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Abstract 

Effects of different climate generation methods on the hygrothermal 

performance of a wood-frame wall under current and projected future climates 

Henry Lu 

Climate change will subject the built environment in Canada to unprecedented climatic 

conditions in the future, which may result in adverse effects on the durability of buildings.  

Therefore, it is vital to be able to accurately describe future climatic conditions and how 

buildings will perform under them. Hygrothermal simulation models are important tools for 

building practitioners to assess the moisture performance of wall assemblies. Hygrothermal 

simulations require a wide range of climate variables such as cloud cover, wind speed, wind 

direction, solar radiation, rainfall, snow cover, temperature, and humidity in high temporal 

frequency. Typically, recorded historical data was used for hygrothermal simulations, but they 

do not account for changes in climate excepted due to future global warming. Consequently, 

many climate data generation techniques have been developed to prepare climate data 

incorporating future projected climate change, which can be used to assess hygrothermal 

performance of buildings under current and future projected climates. The objective of this 

work is to evaluate the differences in the various future climate data generation methods and 

determine their impacts on the hygrothermal performance of a wood-frame wall assembly in 

the current and future projected climate. The analysis is performed on 6 cities, representing 

different climates across Canada and future projected climate data is prepared using morphing 

downscaling method, and two multivariate and a univariate bias correction method. Results 

indicate that morphed and bias corrected climate data perform better than RCM when 

compared to the observations. While this is generally true for the hygrothermal performance as 

well, the bias corrected data often fail to replicate the same degree of mould growth in the 

simulations with observational data. An analysis of the climate change scenario indicated that 

all the studied locations will experience warmer and wetter climatic conditions. For instance, 

the WDR deposited on the OSB in Montreal is expected to increase by at least 14%, resulting in 

increased MC and mould growth on the OSB. According to morphed climate data, the average 

MC in the OSB could increase by 54% while mould index exceeds 3.  
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1.0 Introduction 

1.1 Background 

The changes in climate along with the growing understanding of its consequences result in 

an ever-evolving area of research. These changes in climate can have adverse effects on the 

built environment, leading to an increasing interest in jointly studying climate change and 

building science. For example, [1] projects an increase in future wind-driven rain loads for many 

areas across Canada, which may lead to higher moisture damage risks. To better prepare for 

the rapidly changing climate conditions, the building practitioners will have to incorporate 

understanding of climate change and their impacts on the built environment to ensure 

sufficient durability throughout a building’s service life. 

 Understanding the transport of heat, air, and moisture (HAM) through the building 

envelope is essential for building practitioners to evaluate the building envelope performance 

and its effect on the indoor environment. Moisture deposited on the envelope may lead to 

issues such as mould growth [2] or wood decay [3]. Consequently, it is extremely important to 

be able to accurately simulate HAM through the building envelope. One or multi-dimensional 

hygrothermal models are commonly used to simulate the complex interactions between HAM 

and can consider the wall assembly in detail. The development of transient building simulation 

tools has advanced greatly in recent years with popular programs such as WUFI, DELPHIN, and 

hygIRC.  

Traditionally, climate data used to simulate and design the energy performance of 

building systems in Canada came from the Canadian Weather Energy and Engineering Datasets 
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(CWEEDS) and Canadian Weather Year for Energy Calculation (CWEC), produced by 

Environment and Climate Change Canada (ECCC). These files are provided for hundreds of 

locations across Canada which have at least 10 years of historical hourly and daily observational 

data. This set of data produced by ECCC can also be used in the hygrothermal context, given 

with a few additional variables. The use of appropriate weather data is paramount to accurately 

evaluate the hygrothermal and energy performance of buildings. For example, [4] showed that 

the resolution of the supplied wind-driven rain data can cause a loss of detail in the resulting 

hygrothermal simulations or lead to large errors depending on the situation. 

While these products are extremely useful datasets in studying current climate 

conditions, they do not account for any variability or projected trends in the future climate. For 

example, [5] found that using historical CWEEDS data from 1998-2014 to study the heating and 

cooling loads produced results that reduce the representativeness of weather data in building 

energy simulations over time as the climate changes. This will be a problem as climate change 

progresses, since these weather files are not frequently updated, and can only account for 

historical weather patterns.  

Early ventures to generate future weather data files for use in the building context, such 

as the “Morphing” method developed by [6], involves relatively simple linear combinations of 

additive or multiplicative factors depending on the climate variable. This method morphs 

existing weather files into climate change weather data by applying a statistical downscaling 

method, which uses mathematical equations to transform current weather observations by 

changes found in climate model outputs. [7] has shown the practical approaches of morphing 

weather data for climate change adaptation through building simulations. The use of the 
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morphing method has become prevalent in the context of climate change and its implications 

for buildings [8]. However, some research has pointed out issues in implementing this method. 

For instance, [9] challenges imposing the current climate variability onto future projected 

changes and suggests that using high-resolution climate model data to be sufficient to study 

climate change impacts on the built environment. Alternatively, [10] points out that the 

morphing method does not account for intervariable dependencies among the climate 

variables.  

Given the limitations associated with the Morphing method, recent studies have 

focused on generating reliable historical and future projected climate data for use in building 

simulations. For example, [11] demonstrated a method to synthesize representative future 

weather data out of regional climate models based on temperature, with result showing that 

the synthetic weather data is able to replicate hygrothermal conditions similar to the original 

Regional Climate Model (RCM) data. However, this does not address the bias that studies have 

shown that are present in climate models, which can be seen when comparing climate model 

data to historical observations [12, 13].  

Consequently, advanced bias correction methods have been developed to help mitigate 

the effects of the model bias in climate research analyses. Although countless studies have 

compared the effectiveness of various bias correction methods and climate datasets in terms of 

climatic conditions [14, 15, 16], efforts to extend that work to the building performance context 

has been limited. [17] introduces a bias correction approach to generating climate data suitable 

for hygrothermal and whole building simulations. With the results indicating a reduction in the 

bias associated with the modelled climate data.  
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Effectively simulating the hygrothermal performance of building envelopes is an 

important and crucial component in the design process. There are many ways to generate 

historical and future climate data suitable for building simulations. However, research on the 

effectiveness of these approaches is limited to individual methods. An analysis comparing 

different data generation methods in the hygrothermal context would be useful to better 

inform the selection of data processing techniques and facilitate more accurate climate impact 

assessments for the current and future climate. 

1.2 Objectives 

The goal of this research is to investigate the effects different climate data generation 

methods have on the hygrothermal performance of wall assemblies in various cities 

representing different climates across Canada. The performance is evaluated through 1-D 

hygrothermal simulations using DELPHIN spanning multiple decades, with the following 

questions in mind: 

I. Do different climate data generation methods of raw climate model data lead to 

different hygrothermal responses of a building envelope when compared to historical 

observations? How significant are these differences? And which method would lead to 

more accurate prediction of hygrothermal responses?  

II. How does pre-processing of historical and future climate model data affect the 

projected changes in hygrothermal response of the simulated wall assembly? 
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1.3 Outline 

This thesis includes five chapters. The first chapter provides an introduction for the thesis, 

and a summary of the main objectives. Chapter two contains a literature review of common 

approaches used in hygrothermal building modelling, existing climate data generation methods, 

and the effects of future projected climate change on building performance. Chapter three 

outlines the steps used in pre-processing the climate data in this work and provides a 

description of how the hygrothermal simulations are performed. Chapter four presents the 

results of the analysis, and lastly, chapter five summarizes the work done and provides a 

conclusion.  
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2.0 Literature Review 

This chapter provides a review of the utility of hygrothermal modelling and its 

applications in assessing building envelope design, followed by a review of the impacts of 

climate change in the context of building hygrothermal performance. Lastly, various methods 

currently used to generate climate data suitable for building hygrothermal and energy 

simulations will be discussed. 

2.1 Hygrothermal Modelling  

2.1.1 Overview of HAM Modelling  

The presence of moisture in wall assemblies is well known to induce damage in 

buildings, leading to a necessity among engineers to accurately quantify the potential risks 

involved. Consequently, numerical HAM models have been developed to simulate the 

hygrothermal response of wall assemblies. These simulations can be used to study the changes 

in temperature and moisture content within the building assembly to evaluate its hygrothermal 

performance. There is significant variation in the many hygrothermal models, which depend on 

their mathematical complexity. [18] showed that the complexity depends on the extent to 

which the model considers parameters such as: type of flow (transient/steady state), moisture 

transfer, quality of information, and specificity of data (weather/material properties). The state 

of hygrothermal modelling has developed even more since [19] detailed the physics of HAM 

transfer and compiled a comprehensive list of models.  

 In general, hygrothermal simulation tools require three inputs: the material properties, 

geometry, and boundary conditions. The material properties dictate how it interacts with other 



7 
 

components, which include properties such as: thermal conductivity, vapor permeability and 

diffusivity, specific heat capacity, density, sorption isotherm, suction pressure, liquid diffusivity, 

specific moisture capacity, and porosity.  The boundary conditions describe model selections, 

parameters, time limits and assigned climate conditions. Finally, the configuration of the 

assembly itself is just as important, as this is what defines the space where the simulation is to 

take place. 

 Hygrothermal simulations allow researchers to identify building envelope systems based 

on the desired performance criteria such as affordability, durability, air tightness, thermal 

performance, or energy efficiency. Compared to traditional lab tests, hygrothermal modelling is 

a quicker and reasonably accurate alternative. Studying the reliability of specific models has 

produced numerous reports. For example, [20] examined the drying and moisture content of 

OSB through experimental and simulated data using hygIRC and found relatively good 

agreement between the results. Similarly, [21] compared three hygrothermal models 1D-HAM, 

MATCH, and WUFI-2D to lab measurements of three wall types composed of different 

insulation materials and different air and vapour barriers. Despite some differences between 

the simulations and lab tests, the analysis showed that all three programs yielded comparable 

results to the measurements. Additionally, [22] showed that different hygrothermal models can 

accurately represent HAM behavior at different degrees of complexity.  

The objective of combined HAM modelling is to predict changes in moisture content and 

temperature in the building assembly as a result of the imposed initial, boundary, or ambient 

conditions. Subsequently, more specific aspects of the building’s performance can be quantified 



8 
 

by the hygrothermal performance of the wall assembly related to durability, energy, indoor air 

quality, and comfort.  

2.1.2 Moisture Performance 

[23] proposed a methodology to evaluate the moisture performance of masonry wall in 

Canada by analyzing the HAM calculations obtained through hygrothermal simulations by 

hygIRC and presents a case study focusing on a brick veneer wall assembly with a steel stud 

back-up. The performance was characterized by three hygrothermal indicators, which include 

the relative humidity/temperature index (RHT), freeze-thaw index (FTI), and moisture mass 

index (MMI), which were used to predict the potential for moisture damage. Ideally, walls 

should be allowed to dry whenever the moisture load ends, consequently, the MMI tests for 

the continuous increase of moisture mass in the wall assembly component considered.  

Similarly, the FTI is used to predict the moisture damage related to repeated freeze-

thaw cycles in the wall assembly. A larger FTI means more potential for freeze-thaw damage 

and is defined as the number of cycles when temperatures oscillate between the freezing and 

thawing point for components of the wall assembly that are almost at their saturation level. A 

study by [24] proposed a similar indicator used to evaluate the risk of freeze-thaw damage 

called the freeze-thaw damage risk index (FTDR Index). This index considers the largest 

difference between the degree of saturation of ice content in each freeze-thaw cycle, which is 

defined as the process where ice in a porous medium form and then completely disappears. 

Subsequently, [25] used the FTDR Index to assess the potential changes in the risk of freeze-

thaw damage in internally insulated masonry walls. Through calculating the FTDR Index at 
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historical and projected climate change periods, the risk of free-thaw damage is expected to 

decrease due to an increase in air temperature in this case study.   

The RHT Index is used to predict the potential moisture damage under consistent and 

long-term high moisture levels and warm temperatures, which can be the source of swelling 

and expansion, corrosion, efflorescence/subflorescence, or biochemical damages. The RHT 

index is calculated simply by multiplying the temperature and moisture potential. However, the 

potential is calculated differently considering the material and moisture damage involved. For 

instance, biochemical damage may require higher temperature and lower relative humidity 

depending on the species. [26] studied the hygrothermal response of an exterior wall assembly 

through the RHT index. The study showed that the hygrothermal response in the wall assembly 

can be assessed using the RHT Index, where higher values illustrate an increased severity of the 

hygrothermal response. They concluded that the RHT Index can be a useful tool for building 

practitioners to assess the potential risks of moisture damage in exterior walls since it can be 

used as a long-term indicator.  

The moisture content of porous material like wood-based materials can also be used as 

a performance indicator of a wall assembly [27,28]. For instance, [29] characterized the impact 

of moisture content and temperature on the hygrothermal properties of wood-based products. 

Specifically, in this study, they tested the thermal conductivity and the diffusion of water 

vapour from a steady-state test of oriented strand board (OSB), wood-fiber insulation board, 

and solid wood at different moisture contents. It was found that as the moisture content 

increases, the thermal conductivity increases with it linearly. The vapour diffusion resistance of 



10 
 

the three products were similar where solid wood and OSB were observed to be more 

impermeable to water vapour than wood fiber insulation.  

2.1.3 Biodegradation 

A study conducted by [30] examined the increasing risk of mould growth in buildings 

which can hinder the well being of its occupants. They found that a combination of humidity, 

temperature, and time are the major deciding factors that determine the potential for mould 

growth, whereas the type of material plays a lesser role if not negligible. Not all materials are as 

susceptible to mould growth as others, for each material, there is a critical moisture level after 

which growth occurs. [31] compared mould growth in laboratory tests and several realistic 

environments to characterize the critical moisture content. Consequently, when the actual 

conditions of humidity and temperature exceed the expected critical moisture level, mould 

growth in the realistic tests occurred as expected. Therefore, they concluded that despite 

simplified conditions in a lab, the results can be used to indicate mould growth within a building 

construction.  

In the past, many methods have been developed to characterize mould growth in the 

wood-based materials as [32] pointed out. However, the mathematical model developed by [2] 

has become the most prevalent in building science and is often used to evaluate mould growth 

risk in buildings. This model describes mould growth on wooden materials, where a critical RH is 

calculated at which point growth occurs, which depends on the ambient temperature and 

relative humidity. The different levels of severity summarized by the mould index is presented 

in Table 8.  
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[33] applies this mould growth model and compared the measured mould growth risk at 

a real building to that of the simulated risk through the WUFI program. An analysis was 

performed for a single year, where temperature and relative humidity data used in the 

hygrothermal simulations were measured at the site of the building. The results showed that it 

is possible to predict real mould growth risk in wood-based wall assemblies following the 

aforementioned mould growth risk model. Work done by [34] further expends this model to 

include mould growth on surfaces of other building materials such as gypsum board, spruce 

plywood, porous wood fiberboard, and cement screed on concrete. 

2.2 Climate Change  

2.2.1 Climate Predictions 

 Global and regional climate model simulations are commonly used to study the 

impacts of climate change [35, 36]. Historical temperature records show that in the last 70 

years, the annual average temperature in Canada has increased by 1.7°C, while the annual 

average precipitation increased by more than 30% [37]. Several future emissions scenarios 

were studied which limit radiative forcing from 2.6W/m2 to 8.5W/m2, termed representative 

concentration pathways (RCP) [38]. RCP8.5 is widely accepted as the business-as-usual case. 

Under this high emissions scenario, the annual average temperature across Canada is projected 

to increase by 6.3°C by the end of the century. Consequently, buildings across Canada will be 

exposed to unprecedented weather from extreme rain events, flooding, wildfires, and heat 

spells. To avoid the premature failure of buildings due to climate change, the influences of 

these changes need to be considered by building practitioners.   
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2.2.2 Impacts of Climate Change on Building Performance 

One area research has focused on, with respect to the impacts of climate change on 

building performance, is in studying the changes in heating and cooling demand of buildings 

[39, 40, 41]. For example, [42] examined changes in office energy usage across five different 

climates in China, severe cold, cold, moderate, warm, and hot, under two emissions scenarios. 

Even under the low forcing scenario, the estimated cooling demand increase was 18.5% in the 

severe cold climate, 20.4% in the cold climate, 11.4% in the moderate climate, 24.2% in the 

warm climate and 14.1% in the hot climate. On the other hand, the reduction in heating ranges 

from a low of 13.8% in the warm climate to a high of 55.7% in the moderate climate. Similarly, 

[43] investigated the impacts of climate change on the heating and cooling energy demand in 

residential buildings across five climates in Australia, varying from cold to hot humid. They 

found that climate change will have significant impacts on the energy requirements which may 

range from -26% to 101% by 2050, with the increase in cooling demand significantly 

outweighing the decrease in heating. The residential houses in a more temperate climate such 

as Sydney was found to be more sensitive to climate change and could potentially impose the 

greatest pressure on local energy grid.  

A study by [44] proposes a method to estimate the potential changes in energy use due 

to climate change by using historical measurements. After applying their methodology to a case 

study house in Montreal, they concluded that the energy used for heating would decrease by 

11%-13.1% in 2040-2069. [45] assessed the potential changes in energy usage associated with 

uncertainties in the future climate of 153 existing residential buildings in Stockholm over a 

period spanning from 1961 to 2100. The analysis considered four major uncertainties in the 
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projected climate concerning global climate models, regional climate models, emissions 

scenario, and initial conditions in the climate models. The energy performance was evaluated 

by studying the indoor temperature, and heating and cooling energy demand with reference to 

three cooling strategies: natural, natural and mechanical (hybrid mode) and only mechanical. 

Their results showed that heating demand will decrease by 30% at the end of the study period, 

compared to 2011 levels. Additionally, the heating demand varies by up to 30% between 

different climate scenarios. Differences between climate scenarios result in large variations in 

the cooling demand of up to 500%, but despite the large differences, the results do not lead to 

a significant increase of cooling demand since it is quite low in the current climate conditions.  

Research on the indoor temperature and thermal comfort naturally follows from 

studying the impacts of climate change on heating and cooling energy usage. Many studies 

have evaluated the potential effects of climate change on the indoor thermal environment [46, 

47, 48, 49, 50]. For example, [51] used projected climate change data to examine the effects of 

the most extreme climate change scenario on the future indoor? temperature change, in an 

effort to study the potential energy consumption during summertime overheating, and thermal 

comfort in residential buildings located in England. A number of passive adaptation measures 

were investigated in relation to their ability to reduce the negative impacts on comfort and 

energy consumption due to climate change. For the four different style homes that were 

studied, they found that the ability for users to control the shading in the home yielded the best 

results. Other effective measures they found include increasing the surface albedo of the 

building façade and increasing the thermal mass of the building itself. However, it was 

concluded that none of the passive measures included in this study could completely mitigate 
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the risk of overheating in English homes, especially by 2080 in the climate change scenario that 

was studied. 

Similarly, [52] studied the thermal comfort and heating and cooling energy demand 

across 15 cities and 7 climate zones in the U.S., based on 3 different emissions scenarios. 

Combining typical meteorological year datasets with the morphing method and projections 

from a global climate model, weather data was downscaled to hourly data suitable for use in 

building energy simulations. By the 2080’s, annual temperature in the 15 cities will increase by 

2.3-7°C compared to the 1960’s. Consequently, the majority of the cities will see a net increase 

in energy used for cooling by that time.  

Another area of research studies the impact of climate change on the durability of 

buildings. For instance, [53, 54, 55, 56] examined the expected durability of the built 

environment under a changing climate. [57] assessed the impact of future climates on the 

durability of typical residential wall assemblies retrofitted to the PassiveHaus standard over the 

current and projected future climate in Montreal. The durability of the assembly was 

characterized by analyzing the frost damage risk to bricks and the biodegradation of plywood 

sheathing through hygrothermal simulations using WUFI. Additionally, the moisture content, 

RHT, and mould growth index were used as performance indicators to evaluate biodegradation 

in the plywood sheathing. They concluded that by upgrading the typical wall assembly to the 

PassiveHaus standard, the frost damage risk would increase in the near future. The decay risk of 

the plywood sheathing would decrease while mould growth risk following the RHT criteria 

would increase due to climate change. 
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Climate indices can provide a concise summary of building performance [58], which can 

be easily extrapolated to include projected climate data to study the potential consequences of 

climate change in a broad manner [59]. [60] studied the potential decay of wood structures 

under projected climate change conditions in Norway. The potential decay in wood structures 

was calculated based on Scheffer’s climate index during a historical 30-year period from 1961-

1990, which allows different guidelines on protective measures to be applied depending on the 

distribution of the climate index. The results showed that climate change will lead to a higher 

risk of decay in wood frame structures. 

[61] investigated the potential effects climate change has on the wind-driven rain loads 

in Sweden, and the impacts on the hygrothermal performance on rain screens walls of common 

construction. The response of the façade was assessed under historical and future climates with 

uncertainties in the GCM, emissions scenario, and spatial resolution of the climate model in 

mind. The results showed that uncertainties in the climate can produce significant variations in 

the prediction of hygrothermal performance on the studied assembly. Overall, the risk of 

moisture related damage due to an increase in future moisture load will also increase the risk of 

moisture related damage in building facades. Similarly, [62] investigated the impact of climate 

change on the hygrothermal performance and mould growth risk in ventilated attics.  The 

historical and projected climate were obtained through a regional climate model, which also 

considered three future emissions scenarios. The results imply an increase in mould growth risk 

due to climate change as moisture problems increase in the future. Considering the different 

emissions scenarios that was examined, the different narratives do not affect the risk of mould 

growth in the attic due to the mitigating factors of other variables.  
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The increase in carbon dioxide in the atmosphere in conjunction with changes in 

temperature and relative humidity as a consequence of climate change can also cause a 

decrease in the durability of concrete by process of carbonation [63, 64, 65]. Correspondingly, 

[66] investigated the impacts of increased carbonation and chlorination of concrete buildings 

due to climate change. With results that suggest that existing concrete structures will exceed 

the recommends levels of carbonation and chlorination well within their design life, which 

could result in potentially expensive repairs.  

