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Abstract

Capsule Network-based COVID-19 Diagnosis and Transformer-based Lung Cancer
Invasiveness Prediction via Computerized Tomography (CT) Images

Shahin Heidarian

Early diagnosis and prognosis of life-threatening diseases such as the novel coronavirus infection

(COVID-19) and Lung Cancer (LC), involves tackling critical challenges including but not limited

to their undisclosed characteristics, non-stationary nature, significant inter-disease similarities, and

intra-disease variations. In particular, within the context of a highly contagious disease such as

COVID-19, early and reliable diagnosis is of significant importance. On the other hand, when it

comes to diagnosis and prognosis of LC, an accurate prediction of the disease invasiveness becomes

of primary importance. Recent advancements of Artificial Intelligence (AI) and Deep Learning

(DL)-based architectures have resulted in a surge of interest in the utilization of medical images

to develop decision support and stand-alone models to address the aforementioned challenges. In

this context, the focus of the thesis is on the utilization of volumetric chest CT images to develop

robust and fully-automated diagnostic frameworks for COVID-19 diagnosis and LC invasiveness

prediction. In particular, Capsule Network (CapsNet) and Transformer-based architectures are

developed to expand the application of AI in this domain. More specifically, first, CT-CAPS [1] and

COVID-FACT [2] frameworks are proposed to analyze CT images, identify slices demonstrating

infection, and perform patient-level classification of COVID-19. The proposed frameworks are

developed based on the CapsNet architecture, which unlike the widely-used Convolutional Neural

Networks (CNNs), is capable of capturing spatial relations among instances in an image and being

trained on small datasets. These characteristics are of utmost importance when analyzing a newly

emerged disease with specific spatial patterns in its images. Furthermore, following the recent and

ever-increasing interest in using Low-Dose and Ultra-Low-Dose CT scans (LDCT and ULDCT)
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for COVID-19 screening, the WSO-CAPS framework [3] is proposed to enhance performance

of the proposed models to deal with noisy and low-quality CT scans. In addition, given that CT

scans acquired from multiple centers and cohorts mainly show different qualities and characteristics,

which negatively affect the generalizability of DL-based models, a unique multi-center dataset of

CT scans, referred to as the “SPGC-COVID Dataset” [4], is constructed, which incorporates CT

scans of COVID-19, Community Acquired Pneumonia (CAP), and normal cases, obtained using

standard and low-dose imaging protocols. An enhancement approach is then proposed to boost the

performance of the developed classification frameworks when being tested on varied CT scans in

the SPGC-COVID dataset. With respect to the second objective of this thesis (i.e., Lung Cancer

invasiveness prediction), the CAE-Transformer framework is proposed, which utilizes image-driven

features to predict the invasiveness of Lung Adenocarcinomas (LUACs) from non-thin 3D CT scans.

The proposed framework introduces a new viewpoint in CT scan analysis, which relies on the

sequential nature of the volumetric CT scans. More specifically, the CAE-Transformer [5] adopts

the transformer architecture, which was initially designed for sequential data, to capture inter-slice

dependencies in an efficient and non-complex fashion.
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Chapter 1

Thesis Overview

Automatic and accurate diagnosis of critical diseases such as contagious lung infections and

Lung Cancer (LC) has recently attracted huge attentions among researchers and professionals in

the field of Artificial Intelligence (AI). Especially, considering recent advances in fields of Machine

Learning (ML) and Deep Learning (DL), developing an accurate and fast automated framework to

assist healthcare professionals with diagnosis and treatment planning has become more promising

than ever. Such frameworks can utilize medical images, biological signals, and/or clinical data to

compensate for the limitations of the current diagnostic and prognostic solutions. Recently, the

global outbreak due to the novel coronavirus disease (COVID-19) has sparked an unforeseeable

global crisis since its emergence in late 2019.

The COVID-19 pandemic has reshaped our societies and people’s lives in many lasting ways,

and caused millions of deaths so far. In spite of the global enterprise to prevent the rapid outbreak

of the disease and flatten the epidemic curve, there are still thousands of reported cases around the

world on daily bases, which consistently raise the concern of facing a major epidemic wave or a

new fatal and contagious variant of the virus such as the Omicron variant. The emergence of the

COVID-19 pandemic further emphasizes the necessity and benefits of developing fast and reliable

AI-based diagnostic and prognostic solutions.

In addition, besides the direct consequences of a pandemic, there are a wide variety of side-

effects targeting the healthcare system. In particular, during a pandemic, all the resources are directed

towards fighting the fast-spreading disease, which in turn results in late diagnoses and inaccurate
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treatments of other vital diseases such as LC. These side-effects put a heavy burden on the healthcare

system and professionals and once again highlight the importance of developing automated stand-

alone and decision support frameworks to provide timely and accurate diagnosis as well as additional

information about the disease.

1.1 Thesis Objectives

In brief, this thesis mainly focuses on the development of automated DL-based frameworks for

the following two major applications.

1.1.1 Diagnosis of COVID-19 Disease from Volumetric Chest CT Scans

The early diagnosis of COVID-19 is of paramount importance to assist health and governmental

authorities with developing efficient resource allocation plans and breaking the transmission chain.

In the case of a pandemic such as the current COVID-19 global outbreak, healthcare professionals

experience unexpected heavy workloads, caused by the abrupt increase in the number of people in the

need of examination, which reduces their concentration and efficiency to properly identify cases and

confirm the results. Such an increasing workload points out the need to distinguish normal cases and

non-COVID infections from COVID-19 cases in a timely fashion. Reverse Transcription Polymerase

Chain Reaction (RT-PCR), which is currently the gold standard in diagnosis of COVID-19, is time-

consuming and prone to high false-negative rate [8]. Recent studies have demonstrated the strong

capability of Chest Radiographs (CR) and Computed Tomography (CT) scans in providing distinctive

patterns associated with the COVID-19 infection [9, 10]. Studies also show specific distribution

of the disease imaging manifestations in the lung [11–14]. It is worth noting that chest radiograph

acquisition is relatively simple with less radiation exposure than CT scans. A single CR image,

however, fails to incorporate details of infections in the lung and cannot provide a comprehensive view

for the lung infection diagnosis. CT scan, on the other hand, is an alternative imaging modality that

incorporates the detailed structure of the lung and infected areas by generating cross-sectional images

(slices) to create a 3D representation of the body. Such scans are highly sensitive to the diagnosis of

COVID-19 infection, particularly based on its specific abnormality pattern and infection distribution
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in the lung [8]. Obtaining several images per patient (often more than 100 slices), however, makes the

CT scan analysis challenging and time-consuming as radiologists should carefully review all images

before making a decision. In addition, chest CT is widely used as a primary diagnostic imaging

modality in many countries, especially in those where RT-PCR test resources are limited. Therefore,

there is an unmet need to develop advanced automated frameworks based on CT images to speed up

the diagnosis procedure. In particular, the following challenges need to be targeted:

• Generally speaking, COVID-19 lung imaging manifestations are highly overlapped with

those of the Community Acquired Pneumonia (CAP), leading to mis-classification even

by experienced radiologists. This has motivated development of DL-based frameworks for

identification of COVID-19 patients based on medical images. Most DL-based algorithms

proposed to analyze medical images and identify COVID-19 cases are mainly developed

based on Convolutional Neural Networks (CNNs). CNNs, however, require extensive data

augmentation and large datasets to identify detailed spatial relations between image instances.

In other words, CNNs commonly fail to recognize an object when it is rotated or transformed.

In the case of a relatively new disease such as COVID-19, or next probable pandemics caused

by a new unforeseeable phenomenon, large annotated/labeled datasets are not easily accessible.

Moreover, finding spatial relations in CT images is highly important as most COVID-19 cases

have been reported with a specific infection distribution in their images [11–14]. Capsule

Networks (CapsNets) [15], in contrast to the CNNs, are equipped with a routing by agreement

process enabling them to capture spatial patterns between instances of an image. More

specifically, by reaching a mutual agreement, higher-level objects are constructed from lower-

level ones. Even without a large dataset, capsules interpret the object instantiation parameters

as well as its existence, which jointly determine the object’s characteristics and spatial relations

with other instances. The superiority of Capsule Networks over their CNN-based counterparts

has been recently shown in different medial image processing problems [16–21].

• Aside from the utilized DL architecture, such models commonly achieve lower performances

when there is heterogeneity in the data characteristics between the train and test sets, which is

common when acquiring data from multiple imaging centers [22]. Therefore, the necessity

3



of developing a robust framework is of utmost importance to minimize the effect of the gap

between the train and test sets and provide acceptable results on varied external datasets. In

the case of CT scans, there are several factors contributing to the characteristics of the images

among which, type of scanners, scanner manufacturers, and scanning protocols have the most

influence on the quality and characteristics of the scans [23, 24]. Furthermore, the patients’

clinical and surgical history can add more complexity and undesired artifacts to the CT scans

that might have been blind to the trained model [25].

• Finally, it is worth noting that CT scans in their standard form expose patients to a high level of

harmful radiation causing devastating effects on the body. Alternatively, Low and Ultra-Low

Dose CT scans, commonly known as LDCT and ULDCT respectively, have been recently used

in many diagnostic applications and proved to be effective in providing informative details

of the disease imaging manifestation [26–28]. Recently, in the course the current COVID-19

pandemic, the increasing number of suspected COVID-19 cases in need of being scanned led

the radiologists to move from standard dose CT scans to acquiring LDCT and ULDCT, aiming

to decrease the detrimental effects of the scans caused by the radiation on the patients [29, 30].

Decreasing the radiation dose is usually performed by using lower x-ray tube currents, which

in turn will impose a high level of noise on the acquired images, requiring more time and

attention to accurately analyze the images.

Capitalizing on the above discussion, multiple Capsule Network-based frameworks are proposed in

this thesis to address the following diagnostic tasks using chest CT scans:

(1) Classifying patients into COVID-19 and non-COVID (normal and CAP) cases using standard

dose chest CT scans. Such automated framework provides healthcare professionals with

immediate and significant assistance to exclude non-COVID cases quickly in the first step,

helping them to pay more attention and allocate more medical resources to COVID-19 identified

cases.

(2) Distinguishing normal, CAP, and COVID-19 cases in a three-way classification from a multi-

center dataset of heterogeneous CT scans including LDCT, ULDCT, and scans of patients

with the history of heart disease or surgery. An efficient and robust framework capable of
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accomplishing this task will further optimize the treatment plan and resource allocation in

healtcare systems and is one step forward towards the ultimate goal of development of clinically

applicable AI-based frameworks.

(3) Automatically adjusting CT window setting parameters, finding the optimized setting to view

LDCT and ULDCT, and identifying slices with the evidence of infection. The proposed model

is capable of providing additional information on the disease image manifestations and locating

the lung areas with the evidence of infection from LDCT and ULDCT, as well as standard

dose CT scans.

1.1.2 Lung Adenocarcinoma invasiveness prediction from non-thin section volumetric

CT scans

The second main focus of this thesis is on the diagnosis of LC, which is the deadliest and

least funded cancer worldwide [31, 32]. Non-small-cell LC is the major type of LC, and Lung

Adenocarcinoma (LUAC) is the most prevalent histologic sub-type [33]. A timely and accurate

attempt to differentiate the LUACs is of utmost importance to guide a proper treatment plan, as in

some cases, a pre-invasive or minimally invasive case can be monitored with regular follow up CTs,

whereas invasive lesions should undergo immediate surgical resection if they are deemed eligible.

Lung nodules manifesting as Ground Glass Nodules (GGN) or Subsolid Nodules (SSNs) on CT have

a higher risk of malignancy than other incidentally detected small solid nodules, and SSNs are often

diagnosed as lung adenocarcinoma [34, 35]. LUACs are categorized according to their histology

into three categories: pre-invasive lesions including Atypical Adenomatous Hyperplasia (AAH) and

Adenocarcinoma In Situ (AIS), Minimally Invasive Adenocarcinoma (MIA), and Invasive Pulmonary

Adenocarcinoma (IPA) [35]. Most often, the SSN’s types are diagnosed based on their pathological

findings performed after surgical resections, which is not desired for treatment planning. Currently,

radiologists use chest CT scans to assess the invasiveness of the SSNs based on their imaging

findings and patterns prior to determining the proper treatment. Such visual approaches, however, are

time-consuming, subjective, and error-prone. So far, several studies have used high-resolution and

thin-slice (< 1.5mm) CT images for the SSN classification, which require longer analysis times, as
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well as more storage capacity and reconstruction time [36,37]. Recent LC screening recommendation,

however, suggests using Low Dose CT scans with thicker slice-thicknesses (up to 2.5mm) [38, 39].

Moreover, lung nodules are mostly identified from CT scans performed for varied clinical purposes

acquired using routine standard or low dose scanning protocols with non-thin slice thicknesses (up

to 5mm) [40]. The above discussion implies the necessity of developing an accurate automated

classification framework that performs well regardless of the underlying technical settings.

1.2 Contributions

The main objective of this thesis is the development of automated DL-based frameworks to

analyze chest CT scans. More specifically, this thesis proposes automated frameworks to identify the

COVID-19 infection and predict the invasiveness of Lung Adenocarcinoma from chest CT scans and

attempts to take one step forward towards reaching the ultimate goal of using DL-based solutions

in clinical practice. Besides the model development, this thesis investigates various aspects of

models, which play important roles in the healthcare systems. In particular, this thesis evaluates the

interpretability of the models, the ability to adjust the functionality based on expert’s preferences,

and the capability of the trained models to be generalized over other medical centers and cohorts.

The main contribution of this thesis research work are briefly outlined below:

(1) CT-CAPS and COVID-FACT Frameworks [1,2]: These proposed frameworks are developed

to automatically distinguish COVID-19 cases from non-COVID (CAP and normal) ones. Both

frameworks are developed based on Capsule Networks and take the volumetric CT scan (all

slices) as the input and provide the classification probability scores as the output. Both proposed

frameworks utilize a two-stage approach, which is designed to facilitate the translation from 2D

slice-level domain to the patient-level diagnosis. This is of paramount importance in COVID-

19 detection using CT scans, as a CT examination is typically associated with hundreds of

slices that cannot be analyzed at once. It is also worth noting that the first stage of both

frameworks is trained on a dataset, which does not require any infection annotation or a very

precise slice labeling. This leads to a fast and timely design process, which is highly valuable

when we are faced with early emergence of a new type of data. In what follows, the two
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proposed frameworks are briefly described:

(a) CT-CAPS is a fully-automated framework based on Capsule Networks, which represents

each slice of a CT scan by a small feature map in the first stage and utilizes the generated

feature maps to distinguish COVID-19 cases from non-COVID (CAP and normal) cases

in the next stage. The proposed CT-CAPS copes with the development difficulties caused

by the large number of CT slices per patient and emphasizes the capability of capsules to

represent a large volumetric CT scan by a very small matrix. In this framework, a Capsule

Network-based feature extractor is proposed to detect specific characteristics of CT slices,

followed by a Max Pooling Layer to convert slice-level feature maps into patient-level

ones. Finally, a stack of fully connected layers are added to provide the final decision.

Furthermore, to improve on the explainability of the model, the Grad-CAM localization

mapping approach [41] is incorporated to determine lung regions contributing the most

to the final decision.

(b) COVID-FACT is the extension of the CT-CAPS framework in which the first stage detects

slices demonstrating infection in a volumetric CT scan to be analyzed and classified

in the next stage. At the second stage, candidate slices detected at the previous stage

are classified into COVID and non-COVID cases and a voting mechanism is applied to

generate the patient-level classification scores. COVID-FACT’s two-stage architecture

has the advantage of being trained on even a weakly labeled dataset, as errors at the first

stage can be compensated at the second stage. In addition, manual infection annotation

is completely removed from the COVID-FACT. The only information required from the

radiologists to train the first stage is the slices containing evidence of infection and the

radiologist’s input is not required in the test phase of the COVID-FACT and the trained

framework is fully automated.

In this thesis, two variants of the aforementioned frameworks are also developed, one of which

is fed with the whole chest CT image, while the other one utilizes the segmented lung area

as the input. In the latter case, instead of using an original chest CT image, first a pre-trained

segmentation model [42] is applied to extract the lung region, which is then provided as the
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input. This will be further clarified in Chapter 3. Experimental results show that the model

coupled with the lung area segmentation achieves relatively higher performances compared to

the other variation working with original images. As a final note, it is worth mentioning that

the pre-trained lung segmentation model mentioned above is related to the well-studied lung

segmentation task, which is totally different from the infection segmentation.

(2) Robust COVID-19 Identification from a Multi-center Dataset of Chest CT Scans [4]: First,

an automated two-stage classification framework based on Capsule Networks is introduced as

an extension of the COVID-FACT framework, which is tailored to robustly classify volumetric

chest CT scans into one of the three target classes (COVID-19, CAP, or normal). The proposed

framework integrates a scalable unsupervised enhancement approach to boost its performance

and robustness in the presence of gaps between the train and test sets regarding types of

scanners, imaging protocols, and technical parameters. More specifically, an enhancement

approach is proposed to update the model’s parameters by extracting confident predictions

from different test sets and utilize them to re-train the model in order to increase its capability

and robustness in the presence of gaps between the imaging protocols and patients’ clinical

history. In the proposed framework, different versions of the model are trained based on

different test sets and outputs are combined to generate the final predictions, which are more

accurate and robust. On the other hand, a unique test dataset, referred to as the SPGC-COVID

dataset, is introduced to facilitate training and evaluation purposes. SPGC-COVID dataset

consists of COVID-19, CAP, and normal cases acquired with various imaging settings from

different medical centers, including images with different slice thickness, radiation dose, and

noise level. In addition to different technical parameters, the dataset consists of CT scans of

patients who have heart diseases or have undergone heart surgery, besides having COVID-19

or CAP infections.

