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Abstract 

Computational Analysis of Non-Periodic Oscillations Using the Harmonic Balance Method 

 

Payam Azadian 

 

This thesis investigates different approaches for applying the harmonic balance (HB) method 

to study steady-state non-periodic motion. The HB method is based on approximating the 

response of a nonlinear system using a truncated Fourier series. It is an established, powerful 

technique for analyzing and predicting the steady-state response of nonlinear systems. 

The HB method is very popular in engineering because it reduces the cost of computations 

compared to direct numerical integration of the governing equations. This reduction is 

particularly important in nonlinear systems because the computational cost for these systems is 

typically much higher. Furthermore, the HB method can be used to approximate the steady-state 

quasi-periodic response of different types of systems. The quasi-periodic motion is characterized 

by two or more harmonic components with incommensurate frequencies. This type of motion 

can emerge in a mechanical system in response to two harmonic excitations with an irrational 

frequency ratio. The excitations can be external, internal (parametric), or a combination of the 

two. Since quasi-periodic motion is not periodic, it cannot be represented by a simple Fourier 

series. Therefore, specialized formulations are required for using the HB method for the analysis 

of quasi-periodic motion.  

The objective of this work is to investigate different approaches for approximating the steady-

state quasi-periodic response of mechanical systems using the HB method. In particular, we 

focus on two techniques: the multidimensional HB method and the trained HB method. The 

results are verified with direct numerical analysis and published literature results to show that the 

approximation error is acceptable. The problem formulations are discussed in the non-

dimensional form to keep the results general. Various case studies are used to better demonstrate 

how the algorithms work. 
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CHAPTER 1 Introduction, Literature Review and Objectives 

1.1 Non-periodic motion and Harmonic Balance Method 

Our daily life is under the effect of periodic dynamic systems same as the beating of our heart, 

the music we listen to, or the light we see. We usually start our daily routine based on the earth's 

axial rotation and arrange our yearly and future programs according to the planet traveling around 

the sun. Moreover, the seasons made by traveling around this planetary orbit are significant in the 

construction industry and agriculture. These repetitive variations are named periodic in general 

because their motion repeats in time. The period of this repetition can be more than 23,000 years 

for an ice age or less than 10-15s for ultraviolet radiation. However, most of the natural oscillations 

do not have a fixed period. For instance, the polar motion of the earth does not have a specific 

period because it is affected by some complex phenomena with different frequencies. Three 

primary phenomena that affect it are Greenland-ice sheets melting during the summer, motion in 

the earth’s core and mantle, and isostatic rebound from the glacial period [1]. The sum of these 

effects results in motion that cannot easily be categorized in periodic or non-periodic motion. 

Between these two types of motion, there is another kind of oscillation that is named almost 

periodic. Although the aperiodic motion is defined as a non-repeatable motion, the almost periodic 

motion can repeat in infinite time. Most of the natural dynamic systems are categorized in this new 

definition. For instance, one of the subsets of this type of oscillation is the quasi-periodic motion 

that defines climate oscillation, axial rotation of the earth, black hole X-ray binaries [2], and most 

of the dynamic systems that affect our daily life. 

In more straightforward engineering examples, which are the focus of this thesis, the quasi-

periodic motion may appear in a system that is excited by more than one periodic source. These 

sources can result in a nonperiodic motion if they oscillate with incommensurable frequencies. An 

example of this type of oscillation is a mechanism with two shafts that rotate at different speeds 

[3] or multi-spool aircraft engines [4]. From the mathematical point of view, if this oscillation is 

represented in the phase space by a torus, the curve never exactly comes back to itself. In other 

words, the quasi-periodic motion seems repeating, but it never repeats an exact plan.   

If we consider the earth's rotation and its tilted axis again, we will find its effects on the whole 

live habitant living on it. The earth's tilted axis, plus its orbit around the sun, affects weather and 

daylight hours that create seasons. An important aspect of changing the temperature change during 
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the seasons is its maximum and minimum value, not its average or absolute value. The highest and 

the lowest temperature during the year specify which species can live in each region or the cost 

and difficulty of living for people. Moreover, it is essential to predict the next typhoon in Western 

Pacific to reduce its costs and damage. This multifrequency system's dynamic behavior will also 

seem more complex by adding a nonlinearity. In the real world, most natural systems have some 

kind of nonlinearity. The nonlinearity may change the behavior of these systems from periodic or 

almost periodic oscillation to chaotic. However, we can still categorize many of these phenomena 

in quasi-periodic motion by avoiding the chaotic situation. 

Similar to the climate, the maximum and minimum amplitude of an oscillating mechanical 

system is an important design parameter in mechanical mechanisms. It is helpful to know the 

maximum amplitude of a jet engine's shaft to design its bearing. On the other hand, finding the 

frequency that results in minimum amplitude is important in the design of vibration isolators and 

absorbers. All these dynamic systems have two different states. The transient state appears in the 

initial state of vibration, then through time, is replaced by a stable steady state. Overall, analyzing 

the steady-state response is often more relevant than the transient response because design 

specifications are presented for the steady-state situation. There are two leading groups of methods 

for analyzing the steady-state behavior of a system. Firstly, the time-domain algorithms and 

secondly, the frequency-domain. The second group has an advantage in computational cost and 

the ability to predict the unstable response of a system. One of the famous members of this group 

is the HB method that is the object of this work. 

Urabe [5], [6] put the cornerstone of the HB in 1964. However, the method did not become 

popular until the 1980s, since the contribution from Lau et al. [7]. They used HB as the 

incremental harmonic balance method to study a wide range of nonlinear differential equations. 

Therefore, today the HB is perhaps the most popular method for approximating the stationary 

nonlinear response of dynamic systems [8], [9], [10], [11]. In the first step, Urabe [5] presented the 

technique as the Galerkin method based a truncated Fourier series. His idea was quite simple but 

effective in solving many dynamic systems. A truncated Fourier series with a few terms can still 

achieves a reasonably accurate approximation of the response. By applying the series to the 

dynamic equation, a system of the equations yields that the Fourier coefficients are its unknowns. 

Urabe [6] used the Newton method for solving the algebraic equations numerically because the 
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equations become nonlinear in nonlinear problems. He also outlined the method developed later 

by Lau et al. [7] and is named by Cameron and Griffin [12] as alternating frequency time domain 

(AFT). This technique makes HB more computationally efficient in nonlinear problems. 

The subsequent sections describe the HB method, AFT technique, and numerical continuation. 

The focus of these parts is on the analysis of periodic response. This makes it easier to explain the 

methodology, which forms the backbone of subsequent Chapters. The continuation method is used 

to predict the "bending" part of the frequency response curve, where the jump phenomenon 

occurs. The AFT method provides a means to avoid the complicated computations involved in 

classical Galerkin-based approach to the HB method. These two techniques (AFT and 

continuation) are used in other Chapters for different types of oscillators. 

1.2 Classical Formulation 

The general equation of motion which is used in present work is expressed as 

 

 
𝑀�̈� + 𝐶�̇� + 𝐾𝑥 + 𝑓𝑁𝐿(𝑥, �̇�, 𝑡) = 𝑔(𝑡) (1.1) 

where M, C, and K stand for mass, damping, and stiffness, respectively. The 𝑥 denotes the 

generalized displacement and 𝑓𝑁𝐿 represents the generalized nonlinear term that is a function of 𝑥, 

its derivation, and time. When the external excitation 𝑔(𝑡) is periodic, it can be represented as a 

Fourier series: 

 

 𝑔(𝑡) =  ∑ �̃�𝑥 cos(𝑘𝜔𝑡) + �̃�𝑥sin (𝑘𝜔𝑡)

∞

𝑘=0

 (1.2) 

Or in the complex-exponential representation 

 

 𝑔(𝑡) = ∑ �̃�𝑘𝑒
(𝑖𝑘𝜔𝑡)

∞

𝑘=−∞

 (1.3) 

where the tilde sign ( ̃ ) is used to denote parameters in the frequency domain. The steady-state 

response of the system under this excitation can be represented as a complex Fourier series 

 

 𝑥(𝑡) = ∑ �̃�𝑘𝑒
(𝑖𝑘𝜔𝑡)

∞

𝑘=−∞

 (1.4) 

The idea of HB method is to use a truncated part of this series as an approximate response 
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 𝑥(𝑡) ≈ ∑ �̃�𝑘𝑒
(𝑖𝑘𝜔𝑡)

𝐻

𝑘=−𝐻

 𝐻 ∈ ℕ (1.5) 

The substitution of this approximation in the governing equation (1.1) yields 

 

 
(−𝜔2𝑀 + 𝑖𝐶𝜔 + 𝐾)�̃� + 𝐹𝑁𝐿(�̃�) − �̃� = �̃�. (1.6) 

Eq. (1.6) is a system of nonlinear algebraic equations with �̃� as the unknown and �̃� as the residual 

function. The roots of this system of equations are often found using an optimization technique, 

whereby the local minima of  �̃� correspond to the amplitudes of the steady-state response of the 

system. The Fourier coefficients on these local minimums present the amplitudes of the steady-

state response of the system. The sine and cosine harmonic coefficients can be found by separating 

the real and imaginary parts of the equations. The HB method can also be applied using the sine 

and cosine functions instead of the complex notation used in Eq. (1.6). These two formulations are 

equivalent. The coefficients of the harmonic functions can be found from Eq. (1.6) by separating 

the real and imaginary parts of the equation. See Appendix A for more details. 

Selecting the Harmonic Truncation Order, H in Eq. (1.5), depends on the physics of the system. 

Generally, the truncated Fourier series should describe phenomena associated with super-

harmonic, sub-harmonic, or combination resonances. However, when the number of resonance 

frequencies is infinite, it is computationally advantageous to consider a subset of the system's 

order. Moreover, the frequency response of some systems includes only odd or even harmonics, 

which can halve the cost of processing. 

1.2.1 The AFT technique 

The AFT method is utilized to evaluate the nonlinear terms of the governing equation. This 

method returns the discrete Fourier transform of an estimated response to the time domain where 

the analytical expression of nonlinear terms is known. Then the updated estimates of the nonlinear 

terms are transformed back to the frequency domain. This process is repeated at each iteration to 

evaluate the approximation of nonlinear terms. The AFT method calculates only a finite sample in 

the time domain. Therefore, it is essential to use more than N=2H+1 samples to achieve the exact 

value of the Fourier coefficients in the frequency domain [8].  