2.3 Climate Data Generation 

Weather data is an integral component to study the built environment through building 

simulations. As suggested by [67], ideally, weather files should be able to represent typical and 

extreme conditions. Additionally, it should be available in an appropriate temporal and spatial 

resolution to be able to accurately characterize the local conditions. And to study climate 

change, it should also illustrate future possible changes in climate. Consequently, many studies 

have focused on developing methods to generate reliable historical and future projected 

climate data for use in hygrothermal and energy simulations.    

2.3.1 Morphing 

One such approach, called the “Morphing” method, was developed by [6] with this 

exact purpose in mind. The morphing method is a statistical downscaling method which uses 

mathematical equations to transform current weather observations by changes found in 

climate model outputs. It has subsequently become widely used in this context [68, 69, 70, 71, 

72]. This method combines the current observed weather data with the average projected 
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changes in climate calculated by climate models, resulting in a set of data that accounts for 

changes in climate while retaining the characteristics of observed weather data. Therefore, 

morphing can be viewed as a downscaling method, bringing coarse resolution climate model 

data to a finer spatial and temporal resolution, suitable for use in hygrothermal simulations.  

[73] applied the morphing method on global climate model outputs to generate hourly 

weather files for future climatic conditions in Vancouver for three time periods under the 

RCP8.5 emissions scenario; the purpose of which was to support climate resilient building 

design. Weather variables such as: dry-bulb temperature, relative humidity, solar radiation, 

cloud cover, wind speed, and atmospheric pressure, necessary for energy simulations through 

EnergyPlus was adjusted. Simulations of the various time periods implies that climate change 

following RCP8.5 will have significant effects on the building energy performance and demand 

in Vancouver due to an increase in cooling and decrease in heating requirements. Similarly, [74] 

performed an analysis morphing existing EnergyPlus weather data with general circulation 

model predictions of a moderate future climate change scenario. The study showed that 

morphing the present-day weather data is an appropriate way to generate weather data to 

account for future climate change. However, in order to thoroughly assess the building 

performance, it is necessary to include several climate change scenarios. Additionally, some of 

the limitations of the morphing method were also discussed. It has been shown that weather 

files morphed with GCM predictions are likely to underestimate the effects of climate change 

when compared to those made with RCM predictions, all else being equal such as emissions 

scenario and timeframe. This effect is more pronounced for more distant timeframes. 

Consequently, morphing should be performed on RCM outputs whenever possible.  
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[75] morphed weather files for building energy simulations to evaluate the lifetime 

energy consumption of prototype buildings. The study was performed on three US cities, each 

with different climates, to exhaustively study the regional effects on long term energy usage in 

the changing climate. In general, they found that overall energy demand will increase due to 

increased cooling demand. Additionally, it was suggested that due to the large variability in 

their results arising from the different locations and climate projections, it is critical to 

understand that results obtained through a similar methodology should not be applied too 

broadly as specific modelling is needed in each case. The morphing method was used to analyze 

the hygrothermal performance of internal wall insulation under current and future climates in 

[76]. Historical weather station data was morphed by calculations with global climate model to 

perform hygrothermal simulations with DELPHIN. They found that because of climate change, 

the buildings in London will experience higher exposure to WDR in both intensity and duration. 

Hygrothermal simulations showed that in the three different internal wall insulation systems 

tested, the increased moisture loads will lead to significant gains in interstitial relative humidity. 

That combined with higher average temperatures throughout the year will yield more 

conditions favourable to mould growth.  

2.3.2 Typical Meteorological Year 

Another approach to prepare climate data is to subset the data into a typical 

meteorological year first introduced by [77] which involves a statistical analysis of the study 

period to select one typical meteorological month for each month of the year. This method has 

subsequently been used in the building energy performance field in an effort to reduce the 
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number of simulations required to accurately describe the effects of a typical climate on the 

building [78, 79, 80].  

This method has been further expanded on by [11], to synthesize typical and extreme 

datasets out of regional climate models. Due to the numerous uncertainties in climate 

modelling, there are many variables to consider for those studying the impacts of climate 

change. Consequently, to reduce the number of potential simulations required to study climate 

change in the building context, this method was developed to simplify these assessments. This 

method relies on a similar process to the typical meteorological years, producing one typical 

(typical downscaled year) and two extreme (extreme cold year and extreme warm year) 

weather datasets out of one or more regional climate models based on the dry-bulb 

temperature, with the goal of decreasing the amount of data without losing the details and 

quality of the original future climate projections. [11] applied this methodology of typical and 

extreme weather datasets to the hygrothermal simulation of a wood-frame wall. The 

conclusion in this study affirms the validity of using this synthesized weather data method in 

the context of hygrothermal simulations. The findings showed that this method helps to 

minimize the number and duration of the required simulations in studying climate change, 

while also keeping the quality of the data on a similar level to the original RCM.  

2.3.3 Bias Correction 

Despite the advances in climate modelling, accurately representing the climate system is 

still a major challenge for climate modelers as simulations are often biased compared to 

historical observations [81, 82]. This means their summary statistics such as the mean, variance, 

and extremes may differ from historical observational records. These deficiencies in the model 
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result in large uncertainties in the output which could affect the reliability of subsequent 

climate impact assessments.  

Many bias correction (BC) methods have been developed to correct for the statistical 

discrepancies in climate model simulations. The earliest proposed BC methods started by 

adjusting the univariate distribution of climate variables, which accounted for features such as 

the mean [83], variance [84], or quantiles [85]. Univariate BC methods are only designed to 

correct climate variables independently of each other. In reality, climate variables are highly 

dependent, which can lead to inappropriate intervariable dependencies in the multivariate 

setting. Failure to account for intervariable dependence can result in bias corrected outputs 

which violate physical laws and dimmish the reliability of impact studies [86]. Consequently, the 

intervariable dependence of corrected data need to be carefully considered before using in 

climate impact assessments. 

As a result, multivariate bias correction methods (MBC) have been developed to adjust 

the univariate distribution as well as the intervariable dependence of climate model outputs. 

Many MBC methods have been developed; however, they can be grouped into three main 

categories [87]. The marginal/dependence approach consists of methods that adjust the 

univariate distribution and the dependence separately. The all-in-one category includes MBC 

methods that correct the 1-dimensional features and multivariate dependencies 

simultaneously. Lastly, the successive conditional MBC methods perform corrections 

successively, based on the condition of variables that have already been corrected. This 

category has two major limitations. The order of the variable affects the quality of the 
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correction, and the correction becomes decreasingly robust as the amount of available data 

reduces at each step.  

Bias correction processes have been widely used in climatology to study climate and 

climate change. However, the use of bias correction in climate impact studies are limited, 

especially in the field of building science. [88] proposes using a bias correction approach to 

generate climate data to undertake hygrothermal and whole building simulations. In this case 

study, hourly regional climate model data suitable for building simulations were generated 

during historical and future projected periods for 11 major cities in Canada, which includes 

variables such as solar radiation, cloud cover, wind speed, wind direction, humidity, rainfall, 

temperature, and snow depth. The results demonstrated that the implemented methodology 

reduces the bias associated with the regional climate model, suggesting that the generated 

climate data is appropriate for building simulations. Subsequently, several studies have used 

this approach to generate weather data to understand the effects of climate change in the 

building context [89, 90]. 

For example, [91] applied the bias corrected climate data to study the variability in 

climate and its impacts on the hygrothermal performance of wood-stud and retrofitted 

historical masonry. They showed that by using a large ensemble of climate model data, which 

represents various plausible paths of climate change, the hygrothermal simulations yield robust 

results suitable for climate impact assessment. Whereas the use of a single member of the 

ensemble results in a loss of details related to the internal variability of the climate model. 

Similarly, [92] examined the effects of climate change on the moisture performance of tall 

wood building envelopes in 5 cities across Canada. The study involves performing 1-D 
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hygrothermal simulations through DELPHIN using a complete ensemble of regional climate 

model data for a historical and projected climate change period. Using the mould growth index 

as a performance indicator, results showed that at every location the mould growth risk will 

increase due to a rise in rainfall, but the degree to which varies from city to city.  

2.4 Summary 

Hygrothermal modelling has been an extremely useful tool for building practitioners to examine 

the performance of the wall assembly using several criteria such as: thermal performance, 

moisture performance, and biodegradation. However, until relatively recently, the focus of such 

studies has been on the hygrothermal performance of wall assemblies in the current climate. As 

climate change progresses, more and more focus has been shifted to assess the impacts of 

climate change in the built environment. To accommodate the increasing necessity of accurate 

climate change projections, a number of climate data generation methods have been 

developed to produce climate data suitable for use in studying the impacts on hygrothermal 

performance such as the morphing method. A novel idea borrowed from climate science 

involves the bias correction of raw climate model data to produce weather files applicable in 

hygrothermal simulations. Consequently, the research presented here is motivated by the need 

to understand the differences in the various data generation methods and how they may affect 

results in future projected climates in the context of hygrothermal performance of a wall 

assembly.  
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3.0 Methodology 

The general methodology used to generate climate data through bias correction or morphing 

used in hygrothermal simulations for this work is summarized in Figure 1. The set of 

observational climate data spanning a baseline period from 1998-2017 is used in conjunction 

with raw CanRCM4 data to calculate bias correction factors, which are used to bias correct raw 

CanRCM4 data in the baseline (historical) and future time periods. Subsequently, bias corrected 

data is used as inputs in DELPHIN. Morphed data follows a slightly different path before used as 

input in DELPHIN simulations. First, morphing factors are derived from the baseline and future 

periods, which are then applied to observational data, resulting in morphed climate data for 

that particular future time period, which are then inputted into DELPHIN. More details on the 

processes used to bias correct and morph climate data is presented in the following sections.  

 

Figure 1. Summary of methodology used to generate climate data for hygrothermal 

simulations 
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3.1 Selected Locations 

6 cities were selected for this work including: Vancouver, Calgary, Ottawa, Montreal, Kuujjuaq, 

and St. John’s. Their geographical locations are illustrated in Figure 2 while some of their 

climate design data such as heating degree-days, moisture index, and annual rainfall are listed 

in Table 1 as reported in the National Building Code of Canada [93]. The selected locations 

represent a diverse range of climates in Canada, from the mild but wet climate of Vancouver, to 

the cold and dry of Kuujjuaq.  

 

Figure 2. Location of cities selected for analysis  
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Table 1. Locations selected for analysis  

City Prov ID Lat Lon UTC HDD MI Rainfall 
(mm) 

Ottawa ON 6106001 45.32 -75.67 -5 4500 0.84 750 

Montreal QC 7025251 45.47 -73.74 -5 4200 0.93 830 

St.John’s NL 8403505 47.62 -52.75 -4 4800 1.41 1200 

Calgary AB 3031092 51.11 -114.02 -7 5000 0.37 325 

Vancouver BC 1108395 49.19 -123.18 -8 3100 1.93 1850 

Kuujjuaq QC 7113535 58.09 -68.42 -5 8550 0.80 280 

 

3.2 Data 

3.2.1 Climate Model Data 

Historical and projected climate data was taken from the Canadian Regional Climate 

Model version 4 (CanRCM4). The data is a product of dynamically downscaling the results of a 

Global Climate Model (GCM), Canadian Earth System Model version 2 (CanESM2), from a 

spatial resolution of approximately 2.8° to 0.44° [94, 95]. CanRCM4 was initialized from 5 

randomly selected historical members of the CanESM2 model, and selecting 10 sets of cloud 

physics parameterizations, resulting in a total of 50 realizations of simulated climate data. Out 

of these 50 realizations, 15 were archived in hourly time-steps. Since this work is only focused 

on evaluating the impact of climate data generation methods, and not on assessing uncertainty 

in future climate projections from multiple climate realizations, a single realization was chosen 

among the 15 realizations.  

The historical simulations cover a time period from 1950-2004, and the projected time 

period follows the RCP8.5 future emissions scenario, which is generally accepted as the 

business-as-usual case [96, 97, 98]. This work uses a global warming threshold approach to 
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assess the impact of warming for selected Canadian cities. This technique allows climate change 

to be studied in terms of global warming thresholds independent from specific GCM’s or RCP’s, 

which can address some uncertainties associated with climate change impact assessments [99]. 

The projected future changes in climate are calculated between a historical time period starting 

from 1991-2021, and a future time period coincident with 3.5°C of global warming. The future 

period was determined by calculating the average global temperature simulated by CanESM2 

over a 31-year window. In this case, a period ranging from 2064-2094 was identified as 

associated with 3.5°C of global warming.  

Since CanRCM4 is a gridded product, to get the model data at a particular location, the closest 

grid to the weather station where the observational data was measured is identified based on 

the given longitude and latitude. Subsequently, the necessary variables are extracted from this 

grid. The selected locations include Ottawa, Montreal, St. John’s, Calgary, Vancouver, and 

Kuujjuaq, and details of their weather stations are listed in Table 1. Three BC methods are used 

to correct hourly climate data simulated by CanRCM4, with reference to six locations 

representing several different climates across Canada. The multivariate set of climate data 

includes the total cloud cover, relative humidity, station pressure, global horizontal irradiance, 

dry bulb temperature, wind speed, wind direction, rainfall, and snow depth.  

3.2.2 Climate Observations 

Hourly observational data, from ECCC’s CWEEDS product was obtained which includes 

variables such as: global horizontal solar irradiance, relative humidity, air temperature, station 

pressure, 10m wind speed and wind direction, and snow depth. Since CWEEDS record does not 

contain detailed rainfall or cloud cover data, these variables were taken from hourly 
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observations from ECCC, where missing values were filled by using a quantile mapped version 

of hourly Climate Forecast System Reanalysis datasets [100]. Data for Ottawa, Montreal, St. 

John’s, Calgary, and Vancouver have historical data spanning from 1998-2017, while Kuujjuaq 

only has data starting from 2005 and ending in 2017. The variables and their units are listed in 

Table 2. 

Table 2. Climate variables and their units considered for bias correction and morphing  

Climate Variable Units 

Global Horizontal Irradiance kJ/m2 

Rainfall mm 

Relative Humidity % 

Wind Speed m/s 

Wind Direction Degrees clockwise from North 

Total Cloud Cover % 

Temperature  °C 

Atmospheric Pressure Pa 

Snow Depth cm 

 

3.3 Bias Correction 

3.3.1 Quantile Delta Mapping (QDM) 

The Quantile Delta Mapping method is a univariate BC method which was developed by 

[101]. This method preserves the absolute quantiles for interval variables like temperature or 

relative changes in ratio variables like precipitation. An interval scale is one where there is order 

and the difference between two values is meaningful. And a ratio variable, has all the 

properties of an interval variable, and also has a clear definition of 0.0. When the variable 

equals 0.0, there is none of that variable. QDM is similar to other univariate methods such as 

quantile delta change [102] and quantile perturbation [103] which also preserve the relative 
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changes. However, QDM preserves relative changes in all quantiles of a distribution. The QDM 

algorithm is performed in two steps. First, the future model outputs are detrended by quantile 

and bias corrected to observations by quantile mapping, then the projected relative changes in 

quantiles are superimposed on the bias corrected model outputs. A more detailed description 

of the QDM algorithm is presented:  

1) The empirical cumulative distribution is calculated for the reference (observational) 

and climate model series. 

2) The relative change in quantiles between the reference dataset and the climate 

model data is calculated for the reference time period.  

3) Quantiles of the climate model data during the reference period is then bias 

corrected by applying the relative changes calculated in step 2.  

4) The bias correction of future projected climate model data results from applying the 

relative changes found between quantiles in the historical and future time periods of 

climate modelled data. To preserve absolute changes rather than relative changes, 

this step can be applied additively as opposed to multiplicatively.  

3.3.2 Multivariate Bias Correction with N-dimensional probability density function transform 

(MBCn) 

The Multivariate Bias Correction with N-dimensional probability density function 

transform was developed by [104] and falls under the marginal/dependence category. MBCn 

allows the transfer of statistical features of one reference multivariate distribution to another. 

The univariate distributions of climate variables are first corrected with a univariate BC method. 

Any method could have been chosen for this purpose, however, QDM was chosen for the task. 
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After the univariate distributions are corrected, the intervariable dependence is iteratively 

adjusted. At each step, the climate variables are partially decorrelated by random rotations of 

the matrices, after which QDM corrections are applied before recorrelation, where the inverse 

rotation takes place. This step is repeated until the multivariate distributions between the 

reference and climate simulations converge during the calibration period. By doing so, MBCn 

allows changes in the dependence structure to follow model changes. Consequently, the 

procedure to undertake MBCn can be explained in 3 steps:  

1) The marginal distribution (distribution of each individual climate variable) is 

univariately corrected using QDM. 

2) The multivariate dependence structure (the dependence of one climate variable to 

another) is adjusted by iteratively performing a random orthogonal rotation to the 

matrix of all the climate variables in consideration.  

Correction factors calculated in step 1 are then applied to the rotated marginal 

distributions before the matrix is rotated back to its original structure.  

This step is repeated until the multivariate distribution of the corrected simulations 

matches those of the reference dataset (observations). 

3) The quantiles of each variable obtained in step 2 is replaced with those obtained 

during step 1, which will prevent the deterioration of the climate model trend due to 

the correction of the multivariate dependence structure in step 2. That is to say that 

each column obtained in step 2 are re-ordered according to the ordinal ranks of the 

corresponding column found in step 1. Where the ordinal rank is the value given a 

certain position in a sequence of numbers where no positions are equal. 
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3.3.3 Rank Resampling for Distributions and Dependences (R2D2) 

The Rank Resampling for Distributions and Dependences method was developed by 

[105] and belongs to the marginal/dependence category. R2D2 relies on a reordering technique 

called the Schaake Shuffle, which was introduced to post process temperature and 

precipitation forecasts from numerical weather prediction models [106]. The shuffling ensures 

that the rank structure of the sample dataset corresponds to the rank structure of a reference 

dataset thus allowing the multivariate dependence structure to be reconstructed. Since the 

R2D2 method belongs to the marginal/dependence category, it first performs a univariate 

correction to adjust the distribution of each climate variable. Like the previous 

marginal/dependence method MBCn, QDM is chosen for this task. Following the univariate 

correction, a reference dimension/variable can be selected for which the rank structure 

remains unchanged, thus introducing stochasticity in the bias correction. Then the intervariable 

correlation of the reference dataset is reconstructed with the constraint of preserving the 

structure of the reference dimension. The R2D2 procedure can be summarized into 5 steps: 

1) The marginal distribution (distribution of each individual climate variable) is 

univariately corrected using QDM. 

2) One “reference dimension” (physical variable) is selected for the shuffling, where 

the time sequence of the ranks of the 1-D bias corrected data is kept intact. Where 

rank is defined as the maximal number of linearly independent columns of the 

matrix of climate variables. This provides a multivariate structure to the data 

resulting from step 1.  
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3) For each time step in the corrected data from step 1, R2D2 searches for a time step 

in the reference period where the rank of the reference dimension is the same as. 

4) The time series of the “non-reference dimensions” are shuffled so that the rank 

structure of the reference dataset is reproduced in the 1-D bias corrected climate 

data resulting from step 1.  

5) Steps 2-4 are repeated until each dimension (climate variable) has been used as the 

reference dimension.  

3.3.4 Bias Correction Methodology 

The steps presented in this section to perform bias correction only apply to the QDM, 

MBCn, and R2D2 methods. BC methods can be applied to climate simulations in several 

different ways. The most common approach is to correct for the intervariable properties grid by 

grid, while ignoring the spatial correlation of neighboring grid cells. Alternatively, BC can be 

used to correct for spatial dependence, where all the grids of a particular climate variable is 

corrected independently of other variables [107, 108]. Otherwise, the spatial and intervariable 

correlation could also be corrected simultaneously, where all grids and variables are jointly 

corrected. However, in this work, only individual grids of the climate model are of interest, and 

therefore no spatial corrections were performed.  

The aforementioned BC methods are used to correct climate model simulations 

produced by CanRCM4 over the three time periods of interest, 1991-2021 (historical), 1998-

2017 (observational), and 2064-2094 (projected). The reference dataset used to train the BC 

models is the result of historical measurements at six locations across Canada, with the earliest 

measurements starting from 1998 and ending in 2017 with a caveat for the Kuujjuaq station, 
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where the measurements start from 2005. From this set of data, a subset of 10-years (2008-

2017) was taken as the reference data to train the model. Consequently, bias correction of raw 

climate model data was performed in 10-year blocks.  

To preserve seasonal trends, each month is often bias corrected separately from each 

other. There are two approaches that can be taken in this context. First, the most common 

setup is to separate each month such that data for January is only corrected with respect to 

January, February with February, and so on. The second setup involves a moving window of 

three months such that corrections for January are performed on December, January, and 

February, then corrections for February includes January, February, and March (Cannon, Sobie, 

& Murdock, 2015). This is done to alleviate some of the sampling variability which is more 

prevalent when corrections are done in smaller one-month blocks. Additionally, common 

practice is to apply a threshold of 1mm to the simulated precipitation before correction, and 

values lower than 1mm are replaced by 0mm after BC is completed. 

3.4 Morphing 

The Morphing method was introduced by [6] to produce weather data suitable for use 

in hygrothermal building simulations that would account for future changes in climate. Ideally, 

the Morphing procedure would yield a time series of weather data that encapsulates the 

average projected changes in climate in future conditions, while preserving the climate patterns 

from observations. A shift (1) or stretch (2) factor is calculated by evaluating the difference 

between the future and present monthly mean in the model data on a month-to-month basis, 

and the factor is then applied to the observational climate data. Depending on the variable, 
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either a shift (3), stretch (4), or a combination of both factors (5) is applied to the observational 

data.  

