.05m/s. The dimensions are 15m×10m with a few small obstacles in the environment.

Environment specifications: For each training run, the starting positions of the agents

and the positions of the goal and obstacles are randomly initialized within their specified

regions for each phase. The goal is randomly intialized in [200,800] along the y-axis and

either 400 or 1000 along the x-axis. The y coordinate of the centroid of the formation is

initialized at either 200 or 800, whichever is further away from the goal. Training is carried

out in 3 phases with different specifications.

(1) Phase 1: The centroid of the formation is initialized with the same x coordinate as

the goal. The agents are intialized in random order within the formation and are not

22



required to maintain a desired angle with their neighbors. Three large obstacles with

radius 200 cm are randomly initialized in [400,700] or in [700,1000] along the x-axis,

whichever range is futher away from the formation centroid. The y coordinates of the

obstacles are randomly initialized in [100,900]. One small obstalce with radius 70

cm is also initialized at the mid-point between the formation centroid and the goal.

(2) Phase 2: Similar to Phase 1 but the agents are required to maintain the desired angle

with their neighbors.

(3) Phase 3: The centroid of the formation is initialized with the an x coordinate of either

400 or 1000 that is different from the goal. There is random placement of one large

obstacle with radius 80 cm and two smaller ones with radius 50 cm in [400,1000]

along the x-axis and in [100,900] along the y-axis.

The common policy shared by the agents is trained for 10000 iterations in Phase 1, 10000

iterations in Phase 2 and 20000 iterations in Phase 3. Total training time is around 60 hours

wall-clock time.

Reward specifications: The coefficients of the reward function are specified in Table 4.1.

Rewards are clipped at every step such that ri
t ∈ [−10,10].

PPO and optimizer settings: Generalized Advantage Estimation (GAE) (Schulman et al.,

2018) is used for calculating the target value of the Critic with λ = 0.95. The discount

factor γ = 0.995 and σ = 0.7. Policy clip parameter εp = 0.2 and value function clipping

εv = 20. Total number of workers is 6 with 2 vectorized environments each and a soft

horizon Hs = 128 steps means each episode ends when the condition for rreached is satisfied

or after every Ts = 2500 steps. Training is carried out in mini-batches of size 512 for 10

epochs at the end of each iteration. Early stopping is implemented when DKL(πθ ,πθk) ≥

0.03. The learning rate of the ADAM optimizer is lr = 0.5×10−4.
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Coefficient Value
Kgoal 0.5
Kre f 2

Kangle 0.4
Kmove 2
Kcoll 1

rreached 9
ηg 0.5m

mang 30◦

β f 60◦

dre f 2.4m
dcomm 3m
mre f 0.1m

ro −6
r j −1

dsa f e 0.02m

Table 4.1: Coefficient and reward values

4.4 Results and Discussion

The training progress is shown in Fig. 4.4 and Fig. 4.5 for Policy 1 and Policy 2

respectively, with the shaded region representing the standard deviation.

Figure 4.4: Mean reward while training with Policy 1
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Figure 4.5: Mean reward while training with Policy 2

Evaluation is carried out with each trained policy in a Phase 3 environment 500 times.

The fraction of trajectories that successfully reached the goal is 5% and 7% for Policy 1

and Policy 2 respectively. The error values of the successful trajectories are compared in

Fig. 4.6 with corresponding means and standard deviations shown as error bars. Policy

Figure 4.6: Evaluation results with Policy 1 and Policy 2

2 has lesser number of collisions with obstacles and also reduced distance error between
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agents due to better coordination as a team. However, it is at the cost of marginal increase in

angular error. The average distance error is used in Eqn. (22) and only indicates the positive

error. The tolerance limit of the distance error from each agent to its neighbor is (dcomm−

dre f ) = 60cm, exceeding which is a violation of the communication constraint. It is given

greater importance over the angular error due to our choice of reward coefficients. It is

also more important to maintain connection among the agents, at the cost of the formation

shape. However, some evaluation runs fail to keep the agents within communication range

all the time as can be seen from the corresponding error bar.

There are a substantial number of collisisons during the evaluation phase which reduce

the effectiveness of the learned policy. However, the agents have a low momentum and are

not greatly affected by the collisions. The obstalce avoidance performance of the policy

can be improved by assigning a penalty proportional to the impact velocity of the collision.