The inverse Fourier transform that is used in this work can be written as a linear operation: 
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 𝑥 =  Γ(𝜔) ⊗ 𝐼𝑁 �̃� (1.7) 

where ⊗ and IN stand for the Kronecker tensor product and the identity matrix of size n, 

respectively, and the sparse operator Γ(𝜔) is: 

 

 
Γ(𝜔) = [

𝑒−
𝑖𝐻2𝜋

𝑁
(0) ⋯ 𝑒

𝑖𝐻2𝜋
𝑁

(0)

⋮ ⋱ ⋮

𝑒−
𝑖𝐻2𝜋

𝑁
(𝑁−1) ⋯ 𝑒

𝑖𝐻2𝜋
𝑁

(𝑁−1)

]. (1.8) 

An example for this matrix is represented in Figure 1.1 for fifteen harmonic terms (N=15). After 

calculating the nonlinearity in time domain, the result is transferred back to the frequency domain 

by: 

 

 
𝑥 =  Γ(𝜔)∗  ⊗ 𝐼𝑁  �̃� (1.9) 

where Γ(𝜔)∗ is: 

 

 
Γ(𝜔)∗ =

1

𝑁
[

𝑒
𝑖𝐻2𝜋

𝑁
(0) ⋯ 𝑒−

𝑖𝐻2𝜋
𝑁

(0)

⋮ ⋱ ⋮

𝑒
𝑖𝐻2𝜋

𝑁
(𝑁−1) ⋯ 𝑒−

𝑖𝐻2𝜋
𝑁

(𝑁−1)

] (1.10) 

 

Figure 1.1: Illustration of the inverse Fourier transformation matrix for H=15, and N=65, (a) Real and (b) Image part. 

This is an efficient way to compute the nonlinear terms and decrease the complexity of calculating 

the harmonic coefficients.  
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1.2.2 Numerical continuation 

Optimization algorithms require an initial guess of the solution to converge quickly and avoid 

local minimums. By starting from zero (i.e., starting at initial rest from the equilibrium position), 

only the first local minimum of the system near zero can be captured. Often, this is not the global 

minimum of the equation that resulted from balancing the harmonics. Moreover, in contrast to 

linear systems, nonlinear systems may have more than one possible steady-state response for a 

fixed set of system parameters. In this case, the initial conditions determine which steady-state 

response is reached. The nonlinearity in stiffness moves the resonance frequency to the higher or 

lower frequencies due to hardening or softening in stiffness, respectively. This change in 

resonance frequency makes zones in the frequency response curve with more than one possible 

steady-state response. Those multi-response zones usually indicate at least two stable and one 

unstable response for each frequency. Computing the frequency response of the system always 

from equilibrium position would result in only the lower amplitude response and miss the other 

possible solutions. It is the same as the jump or hysteresis phenomenon in a dynamic system with 

hardening stiffness when the excitation frequency decreases gradually. In this case, the amplitude 

response of the system jumps to a higher value before resonance frequencies [13]. Therefore, 

peaks of the frequency response curve and unstable responses are not represented in response. The 

numerical continuation method can represent the system response as a continuous curve that 

includes the peak and unstable parts of the response [9]. 

A continuation technique consists of two parts: a predictor and a corrector. The secant, tangent, 

and Lagrange polynomials methods are three predictors that provide direction and distance. In the 

present work, the secant method is used because it is more efficient.  

The secant method uses two previous points of the response curve. These points can be 

calculated by starting optimization from the equilibrium position when the response curve is 

smooth and far from resonance frequencies. Then by having these points, we can predict the other 

ones with the following equation. 

 

 
(�̃�(𝑖+1,0), 𝜔(𝑖+1,0)) =  (�̃�(𝑖), 𝜔(𝑖)) + ∆𝑠𝑖+1 ((�̃�(𝑖), 𝜔(𝑖)) − (�̃�(𝑖−1), 𝜔(𝑖−1))) (1.11) 

where  ∆𝑠𝑖+1 is the curvilinear abscissa increment (see Figure 1.2(a)). For example, near the zero 

excitation frequency, the response curve is approximately parallel to the frequency axis and ∆𝑠 ≅



 
 

7 
 

∆𝜔. In this situation, it is easy to predict the second point on the curve by assuming the ∆𝑠 = ∆𝜔 

and optimizing the equation to achieve the correct curvilinear distance. 

The arc-length method (see Figure 1.2(b)) is used in this work as a corrector method to guide 

the optimization function to the correct point. This method adds the distance condition between 

the expected point and the previous converged point. The equation of this method is 

 

 
||�̃�(𝑖+1,𝑗+1) − �̃�(𝑖)||2 + |𝜔(𝑖+1,𝑗+1) − 𝜔(𝑖)|2 − (∆𝑠(𝑖+1))

2
= 0 (1.12) 

       

Figure 1.2: (a) Illustration of Secant predictor method and (b) Arc Length method. 

The system of algebraic equations that result from the HB method is typically solved by a root-

finding method, such as the Newton-Raphson procedure. In the present work, different types of 

optimization algorithms like trust-region [14], trust-region-dogleg [15], and Levenberg-Marquardt 

method [16]–[18] are used according to the complexity of the problem to reduce the computer 

time. These algorithms improve the Newton method by defining a region around the current best 

solution or searching the direction of the linear set of equations solution. Moreover, the trust-

region-dogleg is the algorithm that is specially designed to solve nonlinear equations.  

The curvilinear abscissa increment (∆s) must be adjusted during the continuation. This 

parameter affects the convergence of the optimization algorithm and, thereby, the time taken for 

computing the frequency response curve. For instance, if the optimization algorithm converges in 

less than three iterations, the step size can be doubled to predict the next point and avoid spending 

time in unnecessary steps in the smooth part of the response curve. On the other hand, if the 

number of iterations is more than a user-determined maximum number (for example, 10), the step 

size must be decreased to improve the accuracy in subsequent steps of computation (for example, 

divided by two). Finally, if the number of iterations is more than the maximum number 

determined by the user (for example, 15) or the optimization algorithm fails. The step size is 
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decreased, and the optimization process is repeated for the current point. This procedure decreases 

the step size in regions with high curvature and results in computation of a smooth curve. As a 

result of incorporating the above control over the step size to the code, the optimization algorithm 

converges at all steps.  

1.3 Thesis layout 

The rest of this thesis is organized in four Chapters and four appendices. Chapter 2 presents the 

formulation used to apply the HB method to an oscillator subject to two harmonic excitations with 

incommensurate frequencies. This requires a modification of the AFT method.  The revised AFT 

method is used in conjunction with numerical continuation to compute the frequency response of a 

nonlinear system to bi-periodic excitation. After verifying the method with previous work and 

numerical results, we use it to compute the response of a system with two degrees of freedom 

degree of freedom. 

In Chapter 3, we apply the HB method to compute the response of a parametrically excited 

system. The focus of this Chapter is on computing the periodic only. After verifying the method, it 

is applied to different types of oscillators with the periodic response. We study the effect of cubic 

and quadratic nonlinearity on the response of the system. 

In Chapter 4, the HB method is applied to a parametrically excited system subject to an 

external harmonic force with a frequency that can be incommensurate with the frequency of 

parametric excitation. Therefore, the response of the system switches between periodic and quasi-

periodic in this case. The method and the stability of the response are studied numerically. A 

problem arises by adding the nonlinear term to this system. The AFT method is useless here 

because of the non-harmonic nature of the system. Therefore, we present a solution without AFT 

and find the response curve. After verification, the method is used to test the reciprocity invariance 

in a system with two and more degrees of freedom. 

Chapter 5 presents the conclusions and the suggested future works. The present study indicates 

that using the HB method to study the steady-state quasi-periodic response of a parametrically 

excited system is not straightforward. For this reason, there is a need to extend the present work. 
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CHAPTER 2 Systems Subject to Multiple Harmonic Excitations 

2.1 Introduction 

Multi-frequency nonlinear oscillation is a feature of many technical, industrial, and natural 

dynamical systems. This kind of behavior can be observed in many fields such as the biological 

system in biological sciences [19], the electromagnetic wave propagation in physical sciences 

[20], the micro/nano-electromechanical systems (MEMS/NEMS) in nano-technology and 

microsystems [21], the modulators and mixers in the communication circuits [22] or electric 

power system in the electrical engineering [23], and rotating machines and gears in the mechanical 

engineering filed [24], [25]. 

Many applications that involve rotating mechanisms (from hard drives in personal computers to 

aero-engines and large-scale power generators) exhibit multi-frequency vibration. For example, 

the multi-shaft aircraft engines are the issue of quasi-periodic motions that come from rotor 

imbalance exciting [26]. The ensuing vibrations can cause problems such as rotors touching seals, 

inter-shaft contact in multiple spool engines, rotor blades contacting the stator, and increased 

bearing clearance through wear or outright bearing failure [27]. For controlling the effect of these 

kinds of dynamic motions, understanding their steady-state response is necessary, which can help 

design lighter and more powerful engines. 

The direct solution of the dynamic response of nonlinear system subject to multi-frequency 

excitation is often too costly because the numerical integration takes a long time for the transients 

to die out. Furthermore, the direct solution method cannot capture unstable frequency response 

branches. 

Although several numerical methods are developed to study the steady-state response of 

nonlinear systems such as harmonic balance, shooting type, split frequency harmonic balance, and 

averaging, these methods were mainly developed to analyze periodic motion, and cannot be 

directly used for the analysis of quasi-periodic motion. For instance, the shooting method cannot 

be helpful when the system response is not periodic because the solution must be started from a 

periodic initial state and becomes laborious when the period of vibration is considerable compared 

to the singular frequency. Perturbation methods are restricted to weak nonlinearity, and therefore 

have a limited range of validity. The classical HB method has a very tedious formulation for 

nonlinear systems with high harmonic terms. It needs to know a priori in which harmonic terms 

ought to be included in the analysis to obtain a consistent solution. Therefore, new techniques 
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have been developed for approximating the result of these multidimensional excited nonlinear 

systems. 

In 1981, Chua and Ushida [28] presented a generalization harmonic balance method for 

computing almost periodic response of multiple input frequencies electrical circuits. They found 

the steady-state response of the system by collocating trigonometrical equations and solved them 

as the multidimensional harmonic balance method (MHBM). In 1983, Lau and Cheung [7] 

developed the incremental harmonic balance formulation (IHB) that based on linearizing the 

equations in each step. In 1996, Kim and Noah [27] improved this approach by using FFT for 

transferring equations between the time and frequency domains. In 2004, Pusenjak and Oblak [29] 

used arc length continuation for finding the bifurcation diagrams of MHBM. 