 ∆𝑥𝑚 = 〈𝑥𝑓𝑢𝑡𝑢𝑟𝑒〉𝑚 − 〈𝑥𝑝𝑟𝑒𝑠𝑒𝑛𝑡〉𝑚  

Where: 

• 〈𝑥𝑓𝑢𝑡𝑢𝑟𝑒〉𝑚 is the monthly mean of future modelled data 

• 〈𝑥𝑝𝑟𝑒𝑠𝑒𝑛𝑡〉𝑚 is the monthly mean of present modelled data 

(1) 

 

 
𝑎𝑚 =

〈𝑥𝑓𝑢𝑡𝑢𝑟𝑒〉𝑚

〈𝑥𝑝𝑟𝑒𝑠𝑒𝑛𝑡〉𝑚 
 

(2) 

 

 𝑥 = 𝑥0 + ∆𝑥𝑚 
Where:  

• 𝑥 is the future monthly weather variable 

• 𝑥0 is the monthly observed weather variable 

• ∆𝑥𝑚 is the shift factor, estimated absolute change in the monthly mean 
value of the variable for month (m) 
 

 

(3) 

 𝑥 = 𝑎𝑚𝑥0 
Where: 

• 𝑎𝑚 is the stretch factor, predicted fractional change in the monthly 
mean value of the variable for month (m) 

(4) 

 

 𝑥 = 𝑥0 + ∆𝑥𝑚 + 𝑎𝑚(𝑥0 − 〈𝑥0〉𝑚) (5) 

 

Originally, [6] developed the Morphing method intended for use in correcting climate 

data in one-month blocks, such that the factors applied on January are only calculated using 

modelled data in January. But [73] has experimented with the Morphing method on a daily 

time scale rather than monthly. For this study, to be consistent with the bias correction 

methods, the 3-monthly mean is calculated such that factors applied on January include taking 
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the average over December, January, and February. This 3-month moving window is applied to 

each subsequent month, centered around the desired corrected month. The baseline 

observational data was chosen as the “present” data, during the 2008-2017 since data is 

available during this period at all locations. Correspondingly, factors are then calculated 

between 10-year segments of the projected (e.g. 2064-2074) and the baseline period (i.e. 2008-

2017) in the raw RCM data. After which, the stretch or shift factor is applied to the present-day 

observational data, following the methods outlined in Table 3, to arrive at the Morphing 

corrected projected climate. 

Table 3. Methodology to generate climate variables through morphing 

Variable Method 

Total Cloud Cover Stretch 

Wind Speed Stretch 

Wind Direction Shift 

Global Horizontal Irradiance Stretch 

Rain Stretch 

Relative Humidity  Stretch 

Temperature  Combination of Shift and Stretch 

Atmospheric Pressure Shift 

Snow Depth Stretch 

 

3.5 Hygrothermal Simulation 

1-D hygrothermal simulations were performed using DELPHIN v5.9. Considering 3 time 

periods, 6 locations, and 6 different climate datasets, a total of 96 simulations were performed; 

a summary of which is described in Table 4. The same brick veneer wall assembly was used for 

each location and wall orientation. The materials and thickness of the assembly are 

summarized in Table 5 and a cross section of the wall assembly is illustrated in Figure 3. 
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Similarly a list of initial/boundary conditions can be found in Table 6. Water penetration in the 

wall assembly was assumed to be 1% of the wind-driven rain deposited on the exterior of the 

OSB sheathing.  

Table 4. Summary of all DELPHIN simulation scenarios   

(O-Observational period 1998-2017, H-Historical 1991-2021, F-Future 2064-2094) 

Location Obs  RCM MBCn  QDM  R2D2  Morph 

Ottawa O O,H,F O,H,F O,H,F O,H,F O,H,F 

Montreal O O,H,F O,H,F O,H,F O,H,F O,H,F 

St.John’s O O,H,F O,H,F O,H,F O,H,F O,H,F 

Calgary O O,H,F O,H,F O,H,F O,H,F O,H,F 

Vancouver O O,H,F O,H,F O,H,F O,H,F O,H,F 

Kuujjuaq  O (2005-
2017) 

O,H,F O,H,F O,H,F O,H,F O,H,F 

 

 

Figure 3. Cross section of brick veneer wall assembly  
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Table 5. Wall assembly materials and thickness 

Materials Thickness(mm) 

Brick 90 

Air gap 25 

30-minute Paper 0.22 

OSB SHEATHING 11 

Low density glass fiber batt insulation 140 

V.B. polyethylene sheet 0.15 

Gypsum+Primer+Latex 12.7 

 

Table 6. Hygrothermal simulation – initial and boundary conditions 

Setting Value 

Air cavity ACH 10/h 

Indoor RH 50% 

Indoor temperature 21°C 

Initial temperature  21°C 

Initial RH  50% 
 

The orientation of the wall assembly for each location was determined by calculating 

the total amount of WDR during the period for which observational data was available and 

choosing the orientation with the largest amount. The amount of WDR was calculated following 

the ASHRAE model [109], which is given by (6). The chosen orientation (i.e. max WDR) for each 

location is presented in Table 7. 

 𝑅𝑤𝑑𝑟 = 𝐹𝐸 × 𝐹𝑑 × 𝐹𝐿 × 𝑈10 × cos 𝜃 × Rh 
Where:  

• 𝐹𝐸 is the rain exposure factor 

• 𝐹𝐷 is the rain deposition factor 

• 𝐹𝐿 is an empirical constant (0.2) 

• 𝑈10 is the hourly mean wind velocity at 10m 

• 𝜃 is the angle between the normal of the wall and the wind direction 

• 𝑅ℎis the rain intensity on the horizontal surface 

(6) 
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Table 7. Wall orientation used in hygrothermal simulations for considered locations  

Location Orientation (Clockwise from 0°N) 

Ottawa 270° 

Montreal 247.5° 

St. John’s 247.5° 

Calgary 337.5° 

Vancouver 112.5° 

Kuujjuaq 292.5° 

 

3.6 Analysis Performed 

While the various climate data generation methods were performed on all climate 

variables that are necessary for hygrothermal simulations, the most influential variables for a 

given wall orientation are usually the horizontal rainfall, relative humidity, temperature, wind 

speed, wind direction, and solar radiation. In the case of the univariate processing methods, 

QDM and morphing, each variable is corrected independently of each other. Naturally, under 

the MBC methods, all variables are corrected together. Additionally, the DELPHIN simulated 

hygrothermal response to these different climate datasets are evaluated against simulations 

performed with the observed data. Subsequently, comparisons in moisture content, mould 

index, relative humidity, and temperature are made measured on exterior side of the OSB.  

The mould growth model on wooden materials developed by [2] is used to evaluate the 

mould growth risk in this work, and as a basis to compare the accuracy of the various climate 

data generation methods. This model calculates the critical RH relative to the temperature 

shown in equation (7). The mould growth potential defined in (8) indicates favourable 

conditions for mould growth, which occurs when m is greater than 1. When conditions are 

favourable, the mould growth index is described by (9). When a component is exposed to 
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prolonged favourable mould conditions, the risk of mould growth will likely increase. However, 

under unfavourable conditions, mould growth will slow down, which can be characterize by 

(10). The mould index ranges from 0-6, where 0 represents no growth and 6 for heavy growth 

covering 100% of the surface. Further details on the levels of mould growth are summarized in 

Table 8.  

 
𝑅𝐻𝑐𝑟𝑖𝑡 = {

−0.00267𝑇3 + 0.161𝑇2 − 3.13𝑇 + 100, 𝑤ℎ𝑒𝑛  𝑇 ≤  20
 80%                            , 𝑤ℎ𝑒𝑛  𝑇 > 20

 
(7) 

 

 
𝑚 =

𝑅𝐻

𝑅𝐻𝑐𝑟𝑖𝑡
 

(8) 

 

 𝑑𝑀

𝑑𝑡
=

𝑘1𝑘2

7𝑒−0.68𝑙𝑛𝑇−13.9𝑙𝑛𝑅𝐻+0.14𝑊−0.33𝑆𝑄+66.02
 

(9) 

 

 𝑑𝑀

𝑑𝑡
= {

−0.032, 𝑤ℎ𝑒𝑛  𝑡 − 𝑡1 ≤ 6ℎ
 0, 𝑤ℎ𝑒𝑛 6ℎ ≤ 𝑡 − 𝑡1 ≤ 24ℎ

−0.016, 𝑤ℎ𝑒𝑛 𝑡 − 𝑡1 > 24ℎ
 

(10) 

 

Table 8. Mould Index Scale [2] 

Mould Index Growth Rate 

0 No growth 

1 Some growth detected only with microscopy 

2 Moderate growth detected with microscopy 
(coverage more than 10%) 

3 Some growth detected visually 

4 Visually detected coverage more than 10% 

5 Visually detected coverage more than 50% 

6 Visually detected coverage 100% 
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4.0 Results and Analysis 

This section is divided into 6 sub-sections, which presents the climatic and hygrothermal 

results for each location. These sections are further subdivided into validation and climate 

change periods for analysis.  In the validation sections, the ability of the presented BC methods 

to reproduce realistic climate conditions are assessed by comparing the results to the 

observational dataset during the 1998-2017 period (2005-2017 for Kuujjuaq).  In the climate 

change sections, two 31-year time periods are compared in the context of global warming 

commensurate with an increase in global temperatures of 3.5°C. The differences in climate and 

its effect on the hygrothermal performance of the wall assembly is analyzed using the same 

parameters as in the validation section. The historical period ranges from 1991-2021, while the 

future projected period starts from 2064 and ending in 2094.  
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4.1 Ottawa 

4.1.1 Baseline Validation Period 

 

Figure 4. Ottawa annual total horizontal rainfall (a), and average wind speed (b), relative 

humidity (c), and temperature (d) during the observational period ( 1998-2017) 
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Figure 5. Ottawa annual average diffuse horizontal irradiance (a), direct normal 

irradiance (b),  total wind-driven rain (c) on the wall assembly , and global horizontal 

irradiance (d) (1998-2017)  

A boxplot of the annual total horizontal rainfall in Ottawa during the observational 

period (1998-2017) is shown in Figure 4a. The boxplot shows the minimum (Q1 – 1.5*IQR), the 

25th percentile (Q1), the median, the 75th percentile (Q3), the maximum (Q3 + 1.5*IQR) and the 

outliers (circles), where IQR is the interquartile range. The figure indicates that during this 

period, the median annual total rainfall Ottawa received was 713.3mm, according to the 
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observations. On the other hand, the raw RCM data predicts a relatively higher median annual 

rainfall of 899mm. The morphing and BC methods show that they are able to correct the 

overprediction of rainfall from the RCM, with a median ranging from 680mm by the Morphing 

method, to 770mm by R2D2. 

A similar boxplot of the annual average hourly wind speed is presented in Figure 4b. The 

observations indicate that there was a large variance in the annual average wind speed in 

Ottawa during this period, with a median of 3.8m/s. The raw RCM predicts a lower median 

wind speed at 3.6m/s, and with a much smaller variance year to year. The bias corrected 

datasets marginally overestimate the wind speed, each with a median of approximately 4.0m/s.  

Figure 4c and d show boxplots of the annual average relatively humidity and 

temperature during the observational period in Ottawa. According to the observations, the 

median relative humidity and temperature is 71.9% and 7.1°C, respectively. In both cases, the 

RCM overestimates the median value compared to the observational data. The bias correction 

of relative humidity is well done by all the methods as they estimate a median of around 73%. 

The performance of the methods to correct for temperature are not as good. Even though the 

bias corrected datasets perform much better than the raw RCM, the corrected temperature 

predicts a lower median and has a much larger variability with lower lows and higher highs than 

the observations.  

The solar irradiance variables have a more nuanced distribution compared to the other 

climate variables since it highly depends on the diurnal cycle, which the MBC methods do not 

account for when the time series gets shuffled during the bias correction procedure. 
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Consequently, to reproduce a more realistic distribution, the bias corrected values resulting 

from multivariate methods are replaced with the time series generated by QDM, which does 

not distort the diurnal cycle because the time series do not get shuffled at all. Figure 5a, b, and 

d show the annual average diffuse horizontal (DHI), direct normal irradiance (DNI), and global 

horizontal irradiance (GHI) in Ottawa during the observational period. In both cases, the QDM, 

MBCn, and R2D2 datasets are identical since the solar irradiance data from QDM is used. It is 

evident in Figure 5d that morphing and bias correcting raw RCM data yields significant 

improvements to the GHI, where RCM has a median of over 1100Kj/m2 compared to the 

observed 556Kj/m2. After splitting the GHI into components of DHI and DNI, the median hourly 

DHI is calculated to be 66Kj/m2 while the RCM predicts a median of 70Kj/m2. The Morphing and 

QDM correction methods both overestimate this, yielding a median of 74Kj/m2. Similarly, the 

RCM also overestimates the median DNI at 167Kj/m2, compared to the observed median of 

80Kj/m2.  

The total annual wind-driven rain on the wall assembly in Ottawa facing 270° is also 

illustrated in Figure 5c. The most accurate dataset in this case is presented by the Morphing 

method with a median of 0.0318Kg/m2 compared to the observed 0.0317Kg/m2, with a very 

similar spread as well. This is likely due to the nature of how the Morphing correction 

procedure is performed since the changes are applied to the observational dataset, as opposed 

to the RCM data by other bias correction methods. The RCM slightly underpredicts the total 

WDR, with a median of 0.0278Kg/m2. The performance of QDM, MBCn, and R2D2 are quite 

varied, with medians of 0.0188Kg/m2, 0.0256Kg/m2, and 0.0375Kg/m2, respectively.  
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The results of the bias corrected climate data indicate that an improvement is made 

from the raw RCM data, although the degree of success varies depending on the chosen 

method and climate variable. Generally, the raw RCM data compares the worst against the 

observations; while the bias corrected data adequately corrects for biases in the RCM, which 

result in better agreement with the observed data. The morphing method does not perform as 

well as the bias corrected data in some respects, such as in the calculation of wind speed and 

temperature, which were either over or underestimated. 

 

Figure 6. Ottawa annual average: moisture content (a), relative humidity (b), temperature 

(c), and maximum mould index (d) on the exterior of the OSB sheathing  (1998-2017) 
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Figure 7. Ottawa daily average mould index on the exterior of OSB sheathing ( 1998-2017) 

The effects of using different climate datasets on the hygrothermal response as 

simulated by Delphin is compared in Figure 6. The results show the annual average 

temperature and relative humidity, and maximum mould index on the exterior of the OSB 

sheathing. The moisture content (MC) of the entire OSB as a percentage of the mass is also 

presented in this figure. The annual average MC of the OSB varied greatly during the 1998-2017 

period according to the observational data, with a minimum of 7.7%, median of 11.2%, and 

maximum of 14.9%. The hygrothermal simulations with the RCM data yielded quite different 

results, which greatly underestimates the MC present in the OSB, with a median of 8.9% and 
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maximum of only 9.3%. This is likely because the RCM’s air temperature and global horizontal 

irradiance is significantly inflated compared to the observed climate, leading to a relatively drier 

OSB. The morphing method yields a relatively higher MC at a median of 15.4%. The 

overestimation in this case is due to the larger amount of annual WDR on the assembly. For 

similar reasons, the MC simulated from QDM, MBCn, and R2D2 closely follow the WDR trends 

presented in Figure 5 as well.  

The median annual relative humidity simulated using the observational dataset is 79.5% 

with a minimum of 59.1% is shown in Figure 6c. In comparison, the RCM has a median of 66.9% 

across these 20 years. Despite the near identical performance of the bias correction methods to 

reproduce the outdoor RH, the corrected datasets achieved varying degrees of success at 

simulating the RH at the OSB sheathing in the wall assembly. The Morphing method has the 

most accurate median at 81.9%. Meanwhile, the QDM method mimics the RCM’s performance, 

with a median of 66.8%. Multivariate methods perform marginally better than the univariate 

QDM method with medians of 72.4% and 75.9% for MBCn and R2D2, respectively.  

Observational data indicates an annual average median temperature of 9.5°C on the 

outer layer of the OSB sheathing in Figure 6d. The RCM significantly overestimates this median 

by 4.3°C at a median of 13.9°C, which can be attributed to a lesser overestimation of the 

outdoor air temperature. However, after bias correction by QDM, MBCn, and R2D2, the results 

yield a more accurate performance as compared to the observed data, bringing down the 

median temperature on the OSB to within approximately 1°C of the observed dataset. For the 

same reason, the Morphing method underpredicts the temperature at the OSB, with an annual 

median value of 8.5°C.  
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An analysis of the mould index (MI) is presented in Figure 6b and Figure 7. Figure 6b 

shows the annual maximum mould index, whereas Figure 7 illustrates the daily average value 

over the entire simulation period from 1998-2017. It is immediately clear that there is a large 

variation in the mould index between different datasets.  The observational data indicates that 

significant mould growth begins approximately 6 years into the simulation, and continuously 

experiences favourable mould conditions over the study period peaking at a value of 2.7 at the 

end of the simulation. The RCM and QDM simulations yielded a completely different result than 

the observations, showing that there is little to no mould growth at all throughout the entire 

period. Similarly, the MBCn and R2D2 simulations do not indicate any significant mould growth 

for most of the time with a couple minor exceptions which subsequently decrease afterwards. 

The Morphing method exhibits the most similar behaviour to the observed data; however, the 

mould growth begins much earlier on in the simulation, starting around 3 years in. The mould 

growth is strongly driven by the moisture conditions on the OSB sheathing. Certainly, the 

amount of WDR estimated by the Morphing method is larger than the other datasets, however, 

another crucial variable to consider is the persistence of moisture, and how long it lingers 

before other climatic factors dry it. In this regard, the Morphing method would yield the most 

comparable results to the observed data since the corrections are applied to the observational 

data to yield the corrected climate dataset.  

 The hygrothermal results varied much more between datasets than the climate 

variables did, but the accuracy of the climate data was indicative of the hygrothermal 

performance. The other datasets, Morph, QDM, MBCn, and R2D2 present reasonably accurate 

results for the MC, RH, and temperature of the OSB. However, for a more complex variable 
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such as the mould growth index, which takes into consideration many different climatic 

conditions, there is varying degrees of success in the correction of climate data. Most notably, 

QDM, MBCn, and R2D2 fail to replicate the same degree of mould growth present in the 

simulation with observational data. However, the morphing method is somewhat able to 

reproduce the mould growth in the simulation. The relative success of the morphing method 

during the validation period is strongly associated with the fact that RCM data used to calculate 

the morphing shift/stretch factors are very close to the observed data in time. Therefore, the 

calculated factors applied to the observational dataset would only introduce minute changes to 

the underlying data. 
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4.1.2 Projected Future Period 

 

Figure 8. Ottawa boxplots of annual total rain (a), and average wind speed (b), relative 

humidity (c), and temperature (d), over a baseline historical period from 1991 -2021 

(black) and a future projected period from 2064 -2094 (blue) 
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Figure 9. Ottawa boxplots of annual average DHI (a), DNI (b), and WDR (c) over a 

historical (1991-2021) and future (2064-2094) period 

Figure 8a shows the annual total rainfall in 1991-2021 (black) and 2064-2094 (blue). 

Keeping in mind that the RCM tends to overestimate the amount of rainfall in Ottawa; during 

the historical period, the RCM predicted a median annual total of 898mm, while the projected 

rainfall is forecast to increase by 19.4% to 1073mm. In general, bias correction reduces the 

absolute amount of annual rainfall; however, the relative difference between the two periods is 

similar, only varying slightly among datasets. For example, Morphing calculates an increase of 
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18.5% in rainfall, QDM predicts an increase of 17.7%, 15% is expected by MBCn, and 21.4% by 

R2D2. 

A similar comparison of the wind speed is presented in Figure 8b. The raw RCM climate 

data predicts a median windspeed of 3.6m/s for the 1991-2021 period. Following results from 

the observational period, it is expected that the RCM generally underestimates wind speed 

while bias correction tends to bring up the median. All the bias corrected datasets expect a 

higher wind speed for this period, with a median of approximately 4.0m/s. Future wind speed in 

Ottawa is projected to decrease marginally by 1.8% to 3.5/s according to the RCM data. All the 

bias corrected datasets also follow a similar trend, where the projected wind speed decrease by 

approximately 2%.  

During the historical period, the median annual relatively humidity is 79% according to 

the RCM and increasing to 81.4% in the future. Each bias correction method consistently lowers 

that median to approximately 73%, however, the values of R2D2 does not vary as much as the 

other methods. The resulting boxplots are shown in Figure 8c. Overall, future relative humidity 

will not increase significantly, with the largest relative change at 3.3% from R2D2, and a low of 

1.9% predicted by QDM. 

Figure 8d shows the annual average temperatures during the historical and future time 

period. The median annual average temperature during the historical period is 8.5°C. Based on 

results seen in the observational period, the results from RCM tend to overestimate the 

temperature. Consequently, the bias correction reduces the median to 5.9°C, 6.6°C, 6.8°C, and 

6.6°C, presented in order of Morph, QDM, MBCn, R2D2, during the historical period. Following 
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a global warming scenario of 3.5°C, the median annual temperature in the future is significantly 

higher than its historical counterpart at 13.5°C, according to the raw RCM. Estimates of the 

future temperature from bias corrected data is equally extreme, if not more so. The Morphing 

method reports a median of 10.8°C, while the other methods show a median of approximately 

11.9°C. 

Figure 9a and 6b compares the historical and future DHI and DNI. As in the 

observational period, the solar irradiance variables generated by QDM are used in place of 

values calculated using the MBCn or R2D2 method as they do not preserve the diurnal cycle. 

According to the RCM, the median DHI does not change by much between the two periods, 

with a value of 70Kj/m2. Due to the extremely small change present in the RCM, the DHI 

calculated by Morphing remains virtually the same. In both time periods, the median DHI is 

74Kj/m2. On the contrary, according to QDM, the DHI is expected to increase from a median of 

74Kj/m2 to 75Kj/m2. Considering that the RCM exaggerates the average DNI, the results are 

relatively consistent between the Morphing and QDM methods which bring down the median 

value. With a historical median of 78Kj/m2 and 85Kj/m2, and 76Kj/m2 and 80Kj/m2 during the 

projected period, respectively.  