(3) WSO-CAPS [3]: Generally speaking, ROI or slice selection module plays an important role

in most automated diagnostic and prognostic frameworks (including COVID-FACT) as it

facilitates the translation from the slice-level to the patient-level domain by detecting the

candidate slices or ROIs demonstrating infection at the first step, and passing them to the
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subsequent modules. In the proposed WSO-CAPS, a Window Setting Optimization (WSO)

mechanism is introduced and incorporated into a slice-level Capsule Network-based classifier

to boost the model’s performance in detecting slices with the evidence of infection. The main

focus of the proposed WSO-CAPS is to enhance the performance on the noisy chest LDCT and

ULDCT images. However, the introduced technique has also been beneficial in the analysis of

standard CT scans. Basically, to deal with low quality CT images, radiologists manually adjust

the screen setting using some specific windowing functions to narrow down the displayed

components and adjust the image contrast as some manifestations are only visible in a specific

window depending on their tissue density which is commonly distributed from HUair(−1000)

to > 4000 in the Hounsfield Units (HU) [6, 43]. This approach will also remove the undesired

noises and artifacts in the image, facilitating its interpretation. Most windowing functions

utilize mapping functions based on two parameters of Window Level (WL) and Window Width

(WW) by which the function is determined. The WSO-CAPS framework is equipped with a

mechanism to automatically identify the best (WL,WW) pairs to resemble the radiologists’

efforts in reviewing such low quality scans. It is also hypothesized that due to the similarities

in the imaging modality and reconstruction technology between various CT scans, augmenting

other CNN and Capsule Network-based frameworks by the WSO module would have a high

potential to improve the performance of diagnostic/prognostic frameworks which are working

with other types of CT scans.

(4) CAE-Transformer [5]: This framework is proposed to predict the invasiveness of lung

adenocarcinomas using volumetric non-thin CT scans. The building block of the CAE-

Transformer is the novel self-attention mechanism and the transformer encoder. In addition,

unlike current vision transformers which consider different patches in an image as a sequence

of data [44, 45], the proposed CAE-Transformer uses a Convolutional Auto-Encoder (CAE)

model [46] to extract informative features from CT slices and stack them to form a sequential

feature map. The CAE is first pre-trained on the public LIDC-IDRI dataset, then fine-tuned on

an in-house dataset. The obtained sequential feature maps are then fed to a transformer model

containing multiple multi-head self-attention layers, followed by a stack of fully connected
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layers to provide the final predictions. It is also worth noting that, unlike most existing studies

which rely on the nodule patches as the model’s input, the CAE-Transformer does not require

a detailed annotation of the nodules and takes the whole CT image as the input. The only

required information from the radiologists/experts is the set of slices with the evidence of a

nodule without further details. Experimental results show that DL-based models improve the

result achieved by the study performed in Reference [40] based on the histogram-based and

radiomics features while the CAE-Transformer provided the highest improvement among its

DL-based counterparts.

1.3 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 provides a literature review on the chest CT scan analysis. In addition, this chapter

provides the background material required to follow developments presented in the reminder of

the thesis. Furthermore, the detailed description of the datasets used in this thesis are presented

in this chapter.

• Chapter 3 presents the proposed CT-CAPS and COVID-FACT frameworks developed for

automatic identification of COVID-19 cases from standard dose CT scans.

• Chapter 4 presents the proposed robust three-way classification framework for diagnosis

of COVID-19, CAP, and normal cases from a varied and multi-center dataset of CT scans.

In addition, the proposed WSO-CAPS framework, which aims to enhance the slice-level

predictions, is described in this chapter.

• Chapter 5 provides a detailed description of the proposed CAE-Transformer designed to predict

the invasiveness of lung adenocarcinomas using non-thin CT scans and radiomics features.

• Chapter 6 concludes the thesis and explains some directions for future research studies.
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Chapter 2

Literature Review and Background

As stated previously, there has been a recent surge of interest in development of Deep Learning-

based diagnostic and prognostic tools based on chest CT scans. In this chapter, recent related research

works proposed in literature are presented. Background materials, which are widely used throughout

this thesis and required to follow the subsequent chapters are also provided. Finally, an overview of

the datasets used in this thesis is presented.

2.1 COVID-19 Diagnosis

Recently, Convolutional Neural Networks (CNNs) have been widely used in several studies

to develop DL-based frameworks based on medical images (e.g., CR and CT scans) in order to

account for the human-centered weaknesses in detecting COVID-19. CNNs are powerful models in

image-related tasks and are capable of extracting distinguishing features from CT scans and chest

radiographs [47]. The study performed by Reference [48] is an example of the application of CNN in

COVID-19 detection, where CNN is first pre-trained on the ImageNet dataset [49]. Fine-tuning is then

performed using a CR dataset to distinguish normal, non-COVID pneumonia (viral and bacterial), and

COVID-19 infections. Reference [50] has also explored the same problem, with the difference that the

CNN is followed by a Support Vector Machine (SVM) to identify positive COVID-19 cases. Another

study [51] proposed a CNN-based model utilizing depth-wise convolutions with varying dilation

rates to extract more diversified features from chest radiographs. They used a pre-trained model

11



on a dataset of normal, viral, and bacterial pneumonia patients, followed by additional fine-tuned

layers on a dataset of COVID-19 and other pneumonia patients. As stated previously, besides the

studies based on the CR images, there has been a surge of interest in utilizing 2D and 3D CT images

to identify COVID-19 infection. For instance, Reference [52] proposed a DenseNet-based model

to classify manually selected slices with COVID-19 manifestations and pulmonary parenchyma

into COVID-19 and normal classes. The underlying study achieved a satisfactory accuracy for the

patient-level classification by averaging slice-level probabilities, followed by a threshold of 0.8 on the

averaged values. However, the dataset used to train and test the model does not include other types of

pneumonia in this study. In general, such methods require manual selection of slices demonstrating

infection to feed the model, which makes the overall process time-consuming and only partially

automated. To extract features from all CT slices, the proposed framework in Reference [7] first

segmented the lung regions using a U-net based segmentation method [53], and then used them to

fine-tune a ResNet50 model, which was pre-trained on natural images from the ImageNet dataset [54].

Extracted features are then combined using a max-pooling operation followed by a fully connected

layer to generate probability scores for each disease type. Indeed, these types of methods combine

extracted features from all slices of a patient, with or without infection, which potentially results in

lower accuracy as there are numerous slices without evidence of infection in a volumetric CT scan of

an infected patient. In another study [55], segmented lungs are fed into a multi-scale CNN-based

classification model, which utilizes intermediate CNN layers to obtain three-way classification scores,

and aggregates those scores generated by intermediate layers to make the final prediction. The

model proposed in Reference [22] uses a two-stage method consisting of a Deeplabv3-based lung

lesion segmentation model [56], followed by a 3D ResNet18 classification model [57] to identify

lung lesions and abnormalities and use them to classify patients into COVID-19, CAP, and normal

findings. They manually annotated chest CT scans into seven regions to train their lung segmentation

model, which is a time-consuming and sophisticated task requiring a high level of thoracic radiology

expertise to accomplish. It is worth noting that CT imaging is superior for COVID-19 detection and

diagnosis purposes when compared to chest radiographs. However, as in the case of CT imaging,

we are dealing with 3D inputs and several slices per patient (compared to one chest radiograph per

patient), the learning process is significantly more challenging. As such, DL-based models trained
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over CT scans cannot be directly compared with those developed based on chest radiographs.

From another viewpoint, existing diagnostic methods developed based on chest CT scans are

generally divided into slice-level and patient-level methods. These studies can further be classified

into segmentation-based or feature extraction-based approaches. Segmentation-based methods [22,

58, 59] aim to train a model on a large dataset of annotated lung lesions to detect regions of infection

and determine the disease severity and type. Although the lung segmentation task has been well-

studied [42], infection segmentation requires extensive collaboration with radiologists to perform the

sophisticated infection and abnormality annotation task, making the training process too complicated

and time-consuming. Moreover, in some cases [59], the overall performance is low for scenarios

with mild lung infections. As an example of segmentation-based methods, Reference [58] used a

semi-supervised method based on pre-trained existing segmentation models to detect lung infected

regions to be incorporated into a CNN-based classifier via an attention mechanism to increase the

classification accuracy. In another study, Reference [59] proposed a model which extracts handcrafted

radiomics features from the segmented lung and infected regions, followed by a feature selection

mechanism to feed multi-stage random forest classifiers to classify patients into four groups based

on their infection size obtained from the first step. Then, a random forest model is trained for each

group as the final classifier. The model developed in the aforementioned Reference [22] is also a

case of segmentation-based models.

With regard to the feature extraction-based approaches, different frameworks have recently been

introduced, commonly utilizing a CNN-based model. Such methods either use a 3D CNN to analyze

the whole CT volume in a single stage or apply 2D CNNs on CT slices and aggregate slice-level

results via an aggregation mechanism. As an example, the model proposed in Reference [60] fed

a 3D CNN-based classifier with lung regions, segmented by a pre-trained U-Net [53] to classify

COVID-19 and normal cases. Reference [55] extended patient-level labels into slice-level and used

the same label for all slices in a CT scan to train a deep model, utilizing the intermediate CNN layers

to obtain classification features. These features are then combined to make the final decision. It is

worth mentioning that using patient-level labels for all slices in a CT scan is not reasonable and

will add errors into the system as each volume of CT scan contains many slices without any visible

infection area. As another example, the model proposed in the mentioned Reference [7] is indeed a
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case of feature extraction-based approaches. The aforementioned methods either require a carefully

annotated data to segment regions of infection or extend patient-level labels to all slices, resulting in

unexplainable and potentially lower results. Moreover, some of the aforementioned works have only

proposed slice-level classifiers, which makes such methods partially automated.

As mentioned before, CNN, which is widely adopted in COVID-19 studies, suffers from an

important drawback that reduces its reliability in clinical practice. CNNs are required to be trained

on different variations of the same object to fully capture the spatial relations and patterns. In other

words, CNNs, commonly, fail to recognize an object when it is rotated or transformed. In practice,

extensive data augmentation and/or adoption of huge data resources are needed to compensate for the

lack of spatial interpretation. As COVID-19 is a relatively new phenomenon, large datasets are not

easily accessible, especially due to strict privacy preserving constraints. Furthermore, most COVID-

19 cases have been reported with a specific infection distribution in their image [11–14], which

makes capturing spatial relations in the image highly important. As such, Capsule Networks, which

is an alternative model capable of capturing spatial relations and being trained on small datasets, is

used as the building block of the models proposed in this thesis. It is worth noting that the superiority

of Capsule Networks over their counterparts has been recently shown in different medial image

processing problems [16–21]. In the case of COVID-19, a Capsule Network-based framework [61],

referred to as the COVID-CAPS, has been recently proposed to identify COVID-19 cases using CR

images, which achieved an accuracy of 98.3%, a specificity of 98.6%, and a sensitivity of 80%. As

stated previously, CT imaging is superior for COVID-19 detection and diagnosis purposes when

compared to chest radiographs. However, as in the case of CT imaging, we are dealing with 3D

inputs and several slices per patient (compared to one chest radiograph per patient), the learning

process is significantly more challenging. As such, accuracies of deep models trained over CT scans

cannot be directly compared with those obtained based on chest radiographs. The structure and

mathematical representation of caspules are presented in Sub-section 2.1.1.

2.1.1 Capsule Networks

A Capsule Network (CapsNet) is an alternative architecture for CNNs with the advantage of

capturing hierarchical and spatial relations between image instances. Each capsule layer utilizes
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several capsules to determine existence probability and pose of image instances using an instantiation

vector. The length of the vector represents the existence probability, and the orientation determines

the pose. Each capsule i is made up of a set of neurons, which collectively create the instantiation

vector ui for the associated instance. Capsules in lower layers try to predict the output of capsules in

higher levels using a trainable weight matrix Wij as follows

ûj|i = Wijui, (2.1)

where ûj|i is the predicted output of capsule j in the next layer by the capsule i in the lower layer.

The association between the prediction ûj|i and the actual output of capsule j, denoted by vj , is

determined by taking the inner product of ûj|i and vj . The higher the inner product, the more

contribution of the lower level capsules to the higher level one. The contribution of capsule i to the

output of the capsule j in the next layer is determined by a coupling coefficient cij , trained over a

course of few iterations known as the “Routing by Agreement" given by

aij = vj .ûj|i, (2.2)

bij = bij + aij , (2.3)

cij =
exp(bij)∑
k exp(bik)

, (2.4)

sj =
∑
i

cijûj|i, (2.5)

and vj =
∥sj∥2

1 + ∥sj∥2
sj
∥sj∥

, (2.6)

where aij is referred to as the agreement coefficient between the prediction and actual output, and

bij denotes the log prior of the coupling coefficient cij . Vector sj denotes the capsule output before

applying the squashing function. As the length of output vectors represents probabilities, the ultimate

output of capsule j (vj) is obtained by squashing sj between 0 and 1 using the squashing function

defined in Eq. (2.6). In order to update weight matrix Wij through a backward training process, the

loss function is calculated for each capsule k as follows

lk = Tk max(0,m+ − ||vk||)2 + λ(1− Tk)max(0, ||vk|| −m−)2, (2.7)
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where Tk is 1 when the class k is present and 0 otherwise. m+, m−, and λ are hyper parameters of

the model and are originally set to 0.9, 0.1, and 0.5, respectively. The overall loss is the summation

of all losses calculated for all capsules.

In addition to the Capsule Networks, the Gradient-weighted Class Activation Mapping (Grad-

CAM) localization approach [41] is widely utilized in this thesis to visualize the distinctive patterns

in a chest CT scan recognized by the intermediate deep layers within the proposed frameworks. Using

the Grad-CAM approach, the relation between the model’s prediction and the features extracted

by the intermediate layers (mainly convolutional layers) can be visually verified, which ultimately

leads to a higher level of interpretability of the developed models. The detailed description of the

Grad-CAM approach is presented in Sub-section 2.1.2.

2.1.2 Grad-CAM

Basically, the Grad-CAM’s outcome is a weighted average of the feature maps of a convolutional

layer, followed by a Rectified Linear Unit (ReLU) activation function, i.e.,

Lc
Grad−CAM = ReLU

(∑
k

αc
kA

k

)
, (2.8)

where Lc
Grad−CAM refers to the Grad-CAM’s output for the target class c; αc

k is the importance

weight for the feature map k and the target class c, and; Ak refers to the feature map k of a

convolutional layer. The weights αc
k are obtained based on the gradients of the probability score

of the target class with respect to an intermediate convolutional layer followed by a global average

pooling function as follows

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

, (2.9)

where yc is the prediction value (probability) for target class c, and Z refers to the total number of

feature maps in the convolutional layer.
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2.2 CT Window Setting Optimization

The majority of state-of-the-art frameworks are trained and evaluated using only standard-dose

CT images, and few models have been developed based on LDCT and ULDCT so far. As an

example of such models, an end-to-end framework is proposed in Reference [62] to predict the

risk of lung cancer using 3D LDCT images. As another example, the framework developed in

Reference [63] utilizes CNN and gradient boosting decision trees to predict the risk of lung cancer

using LDCT images. However, no specific measure is considered in these studies to deal with the

noisy and low-quality LDCT images. Recently, some research studies have incorporated a window

setting optimization mechanism into the automated diagnostic/prognostic frameworks to improve

the performance of the models [64, 65]. More specifically, the method proposed in Reference [64]

utilizes a stochastic window tissue normalization mechanism that randomly samples windowing

parameters (WL,WW) from two Gaussian distributions in the training phase to segment abdominal

CT images. This method, however, does not consider an optimized setting and merely normalizes

the windows using randomly sampled (WL,WW). In another study [65], the proposed model uses a

stack of four CNN followed by two fully connected layers as the Window Estimator Module (WEM)

along with an Inception-ResNet-v2 model [6] as the lesion classifier to detect the best window setting

parameter for each 2D input image. It then considers the average of all obtained (WL,WW) values

from the entire dataset as the final setting. Their proposed method using a combination of several

window settings could improve the accuracy of the multi-class intracranial hemorrhage detection

from 87.65% to 88.35% and the binary classification (normal and abnormal) from 95.59% to 96.43%

using brain CT images. The WEM mechanism proposed in this study resulted in a wide distribution

of (WL,WW) values calculated for each slice, and an average function over the entire dataset might

not be the optimized value. It is worthy of note that none of the aforementioned algorithms, which

aim to adjust windowing parameters, were developed based on the LDCT and ULDCT scans. In

a recent study [66], a Window Setting Optimization (WSO) mechanism is proposed which uses a

single convolutional layer at the beginning of the pipeline to map the full-range DICOM images

to the range of interest using specific windowing functions. In this thesis, the WSO mechanism

introduced in [66] is adapted to detect slices demonstrating infection in an in-house dataset of LDCT
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and ULDCT acquired from COVID-19 and normal cases, as well as simulated low dose images

of CAP cases. More specifically, a multi-window framework, referred to as the WSO-CAPS, is

proposed which applies a windowing function similar to those used by radiologist’s monitors on

the full-range DICOM images and passes the modified images to a classifier based on the Capsule

Networks [15].

2.3 Lung Cancer Invasiveness Prediction

In general, existing publications on the SSN classification and invasiveness assessment can be cat-

egorized into two main groups: (1) Radiomics-based and (2) Deep Learning-based frameworks [67].