In 2012, Guskov and Thouverez [30] presented the adjusted harmonic balance method 

(AHBM) to overcome the difficulty of complex matrix operations that are needed to find the 

coefficients of the Fourier series in MHBM. They used a one-dimensional Fourier series that was 

expressed by the greatest common divisor of two excitation frequencies. But this approach 

requires a higher number of harmonic terms to achieve the same accuracy as MHBM.  

In 2019, Prabith and Praveen Krishna [31] extended a Time Variational Method (TVM) that 

had been presented as an alternative method to the AFT by Rook [32] to multiple-frequency 

excitation. Compared to MHBM-AFT, this new technique was improved by taking advantage of 

the correlated nature of nonlinear force and displacement of Fourier coefficients. The main 

advantage of TVM to MHBM-AFT is that it does not require transformation between the 

frequency and time domains. In addition, TVM automatically includes the required harmonics in 

this formulation and avoids the trouble of selecting a suitable number of harmonics. The main 

drawback of the TVM appears when the system has a strong nonlinearity. In this situation, a large 

number of sampling points are required in the time domain to capture the response accurately. 

Recently, Liao, Zhao, and Fang [33] determined the stability of quasi-periodic motion using the 

MHBM-AFT they improve the accuracy of computing the bifurcation diagrams by using the 

nonlinearly constrained optimization method instead of the Newton-Raphson method. By this 

change the methodology become more suitable for industrial. 

In this Chapter, a code is developed in MATLAB to find the steady-state multi-harmonic 

response of a nonlinear system subject to multiple external harmonic forces. The MHBM-AFT 

was coupled with the Arc-Length method as the predictor-corrector continuation framework for 
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computing the bifurcation. The Newton-Raphson method is replaced by the Levenberg-Marquardt 

nonlinear optimization method to improve the convergence rate. The exponential form of the FFT 

and Jacobian matrix presented by K. Malta and G. Johann [8] is used in this work. The final code 

is a mix of the best results of previous works on this issue. 

2.2 The Multidimensional Harmonic Balance Method 

The steady-state response of a system subject to multiple external harmonic excitations can be 

represented as 

 

 𝑥(𝑡) =  ∑ �̃�𝑘𝑒(𝑘𝜔𝑡)       𝜔 = [𝜔1, . . . , 𝜔𝑚]𝑇  ∈ ℝ𝑚

∞

𝑘∈ℤ𝑚

 (2.1) 

where m denotes the number of time/frequency dimensions, and the 𝜔 stands for the frequency 

basis. The 𝑘 = [𝑘1, … , 𝑘𝑚] represents the vectoral harmonic indexes. For example, the harmonic 

terms frequency distribution for 13 harmonics and two excitations are shown in Figure 2.1. 

 

Figure 2.1: The distribution of the frequency terms retained in the multi-harmonic expansion of the response with m=2 and H=13. 

As some of the harmonic indices are complex conjugate, truncating the harmonic terms is carried 

out in several ways. Three examples of the truncated set for m=2 and N=5 is shown in Figure 2.2. 

The full set of indices for a given N corresponds to the following condition: 

 

 ∑|𝑘𝑖|  ≤ 𝑁

𝑚

𝑖=1

. (2.2) 

Including the full set of indices is not necessary for capturing the response accurately. Following 

Legrand [34] and Liao et al. [33], we use the half indices set to validate our formulation (see 

Figure 2.2). Subsequently, we use the set proposed by Chua and Kim to significantly decrease the 

computational cost while retaining the results' accuracy.   
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Figure 2.2: Harmonic indices sets. 

2.3 AFT technique for multi-frequency problem 

A multi-dimensional Fourier transfer matrix is required for solving the equations resulting from 

the MHBM. As the complex form of the Fourier series is used for the HB method, the complex 

multi-dimensional Fourier transfer matrix is used for the AFT method in MHBM. The two- 

dimensional complex Fourier transfer matrix and its inverse are detailed as follows (According to 

Ref. [33]): 

 

 

Θ =

(

 
 

𝑒2𝜋𝑖(𝑘−𝑁𝑘 ,𝜏1) ⋯ 𝑒2𝜋𝑖(𝑘−1,𝜏1) 1 𝑒2𝜋𝑖(𝑘1,𝜏1) ⋯ 𝑒2𝜋𝑖(𝑘𝑁𝑘 ,𝜏1)

𝑒2𝜋𝑖(𝑘−𝑁𝑘 ,𝜏2) ⋯ 𝑒2𝜋𝑖(𝑘−1,𝜏2) 1 𝑒2𝜋𝑖(𝑘1,𝜏2) ⋯ 𝑒2𝜋𝑖(𝑘𝑁𝑘 ,𝜏2)

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝑒2𝜋𝑖(𝑘−𝑁𝑘 ,𝜏𝑁𝑡) ⋯ 𝑒2𝜋𝑖(𝑘−1,𝜏𝑁𝑡) 1 𝑒2𝜋𝑖(𝑘1,𝜏𝑁𝑡) ⋯ 𝑒2𝜋𝑖(𝑘𝑁𝑘 ,𝜏𝑁𝑡)
)

 
 

 (2.3) 

 

 

 

Θ−1 =
1

𝑁𝜏

(

 
 
 
 
 

𝑒2𝜋𝑖(𝑘−𝑁𝑘 ,𝜏1) 𝑒2𝜋𝑖(𝑘−𝑁𝑘 ,𝜏2) ⋯ 𝑒2𝜋𝑖(𝑘−𝑁𝑘 ,𝜏𝑁𝑡)

⋮ ⋮ ⋱ ⋮

𝑒2𝜋𝑖(𝑘−1,𝜏1) 𝑒2𝜋𝑖(𝑘−1,𝜏2) ⋯ 𝑒2𝜋𝑖(𝑘−1,𝜏𝑁𝑡)

1 1 ⋯ 1

𝑒2𝜋𝑖(𝑘1,𝜏1) 𝑒2𝜋𝑖(𝑘1,𝜏2) ⋯ 𝑒2𝜋𝑖(𝑘1,𝜏𝑁𝑡)

⋮ ⋮ ⋱ ⋮

𝑒2𝜋𝑖(𝑘𝑁𝑘 ,𝜏1) 𝑒2𝜋𝑖(𝑘𝑁𝑘 ,𝜏2) ⋯ 𝑒2𝜋𝑖(𝑘𝑁𝑘 ,𝜏𝑁𝑡) )

 
 
 
 
 

 (2.4) 
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According to Guskov and Thouverez[30], 32 sample points are enough to model the MHBM for 

bi-harmonic excitations. The numerical example of Eq. 2.3 with the 32 sample points and five 

harmonic terms are depicted in Figure 2.3. This example is the same as what we use for the AFT 

technique in this work. 

 

Figure 2.3: The imaginary and real parts of two-dimensional complex Fourier matrix. 

2.4 Validation: The Duffing oscillator  

The Duffing oscillator, named after Georg Duffing [35][36], is a nonlinear system that is used 

to explain the methodology. The Duffing equation is characterized by a nonlinear stiffness term, in 

which the nonlinear force is proportional to the third power of the deformation. The Duffing 

oscillator, subject to two external harmonic forces can be written as: 

 

 
�̈� + 2𝜁�̇� + 𝑥 + 𝛼𝑥3 = 𝑔1 sin(𝜔1𝑡) + 𝑔2 sin(𝜔2𝑡) (2.5) 

where the 𝜁 and 𝛼 stand for the damping ratio and nonlinearity coefficient. In this section, we have 

chosen the following values for the parameters of Eq. (2.5) 

 

 
𝜁 = 0.1, 𝛼 = 0.2, 𝑔1 = 𝑔2 = 5 (2.6) 

these values are chosen to be the same as those in Ref. [30] so that we can validate our results. The 

external forces in Eq. (2.5) can be represented in the complex form as: 

 

 

𝑔1

2𝑖
(𝑒𝑖𝜔1𝑡 − 𝑒−𝑖𝜔1𝑡) +

𝑔2

2𝑖
(𝑒𝑖𝜔2𝑡 − 𝑒−𝑖𝜔2𝑡) (2.7) 
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The relationship between the two excitation frequencies is chosen to be an irrational number to 

ensure the response is quasi-periodic: 

 

 

𝜔1

𝜔2
= √2 ≈ 1.4142 (2.8) 

The frequency response of the system when it is subject to each of the two external forces 

individually is shown in Figure 2.4. This result shows the periodic response for both excitations 

under the effect of nonlinearity. The principal resonance peak and super harmonics are represented 

for both external frequencies. In this case, the first 15 harmonic terms are used to approximate the 

response of the Duffing oscillator; therefore, the seven super harmonics appear in the result (see 

Figure 2.4 insets). Figure 2.5 shows the quasi-periodic response of Eq. (2.5) using different 

numbers of harmonic terms that are indexed according to the Chua set. As expected, the 

combination resonances between two principal resonance and super harmonics that appear at 

lower frequencies can be captured if the appropriate harmonics are included in the truncated 

Fourier series in Eq. (2.1) (see Figure 2.5 inset). Both of these results have good agreement with 

Guskov and Thouverez's [30] work. 

 

Figure 2.4: Response of Duffing oscillator to each harmonic component of the excitation separately. 
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Figure 2.5: Response curves with different number of harmonic terms. 

In the case of quasi-periodic motion, only a quarter of the harmonic indexes is used (Chua set 

same as Figure 2.2(a)), and as illustrated in Figure 2.6(a) for a peak in 𝜔1/𝜔𝑛 = 0.84, the other 

indexes are omitted. However, the answer is only two percent less than a solution with all 

harmonic indexes (the same as the index in Figure 2.2(b)) that is shown in Figure 2.6(b). At the 

peak of the frequency response curve, with a lower effect of super-harmonics, the Chua set would 

become more accurate (see Figure 2.7) with less than 0.002 percentage error in comparison to the 

solution that used all the harmonic indexes. 

 

Figure 2.6: Response of the Duffing oscillator, (a) with Chua set and (b) with all subharmonic terms. The result of (a) shows only a 

1.6% error in comparing with (b) (𝜔1/𝜔𝑛 = 0.8375 𝑓𝑜𝑟 𝑎 𝑎𝑛𝑑 0.84106 𝑓𝑜𝑟 𝑏). 
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Figure 2.7: Response of the Duffing oscillator, (a) with Chua set and (b) with all harmonic terms The result of (a) shows only a 

0.0013% error in comparing with (b) (𝜔1/𝜔𝑛 = 4.5321 𝑓𝑜𝑟 𝑎 𝑎𝑛𝑑 4.5369 𝑓𝑜𝑟 𝑏). 