An example of a successful trajectory from each policy is shown in Fig. 4.7 and Fig.

4.8. Both policies generate a curved trajectory around obstacles though Policy 2 appears

to maintain less distance between agents in Fig 4.8. Agent 1 in Fig. 4.7 suffers a collision

with the larger obstacle.

The primary objective of our approach is to maintain the shape of the formation which

can be effectively measured by the average angular error of the agents. It can be seen in

Fig. 4.9 the average angular error is around 30◦.

Both trajectories have no positive distance error as shown in Fig. 4.10. The average

errors of the two trajectories in Fig. 4.9 and Fig. 4.10 are shown for different number of

steps because each trajectory has a different time of completion as obtained during policy

evaluation.
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Figure 4.7: Agent trajectories after evaluation with Policy 1

Figure 4.8: Agent trajectories after evaluation with Policy 2
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Figure 4.9: Average angular errors for trajectories in Fig. 4.7 and Fig. 4.8

Figure 4.10: Average distance errors for trajectories in Fig. 4.7 and Fig. 4.8
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Chapter 5

Bearing Based Reward

In this chapter, we provide the details of our second method and the corresponding re-

sults. This method utilizes a RNN since an agent can interact with other non-neighboring

agents with whom no information is exchanged besides the agent’s own distance measure-

ments. These result in changes within the environment outside the agent’s observation

since those other agents are non-stationary.

5.1 Methodology

We train a single policy that is shared by the homogeneous agents. Following (Lin et

al., 2019), the team level policy is constructed from the joint actions of individual agents,

i.e. πT
θ
(ot) = [πθ (o1

t ),πθ (o2
t ), ...,πθ (on

t )]. For this method, each agent’s observation vector

oi
t = [si

t ,z
i
t ,e

i
t , l

i
t , f i

t ].

5.1.1 Encoding Desired Specifications as Reward Functions

We consider vmax as the maximum velocity magnitude of each agent and define the

following reward functions for encoding the desired behavior of an agent i and the forma-

tion as a whole. In order to encourage the agents to reach the goal area within the desired
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number of steps, we define

timert =


rlate, if (t +1) = Ts

0, otherwise ,
(33)

where, Ts is the number of steps after which the environment is reset and rlate is a constant.

The reward for maintaining the angle-based formation is given by

angle
ri
t =−

‖β re f −β i
t+1‖

mang
, (34)

where, β re f is the reference angle and mang is a constant. The reward for maintaining the

bearing-based formation is given by

bearing
ri
t =−

0.5
n(Ni

2)
∑

j∈Ni
2

‖gire f
j −gi

j(t+1)‖ , (35)

where g
ire f
j is the refernece unit bearing vector. In order to keep neighboring agents within

a desired range, we define

dist
ri
t =−

1
n(Ni) ∑

j∈Ni

max(di
j(t+1)−dre f , 0)

mdist
, (36)

where, dre f and mdist are constants. The following function rewards all the agents to stay

within a specified distance from the centroid of the formation

centroidrt =


rc, if di

c(t+1) ≤ ηc

0, otherwise ,
(37)
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where, rc,ηc are constants. The agents are required to take the centroid of the formation to

the goal area, for which we define

goalrt =


rreached, if cg(t+1) ≤ ηg

k1 +
cgt−cg(t+1)

∆t.vmax
, otherwise ,

(38)

where, rreached,k1,ηg,∆t are constants. For avoiding collisions with obstacles and other

agents, we define

coll
ri
t =


r j, if di

j(t+1) ≤ 2Ra ,∀ j 6= i

ro, if di
o(t+1) < dsa f e

0, otherwise ,

(39)

where, Ra is the radius of an agent and r j,ro,dsa f e are constants. We also define

move
ri
t =−arccos

(< vi
t ,v

i
t+1 >

‖vi
t‖‖vi

t+1‖

)
, (40)

which encourages the agents to generate smooth trajectories, (Lin et al., 2019). In order to

encourage each agent to keep its movement aligned with its neighbors, we define

velocity
ri
t =−

1
n(Ni) ∑

j∈Ni

arccos
(< vi

t+1,v
j
t >

‖vi
t+1‖‖v

j
t ‖

)
. (41)

Then at every time-step, the reward function ri
t for each agent can be expressed as

ri
t =

time
ri
t +Kangle

angle
ri
t +Kbearing

bearing
ri
t +Kdist

dist
ri
t i

+
centroid

ri
t i +Kgoal

goalrt +Kmove
move

ri
t +Kvel

velocity
ri
t

+Kcoll
coll

ri
t , i = 1,2, ...,n ,

(42)

31



where, Kangle, Kbearing, Kdist , Kgoal , Kmove, Kvel , Kcoll are constants.