In the former, a set of histogram-based, morphological, and clinical features are extracted from the

CT images which are then analyzed using statistical or machine learning techniques such as the

studies conducted in References [68,69]. As another example of such frameworks, a histogram-based

model is developed in Reference [40] to predict the invasiveness of primary adenocarcinoma SSNs

from non-thin CT scans of 109 pathologically labeled SSNs. In this study, a set of histogram-based

and morphological features along with additional features extracted via the Functional Principal

Component Analysis (FPCA) is fed to a linear logistic regression, achieving the accuracy of 81.0%

and Area Under the ROC Curve (AUC) of 0.91. Deep learning-based frameworks, on the other

hand, extract informative and discriminative features in an automated fashion. Existing deep models

working with volumetric CT scans can be classified into two main groups: (i) The first approach is to

feed the whole volume of images (i.e., all 2D slices) or stack of all nodule patches (cropped images

including nodules) into a 3D model (e.g., 3D CNN) to provide a patient-level prediction [70, 71].

Processing a large 3D CT scan at once, however, demands more complex models, more computa-

tional resources, and larger training datasets. (ii) The second approach, on the other hand, analyzes

individual 2D CT slices or Regions of Interest (ROIs) in the first step and aggregates the results

through a sequential model such as Recurrent Neural Networks (RNN) or LSTM or via another

aggregation mechanism based on pooling or fully connected layers [1, 2, 72]. It is also worth noting

that most of the published studies are developed and evaluated based on the public LIDC-IDRI [73]

dataset which does not have pathologically proven labels and focuses more on nodule detection than
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classification.

Due to the nature of the volumetric CT scans, which utilize a sequence of 2D images (slices)

to provide a detailed representation of the body, there have been recently a surge of interest in

application of sequential deep models for diagnostic/prognostic tasks based on CT scans. Recently,

a new sequential deep model based on a novel self-attention mechanism, commonly known as

“Transformer" [74], has been proposed which shows superior performances in the tasks related to the

sequential data. Transformer models benefit from a novel self-attention mechanism which is capable

of capturing global context and dependencies between instances in sequential data while requiring far

less computational resources compared to conventional LSTM and RNN architectures. Transformers

are also superior to their counterparts in terms of parallelization and dynamic attention. Although

the transformer model was initially designed for Natural Language Processing, there have been

recently significant attempts to adopt the self-attention mechanism for image processing applications.

Vision Transformer (ViT) [44] and Convolutional Vision Transformer (CvT) [45] are two popular

types of transformers designed to address image processing tasks. Both models, however, apply the

self-attention to the small patches in a 2D image. Analyzing a series of CT slices, however, requires

a framework capable of capturing inter-slice relations. Although the development of transformers for

sequential medical images is currently in its nascent stage, recent models proposed for COVID-19

disease identification and image segmentation [75–77] have shown promising results and potentials.

In this thesis, the self-attention mechanism and the transformer encoder utilized in References [44,74]

are modified to be compatible with the task at hand. In particular, the sequential input is provided by

concatenating feature maps generated from each slice.

It is also worth noting that, unlike most existing studies which rely on the nodule patches as the

model’s input, the CAE-Transformer does not require a detailed annotation of the nodules and takes

the whole CT image as the input. The only required information from the radiologists/experts is the

set of slices with the evidence of a nodule without further details.

The multi-head self-attention mechanism, which is the building block of the proposed transformer-

based framework, is described in Sub-section 2.3.1.
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2.3.1 Multi-Head Self-Attention Mechanism

The transformer model is the building block of the CAE-Transformer framework which uses

a novel self-attention mechanism to capture global dependencies among various instances in the

input sequence with a high parallelization capability, reducing the computational complexity and

memory allocation of other recurrent-based architectures such as RNN and LSTM. The self-attention

mechanism is based on a Scaled Dot-Product Attention function, mapping a query and a set of

key-value pairs to an output, where the query (Q), keys (K), values (V ), are learnable representative

vectors for the instances in the input sequence with dimensions dk, dk, and dv, respectively. The

output of a self-attention module is computed as a weighted average of the values, where the weight

assigned to each value is computed by a similarity function of the query and the corresponding key

after applying a softmax function [74]. More specifically, the attention values on a set of queries

are computed simultaneously, packed together into a matrix Q. The keys and values are similarly

represented by matrices K and V . The output of the attention Scaled Dot-Product Attention function

is computed as

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.10)

where KT is the transpose of the matrix K. It is also beneficial to linearly project the queries, keys,

and values h times with various learnable linear projections to vectors with dk, dk and dv dimensions,

respectively, before applying the attention function. On each of the projected versions of queries,

keys, and values, the attention function is performed in parallel, resulting in dv−dimensional output

values. These values are then concatenated and once again linearly projected via a fully-connected

layer. This process is called “Multi-Head Attention (MHA)" which helps the model to jointly attend

to information from different representation sub-spaces at different positions [74]. The output of the

MHA module is

MHA(Q,K, V ) = Concat(head1, · · · , headh)WO,

headi = Attention(QWQ
i ,KWK

i , V W V
i ), (2.11)
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where the projections are achieved by parameter matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk

,W V
i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel .

2.4 Datasets

In this section, the datasets used for model development and evaluation in this thesis are described

in detail. Furthermore, additional information on the imaging protocol, de-identification, and labeling

process is provided.

2.4.1 COVID-CT-MD Dataset

COVID-CT-MD [78] includes volumetric chest CT scans of 171 patients tested positive for

COVID-19 infection, 60 CAP patients, and 76 normal patients, acquired from April 2018 to May

2020. The average age of patients is 50 ± 16 including 183 men and 124 women. A subset of 55

COVID-19 and 25 CAP cases in the COVID-CT-MD is analyzed by three experienced radiologists

to detect slices with a distinctive evidence of infection. More specifically, the patient-level labeling

has been performed by all three radiologists, and majority voting is adopted for the final assignment.

For the purpose of slice-level labeling, given the limited time and complexities of the slice-level

annotation, one radiologist has provided the slice-level labels. However, an initial analysis is

performed by other radiologists over a subset of 14 patients to confirm the inter-reader agreement.

The labeled subset of the data contains 4, 993 slices demonstrating infection and 18, 416 slices

without evidence of infection. Sample CT slices with and without an evidence of infection in one

COVID-19 and one CAP case are shown in Figure 2.1. This labeled data is then randomly divided

into three groups, including 60%, 10%, and 30% independent parts of the data, to train, validate,

and test the developed slice-level models. The remaining data is split with the same proportion

and used along with the labeled data to train and evaluate the patient-level classifiers. This data

leakage between the train and test sets has been prevented. In other words, all slices related to a

patient are included either in the train or the test dataset. The data collection work is performed based

on the policy certification number 30013394 of Ethical acceptability for secondary use of medical

data approved by Concordia University. The COVID-CT-MD dataset is available online through
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Figure 2.1: A, B: Infected and non-infected sample CT slices in a COVID-19 case; C, D: Infected
and non-infected sample CT slices in a non-COVID Pneumonia (CAP) case.

Figshare 1. Furthermore, informed consent is obtained from all the patients. Finally, the dataset is

complied with the Digital Imaging and Communications in Medicine (DICOM) supplement 142

(Clinical Trial De-identification Profiles) [79], indicating that all CT studies are de-identified by either

removing or obfuscating the patient and center-related information such as names, User Identifiers

(UIDs), dates, times, and comments based on the directions specified in DICOM supplement 142 [79].

Labelling Process

Diagnosis of COVID-19 infection is based on positive RT-PCR test results, clinical findings,

epidemiology data, and CT scan COVID-19 manifestations by three experienced thoracic radiologist.

CAP and normal cases were included from another study, and the diagnosis was confirmed using

clinical parameters, and CT scans. The labeling process aims to specify slices with distinctive disease
1https://figshare.com/s/c20215f3d42c98f09ad0
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Table 2.1: Imaging device and acquisition settings used to acquire the COVID-CT-MD dataset.

Scanner Manufacturer
and Model

Slice Thickness
(mm) Image Type kVP (kV) Exposure Time

(ms)
Reconstruction

Matrix Radiation Level

SIEMENS, SOMATOM Scope 2 Axial 110 600 512× 512 Standard

manifestations in a timely manner rather than those with minimal findings.

Imaging Protocol

All CT examinations have been acquired using a single CT scanner with the same acquisition

setting and technical parameters, which are presented in Table 2.1, where kVP (kiloVoltage Peak)

and Exposure Time affect the radiation exposure dose, while Slice Thickness and Reconstruction

Matrix represent the axial resolution and output size of the images, respectively [80].

2.4.2 SPGC-COVID Dataset

In what follows, different datasets used to construct the SPGC-COVID dataset [81] are described

individually, followed by supplementary information about the demographic data, imaging protocols,

acquisition settings, de-identification, and the labeling process. The so-called SPGC-COVID dataset

is comprised of four different sets, each with specific characteristics to evaluate the robustness

and generalizability of DL-based models from different aspects. As the SPGC-COVID dataset is

primarily used as the test set in the experiments conducted in this research work, the four components

are referred to as different test sets, which contain 51 COVID-19, 28 CAP, and 51 normal cases

in total. The SPGC-COVID dataset is publicly available on Figshare 2. An overview of different

datasets and imaging centers is visualized in Fig. 2.2 and different components of this dataset are

described as follows

• Test Set 1: Low-Dose and Ultra-Low-Dose CT scans of COVID-19 and normal cases acquired

from the same imaging center as that of the COVID-CT-MD dataset. This dataset is a subset

of an in-house dataset of LDCT and ULDCT [82] and is publicly available.

• Test Set 2: CT scans of COVID-19, CAP, and normal cases acquired in a different imaging
2https://figshare.com/articles/dataset/SPGC-COVID_Dataset/16632397
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Table 2.2: Number of cases, demographic data, and acquisition information for train and test sets in
the SPGC-COVID dataset.

Dataset COVID-19 CAP Normal Age (Mean± SD) Gender Imaging Center
Train 171 60 76 50.78± 16.84 183M/124F 1
Test 1 15 0 15 40.97± 14.38 19M/11F 1
Test 2 10 10 10 61.00± 13.39 25M/5F 2
Test 3 10 10 10 46.77± 20.89 15M/15F 1
Test 4 16 8 16 46.23± 14.74 25M/15F Both

center (Tehran Heart Center, Iran) using the “SIEMENS SOMATOM Emotion 16" scanner

and different scanning parameters. Some cases in this dataset have additional history of

cardiovascular disease/surgeries with specific CT imaging findings, which are not available in

the other datasets used to train or evaluate the proposed models.

• Test Set 3: CT scans of COVID-19, CAP, and normal cases obtained by the same scanner and

scanning protocol used to acquire the COVID-CT-MD dataset. Cases in this test set are not

included in the COVID-CT-MD dataset.

• Test Set 4: A combination of new CT scans of all three categories (i.e., COVID-19, CAP,

Normal) obtained from the same centers as those of Test set 1 and 2, using the same acquisition

settings and scanners.

Additional statistical and demographic information about different test sets in the SPGC-COVID

dataset is provided in Table 2.2. In Table 2.2, Center 1 represents the Babak Imaging Center and

Center 2 is the Tehran Heart Center. Both imaging centers are located in Tehran, Iran and use the

Filtered Back Projection reconstruction method [83] to obtain the CT images. Some sample CT

slices from the first three test sets are shown in Fig. 2.3. The important technical parameters that

contribute the most to the image quality and characteristics of the acquired CT scans are presented in

Table 2.3.

Labeling Process

Diagnosis of the cases scanned in Center 1 is obtained by finding the consensus between three

experienced radiologists who have considered the following three main criteria (similar to those of
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Figure 2.2: Overview of the SPGC-COVID dataset.

Table 2.3: Acquisition parameters used to obtain each test set of the SPGC-COVID dataset.

Dataset
Slice Thickness

(mm)
Reference Exposure

(mAs)
kVp (kV) Radiation (mSv)

Number of Slices
(per patient)

Test 1 2 15− 20 110 ∼ 0.3− 1.5 126− 169

Test 2 1.5− 5 25 110− 130 ∼ 2 53− 221

Test 3 2 50 100− 110 ∼ 7 115− 183

Test 4 1.5− 6 15− 25 110− 130 ∼ 0.3− 2 52− 224

the COVID-CT-MD dataset) to label the data:

(i) RT-PCR test (if available);

(ii) Imaging findings including Ground Glass Opacities (GGOs), consolidations, crazy paving

pattern, bilateral and multifocal lung involvement, peripheral distribution, and lower lobe

predominance of findings;

(iii) Clinical symptoms of the COVID-19 infection, and;

(iv) Epidemiology.

For the cases acquired from Center 2, (13/18) COVID-19 cases have positive RT-PCR test results,

and the remaining cases have been labeled by one experienced radiologist following the same

aforementioned criteria. The SPGC-COVID dataset complies with the DICOM supplement 142

(Clinical Trial De-identification Profiles), which ensures that all personal information is removed

or obfuscated. Some demographic and acquisition attributes related to the patients’ gender and age,

scanner type, and image acquisition settings have been preserved to provide useful information about

the dataset. It is also worth noting that the SPGC-COVID dataset was used as the test set in the 2021

Signal Processing Grand Challenge (SPGC) on COVID-19 diagnosis, which was organized as part of
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Figure 2.3: Sample CT slices from the first three test sets of the SPGC-COVID dataset.

the 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).

2.4.3 WSO Dataset

This dataset is used for training and evaluation of the WSO-CAPS framework, introduced in

Chapter 4. In the following subsections, the three subsets of the dataset along with a brief description

of the acquisition protocols and annotation process by three experienced thoracic radiologists are

described.

• Low-Dose and Ultra-Low-Dose CT scans

100 COVID-19 and 60 normal volumetric CT scans are collected from the imaging center used

to acquire the COVID-MD-CT dataset. The acquired scans are reconstructed using the Filtered

Back Projection method [83]. The radiation dose in standard chest CT scans is estimated at
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7mSv, which is reduced to 1− 1.5mSv in LDCT scans and as low as 0.3mSv in the ULDCT

ones. LDCT images are acquired from patients with > 60kg bodyweight using the mAs

value (X-ray tube current × slice scanning time) of 20, kV p value (X-ray tube kilovoltage

peak) of 110v, and the slice thickness of 2mm, while the ULDCT images are obtained from

patients with the bodyweight of less than 60kg, and the 15mAs has been used to acquire the

scans. This subset contains 7, 703 slices demonstrating infection and 15, 464 slices without

the evidence of infection. Similar to the aforementioned datasets, the labeling process was

performed by three experienced thoracic radiologists and the majority voting was adopted to

determine the final label.

• Simulated Low Dose CT scans

Since low-dose CAP CT scans were not easily accessible, they are simulated using the standard

dose ones available in the COVID-CT-MD dataset. Most of the image simulation techniques

are based on paired images, which in this case means paired standard and low dose images that

exactly correspond to each other. As collecting paired CT scans is not feasible for the problems

at hand, an unsupervised image-to-image translation technique, referred to as CycleGAN [84]

was adopted. This model, essentially, consists of two sets of generators and discriminators,

where the first set converts standard-dose images to low-dose ones. Consequently, the second

set transfers the generated low dose images back to standard dose ones, and the output is

compared with the original source image, forming the main term of the loss function. Using

this technique and taking the output of the first generator, standard dose CAP images are

converted to low dose ones. The dataset contains 60 simulated low dose CAP cases and is used

along with the COVID-19 and normal ones to train and evaluate the WSO-CAPS model. This

dataset contains 3, 359 slices demonstrating infection and 5, 768 slices without evidence of

infection.

• Standard Dose CT scan

This subset is basically the same as the COVID-CT-MD dataset. However, slice-level labels

for 35 more CAP cases are also provided to expand the labeled slices, providing 7, 138 slices

demonstrating infection and 21, 442 slices without evidence of infection.
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Figure 2.4: Sample pre-invasive and invasive lung adenocarcinomas.

2.4.4 LUAC Dataset

We have utilized the same dataset used in [40] with an additional five nodules from the same

institution to train and evaluate the model.

This dataset contains the volumetric chest CT scans initially introduced in Reference [40]. In

addition, to further balance the dataset, five additional cases which are acquired from the same

institution are added to the original dataset. This dataset contains volumetric CT scans of 114

pathologically proven SSNs, segmented and reviewed by 2 experienced thoracic radiologists. All

SSN labels are provided after surgical resections. SSNs are initially classified into three categories of

pre-invasive lesions including Atypical Adenomatous Hyperplasia (AAH) and Adenocarcinoma In

Situ (AIS), Minimally Invasive Adenocarcinoma (MIA), and Invasive Pulmonary Adenocarcinoma

(IPA). Following the original study [40], the first two categories are grouped to represent the pre-

invasive and minimally invasive class with 58 cases, and the invasive nodules are kept as the other

class including 56 cases. In addition to the nodule labels, the CT slices with the evidence of a

nodule are also determined by the radiologists, facilitating the development of DL-based frameworks.

Fig. 2.4 shows two sample lung adenocarcinomas from the LUAC dataset.
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2.5 Summary

In this chapter, an overview of the existing solutions proposed in the literature is provided along

with a detailed description of the background material and datasets used in this thesis. The limitations

and potentials of the existing AI-based solutions for the tasks at hand are also discussed in this chapter.