Five points with the same frequencies are selected on the frequency response curve to verify 

the results (see Figure 2.5 P1 to P5). Different sets of initial values need to be used when 

integrating Eq. (2.5) in time (DNI) to reach different steady-state amplitudes. Therefore, the result 

of the MHBM is used as an initial guess for the DIN method. This initial condition assists the DNI 

solution to reach the steady-state predicted by the HB method, the same as the result of P1 and P5 

in Figure 2.8. In unstable points, the DNI solution that started from the MHBM initial guess 

gradually converges to the lower stable amplitude. That is the situation is showed in Figure 2.8 for 

the P2:P4. This stable response equals the last selected point's response, located in the lowest 

potential (P5), that shows as a result of integration in time from the equilibrium position. Finally, 

all solutions show the same time and frequency domains responses on the last stable point with the 

lowest amplitude. Moreover, the result of these tree solutions is compared in the frequency 

domain by Fourier transfer. This comparison shows the matching of the MHBM and the DNI with 

initial guess in stable points (see Figure 2.8 FFT of P1 and P5). 
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Figure 2.8: Time marching test for several points of the response curve (Fig.2.5) and respective FFT. 

2.5 Coupled Duffing oscillators  

The formulation developed in this Chapter is not restricted to systems with a single degree of 

freedom. To show this, we analyze the response of a system with two degrees of freedom. The 

system, shown in Figure 2.9, consists of a Duffing oscillator with an additional mass (𝑚2) attached 

to it through a linear spring (𝑘2) and a linear viscous damper (c). The external force acts on the 

first mass only and has two harmonic components with incommensurate frequencies. The 

equations of motion for this system are: 

 

 
�̈�1 + 4𝜁�̇�1 − 2𝜁�̇�2 + (1 + 𝑘𝑐)𝑥1 + 𝛼𝑥1

3 − 𝑘𝑐𝑥2 = 𝑔1𝑠𝑖𝑛(𝜔1𝑡) + 𝑔2𝑠𝑖𝑛(𝜔2𝑡) (2.9) 

 𝜇�̈�2 + 2𝜁�̇�2 + 𝑘𝑐𝑥2 − 𝑘𝑐𝑥1 = 0 (2.10) 

The following values are chosen for the system parameters: 

 𝑘𝑐 = 1, 𝛼 = 0.2, 𝜇 = 1,
𝜔1

𝜔2
= √2, 𝜁 = 0.1, 𝑔1 = 𝑔2 = 5, (2.11) 
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The result of applying MHBM to the governing equation is verified by DNI, which shows a good 

agreement for 5 harmonic terms (see Figure 2.10). Comparing the peak of Figure 2.5 and the 

results in Figure 2.10(a) shows the second mass causes a reduction in the amplitude of the first 

one, like an absorber. The second mass experiences two resonances due to external forces and 

quasi-periodic motion without the effect of nonlinearity. An example of the second mass quasi-

periodic motion is illustrated in Figure 2.11. 

 

Figure 2.9: A two-degree-of-freedom system with external excitations. 

    

Figure 2.10: The 2D duffing oscillator. (a) The steady-state frequency responses of MHBM and DNI. (b) The error of comparing 

the result of MHBM with DNI. 

 

Figure 2.11: An example of quasi-periodic motion of second mass. 

In this example, the average time cost of MHBM with Chua set is about a third of DNI or the 

result of solution with Liao set (see Figure 2.12). 



 
 

19 
 

 

Figure 2.12: The CPU timing of different solutions (CPU: Intel(R) Core(TM) i7-1065G7 @ 1.30GHz   1.50 GHz). 

2.6 Summary 

In this Chapter, the MHBM was explained and used to capture the frequency response of the 

Duffing equation subject to incommensurate external excitations. We explained efforts to 

characterize and analyze the multifrequency dynamic system by starting from some background. 

We mixed all the previous beneficial techniques to achieve a better way of using the MHBM. 

After explaining the reasons for the new technique, we used in this work, the AFT method was 

modified by identifying which frequencies are expected to appear in the response. In part four, the 

frequency response of Duffing equation with incommensurate relation between external excitation 

frequencies was found and verified by previous works. Subsequently, the effect of selecting a 

different number of harmonic components on the result was discussed. As a result, except for the 

details of super-harmonics and combination resonance, it is possible to achieve an acceptable 

approximation for peaks with only three harmonic terms. For more clarifying, sample points of 

frequency response curve with the same frequency were selected to verify by the DNI method, 

which showed the same response in the stable points. Finally, we used the MHBM to analyze the 

frequency response of coupled Duffing oscillator as a case study at the end of this Chapter. 

 In conclusion, this Chapter showed the potential of the method based on the HB technique to 

predict the quasi-periodic motion in multi excitation systems. Although the MHBM takes 

significant computation time for the higher number of harmonic terms, it remains helpful in 

showing the steady-state frequency response in unstable situations.   
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CHAPTER 3 Systems Subject to Parametric and External 

Excitation: Periodic Oscillations 

3.1 Introduction 

Parametric oscillations appear when one of the parameters of a mechanical system (such as the 

effective stiffness) vary periodically with time. A familiar example of this type of vibration is a 

child pumping a swing. As the child is trying to get the swing going, the moment of inertia of the 

swing (i.e., the restoring force) is varied by the child’s movements. As a result of this form of 

excitation, the swing starts moving, and its amplitude increases with time [37]. The dynamic 

behavior of a parametrically excited system becomes more complicated if an external harmonic 

force excites the system. This type of forced parametric vibration appears in many structures. It 

can be a destructive phenomenon in large size structures such as a twin-tail aircraft [38] or wind 

turbine blade [39]. In the small micro-electromechanical cantilever beams, this type of oscillation 

can be utilized in operation of electrical amplifier. For instance, J. Shaw and S. Shaw [40] 

represented the advantages of this oscillator with the nonlinear behavior to achieve a low-noise 

parametric amplifiers based on micro- and nano-systems. 

Whether the excitation forces are artificial or made by natural phenomena, their effects on the 

system must be understood and controlled. Also, utilizing the effects of nonlinearities purposefully 

needs knowledge about the steady-state response of the system. Consequently, predicting the 

system's behavior is essential at the design stage to avoid failure or adjust the amplifier response. 

As the direct solution of the related equation is often too costly, several approximate methods have 

been studied to analyze the steady-state response of the parametrically excited systems. 

Perturbation, averaging, and Multiple time scales [40], [41] are methods that we typically use for 

predicting the behavior of this type of vibration system. Still, they are limited to a specific range of 

system parameters. Recently, Neumeyer et al. [42] used the varying amplitudes method to 

investigate the effect of cubic and quadratic nonlinearity on a parametric amplifier with perfect 

tuning. That method is so close to harmonic balance (HB) used in the present work.  

Characterizing the frequency response of the force parametric oscillator with and without 

nonlinearity is the aim of this Chapter. The classical HB method is selected for this part since it is 

valid over a wide parameter range and is expected to capture the system's nonlinear behavior. 

Assuming the parametric frequency as an integer multiple of the external force frequency makes 
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periodic response for this problem. Without this relation, the response is quasi-periodic, which is 

the subject of the next Chapter. This Chapter consists of two main parts that cover solutions of 

linear and nonlinear forced parametric oscillations (FPO’s) with periodic responses. In the linear 

solution part, the effect of an external harmonic force on the Mathieu equation is studied in stable 

and unstable frequency response zones and some examples are demonstrated in this part. The 

capability of the HB method to capture the different types of nonlinearities is the issue that is 

investigated in the next part.  

3.2 Mathieu Oscillator Subject to External Excitation 

This section applies the HB method to the FPO in different conditions with periodic responses, 

and results are verified by the DNI method and previous works. Also, the unique abilities of the 

HB method are discussed. 

The equation of the motion of a system with parametric and external excitation is described by 

the following equation: 

 �̈� + 2𝜁�̇� + 𝑘(𝑡)𝑥 = 𝐹𝑐𝑜𝑠(𝜔𝑓𝑡 + 𝜙) (3.1) 

where 𝜁 is the damping ratio, 𝐹 and 𝜔𝑓 are direct excitation amplitude and frequency, 𝑡 is time 

and  

 𝑘(𝑡) = 𝑘0 + 𝑘𝑚 cos(𝜔𝑚𝑡), (3.2) 

where the 𝑘0 is the stiffness, and the 𝑘𝑚 is the parametric excitation amplitude. In this Chapter, 

𝜔𝑚 is selected equal to two times 2𝜔𝑓 and 𝑘0 equal to one. The fixed, integer ratio between the 

frequencies of parametric and direct excitations allows the steady-state response of the system to 

be periodic. We relax this condition in Chapter 4. 

According to the frequency spectrum of the DNI method, the coefficients of even harmonic 

terms will be zero, and only the odd harmonic terms affect response. In addition, the relationship 

between external and parametric excitations result to harmonic response. Therefore, the steady-

state response to such a system can be represented as: 

 

 𝑥(𝑡) ≈ ∑ �̃�𝑘 cos(𝜔𝑓𝑡) + �̃�𝑘 sin(𝜔𝑓𝑡)

𝐻

𝑘=1

 𝐻 ∈ (2ℕ + 1). (3.3) 
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Substituting Eq. (3.3) in Eq. (3.1) and equating the coefficients of the terms with the same 

frequency results in a system of algebraic equations for the unknown amplitudes. The frequency 

response function is then obtained by solving the resulting system of equations.  

The results obtained from using the HB method are validated by comparing them to the steady-

state response of the system obtained by direct numerical integration of the governing equations.  

This validation is divided into two parts because the system has different behaviors above and 

below the system instability threshold. Suprathreshold pumping causes instability near the primary 

resonance frequency of the system that is not achievable by direct numerical integration. 

According to Rhoads and Shaw [40] the value of this threshold in a perfect tuning oscillator is 

equal to 4𝜁 for the amplitude of parametric excitation (𝑘𝑚). When the system is below the 

parametric instability threshold, the response of the system is stable in all frequencies and 

comparable with the DNI method. Figure 3.1(a) presents the result of this comparison for 𝜙 =

−
𝜋

4
. The HB method sometimes overestimates and sometimes underestimates the response 

frequency with a small error that is shown in Figure 3.1(b). As a second part of verifying, the 

system's frequency response above the parametric instability threshold is compared to the DNI 

(see Figure 3.2). All the system's coefficients and parameters are selected equal to Neumeyer et 

al.[42] to verify this internal curve. Therefore, the result presented in Figure 3.2Figure 3.2 is the 

same as that work. This response has some unstable points which can not be compared by the DNI 

results, but there is an excellent agreement in the other frequencies. These unstable responses arise 

below the systems instability threshold as an internal loop. For more clarifying, this internal curve 

is assumed as a loop because of the shape of the DNI response curve during the time in those 

unstable frequencies. During the time, the DNI curve grows with a similar shape as Figure 3.1(a) 

and never touches another branch called the internal loop.  
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Figure 3.1: (a) Verifying the HB method frequency response by DNI, (b) error percentage of this comparing (k0=1, km=0.1, 𝜁 

=0.05, F=0.01, H=7).  