Each dataset consistently predicts an increase in the annual total WDR. A median of 

0.0271Kg/m2 is calculated from the historical RCM data and increasing by 28.5% to 

0.0352Kg/m2. Other datasets experience a similar change to vary degrees, ranging from 14.8% 

(Morph) to 36.2% (QDM). The changes are a close reflection of the surge in projected total 

annual rainfall, and the relatively minor decrease in wind speed. 
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Figure 10. Ottawa annual moisture content (a), relative humidity (c), temperature (d), 

and maximum mould index (b) of the OSB sheathing of the wall assembly, for a historical 

(1991-2021) and future (2064-2094) period 

A comparison of various aspects of the hygrothermal performance of the wall assembly 

in Ottawa is presented in Figure 10. The differences in moisture content between the historical 

and future period, as a percentage of mass of the OSB, is presented in Figure 10a. The 

simulated hygrothermal response from the RCM, QDM, MBCn, and R2D2 indicate small relative 

increases in the moisture content between the two time periods. Importantly, the MC from 
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these datasets do not exceed the critical threshold of 16% in either scenario. Despite higher 

temperatures due to global warming and thus increased drying potential, the morphing method 

is estimated to increase, with a historical median of 14.7% and projected median of 25.1%. The 

increase can largely be attributed to the simultaneous increase in RH and annual total WDR 

during this period, as these factors would dampen the drying effects of solar irradiance and 

temperature on the OSB sheathing.  

In general, conditions favourable to mould growth will become more common in the 

future; according to the results comparing the mould index on the OSB in Figure 10b. In the 

case of the RCM and QDM data, the mould index remains relatively low despite extreme 

increases in the median. In the most extreme case, the historical R2D2 data estimates a median 

mould index of 0.002 while the median future projected mould index is 0.92. However, it is 

important to note that the MI calculated from QDM, MBCn, and R2D2 does not exceed the 

critical value of 3.0 in either period. The MI is closely tied to the moisture content as the more 

moisture there is in the OSB, the better the conditions are for mould growth. For this reason, it 

is no surprised that the Morphing method predicts the most mould growth in either time 

period. For the same reason, the MI calculated from the other bias correction methods will 

increase to a lesser extent. These changes indicate that the climate in Ottawa will become 

wetter for longer durations, which gives the OSB sheathing less time to dry. This in combination 

with warmer temperatures will result in more favourable mould growth conditions.    

In Figure 10c, the simulated relative humidity for the historical and future time period 

on the exterior side of the OSB sheathing is illustrated in boxplots. The historical median annual 

average relative humidity according to the RCM is 66.8%, while projected relative humidity is 
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expected to increase to 70.8%. The QDM data predicts nearly the same values to the RCM in 

both time periods, while the trend presented in MBCn and R2D2 are comparable to the RCM if 

starting from a higher baseline. Indeed, that should be expected as the RCM underpredicted 

the RH on the OSB during the validation period. The Morphing method exhibits the most 

difference between the datasets and time periods as it predicts a historical median RH of 81.6% 

and has the largest relative increase of 10.1%.  

A similar analysis is performed for the temperature on the exterior of the OSB, the 

results of which are illustrated in Figure 10d. Generally, the trend in temperature is foreseeable 

as the climate data already indicated an increase in the median temperature which would be 

strongly correlated to the temperature on the OSB. The simulation with RCM data shows that 

the median annual average temperature is expected to increase from 13.9°C to 18.3°C. Similar 

trends can be found in the QDM, MBCn, and R2D2 datasets, with a baseline historical median 

temperature of approximately 10°C, and projected increases up to 15°C. During the validation 

period, the RCM overestimated the temperature on the OSB, while the Morphing method 

slightly underperforms compared to the other methods. That is also true in this case, where the 

Morphed dataset corrected the historical median annual temperature to 8.6°C and increases to 

12.6°C in the future. 
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4.2 Montreal 

4.2.1 Baseline Validation Period 

 

Figure 11. Montreal annual total horizontal rainfall (a), and average wind speed (b), 

relative humidity (c), and temperature (d) during the observational period (1998 -2017) 
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Figure 12. Vancouver annual average DHI (a), DNI (b), total WDR (c) on the wall assembly, 

and DHI (d) (1998-2017)  

 The annual total rainfall, average wind speed, relative humidity, and temperature in 

Montreal during the observational period is analyzed in Figure 11. Similar to the previous 

results for Ottawa, Figure 11a shows the RCM overpredicting the amount of rainfall (972mm) 

during this period as compared to the observed median of 694mm. Consequently, the 

corrected datasets lower the estimated rainfall to around 800mm, improving on the raw 

climate model data. The average wind speed shown in Figure 11b yields relatively good 
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agreement in the median wind speed at approximately 4.4m/s across all datasets. However, 

some datasets report greater variability than others in this 20-year period. Similarly, the 

average temperature presented in Figure 11d show an observed median of 7.8°C, with a slight 

overestimation by the RCM at 8.8°C. The QDM, MBCn, and R2D2 datasets yield nearly identical 

medians at approximately 7.5°C, and the Morphing at an even lower 6.8°C. The resulting 

relative humidity poses a divergent case between datasets, where the RCM significantly 

overpredicts the RH, with a median of 80% compared to the others which vary only slightly 

around 69%.  

Figure 12d shows significant improvement in estimated GHI in the corrected data, 

where raw RCM data overestimates the average GHI with a median value of over 1100Kj/m2 

compared to the observed 553Kj/m2. Figure 12a and b shows the result of splitting GHI into DHI 

and DNI in Montreal during the observational time period. In both cases, the QDM, MBCn, and 

R2D2 datasets are identical since the values from QDM were used. The DHI is overestimated by 

morphed and QDM datasets when compared to the observations, which has a median of 

67Kj/m2, while the RCM has a median of 71Kj/m2, and 74Kj/m2 for Morph and QDM. 

Alternatively, the DNI is overestimated by the RCM with a median of 168Kj/m2, while all the 

other datasets have a median closer to 80Kj/m2. Finally, the total WDR during this period is 

presented in Figure 12c, where quite a bit of variation can be seen between the datasets. The 

RCM, Morph, and R2D2 datasets expect large amounts of WDR deposited on the exterior of the 

OSB sheathing at medians of 0.0432Kg/m2, 0.0476Kg/m2, and 0.0462Kg/m2, respectively. 

Compared to that of the observations which indicate 0.0398Kg/m2. While the QDM and MBCn 

data predicts significantly lower amounts with median annual averages of 0.0298Kg/m2 and 
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0.0286Kg/m2. Despite the relatively similar climatic conditions, the fluctuations in the WDR can 

be attributed to the shuffling of the time series that MBCn and R2D2 perform during the bias 

correction process, which creates a different alignment of rainfall, windspeed, and wind 

direction, and therefore changes the resultant total WDR deposited on the exterior of the OSB 

sheathing.  

 

Figure 13. Montreal annual average: moisture content (a), relative humidity (b), 

temperature (c), and maximum mould index (d) on the exterior of the OSB sheathing 

(1998-2017) 
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Figure 14. Montreal daily average mould index on the exterior of OSB sheathing (1998-

2017) 

The results of the hygrothermal simulations using climate data presented in Figure 11 

and Figure 12 are illustrated in Figure 13, where the average MC, MI, RH, and temperature are 

shown. The moisture content as a percent mass of the OSB is analyzed in Figure 13a. The 

simulations using morphed data results in the highest average moisture content in the OSB, 

with a median MC of 14.1% compared to the observed 11.7%. This is expected since the MC is 

directly influenced by the amount of deposited WDR, and morphed data forecasts 

comparatively higher WDR than the other datasets. Similarly, the QDM and MBCn methods 
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predict relatively lower WDR, and thus also have relatively lower MC at around 9%. The total 

WDR calculated from RCM and R2D2 compared similarly, consequently they also have a similar 

median MC of 10%. The median RH on the OSB simulated using observational data is 79.6% 

shown in Figure 13c. Despite the relatively similar values for the climatic RH in Figure 12c, the 

simulated RH on the OSB results in large variations between datasets. For instance, the relative 

humidity obtained through morphed data yield a higher median at 81.3%. On the other hand, 

the QDM, MBCn, and R2D2 datasets also underestimate the RH on the OSB. Additionally, the 

RCM predicts a surprisingly lower RH with a median of 76.4%. On the other hand, RCM data 

overestimates the temperature on the OSB, calculating an annual average median temperature 

near 14°C in Figure 13d. However, after correction, the data yields more accurate results, with 

medians of around 11°C, compared to the observed value of 10°C. 

An analysis of the MI on the OSB in Montreal is presented in Figure 13b and Figure 14, 

showing the annual maximum MI and the daily average value, respectively. There is much 

variation in the MI between different datasets. The observed and morphed data exhibit a 

similar trajectory which indicates significant mould growth beginning around 6 years into the 

simulation and peaks at the end of the simulation at a value of 2.4 and 1.9, respectively. In both 

these cases, there are periods of decline, but it eventually increases again. However, mould 

growth begins earlier according to the RCM, starting around 3 years into the simulation, with a 

peak value of 1.8, and decaying towards the end of the simulation. Contrastingly, simulated 

mould growth using the bias corrected data resulted in little to no mould growth for large parts 

of the simulation, with a few minor exceptions, but these subsequently decrease afterwards for 

the duration of the study period. Despite the similarities seen in the climate in Figure 11 and 
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Figure 12, the mould growth simulated by observed, RCM, and morphed data can be largely 

attributed to the significantly wetter conditions in terms of higher RH and moisture loading, 

resulting in longer periods where favourable mould growth conditions occur, compared to the 

bias corrected datasets such as QDM, MBCn, or R2D2. Morphed data appears to be the most 

accurate when calculating the mould index because the temporal variability of the climatic 

parameters is identical to that found in the observation data since the correction factors are 

applied to the observed data.  

The results of the climate data processing techniques showed that some improvement 

was made to the raw RCM data in terms of their means, although the degree to which depends 

on the method and variable. For example, significant improvements were made to the annual 

total rainfall, RH, and DNI, whereas wind speed and WDR was already in reasonably good 

agreement with the observations. However, in the context of hygrothermal simulations, bias 

corrected data had varied results. For instance, there was not much agreement even among the 

simpler parameters such as RH and temperature on the OSB. For a more complex parameter 

such as the mould index, only morphed climate data was able to replicate the temporal 

variability of the observed data, resulting in the most accurate simulation, outperforming the 

RCM, which eventually diverges from the observations. Due to the nature of the morphing 

process, it’s no surprise that morphed data performs the best in this context, which more 

accurately simulates the persistence of moisture conditions on the OSB.  
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4.2.2 Projected Future Period 

 

Figure 15. Montreal boxplots of annual total rain (a), and average wind speed (b), relative 

humidity (c), and temperature (d), over a baseline historical period from 1991 -2021 and a 

future projected period from 2064-2094 
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Figure 16. Montreal boxplots of annual average DHI (a), DNI (b), and WDR (c) over a 

historical (1991-2021) and future (2064-2094) period 

Figure 15a shows the annual total rainfall during the historical period against the future 

projected period under 3.5°C of global warming. Across the 30-year period, the RCM predicts a 

median annual average of 949mm, increasing by 24% to 1177mm in the second half of the 

century. Since the RCM tends to overestimate total rainfall, the corrected datasets predict 

lower average total rainfall. The Morphed data yields the highest percent increase in the 

median at 29%, from 745mm to 960mm. QDM and MBCn both have a historical median of 
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approximately 790mm which subsequently increase by 16% and 14% respectively to 921mm 

and 902mm. Lastly, R2D2 predicts the highest median by far compared to the other correction 

methods with a historical median of 847mm and future projected median 1010mm. The 

average wind speed illustrated in Figure 15b implies that the RCM simulates the windspeed 

fairly accurately since there is not much variation between the corrected datasets and the RCM. 

Consequently, a minute 2.5% decrease in windspeed calculated by the RCM is followed by the 

corrected datasets as well, with a historical median of approximately 4.4m/s across the board. 

The Morphed data has a slightly lower historical median at 4.3m/s. According to the validation 

section, the RH and temperature are overestimated by the RCM. Therefore, the corrections will 

tend to lower the average values, which can be seen in the case of Figure 15c and 12d. Indeed, 

the RCM has a historical median RH of 81.1% while every other dataset has a median of 69.3%, 

but in each case, small increases in the future RH is expected at 2%. On the other hand, large 

increases in temperature should be expected in Montreal due to climate change, where the 

RCM predicts an increase from 8.6°C to 14°C. Similarly, corrected datasets forecast a similar 

magnitude increase, where QDM, MBCn, and R2D2 start from a median of 7.4°C to 

approximately 10.9°C. The Morphed temperature starts at a lower historical median at 6.8°C 

and increasing to 11.9°C.  

The historical and future DHI are compared in Figure 16a. The RCM is the only data the 

predicts a decrease in DHI over these two time periods from 71Kj/m2 to 70Kj/m2. Little to no 

change is calculated through the Morphed data with a median annual average DHI of 73Kj/m2. 

Naturally, due to how the solar radiation variables are processed, the shown results of MBCn 

and R2D2 are identical to those from QDM, which only yield a small increase from 73Kj/m2 to 
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74Kj/m2. Similar changes are found in the DNI as well, with only minor differences between the 

two time periods. As was seen during the validation period, the RCM largely overestimates the 

DNI in Montreal with a median of approximately 165Kj/m2 during both periods. The Morph and 

QDM data decrease from 78Kj/m2 to 76Kj/m2 and 84Kj/m2 to 82Kj/m2, respectively. Lastly, the 

average annual total WDR is presented in Figure 16c. The relative performance between the 

datasets closely resembles those found in the validation period. The RCM projects the largest 

increase in annual WDR from 0.0402Kg/m2 to 0.524Kg/m2. However, the Morphed data yields 

the highest absolute values, with a historical median of 0.0466Kg/m2, increasing to 

0.0544Kg/m2. While the lowest predict values came from MBCn, rising from 0.0287Kg/m2 to 

0.0354Kg/m2. 
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Figure 17. Montreal annual MC (a), RH (c), temperature (d), and maximum MI (b) of the 

OSB sheathing of the wall assembly, for a historical (1991 -2021) and future (2064-2094) 

period 

A similar comparison between the two periods on the hygrothermal performance of the wall 

assembly in Montreal is presented in Figure 17. There is a large variation between datasets 

when simulating the MC of the OSB sheathing. The RCM, QDM, MBCn, and R2D2 data are all 

relatively low compared to Morph, where it estimates the highest MC among them at 10.7% 

and 11.7% for the historical and future periods, respectively. Hygrothermal simulations with the 
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Morphed data predicts an even greater historical median MC at 14.1% and increasing to 21.7%. 

Consequently, it’s not surprising that the simulated mould index is largest using Morphed and 

RCM data. In all cases, the mould index does not exceed the critical threshold of 3.0 during the 

historical period. However, due to climate change, there will be increased mould growth across 

all datasets, but increases in QDM, MBCn, and R2D2 are not critical. On the other hand, both 

RCM and Morph project significant increases in mould growth with a median mould index value 

of 2.7 and 4.6, respectively. The increases in MC and MI can be attributed to the relatively large 

increases in the WDR deposited on the exterior OSB sheathing, which result in more moisture 

absorption. Future projected changes of the RH on the exterior side of the OSB are expected to 

increase. The RCM indicates an increase in the median RH from 76.3% to 78.4%, while Morphed 

data predicts a larger relative increase from 80.9% to 86.9%, and smaller changes are measured 

by the bias corrected datasets. The average outdoor temperature in Montreal is expected to 

increase by approximately 6°C, consequently, a similar development is seen after simulating the 

temperature on the exterior of the OSB. The highest historical median produced by RCM yields 

a value of 13.7°C, which increases by 4.5°C in the future. Other datasets start with a much 

lower average temperature, where Morph is at 9.3°C, and the bias corrected data average 

around 10.6°C; subsequently increasing to 13.5°C and 15.3°C. 
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4.3 St. John’s 

4.3.1 Baseline Validation Period 

 

Figure 18. St. John’s annual total horizontal rainfall (a), and average wind speed (b), 

relative humidity (c), and temperature (d) during the observational period (1998 -2017) 
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Figure 19. St. John’s annual average DHI (a), DNI (b), total WDR (c) on the wall assembly, 

and DHI (d) (1998-2017)  

The conditions in St. John’s are comparatively wetter, according to the RCM, considering 

the studied locations so far. For instance, Figure 18a shows the total annual horizontal rainfall 

during the entire 20-year observational period from 1998-2017. Within these 20-years, the 

RCM total annual rainfall calculated a median of 1063mm, which is significantly greater than 

the observed 654.6mm. Subsequently, morphed and bias corrected data significantly improves 

on the estimation of annual total rainfall with medians of 675mm, 681mm, 675mm, and 
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727mm. Additionally, the wind speed is also overestimated by raw RCM data with a median of 

8.9m/s. Corrected data lowers the estimated wind speed to approximately 6.7m/s, compared 

to the actual observed 6.1m/s. The RH is also overestimated by the RCM, however to a lesser 

extent than the previous parameters. As a result, the RCM predicts a median value of 84.3% 

against the observed 82.6%. Meanwhile, corrected data yields a median around 82%, with 

morphed data displaying somewhat larger variability from year to year. Observed temperatures 

at St. John’s resulted in a median of 5.5°C while corrected data yield very similar medians at 

5.2°C, which reduces the overestimation by the RCM from a median of 6.7°C. 

Like previous locations, the RCM predicts significantly higher GHI than any other dataset 

shown in Figure 19d, with a median of 1067Kj/m2, compared to the observed 455Kj/m2. 

Morphed and QDM corrected results in medians around 456Kj/m2. A solar split is performed on 

the GHI resulting in components such as the DHI and DNI. The average DHI calculate through 

observed data, shown in Figure 19a, resulted in the highest median at 72Kj/m2, while RCM data 

calculated the lowest of all the datasets at a median of 67Kj/m2. On the other hand, morphed 

and QDM data both calculated a median of approximately 69Kj/m2. Like other locations, the 

RCM simulated DNI at St. John’s is extremely overestimated at a median of 136Kj/m2, while 

observed, morphed, and QDM corrected data yields a median closer to 60Kj/m2. Lastly, the sum 

of annual WDR presented in Figure 19c displays a large variability among the many datasets. 

The most obvious outlier in this case is presented by QDM, with the lowest median of 

0.0195Kg/m2 of WDR per year. Meanwhile the other bias corrected datasets expected more 

WDR at 0.0364 Kg/m2 and 0.0605 Kg/m2 for MBCn and R2D2, respectively. Morphed and RCM 
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climate data calculated median annual WDR at 0.0588Kg/m2, compared to the observed 

0.0468Kg/m2. 

 

Figure 20. St. John’s annual average: moisture content (a), relative humidity (b), 

temperature (c), and maximum mould index (d) on the exterior of the OSB sheathing 

(1998-2017) 
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Figure 21. St. John’s daily  average mould index on the exterior of OSB sheathing ( 1998-

2017) 

Through hygrothermal simulations using DELPHIN, the MC of the OSB sheathing was 

simulated and the results of which are illustrated in Figure 20a for the observational period 

from 1998-2017. These results closely resemble the relative performance of the various 

datasets in Figure 19c, which showed the annual total WDR. Consequently, the hygrothermal 

simulations using QDM corrected climate data resulted in the lowest MC by far, with a median 

of 10.9%. Which is distantly followed by MBCn and R2D2 at medians of 17.2% and 19.9%. 

Similarly, observed and RCM simulations indicated a median MC of 19.5%, while morphed data 
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resulted in an even greater 23.1% median. Therefore, during the observational time period, 

since the MC generally exceeds the critical threshold of 16%, it is likely that the OSB sheathing 

will experience decay during this study period due to excessive moisture in the OSB. 

Calculations of the mould index presented in Figure 20b shows a similar relative performance 

between the datasets, with the least mould growth predicted by QDM at a median annual 

maximum mould index of only 0.03. Which is again distantly followed by MBCn and R2D2 with 

medians of 4.1 and 4.7. Simulations with observed weather data resulted in a median of 4.6 

across the whole study period while morphed data produced more mould growth with a 

median index of 4.9. The RCM simulation resulted in the most mould growth overall, at a 

median of 5. According to Figure 21, significant mould growth begins approximately 3 years into 

the simulation, with each set of simulations reaching their peak and a relative steady state 

afterwards, excepting the QDM simulations. Overall, due to consistently high humidity and wet 

conditions in St. John’s, significant mould growth will occur on the exterior of the OSB during 

this period. The relative humidity on the exterior of the OSB sheathing is generally quite high 

compared to that at other cities. Most of the datasets excepting QDM yielded median values 

above 90.6%, while 78.3% was simulated using QDM corrected data. Temperature on the OSB is 

also presented in Figure 20d, where observational data indicted a median of 7.3°C, contrasting 

with the comparatively higher estimation of 9.6°C made my RCM data. Meanwhile, bias 

corrected data resulted in slightly higher estimates at 8.1°C, 7.7°C, and 7.5°C for QDM, MBCn, 

and R2D2, respectively. Lastly, morphed data simulated the lowest median temperature on the 

OSB at 6.7°C.  
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 The results of the processed climate data indicate that a significant improvement is 

made alleviating some of the bias present in the raw RCM data. Nearly all the climate 

parameters presented are improved upon, except for the annual total WDR, which resulted in 

some variability between the datasets. Despite the relative accuracy in climate variables, the 

hygrothermal performance of the various datasets produce some variability. In this case, the 

QDM data produces the most obvious outlier, in many of the parameters that were studied, 

including the RH, MC, and MI. In St. John’s, the RCM simulates the variability of the climate 

parameters relatively accurately compared to some of the other studied locations, which 

results in a mould profile similar to that calculated using observation data. Overall, the climate 

in St. John’s is shown to be quite wet, which may result in potential wood decay and mould 

growth problems.  
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4.3.2 Projected Future Period 

 

Figure 22. St. John’s boxplots of annual total rain (a), and average wind speed (b), 

relative humidity (c), and temperature (d), over  a baseline historical period from 1991 -

2021 and a future projected period from 2064-2094 
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Figure 23. St. John’s boxplots of annual average DHI (a), DNI (b), and WDR (c) over a 

historical (1991-2021) and future (2064-2094) period 

Based on the validation period, the RCM overestimates the amount of horizontal 

rainfall. In this case, during the historical period a median annual total of 1062mm was 

expected, which is projected to increase to 1181mm in 2064-2094. Whereas morphed and bias 

corrected results bring the median to a lower 700mm for the historical period and 751mm for 

the future. A similar trend is seen in the RH and temperature shown in Figure 22c and Figure 

22d, where each parameter is forecast to increase due to climate change, and the fact that bias 
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correction reduces the overall mean value. The RH does not change much regardless of which 

dataset was used, with only a 1% difference between the two periods. On the other hand, 

temperature changes drastically in comparison, where the RCM gains from a historical median 

of 6.5°C to 11.1°C. Corrected datasets reduce the absolute temperature in each case, with a 

similar historical median at 5.1°C and increasing to 10°C in the future. Projected changes in 

wind speed are minimal, going from 8.8m/s to 8.6m/s, according to the RCM. As with during 

the validation period, wind speed is overestimated by the RCM. Therefore, morphed and bias 

corrected data yield lower wind speeds around 6.7m/s historically and lowering to 6.6m/s in 

the future.  