5.1.2 Neural Network Structure

The Actor and Critic are two separate neural networks that are used for function approx-

imation. The Actor outputs two values, which are the means µx,µy for x-axis and y-axis,

respectively. The output forces Fx,Fy are obtained by sampling from the two independent

Gaussian distributions produced from µx,µy and a fixed standard deviation σ . Orthogonal

initialization is used for all layers.

Actor network: The actor network has the structure given in Fig. 5.1. It has 3 layers with

512 neurons in the first layer, 256 neurons in the second recurrent layer, and 2 outputs. All

the layers have tanh activation function.

Figure 5.1: Actor network

Critic network: The critic network has the structure given in Fig. 5.2. It has 4 layers with

512 neurons in the first layer, 512 neurons in the second recurrent layer, 256 neurons in the

fully connected layer, tanh activation function in the first three layers, and 1 output with

linear activation.
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Figure 5.2: Critic network

5.2 Simulation Setup

For the simulation setup, the Pygame and Pymunk libraries are used to create the sim-

ulation environment for the multi-agent system. Pymunk is a 2D rigid body pysics library.

The Rllib module (Liang et al., 2018) of the Ray library along with the Pytorch library

are used to train the multiple RL agents within a containerized Linux-based Singularity

environment. The simulation environment is a 2D graphical game world in R2, created in

Python 3 with a collection of stationary obstacles and the n agents to be controlled. For this

method, we consider n = 6. The goal area is shown as a large green ring shown in Fig. 3.1.

Each pixel width is taken to be 1cm.

The hardware setup consits of a high performance computing (HPC) cluster that can

run multiple experiments in parallel. The processor used is Intel Xeon Gold 6130@2.1

GHz.

5.3 Training

The agents share a common policy, which is learned using the Actor and Critic frame-

work. The shared Actor-Critic architecture is used to emulate parameter sharing between
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all the agents and also to counter the non-stationarity in MARL which is usually experi-

enced during decentralized learning of each agent’s policy. Every agent receives a partial

observation oi
t ∈ si

t at every time-step t. The time interval of the simulation is ∆t = 0.3s.

Curriculum learning is used to train the agents in 3 separate stages within the same envi-

ronment.

Team specifications: Each agent is equipped with a 360◦ distance measurement sensor

of range 1.5m with measurements taken θs = 4◦ apart such that b = 10,d = 9 and ωs =

60rad/s. It can distinguish between obstacles and other agents excluding its designated

neighbors. The radius of each agent is Ra = 0.2m and the maximum linear velocity is

vmax = 0.05m/s.

Environment specifications: The dimensions are 15m× 10m with a few large obstacles

between the agents’ starting positions and the goal. The agents must learn to avoid colli-

sions with these obstacles and each other. For each training run, the starting positions of

the agents and the positions of the goal and obstacles are randomly initialized within their

specified regions for each phase. The goal is randomly intialized in [200,800] along the

y-axis and either 400 or 1100 along the x-axis. The y coordinate of the centroid of the for-

mation is initialized at either 200 or 800, whichever is further away from the goal. Training

is carried out in 3 stages with different specifications.

(1) Stage 1: The centroid of the formation is initialized with the same x coordinate as

the goal. The agents are intialized in random order within the formation and are

required to reach the goal while staying within a pre-defined distance from the center

of the formation. Three large obstacles with radius 200 cm are randomly initialized

in [400,750] or in [750,1100] along the x-axis, whichever range is futher away from

the formation centroid. The y coordinates of the obstacles are randomly initialized in

[100,900]. One small obstalce with radius 70 cm is also initialized at the mid-point

between the formation centroid and the goal.
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(2) Stage 2: Similar to Phase 1 but each agent now also stays within a pre-defined range

of its two neighbors.