 

Figure 3.2: The frequency response of the system above the parametric instability threshold (k0=1, km=0.1, 𝜁 =0.005, F=0.01, 

H=7).  

Figure 3.3shows a steady-state response of the system at 𝜔𝑓 = 0.5. The periodicity of the 

response is due to the fixed ratio between the parametric and external frequencies. To verify the 

periodicity of the response, the Fourier transform of the displacement response is calculated and 

shown in Figure 3.4. We observe that the frequency spectrum of the steady-state response contains 

only the even harmonic of the external excitation. 

 

Figure 3.3: The time response for 𝜔𝑚 = 2𝜔𝑓 (k0=1, km=0.5, 𝜁 =0.005, F=0.01). 
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Figure 3.4: The frequency spectrum for 𝜔𝑚 = 2𝜔𝑓 in 𝜔𝑓/𝜔𝑛 = 0.8 (k0=1, km=0.5, 𝜁 =0.005, F=0.01).  

Figure 3.5 shows the frequency response curves at different values of the damping coefficient 

close to the critical damping. The internal loop appears precisely in critical damping and grows by 

decreasing the damping coefficient. Moreover, this solution method is valid over a large parameter 

range, as shown in Figure 3.6. Both of these figures truncate to focus on the point system transfer 

from stable oscillator to the system with unstable behavior in resonance zone. 

 

Figure 3.5: The frequency response around the critical damping point (k0=1, km=0.1, F=0.01, H=5). 

As long as the response remains harmonic, the HB can be used to obtain the steady-state 

response of the system. For example, Figure 3.7 shows the frequency response of the system for 

𝜔𝑚 = 3𝜔𝑓 , for different values of damping. 
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Figure 3.6: An amplitude response curve for different values of 𝑘𝑚 (k0=1, 𝜁 =0.005, F=0.01, HB=5). 

 

Figure 3.7: The frequency response of the system for 𝜔𝑚 = 3𝜔𝑓 (k0=1, km=0.1, F=0.01, H=5). 

Figure 3.8(a) shows the frequency response of the system for value of 𝜔𝑚 smaller than 𝜔𝑓. 

Therefore, the response can be approximated as:  

 

 𝑥(𝑡) ≈ ∑ �̃�𝑘 cos(𝜔𝑚𝑡) + �̃�𝑘 sin(𝜔𝑚𝑡)

𝐻

𝑘=1

 𝐻 ∈ ℕ. (3.4) 

Figure 3.8(b) shows the error in the frequency response curve with respect to the results obtained 

from direct numerical integration of Eq. (3.1). The peak of the error’s curve on 
𝜔𝑓1

𝜔𝑛
= 0.15 is 

caused by super-harmonics at 6𝜔𝑚. The error can be reduced by including more harmonic terms 

(higher value of H) in Eq. (3.4). Figure 3.8(a) shows some super-harmonic peaks at low 

frequencies and one sub-harmonic, which do not exist in previous examples. According to the 
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appendix B and the frequency spectrum of DNI method, frequencies appear in the response of 

parametric oscillator are expected to be sub harmonic of series that can be shown as: 

 

 
𝜔 = 𝜔𝑓 − 𝐻𝜔𝑚 𝐻 ∈ ℕ (3.5) 

In this case, only this unique sub-harmonic exists, because (according to Eq.3.5) the second one is 

always equal to zero frequency and out of resonance. The third one behaves like the first one, and 

other lower harmonics are equal to primary resonance and super-harmonics, respectively. 

Therefore, it is expected that the oscillator with 3𝜔𝑚 = 𝜔𝑓 has peaked in two sub-harmonics. 

When the parametric and external excitations are not harmonic (the issue of Chapter 4), the 

response frequency spectrum cannot be explained by sub and super-harmonic because of their 

non-harmonic nature. In this case, we suggest using Lower Sideband Frequency (LSF) Instead of 

sub-harmonic and upper sideband frequencies (USF) Instead of super-harmonic. 

  

Figure 3.8: (a)The response of HB method verifying by DNI in frequency domains (b) for oscillator with the parametric frequency 

equal to half of the external excitation frequency (𝜔𝑚 = 0.5𝜔𝑓, k0=1, km=0.3, 𝜁 =0.025, F=0.01, H=5). 

The HB method can be used to analyze the response of a system with more than one external or 

parametric harmonic force. For example, assume the following governing equation 

 �̈� + 2𝜁�̇� + 𝑘0 + 𝑘𝑚 cos(𝜔𝑚𝑡) 𝑥 = 𝐹1𝑐𝑜𝑠(𝜔𝑓1𝑡) + 𝐹2𝑐𝑜𝑠(𝜔𝑓2𝑡) (3.6) 

where 𝜔𝑓2 = 2𝜔𝑚 = 4𝜔𝑓1. Therefore, the response can be approximated as:  
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 𝑥(𝑡) ≈ ∑ �̃�𝑘 cos(𝜔𝑓1𝑡) + �̃�𝑘 sin(𝜔𝑓1𝑡)

𝐻

𝑘=1

 𝐻 ∈ ℕ. (3.7) 

In this example, 𝜔𝑚  and 𝜔𝑓2 are super-harmonic of 𝜔𝑓1, and cause the effect of super-harmonics 

on the response curve the same as in the previous example (see Figure 3.9(a)). These peaks appear 

in 
𝜔𝑓1

𝜔𝑛
= 0.5&0,25, respectively. Again, the peak of the error’s curve on 

𝜔𝑓1

𝜔𝑛
= 0.15  is caused by 

super-harmonics at 6𝜔𝑓1 (see Figure 3.9(b)). The error can be reduced by including more 

harmonic terms in Eq. (3.7).   

 

Figure 3.9: The response of HB method has been verified by DNI for linear oscillator under parametric and two external harmonic 

excitations, (a) comparing the response of DNI by HB continuation method, (b) comparing the response of DNI by HB with zero 

initial guesses in percentage (𝜔𝑚 = 2𝜔𝑓1 = 0.5𝜔𝑓2, k0=1, km=0.1, 𝜁 =0.05, F1=0.05, F1=0.08). 

3.3 Nonlinear Systems Subject to Parametric and External Excitation 

In this section, the behavior of FPO’s with different types of nonlinearities are studied. The 

governing equation of this type of motion can be described as the following equation: 

 𝑚�̈� + 2 𝜁 �̇� + (𝑘0 + 𝑘𝑚 cos(𝜔𝑚𝑡))𝑥 + 𝑘𝑞𝑥
2 + 𝑘𝑐𝑥

3 = 𝐹𝑐𝑜𝑠(𝜔𝑓𝑡 + 𝜙) (3.8) 
   

where 𝑘𝑞 and 𝑘𝑐 are the coefficients of the quadratic and cubic nonlinear terms, respectively, and 

𝜔𝑚 is equal to multiply integers of 𝜔𝑓. The primary effect of nonlinearity appears near the 

resonance frequency. In the absence of damping, nonlinearity prevents the response amplitude 

from becoming infinite at the resonance frequency. Also, the frequency response curve is bent to 

the right or left according to the hardening or softening nonlinearity stiffness. 
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We mainly focus on the effect of cubic nonlinearity on the frequency response of the system 

(𝑘𝑞 = 0). We briefly discuss the influence of quadratic nonlinearity at the end of this section. 

There are different examples of parametric systems with cubic nonlinearity. The nonlinear micro 

amplifier tuning on 𝜔𝑚 = 2𝜔𝑓 [40] or vibration model of the horizontal axis wind turbine blade 

vibration Ref. [39] with the same internal and external excitation frequency, are examples for this 

type of system. 

Figure 3.10 shows the frequency response curve of Eq. (3.8) with hardening cubic nonlinearity. 

The effect of nonlinearity causes the response to remain bounded while the system parameter is 

below or above the instability threshold. There is excellent agreement between the HB and the 

direct time solution in stable points. The two closed ends of the internal loop are shown in insets. 

 

Figure 3.10: Effect of cubic nonlinearity in super-threshold when the modulation frequency equal to two-time excitation one (k0=1, 

km=0.1, kc =0.5, 𝜁 =0.005, F=0.01, H=2). 

For verifying the result, only the result of the HB method by starts from zero initial guesses 

illustrated in Figure 3.11(a). Comparing the HB by DNI method shows only the small error that is 

illustrated in Figure 3.11(b) in percentage. The Super-harmonic resonance is represented on an 
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external excitation frequency equal to 1/3(rad/s). Figure 3.11(c) presents the comparison between 

the Fourier Transfers of their results in the time-domain of HB and DNI method. That graph 

shows the HB method utilizable to predict the steady-state motion of the system in the time 

domain.  

 

Figure 3.11: Verifying the result of the HB method in nonlinear system by DNI, (a) comparing the response of DNI with HB 

continuation method, (b) comparing the response of DNI with HB with zero initial guesses in percentage, (c) comparing by FFT in 

first peak 𝜔𝑓/𝜔𝑛 = 1/3. 

As another example, we have chosen 𝜔𝑚 = 𝜔𝑓 for Eq. (3.8) such that it represents the 

horizontal axis wind turbine blade vibration Ref. [39]. The HB method can represent all harmonic 

and super-harmonic resonances of the blade (see Figure 3.12(a)). The result of the HB method 

with zero initial guesses are compared in Figure 3.12(b) by the DNI method, in percentage. The 

error is less than 2 percentage and acceptable for this number of harmonic terms (H=6). Figure 

3.12(c) shows the Fourier transfer of result of two methods in the time domain for 
𝜔𝑓

ωn
= 0.5. This 
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graph shows the maximum error comes from the difference in the coefficient of primary 

frequency. 

 

Figure 3.12: (a) Comparing the response of DNI with HB continuation method, (b) comparing the response of DNI with HB with zero initial 

guesses in percentage, (c) comparing with FFT in 𝜔𝑓/𝜔𝑛 = 0.5 (𝜔𝑚 = 2𝜔𝑓 , k0=1 km=0.3 kc=0.3 𝜁 =0.025 F=0.05 ϕ=-π/4). 