 Similar results are presented for the DHI, DNI, and WDR in Figure 23. As in the 

observational period, the solar irradiance variables generated by QDM are used in place of 

values calculated using the MBCn or R2D2 method as they do not preserve the diurnal cycle. 

According to the RCM, the median DHI does not change by much between the two periods, 

with a value of 67Kj/m2 historically, and 66.9Kj/m2 in the future. Due to the extremely small 

change present in the RCM, the DHI calculated by Morphing remains virtually the same at 

70Kj/m2. The same can be said about QDM corrected data going from 69Kj/m2 to 70Kj/m2. 

Considering that the RCM exaggerates the average DNI at 135Kj/m2, the results are relatively 

consistent between morphing and QDM data which bring down the median value. With a 

historical median of 59Kj/m2 and 62Kj/m2, and 61Kj/m2 and 64Kj/m2 during the projected 

period, respectively. The annual total WDR predicted by raw RCM, morph, and R2D2 data near 

identical with medians around 0.057Kg/m2 and 0.066Kg/m2 for the historical and future period, 

respectively. On the other hand, despite relatively similar performance that QDM and MBCn 
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data showed among the other climatic parameters, they both forecast less WDR in both time 

periods.  

 

Figure 24. St. John’s annual MC (a), RH (c), temperature (d), and maximum MI (b) of the 

OSB sheathing of the wall assembly, for a historical (1991 -2021) and future (2064-2094) 

period 

A comparison of the hygrothermal performance of the wall assembly in St. John’s is 

presented in Figure 24, which includes the MC, MI, RH, and temperature. The simulated 

hygrothermal response presents a lot of variation between the datasets. While the RCM 
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simulated a historical MC of 20.1%, it projects a decrease into the future to 19%. On the other 

hand, morphed data results in quite the extreme which projects increase in median MC from 

23.3% to 34.9%. Other datasets such as MBCn and R2D2 also calculated historical and future 

MC of the OSB exceeding the critical threshold, meaning the OSB will experience decay in both 

periods. Despite increases seen in the amount of WDR, some of the datasets simulated a 

decrease in future MC, likely due to the increase in ambient drying conditions. Mould growth 

was already an issue, with extremely high mould index values, close to 5 in most cases, during 

the historical period. However, due to climate change, mould growth will worsen as conditions 

favourable to mould growth become of prevalent in the future, subsequently resulting in 

increased mould index values. While QDM also simulated increase mould growth, the 

magnitude is not the same as the other datasets. As was seen during the validation period, 

QDM does present the same climatic conditions as the other datasets in St. John’s. 

Consequently, QDM predict RH on the exterior of the OSB is relatively lower than those predict 

by other data, with a historical median of 78.6%, which is expected to decrease to 77.3%. 

Similar changes are forecast by other datasets, however starting from a much higher historical 

RH with a median historical value of approximately 93%. The simulated temperature on the 

OSB is expected to increase. According to the RCM, from 10.1°C to 14.4°C, whereas other 

datasets start from a lower historical median. Historically, morph simulations resulted in a 

median of 7.17°C rising to 11.6°C. Bias corrected data perform similarly, with a historical 

median of 8°C rising to approximately 14°C. 
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4.4 Calgary 

4.4.1 Baseline Validation Period 

 

Figure 25. Calgary annual total horizontal rainfall (a), and average wind speed (b), 

relative humidity (c), and temperature (d) during the observational period (1998-2017) 
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Figure 26. Calgary annual average DHI (a), DNI (b), total WDR (c) on the wall assembly, 

and DHI (d) (1998-2017)  

A summary of the climatic variables in Calgary during the observational period is 

presented in Figure 25 and Figure 26, including the rainfall, wind speed, relative humidity, 

temperature, diffuse horizontal and direct normal irradiance, and wind driven rain experience 

by the simulated wall assembly. The observational records indicate a median annual average 

total rainfall of 274mm while the morphed and bias corrected data result in relatively similar 

values at approximately 336mm, which is a reduction compared to the raw RCM data at 
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515mm. Similarly, for the wind speed, the RCM overpredicts it at 4.6m/s while the other 

datasets are in relatively good agreement with the observed data at a median of 3.9m/s, 

however with larger variations from year to year. Continuing this trend, the RH is extremely 

overestimated by the RCM, with a median of 79.5%, whereas observed and corrected data all 

yield a median of approximately 62%. The temperature is better simulated by the RCM, 

resulting a median of 4.5°C, while observed data shows a median of 4.9°C. Morphed data 

underestimates slightly at 4.3°C, and the bias corrected datasets are nearly identical in median 

and variability at 5.3°C.  

GHI is significantly overestimated by raw RCM data in Calgary, with nearly twice the 

observed value at a median of 1009Kj/m2, compared to 543Kj/m2. Consequently, morphed and 

bias corrected data lower the median average value to 547Kj/m2 and 565Kj/m2, respectively. 

GHI is split into DHI and DNI, where the average DHI is shown in Figure 26a, with the 

observational data presenting an overall lower DHI at a median of 59Kj/m2 while RCM data 

predicts a value of 66Kj/m2, morphed data at 68Kj/m2, and QDM at 67Kj/m2. The DNI as 

calculated by RCM data is extremely overestimated compared to the observed data at 163Kj/m2 

versus the observed 82Kj/m2. Similarly, morphed data calculated a median of 84Kj/m2 while 

QDM inches higher at 90Kj/m2. As with previous illustrations of solar radiation variables, the 

QDM corrected solar data is used in place of MBCn and R2D2. Lastly, the annual total WDR 

deposited on the exterior of the OSB across the 20-year observational period is illustrated in 

Figure 26b. Observational data indicates a median value of 0.0158Kg/m2, while RCM and QDM 

data predict a much higher median of 0.0268Kg/m2 and 0.0247Kg/m2, respectively. Other 
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datasets predict much closer medians to the observed data at 0.0162Kg/m2, 0.0158Kg/m2, and 

0.0167Kg/m2, for morph, MBCn, and R2D2 respectively. 

  

 

Figure 27. Calgary annual average: moisture content (a), relative humidity (b), 

temperature (c), and maximum mould index (d) on the exterior of the OSB sheathing 

(1998-2017) 
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Figure 28. Calgary daily average mould index on the exterior of OSB she athing (1998-

2017) 

The simulated MC of the OSB in Calgary is presented in Figure 27a. Considering the 

greater amount of deposited WDR experienced through the RCM data, the MC of the OSB 

predicted by the RCM is higher than the other datasets at a median of 9.7%. The simulation 

using observed and QDM data resulted in a median MC of 7.6%, while those of morph, MBCn, 

and R2D2 resulted in roughly the same median at 7%. For similar reasons, the RCM predicts a 

greater RH on the exterior side of the OSB sheathing at a median of 71.8%, compared to the 

observed and QDM data at 57.2%. MBCn and R2D2 predicts near identical RH at 53%, with 
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morphed data slightly lower at 51.3%. The temperature on the exterior of the OSB surprisingly 

varies quite a lot compared to the relatively good agreement in the ambient air temperature. 

Subsequently, the observed median temperature on the OSB is calculated to be 7.5°C while 

morphed data predicts a slightly lower temperature at a median of 7.1°C, but the variation from 

year to year is larger. The RCM calculated a median temperature of 9.2°C, and the three bias 

corrected datasets yielded similar medians, where QDM and MBCn had a value of 

approximately 8.9°C, and R2D2 slightly lower at 8.6°C.  

 The simulated mould index is presented in two formats in Figure 27b which shows the 

highest value reached in each year and in Figure 28 where the daily average value is presented 

for the length of the validation period. The RCM is an outlier in this case as it is the only dataset 

that resulted in any significant mould growth, with the exception of QDM which at one point 

calculated a moderate amount of mould growth, before subsequently decaying. The 

combination of relatively wetter conditions on the OSB in concert with a significantly higher 

ambient RH is the likely culprit causing the considerable difference in mould growth between 

the RCM and the other datasets.  

 The results of the bias correcting climate data indicate that an improvement is made 

from the raw RCM data, although the degree of success varies depending on the chosen 

method and climate variable. Generally, the raw RCM data compares the worst against the 

observations; while the bias corrected data can adequately correct for biases in the RCM, which 

result in better agreement with the observed data, especially in the case of rainfall and RH. 

Similarly, morphed data performs as well as those bias corrected. Hygrothermal performance of 

the various climate datasets simulated using DELPHIN showed varying degrees of success 
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depending on the parameter. However, overall, morphed and bias corrected data does yield 

more accurate results than the RCM data, especially in the case of mould growth. Where the 

raw RCM simulated wetter conditions than any other dataset and was the only one to predict 

any significant mould growth at all. 
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4.4.2 Projected Future Period 

 

 

Figure 29. Calgary boxplots of annual total rain (a), and average wind speed (b), relative 

humidity (c), and temperature (d), over a baseline historical period from 1991 -2021 and a 

future projected period from 2064-2094 
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Figure 30. Calgary boxplots of annual average DHI (a), DNI (b), and WDR (c) over a 

historical (1991-2021) and future (2064-2094) period 

 Based on the previous analysis, total rainfall is typically overestimated by the RCM. In 

this case, the historical and future projected annual total rainfall forecasts a median of 518mm 

and 634mm, illustrated in Figure 29a. Morphed data reduces these projects to 345mm and 

405mm for the historical and projected periods respectively. QDM, MBCn, and R2D2 predict 

similar medians in both time periods at 336mm and 405mm. Consequently, there is a net 

increase in annual total rainfall between the historical and future period. A similar behaviour is 



90 
 

seen in the wind speed shown in Figure 29b, in terms of the relatively performance of the 

datasets. According to the RCM, wind speed is anticipated to decrease from 4.6m/s to 4.4m/s. 

Meanwhile, performance of the other datasets is quite similar, decreasing from a median of 

approximately 3.8m/s to 3.7m/s in the future. Similarly, RH in Calgary is known to be 

overestimated by the RCM, with a historical value of 79.1%, and forecast to increase in the 

future to a median of 80.4%. On the other hand, QDM, MBCn, and R2D2 bias corrected RH 

yields a historical median of 62% rising to 63.5%. Meanwhile, little change is forecast by 

morphed climate data with an annual median RH of 63%. Again, temperature appears to be 

quite well simulated by the RCM, with a historical median of 4.4°C, and rising to 8.9°C due to 

climate change. Similarly, morphed data calculates a median of 4.1°C during the historical 

period while increasing to 8.4°C. Additionally, R2D2, MBCn, and QDM data forecasts similar 

temperatures in both periods increasing to 9.6°C from 5.3°C. 

 The RCM projects decrease in both the solar radiation variables, DHI and DNI, in the 

future. Figure 30a shows RCM estimates of the DHI with a historical median of 65Kj/m2 

lowering to 65Kj/m2. An even smaller decrease in found between morphed data from 68Kj/m2 

to 67Kj/m2. Conversely, QDM estimates an increase from 66Kj/m2 to 67Kj/m2. The behaviour of 

DNI is more consistent with all datasets predicting a decrease in the median. There is quite a lot 

of variation in the WDR between the datasets, however a consistent increase into the future is 

forecasted. In the case of the RCM, median WDR will increase from 0.0288Kg/m2 to 

0.0373Kg/m2. QDM performs similarly with a historical median of 0.0248Kg/m2 rising to 

0.0349Kg/m2. The other three datasets morph, MBCn, and R2D2 start with a historical median 

of close to 0.017 Kg/m2 which increases to approximately 0.02Kg/m2.  
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Figure 31. Calgary annual MC (a), RH (c), temperature (d), and maximum MI (b) of the 

OSB sheathing of the wall assembly, for a historical (199 1-2021) and future (2064-2094) 

period 

 As expected, the MC of the OSB is projected to increase in the future climate, the 

degree to which varies significantly depending on the climate dataset used in the hygrothermal 

simulation. For the RCM, MC is projected to increase from 9.8% to 10.7%, whereas much 

smaller gains are expected from QDM, MBCn, and R2D2 data. Simulations with QDM data 

resulted in a historical median MC of 7.6% with only a marginal increase in the future. 
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Meanwhile, MBCn and R2D2 start from 7% rising to 7.2%. Results simulated using morphed 

climate date shows the most drastic difference going from 7.2% to a median value of 11.5%. 

Following results from the observational period, its no surprise that the RCM simulated mould 

index would yield significantly more growth than the process climate data, with the historical 

distribution closely match those from the observational period. As a consequence of wetter 

conditions, and increased RH and temperature, the conditions conducive to mould growth 

become more prevalent in the future, resulting in even more mould growth within a 30-year 

period. Similarly, the RH and temperature on the exterior of the OSB presented in Figure 31c 

and Figure 31d, closely follow the changes in climatic conditions illustrated in Figure 29. 

Consequently, RH on the OSB is forecasted to increase to varying degrees. RCM predicts a 

historical median of 72.5% rising to 75.2%, while the most drastic change follows from morphed 

data, rising from 53.6% to 63.6%. The temperature predicted by QDM, MBCn, and R2D2 behave 

similarly increasing from approximately 8.7°C to 12.8°C. Morphed data start with a lower 

historical median temperature at 6.9°C rising to 10.7°C. Lastly, the RCM forecasts an increase in 

of nearly 4°C, starting at a historical median of 9.2°C.   
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4.5 Vancouver 

4.5.1 Baseline Validation Period 

 

Figure 32. Vancouver annual total horizontal rainfall (a), and average wind speed (b), 

relative humidity (c), and temperature (d) during the observational period (1998 -2017) 
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Figure 33. Vancouver annual average DHI (a), DNI (b), total WDR (c) on the wall assembly, 

and DHI (d) (1998-2017)  

 Vancouver experiences significantly more rain during the observational period 

compared to any of the other studied locations. In Figure 32a, observed data indicates a 

median annual total rainfall of 1372mm. As with other locations, raw RCM data overestimates 

the horizontal rainfall. In this case, the RCM estimates a median of 1796mm. QDM, MBCn, and 

R2D2 corrected rainfall calculated a median annual value of approximately 1351mm, while 

morphed data predicts the least rainfall at 1189mm. There is relatively good agreement 
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between the morphed and bias corrected datasets with the observations, each with a median 

of approximately 3.7m/s, where R2D2 is slightly higher at 3.8m/s. However, RCM data indicates 

faster wind speeds at a median of 4.1m/s. Similar relative performance in the RH can be seen in 

Figure 32c, where again the RCM overestimates the RH at a median value of 87.8%. On the 

other hand, median from observed, morphed, and bias corrected datasets was calculated to be 

approximately 78%. Contrastingly, RCM simulated air temperature is lower than the other 

datasets, with a median of 8.1°C. Observed and morphed data shows a higher median 

temperature at 10.3°C, while the other bias corrected data are near identical with a median of 

10.9°C with a similar year to year variability as well.  

 Vancouver is no exception to overestimation of GHI by the raw CanRCM4 data, where 

significant adjustments are made by morphing and QDM to reduce the median values closer to 

the observations of 515Kj/m2. Once GHI is split into components, the morphed and bias 

corrected DHI result in similar medians, close to 72Kj/m2. However, observational data 

indicates a lower DHI, with a median of 65Kj/m2, while RCM data is between, resulting in a 

median of 68Kj/m2. As with all solar radiation related parameters used in this work, QDM 

corrected data is used in place of MBCn and R2D2 for reasons mentioned previously. Which is 

why the results in Figure 33a are identical for those datasets. Average DNI is severely 

overestimated by raw RCM data, like it was for other locations as well. Consequently, resulting 

in a median of 138Kj/m2, while all other data presents a median closer to 70Kj/m2. Due to the 

large of amount of horizontal rainfall predicted by the RCM during the observational period, its 

not surprise that the RCM also forecasts the most WDR, with a median annual value of 
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0.151Kg/m2. Which is followed closely by QDM corrected data at a value of 0.138Kg/m2. Other 

datasets estimate values close to the observed data at approximately 0.08Kg/m2. 

 

Figure 34. Vancouver annual average: moisture content (a), relative humidity (b), 

temperature (c), and maximum mould index (d) on the exterior of the OSB sheathing 

(1998-2017) 
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Figure 35. Vancouver daily average mould index on the exterior of OSB sheathing ( 1998-

2017) 

The MC of the OSB is quite high in Vancouver, compared to other cities. DELPHIN 

simulations using observed data yield a median annual average MC of 21.4%, while RCM 

estimates a value of 24.2%. There is some variability between the processed climate data, 

where the multivariate methods, MBCn and R2D2, and morphing yield a median of 

approximately 20%, while QDM corrected data is closer to the RCM at 23.1%. Regardless of the 

dataset, the OSB will experience decay since the moisture content surpasses the critical 

threshold of 16%. The simulated RH on the exterior of the OSB is very high, with almost all 
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datasets predicting a median greater than 95%, except for morphed data at which has a median 

of 94.5%. Observational and morphed data indicates a median temperature on the exterior of 

the OSB of 12.1°C, while RCM simulated a lower temperature at 10.9°C. R2D2 calculates a 

slightly higher median at 11.9°C, and QDM and MBCn result in the highest simulated 

temperature with a median annual average of 12.7°C. Due to the moderate climate in 

Vancouver, consistent high relatively and warm temperatures lead to a high risk of mould 

growth. According to Figure 35, within a year from the start of the simulation, significant mould 

growth begins. Subsequently peaking at a mould index of 5 before reaching a relative steady 

state. This phenomenon is experienced no matter which set of climate data was used in the 

hygrothermal simulation.  

 Significant improvements are made to raw model data when processing climate data in 

Vancouver through the presented methods. Generally, the raw RCM data compares the worst 

against the observations; while the bias corrected data adequately corrects for biases in the 

RCM, which result in better agreement with the observations. However, despite the relatively 

accurate annual average of rainfall, wind speed, RH, and temperature, there is significant 

variability in the deposited WDR on the OSB sheathing. Consequently, hygrothermal 

simulations indicate a similar variation in MC of the OSB. The results show that Vancouver has a 

relatively wet climate, which is likely to result in wood decay and mould growth issues on the 

OSB.  
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4.5.2 Projected Future Period 

 

Figure 36. Vancouver boxplots of annual total rain (a), and average wind speed (b), 

relative humidity (c), and temperature (d), over a baseline historical period from 1991 -

2021 and a future projected period from 2064-2094 
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Figure 37. Vancouver boxplots of annual average DHI (a), DNI (b), and WDR (c) over a 

historical (1991-2021) and future (2064-2094) period 

 Historically, Vancouver received the most rain out of the 6 studied locations, and 

according to the RCM in Figure 36a, it is poised to increase in the future from 1808mm to 

1967mm. Due to the model bias, rainfall is typically overestimated by the RCM. Consequently, 

corrected datasets present lower historical median annual totals which range from a low of 

1179mm calculated with morphed data to a higher of 1407mm according to R2D2. Similarly, 

the future projected rainfall is forecast to increase, where the largest difference is presented by 
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the MBCn data, at 20.2%, rising from 1195mm to 1423mm. RCM projects a decrease in future 

wind speed from a median of 4.2m/s to 4.0m/s. Hygrothermal simulations with the pre-

processed data also illustrate decrease in average wind speed, in general going from a median 

of around 3.7m/s to 3.6m/s. Ambient RH and temperature are both projected to increase in the 

2064-2094 period, although RH to a lesser extent, which is illustrated in Figure 36. RH is largely 

unchanged with the RCM estimate a historical median of 87.7% while processed data calculated 

a median of 78.6%. In comparison, temperature is expected to increase significantly more. RCM 

forecasts that the temperature will go from a historical median of 8.11°C to 11.9°C. Similarly, 

morphed and bias corrected data indicates temperatures rising from 10.2°C and 10.8°C to 

14.3°C and 14.8°C, respectively.  