In summary, the existing solutions either require a sophisticated data collection and training process

or are incapable of extracting informative and robust features from a small dataset. Furthermore, this

chapter highlights the recent surges of interest in the context of CT scan acquisition and analysis, as

well as the areas for which few comprehensive studies have been performed. Besides the literature

review, the details of the Capsule Networks and Multi-Head Self-Attention Mechanism, which are

the building blocks of the frameworks proposed in this thesis, are provided. Finally, an overview of

four in-house datasets used to train and test the proposed frameworks is presented.
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Chapter 3

Fully Automated COVID-19

Identification from Chest CT Scans

The newly discovered coronavirus disease (COVID-19) has been globally spreading and causing

hundreds of thousands of deaths around the world as of its first emergence in late 2019. The rapid

outbreak of this disease has overwhelmed healthcare infrastructures and arisen the need to allocate

medical equipment and resources more efficiently. The early diagnosis of this disease will lead to

the rapid separation of COVID-19 and non-COVID cases and helps healthcare authorities devise

efficient resource allocation plans. In this regard, a growing number of studies are investigating the

potential of DL-based approaches in the early diagnosis of COVID-19 from medical images. CT

scans have recently shown distinctive features and higher sensitivity compared to other diagnostic

COVID-19 tests, in particular the current gold standard, i.e., the RT-PCR test. Current DL-based

models are mainly developed based on CNNs to identify COVID-19 pneumonia cases from medical

images. CNNs, however, require extensive data augmentation and large datasets to identify detailed

spatial relations between image instances. Furthermore, most existing algorithms developed based

on CT scans either extend slice-level predictions to patient-level ones using a simple thresholding

mechanism or rely on a sophisticated infection segmentation to identify the disease.

In this chapter, two Capsule Network-based frameworks, referred to as the “CT-CAPS" and

“COVID-FACT” respectively, are proposed to automatically diagnose COVID-19 positive cases
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from volumetric CT scans. Both proposed frameworks utilize Capsule Networks, as their main

building block. Therefore, they are capable of addressing the failure of the commonly used CNN

architectures [47] in recognizing spatial relations between objects in an image and thus eliminating

the need for large labeled datasets to reach a satisfying result. CT-CAPS is a fully-automated

framework for the identification of COVID-19 positive cases from volumetric chest CT scans. In

particular, to be independent of sophisticated segmentation of the area of infection, it automatically

extracts distinguishing features from 2D chest CT images in its first stage, which are then leveraged

to differentiate COVID-19 from non-COVID cases in the second stage. More specifically, the

obtained slice-level features are extracted from the penultimate capsule layer in the model of the first

stage. The experiments on the COVID-CT-MD dataset, described in Sub-section 2.4.1, show the

state-of-the-art performance with the accuracy of 89.8%, sensitivity of 94.5%, specificity of 83.7%,

and Area Under the ROC Curve (AUC) of 0.93. The second automated framework, COVID-FACT,

has a modified and improved pipeline, particularly in the second stage. Similar to the CT-CAPS, it

is a two-stage fully-automated Capsule Network-based framework for identification of COVID-19

from chest CT scans. Unlike the CT-CAPS’ approach for translation from slice-level to patient-level

diagnosis, in COVID-FACT, slices demonstrating infection are detected at the first stage and are fed

to the second stage, which is responsible for classifying patients into COVID-19 and non-COVID

cases. Based on the experiments, COVID-FACT achieves an accuracy of 90.82%, a sensitivity of

94.55%, a specificity of 86.04%, and an AUC of 0.98 on the same COVID-CT-MD dataset. It is

worth mentioning that the development of the CT-CAPS and COVID-FACT frameworks depends on

far less supervision and annotation in comparison to their counterparts.

The remainder of the chapter is organized as follows: First, the details of the proposed CT-CAPS

framework and the obtained results are presented. Next, the structure of the COVID-FACT framework

is explained, and the related experimental results and model evaluations are provided. Then, the

obtained results and possible sources of the error are investigated. Finally, a brief summary of the

chapter is presented.

31



Figure 3.1: The original CT image and the corresponding lung region segmented by the
R231CovidWeb model.

Figure 3.2: The pipeline of the CT-CAPS framework proposed to identify COVID-19 and non-
COVID cases from chest CT scans.

3.1 CT-CAPS Framework

In this section, the detailed description of the CT-CAPS’s main components and the processing

pipeline is presented.

3.1.1 Lung Segmentation

In order to remove uninformative components and unwanted artifacts (e.g., metallic artifacts) in

a CT scan, a pre-trained U-Net-based lung region segmentation model [42], referred to as the “U-net

(R231CovidWeb)”, is utilized which has been fine-tuned specifically on the COVID-19 images. A

sample of lung region extracted by this model is illustrated in Fig. 3.1. It is worth mentioning that

unlike segmenting infected regions, lung region segmentation is a well-studied topic and highly

efficient models have been introduced so far. The input of the R231CovidWeb model is a CT scan

with the original slice size of 512× 512. The model returns the extracted lung tissues, which will

further go through some normalization and resizing steps. More specifically, the output images

will be normalized between 0 and 1 to help the generalizability and effective convergence of the
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Figure 3.3: The Capsule Network-based model developed to extract slice-level features from chest
CT scans.

model. Following the literature [22, 55], the output images are down-sampled from the original

512 × 512 size to 256 × 256 to reduce the complexity and memory requirements with negligible

loss of information. Finally, slices without visible lung tissues are excluded and the remaining ones

are saved to be used in the CT-CAPS framework.

3.1.2 CT-CAPS Architecture

The CT-CAPS’ pipeline is illustrated in Fig. 3.2. The first stage of the CT-CAPS framework

consists of a 2D Capsule Network, which aims to classify 2D CT slices into COVID-19 and non-

COVID images and provide compressed feature maps for each image to be used in the next stage. As

shown in Fig. 3.3, the model in the first stage consists of four convolutional and three capsule layers.

The first and second layers are convolutional ones, followed by a batch-normalization layer. Similarly,

the third and fourth layers are convolutional followed by a max-pooling layer. The fourth layer,

referred to as the primary capsule layer, is reshaped to form the desired primary capsules. Afterwards,

three capsule layers perform sequential routing by agreement processes, defined in Sub-section 2.1.1,

to extract deeper features and spatial patterns. Finally, the two capsule in the last layer represent

the two classes of infected and non-infected slices. More specifically, the length of each capsule

represents the probability of the input image belonging to the corresponding target class. In the next

step, slice-level features extracted from intermediate capsule layers of the described network are

aggregated to move on to the patient-level domain. In this regard, the penultimate capsule layer
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is used as the representative feature map of the CT slices, and a global max pooling layer is then

applied to the set of feature maps generated for a patient (each corresponding to a single slice). Using

this feature selection and max pooling mechanism, each 3D volumetric CT scan is represented by a

small 32× 16 matrix. Experimental results, presented in Section 3.2, demonstrate the ability of the

obtained feature maps to efficiently distinguish between COVID-19 and non-COVID images. The

results obtained in the first stage (i.e., the output of the max pooling layer) are then fed to a stack of

four fully connected layers with the size of 256, 128, 32, and 2 respectively. In addition, the loss

function is modified to compensate for the relatively imbalanced training dataset. More specifically,

a weighted version of the loss function is used such that a higher penalty rate is given to the less

frequent class, which is COVID-19 in this case. For the fully connected layers, however, the class

weights are equal. The loss function of the Capsule Network model is modified as follows:

loss =
N+

N+ +N− × loss− +
N−

N+ +N− × loss+, (3.1)

where N+ represents the number of COVID-19 samples, N− is the number of non-COVID samples,

loss+ denotes the loss value associated with COVID-19 samples, and loss− is the loss value

associated with non-COVID cases.

3.2 CT-CAPS’ Experimental Results

The feature extraction part of the CT-CAPS is trained on a subset of the COVID-CT-MD dataset,

described earlier in Sub-section 2.4.1, for which slice-level labels are available. This subset contains

55 COVID-19, 25 CAP, and the entire 78 normal cases. The Adam optimizer with an initial learning

rate of 1e− 4, batch size of 16, and 100 epochs is used to train the model in stage 1. For the fully

connected patient-level classifier, the initial learning rate of 1e− 3, and 500 epochs are used. In each

stage, the model with the lowest loss value on the validation set is considered as the final model for

evaluation. The evaluation results on the COVID-CT-MD dataset are presented in Table 3.1. The

testing set used in this study contains 53 COVID-19 and 43 non-COVID cases (including 19 CAP

and 24 normal cases). CT-CAPS is compared with its duplicate but using the whole CT images

without extracting the lung tissues. In another experiment, capsule layers are replaced by two fully

34



Table 3.1: CT-CAPS’s Patient-Level Classification Results.

Performance CT-CAPS CT-CAPS (no lung) CT-CNN CT-Res50
Accuracy 89.8% 82.6% 78.6% 81.6%

Sensitivity 94.5% 87.3% 87.3% 96.4%
Specificity 83.7% 76.6% 67.4% 62.8%

AUC 0.93 0.86 0.79 0.82

# Params. 0.5M 0.5M 243.9M 24M

connected layers with the size of 128, while the rest of the architecture and parameters are kept the

same. The fully connected dense layer before the last layer is then taken as the new feature map to

make a CNN-based alternative model for the comparison, referred to as the CT-CNN. In a similar

experiment, Resnet50, which is the backbone of many similar works such as the model proposed in

Reference [7], is used in the feature extraction stage. In this case, similar to Reference [7], the fully

connected layer with 2, 048 neurons before the last layer is taken as the feature map, followed by

the same max pooling aggregation mechanism. The comparison results are presented in Table 3.1.

As shown in this table, the CT-CAPS framework achieves the accuracy of 89.8%, high sensitivity

of 94.5%, specificity of 83.7%, and AUC of 0.93 using the default probability threshold of 0.5.

Table 3.1 also implies that due to the lower complexity of the CT-CAPS, fewer training parameters

are required, which in turn significantly improve the training time.

It is worth mentioning that the main concern in clinical practice is to have a high sensitivity

in identifying COVID-19 positive patients, even if the specificity is not very high. As such, the

classification cut-off probability can be modified by physicians using the Receiver Operating Charac-

teristic (ROC) curve in order to provide a desired balance between the sensitivity and the specificity

(e.g., having a high sensitivity while the specificity is also satisfying). In other words, physicians

can decide how much certainty is required to consider a CT scan as a COVID-19 positive case. By

choosing a cut-off value greater than 0.5, the CAP cases that contain highly overlapped features with

COVID-19 cases can be excluded. On the other hand, by selecting a lower cut-off value, more cases

will be allowed to be identified as a COVID-19 case. Experimental results show that increasing the

probability threshold from 0.5 to 0.6 improves the accuracy to 90.8%, and the specificity to 86.0%

while the sensitivity remains the same. Table 3.2 presents the performance of the proposed CT-CAPS

using different cut-off probabilities.
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Table 3.2: Performance of the CT-CAPS using different cut-off probabilities.

Cut-off Probability Accuracy Sensitivity Specificity

0.3 86.7% 94.5% 76.7%

0.4 88.8% 94.5% 81.4%

0.5 89.8% 94.5% 83.7%

0.6 90.8% 94.5% 86.0%

0.7 89.8% 90.9% 88.4%

Figure 3.4: The heat maps generated by the GRAD-CAM localization approach from the last
convolutional layer of the CT-CAPS framework for two sample images with COVID-19-related
evidences of infection.

In addition to the aforementioned numerical results, the Grad-CAM localization approach,

described in Sub-section 2.1.2, is utilized to visualize the distinctive patterns in a chest CT scan

recognized by the last convolutional layer in the CT-CAPS. Fig. 3.2 illustrates the recognized

abnormal regions for two lung samples containing small evidences of COVID-19 infection. In these

two examples, it can be observed that the model correctly identified the regions of infection that had

the highest contribution to the final decision.
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Figure 3.5: The two-stage architecture of the proposed COVID-FACT.

3.3 COVID-FACT Framework

In this section, different components of the proposed COVID-FACT are explained. The overall

architecture of the COVID-FACT is illustrated in Fig. 3.5, which consists of a lung segmentation

model at the beginning, followed by two capsule network-based models and an average voting

mechanism coupled with a thresholding approach to generate patient-level classification results.

The lung segmentation model used in COVID-FACT is the same as that of the CT-CAPS described

in Sub-section 3.1.1. In addition, similar to the proposed CT-CAPS, the Grad-CAM localization

approach is incorporated into the model to highlight important components of a chest CT scan that

contribute the most to the final decision.

3.3.1 COVID-FACT’s Stage One:

The first stage of the COVID-FACT, shown in Fig. 3.3.1, is adopted from stage 1 in CT-CAPS

which is essentially responsible for identifying slices demonstrating infection (caused by COVID-19

or CAP). Using this stage, slices without any evidence of infection are discarded, and only the ones

demonstrating infection are focused. Intuitively speaking, this process is similar in nature to the

way that radiologists analyze a CT scan. When radiologists review a CT scan containing numerous

consecutive cross-sectional slices of the body, they identify the slices with an abnormality in the first

step, and analyze the abnormal ones to diagnose the disease in the next step. Existing DL-based CT

scan processing methods either use all slices as a 3D input to a classifier or classify individual slices

and transform slice-level predictions to patient-level ones using a threshold on the entire slices [85].

Determining a threshold on the number of slices or on the ratio of slices demonstrating infection

over the entire slices is not precise, as most pulmonary infections have different stages which may

reveal different involvement levels in various lung regions [86]. Furthermore, a CT scan may contain
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Figure 3.6: Architecture of the COVID-FACT at stage one.

a different number of slices depending on the acquisition settings, which makes it challenging to find

such a threshold. In most methods which pass all slices as a 3D input to the model, the input size is

fixed and the model is trained to assign higher scores to slices demonstrating infection. However,

the performance of such models will be reduced when being tested on a dataset other than the

dataset on which they are originally trained [22]. In the COVID-FACT framework, the output of

stage one may vary in size for each patient due to different areas of lung involvement and phase of

infection, unlike the CT-CAPS which generates a single (32, 16) matrix in the first stage. It is worth

mentioning that the modified loss function introduced in Eq. (3.1) is also used in the training phase

of the COVID-FACT, so that a higher penalty rate is given to the false negatives (i.e., mis-classified

infectious slices).

It is also worth noting that the lung region segmentation, described in Sub-section 3.1.1, is

performed in one of the variants of the COVID-FACT as a preprocessing step. The first stage of the

COVID-FACT, on the other hand, is tasked with this specific issue of extracting slices demonstrating

infections.

3.3.2 COVID-FACT’s Stage Two:

As mentioned earlier, COVID-FACT intends to apply classification methods on a subset of slices

demonstrating infection rather than the entire slices in a CT scan. As such, the second stage of the

COVID-FACT takes candidate slices of a patient detected in stage one as the input, and classifies
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them into one of the COVID-19 or non-COVID (including normal and CAP) classes, i.e., a binary

classification problem is considered. Stage two is a stack of four convolutional layers and two capsule

layers, as shown in Fig. 3.3.2. The length of the last two capsules indicates classification probabilities.

An average voting function is then applied to the classification probabilities, in order to aggregate

slice-level values and find the patient-level predictions as follows:

P (pk ∈ c) =
1

Lk

Lk∑
i=1

P (ski ∈ c), (3.2)

where P (pk ∈ c) refers to the probability that patient k belongs to the target class c (e.g., COVID-19),

Lk is the total number of slices detected in stage one for patient k, and P (ski ∈ c) refers to the

probability that the ith slice detected for patient k belongs to the target class c. It is worth noting that

while, initially, the COVID-FACT performs slice-level classification in its second stage, the output is

patient-level classification (through its voting mechanism). In addition, similar to the stage one, in the

training phase of stage two, the weighted loss function proposed in Eq. (3.1) is used, and the default

cut-off probability of 0.5 is chosen to distinguish COVID-19 and non-COVID cases. As another note

to this discussion, I would like to add that the coronavirus infection is, typically, distributed across

the lung volume and, as such, manifests itself in several CT slices. Therefore, having a single slice

identified as a COVID-19 infection can not necessarily lead to a positive COVID-19 detection.

To further improve the ability of the proposed COVID-FACT to distinguish COVID-19 and

non-COVID cases and attenuate the effects of errors in the first stage, all patients with less than 3%

of slices demonstrating infection in their entire volume are classified as non-COVID cases. These

cases are more likely normal cases without any slices with evidence of infection. The few slices with

infection identified for these cases might be due to the model error in the first stage, non-infectious

abnormalities such as pulmonary fibrosis, or motion artifacts in the original images, which will be

covered by this threshold. Based on the study in Reference [86], it can be interpreted that 4% lung

involvement is the minimum percentage for COVID-19 positive cases. In addition, the minimum

percentage of slices demonstrating infection detected by the radiologist in the COVID-CT-MD

dataset is 7%, and therefore 3% would be a safe threshold to prevent mis-classifying infected cases

as normal.
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Figure 3.7: Architecture of the COVID-FACT at stage two.

As a final note, it is worth mentioning that, for the proposed COVID-FACT framework, the role of

stage one is critical to achieving a fully-automated framework, which does not require any input from

the radiologists, especially when an early and fast diagnosis is desired. However, the COVID-FACT

framework is completely flexible and stage one can be skipped if the slices demonstrating infections

have already been identified by the radiologists, meaning that the normal cases are already identified

in this case and stage two merely separates COVID-19 and CAP cases.

3.4 COVID-FACT’s Experimental Results

Similar to the CT-CAPS framework, the proposed COVID-FACT is trained and evaluated based

on the COVID-CT-MD dataset. The testing set is also the same as that of the CT-CAPS. To train the

model, the Adam optimizer with an initial learning rate of 1e− 4, batch size of 16, and 100 epochs

are used. The model with the minimum loss value on the validation set was selected to evaluate the

performance of the model on the test set. The COVID-FACT framework achieved an accuracy of

90.82%, sensitivity of 94.55%, specificity of 86.04%, and AUC of 0.98. The associated ROC curve

is shown in Fig. 3.8. The training and validation loss curves are also illustrated in Fig. 3.9.