The HB method could also predict a parametric oscillator's frequency responses subject to two 

or more harmonic external forces. Assume the Eq.3.6 with cubic nonlinearity and excitation 

frequencies are harmonic of each other. An example of this problem is illustrated in Figure 3.13 

and verifying by DNI method. 
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Figure 3.13: The response of HB method for nonlinear oscillator under parametric and two external harmonic excitations (a) 

comparing the response of DNI with HB continuation method, (b) comparing the response of DNI with HB with zero initial guesses 

in percentage, (c) comparing by FFT in first peak 𝜔𝑓1/𝜔𝑛 = 0.25 , (d) comparing with FFT in second peak 𝜔𝑓1/𝜔𝑛 = 0.5. 

(4𝜔𝑓1 = 2𝜔𝑚 = 𝜔𝑓2, k0=1 km=0.1 kc=0.5 𝜁 =0.04 F1=0.1, F2=0.8). 

Analyzing the response of a dynamic system with both cubic and quadratic nonlinearity is more 

complicated than a system affected by only one of them. The system behavior near the primary 

resonance is affected by the value of 𝑘𝑐 in comparison with 𝑘𝑞 [42]. The engineering example of 

this dynamic motion is a twin-tail aircraft [38]. Figure 3.14 illustrates an example of this system 

and compares the results with the DNI method. The response shows both hardening and softening 

effects of quadratic and cubic nonlinearity, respectively. The bottom half of the resonance zone is 

affected by quadratic nonlinearity and bends to the left, and higher amplitude at that zone is 

affected by pure cubic nonlinearity and turns to the right. At each turning point, the stability of the 

system changes that is analyzed in Neumeyer et al.’s work [42]. 
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Figure 3.14: The response of HB method verifying by DNI in time and frequency domains for the system with both quadratic and 

cubic nonlinearities, (a) comparing the response of DNI by HB continuation method, (b) comparing the response of DNI by HB 

with zero initial guesses in percentage, (c) comparing with FFT in first peak 𝜔𝑓/𝜔𝑛 = 0.33, (d) comparing by FFT in second peak 

𝜔𝑓/𝜔𝑛 = 0.5  (𝜔𝑚 = 2𝜔𝑓, k0=1 km=0.1 kq=0.3 kc=0.05 𝜁 =0.02 F=0.04 ϕ=-π/4). 

3.4 Summary 

In this Chapter, the HB method was used to study the steady-state response of a system subject to 

parametric and external excitation. The ratio of the frequencies of the two excitations was fixed to a 

rational number (2, 3, 1/2). This condition ensures that the steady-state response to be periodic in time. 

As all response components are harmonic, the Galerkin projection method was used to find the algebraic 

system of equations required for HB analysis. The AFT method was used for analyzing quadratic and cubic 

nonlinearity. We analyzed the stable and unstable response of the force parametric oscillator and 

investigated the effect of nonlinearity on the internal loops appearing in the frequency response curves.  
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CHAPTER 4 Systems Subject to Parametric and External 

Excitation: Non-Periodic Oscillations 

4.1 Introduction 

In this Chapter, we study the steady-state dynamics of a system subject to parametric and 

external excitations with independent frequencies. Because the frequencies of parametric and 

external excitation can be incommensurate, the response of the system is no longer periodic. 

Therefore, a single-frequency Fourier series is no longer a suitable approximation of the response 

and needs to be updated. The maximum response amplitude is mainly affected by the external 

force and is independent of the parametric excitation, but the resonance frequency depends on the 

amplitude of the parametric excitation. There are some combination resonances on the frequency 

response curve that occur at a frequency equal to the external frequency plus integer multiples of 

the parametric excitation frequency. The Galerkin projection and AFT method can no longer be 

used in this case, and a different methodology is needed for HB analysis. Therefore, solving this 

problem using the HB is not straightforward. 

For clarification assume an example of a forced parametric oscillator that is shown in Figure 

4.1. What we solved in Chapter 3 covers the frequency response through black lines only, but 

what will be solved in this Chapter approximates all frequency responses independently to the 

relation between exaction frequencies. Obtaining the method for solving the system with 

independent excitation frequencies assists in predicting the behavior of all different types of forced 

parametric systems, whether the relation between excitation frequency is integer, rational, or 

irrational number. In this way, the result of this solution can predict the periodic response of the 

oscillator with dependent frequency excitations as well as the quasi-periodic response of the 

oscillator with independent frequencies. 

In this Chapter, the quasi-periodic motion of the parametric oscillator is analyzed by adjusting 

the exponential form of HB (AHBM). In this method first, a few points from the response curve 

are selected. The steady-state response at the selected frequencies is calculated using the DNI 

method and transferred to the frequency domain to identify the frequency component of the 

response. This information is used to adjust the HB with a related index. The technique is similar 

to the Trained harmonic balance method (THBM) [43]. After validating the methodology, the 

influence of nonlinearity is studied. 
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Figure 4.1: An example of all possible responses for Eq. 3.1 (k0=1 km=0.3 𝜁 =0.025 F=0.12 ϕ=0). 

4.2 Systems with one degree of freedom  

The motion of a system with parametric and external excitation is described by the following 

equation: 

 �̈� + 2𝜁�̇� + 𝑘(𝑡)𝑥 = 𝐹𝑐𝑜𝑠(𝜔𝑓𝑡 − 𝜑) (4.1) 

where ( ̇ ) denotes temporal derivatives, 𝜁 is the damping ratio, 𝐹 and 𝜔𝑓 are the direct excitation 

amplitude and frequency, 𝑡 is time, 𝜑 is the phase difference between the external and parametric 

excitation and  

 𝑘(𝑡) = 𝑘0 + 𝑘𝑚cos (𝜔𝑚𝑡 + 𝜙) (4.2) 

where 𝑘0 stands for stiffness and the 𝑘𝑚is the parametric excitation amplitude. The time-

dependent stiffness can be rewritten in complex Fourier series form: 

 

 

𝑘(𝑡) = ∑ �̂�𝑝𝑒𝑖𝑝𝜔𝑚𝑡

∞

𝑝=−∞

 (4.3) 

where �̂�𝑝 is defined as: 

 

 

�̂�𝑝 =
𝜔𝑚

2𝜋
∫ 𝑘(𝑡)

𝜋
𝜔𝑚

−
𝜋

𝜔𝑚

𝑒−𝑖𝑝𝜔𝑚𝑡𝑑𝑡. (4.4) 
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The only Fourier coefficients are, �̂�0 = 𝑘0, �̂�+1 =
𝑘𝑚𝑒𝑖𝜙

2
 and �̂�−1 =

𝑘𝑚𝑒−𝑖𝜙

2
 . All the coefficients 

with an index larger than one (|𝑝| > 1) are equal to zero. For applying the AHBM, four points 

from an example direct integration frequency response curve are selected. This selection includes 

a local minimum in low frequency and three main peaks of the steady-stead frequency response of 

the system (see Figure 4.2). Responses of the system in selected points are then transferred to the 

frequency domain to define the frequency components. The dominant frequencies are the external 

excitation frequency (𝜔𝑓) and the multiple integers of parametric excitation frequency plus the 

external one (𝜔𝑓 ± 𝜔𝑚). This result is the same as what we expected from the theoretical solution 

(see Appendix B). Therefore, the answer can be assumed as: 

 

 

𝑋(𝑡) =  ∑ 𝑎𝑛cos (𝜔𝑓 + 𝑛𝜔𝑚)

ℎ

𝑛=−ℎ

+ 𝑏𝑛sin(𝜔𝑓 + 𝑛𝜔𝑚). (4.5) 

which can be rewritten in the complex notation as: 

 

 

𝑈(𝑡) = ( ∑ �̂�𝑛𝑒𝑖𝑛𝜔𝑚𝑡

∞

𝑛=−∞

) 𝑒𝑖𝜔𝑓𝑡, (4.6) 

 �̂�𝑛 = 𝑎𝑛 + 𝑖𝑏𝑛, (4.7) 

The governing equation Eq. (4.1) can therefore be transformed into a system of algebraic 

equations for the unknown amplitudes like: 

 

(

 −𝑚

[
 
 
 (𝜔𝑓 − 𝜔𝑚)

2
0 0

0 𝜔𝑓
2 0

0 0 (𝜔𝑓 + 𝜔𝑚)
2
]
 
 
 

+ 𝑖𝑐 [

(𝜔𝑓 − 𝜔𝑚) 0 0

0 𝜔𝑓 0

0 0 (𝜔𝑓 + 𝜔𝑚)

] + [ 

�̂�0 �̂�−1 0

�̂�+1 �̂�0 �̂�−1

0 �̂�+1 �̂�0

]

)

 [

�̂�−1

�̂�0

�̂�+1

] = [
0
𝐹
0
]. (4.8) 

By separating Eq. (4.8) into the real and imaginary parts and solving them together, the coefficient 

of the Fourier series will be obtained. Figure 4.3(a) shows a good agreement between AHBM and 

the result of the DNI method. The lower frequencies are represented in the inset to show the effect 

of harmonic excitation on the response of the system. Every time 𝜔𝑚 = 𝑛𝜔𝑓(𝑛 ∈ 2ℕ), the 

response becomes harmonic and falls to a lower amplitude. After passing through each of these 

points, the rate between frequencies becomes irrational again and the response becomes quasi-

periodic, the amplitude rises sharply and reaches the previous value. Additionally, local minimums 

in the response amplitude are observed at linear combinations of these frequencies. An example of 
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this periodic response in the local minimums is shown in the time domain by the DNI method as 

the first point of Figure 4.2 (𝜔𝑚/𝜔𝑛 = 2𝜔𝑓/𝜔𝑛 = 0.3). If excitation frequencies are locked at this 

rate, without any change in Eq. (4.8), the AHBM can show the response of a perfect tuning 

amplifier the same as Figure 3.2. We can repeat this calculation for all other linear results of the 

previous Chapter. 

Figure 4.4 shows that the location and value of the local minimum of the frequency response 

curve depend on the phase difference between the external and parametric excitations (𝜑). 

Increasing the phase from zero to 
𝜋

2
 splits the local minimum into two smaller ones. Consequently, 

if we decided to use this frequency as an amplifier the larger 𝜑 give as a bigger amplitude but as a 

filter 𝜑 = 0 is the best. 