 RCM estimated DHI will decrease in the projected period from 68Kj/m2 to 67Kj/m2. A 

similar adjustment calculated by QDM corrected data is also observed, however, from a higher 

historical value of 72Kj/m2. Contrarily, morphed climate data indicates an increase in average 

DHI, rising from 72Kj/m2 to 74Kj/m2. Slight increases in DNI are projected for the future in 

Vancouver seen in Figure 37b. As with other locations, RCM produces large values in the DNI 

around 140Kj/m2. Morphed and bias corrected values result in medians closer to 80Kj/m2 in 

both periods. WDR is expected to increase following climate change according to the RCM, 

rising from a median annual total of 0.151Kg/m2 to 0.175Kg/m2. Morph, MBCn, and R2D2 do 

not present the same level of WDR, with historical means closer to 0.08Kg/m2, with minute 

increases in the future, excepting MBCn where a slight decrease is calculated. On the other 

hand, QDM data exhibit nearly as much WDR as the raw RCM data.  
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Figure 38. Vancouver annual MC (a), RH (c), temperature (d), and maximum MI (b) of the 

OSB sheathing of the wall assembly, for a historical (1991 -2021) and future (2064-2094) 

period 

 Due to the large amounts of WDR deposited on the OSB sheathing, hygrothermal 

simulations using RCM data show the highest levels of MC in the OSB in Figure 38a. In both 

cases, deterioration of the OSB should be expected as the MC exceeds the threshold for OSB 

decay, at a historical median of 23.9% and projected increase to 27.1%. A similar increase is 

calculated with morphed climate data, resulting in MC of 20.8% and 24.1% for the historical and 
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future periods, respectively. While simulations with other datasets, namely QDM, MBCn, and 

R2D2 also show high levels of MC in the OSB, enough to cause deterioration, they are less than 

that found through RCM data. MBCn is the only set where a minimal decrease in MC is 

expected, likely because the WDR is also forecast to lessen. Vancouver is known to be of a 

relatively wet climate for a Canadian city. Consequently, historical mould growth risk is already 

quite significant, where values exceeding 5 are expected with any of the tested datasets. 

Climate change will exacerbate this issue, due to increasing temperature leading to longer 

periods favourable to mould growth. Despite generally decreasing RH forecasted by all but 

morphed data, the RH in Vancouver is already high enough for mould to grow on the exterior of 

the OSB. 
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4.6 Kuujjuaq 

4.6.1 Baseline Validation Period 

 

Figure 39. Kuujjuaq annual total horizontal rainfall (a), and average wind speed (b), 

relative humidity (c), and temperature (d) during the observational period (2005-2017) 
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Figure 40. Kuujjuaq annual average DHI (a), DNI (b), total WDR (c) on the wall assembly, 

and DHI (d) (2005-2017) 

 The annual total rainfall across the baseline observational period from 2005-2017 is 

presented in Figure 39a. The RCM consistently overestimates the rainfall for all of the previous 

locations that were studied, and Kuujjuaq is no different, with a median annual total rainfall of 

523mm, as opposed to the observed 276mm. Morphed and bias corrected climate data show 

similar amounts of rainfall as the observation data with approximately 270mm. Similarly, RCM 

data significantly overestimates the wind speed, with a calculated median of 6.4m/s whereas 
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the other datasets indicate a median wind speed closer to 3.8m/s. A similar trend is seen for 

the relative humidity, shown in Figure 39c, where the RCM estimates an extremely high RH a 

median of 89.3%. Observed and processed climate data indicate a median closer to 74%. 

Kuujjuaq is by the far coldest climate out of all the locations included in this work, where the 

measured average temperature is -4.0°C. Raw RCM data is not far off from the observations 

with a median of -3.2°C, while morphed data is slightly colder at -4.1°C. Bias corrected data 

performed similarly with a median temperature around -3.3°C.  

 Kuujjuaq receives the least solar radiation compared to any of the other locations. 

Consequently, observed GHI results in a median of 405Kj/m2. However, RCM still overestimates 

this at 888Kj/m2 but morphed and QDM data is able to modify the data and bring down the 

expected GHI. After splitting GHI into components, morph and QDM predicts a higher DHI than 

observed and RCM data, with a median annul average of 70Kj/m2, compared to the 67Kj/m2 

from observations, and 64Kj/m2 according to raw model data. Following results of other 

locations, DNI calculated with RCM data also severely overestimate it at Kuujjuaq as well, with a 

median of 111Kj/m2, opposed to the observed 43Kj/m2. Meanwhile, morph and QDM data DNI 

yields 45Kj/m2 and 50Kj/m2, respectively. Due to the relatively colder climate, WDR is less 

prevalent in Kuujjuaq. Consequently, observation data shows a median annual total WDR of 

0.0136Kg/m2. The processed climate data predicts even less WDR deposited on the OSB 

sheathing, with medians ranging from 0.008Kg/m2 to 0.0122Kg/m2 by MBCn and R2D2, 

respectively.  
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Figure 41. Kuujjuaq annual average: moisture content (a), relative humidity (b), 

temperature (c), and maximum mould index (d) on the exterior of the OSB sheathing 

(2005-2017) 
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Figure 42. Kuujjuaq daily average mould index on the exterior of OSB sheathing (200 5-

2017) 

The MC is heavily dependant on the amount of deposited WDR on the OSB. Therefore, 

the simulated MC of the OSB in Figure 41a somewhat follow the forecasts of WDR from Figure 

40c. Consequently, the largest prediction of MC of the OSB comes from the RCM inputs, 

resulting in a median MC of 18.9%, clearly exceed the critical threshold, which would likely 

result in deterioration of the OSB over this observational period. Meanwhile observed and bias 

corrected data predicts a MC of around 9%. Despite morphed data forecasting relatively similar 

levels of deposited WDR, the MC resulted in comparatively higher values than the other 
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datasets, with a median of 12.7%. Simulated RH on the exterior surface of the OSB is also quite 

high according to the RCM, with a median annual average of 91.8%, compared to the observed 

74.5%. Morphed data presents a median close to the observations at 77.3%, while QDM 

predicts a lower RH at 72.5%. The multivariate bias corrected data yielded lower RH on the OSB 

around 68%. The simulated temperature on the OSB is in relatively good agreement compared 

to the other parameters. For example, the observed temperature is -1.1°C, where the highest 

value seen is through the RCM at 0.8°C, and the lowest temperature was simulated from 

morphed data, which had a median annual average of -0.9°C. The comparatively wet conditions 

simulated using raw RCM climate data resulted in significant mould growth occurring relatively 

early on in the simulation and reaching a steady state around a mould index value of 4.5 for the 

rest of the study period. Contrastingly, no significant mould growth was seen when the 

hygrothermal simulations used other climate datasets. 

 The results of the bias corrected climate data indicate that a significant improvement is 

made from the raw RCM data. In this case, the annual total horizontal rainfall, annual average 

wind speed, relative humidity, temperature, DNI, and WDR compared better than the RCM. 

Hygrothermal simulations using pre-process climate data resulted in more accurate 

representations on the exterior of the OSB sheathing. Consequently, RCM simulations 

compares the worst against the observations, which overestimates the MC, MI, and RH on the 

OSB. 
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4.6.2 Projected Future Period 

 

Figure 43. Kuujjuaq boxplots of annual total rain (a), and average wind speed (b), relative 

humidity (c), and temperature (d), over a baseline historical period from 1991-2021 and a 

future projected period from 2064-2094  
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Figure 44. Kuujjuaq boxplots of annual average DHI (a), DNI (b), and WDR (c) over a 

historical (1991-2021) and future (2064-2094) period 

Figure 43a shows the annual total rainfall in 1991-2021 and 2064-2094. According to the 

results in the validation period, the RCM is known to overestimate the amount of rainfall in 

Kuujjuaq. During the historical period, the RCM predicted a median annual total of 514mm, 

while the projected rainfall is forecast to increase by 49% to 764mm. Generally, processed data 

reduces the absolute amount of rainfall, but the relative different between the historical and 

future periods is similar, with a historical median annual total rainfall of approximately 270mm 
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and increasing to 400mm. RCM also overestimates the wind speed which falls from 6.3m/s to 

3.7m/s calculated with morphed or bias corrected data. Wind speed is projected to increase in 

the future where processed datasets indicate a median around 3.9m/s. RCM simulated RH is 

extremely high compared to the corrected data with historical and future medians of 89.7%. On 

the other hand, corrected data indicates a median closer to 74% in both periods. Kuujjuaq is the 

coldest climate studied in this work, consequently it’s the only location with sub-zero average 

temperatures, at least during the historical period before significant global warming effects. 

Calculations with RCM data indicate a historical median annual average temperature of -3.8°C, 

which is forecast to increase to 3.1°C. Similar estimates are made by QDM, MBCn, and R2D2, 

while morphed data presents colder conditions rising from -5.3°C to 2.47°C.  

Figure 44a and b compares the historical and future DHI and DNI. As in the 

observational period, the solar irradiance variables generated by QDM are used in place of 

values calculated using the MBCn or R2D2 method as they do not preserve the diurnal cycle. 

According to morphed data, the median DHI does not change by much between the two 

periods, with a value of 69Kj/m2. The morphing method was the only data to indicate an 

increase in DHI. RCM and QDM both forecast decreases in DHI. Considering that the RCM 

exaggerates the average DNI, the results are relatively consistent between the morphing and 

QDM methods which bring down the median value. With a historical median of 45Kj/m2 and 

49Kj/m2, and 37Kj/m2 and 43Kj/m2 during the projected period, respectively. Lastly, Figure 44c 

presents the annual total WDR during the historical and future periods. The magnitude of WDR 

forecast by RCM is the greatest in either time period, with a historical median of 0.0339Kg/m2, 

which increases to 0.0521Kg/m2. On the other hand, morphed and bias corrected data yield 
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historical values closer to 0.01Kg/m2, which subsequently increases to approximately 

0.014Kg/m2.  

 

Figure 45. Kuujjuaq annual MC (a), RH (c), temperature (d), and maximum MI (b) of the 

OSB sheathing of the wall assembly, for a historical (1991 -2021) and future (2064-2094) 

period 

 A comparison of the simulated hygrothermal response is presented in Figure 45, where 

the MC, MI, RH, and temperature is analyzed. The differences in moisture content between the 

historical and future period, as a percentage of mass of the OSB, is presented in Figure 45a. Due 
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to the significantly higher amounts of deposited WDR on the OSB, the hygrothermal simulations 

with RCM data present the highest MC with a historical median of 18.7%, subsequently 

increasing to 22.4%. Therefore, simulation with RCM data is the only set that indicates potential 

deterioration of the OSB. Bias corrected data shows lower MC in the OSB with historical values 

around 9.5% and future median annual averages of 9.8%. Contrastingly, morphed data 

indicates a decrease in MC from a median of 15.7% to 12.8%. An analysis of the mould growth 

in Kuujjuaq during the validation period indicated that little to no mould growth should occur in 

the during the historical period. Howeverer, RCM data results in significant mould growth 

during this period, which worsens in the future, going from a median of 4.5 to 4.9 in annual 

maximum mould index. This is a consequence of the increased RH and temperature, which 

increase the conditions conducive to mould growth. Morphed data predicts moderate levels of 

mould growth in the historical period with a median value of 0.3, subsequently increasing to 1.1 

following 3.5°C of global warming. Bias corrected datasets do not show any significant mould 

growth in either time periods. RH and temperature are both forecast to increase in this climate 

change scenario, where the annual average temperature on the exterior of the OSB is shown in 

Figure 45d. RCM and bias corrected data yield similar results in both historical and future time 

periods, starting with approximately -0.3°C and subsequently rising to 6°C. Morphed data 

exhibit overall lower temperatures with a historical median of -1.9°C and rising to 4.7°C. There 

is more variability between the datasets when simulating the RH on the OSB. For example, raw 

RCM data predict the highest RH at 92.1% historically and rising to 95.8%. On the other hand, 

morphed predicts a lower RH with a historical median of 78.6% and increasing to 83.5%. R2D2 

data simulated the lowest RH by far where it increases from 67.5% to 72.1%.  
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4.7 Summary 

 This chapter investigated the different climatic conditions presented by observed, 

modelled, and processed climate datasets and their impacts on the hygrothermal performance 

of a wood-frame wall assembly through DELPHIN simulations. Climate parameters at 6 cities 

such as the rainfall, windspeed, relative humidity, temperature, and solar radiation were used 

to judge the accuracy of the various climate data generation methods. A summary of the 

median annual average values calculated with the 6 datasets over the validation period is 

presented in Table 9 at each of the studied locations. Through boxplots of the annual average 

climate parameters, it was shown that the bias correction methods, QDM, MBCn, and R2D2 

corrects for the bias in the mean in raw RCM data, resulting in a more accurate set of data 

when comparing annual averages to the observations during the validation period. The 

morphing method compares as well as the others, however, this is largely due to the nature of 

how morphed data is calculated. By using the observational data as a basis for morphing data, 

this process ensures that morphed data will yield similar results to the observations, especially 

during the validation period.  
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Table 9. Summary of median annual  average climate variables during the validation 

period 

OTTAWA Obs Rcm Morph QDM MBCn R2D2 

Rain [mm] 713 899 680 700 712 770 

Wind Speed [m/s] 3.8 3.6 4.1 3.9 3.9 4.0 

Relative Humidity [%] 71.9 79.0 72.6 73.5 73.5 73.0 

Temperature [°C] 7.1 8.6 5.8 6.6 6.8 6.6 

GHI [Kj m-2] 556 1105 548 568 568 568 

MONTREAL Obs Rcm Morph QDM MBCn R2D2 

Rain [mm] 693 972 755 801 796 849 

Wind Speed [m s-1] 4.4 4.4 4.4 4.4 4.4 4.4 

Relative Humidity [%] 69.0 80.6 68.8 69.4 69.1 68.9 

Temperature [°C] 7.8 8.8 6.8 7.5 7.4 7.5 

GHI [Kj m-2] 552 1103 549 568 568 568 

ST. JOHN’S  Obs Rcm Morph QDM MBCn R2D2 

Rain [mm] 654 1062 675 681 675 726 

Wind Speed [m s-1] 6 9 7 7 7 7 

Relative Humidity [%] 83 84 82 82 82 82 

Temperature [°C] 5 7 5 5 5 5 

GHI [Kj m-2] 454 1067 465 469 469 469 

CALGARY Obs Rcm Morph QDM MBCn R2D2 

Rain [mm] 274 515 336 339 334 341 

Wind Speed [m s-1] 3.9 4.6 3.7 3.8 3.8 3.9 

Relative Humidity [%] 62.5 79.5 62.4 62.4 62.3 62.1 

Temperature [°C] 4.9 4.6 4.3 5.3 5.3 5.3 

GHI [Kj m-2] 542 1009 547 565 565 565 

VANCOUVER Obs Rcm Morph QDM MBCn R2D2 

Rain [mm] 1371 1795 1188 1329 1332 1385 

Wind Speed [m s-1] 3.7 4.1 3.7 3.7 3.7 3.8 

Relative Humidity [%] 79.4 87.8 79.1 78.4 78.5 78.2 

Temperature [°C] 10.4 8.1 10.3 10.9 10.9 10.9 

GHI [Kj m-2] 515 1041 523 531 531 531 

KUUJJUAQ Obs Rcm Morph QDM MBCn R2D2 

Rain [mm] 276 522 269 268 266 282 

Wind Speed [m s-1] 3.8 6.4 3.7 3.9 3.9 3.8 

Relative Humidity [%] 73.8 89.3 73.7 74.3 74.3 74.1 

Temperature [°C] -4.0 -3.2 -4.1 -3.2 -3.4 -3.2 

GHI [Kj m-2] 404 888 409 428 428 428 
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The accuracy of the different climate datasets on the hygrothermal performance of the 

simulated wall assembly are examined through several parameters including the moisture 

content of the OSB, mould index, relative humidity, and temperature on the exterior of the OSB 

sheathing. A summary of the average hygrothermal conditions during the validation period at 

various locations is presented in Table 10. The results indicated that despite relatively accurate 

mean climatic conditions produced by morphing and BC, small variations can result in 

significant differences in the simulated hygrothermal performance of the wall assembly. Since 

the exposure time is a critical factor that influencing the mould growth, the mould growth risk 

is poorly characterized by bias corrected data.  

A similar analysis during two periods separated by 3.5°C of global warming was 

conducted to examine the impacts of the various data generation methods on climate change 

and hygrothermal performance. The consequences of climate change on the climate 

parameters are illustrated in Table 11 for the RCM, morphed, and bias corrected data. This 

table shows that the morphing and BC methods are able to capture the projected changes in 

climate conditions simulated by the RCM, however a difference in the annual averages are 

observed. As a consequence of climate change, the moisture loads are expected to increase 

across all the studied locations, resulting in increased mould growth and wood decay risk due to 

excessive moisture in the OSB, which can be seen in Table 12.  
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Table 10. Summary of median annual average hygrothermal  results during the validation 

period 

OTTAWA Obs Rcm Morph QDM MBCn R2D2 

MC [%] 11.1 8.7 15.3 8.9 9.8 10.3 

MI  0.8 0.0 1.2 0.0 0.0 0.0 

Relative Humidity [%] 79.0 66.7 82.6 67.6 73.0 75.3 

Temperature [°C] 10.5 14.4 11.1 11.1 11.0 10.6 

MONTREAL Obs Rcm Morph QDM MBCn R2D2 

MC [%] 11.3 10.5 14.4 8.9 9.2 10.3 

MI  0.9 0.9 1.0 0.0 0.0 0.0 

Relative Humidity [%] 79.6 75.7 81.5 67.8 69.9 75.2 

Temperature [°C] 10.8 14.4 11.3 11.7 11.5 11.0 

ST. JOHN’S Obs Rcm Morph QDM MBCn R2D2 

MC [%] 19.4 19.7 23.1 10.9 17.2 19.9 

MI  4.6 5.0 4.9 0.0 4.1 4.7 

Relative Humidity [%] 93.7 94.2 92.8 78.0 91.9 94.1 

Temperature [°C] 7.3 9.6 6.7 8.1 7.7 7.5 

CALGARY Obs Rcm Morph QDM MBCn R2D2 

MC [%] 7.4 9.7 7.2 7.6 7.1 7.0 

MI  0.0 1.7 0.0 0.0 0.0 0.0 

Relative Humidity [%] 57.4 71.8 53.5 57.8 53.4 53.1 

Temperature [°C] 7.5 9.2 7.1 8.9 8.9 8.6 

VANCOUVER Obs Rcm Morph QDM MBCn R2D2 

MC [%] 21.4 24.2 20.2 23.1 20.3 19.8 

MI  5.2 5.3 5.0 5.3 5.2 5.0 

Relative Humidity [%] 95.6 97.6 94.1 96.7 95.5 95.4 

Temperature [°C] 12.1 10.9 12.1 12.8 12.6 12.0 

KUUJJUAQ Obs Rcm Morph QDM MBCn R2D2 

MC [%] 10.0 19.0 12.7 9.7 9.0 9.0 

MI  5.2 5.3 5.0 5.3 5.2 5.0 

Relative Humidity [%] 95.6 97.6 94.1 96.7 95.5 95.4 

Temperature [°C] 12.1 10.9 12.1 12.8 12.6 12.0 
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Table 11. Summary of median annual average climate variables during the future 

projected period 

OTTAWA Rcm Morph QDM MBCn R2D2 

Rain [mm] 1073 817 820 812 943 
Wind Speed [m/s] 3.6 4.0 3.9 3.9 3.9 
Relative Humidity [%] 81.4 74.8 74.7 74.7 75.4 
Temperature [°C] 13.5 10.8 12.0 12.0 12.0 

GHI [Kj m-2] 1105 539 561 561 561 

MONTREAL Rcm Morph QDM MBCn R2D2 

Rain [mm] 1177 960 918 902 1010 

Wind Speed [m s-1] 4.3 4.2 4.3 4.3 4.3 

Relative Humidity [%] 82.4 70.7 70.3 70.3 71.0 

Temperature [°C] 13.9 11.9 12.8 12.8 12.8 

GHI [Kj m-2] 1103 540 562 562 562 

ST. JOHN’S  Rcm Morph QDM MBCn R2D2 

Rain [mm] 1181 767 741 736 789 

Wind Speed [m s-1] 8.6 6.6 6.5 6.6 6.6 

Relative Humidity [%] 84.7 82.5 82.0 81.8 82.2 

Temperature [°C] 11.1 9.7 10.0 10.1 10.0 

GHI [Kj m-2] 1067 473 479 479 479 

CALGARY Rcm Morph QDM MBCn R2D2 

Rain [mm] 633 404 413 402 405 

Wind Speed [m s-1] 4.4 3.6 3.7 3.7 3.7 

Relative Humidity [%] 80.4 63.1 63.7 63.3 63.4 

Temperature [°C] 8.9 8.4 9.6 9.6 9.6 

GHI [Kj m-2] 1009 536 550 550 550 

VANCOUVER Rcm Morph QDM MBCn R2D2 

Rain [mm] 1966 1303 1416 1423 1527 

Wind Speed [m s-1] 4.0 3.6 3.5 3.5 3.6 

Relative Humidity [%] 87.9 79.2 78.5 78.4 78.4 

Temperature [°C] 12.0 14.3 14.8 14.8 14.8 

GHI [Kj m-2] 1041 531 547 547 547 

KUUJJUAQ Rcm Morph QDM MBCn R2D2 

Rain [mm] 764 382 405 407 394 

Wind Speed [m s-1] 6.6 3.8 3.9 3.9 3.9 

Relative Humidity [%] 89.6 74.0 74.6 74.8 74.6 

Temperature [°C] 3.1 2.5 3.3 3.2 3.3 

GHI [Kj m-2] 888 381 397 397 397 
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Table 12. Summary of median annual average hygrothermal results during the future 

projected period 

OTTAWA Rcm Morph QDM MBCn R2D2 

MC [%] 9.6 25.1 9.5 10.4 11.2 

MI  0.0 5.0 0.0 0.1 1.0 

Relative Humidity [%] 71.0 89.9 70.5 74.9 78.1 

Temperature [°C] 18.3 12.6 14.9 14.9 14.5 

MONTREAL Rcm Morph QDM MBCn R2D2 

MC [%] 11.7 21.7 9.2 9.5 10.6 

MI  2.7 4.6 0.0 0.0 0.0 

Relative Humidity [%] 78.4 86.9 69.3 70.3 75.9 

Temperature [°C] 18.2 13.5 15.6 15.4 15.2 

ST. JOHN’S Rcm Morph QDM MBCn R2D2 

MC [%] 19.0 34.6 10.9 16.3 20.4 

MI  5.2 5.2 0.1 4.6 5.0 

Relative Humidity [%] 93.2 95.4 77.5 89.7 94.3 

Temperature [°C] 14.4 11.6 12.5 12.3 12.0 

CALGARY Rcm Morph QDM MBCn R2D2 

MC [%] 10.7 11.5 7.6 7.2 7.2 

MI  3.4 0.0 0.0 0.0 0.0 

Relative Humidity [%] 75.2 63.6 58.6 55.5 54.9 

Temperature [°C] 13.2 10.7 12.9 12.8 12.6 

VANCOUVER Rcm Morph QDM MBCn R2D2 

MC [%] 27.1 24.0 22.9 19.3 19.7 

MI  5.3 5.2 5.3 5.2 5.1 

Relative Humidity [%] 94.9 93.3 94.4 92.1 92.6 

Temperature [°C] 15.7 15.9 16.9 16.9 16.5 

KUUJJUAQ Rcm Morph QDM MBCn R2D2 

MC [%] 22.4 12.8 10.0 9.6 9.7 

MI  5.0 1.1 0.0 0.0 0.0 

Relative Humidity [%] 94.9 83.5 73.7 71.4 72.0 

Temperature [°C] 6.2 4.7 5.9 5.9 5.8 
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Among the various locations, Vancouver expectantly proved to be the wettest climate, 

with the most rainfall during the validation, historical, and future periods. Consequently, the 

amount of WDR deposited on the OSB sheathing in Vancouver is the greatest. As a result of 

that, the overall moisture performance of the wood-frame wall assembly simulated in 

Vancouver is the worst by far on account of the excessive moisture in the OSB leading to 

deterioration, and the large amount of mould growth with a MI of 5, covering more than 50% 

of the surface. These conditions are further exacerbated by climate change which leads to 

additional moisture loading and further deterioration of the OSB. However, mould conditions 

remain relatively unchanged compared to the historical conditions.  