In a second experiment, the proposed model is trained using the complete CT images without

segmenting the lung regions. The obtained model reached an accuracy of 90.82%, sensitivity of

92.72%, specificity of 88.37%, and AUC of 0.95. The corresponding ROC curve is shown in Fig. 3.8.

This experiment shows that segmenting lung regions in the first step will increase the sensitivity
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Figure 3.8: ROC curve of the proposed COVID-FACT.

Figure 3.9: Training and Validation loss curves obtained for the COVID-FACT stage one and stage
two.

from 92.72% to 94.55% and the AUC from 0.95 to 0.98, while slightly decreases the specificity

from 88.37% to 86.04%. Although the numerical results show a slight improvement achieved by

segmenting the lung regions, further investigating the sources of errors demonstrates the superiority

of using segmented lung regions over the original CT images. In the COVID-FACT framework using

lung region segmentation, none of COVID-19 and CAP cases have been mis-classified as a normal

case by the 3% thresholding after the first stage, and 95.84% (23/24) of normal cases have been

identified correctly using this threshold, while for the model without the lung segmentation, there is

one mis-classification of a COVID-19 case by the 3% thresholding, and 91.66% (22/24) of normal

cases were identified correctly by this threshold.

The performance of the COVID-FACT is further compared with a CNN-based alternative to
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demonstrate the effectiveness of the Capsule Networks and their superiority over CNN in terms of

number of trainable parameters and accuracy. In other words, the CNN-based alternative model

has the same front-end (convolutional layers) as that of COVID-FACT in both stages. However, the

capsule layers are replaced by fully connected layers including 128 neurons for intermediate layers

and 2 neurons for the last layer at each stage. The last fully connected layer in each stage is followed

by a softmax activation function and the remaining modifications and hyper-parameters are kept the

same as used in COVID-FACT. The CNN-based COVID-FACT achieved an accuracy of 71.43%,

sensitivity of 81.82%, and specificity of 58.14%. The COVID-FACT’s performance and number

of trainable parameters for examined models are presented in Table 3.3. It is worth noting that in

designing the CNN-based COVID-FACT described above, the complexity and structure have been

kept similar to its Capsule Network-based version. The goal is to illustrate potential advantages of

Capsule Network-based design over its CNN-based counterpart. Alternative models using CNN

architecture and fully connected layers such as the DenseNet model [52], however, consist of several

convolutional layers and a high degree of complexity. As such, such complex models are expected to

outperform the CNN-based COVID-FACT.

As mentioned earlier, the ROC curve provides physicians with a precious tool to modify the sen-

sitivity/specificity balance based on their preference by changing the classification cut-off probability.

To elaborate on this point, the default cut-off probability is changed from 0.5 to 0.75 and reached

an accuracy of 91.83%, a sensitivity of 90.91%, and a specificity of 93.02%. Further increasing the

cut-off probability to 0.8 results in the same accuracy of 91.83%, a lower sensitivity of 89.01%, and

a higher specificity of 95.34%. On the other hand, decreasing the cut-off probability from 0.5 to

0.35 will increase the accuracy and the sensitivity to 91.83% and 98.18% respectively, while slightly

decreases the specificity to 83.72%. The performance of the COVID-FACT for different values of

cut-off probability is presented in Table 3.4.

While the performance of COVID-FACT is evaluated by its final decision made in the second

stage, the first stage plays a crucial role in the overall accuracy of the model. As such, the performance

of the COVID-FACT in the first stage is also reported in Table 3.5. As shown in Table 3.5, ∼ 91%

of the slices demonstrating infection are identified correctly by the COVID-FACT at the first stage,

while there are some mis-classified slices that will be passed to the next stage as the infectious slices.
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Table 3.3: Results obtained by the COVID-FACT framework and its alternative CNN-based counter-
part.

Method Accuracy Sensitivity Specificity AUC Trainable Parameters

COVID-FACT with Lung Segmentation 90.82% 94.55% 86.04% 0.98 406,880

COVID-FACT without Lung Segmentation 90.82% 92.72% 88.37% 0.95 406,880

CNN-based COVID-FACT 71.43% 81.82% 58.14% 0.67 365, 806, 660

It is also evident that the CNN-based model cannot properly identify infectious slices, which in

turn led to the low performance of the second stage. It is worth mentioning that stage one is only

responsible for detecting candidate slices, while stage two classifies the slices into COVID-19 and

non-COVID categories. The second stage is followed by an aggregation mechanism, which takes all

the slices of a patient into account and consequently decreases the impact of mis-classified slices at

the first stage.

In another experiment, the performance of the model when the commonly used focal loss

function [87] is utilized to train the model is investigated. The COVID-FACT framework trained by

the focal loss function (γ = 2, α = 0.25) achieved the same patient-level performance compared to

the proposed model while the performance of the first stage is lower by achieving the accuracy of

92.79%, sensitivity of 87.69%, and the specificity of 97.03%. The lower sensitivity in the first stage

shows benefits of using the modified loss function, described in Eq. (3.1), as the role of the first stage

in the pipeline is to detect slices with the evidence of infection to be analyzed in the second stage.

Therefore, the model that was trained using the modified loss function has been selected as the final

model due to its higher accuracy and sensitivity in detecting slices demonstrating infection.

As another experiment, performance of stage two is evaluated without applying the first stage

to provide a better comparison of the models used in the second stage. More specifically, the stage

two model is trained based on the infectious slices identified by the radiologist and evaluated on the

labeled test set including 17 COVID-19 and 8 CAP cases. The numbers of correctly predicted cases

in this experiment are presented in Table 3.6. The experimental results obtained by the COVID-FACT

framework using the lung segmentation achieved quite a similar performance compared to the case

in which the model was trained based on the outputs of stage one. This result further demonstrates
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Table 3.4: Performance of the COVID-FACT for different values of cut-off probability.

Cut-off Probability 0.35 0.5 0.6 0.7 0.75 0.8

Accuracy (%) 91.83 90.82 91.83 90.82 91.83 91.83

Sensitivity (%) 98.18 94.55 92.73 90.91 90.91 89.01

Specificity (%) 83.72 86.04 90.70 90.70 93.02 95.34

Table 3.5: The performance of the COVID-FACT’s stage one in diagnosis of slices demonstrating
infection.

Method (Stage 1) Accuracy Sensitivity Specificity AUC

COVID-FACT
with Lung Segmentation

93.14% 90.75% 94.01% 0.96

COVID-FACT
without Lung Segmentation

92.78% 87.59% 94.36% 0.96

CNN-based
COVID-FACT

79.74% 33.00% 91.28% 0.64

that the Capsule Network and the aggregation mechanism used in stage two can cope with errors in

the previous stage and achieve desirable performance. It is worth mentioning that this experiment

was performed using only the labeled dataset, which consequently provided a smaller dataset to train

the model.

The localization maps generated by the Grad-CAM method are also illustrated in Fig. 3.10 for

the second and fourth convolutional layers in the first stage of the COVID-FACT. It is evident in

Table 3.6: Correctly predicted cases using only the COVID-FACT’s stage two without applying the
first stage

Model COVID-19 CAP

Stage 2 (with Lung Segmentation) 94.1% (16/17) 87.5% (7/8)

Stage 2 (without Lung Segmentation) 88.2%(15/17) 62.5%(5/8)

Stage 2 (CNN-based) 82.4%(14/17) 25%(2/8)
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Fig. 3.10 that the COVID-FACT model is looking at the right infectious areas of the lung to make the

final decision. Due to the inherent structure of the capsule layers, which represent image instances

separately, their outputs cannot be superimposed over the input image. Consequently, in this study,

the Grad-CAM localization maps are only presented for convolutional layers.

3.4.1 K-Fold Cross-Validation

The performance of the COVID-FACT and its variants have also been evaluated based on the

5-fold cross-validation [88] to provide more objective assessments. In this experiment, the COVID-

FACT achieves the accuracy of 87.61± 2.00%, the sensitivity of 88.30± 3.22%, and specificity of

86.75± 1.91%. Using the same 5-fold cross-validation technique, the COVID-FACT without using

the segmented lung regions achieves the accuracy of 87.31± 3.37%, sensitivity of 88.32± 5.00%,

and specificity of 86.03± 3.18%. Finally, the CNN-based COVID-FACT achieves the accuracy of

64.49± 1.61%, sensitivity of 79.58± 6.61%, and specificity of 46.67± 8.48%. The results confirm

the superiority of the COVID-FACT using the segmented lung areas over its variants which is in

line with the previous experiments based on the randomly selected test dataset. Moreover, similar

to the previous experiments, modifying the cut-off probability is beneficial in the cross-validation

case to adjust the capability of the model to focus on COVID-19 or non-COVID cases depending on

radiologists’ priorities. More specifically, in the aforementioned 5-fold cross-validation, decreasing

the cut-off probability to 0.35 increases the sensitivity to 92.97± 2.96% while the overall accuracy

remains the same. Increasing the cut-off probability to 0.6, on the other hand, increases the specificity

to 91.16± 3.73% and provides the same accuracy similar to the previous case.

3.5 Discussion

In order to further determine the limitations and possible improvements, mis-classified cases

are investigated. Table 3.7 shows the number of mis-classified cases for each type of input disease

(COVID-19, CAP, normal) obtained at stage two, as well as the number of normal cases that were

not identified correctly by the 3% threshold after the first stage. The low rate of errors obtained by

the 3% threshold in the first stage demonstrates the capability of COVID-FACT to identify normal
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Figure 3.10: Localization heat maps generated by the Grad-CAM approach for two sample CT slices,
based on the second and forth convolutional layers in the COVID-FACT’s first stage.

cases in the first stage, which is very helpful for physicians and radiologists to exclude normal cases

at the very beginning of their study.

As in the case of highly contagious diseases such as COVID-19, the False Negative Rate (FNR)

is of utmost importance, such errors are further analyzed to explore the possible sources of the

mis-classification. As shown in Table 3.7 there are 3/55 COVID-19 cases that are mis-classified

by the COVID-FACT framework. Further reviews revealed that one mis-classified COVID-19 case

contains unifocal infection manifestation with consolidation predominance rather than GGO, which

are more common in CAP cases rather than COVID-19 ones. One other case of error was identified

as an incomplete CT scan with missing slices, which has consequently made the correct identification

difficult for the framework. In addition, the aforementioned errors are reviewed in the case of image

quality and lung segmentation as other potential causes of the errors. The assessment results showed

that the image qualities are adequate and the segmentation model performed well without removing

or cropping the infection manifestations. Therefore, some errors are likely to be caused by the

similarities between the infection patterns in CAP and COVID-19 cases. It is worth noting that

decreasing the cut-off probability from 0.5 to 0.35, as shown in Table 3.4, will result in the correct
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Table 3.7: The number of the mis-classified cases for each type of the input disease and the number
of cases that were not identified correctly by the 3% threshold.

Input Errors (Thresholding) Errors (Stage 2)

COVID-19 0/55 3/55

CAP 0/19 5/19

normal 1/24 1/24

classification of the two false-negative cases, which contain similar characteristics to other infections.

This can be considered as a remedy, when FNR is of the main concern.

It is also identified that errors in stage one are mainly caused by non-infectious abnormalities

such as pulmonary fibrosis and artifacts. In this regard, slices with the evidence of artifact with

no signs of infection manifestation have been explored. In some cases, the motion artifact or the

artifacts caused by the presence of metallic objects inside the body have generated some components

in the image that were mis-classified as infectious slices. Fig. 3.11 illustrates 4 samples of such slices

in which images (A) and (B) belong to a mis-classified normal case while images (C) and (D) are

related to two CAP cases, which are classified correctly in the second stage. It is worth mentioning

that, the number of such slices is negligible, especially when they appear in cases that have multiple

infectious slices (caused by CAP or COVID-19). In those cases, the influence of such slices with the

evidence of artifact will be diminished by the second stage and the following aggregation mechanism.

Motion artifact reduction algorithms can be investigated as a future work to cope with undesired

impacts of the artifacts on the final result.

It is worth mentioning that during the labeling process accomplished by the radiologist to detect

slices demonstrating infection, it was noticed that in some cases the abnormalities are barely visible

with the standard visualization setting (window level and window width). Those abnormalities have

been detected by changing the image contrast (by adjusting the window level and window width)

manually by the radiologist. This limitation demonstrated the need to research on finding the optimal

contrast and window setting parameters, which is addressed in Chapter 4. Another limitation can

be considered as the retrospective study used in the data collection part of this research. Although
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Figure 3.11: Examples of chest CT slices with the evidence of artifact where no infection manifesta-
tion is observed.

the COVID-CT-MD dataset is acquired with the utmost caution and inspection, a retrospective data

collection might add inappropriate cases to the study at hand. The potential improvement to address

this limitation could be the collaboration of more radiologists in analyzing and labeling the data to

assess if the interobserver agreement is satisfactory or not.

As a side note to this discussion, I would like to mention that while both CT and CR can decrease

the false negative rate at the admission and discharge times, the CR is less sensitive, and less specific

compared to CT. Some studies, such as Reference [89], report that CR often shows no lung infection

in COVID-19 patients at early stages resulting in a low sensitivity of 69% for the diagnosis of

COVID-19. Therefore, chest CT has a key role in the diagnosis of COVID-19 in the early stages

of the infection and also in setting up a prognosis. Consequently, CT is considered as the preferred

modality for grading and evaluation of imaging manifestations for COVID-19 diagnosis. It is worth

adding that as CT scans are 3D images, as opposed to 2D chest radiographs, and more difficult to

be processed using ML and DL techniques, as the currently available resources cannot efficiently

process the whole volume at once. As such, slice-level and thresholding techniques are utilized to

cope with such limitations, leading to a reduced performance compared to the models working with

CR (e.g., the COVID-CAPS [20]). The focus of this research is to further enhance the performance
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of CT-based COVID-19 diagnosis models to fill the gap between the radiologists’ performance and

that of volumetric-based DL techniques.

3.6 Summary

In this chapter, two fully automated Capsule Network-based frameworks, referred to as the

“CT-CAPS" and “COVID-FACT" are proposed, which utilize the advantages of Capsule Networks

to identify the COVID-19 disease in a coarsely-labeled dataset of COVID-19, CAP, and normal

cases. The experimental results indicate the capability of both frameworks to automatically analyze

volumetric chest CT scans and distinguish different cases while far fewer parameters and a less

sophisticated labeling process compared to their existing counterparts are utilized. While both

frameworks achieve acceptable and desired results, experiments demonstrate the superiority of the

COVID-FACT over CT-CAPS by achieving an accuracy of 90.82%, sensitivity of 94.55%, specificity

of 86.04%, and AUC of 0.97. In summary, CT-CAPS demonstrates that the penultimate capsule

layer can be a proper compact feature representative of CT scans to be used for classification tasks.

COVID-FACT, which is the extension of the proposed CT-CAPS, extracts candidate slices with

the evidence of infection and passes them to a Capsule Network-based classifier followed by an

averaging mechanism to provide patient-level labels. Moreover, the benefits of extracting lung tissues

in the proposed frameworks, and the flexibility of the models to be adjusted based on radiologists’

preferences to achieve desired results have been demonstrated by the experimental results. As a

final note, the multi-center SPGC-COVID dataset, introduced in Sub-section 2.4.2, is used to further

enhance the performance of the COVID-FACT framework when being tested on a varied dataset of

chest CT scans. The model development and evaluation details are provided in Chapter 4.
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Chapter 4

Robust COVID-19 Identification from

Multi-center and Heterogeneous Datasets

The main objective of this chapter is to enhance the performance and robustness of the diagnostic

frameworks previously introduced in Chapter 3. In addition, this chapter proposes a modified slice-

level infection diagnosis model to further enhance the performance of the DL-based models working

with CT scans.

With regard to the second objective, an extension of the proposed automated COVID-FACT

framework is developed, which is tailored to robustly classify volumetric chest CT scans into one of

the three target classes (COVID-19, CAP, or normal). The proposed framework integrates a scalable

enhancement approach to boost its performance and robustness in the presence of gaps between

the train and test sets regarding types of scanners, imaging protocols, and technical acquisition

parameters. The proposed framework can also be generalized on varied external datasets with high

flexibility to update itself upon receiving new external datasets in an unsupervised fashion. More

specifically, the subset of the unlabeled test images for which the model generated a confident

prediction is extracted and used along with the training set to re-train and update the benchmark

model (the model trained on the initial train set). Finally, an ensemble architecture is adopted to

aggregate the predictions from multiple versions of the model. For initial training and development

purposes, the COVID-CT-MD dataset is used, which is described in Sub-section 2.4.1 and contains
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volumetric CT scans acquired from one imaging center using a constant standard radiation dose

scanning protocol. To evaluate the model, the SPGC-COVID dataset, introduced in Sub-section 2.4.2,

was utilized. Among the test cases, there are CT scans with similar characteristics to the train

set, as well as noisy low-dose and ultra-low-dose CT scans. In addition, some test CT scans were

obtained from patients with a history of cardiovascular diseases or surgeries. The obtained results

show that while the proposed model is trained on a relatively small dataset acquired from only

one imaging center using a specific scanning protocol, it performs well on heterogeneous test sets

obtained by multiple scanners using different technical parameters. The experimental results also

demonstrate the capability of the proposed unsupervised enhancement approach to improve the

performance and robustness of the model when being evaluated on varied external test sets. The

performance of the proposed framework is compared with state-of-the-art approaches proposed at

the COVID-19 grand challenge mentioned in refSREP-sec:spgc-covid. The results demonstrate that

the proposed framework performs well on all test sets and outperforms all the submitted models

by achieving the overall accuracy of 96.15% (95%CI : [91.25− 98.74]), COVID-19 sensitivity of

96.08% (95%CI : [86.54− 99.5]), CAP sensitivity of 92.86% (95%CI : [76.50− 99.19]), normal

sensitivity of 98.04% (95%CI : [89.55− 99.95]), and the AUC of 0.992.