There are some errors in the approximate solution that depends on the number of terms used in 

the assumption. Figure 4.3(b) shows how including more terms in Eq. (4.5) can decrease the error 

of our approximation. The fluctuation in error percentage after 1.2 and before 0.8 shows that the 

two first approximate responses of HB are not acceptable far from the primary resonance 

frequency. These errors are caused by terms with a higher harmonic of the parametric excitation 

frequency. Figure 4.5 shows the FFT of the response on a logarithmic scale in the range of 

𝜔𝑓/𝜔𝑛 = [0,2] from direct time integration. A large value of 𝑘𝑚 near the stability threshold of the 

system is selected for a better illustration of the effect of terms with higher harmonics of 𝜔𝑚 (the 

dominant frequencies of response). The graph shows an increasing in that effect in lower 

excitation frequencies. This illustration explains why the terms with higher harmonics of 𝜔𝑚 (as 

example ℎ ≥ 3 for 𝜔𝑚/𝜔𝑛 ≥ 1/3) must be included in our assumption while they are out of the 

investigated frequency range. An example of including negative frequencies like (𝜔𝑓 − 𝑛𝜔𝑚: 𝑛 ∈

ℕ & 𝜔𝑓 < 𝑛𝜔𝑚) in the Fourier expansion of the response is shown in Figure 4.6 with red arrows.  



 
 

37 
 

 

Figure 4.2: Time history and frequency spectrum at four external frequencies. The corresponding frequency response curve is 

shown in Figure. 4.3(a). 

 

Figure 4.3: Comparing the exponential HB with DNI (a) in frequency domain and (b) the error percentages of different number of 

harmonic terms (𝜔𝑚 = 0.3, 𝜁 = 0.025, 𝑘𝑚 = 0.3, 𝐹 = 0.05). 

 

Figure 4.4: Effect of changing the phase between the external and parametric excitation on local minimum (𝜔𝑚 = 0.3, 𝜁 =
0.025, 𝑘𝑚 = 0.3, 𝐹 = 0.05). 
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Figure 4.5: The FFT of DNI response in different external excitation frequencies in logarithmic view. The result of FFT is 

nondimensionalized by dividing the response frequency to 𝜔𝑓. The 3D view of this graph was represented on the inset (𝜔𝑚 = 0.21,

𝜁 = 0.025, 𝑘𝑚 = 0.7, 𝐹 = 0.05). 

 

Figure 4.6: Effect of two negative frequencies in response curve. This effect also discuss in Kaijun et al. work [44] (𝜔𝑚 = 0.35,
𝜁 = 0.025, 𝑘𝑚 = 0.7, 𝐹 = 0.05). 

Figure 4.6 shows a resonance near the natural frequency of the non-parametric system. This 

frequency can be assumed as an approximate natural frequency (ANF) for the system. The value 

of this ANF depends on the parametric excitation amplitude. Comparing this figure with the 

previous result shows increasing the value of 𝑘𝑚 causes to shift of all peaks of the frequency 

response curve to the lower frequencies. Figure 4.7(a) shows this shift in primary resonance in the 

range 𝑘𝑚 = [0 0.6]. Increasing the value of 𝑘𝑚 has the same effect on other peaks of the 

frequency response curve. Another effect of 𝑘𝑚, which appears in the large value of it, is the 

unstable behavior of the system. Figure 4.7(b) presents an example of this instability in the time 
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domain. The onset of this instability depends on the values of the damping coefficient and the 

parametric excitation frequency, but this critical value is independent of the external force because 

the system is linear, and the numerical response of the free oscillator shows the same onset for 

instability. 

 

Figure 4.7: The effect of increasing 𝑘𝑚, (a) on resonance frequency, (b) on stability (solved by DNI, 𝜔𝑚 = 0.3, 𝜁 = 0.025, 𝐹 = 0.05). 

4.2.1 Stability of linear oscillations 

Some combinations of parameters can lead to instabilities in the response of the system, as 

shown in Figure 4.7(b). In this section, regions of the parametric excitation parameters are 

determined where the response remains stable. Our analysis of stability is based on the free 

response of the system. This is because the external force does not influence the onset of 

instability in a linear system. We have verified this claim numerically.  

 The governing equation is nondimensionalized: 

 𝑑2𝑥

𝑑𝜏2 + 𝑐̅
𝑑𝑥

𝑑𝜏
+ (𝛿 + 𝜖 cos 𝜏) 𝑥 = 0, (4.9) 

where the new variables are 

 𝜏 = 𝜔𝑚𝑡, 𝑐̅ = 2𝜁
𝜔𝑛

𝜔𝑚
, 𝛿 =  

𝜔𝑛
2

𝜔𝑚
2 , 𝜖 =

𝑘𝑚

𝑘0

𝜔𝑛
2

𝜔𝑚
2 . (4.10) 

By defining 𝑥1 = 𝑥 and 𝑥2 = 𝑑𝑥/𝑑𝜏, Eq. 4.9 is solved for the two different initial conditions: 

 
[
𝑥11(𝜏)

𝑥12(𝜏)
]
𝜏=0

= [
1
0
] , [

𝑥21(𝜏)

𝑥22(𝜏)
]
𝜏=0

= [
0
1
]. 

(4.11) 

The system is stable if [45]: 
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|𝑇𝑟 [

𝑥11(𝜏) 𝑥21(𝜏)
𝑥12(𝜏) 𝑥22(𝜏)

]
𝜏=2𝜋

 | < 2. 
(4.12) 

The result of this computation is shown in Figure 4.8 for different values of the damping. 

 

Figure 4.8: The stability diagram, as a function of the modulation parameters for different damping ratios. 

4.2.2 Influence of nonlinearity 

In this section, we add a nonlinear stiffness term to Eq. (4.1): 

 �̈� + 2𝜁�̇� + (𝑘0 + 𝑘𝑚 cos(𝜔𝑚𝑡 + 𝜙))𝑥 + 𝛼𝑥3 = 𝐹𝑐𝑜𝑠(𝜔𝑓𝑡 − 𝜑), (4.13) 

where 𝛼 denotes the coefficient of the nonlinear term. When the excitation frequencies vary 

independently, the response becomes non-harmonic in most situations. As a result, the AFT 

method can no longer be used for the nonlinear problem. The AFT method is based on inverse 

Fourier transfer that is only applicable to harmonic function. Therefore, we use the AHBM 

without Galerkin projection, the AFT method, and the Fourier series's exponential form with a 

procedure explained in Appendix(D). According to the FFT of time response of the system (Figure 

4.9) and especially near the primary resonance frequency (see Figure 4.10), an assumption for the 

displacement of the system with seven terms is: 

 

𝑋1 = 𝐴1 cos(𝜔𝑓𝑡) + 𝐵1 sin(𝜔𝑓𝑡) + 𝐴2 cos((𝜔𝑓 − 𝜔𝑚)𝑡) + 𝐵2 sin((𝜔𝑓 − 𝜔𝑚)𝑡)

+ 𝐴3 cos((𝜔𝑓 + 𝜔𝑚)𝑡) + 𝐵3sin ((𝜔𝑓 + 𝜔𝑚)𝑡)

+ 𝐴4 cos((𝜔𝑓 − 2𝜔𝑚)𝑡) + 𝐵4 sin((𝜔𝑓 − 2𝜔𝑚)𝑡)

+ 𝐴5 cos((𝜔𝑓 + 2𝜔𝑚)𝑡) + 𝐵5sin ((𝜔𝑓 + 2𝜔𝑚)𝑡)  

+ 𝐴6 cos((𝜔𝑓 − 3𝜔𝑚)𝑡) + 𝐵6 sin((𝜔𝑓 − 3𝜔𝑚)𝑡)

+ 𝐴7 cos((𝜔𝑓 + 3𝜔𝑚)𝑡) + 𝐵7sin ((𝜔𝑓 + 3𝜔𝑚)𝑡). 

(4.14) 
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Substituting Eq. (4.14) into Eq. (4.13) and balancing the harmonic terms (see Appendix D) results 

in a system of algebraic equations in terms of the unknown amplitudes. Figure 4.11 compares the 

result of the solution with DNI. There is an excellent agreement with the DNI at the selected 

points except at 𝜔𝑓/𝜔𝑛 = 1.17. The FFT of the time-domain response at this frequency shows 

frequencies equal to 𝜔𝑓 ±
𝑛𝜔

2
  are the main reason for this peak (see Figure 4.12(b)). 

Unfortunately, adding 𝜔𝑓 ± 𝜔𝑚/2 to the Eq. (4.14) did not decrease the error, and the coefficients 

related to these frequencies are almost zero in all different external frequencies. However, the 

maximum amplitude at this point can be controlled by changing the value of 𝑘𝑚, as is shown in 

Figure 4.12(c). Therefore, the AHBM can predict the behavior of the system with a small value of 

𝑘𝑚 in all frequencies and an extensive range of nonlinearity (see Figure 4.13). The nonlinearity 

affects the shape of the response curve in the primary resonance and other response peaks. 

Therefore, it is possible to have five responses in some of the excitation frequencies with large 

nonlinearity. For example, assuming the 𝛼 = 0.9, there are three stable responses and two unstable in 

the range of 𝜔𝑓/𝜔𝑛 = [1.3,1.332] (see Figure 4.13). 

 

Figure 4.9: The nondimensionalized FFT of DNI response in different external excitation frequencies by the logarithmic view. The 

jump phenomenon appears in 𝜔𝑓 = 1.14 because all points have zero initial guess. The 3D view of this graph was represented on 

the inset (𝜔𝑚 = 0.22, 𝑘𝑚 = 0.3  𝜁 = 0.025, 𝐹 = 0.12). 
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Figure 4.10: The time response and Fourier transfer of nonlinear system in primary resonance frequency (𝜔𝑓/𝜔𝑛 = 1, 𝜔𝑚 =

0.23, 𝑘𝑚 = 0.5  𝜁 = 0.025, 𝐹 = 0.05, 𝛼 = 0.3). 

 

Figure 4.11: The result of applying the HB to nonlinear system with fixed parametric frequency. (a) comparing the frequency 

response with DNI method (𝛼 = 0.5), (b) the error percentage (𝜔𝑚 = 0.22, 𝑘𝑚 = 0.3, 𝜁 = 0.025, 𝐹 = 0.12, 𝛼 = 0.5). 

 

Figure 4.12: (a) the time response and Fourier transfer of the peak at  
𝜔𝑓

𝜔𝑚
= 1.17, 𝑘𝑚 = 0.3 and (b) the FFT of this. (c) is effect of 

changing 𝑘𝑚 on this point  (𝜔𝑚 = 0.22, 𝜁 = 0.025, 𝐹 = 0.12, 𝛼 = 0.5). 
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Figure 4.13: The effect of large nonlinearity (𝜔𝑚 = 0.21, 𝑘𝑚 = 0.3, 𝜁 = 0.025, 𝐹 = 0.12). 

4.3 Systems with multiple degrees of freedom 

In this section, responses of systems with more than one degree of freedom are investigated. 