(3) Stage 3: The centroid of the formation is initialized with the an x coordinate of either

400 or 1000 that is different from the goal. There is random placement of two large

obstacles with radius 80 cm in [400,1100] along the x-axis and in [100,900] along

the y-axis. Along with the above objectives, the agents are now required to maintain

the shape of the formation as they navigate around obstacles.

The common policy shared by the agents is trained for 5000 iterations in Stage 1, 5000

iterations in Stage 2 and 15000 iterations in Stage 3. For each training run, the starting

positions of the agents, the positions of the goal as well as the obstacles are randomly

initialized. Total training time is around 100 hours of wall-clock time.

Reward specifications: The coefficients of the reward function are specified in Table 5.1.

Reward clipping is done to ensure ri
t ∈ [−10,10].

The positions of the 6 agents on the vertices of a regular hexagon is shown in Fig. 5.3.

The reference bearing g
ire f
j for each agent in the 6-agent system is specified in Table 5.2

Figure 5.3: Positions of agents on the vertices of a regular hexagon

where d =
√

3.
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Coefficient Value
Kgoal 0.5
Kdist 1
Kmove 0.3

Kvelocity 0.1
Kcoll 0.5

rc 0.01
rreached 4

rlate −10
ηg 0.4m
ηc 1.2m

mang 30◦

β re f 120◦

dre f 1.5m
dcomm 3m
mdist 0.1m

k1 −1.1
ro −5
r j −1

dsa f e 0.05m

Table 5.1: Coefficient and reward values

Reference bearing Preceeding agent Succeeding agent

g
1re f
j

(
−1, 1

d

)
j=6

(
1, 1

d

)
j=2

g
2re f
j

(
−1,− 1

d

)
j=1

(
0, 2

d

)
j=3

g
3re f
j

(
0,− 2

d

)
j=2

(
−1, 1

d

)
j=4

g
4re f
j

(
1,− 1

d

)
j=3

(
−1,− 1

d

)
j=5

g
5re f
j

(
1, 1

d

)
j=4

(
0,− 2

d

)
j=6

g
6re f
j

(
0, 2

d

)
j=5

(
1,− 1

d

)
j=1

Table 5.2: Reference bearings to neighbors
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We set the values of Kangle = 0.3, Kbearing = 0, while training with the angle-based

reward for Policy 1 and set Kbearing = 0.3, Kangle = 0 while training with the bearing-based

reward for Policy 2. For each category, we train 3 policies with different random seeds to

take into account the effects of randomness. The moving average of the rewards from all

the policies during training are shown in Fig. 5.4 and Fig. 5.5 with a rolling window of

size 100 along with the standard deviation of the rewards indicated by the shaded regions.

Figure 5.4: Reward during training with Policy 1

PPO and optimizer settings: GAE is used for calculating the target value of the Critic

with λ = 0.95. The discount factors are γ = 0.995 and σ = 0.7, policy clip parameter is

εp = 0.2 and the value function clipping is εv = 20. The total number of workers is 7 with 2

vectorized environments each and a soft horizon Hs = 128 steps, meaning the environment

is not reset at episode end but only when the condition for rreached is satisfied or after every

Ts = 2500 steps. Training is carried out in mini-batches of size 512 for 10 epochs at the

end of each iteration where the size of the training batch after an iteration is 128× 7× 2.

The learning rate of the ADAM optimizer is lr = 5×10−5. Early stopping is implemented

when DKL(πθ ,πθk)≥ 0.03.
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Figure 5.5: Reward during training with Policy 2

5.4 Evaluation and Discussion

Evaluation is carried out for 200 runs with each trained policy from which we show 2

trajectories from each category. We denote the trajectories generated by Policy 1 as A1,

A2, and those generated by Policy 2 as B1, B2. The success rate of reaching the goal for

Policy 1 is 8% while that for Policy 2 is 11%, where success is defined as the fraction of

the trial runs in which the centroid of the formation reached the goal area.

The average errors from the successful trials are given in Fig. 5.6. Policy 2 is better able

to maintain the distance specifications compared to Policy 1 with marginal improvement in

average angular error.