With regard to the second objective, an automated framework based on the Capsule Networks,

referred to as the “WSO-CAPS”, is proposed to efficiently detect slices demonstrating infection

using LDCT and ULDCT. The WSO-CAPS framework is essentially an extension of the slice-level

classifiers proposed in the previously described frameworks and is equipped with a Window Setting

Optimization (WSO) mechanism to jointly identify slices with the evidence of infection and find

the best window setting parameters to resemble the radiologists’ efforts in reviewing LDCT and

ULDCT. The experimental results on the WSO dataset, described in Sub-section 2.4.3 show that the

WSO-CAPS improves the capability of the Capsule Network and its counterparts to identify slices

demonstrating infection.

The remainder of this chapter is organized as follows: First, the components of the proposed

classification framework are briefly described, followed by a detailed description of the proposed

unsupervised enhancement approach. Then, the experimental results and a brief discussion are

presented. Next, the details of the proposed WSO-CAPS are described, and the associated results are
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Figure 4.1: The pipeline of the proposed robust three-way classification framework and the associated
enhancement approach.

presented. Finally, a brief summary of the chapter is provided.

4.1 Boosted and Robust COVID-FACT Framework

In this section, we develop a two-stage framework similar to the “COVID-FACT" to classify

volumetric CT scans into three target classes of COVID-19, CAP, and normal. We then use the

unlabeled data from the test sets to boost the performance and robustness of the framework on the

unseen cases. The pipeline of the proposed boosted and robust COVID-FACT framework is shown

in Fig. 4.1. Different components of the proposed framework are described below:

4.1.1 Preprocessing

Following the preprocessing step of the CT-CAPS and COVID-FACT frameworks, the lung areas

are first extracted from the CT images by the well-trained R231CovidWeb segmentation model to

remove the insignificant and distracting components. In addition, similar to the proposed frameworks,

all images are down-sampled into the (256× 256) size and normalized into the [0, 1] interval. This

step is crucial as image sizes may vary and pixel intensities may be in different ranges when the

images are acquired by different scanners.
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4.1.2 Stage One

The first stage performs the infection identification task, which aims to find slices with the

evidence of infection (caused by CAP or COVID-19) for each patient. The identified slices will

then be classified into one of the three target classes in the second stage. In this regard, the same

architecture as the first stage of the COVID-FACT framework is adopted for this task. In addition to

the original architecture (i.e. COVID-FACT’s stage 1), residual connections are added between the

convolution layers in this modified version to transfer low-level features to the deeper layers. This

modification further assists the model in identifying informative features. Additionally, a dropout

layer is added before the capsule layers to overcome the overfitting problems during the training

phase. The detailed structure of the classification model used in the first stage is shown in Fig. 4.2(a).

The labeled subset of the training dataset (i.e. COVID-CT-MD) has been used to train this

stage over 100 epochs using the Adam optimizer with a learning rate of 1e− 4. To account for the

imbalanced number of slices in each class, the same weighted loss function as that of the COVID-

FACT is used. The original test set in the COVID-CT-MD dataset has been used as the validation set

to select the final model.

4.1.3 Stage Two

The second stage takes the candidate slices from the previous stage and classifies them into

one of the COVID-19, CAP, or normal cases. More specifically, the slices demonstrating infection

recognized by the first stage are used to train a Capsule Network-based three-way classification

model. The architecture of stage two is shown in Fig. 4.2(b). Similar to the first stage, a weighted

loss function is used to cope with the imbalanced number of samples in some categories. At this

stage, however, the loss weights associated with normal and CAP classes are set to 5 and the weight

for the COVID-19 class is set to 1. Note that as the normal cases are extremely rare at this stage, the

weights are set differently compared to those calculated by Eq. (3.1), to maintain the stability of the

training process, while forcing the model to pay more attention to the minority classes. In addition,

the binary cross-entropy loss function is used which translates the three-way classification problem

at hand into three binary classification tasks. In fact, the loss value is calculated separately for each
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Figure 4.2: a) The structure of the CapsNet binary classifier in stage 1. b) The structure of the
three-way classifier in stage 2. + sign denotes the residual addition.

binary label associated with a target class (i.e., COVID-19, CAP, normal). Finally, a majority voting

mechanism is adopted to transfer slice-level predictions into patient-level ones and determine the

final label. It is worth noting that an accurate model in the first stage detects only a few candidate

slices from normal cases. The 3% thresholding mechanism similar to the one incorporated into the

COVID-FACT can then be applied to the output of the first stage to identify those cases with only a

few identified infectious slices in the first stage and label them as normal. In other words, if less than

3% of the slices in a volumetric CT scan are classified as infectious, the corresponding CT scan is

classified as a normal case.

4.1.4 Unsupervised Enhancement

Unseen CT scans acquired by different scanners and scanning protocols contain heterogeneous

characteristics, leading to lower performance of a pre-trained model. To increase the robustness, it

is possible to take advantage of the extra unlabeled samples that are available via the various test

cases, and utilize this extra set of CT scans in an unsupervised fashion. In other words, inspired

by the ideas of “Active Learning [90–92]”, where different data samples are extracted to train the
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model in different stages, and “Semi-Supervised Learning [93, 94]”, where a label is assigned to

unlabeled cases based on a pre-defined metric, an autonomous mechanism is developed to extract

and label a part of test dataset using a probabilistic selection criteria with reduced complexity. The

selected sample and the assigned labels are then used to re-train and boost the initially trained model.

More specifically, those test cases for which the model generated the most confident results (i.e.,

high probability) are selected. Similarly, among the selected cases, those with a high confidence

in slice-level predictions are picked. To specify the confidence level for the obtained results, the

probability that a volumetric CT scan belongs to a specific category is defined as the ratio of the slices

predicted as the target class over the total number of slices (all slices containing the lung lesion),

which can be written as follows:

P (X ∈ Ci) =
nCi∑C
i=1 nCi

, (4.1)

where X represents the input volumetric CT scan, C represents the number of target classes, and

nCi denotes the number of slices belonging to the target class Ci. Then, a confidence threshold is

specified and a prediction is considered confident if the probability of the input CT scan belonging

to any of the target classes is greater than the pre-set threshold. In this study, 80% is used as the

confidence threshold. A similar approach is used to extract confident slices and their corresponding

labels. In this case, the probability of a slice belonging to a target class is determined by the output

of the CapsNet classifier in stage 2, which is the length (L2Norm) of capsules in the last layer. It

is worth mentioning that for those normal cases, which are identified in the first stage using the

described thresholding mechanism, only the slices which are misclassified as infectious with a high

probability (e.g., more than the confidence threshold) are selected. Such slices will be labeled as

normal in the enhancement phase. Following the aforementioned steps, a set of slices and their

corresponding labels will be obtained to augment the training dataset aiming to make the model more

aware of the new features available in the unseen datasets and achieve more robust feature maps.

Therefore, for each test set, a set of confident slices and their associated labels are obtained, which

have been added to the train set to re-train the model of the second stage. It is worth noting that the

first stage has been kept unchanged in this approach. Finally, after re-training the benchmark model
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based on the confident slices acquired from each test set, several enhanced models (each related to

one test set) are achieved and the associated patient-level probability scores are averaged to provide

the final prediction. This aggregation mechanism depends on the target test set. More specifically, to

apply the model on each test set, the predictions obtained by the models enhanced over the other test

sets are averaged. For instance, the model developed for the diagnosis of cases in test set 1 takes the

average of probability scores provided by the models enhanced on test set 2 and 3. The main reason

for using such an aggregation mechanism is that the enhancement based on a specific test set will

further boost the probability scores of confidently predicted slices while having limited influence on

other cases in the same set. As such, incorporating the model enhanced on a test set will not bring in

any further improvement to the evaluation process of the same set. The results presented in Table 4.2

further support this discussion. It is worth noting that the first three test sets are used to enhance

the benchmark model and the fourth test set is kept aside for only evaluation purposes. As such,

upon receiving new test datasets, the results of the enhanced models on the individual test sets (each

representing a specific center or scanning protocol) can be aggregated to provide the classification

results for the new cases. The unsupervised model enhancement described above along with the

subsequent ensemble averaging mechanism make the entire pipeline a robust automated framework

that can be easily improved and updated upon receiving new datasets from different imaging centers.

4.1.5 Experimental Results

As previously stated, to evaluate the performance of the proposed framework and the effectiveness

of its unsupervised enhancement approach, the first three test sets are used to enhance the benchmark

model, and the fourth test set is kept aside only for evaluation purposes. The results obtained by

applying the enhanced ensemble model on all of the test sets are shown in Table 4.1. In this table, the

AUC value is calculated based on the micro average of the values obtained for each class. In addition,

to further validate the obtained results, confidence intervals for the total accuracy and sensitivity are

provided using the method introduced in Reference [95].

To elaborate on the effect of the proposed unsupervised enhancement approach, the performance

of the benchmark model (i.e., before enhancement) and the models enhanced by individual test sets

(i.e., before averaging the outputs) is presented in Table 4.2. Results shown in Table 4.2 imply that
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Table 4.1: Results obtained by the proposed robust framework for different test sets of the SPGC-
COVID dataset. 95% Confidence Intervals obtained for the total performance using the significance
level of 0.05 are presented in parentheses.

Test Set Accuracy(%) COVID-19
Sensitivity(%)

CAP
Sensitivity(%)

Normal
Sensitivity(%)

AUC
(micro)

Test 1 100 100 NA 100 1.000
Test 2 86.67 80 90 90 0.952
Test 3 100 100 100 100 1.000
Test 4 97.50 100 87.50 100 0.999

Total
96.15

(CI: [91.25-98.74])
96.08

(CI: [86.54-99.5])
92.86

(CI: [76.50-99.19])
98.04

(CI: [89.55-99.95])
0.992

Table 4.2: The ratio of correctly classified cases over total cases in the each class obtained by the
proposed robust model, the benchmark model, and three partially enhanced models.

Test Set Sensitivity Proposed Enhanced #1 Enhanced #2 Enhanced #3 Benchmark

Test1
COVID-19
Normal

15/15
15/15

15/15
15/15

15/15
15/15

15/15
15/15

15/15
15/15

Test2
COVID-19
CAP
Normal

8/10
9/10
9/10

8/10
9/10
9/10

8/10
8/10
9/10

8/10
9/10
9/10

8/10
8/10
9/10

Test3
COVID-19
CAP
Normal

10/10
10/10
10/10

10/10
10/10
10/10

9/10
10/10
10/10

9/10
10/10
10/10

9/10
10/10
10/10

Test4
COVID-19
CAP
Normal

16/16
7/8
16/16

16/16
6/8
16/16

16/16
7/8
16/16

15/16
8/8
16/16

15/16
7/8
16/16

the probability of the input CT scan belonging to the target class in some misclassified cases has

been on the thresholding edge (close to 0.5) and could be corrected after incorporating the models

enhanced over other test sets.

In addition to the final patient-level predictions, the performance of the first stage on the validation

set in detecting slices demonstrating infection is evaluated to provide a clearer insight into the internal

components of the framework. The first stage achieved an accuracy of 93.41%, sensitivity of 91.04%,

and specificity of 94.26% in the binary (infectious & non-infectious) classification task. As slice-level

labels (i.e., binary labels indicating the existence of infection in a CT slice) are not available for test

sets, the result on the validation set is only reported. Moreover, as mentioned earlier, the output of

the first stage can be used to identify most normal cases before entering the next stage. The results
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Figure 4.3: ROC curves for COVID-19 vs. others and CAP vs. others.

also show that nearly all of the normal cases in the four test sets (45/46 cases) have been identified

correctly by the thresholding mechanism applied to the output of the first stage, while none of the

COVID-19 and CAP cases have been misclassified as normal using this thresholding approach. In

Fig. 4.3, the ROC curves for COVID-19 and CAP cases against other classes (e.g., COVID-19 vs.

CAP and Normal) are plotted. The associated AUC values are also provided.

Comparison

The proposed framework is compared with top six models [96–101] developed following the

Signal Processing Grand Challenge (SPGC) on COVID-19 diagnosis, which was organized as part of

the 2021 IEEE International Conference on Acoustics, Speech, & Signal Processing (ICASSP). In

the first phase of this SPGC, participants had access to the same train and validation sets as those

used in this study to develop and evaluate their models. In the second phase, they were provided with

the first three test sets and had two weeks to submit their final models. Finally, the best-performing

models based on the first three test sets have been evaluated on the fourth test set to determine

the overall performances. Experimental results demonstrate that the robust framework proposed

in this chapter outperforms its counterparts proposed in the SPGC. Furthermore, it benefits from

a scalable enhancement approach that can be integrated into most of the state-of-the-art models
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to improve their performance when being tested on a heterogeneous dataset. In what follows, the

six best-performing models from the SPGC COVID-19 are briefly described, followed by their

corresponding performances on the entire test sets presented in Table 4.3.

• Reference [96]: In this model, slice-level predictions are acquired from an EfficientNet-based

classifier [102] and a weighted majority voting is proposed to obtain the final patient-level

labels. To train this classifier, the authors first trained two separate binary classifiers to detect

slices demonstrating infection from COVID-19 and CAP cases. Then, they fed these models

with unlabelled cases to provide the training set for the main classifier. Additionally, they only

considered the middle slices (e.g., 80 middle slices) in a volumetric CT scan at the training

phase.

• Reference [97]: This model aggregates the output of six classifiers developed based on the

3D ResNet101 model [103]. One model in this proposed framework is a three-way classifier

trained over all of the cases, while the other five models are binary classifiers independently

trained over COVID-19 and CAP cases using different combinations of train and validation

sets.

• Reference [98]: This model presents a feature extraction-based approach in which a modified

pre-trained ResNet50 model classifies each slice into the target classes and the penultimate

fully connected layer is extracted as the feature map. Next, a max-pooling layer followed by

two fully connected layers is used to generate patient-level prediction from slice-level feature

maps. The output of this model is then aggregated with two BiLSTM patient-level classifiers,

which are fed by the same slice-level feature maps to provide the final patient-level labels.

• Reference [99]: The pre-trained 3D Resnet50 [104] is the backbone of this model. The authors

first doubled the number of slices for each case using a 3D cubic interpolation method. Then,

they extracted the lung area using a pixel-based segmentation approach, followed by classical

image processing techniques such as pixel filling and border cleaning. Finally, a subset of slices

is selected from each volumetric CT scan based on their lung area and an experimentally-set

threshold, which is then resized into a (224, 224, 224) data, using a 3D cubic interpolation

method, providing the patient-level input for training and evaluation purposes.
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• Reference [100]: This model utilizes a two-stage framework in which the first stage is

responsible for performing a multi-task classification to classify 2D slices into one of the

target groups and identify the location of the slice in the sequence of CT images at the same

time. The model at the first stage uses an ensemble of four popular CNN-based classifiers (i.e.,

ResneXt50 [105], DenseNet161 [106], Inception-V3 [107], and Wide-Resnet [108]), followed

by an aggregation mechanism that divides the whole volumetric CT scan into 20 groups of

slices and calculates the percentage of infected slices related to COVID-19 and CAP classes in

each group. The values obtained for all groups are then concatenated and fed into an XG-boost

classifier [109] in the second stage to generate patient-level predictions.

• Reference [101]: The model proposed in this work initiates with a slice-level EfficientNet-B1

classifier [102] aiming to classify slices and generate feature maps (intermediate layers) to be

used in the subsequent sequence classifier. In the sequence classifier, several weak classifiers

are trained and the outputs are aggregated using an adaptive weighting mechanism to obtain the

final patient-level results. To further enhance the performance of the model and cope with the

imbalanced training set, a combination of weak and strong data augmentations is applied to the

training cases, forcing the model to produce similar labels for both types of augmented images.

Furthermore, to improve the robustness of the model when being tested on varied datasets, the

K-Means clustering method (K = 3) [110] is adopted to develop a single classifier for each

cluster of the data and aggregate the results via a majority voting approach.

In addition to the aforementioned models, the proposed framework is further compared with another

model which utilizes the same train and test sets (excluding the 4th test set) to target the same

classification task [111]. A brief description of this model is as follows:

• Reference [111]: This model aims to introduce a robust training algorithm and classification

framework, which is capable of being updated upon receiving new datasets to deal with the

characteristic shifts in different test sets. First, it adopts a two-stage architecture similar to

the COVID-FACT model proposed in Reference [2] and trains the benchmark model in a

self-supervised fashion [112] and the majority voting is adopted to obtain patient-level labels.

The backbone model used in this study is DenseNet169 [106] and strict slice preprocessing
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Table 4.3: Performance of the DL-based counterparts of the proposed framework. P -values related
to the McNemar’s test with the significance level of 0.05 are presented in the last column, comparing
the proportion of errors on the entire test set caused by the proposed framework and its counterparts.