In the drier but colder climates of Ottawa and Montreal, the total amount of rainfall and 

thus deposited WDR is significantly less than that of Vancouver. Therefore, the performance 

indicated by MC and MI are less severe. During the validation period, in both cases, the MC in 

the OSB is within an acceptable range and does not exceed the critical threshold of 16% of the 

mass of the OSB sheathing. Similarly, while the mould growth on the exterior of the OSB is not 

negligible, the calculated mould index of 2 suggests only minimal growth which is not visually 

detectable yet. Additionally, due to climate change, both Ottawa and Montreal will experience 

increased rainfall, RH, and temperature. Consequently, the hygrothermal performance of the 

wall assembly will experience worsening moisture conditions, resulting in more mould growth 

and MC in the OSB. In an even colder climate such as that in St. John’s, the RH is historically 

already quite high. Therefore, during the baseline validation period, MC and mould growth are 

significantly higher than that found in Montreal or Ottawa, where deterioration due to 

excessive moisture in the OSB should be expected, and mould growth covers over half of the 
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surface. The effects of climate change in St. John’s are similar to that of other locations, where 

increased rainfall leads to declining moisture performance overall.  

The cold and dry climate of Calgary results in ideal conditions for hygrothermal 

performance in terms of the MC and MI. During the baseline validation period, the relatively 

low temperature, RH, and rainfall results in minimal mould growth, where the MI does not even 

exceed 1 in most cases. Similarly, due to the low rainfall and consequently small amount of 

deposited WDR on the OSB, the MC of the OSB sheathing during this period will not lead to 

deteriorate. As with other locations, climate change will cause increased moisture loading in 

Calgary. Despite simulations showing increased MC and MI in the future, the changes do not 

reach critical levels since the baseline is so low. Kuujjuaq is the only location studied with sub-

zero annual average temperatures, making it the coldest city examined in this work. The cold 

and dry conditions in Kuujjuaq leads to similar hygrothermal performance to that in Calgary. 

Therefore, during the baseline validation period, MC and mould growth is not a problem. And 

despite the similar impacts of climate change on the climatic conditions in Kuujjuaq to those of 

other cities, the moisture performance of the simulated wall assembly will not be severely 

affected by the increases in moisture loads in the future.   
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5.0 Conclusions 

The objective of this work was to assess the value that different climate data generation 

methods have on the effects of hygrothermal performance on a wood-frame wall of relatively 

common construction in Canada; and to examine the potential effects of climate change on the 

hygrothermal performance of the wall assemblies. 6 cities were included in the analysis: 

Ottawa, Montreal, St. John’s, Calgary, Vancouver, and Kuujjuaq, representing different climates 

across Canada. To achieve this goal, multiple climate data processing methods (morph, QDM, 

MCBn, and R2D2) were performed on hourly climate data from CanRCM4 for three periods of 

interest. First, a 20-year validation period spanning 1998-2017, where sufficient hourly 

observational climate data is available and can be compared to the bias corrected results. As 

well as two 30-year periods, the first representing a historical baseline from 1991-2021, and a 

future projected period from 2064-2094 which coincide with an increase of 3.5°C in average 

global temperatures. 1-D hygrothermal simulations through DELPHIN were performed to 

evaluate the impacts of each of the data processing techniques.  

During the validation period, results of the bias corrected climate data indicate that an 

improvement is made compared to the raw RCM data, although the degree of success varies 

depending on the chosen method and climate variable. In this case, the annual total horizontal 

rainfall, annual average wind speed, relative humidity, temperature, solar irradiance, and WDR 

were examined. Generally, the RCM is seen to overestimate the amount of total annual 

horizontal rainfall and average solar radiation in the form of GHI, in comparison to 

observations. For example, in Vancouver, the median annual average total rainfall was around 

1400mm, but RCM data calculated a median closer to 1800mm. Similarly, GHI is severely 
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overestimated at all locations, often by 500Kj/m2 or more. Therefore, overall, the climatic 

variables presented by raw RCM data compares the worst against the observations; while the 

bias corrected data adequately correct for biases in the RCM, which result in better agreement 

with the observations. Similarly, morphed results typically perform as well as bias corrected 

data during the validation periods in terms of annual means. However, morphed data does not 

necessarily reduce the bias present in RCM data since changes are applied to the observational 

dataset, whereas bias correction methods adjust RCM data instead. These difference in data 

processing techniques have significant impacts on the hygrothermal assessments.  

Hygrothermal performance of the various climate datasets were simulated using 

DELPHIN. The results included the relative humidity, temperature, moisture content and mould 

index on the OSB sheathing. The hygrothermal simulations resulted in some variability between 

the datasets, but the accuracy of the climate data was indicative of the hygrothermal 

performance. RCM data consistently compares the poorest against the observations in each of 

the studied parameters. For instance, due to the large deviations in climatic parameters in the 

RCM compared to observations, the hygrothermal simulation in Calgary resulted in an average 

mould index of 2 across the whole validation period, according to RCM climate data, whereas 

none of the other datasets predicted any at all. The other datasets, morph, QDM, MBCn, and 

R2D2 present reasonably accurate results for RH and temperature on the exterior of the OSB. 

However, for complex variables such as the MC and MI, which takes into consideration many 

different climatic conditions, there is varying degrees of success in the correction of climate 

data. Most notably, QDM, MBCn, and R2D2 often fail to replicate the same degree of mould 

growth present in the simulation with observational data. However, the morphing method is 



125 
 

somewhat able to reproduce the mould growth profile in the simulation. The relative success of 

the morphing method is strongly associated with the fact that RCM data used to calculate the 

morphing factors are very close to the observational period in time, and therefore, the 

calculated morphing factors are minimal. Consequently, applying these relatively small 

morphing factors to the observational data result in only slight differences which affect the 

mean, but the variance in time is largely identical to the original dataset, resulting in similar 

mould growth profiles. This shows that the actual time series of the climatic variables is another 

important parameter to consider.  

In the absence of observed climate data, it is difficult to judge which dataset yields the 

most accurate simulations in absolute terms when considering the historical and future time 

periods. However, the relative trends can be used to examine how climate change will affect 

hygrothermal performance in the future. Under 3.5°C of global warming with reference to the 

historical 1991-2021 period, all the examined locations will experience warmer and wetter 

climatic conditions. According to the RCM, average rainfall will increase by at least 9% in 

Vancouver, while the largest gain is seen in Kuujjuaq with an estimated increment of 49%. 

Consequently, simulated MC of the OSB will increase due to rising amounts of deposited WDR. 

For historically wet climates like Vancouver the conditions will be further exacerbated, with MC 

increasing from 24% to 27%. As a result of increasing RH and temperature, conditions 

favourable for mould growth will also become more prevalent in the future, resulting in 

increased mould growth risks. For Ottawa and Montreal, this change in climate results in a 

transition from little to no observable mould growth (MI=2), to conditions where mould growth 

could be visually detected (MI=>3). Overall, moisture loads are expected to increase in the 
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future due to climate change; consequently, this will reduce the durability of these types of 

wood-frame walls in the studied locations.  

As seen during the validation periods, QDM, MBCn, and R2D2 bias corrected datasets 

are applicable in reducing the bias in the raw RCM data in terms the mean. However, these 

methods generally do not replicate the temporal variability seen in the observational dataset, 

which is evident from the mould index profiles. On the other hand, simulations with morphed 

data are limited to historically observed weather events and do not allow for new sequences of 

events to occur. Consequently, imposing a historical variance on the future projected climate 

results in some conflicting outcomes in the hygrothermal performance of the wall assembly, 

despite agreement in the mean of climatic parameters calculated with bias corrected data.  

 One of the limitations in the proposed work arises from the time-series shuffling 

introduced by the multivariate bias correction methods, MBCn and R2D2, where the resulting 

corrected solar radiation variables are not suitable for use in hygrothermal simulations. 

Consequently, QDM corrected solar radiation is substituted in place of these values, because 

QDM leaves the diurnal cycle intact. For this reason, the effects of the multivariate bias 

correction methods on the hygrothermal performance of the simulated wall assembly could be 

muted. Another limitation arises from the fact that the orientation of the wall assembly was 

chosen based on the side with the most WDR during the 1998-2017 period using observational 

data. Therefore, in this setup, the WDR calculated with observational data will typically 

compare higher than other datasets. Future work should include simulations with the wall 

facing different orientations to better examine the impacts of the different climate data 

generation methods.  
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 Lastly, tshe CanRCM4 database, from which hourly climate model data was obtained for 

this work, consists of 15 ensemble members where each is the product of slightly perturbed 

physics parameterizations. Importantly, these 15 members should be view as equally likely 

scenarios for future projections. However, for this work, only one member of the ensemble was 

chosen since this was sufficient in examining the relative differences in hygrothermal 

performance between the various data generation methods. But in order to more accurately 

study the climate change impacts, future work should incorporate all 15 members of the 

ensemble into the analysis to ensure the observed climate change signal is robust.  



128 
 

References 

[1] Dukhan, T., & Sushama, L. (2021). Understanding and modelling future wind-driven rain 

loads on building envelopes for Canada. Building and Environment, 196, 107800. 

https://doi.org/10.1016/j.buildenv.2021.107800  

[2] Hukka, A., & Viitanen, H. A. (1999). A mathematical model of mould growth on wooden 

material. Wood Science and Technology : Journal of the International Academy of Wood 

Science, 33(6), 475–485. https://doi.org/10.1007/s002260050131  

[3] Viitanen, H., Toratti, T., Makkonen, L., Peuhkuri, R., Ojanen, T., Ruokolainen, L., & 

Raisanen, J. (2010). Towards modelling of decay risk of wooden materials. European 

Journal of Wood and Wood Products, 68(3), 303–313. https://doi.org/10.1007/s00107-

010-0450-x  

[4] Blocken, B., & Carmeliet, J. (2008). Guidelines for the required time resolution of 

meteorological input data for wind-driven rain calculations on buildings. Journal of Wind 

Engineering &amp; Industrial Aerodynamics, 96(5), 621–639. 

https://doi.org/10.1016/j.jweia.2008.02.008  

[5] Siu, C. Y., Wang, Y. Y., & Liao, Z. (2019). Impact of temperature and moisture dependent 

conductivity of building insulation materials on estimating heating and cooling load 

using typical and historical weather data. IOP Conference Series: Materials Science and 

Engineering, 609(7), 072017. https://doi.org/10.1088/1757-899x/609/7/072017  

[6] Belcher, S. E., Hacker, J. N., &amp; Powell, D. S. (2005). Constructing design weather 

data for future climates. Building Services Engineering Research and Technology, 26(1), 

49–61. https://doi.org/10.1191/0143624405bt112oa 



129 
 

[7] Jentsch, M. F., Bahaj, A. B. S., & James, P. A. B. (2008). Climate change future proofing of 

buildings—generation and assessment of building simulation weather files. Energy 

&amp; Buildings, 40(12), 2148–2168. https://doi.org/10.1016/j.enbuild.2008.06.005  

[8] de Wilde, P., & Coley, D. (2012). The implications of a changing climate for buildings. 

Building and Environment, 55, 1–7. https://doi.org/10.1016/j.buildenv.2012.03.014  

[9] Dear, R. D. (2006). Adapting buildings to a changing climate: But what about the 

occupants? Building Research &amp; Information, 34(1), 78–81. 

https://doi.org/10.1080/09613210500336594 

[10] Guan, L. (2009). Preparation of future weather data to study the impact of climate 

change on buildings. Building and Environment, 44(4), 793–800. 

https://doi.org/10.1016/j.buildenv.2008.05.021  

[11] Nik, V. M. (2017). Application of typical and extreme weather data sets in the 

hygrothermal simulation of building components for future climate - a case study for a 

wooden frame wall. Energy &amp; Buildings, 154, 30–45. 

https://doi.org/10.1016/j.enbuild.2017.08.042  

[12] Palmer, T. N., & Weisheimer, A. (2011). Diagnosing the causes of bias in climate models 

– why is it so hard? Geophysical &amp; Astrophysical Fluid Dynamics, 105(2-3), 351–

365. https://doi.org/10.1080/03091929.2010.547194 

[13] Jun, M., Knutti, R., & Nychka, D. W. (2008). Spatial analysis to quantify numerical model 

bias and dependence. Journal of the American Statistical Association, 103(483), 934–

947. https://doi.org/10.1198/016214507000001265 

https://doi.org/10.1080/03091929.2010.547194
https://doi.org/10.1198/016214507000001265


130 
 

[14] Lafon, T., Dadson, S., Buys, G., & Prudhomme, C. (2013). Bias correction of daily 

precipitation simulated by a regional climate model: a comparison of methods. 

International Journal of Climatology, 33(6), 1367–1381. 

https://doi.org/10.1002/joc.3518 

[15] Luo, M., Liu, T., Meng, F., Duan, Y., Frankl, A., Bao, A., & De Maeyer, P. (2018). 

Comparing bias correction methods used in downscaling precipitation and temperature 

from regional climate models: a case study from the kaidu river basin in western china. 

Water, 10(8), 1046–1046. https://doi.org/10.3390/w10081046 

[16] Fang, G. H., Yang, J., Chen, Y. N., & Zammit, C. (2015). Comparing bias correction 

methods in downscaling meteorological variables for a hydrologic impact study in an 

arid area in china. Hydrology and Earth System Sciences, 19(6), 2547–2559. 

https://doi.org/10.5194/hess-19-2547-2015  

[17] Gaur, A., Lacasse, M., & Armstrong, M. (2019). Climate data to undertake hygrothermal 

and whole building simulations under projected climate change influences for 11 

canadian cities. Data, 4(2), 72–72. https://doi.org/10.3390/data4020072 

[18] Straube, J., & Burnett, E. (2001). Overview of hygrothermal (HAM) analysis methods. 

Moisture analysis and condensation control in building envelopes, 81-89. 

[19] Hens, H. (2002). Heat, air and moisture transfer in highly insulated building envelopes 

(Hamtie) (p. 22). FaberMaunsell Limited. 

[20] Maref, W., Kumaran, K., Lacasse, M. A., Swinton, M. C., &amp; van Reenen, D. (2002). 

Laboratory measurements and benchmarking of an advanced Hygrothermal model. 



131 
 

Proceeding of International Heat Transfer Conference 12. 

https://doi.org/10.1615/ihtc12.720  

[21] Kalamees, T., & Vinha, J. (2003). Hygrothermal calculations and laboratory tests on 

timber-framed wall structures. Building and Environment, 38(5), 689–697. 

https://doi.org/10.1016/S0360-1323(02)00207-X  

[22] Delgado, J. M., Ramos, N. M., Barreira, E., & de Freitas, V. P. (2010). A critical review of 

HYGROTHERMAL models used in porous building materials. Journal of Porous Media, 

13(3), 221–234. https://doi.org/10.1615/jpormedia.v13.i3.30 

[23] Djebbar, R., Mukhopadhyaya, P., & Kumaran, M. K. (2002). Retrofit Strategies for a High-

Rise Wall System and Analyses of their Hygrothermal Effects. In Proceedings of the 11th 

symposium for building physics, Dresden, Germany (pp. 738-46). 

[24] Zhou, X., Derome, D., & Carmeliet, J. (2017). Hygrothermal modeling and evaluation of 

freeze-thaw damage risk of masonry walls retrofitted with internal insulation. Building 

and Environment, 125, 285–298. https://doi.org/10.1016/j.buildenv.2017.08.001  

[25] Zhou, X., Carmeliet, J., &amp; Derome, D. (2020). Assessment of risk of freeze-thaw 

damage in internally insulated masonry in a changing climate. Building and 

Environment, 175. https://doi.org/10.1016/j.buildenv.2020.106773  

[26] Mukhopadhyaya, P., Kumaran, K., Tariku, F., & Van Reenen, D. (2006). Application of 

hygrothermal modeling tool to assess moisture response of exterior walls. Journal of 

architectural engineering, 12(4), 178-186. 

[27] McClung, R., Ge, H., Straube, J., & Wang, J. (2014). Hygrothermal performance of cross-

laminated timber wall assemblies with built-in moisture: field measurements and 

https://doi.org/10.1615/jpormedia.v13.i3.30


132 
 

simulations. Building and Environment, 71, 95–110. 

https://doi.org/10.1016/j.buildenv.2013.09.008  

[28] Wang, L., & Ge, H. (2016). Hygrothermal performance of cross-laminated timber wall 

assemblies: a stochastic approach. Building and Environment, 97, 11–25. 

https://doi.org/10.1016/j.buildenv.2015.11.034  

[29] Vololonirina, O., Coutand, M., & Perrin, B. (2014). Characterization of hygrothermal 

properties of wood-based products - impact of moisture content and temperature. 

Construction and Building Materials, 63, 223–233. 

https://doi.org/10.1016/j.conbuildmat.2014.04.014 

[30] Sedlbauer, K. (2002). Prediction of mould growth by hygrothermal calculation. Journal of 

Thermal Envelope and Building Science, 25(4), 321–336. 

https://doi.org/10.1177/0075424202025004093  

[31] Johansson, P., Svensson, T., & Ekstrand-Tobin, A. (2013). Validation of critical moisture 

conditions for mould growth on building materials. Building and Environment, 62, 201–

209. https://doi.org/10.1016/j.buildenv.2013.01.012 

[32] Gradeci, K., Kohler, J., Labonnote, N., Time, B., & 11th Nordic Symposium on Building 

Physics, NSB 2017 11 2017 06 11 - 2017 06 14. (2017). Mould models applicable to 

wood-based materials-a generic framework. Energy Procedia, 132, 177–182. 

https://doi.org/10.1016/j.egypro.2017.09.751 

[33] Fedorik, F., & Illikainen, K. (2013). Ham and mould growth analysis of a wooden wall. 

International Journal of Sustainable Built Environment, 2(1), 19–26. 

https://doi.org/10.1016/j.ijsbe.2013.09.002  



133 
 

[34] Viitanen, H., & Ojanen, T. (2007). Improved model to predict mold growth in building 

materials. Thermal Performance of the Exterior Envelopes of Whole Buildings X–

Proceedings CD, 2-7. 

[35] Bindoff, N.L.; Stott, P.A.; Achuta Rao, K.M.; Allen, M.R.; Gillett, N.; Gutzler, D.; Hansingo, 

K.; Hegerl, G.; Hu, Y.; Jain, S.; et al. (2013). Detection and Attribution of Climate Change: 

From Global to Regional. Climate Change 2013: The Physical Science Basis. Contribution 

of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on 

Climate Change. 

[36] Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; 

Gutowski,W.J.; Johns, T.; Krinner, G.; et al. (2013). Long-term Climate Change: 

Projections, Commitments and Irreversibility. Climate Change 2013: The Physical 

Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change.  