As can be seen in the Figs. 5.7 - 5.10 depicting agent trajectories, both policies effec-

tively take the agents to the goal region by bringing the centroid of the formation to the

goal. However, some of the agents come in contact with the obstacles. In Fig. 5.7 espe-

cially, the formation grows as it moves by the obstacle because there is no negative penalty

unless there is a collision. We also do not enforce any distance requirements so long as

each agent stays within a distance of dre f from its corresponding neighbors and rc from the
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Figure 5.6: Average evaluation errors for the two policies

Figure 5.7: Trajectory A1 after evaluation with Policy 1

formation centroid.

The average angular errors in Fig. 5.11 show that the trajectories for both policies
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Figure 5.8: Trajectory A2 after evaluation with Policy 1

undergo a steady increase in angular error. The error is greater in places where the agents

fail to maintain the shape of the formation and come too close together. For trajectories A2

and B1, the error appears to grow even as the formation reaches the goal since the agents

receive a large positive reward on completion which outweighs the negative reward from

the angular error.

The average distance error shown in Fig. 5.12 for the trajectories is not significantly

high since the agents all manage to stay close together throughout their trajectories. The

average distance error is used in Eqn. 36 and only indicates the positive error. The toler-

ance limit of the distance error from each agent to its neighbor is (dcomm−dre f ) = 150cm

exceeding which is a violation of the communication constraint.

The average errors of the four trajectories in Fig. 5.11 and Fig. 5.12 are shown for

different number of steps because each trajectory has a different time of completion as

obtained during policy evaluation.
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Figure 5.9: Trajectory B1 after evaluation with Policy 2

Figure 5.10: Trajectory B2 after evaluation with Policy 2
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Figure 5.11: Average angular errors for the trajectories in Figs. 5.7 - 5.10

Figure 5.12: Average distance errors for the trajectories in Figs. 5.7 - 5.10
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Chapter 6

Conclusion and Future Work

In this thesis, we explored different approaches using PPO for maintaining the for-

mation shape of a group of second-order, holonomic agents using angle-based error and

bearing-based error in the shaped reward function. The different methods presented here

can effectively navigate the centroid of the formation to the goal, while keeping a low

average distance error between the agents and their corresponding neighbors.

The low success rates in comparision to other related works using DRL such as (Lin

et al., 2019), (X. Zhou et al., 2019) and (Y. Zhou et al., 2019) can be explained by the

differences in constraint requiremetns and information available to the agents compared

to our work. In (Lin et al., 2019), the agents are not required to maintain any formation

shape and (Y. Zhou et al., 2019) requires a leader-follower approach and does not have any

formation requirements while avoiding obstacles. The formation requirements of (X. Zhou

et al., 2019) are similar to our work in that the agents flexibly maintain the shape of the

formation while maneuvering around obstalces. However, it does not mention the success

rate of the evaluation results and presents the performance of the policy for a few individual

trajectories.

Using the team reward results in marginally better performance than indivudual rewards

for the angle-based approach. The bearing-based reward also leads to better performance
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compared to the angle-based reward. However, the shape of the formation gets distorted

when the agents come too close to their respective neighbors or fail to maintain their relative

orientation.

Future work will involve applying the methods presented in this thesis to non-holonomic

agents along with the application of constraint satisfaction for formation shape and obstacle

avoidance.
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Appendix A
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Acronym Meaning

RL Reinforcement Learning

DRL Deep Reinforcement Learning

PPO Proximal Policy Optimization

UAV Unmanned Aerial Vehicle

CNN Convolutional Neural Network

TRPO Trust Region Policy Optimization

DDPG Deep Deterministic Policy Gradients

MADDPG Multi Agent Deep Deterministic Policy Gradients

RNN Recurrent Neural Network

VO Velocity Obstacle

PER Prioritized Experience Replay

HER Hindsight Experience Replay

DQN Deep Q Networks

MDP Markov Decision Process

POMDP Partially Observable Markov Decision Process

LSTM Long Short Term Memory

GRU Gated Recurrent Unit

GAE Generalized Advantage Estimation

SGD Stochastic Gradient Descent

Table A.1: Acronyms
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