Model Accuracy(%)
COVID-19

Sensitivity(%)
CAP

Sensitivity(%)
Normal

Sensitivity(%)
McNemar’s test

p-value
Ref. [96] 90 86.27 89.28 94.11 0.07681
Ref. [97] 88.46 86.27 89.28 90.19 0.03088
Ref. [98] 87.69 88.23 78.57 92.15 0.00739
Ref. [99] 85.38 84.31 82.14 88.23 0.00052
Ref. [100] 84.61 90.19 60.71 92.15 0.00073
Ref. [101] 80.00 88.23 35.71 96.07 0.00005
Ref. [111] 72.22 65.71 85.00 71.43 0.00002
Proposed 96.15 96.08 92.86 98.04 –

and sampling methods are applied to the training set. Such methods contain pixel-based

approaches with some fixed thresholds used to extract lung areas and select the slices with the

most visible lung area. Next, each test set is divided into four quarters, which are then used in

an unsupervised updating process, in which quarters are passed to the model sequentially and

confident predictions are selected to fine-tune the slice-level classifiers. A slice-level prediction

is considered confident in this study if it achieves a probability of at least 0.9 in agreement

with the patient-level label.

Table 4.3 illustrates the performance of seven automated models developed to tackle the same three-

way classification task using the same train and test datasets. The statistical McNemar’s test [113]

with the significance level of 0.05 is also used to compare the overall performance of the proposed

framework with the aforementioned models. This comparison aims to test the hypothesis that the

models have the same proportion of errors on the entire test sets. The corresponding p-values are

reported in Table 4.3 and indicate that the hypothesis is rejected for almost all the models except the

first one as the corresponding p-value is slightly more than 0.05. In other words, there is a significant

difference in the proportion of errors between the proposed framework and six of the aforementioned

models, while such a difference is not significant in the case of the model proposed in Reference [96].
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Table 4.4: The number of CT slices extracted from each test set of the SPGC-COVID dataset by the
proposed enhancement approach to augment the training set.

COVID-19 CAP Normal
Test 1 595 0 4
Test 2 382 563 3
Test 3 427 341 2

4.1.6 Discussion

In Table 4.4, the numbers of slices extracted from each test set to augment the train set are

presented. The low number of normal slices demonstrates the high performance of the first stage in

identifying slices with and without the evidence of infection.

I would like to highlight the effect of the suggested 3% threshold used to identify normal cases

based on the outcome of the first stage. As mentioned earlier, 3% is a safe threshold to identify

normal cases as it is extremely rare to observe less than 3% involvement of the lung parenchyma

in COVID-19 cases. However, it is possible that the number of slices identified as infectious in a

normal case exceeds this 3% threshold. This could happen mainly in those CT scans with a large

slice-thickness and fewer slices (e.g., less than 100 slices). In such cases, a minor error (a small

number of misclassified slices by the first stage) will mistakenly indicate a large involvement of the

lung parenchyma. Such errors can be avoided by increasing the 3% threshold or using an adaptive

threshold (e.g., based on the slice-thickness and number of slices) when we are dealing with a fewer

number of slices per patient. In this study, only one normal case has been misclassified and increasing

the threshold to 6% could remove the error while the other cases were not affected. The promising

results and benefits of the first stage in identifying slices demonstrating infection, once again, indicate

its significant potential to be used in other CT scan-related models to help identify normal cases and

concentrate only on a subset of slices rather than the whole volume.

Furthermore, I would like to highlight that the results shown in Table 4.2 demonstrate the

incapability of the model enhanced based on a test set to improve the performance of the model on

the same set. This is mainly because of the fact that the additional data used to update the benchmark

model is constructed by the cases with the highest probability scores (whether correct or not) and

incorporating them into the train set will force the model to further increase the corresponding

probability scores while does not have much effect on other slices. As such, in the test phase, it is
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more reasonable to aggregate the outputs obtained by all enhanced models except the one associated

with the target test set.

Finally, it is worth noting that it is possible to design more advanced techniques to select the cases

and images from the new test sets using the metrics introduced in the field of Active Learning [90,91]

through which the cases which bring more diversity to the training set and the associated feature

maps are detected and used for training purposes. In addition to the enhancement techniques in the

field of Active Learning, there have been several recent studies on using Generative Adversarial

Networks (GANs) to cope with the data and domain shift in medical images [114, 115] where the

labeled data is not available in the target domain. The main goal in such frameworks is to achieve

a domain invariant image representation which can efficiently embed the important features of the

image regardless of the imaging modality or imaging technique. Similarly in Reference [116], an

auto-encoder and feature augmentation-based approach is proposed to adapt the model to various

imaging modalities obtained by different scanners. In this study, however, we are dealing with only

one imaging modality (i.e., CT scan) and the level of characteristic shift between the images is lower

compared to the images investigated in the aforementioned studies. Moreover, high performances

could be achieved using a far less complicated mechanism.

4.2 The WSO-CAPS Framework

As previously stated, thoracic radiologists have recently tended to use low and ultra-low dose

scanning protocols, especially after the emergence of the COVID-19 disease. LDCT and ULDCT,

however, suffer from a high noise level which makes them difficult and time-consuming to interpret

even by expert radiologists. In addition, some abnormalities are only visible using specific window

settings on the radiologists’ monitor. Currently, manual adjustment of the windowing settings

is the common approach to analyze such low-quality images. In this section, a Window Setting

Optimization (WSO) mechanism is embedded into the slice-level classifier proposed in the CT-CAPS

and COVID-FACT frameworks to tackle the aforementioned issues and improve the accuracy and

interpretability of the proposed DL-models. The resulting model is referred to as the “WSO-CAPS”.

It is also shown that the performance of the classifier can be improved by using an ensemble
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architecture to train multiple WSO modules in parallel and obtain several windowing settings at the

same time. Using this mechanism, the WSO-CAPS identifies optimized (WL,WW) pairs that are

best suited for the detection of slices demonstrating infection from LDCT and ULDCT images. The

experimental results demonstrate that the WSO-CAPS outperforms the original Capsule Network-

based model by improving the binary (normal/abnormal) accuracy from 89.4% to 92.0%, sensitivity

from 85.4% to 90.3%, and specificity from 92.2% to 93.3%. The superiority of the WSO-CAPS is

also demonstrated when it is working with standard dose CT scans.

In what follows, the main idea behind the proposed WSO-CAPS which is the Window Setting

Optimization mechanism is explained in detail, followed by the description of the main components

in the WSO-CAPS pipeline.

4.2.1 Window Setting Optimization

The windowing functions similar to the ones incorporated in radiologist’s monitors are adopted

to restrict the pixel values in a specific window ranging from 0 to the upper bound of U based on the

setting parameters (WL,WW). As shown in Fig. 4.4, linear and sigmoid mappings can be utilized as

the windowing function to map all the values inside the window specified by the (WL,WW) to the

[0, U ], and assign all the values outside the window range to 0 or U . The linear windowing function

can be formulated by the Eq. (4.2).

Flin(x) = min(max(Wx+ b, U), 0), (4.2)

where W = U
WW and b = − U

WW (WL− WW
2 ). The sigmoid windowing function can be formulated

by the Eq. 4.3.

Fsig(x) =
U

1 + exp−(Wx+ b)
, (4.3)

where W = 2
WW log(Uϵ − 1) and b = −2WL

WW log(Uϵ − 1). Eq. (4.2) and Eq. (4.3) indicate that the

windowing function can be achieved by a convolutional layer with a filter size of 1× 1 and a stride

of 1, followed by a custom activation layer which is an upper-bounded rectified linear unit (ReLU),

or sigmoid function multiplied by U , for the linear or sigmoid windowing function, respectively [66].

The proposed WSO convolutional layer can be used immediately after the input layer to display
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(a) Linear Windowing Function (b) Sigmoid Windowing Function

Figure 4.4: Different Windowing Functions, Figure from Reference [6]

Figure 4.5: WSO-CAPS Pipeline, × sign represents the element-wise multiplication, + sign denotes
the residual addition.

full-range DICOM images in the associated window. This implementation method facilitates finding

the optimized window settings on the fly as the weight and bias of the WSO convolutional layer can

be trained jointly with the rest of the model to provide the best (WL,WW) pairs.

4.2.2 Proposed Model

The WSO convolutional layer initiates the classification pipeline by converting the input DICOM

image from the full-range Hounsfield Unit (i.e. ranges from −1024 to > 4000) into the specific

window ranges from 0 to the upper-bound U , which is 1 in this case. Three convolution channels

followed by the sigmoid windowing function are used in the proposed WSO-CAPS framework.

Following the preprocessing steps of the previously proposed frameworks, the same lung area

segmentation, down-sampling, and normalization methods are used as the preprocessing steps. The
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Table 4.5: Binary classification results obtained by the Capsule Networks and single channel WSO-
CAPS.

Performance CapsNet
CapsNet

with Residual
Connection

WSO-CAPS
(ReLU)

WSO-CAPS
(sigmoid)

WSO-CAPS
no lung segmentation

(sigmoid)
Accuracy(%) 89.4 89.5 91.4 91.6 90.3
Sensitivity(%) 85.5 86.3 91.7 89.1 85.7
Specificity(%) 92.2 91.9 91.2 93.5 93.9

Table 4.6: Results obtained by different architectures of the WSO-CAPS framework using the
sigmoid window activation and the model proposed in Reference [7].

Performance WSO-CAPS
(3 channels)

WSO-CAPS
(3 Branches)

WSO-CAPS
(3 Channels - 3 Branches)

ResNet50
(Ref [7])

Accuracy(%) 92.0 91.0 91.5 83.1
Sensitivity(%) 90.3 88.5 88.4 76.4
Specificity(%) 93.3 92.8 93.7 88.0

preprocessed images are then fed into the Capsule Network-based classifier which is adopted from the

architecture proposed in the previous section (i.e. the robust and enhanced classification framework)

which demonstrated a high performance on heterogeneous chest CT images including LDCT and

ULDCT.

As shown in Fig. 4.5, the inputs of the WSO-CAPS are the original CT images and the corre-

sponding lung mask generated by the R231CovidWeb segmentation model, which are then followed

by the WSO convolution layer with the size of 1× 3 to detect 3 pairs of (WL,WW) at the same time.

The output of the WSO layer is then fed to a stack of four convolutional layers with the sizes of

64, 64, 128, 128, respectively; followed by three capsule layers such that the amplitude of the last

layer represents the probability of the input image belonging to each target class. It is also worth

mentioning that the same weighted loss function as that of the other proposed models in this thesis is

used to train the WSO-CAPS.

4.2.3 Experimental Results

The WSO-CAPS model is trained based on the Low-Dose, Ultra-Low Dose, and simulated

Low-Dose CT scans from the WSO Dataset described in Sub-section 2.4.3. 70% of the cases (i.e.,
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Figure 4.6: Effects of the three optimized window settings identified by the WSO-CAPS on two
sample chest CT slices.

154 cases) is randomly selected as the train set from which 10% is randomly selected as the validation

set to determine the best model during the training phase. The remaining cases are used for evaluation

purposes. It is worth mentioning that the data leakage is strictly prevented between the train and

test sets. A batch size of 32, a learning rate of 1e − 4, and 100 epochs were used as the training

hyperparameters. Moreover, the weight and bias of the WSO convolution layer were initiated based

on the values that corresponded to the standard windowing parameters for the lung CT scans (i.e.,

WL = −500,WW = 1400). As the first experiment, the models developed based on sigmoid and

ReLU activation functions are investigated. The performance of the WSO-CAPS framework without

using the lung segmentation model is also evaluated. The corresponding results are provided in

Table 4.5. Based on the obtained results, the sigmoid windowing function using lung segmentation is

selected as the best model. In the next step, to further improve the capability of the WSO-CAPS in

detecting abnormality CT manifestations through different windows, two experiments are conducted.

In the first experiment, the size of the WSO convolution layer is increased to 3, while in the second

experiment, an ensemble architecture is adopted, which trains three branches of the WSO-CAPS

model in parallel which are merged in the intermediate capsule layer using a concatenation layer.

The performance of the WSO-CAPS is also compared with the ResNet50 model used in Ref-

erence [7]. The related results are presented in Table 4.6. Tables 4.5 and 4.6 indicate that the
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WSO-CAPS framework with 1 branch and 3 WSO convolution channels using the sigmoid window-

ing function outperforms its counterparts. The results also demonstrate that all the models equipped

with the WSO mechanism outperform the same models without using the window adaptation layer.

It is worth mentioning that increasing the complexity of the framework by adding more convolution

channels and branches could not further improve the performance. In the last step, to provide a

better insight into the proposed window setting optimization module,the identified (WL,WW) pairs

are investigated and the CT images are reviewed through the obtained window settings, consid-

ering the ϵ = 0.01 in Eq. (4.3). The optimized setting parameters obtained by the WSO-CAPS

framework using 1 channel is (−555.9, 1032.0), which is quite similar to the standard setting but

adds more contrast and noise reduction power to the model. The WSO-CAPS using 3 channels

obtained (−592.4, 1095.7), (−277.1, 517.8), and (−630.4, 1165, 4) as the optimized parameters.

The first identified window setting in this case, is also close to the standard one which helps the

model not to miss the details evident through the standard window. To better visualize the effects

of the obtained parameters, Fig. 4.6 illustrates two sample CT images displayed by the optimized

settings obtained by the WSO-CAPS using 3 channels. The capability of the WSO-CAPS to view the

lung entities through different windows is evident in Fig. 4.6. It can also be concluded that the second

window focuses more on the structure of the lung and vessels and removes the noisy and infectious

components, while the first and third windows visualize the infection manifestations at different

contrast levels. In another experiment, the WSO-CAPS framework is trained using standard-dose CT

scans to further investigate the generalizability of the model. In this case, the WSO-CAPS achieved

the accuracy of 91.6%, sensitivity of 92.0%, and specificity of 91.4% while the CapsNet model

without incorporating the WSO module showed a lower performance by achieving the accuracy of

90.5%, sensitivity of 89.8%, and specificity of 90.7%. Therefore, similar to the Low-Dose CT scans,

the superiority of the WSO-CAPS over its counterparts is evident when dealing with standard-dose

CT scans.
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4.3 Summary

In the chapter, the COVID-FACT framework is first extended to tackle the three-way classification

task (i.e., identification of COVID-19, CAP, and normal cases) based on volumetric CT scans acquired

from multiple centers using different imaging protocols. An unsupervised enhancement approach

is also proposed, which can enable a DL-based framework to be adapted to the heterogeneity in

different test sets. This enhancement approach updates the model’s parameters by extracting confident

predictions from the test sets and utilize them to re-train the model in order to increase its capability

and robustness in the presence of gaps between the imaging protocols and patients’ clinical history.

It is shown that different versions of the model can be trained based on different test sets and their

outputs can be combined to generate the final predictions, which are more accurate and robust.

In addition, this chapter proposed the WSO-CAPS framework to identify slices demonstrating

infection from low and ultra-low-dose volumetric CT scans. The WSO-CAPS framework benefits

from a Window Setting Optimization module, which is implemented by a 1× 3 convolution layer

followed by a sigmoid-based window activation function. The experimental results on the in-house

WSO dataset indicate that incorporation of the WSO module into the classification models will

improve the performance. The proposed WSO-CAPS improved the accuracy of the slice-level

classifier by 2.6%, and achieved the accuracy of 92.0%, the sensitivity of 90.3%, and the specificity

of 93.3%. It is also showed that the WSO-CASP using 3 WSO convolution channels will provide

better results compared its variant using a single channel. It is worth mentioning that detecting

infectious slices in a volumetric CT scan is an integral component of many state-of-the-art frameworks

dealing with volumetric medical images. As such, the WSO-CAPS is expected to be beneficial to

other DL-based frameworks working with 3D CT scans.
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Chapter 5

Invasiveness Prediction of Lung

Adenocarcinoma Subsolid Nodules from

Non-Thin Section 3D CT Scans

Lung cancer is the leading cause of mortality from cancer worldwide and has various histologic

types, among which Lung Adenocarcinoma (LUAC) has recently been the most prevalent. Lung

adenocarcinomas are classified as pre-invasive, minimally invasive, and invasive adenocarcinomas.

Timely and accurate knowledge of the invasiveness of lung nodules leads to a proper treatment plan

and reduces the risk of unnecessary or late surgeries. Currently, the primary imaging modality to

assess and predict the invasiveness of LUACs is the chest CT. The results based on CT images,

however, are subjective and suffer from a low accuracy compared to the ground truth pathological

reviews provided after surgical resections. In this chapter, a predictive transformer-based framework,

referred to as the “CAE-Transformer", is developed to classify LUACs. The CAE-Transformer

utilizes a Convolutional Auto-Encoder (CAE) to automatically extract informative features from CT

slices, which are then fed to a modified transformer model to capture global inter-slice relations.

Experimental results on the in-house dataset of 114 pathologically proven Sub-Solid Nodules (SSNs)

demonstrate the superiority of the CAE-Transformer over the histogram/radiomics-based models and

its DL-based counterparts, achieving an accuracy of 87.58%, sensitivity of 86.67%, specificity of
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88.0%, and AUC of 0.88, using a 10-fold cross-validation. The influence of Positional Embedding

(PE), Global Max Pooling (GMP), Global Average Pooling (GAP) layers, and Feature Concatenation,

which are commonly used in transformer-based models to aggregate the encoded instances and

generate the final output, are also investigated in this study. The results show that using the PE in

conjunction with GMP achieves the highest accuracy for the task at hand.

The LUAC dataset, described in Sub-section 2.4.4, is used to train and evaluate the CAE-

Transformer model. Experimental results shows that DL-based models (including the CAE-Transformer)

improve the results achieved by the ML-based models proposed in Reference [40], which are es-

sentially using histogram-based and radiomics features to predict the SSN’s invasiveness. More

specifically, the CAE-Transformer improved the accuracy from 81.0% to 87.58%, sensitivity from

80.0% to 86.67%, and specificity from 81.8% to 88.0%, while achieving a slightly lower AUC value

of 0.88 compared to the original AUC of 0.91.