[37] Zhang, X., Flato, G., Kirchmeler, M., Vincent, L., Wan, H., Wang, X., Rong, R., Fyfe, J., Li, 

G., &amp; Kharin, V. V. (2019). Temperature and precipitation across Canada. 

https://doi.org/10.4095/327811 

[38] Detlef, P. van V., Jae, E., Mikiko, K., Keywan, R., Allison, T., Kathy, H., George, C. H., Tom, 

K., Volker, K., Jean-Francois, L., Toshihiko, M., Malte, M., Nebojsa, N., Steven, J. S., & 

Steven, K. R. (2011). The representative concentration pathways: an overview. Climatic 

Change, 109(1-2), 5–5. https://doi.org/10.1007/s10584-011-0148-z  

https://doi.org/10.4095/327811


134 
 

[39] Gaterell, M. R., & McEvoy, M. E. (2005). The impact of climate change uncertainties on 

the performance of energy efficiency measures applied to dwellings. Energy & Buildings, 

37(9), 982–995. https://doi.org/10.1016/j.enbuild.2004.12.015  

[40] Jentsch, M. F., Bahaj, A. B. S., & James, P. A. B. (2008). Climate change future proofing of 

buildings—generation and assessment of building simulation weather files. Energy 

&amp; Buildings, 40(12), 2148–2168. https://doi.org/10.1016/j.enbuild.2008.06.005  

[41] Berger, T., Amann, C., Formayer, H., Korjenic, A., Pospischal, B., Neururer, C., &amp; 

Smutny, R. (2014). Impacts of climate change upon cooling and heating energy demand 

of office buildings in vienna, austria. Energy &amp; Buildings, 80, 517–530. 

https://doi.org/10.1016/j.enbuild.2014.03.084 

[42] Wan, K. K. W., Li, D. H. W., Pan, W., &amp; Lam, J. C. (2012). Impact of climate change 

on building energy use in different climate zones and mitigation and adaptation 

implications. Applied Energy, 97, 274–282. 

https://doi.org/10.1016/j.apenergy.2011.11.048 

[43] Wang, X., Chen, D., &amp; Ren, Z. (2010). Assessment of climate change impact on 

residential building heating and cooling energy requirement in australia. Building and 

Environment, 45(7), 1663–1682. https://doi.org/10.1016/j.buildenv.2010.01.022 

[44] Zmeureanu, R., &amp; Renaud, G. (2008). Estimation of potential impact of climate 

change on the heating energy use of existing houses. Energy Policy, 36(1), 303–310. 

https://doi.org/10.1016/j.enpol.2007.09.021 

[45] Nik, V. M., &amp; Sasic Kalagasidis, A. (2013). Impact study of the climate change on the 

energy performance of the building stock in stockholm considering four climate 



135 
 

uncertainties. Building and Environment, 60, 291–304. 

https://doi.org/10.1016/j.buildenv.2012.11.005  

[46] Coley, D., &amp; Kershaw, T. (2010). Changes in internal temperatures within the built 

environment as a response to a changing climate. Building and Environment, 45(1), 89–

93. https://doi.org/10.1016/j.buildenv.2009.05.009  

[47] Coley, D., Kershaw, T., &amp; Eames, M. (2012). A comparison of structural and 

behavioural adaptations to future proofing buildings against higher temperatures. 

Building and Environment, 55, 159–166. https://doi.org/10.1016/j.buildenv.2011.12.011 

[48] Ren, Z., Chen, Z., &amp; Wang, X. (2011). Climate change adaptation pathways for 

australian residential buildings. Building and Environment, 46(11), 2398–2412. 

https://doi.org/10.1016/j.buildenv.2011.05.022  

[49] Mavrogianni, A., Wilkinson, P., Davies, M., Biddulph, P., &amp; Oikonomou, E. (2012). 

Building characteristics as determinants of propensity to high indoor summer 

temperatures in london dwellings. Building and Environment, 55, 117–130. 

https://doi.org/10.1016/j.buildenv.2011.12.003  

[50] Lomas, K. J., &amp; Giridharan, R. (2012). Thermal comfort standards, measured 

internal temperatures and thermal resilience to climate change of free-running 

buildings: a case-study of hospital wards. Building and Environment, 55, 57–72. 

https://doi.org/10.1016/j.buildenv.2011.12.006 

[51] Gupta, R., &amp; Gregg, M. (2012). Using uk climate change projections to adapt 

existing english homes for a warming climate. Building and Environment, 55, 20–42. 

https://doi.org/10.1016/j.buildenv.2012.01.014  

https://doi.org/10.1016/j.buildenv.2011.12.003


136 
 

[52] Wang, H., &amp; Chen, Q. (2014). Impact of climate change heating and cooling energy 

use in buildings in the united states. Energy and Buildings, 82(C). 

https://doi.org/10.1016/j.enbuild.2014.07.034  

[53] Grossi, C. M., Brimblecombe, P., &amp; Harris, I. (2007). Predicting long term freeze-

thaw risks on europe built heritage and archaeological sites in a changing climate. 

Science of the Total Environment, 377(2-3), 273–281. 

https://doi.org/10.1016/j.scitotenv.2007.02.014   

[54] Kumar, P., &amp; Imam, B. (2013). Footprints of air pollution and changing environment 

on the sustainability of built infrastructure. Science of The Total Environment, 444, 85–

101. https://doi.org/10.1016/j.scitotenv.2012.11.056 

[55] Talukdar, S., Banthia, N., &amp; Grace, J. R. (2012). Carbonation in concrete 

infrastructure in the context of global climate change - part 1: experimental results and 

model development. Cement and Concrete Composites, 34(8), 924–930. 

https://doi.org/10.1016/j.cemconcomp.2012.04.011  

[56] Nik, V. M., Sasic Kalagasidis, A., &amp; Kjellström, E. (2012). Assessment of 

hygrothermal performance and mould growth risk in ventilated attics in respect to 

possible climate changes in sweden. Building and Environment, 55, 96–109. 

https://doi.org/10.1016/j.buildenv.2012.01.024 

[57] Sehizadeh, A., &amp; Ge, H. (2016). Impact of future climates on the durability of typical 

residential wall assemblies retrofitted to the passivehaus for the eastern canada region. 

Building and Environment, 97, 111–125. https://doi.org/10.1016/j.buildenv.2015.11.032 

https://doi.org/10.1016/j.scitotenv.2007.02.014
https://doi.org/10.1016/j.scitotenv.2012.11.056
https://doi.org/10.1016/j.buildenv.2015.11.032


137 
 

[58] Zhou, X., Derome, D., &amp; Carmeliet, J. (2016). Robust moisture reference year 

methodology for hygrothermal simulations. Building and Environment, 110, 23–35. 

https://doi.org/10.1016/j.buildenv.2016.09.021  

[59] Gaur, A., Lu, H., Lacasse, M., Ge, H., &amp; Hill, F. (2021). Future projected changes in 

moisture index over canada. Building and Environment, 199. 

https://doi.org/10.1016/j.buildenv.2021.107923  

[60] Robert Lisø, K., Olav Hygen, H., Kvande, T., &amp; Vincent Thue, J. (2006). Decay 

potential in wood structures using climate data. Building Research &amp; Information, 

34(6), 546–551. https://doi.org/10.1080/09613210600736248  

[61] Nik, V. M., Mundt-Petersen, S. O., Kalagasidis, A. S., &amp; De Wilde, P. (2015). Future 

moisture loads for building facades in sweden: climate change and wind-driven rain. 

Building and Environment, 93, 362–375. https://doi.org/10.1016/j.buildenv.2015.07.012 

[62] Nik, V. M., Sasic Kalagasidis, A., &amp; Kjellström, E. (2012). Assessment of 

hygrothermal performance and mould growth risk in ventilated attics in respect to 

possible climate changes in sweden. Building and Environment, 55, 96–109. 

https://doi.org/10.1016/j.buildenv.2012.01.024 

[63] Talukdar, S., Banthia, N., &amp; Grace, J. R. (2012). Carbonation in concrete 

infrastructure in the context of global climate change - part 1: experimental results and 

model development. Cement and Concrete Composites, 34(8), 924–930. 

https://doi.org/10.1016/j.cemconcomp.2012.04.011  

[64] Talukdar, S., Banthia, N., Grace, J. R., &amp; Cohen, S. (2012). Carbonation in concrete 

infrastructure in the context of global climate change: part 2 - canadian urban 



138 
 

simulations. Cement and Concrete Composites, 34(8), 931–935. 

https://doi.org/10.1016/j.cemconcomp.2012.04.012  

[65] Köliö, A., Pakkala, T. A., Lahdensivu, J., &amp; Kiviste, M. (2014). Durability demands 

related to carbonation induced corrosion for finnish concrete buildings in changing 

climate. Engineering Structures, 62-63, 42–52. 

https://doi.org/10.1016/j.engstruct.2014.01.032 

[66] Saha, M., &amp; Eckelman, M. J. (2014). Urban scale mapping of concrete degradation 

from projected climate change. Urban Climate, 9, 101–114. 

https://doi.org/10.1016/j.uclim.2014.07.007  

[67] Herrera, M., Natarajan, S., Coley, D. A., Kershaw, T., Ramallo-González, A. P., Eames, M., 

Fosas, D., & Wood, M. (2017). A review of current and future weather data for building 

simulation. Building Services Engineering Research and Technology, 38(5), 602–627. 

https://doi.org/10.1177/0143624417705937 

[68] Eames, M., Kershaw, T., &amp; Coley, D. (2010). On the creation of future probabilistic 

design weather years from UKCP09. Building Services Engineering Research and 

Technology, 32(2), 127–142. https://doi.org/10.1177/0143624410379934 

[69] Robert, A., &amp; Kummert, M. (2012). Designing net-zero energy buildings for the 

future climate, not for the past. Building and Environment, 55, 150–158. 

https://doi.org/10.1016/j.buildenv.2011.12.014 

[70] Holmes, M. J., &amp; Hacker, J. N. (2007). Climate change, thermal comfort and energy: 

meeting the design challenges of the 21st century. Energy &amp; Buildings, 39(7), 802–

814. https://doi.org/10.1016/j.enbuild.2007.02.009 

https://doi.org/10.1177/0143624417705937
https://doi.org/10.1177/0143624410379934
https://doi.org/10.1016/j.enbuild.2007.02.009


139 
 

[71] Tian, W., Heo, Y., de Wilde, P., Li, Z., Yan, D., Park, C. S., Feng, X., &amp; Augenbroe, G. 

(2018). A review of uncertainty analysis in building energy assessment. Renewable 

&amp; Sustainable Energy Reviews, 93, 285–301. 

https://doi.org/10.1016/j.rser.2018.05.029 

[72] Kolokotroni, M., Ren, X., Davies, M., &amp; Mavrogianni, A. (2012). London's urban heat 

island: impact on current and future energy consumption in office buildings. Energy 

&amp; Buildings, 47, 302–311. https://doi.org/10.1016/j.enbuild.2011.12.019 

[73] Cavka, B. T., & Ek, M. (2018). Future weather files to support climate resilient building 

design in Vancouver (Doctoral dissertation, University of British Columbia). 

[74] Jentsch, M. F., James, P. A. B., Bourikas, L., &amp; Bahaj, A. B. S. (2013). Transforming 

existing weather data for worldwide locations to enable energy and building 

performance simulation under future climates. Renewable Energy, 55, 514–524. 

https://doi.org/10.1016/j.renene.2012.12.049 

[75] Troup, L., & Fannon, D. (2016). Morphing climate data to simulate building energy 

consumption. Proceedings of SimBuild, 6(1). 

[76] Lu, J., Marincioni, V., Orr, S. A., &amp; Altamirano, H. (2021). The implications of future 

wind-driven rain exposure on the hygrothermal performance of internally insulated 

solid walls in London. The Implications of Future Wind-Driven Rain Exposure on the 

Hygrothermal Performance of Internally Insulated Solid Walls in London. 

https://doi.org/10.14293/icmb210038 

https://doi.org/10.1016/j.rser.2018.05.029
https://doi.org/10.1016/j.enbuild.2011.12.019
https://doi.org/10.14293/icmb210038


140 
 

[77] Hall, I. J., Prairie, R. R., Anderson, H. E., & Boes, E. C. (1978). Generation of a typical 

meteorological year (No. SAND-78-1096C; CONF-780639-1). Sandia Labs., Albuquerque, 

NM (USA). 

[78] Bre, F., &amp; Fachinotti, V. D. (2016). Generation of typical meteorological years for 

the argentine littoral region. Energy &amp; Buildings, 129, 432–444. 

https://doi.org/10.1016/j.enbuild.2016.08.006 

[79] Chan, A. L. S., Chow, T. T., Fong, S. K. F., &amp; Lin, J. Z. (2006). Generation of a typical 

meteorological year for hong kong. Energy Conversion and Management, 47(1), 87–96. 

https://doi.org/10.1016/j.enconman.2005.02.010 

[80] Nascimento, M. L. M., Bauer, E., de Souza, J. S., &amp; Zanoni, V. A. G. (2016). Wind-

driven rain incidence parameters obtained by hygrothermal simulation. Journal of 

Building Pathology and Rehabilitation, 1(1), 1–7. https://doi.org/10.1007/s41024-016-

0006-5  

[81] Wang, C., Zhang, L., Lee, S.-K., Wu, L., &amp; Mechoso, C. R. (2014). A global perspective 

on cmip5 climate model biases. Nature Climate Change, 4(3), 201–205. 

https://doi.org/10.1038/nclimate2118  

[82] Ashfaq, M., Bowling, L. C., Cherkauer, K., Pal, J. S., &amp; Diffenbaugh, N. S. (2010). 

Influence of climate model biases and daily-scale temperature and precipitation events 

on hydrological impacts assessment: a case study of the united states. Journal of 

Geophysical Research: Atmospheres, 115(D14). https://doi.org/10.1029/2009JD012965 

https://doi.org/10.1016/j.enbuild.2016.08.006
https://doi.org/10.1016/j.enconman.2005.02.010
https://doi.org/10.1007/s41024-016-0006-5
https://doi.org/10.1007/s41024-016-0006-5
https://doi.org/10.1038/nclimate2118
https://doi.org/10.1029/2009JD012965


141 
 

[83] Xu, C.-yu. (1999). From GCMS to river flow: A review of downscaling methods and 

hydrologic modelling approaches. Progress in Physical Geography: Earth and 

Environment, 23(2), 229–249. https://doi.org/10.1177/030913339902300204 

[84] Berg, P., Feldmann, H., &amp; Panitz, H.-J. (2012). Bias correction of high resolution 

regional climate model data. Journal of Hydrology, 448-449, 80–92. 

https://doi.org/10.1016/j.jhydrol.2012.04.026 

[85] Haddad, Z. S., &amp; Rosenfeld, D. (1997). Optimality of empirical Z-R relations. 

Quarterly Journal of the Royal Meteorological Society, 123(541), 1283–1293. 

https://doi.org/10.1002/qj.49712354107 

[86] Zscheischler, J., Fischer, E. M., &amp; Lange, S. (2019). The effect of univariate bias 

adjustment on multivariate hazard estimates. Earth System Dynamics, 10(1), 31–43. 

https://doi.org/10.5194/esd-10-31-2019 

[87] François, B., Vrac, M., Cannon, A. J., Robin, Y., &amp; Allard, D. (2020). Multivariate bias 

corrections of climate simulations: Which benefits for which losses? Earth System 

Dynamics, 11(2), 537–562. https://doi.org/10.5194/esd-11-537-2020 

[88] Gaur, A., Lacasse, M., &amp; Armstrong, M. (2019). Climate data to undertake 

hygrothermal and whole building simulations under projected climate change influences 

for 11 canadian cities. Data, 4(2), 72–72. https://doi.org/10.3390/data4020072 

[89] Laouadi, A., Gaur, A., Lacasse, M. A., Bartko, M., &amp; Armstrong, M. (2020). 

Development of reference summer weather years for analysis of overheating risk 

in buildings. Journal of Building Performance Simulation, 13(3), 301–319. 

https://doi.org/10.1080/19401493.2020.1727954 

https://doi.org/10.1177/030913339902300204
https://doi.org/10.1002/qj.49712354107
https://doi.org/10.5194/esd-10-31-2019
https://doi.org/10.5194/esd-11-537-2020
https://doi.org/10.1080/19401493.2020.1727954


142 
 

[90] Jalaei, F., Guest, G., Gaur, A., &amp; Zhang, J. (2020). Exploring the effects that a non-

stationary climate and dynamic electricity grid mix has on whole building life cycle 

assessment: a multi-city comparison. Sustainable Cities and Society, 61. 

https://doi.org/10.1016/j.scs.2020.102294  

[91] Vandemeulebroucke, I., Defo, M., Lacasse, M. A., Caluwaerts, S., &amp; Van Den 

Bossche, N. (2021). Canadian initial-condition climate ensemble: hygrothermal 

simulation on wood-stud and retrofitted historical masonry. Building and Environment, 

187. https://doi.org/10.1016/j.buildenv.2020.107318 

[92] Defo, M., &amp; Lacasse, M. (2021). Effects of climate change on the moisture 

performance of tallwood building envelope. Buildings, 11(2), 35–35. 

https://doi.org/10.3390/buildings11020035  

[93] National Research Council Canada, Institute for Research in Construction. (2015). 

National building code of Canada. 

[94] von Salzen, K., Scinocca, J. F., McFarlane, N. A., Li, J., Cole, J. N., Plummer, D., Verseghy, 

D., Reader, M. C., Ma, X., Lazare, M., &amp; Solheim, L. (2013). The Canadian Fourth 

Generation Atmospheric Global Climate Model (CANAM4). part I: Representation of 

physical processes. Atmosphere-Ocean, 51(1), 104–125. 

https://doi.org/10.1080/07055900.2012.755610 

[95] Scinocca, J. F., Kharin, V. V., Jiao, Y., Qian, M. W., Lazare, M., Solheim, L., Flato, G. M., 

Biner, S., Desgagne, M., &amp; Dugas, B. (2015). Coordinated global and regional 

climate modeling*. Journal of Climate, 29(1), 17–35. https://doi.org/10.1175/jcli-d-15-

0161.1 

https://doi.org/10.1016/j.scs.2020.102294
https://doi.org/10.1016/j.buildenv.2020.107318
https://doi.org/10.1080/07055900.2012.755610
https://doi.org/10.1175/jcli-d-15-0161.1
https://doi.org/10.1175/jcli-d-15-0161.1


143 
 

[96] Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., Kharin, 

V. V., Lee, W. G., &amp; Merryfield, W. J. (2011). Carbon emission limits required to 

satisfy future representative concentration pathways of greenhouse gases. Geophysical 

Research Letters, 38(5). https://doi.org/10.1029/2010gl046270 

[97] van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, 

G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., 

Smith, S. J., &amp; Rose, S. K. (2011). The Representative Concentration Pathways: An 

overview. Climatic Change, 109(1-2), 5–31. https://doi.org/10.1007/s10584-011-0148-z 

[98] Sanford, T., Frumhoff, P. C., Luers, A., &amp; Gulledge, J. (2014). The climate policy 

narrative for a dangerously warming world. Nature Climate Change, 4(3), 164–166. 

https://doi.org/10.1038/nclimate2148 

[99] Gaur, A., &amp; Simonovic, S. P. (2015). Towards reducing climate change impact 

assessment process uncertainty. Environmental Processes, 2(2), 275–290. 

https://doi.org/10.1007/s40710-015-0070-x 

[100] Saha, S., et al. (2010), NCEP Climate Forecast System Reanalysis (CFSR) Selected Hourly 

Time-Series Products, January 1979 to December 2010, 

https://doi.org/10.5065/D6513W89, Research Data Archive at the National Center for 

Atmospheric Research, Computational and Information Systems Laboratory, Boulder, 

Colo.  

[101] Cannon, A. J., Sobie, S. R., &amp; Murdock, T. Q. (2015). Bias correction of GCM 

precipitation by quantile mapping: How well do methods preserve changes in quantiles 

https://doi.org/10.1029/2010gl046270
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1038/nclimate2148
https://doi.org/10.1007/s40710-015-0070-x


144 
 

and extremes? Journal of Climate, 28(17), 6938–6959. https://doi.org/10.1175/jcli-d-14-

00754.1 

[102] Olsson, J., Berggren, K., Olofsson, M., &amp; Viklander, M. (2009). Applying climate 

model precipitation scenarios for urban hydrological assessment: A case study in Kalmar 

City, Sweden. Atmospheric Research, 92(3), 364–375. 

https://doi.org/10.1016/j.atmosres.2009.01.015 

[103] Willems, P., &amp; Vrac, M. (2011). Statistical precipitation downscaling for small-scale 

hydrological impact investigations of climate change. Journal of Hydrology, 402(3-4), 

193–205. https://doi.org/10.1016/j.jhydrol.2011.02.030 

[104] Cannon, A. J. (2017). Multivariate quantile mapping bias correction: An n-dimensional 

probability density function transform for climate model simulations of multiple 

variables. Climate Dynamics, 50(1-2), 31–49. https://doi.org/10.1007/s00382-017-3580-

6 

[105] Vrac, M. (2018). Multivariate bias adjustment of high-dimensional climate simulations: 

The rank resampling for distributions and dependences (R2d2) bias correction. 

Hydrology and Earth System Sciences, 22(6), 3175–3196. https://doi.org/10.5194/hess-

22-3175-2018 

[106] Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., &amp; Wilby, R. (2004). The 

schaake shuffle: A method for reconstructing space–time variability in forecasted 

precipitation and temperature fields. Journal of Hydrometeorology, 5(1), 243–262. 

https://doi.org/10.1175/1525-7541(2004)005&lt;0243:tssamf&gt;2.0.co;2 

https://doi.org/10.1175/jcli-d-14-00754.1
https://doi.org/10.1175/jcli-d-14-00754.1
https://doi.org/10.1016/j.atmosres.2009.01.015
https://doi.org/10.1016/j.jhydrol.2011.02.030
https://doi.org/10.1007/s00382-017-3580-6
https://doi.org/10.1007/s00382-017-3580-6
https://doi.org/10.5194/hess-22-3175-2018
https://doi.org/10.5194/hess-22-3175-2018
https://doi.org/10.1175/1525-7541(2004)005&lt;0243:tssamf&gt;2.0.co;2


145 
 

[107] Ahmed, K. F., Wang, G., Silander, J., Wilson, A. M., Allen, J. M., Horton, R., &amp; Anyah, 

R. (2013). Statistical downscaling and bias correction of climate model outputs for 

climate change impact assessment in the u.s. northeast. Global and Planetary Change, 

100, 320–332. https://doi.org/10.1016/j.gloplacha.2012.11.003  

[108] Haerter, J. O., Hagemann, S., Moseley, C., &amp; Piani, C. (2011). Climate model bias 

correction and the role of Timescales. Hydrology and Earth System Sciences, 15(3), 

1065–1079. https://doi.org/10.5194/hess-15-1065-2011 

[109] ASHRAE. (2016). ASHRAE Standard 160-2016. Criteria for Moisture-Control Design 

Analysis in Buildings. Atlanta: ASHRAE. 

https://doi.org/10.1016/j.gloplacha.2012.11.003
https://doi.org/10.5194/hess-15-1065-2011