5.1 CAE-Transformer Framework

In this section, different components of the proposed CAE-Transformer framework are described

in detail. Fig. 5.1 shows an overview of the CAE-Transformer framework, along with the architecture

of the associated transformer encoder.

5.1.1 Preprocessing

Following the preprocessing steps introduced in previous chapters, lung regions are first extracted,

using the well-trained U-Net-based lung segmentation model developed in Reference [42], and the

output images are down-sampled from (512, 512) to (256, 256) to reduce the complexity and memory

allocation without significant loss of information. In this study, however, the CT images are not

normalized in the [0, 1] interval to preserve the original pixel intensity distributions for each nodule.

5.1.2 Convolutional Auto-Encoder (CAE)

In order to represent CT images by compressed and informative feature maps, to be used as the

input of the subsequent modules, a Convolutional Auto-Encoder (CAE) is initially pre-trained based
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Figure 5.1: Left: Overview of the proposed CAE-Transformer framework, Right: Architecture of the
Transformer Encoder

on the public LIDC-IDRI dataset, which contains 244, 527 chest CT images with or without the

evidence of a nodule. The CAE model consists of an encoder and a decoder part. The encoder is

responsible for generating a compressed representation of the input image via a stack of 5 convolution

and 5 max-pooling layers, followed by a fully-connected layer with the size of 256, while the decoder

part attempts to reconstruct the original image using the compressed feature representation generated

by the encoder. By minimizing the Mean Squared Error (MSE) between the original and the

reconstructed image, the CAE learns to produce highly informative feature representations for the

input images. Finally, the pre-trained model is fine-tuned on the CT images in the LUAC dataset.

5.1.3 Proposed Transformer

The transformer model used in the proposed CAE-Transformer framework is adopted from the

transformer encoder proposed in References [44, 74], and modified for the task of interest. More

specifically, a transformer encoder is initialized by applying the MHA module, described in Sub-

section 2.3.1 , on the normalized CAE-generated feature maps corresponding to input instances
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(i.e., CT slices), followed by a residual connection which adds low-level features of the input to

the output of the MHA module. A Layer Normalization (LN) is then applied to the results. The

normalized values are then passed to the next module which contains a Multi-Layer Perceptron

(MLP), followed by another residual connection as shown in Fig. 5.1. The CAE-Transformer is

constructed by stacking 3 transformer encoder blocks on top of each other with projection dimensions

of 256 , key dimensions of 128, and 5 number of heads in each MHA module. Finally, the features

obtained by the stack of transformer encoders from all input instances are passed to a GMP layer,

and a fully-connected layer with 32 neurons is applied to generate the final binary classification

results. The final fully-connected layer uses a softmax activation function to produce probability

scores. Dropout layers are also incorporated to prevent the model from getting over-fitted.

It is also worth mentioning that in conventional transformers and their modified versions (e.g.,

ViT and CvT), some information about the position of instances in the input sequence (e.g., relative or

absolute positions) are added into the model in different encoded forms such as Positional Embeddings

(PE) or Token Embeddings (TE). Following the literature, the CAE-Transformer incorporates the

PE layer in its pipeline to embed more information about the position of each slice in a series of CT

images. To further investigate the effects of this layer on the final results, PE is removed in separate

experiments and the obtained results are reported for comparison. In addition, as the number of

slices with the evidence of a nodule varies between different subjects (from 2 to 25 slices per nodule),

the maximum number of such slices in the LUAC dataset (i.e., 25 slices) is taken, and the input

sequences are zero-padded based on this number, so that all sequences have the same dimension of

(25, 256). The following equations describe how the CAE-Transformer’s output is obtained.
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(s1
′, s2

′, · · · , sci ′) = U-Net(s1, s2, · · · , sci), i = 1 · · ·N

(f1, f2, · · · , fci) = CAE((s1
′, s2

′, · · · , sci ′), i = 1 · · ·N

z0 = ZeroPad(f1, f2, · · · , fci) + PE, i = 1 · · ·N

zl
′ = MSA(LN(zl−1)) + zl−1, l = 1 · · ·L

zl = MLP (LN(zl
′)) + zl

′, l = 1 · · ·L

o = LN(zL),

x = GMP (o1, o2, · · · , o25),

y = MLP (x), (5.1)

where s denotes the original CT slices, s′ represents the segmented CT images, ci signifies the

number of slices with the evidence of a nodule in the case i, f represents the CAE-generated feature

maps corresponding to the CT images, MSA denotes the Multi-Head Self-Attention module, and l

shows the lth MSA layer. The number 25 indicates the maximum number of slices with the evidence

of a nodule per subject in this study, and y is the final prediction.

5.2 Experimental Results

The performance of the proposed CAE-Transformer framework is evaluated using the 10-fold

cross-validation method. The CAE model is pre-trained using a batch size of 128, learning rate of

1e− 4 and 200 epochs. The best model on the randomly sampled 20% of the dataset was selected

as the best model. The model was then fine-tuned on the LUAC dataset using a lower learning rate

of 1e− 6 and 50 epochs. To fine tune the final CAE, only the middle fully-connected layer and its

previous and next convolution layers were trained while the other layers have been kept unchanged.

The CAE-generated features are then used to train the transformer encoder. The transformer is trained

using a learning rate of 1e−3, batch size of 64, and 200 epochs. The results of the CAE-Transformer

are presented in Table 5.1.

The performance of the proposed CAE-Transformer framework is compared with the results
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Table 5.1: Results obtained by the CAE-Transformer and its counterparts. Concat. refers to the
Feature Concatenation aggregation function.

Model Accuracy (%) Sensitivity (%) Specificity (%) AUC
Ref. [40] 81.0 80.0 81.80 0.91
GMP-FC 84.02 87.0 80.67 0.90
GAP-FC 83.18 85.33 80.67 0.90

CAE-LSTM 84.92 85.0 84.33 0.84
CAE-Transformer
(No PE & Concat.)

85.0 83.0 86.0 0.92

CAE-Transformer
(No PE & GAP)

81.52 80.0 83.0 0.88

CAE-Transformer
(No PE & GMP)

85.0 87.0 83.0 0.93

CAE-Transformer
(Concat.)

85.83 83.0 88.33 0.92

CAE-Transformer
(GAP)

85.83 87.0 84.67 0.88

CAE-Transformer
(GMP)

87.58 86.67 88.0 0.88

obtained by the ML-based model proposed in Reference [40]. As the other models proposed in the

literature are not trained over the same dataset, they are not considered for the comparison. The

CAE-Transformer is further compared with non-transformer alternative models by aggregating the

CAE-generated feature maps using GMP and GAP, followed by a stack of fully connected and batch

normalization layers. The best experimental results for such models were obtained by utilizing 4

fully connected layers with 128, 128, 32, and 2 neurons, respectively. The performance of the CAE-

Transformer is also compared with its LSTM-based counterpart, referred to as the “CAE-LSTM",

obtained by replacing the transformer blocks with a stack of LSTM layers while using the same

hyper-parameters and complexity.

It is worth mentioning that in the transformer architecture, an aggregation mechanism is com-

monly used to aggregate all the sequential features generated by the last transformer encoder. The

proposed CAE-Transformer utilizes a GMP layer in this regard. In addition to the GMP, differ-

ent aggregation mechanisms (PE, GAP, and Feature Concatenation) are investigated in separate

experiments and the results are reported in Table 5.1. In other words, the final GMP layer in the

CAE-Transformer is replaced by other aggregation functions to evaluate their influence on the model,

while the rest of the model remained the same.

75



The experimental results provided in Table 5.1 show that most DL-based models outperform the

original radiomics and ML-based model, while the CAE-Transformer using PE and GMP achieves the

highest accuracy and specificity among the developed frameworks. It is worthy of note that increasing

the complexity of the model and changing hyper-parameters could not improve the performance

when GAP and Feature Concatenation were included or when the PE was removed.

5.3 Summary

In this chapter, an automated transformer-based framework, referred to as the “CAE-Transformer",

is proposed to enhance the existing radiomics and ML-based models aiming to predict the invasiveness

of lung adenocarcinoma subsolid nodules from 3D CT scans. The proposed CAE-Transformer

framework significantly improved the performance of the previously developed models by increasing

the accuracy by 6.58%, sensitivity by 6.67%, and specificity by 6.2%. The CAE-Transformer is

also capable of capturing global inter-slice relations in a volumetric CT scan while requiring less

computational resources compared to RNN and LSTM-based frameworks.
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Chapter 6

Summary and Future Research

Directions

This chapter concludes the thesis with a list of main contributions made in this dissertation and

some proposed directions for future works.

6.1 Summary of Thesis Contributions

The research works presented in this thesis are motivated by recent advances in the design and

implementation of AI and DL-based models for image and data processing, aiming to develop

decision support and stand-alone models assisting healthcare professionals in diagnose and prognosis

of critical illnesses. Considering recent progress in development of innovative DL-based architectures,

particularly Capsule Networks, Convolutional Auto-Encoder (CAE), U-Net, and Transformers, this

thesis aimed to tackle the limitations and drawbacks of the existing solutions, focusing on two

particular tasks, i.e., COVID-19 diagnosis and Lung Cancer invasiveness prediction. In this regard,

the thesis made a number of contributions, as briefly outlined below:

(1) CT-CAPS and COVID-FACT Frameworks: Two fully automated frameworks are proposed

to automatically diagnose COVID-19 positive cases from volumetric CT scans. Both proposed

frameworks utilize Capsule Networks, as their main building block. Therefore, they are

capable of addressing the failure of the commonly used CNN architectures [47] in recognizing
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spatial relations between objects in an image and thus eliminating the need for large labeled

datasets to reach a satisfying result. The CT-CAPS deals with the development difficulties

caused by the large number of CT slices per patient and emphasizes the capability of capsules

to represent a large volumetric CT scan by a very small matrix. COVID-FACT is the extension

of the CT-CAPS framework, in which the first stage detects slices demonstrating infection

in a volumetric CT scan to be analyzed and classified in the next stage. At the second stage,

candidate slices detected at the previous stage are classified into COVID and non-COVID

cases, and a voting mechanism is applied to generate the patient-level classification scores.

COVID-FACT’s two-stage architecture has the advantage of being trained on even a weakly

labeled dataset, as errors at the first stage can be compensated at the second stage. The proposed

frameworks do not require any infection annotation or a very precise slice labeling, which is a

valuable asset due to the limited knowledge and experience of the novel COVID-19 disease.

In fact, manual infection annotation is completely removed, and the radiologist’s input is not

required in the test phase. Furthermore, the Grad-CAM localization mapping approach [41]

is incorporated into the models to determine lung regions contributing the most to the final

decision, aiming to improve the interpretability of the models. The experiments on the in-house

COVID-CT-MD dataset showed that both proposed frameworks achieved satisfactory results.

CT-CAPS achieved the accuracy of 89.8%, sensitivity of 94.5%, specificity of 83.7%, and

AUC of 0.93. COVID-FACT demonstrated a superior performance over the CT-CAPS by

achieving an accuracy of 90.82%, sensitivity of 94.55%, specificity of 86.04%, and AUC of

0.97.

(2) Robust COVID-19 Identification and SPGC-COVID Dataset: At one hand, this thesis

proposed an extension of the COVID-FACT framework, which is tailored to robustly classify

volumetric chest CT scans into one of the three target classes (COVID-19, CAP, or normal).

The proposed framework integrates a scalable enhancement approach to boost the model’s

performance and robustness in the presence of gaps between the training and test sets regarding

types of scanners, imaging protocols, and technical acquisition parameters. The proposed

framework can be generalized on varied external datasets with high flexibility to update itself
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upon receiving new external datasets. On the other hand, the thesis introduced a unique test

dataset, referred to as the SPGC-COVID dataset. This dataset contains new CT scans with sim-

ilar characteristics as the COVID-CT-MD dataset as well as noisy low-dose and ultra-low-dose

CT scans. In addition, some test CT scans were obtained from patients with a history of car-

diovascular diseases or surgeries, which can further challenge the DL-based frameworks. The

obtained results showed that while the proposed model is trained on a relatively small dataset

acquired from only one imaging center using a specific scanning protocol, it performs well on

heterogeneous test sets obtained by multiple scanners using different technical parameters. It is

also shown that the model can be updated via an unsupervised approach to cope with the data

shift between the train and test sets and enhance the robustness of the model upon receiving

new datasets from different centers. More specifically, the subset of the unlabeled test images

for which the model generated a confident prediction are extracted and used along with the

training set to update the model’s parameters. Finally, an ensemble architecture is adopted to

aggregate the predictions from multiple versions of the enhanced model. The experimental

results on the SPGC-COVID dataset demonstrated that the proposed framework performs well

on all test sets and outperforms its counterparts by achieving the overall accuracy of 96.15%,

COVID-19 sensitivity of 96.08%, CAP sensitivity of 92.86%, normal sensitivity of 98.04%,

and the AUC of 0.992.

(3) WSO-CAPS: This model is proposed to efficiently detect slices demonstrating infection from

LDCT and ULDCT. The WSO-CAPS framework is essentially an extension of the slice-level

classifiers proposed in this thesis and is equipped with a Window Setting Optimization (WSO)

mechanism to jointly identify slices with the evidence of infection and find the best window

setting parameters to resemble the radiologists’ efforts in reviewing LDCT and ULDCT. The

experimental results on the WSO dataset show that the WSO-CAPS improves the capability

of the Capsule Network and its CNN-based counterparts to identify slices demonstrating

infection. It is also shown that the performance of the slice-level classifier can be improved

by using an ensemble architecture to train multiple WSO modules in parallel and obtain

several windowing settings at the same time. Using this mechanism, the WSO-CAPS identified
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optimized (WL,WW) pairs that are best suited for the detection of slices demonstrating

infection from LDCT and ULDCT images. The experimental results demonstrated that the

WSO-CAPS outperforms the original Capsule Network-based model by improving the binary

(normal/abnormal) accuracy from 89.4% to 92.0%, sensitivity from 85.4% to 90.3%, and

specificity from 92.2% to 93.3%. The superiority of the WSO-CAPS is also demonstrated

when it is working with standard dose CT scans.

(4) CAE-Transformer: This framework is proposed to predict the invasiveness of lung adenocar-

cinomas using volumetric non-thin CT scans. The building block of the CAE-Transformer is

the novel multi-head self-attention mechanism and the transformer encoder, which is capable

of capturing global inter-slice relations. In addition, unlike current vision transformers which

consider different patches in an image as a sequence of data [44, 45], the proposed CAE-

Transformer uses a CAE to extract informative features from CT slices and stack them to form

a sequential feature map. It is also worth noting that, unlike most existing studies which rely

on the nodule patches as the model’s input, the CAE-Transformer does not require a detailed

annotation of the nodules and takes the whole CT image as the input. The only required

information from the radiologists/experts is the set of slices with the evidence of a nodule.

Experimental results on the in-house dataset of pathologically proven Sub-Solid Nodules

(SSNs) showed that the CAE-Transformer outperforms the ML-based models proposed in

Reference [40], which are developed based on histogram-based and radiomics features, by

achieving an accuracy of 87.58%, sensitivity of 86.67%, specificity of 88.0%, and AUC of

0.88, using a 10-fold cross-validation.

6.2 Future Research

(1) For the purpose of enhancing the capability of the proposed frameworks in detecting CT slices

with an evidence of abnormality, motion artifact reduction algorithms can be utilized to reduce

the undesired impacts of such artifacts on the final result.

(2) The idea of utilizing window setting optimization, described in Chapter 4, is still in its early

stages. It is hypothesized that the WSO module has a high potential to be incorporated into
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the frameworks working with other types of CT scans, particularly the frameworks with an

infection detection model in their pipeline. As a direction for future research, the WSO

module can be embedded into other DL architectures to determine its effects and validate

the aforementioned hypothesis. In addition, it is worth modifying the pipeline to detect the

optimized windowing parameters for each slice, instead of the entire cases. This could be

achieved by training a simple CNN or Capsule Network-based model focusing on finding best

parameters for each slice on the fly.

(3) Another future research direction would be the adoption of the Transformer architecture for

COVID-19 identification.

(4) Due to the nature of the datasets used in this thesis (i.e., medical images), obtaining a large

and diversified dataset from different countries and cohorts in a short time is challenging. The

diversity of the dataset can be expanded in future studies to perform more comprehensive

investigations on the generalizability of the proposed frameworks, as well as determining

the maximum level of the shift in image characteristics that can be compensated by the

unsupervised enhancement approach proposed in Chapter 4.

(5) In the case of the LUAC classification, the size and diversity of the dataset can be increased

in future studies to target the three-way SSN classification task. In addition, an ROI/slice

selection model can be embedded at the beginning of the pipeline to make the entire framework

fully automated.

(6) In the context of LUAC classification, further improvements could possibly be achieved by

extracting radiomics features from each SSN, as well as each CT slice, to be added to the CAE-

generated feature maps. In addition, GAN-based or feature augmentation-based approaches

can be used to obtain a domain invariant image representation to efficiently extract important

features, regardless of the imaging modality or acquisition settings. This can potentially

improve the performance of the proposed DL-based models in the presence of data and domain

shift in the images, similar to the models developed References [114–116].

(7) Incorporating the CNN and/or Capsule Network architectures into the transformer encoder,
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similar to the idea proposed in Reference [45], can also be a direction for future studies.

(8) Segmenting lung areas demonstrating infection or abnormality in a CT scan reveals highly

beneficial information about the location, size, shape, and distribution of the disease of interest,

which ultimately results in valuable assessments. In this regard, it is worth developing a U-net

based segmentation model, and modifying the internal layers and activation functions to jointly

segment the abnormal areas and classify them into the desired categories.
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