According to the AHBM methodology, in each case, a few points of the frequency response curve 

are selected to determine the required frequencies for applying the HB method. Firstly, the two 

degrees of freedom system is studied, then the verified technique is used to predict the behavior of 

a non-reciprocal system with two or more degrees of freedom. 

4.3.1 Applying the HB method to Two-Degree-of-Freedom forced parametric system 

We consider the following system for our computations in this section: 

 𝑚1�̈�1 + (𝑐1 + 𝑐2)�̇�1 − 𝑐2�̇�2 + (𝑘1 + 𝑘2)𝑥1 − 𝑘2𝑥2 = 𝐹𝑐𝑜𝑠(𝜔𝑓𝑡) (4.15) 

 𝑚2�̈�2 − 𝑐1�̇�1 + 𝑐2�̇�2 − 𝑘2𝑥1 + 𝑘2𝑥2 = 0 (4.16) 

 𝑘1 = 𝑘01 + 𝑘𝑚1
cos(𝜔𝑚1

𝑡) (4.17) 

 𝑘2 = 𝑘02 + 𝑘𝑚2
cos(𝜔𝑚2

𝑡) (4.18) 

where 𝜔𝑚1
= 0.3 and 𝜔𝑚2

= 0.25 as a representative example. The governing equations are 

solved using the DNI method in the time domain at a frequency near the first primary resonance 

(see Figure 4.14(a)), then the steady-state part of the result is transferred to the frequency domain 

by FFT to find all frequencies in the response curve (see Figure 4.14(b)). 
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Figure 4.14: (a) The response of oscillation in time domain for 𝜔𝑓/𝜔𝑛 = 1, (b) the result of transferring the steady-state response 

to frequency domain.(𝜔𝑚1 = 0.3,𝜔𝑚2 = 0.25, 𝑘0 = 1, 𝑘𝑚1 = 0.3, 𝑘𝑚2 = 0.2, 𝑐1 = 𝑐2 = 0.05, 𝐹 = 0.05). 

According to the result, the dominant frequencies are: 

𝑋1: 𝜔𝑓 − 𝜔𝑚2
, 𝜔𝑓 + 𝜔𝑚2

,  𝜔𝑓,  𝜔𝑓 − 𝜔𝑚2
− 𝜔𝑚1

, 𝜔𝑓 + 2𝜔𝑚2
 , 𝜔𝑓 − 𝜔𝑚, 𝜔𝑓 + 𝜔𝑚2

+

𝜔𝑚1
, 𝜔𝑓 + 2𝜔𝑚2

+ 𝜔𝑚1
, 𝜔𝑓 + 2𝜔𝑚1

, 𝜔𝑓 − 2𝜔𝑚1
, 𝜔𝑓 − 3𝜔𝑚2

, 𝜔𝑓 + 𝜔𝑚_2 + 2𝜔𝑚1
 … 

𝑋2: 𝜔𝑓, 𝜔𝑓 − 𝜔𝑚2
, 𝜔𝑓 + 𝜔𝑚2

, 𝜔𝑓 − 𝜔𝑚2
− 𝜔𝑚1

, , 𝜔𝑓 − 𝜔𝑚1
, 𝜔𝑓 + 𝜔𝑚2

+ 𝜔𝑚1
, 𝜔𝑓 + 2𝜔𝑚2

, 

𝜔𝑓 − 𝜔𝑚2
+ 𝜔𝑚1

, 𝜔𝑓 + 𝜔𝑚2
− 𝜔𝑚1

, 𝜔𝑓 + 𝜔𝑚1
, 𝜔𝑓 + 2𝜔𝑚2

+ 𝜔𝑚1
,  𝜔𝑓 − 3𝜔𝑚2

, 𝜔𝑓 − 2𝜔𝑚1
, … 

Assuming 𝜔𝑚2
= 𝜔𝑚1

= 0.3 and selecting the first three dominant frequencies, 𝑋1and 𝑋2 are 

expressed as: 

 

𝑋1 = 𝐴1 cos(𝜔𝑓𝑡) + 𝐵1 sin(𝜔𝑓𝑡) + 𝐴2 cos((𝜔𝑓 − 𝜔𝑚)𝑡) + 𝐵2 sin((𝜔𝑓 − 𝜔𝑚)𝑡)

+ 𝐴3 cos((𝜔𝑓 + 𝜔𝑚)𝑡) + 𝐵3sin ((𝜔𝑓 + 𝜔𝑚)𝑡)

+ 𝐴4 cos((𝜔𝑓 − 2𝜔𝑚)𝑡) + 𝐵4 sin((𝜔𝑓 − 2𝜔𝑚)𝑡)

+ 𝐴5 cos((𝜔𝑓 + 2𝜔𝑚)𝑡) + 𝐵5sin ((𝜔𝑓 + 2𝜔𝑚)𝑡), 

(4.19) 

 

 

𝑋2 = 𝐶1 cos(𝜔𝑓𝑡) + 𝐷1 sin(𝜔𝑓𝑡) + 𝐶2 cos((𝜔𝑓 − 𝜔𝑚)𝑡) + 𝐷2 sin((𝜔𝑓 − 𝜔𝑚)𝑡)

+ 𝐶3 cos((𝜔𝑓 + 𝜔𝑚)𝑡) + 𝐷3sin ((𝜔𝑓 + 𝜔𝑚)𝑡)

+ 𝐶4 cos((𝜔𝑓 − 2𝜔𝑚)𝑡) + 𝐷4 sin((𝜔𝑓 − 2𝜔𝑚)𝑡)

+ 𝐶5 cos((𝜔𝑓 + 2𝜔𝑚)𝑡) + 𝐷5sin ((𝜔𝑓 + 2𝜔𝑚)𝑡). 

(4.20) 
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Substituting this assumption in Eq. (4.15) and Eq. (4.16) gives us the system of equations that 

predicts the steady-stead response of the system (see Figure 4.15(a)). An excellent agreement of 

AHBM with DNI is shown in Figure 4.15(b). Adding the second mass changes the shape of the 

frequency response curve by adding a second set of peaks and relocating the first ANF. The 

prominent peaks of Figure 4.15(a) are near the natural frequencies of a non-parametric oscillator 

(𝜔𝑛 = √(3 ± 𝑘0√5)/2 =1.618,0.618). There are four more small peaks in the frequency response 

curve of both masses. These peaks located before and after each ANF's near frequency equal to 

𝜔𝑛 ± 𝜔𝑚. These secondary peaks are before 𝜔𝑓 = 0.318 and 0.918 for the first ANF and before 

𝜔𝑓 = 1.318 and 1.918 for the second. Moreover, there is another peak near the zero frequency 

before the 𝜔𝑓 − 2𝜔𝑚 (𝜔𝑓 = 0.018). There are some minimums on super-harmonics of 

parametric excitation frequency (
𝜔𝑚

2
,
𝜔𝑚

4
,
𝜔𝑚

6
, … ) and linear combinations of them shown in the 

inset of Figure 4.15(a). At these frequencies, parametric excitation is equal to the even multiple of 

an external frequency, and therefore the response is periodic.  

 

Figure 4.15: The response of HB method is verified by DNI in the frequency domain for two degrees of freedom linear oscillator 

under parametric and an external harmonic excitation, (a) comparing the frequency response of DNI with HB method, (b) 

comparing them in percentage (𝜔𝑚 = 0.3, 𝑘𝑚 = 0.3, 𝜁 = 0.025, 𝐹1 = 0.05). 

4.3.2 Case study: Reciprocity test in forced parametric system 

As a case study, we investigate the response of a system with 2 degrees of freedom in more 

detail. Specifically, we study the influence of parametric excitation on the reciprocity invariance. 
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The principle of reciprocity states that wave propagation between two points in an elastic material 

remains the same when source and receiver are interchanged [46]–[48]. Recently, breaking 

reciprocity has been explored to create elastic and acoustic wave devices that exploit 

unidirectional transmission. The general aim is to develop devices and materials that allow the 

propagation of elastic waves in one direction but not the opposite direction. 

Reciprocity holds in linear, time-invariant systems. One way to break the reciprocity invariance 

a linear system is to modulate the elastic properties of the system [49]. Modulated waveguides are 

typically modeled as an infinite series of Mathieu equations, which are then analyzed 

asymptotically in the limit of weak parametric excitation. Recent experimental realizations of 

modulated waveguides in mechanical systems show they operate beyond these limits. To bridge 

this gap between the operating regimes of theory and experiments, we study the nonreciprocal 

dynamics of coupled Mathieu equations at moderate excitation levels using the HB method. We 

discuss the role of the phase difference between adjacent oscillators, and the influence of 

nonlinearity on the nonreciprocal bias of the system.  

Consider a Multi-Degree-of-Freedom system with external and parametric excitations, as 

depicted in Figure 4.16. The simple equations of motion for the multidimensional system with 

independent external and parametric excitation’s frequencies are given by: 

 𝑚1�̈�1 + 2𝑐�̇�1 − 𝑐�̇�2 + (𝑘1 + 𝑘2)𝑥1 − 𝑘2𝑥2 = 𝑓1𝑐𝑜𝑠(𝜔𝑓𝑡) (4.21) 

 ⋮  

 𝑚𝑖�̈�𝑖 + 𝑐𝑖(�̇�𝑖 − �̇�𝑖−1) − 𝑐𝑖+1(�̇�𝑖+1−�̇�𝑖) + 𝑘𝑖(𝑥𝑖 − 𝑥𝑖−1) − 𝑘𝑖+1(𝑥𝑖+1 − 𝑥𝑖) = 0 (4.22) 

 ⋮  

 

 
𝑚𝑛�̈�𝑛 − 𝑐�̇�𝑛−1 + 2𝑐�̇�𝑛 − 𝑘𝑛𝑥𝑛−1 + (𝑘𝑛 + 𝑘𝑛+1)𝑥𝑛 = 𝑓𝑛𝑐𝑜𝑠(𝜔𝑓𝑡) (4.23) 

 𝑘1 = 𝑘0 + 𝑘𝑝 cos(Ω𝑚𝑡 − 𝜑1) (4.24) 

 

 
𝑘𝑛+1 = 𝑘0 + 𝑘𝑝 cos(Ω𝑚𝑡 − 𝜑2) (4.25) 

where 𝑚 stands for mass, 𝑐 is the damping ratio, 𝑓 and 𝜔 stand for direct excitation amplitude and 

frequency, 𝑡 is time, 𝑘0 stands for stiffness and the 𝑘𝑝 is the parametric excitation amplitude. 
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Figure 4.16: A multi-degree-of-freedom system with external and parametric excitations 

These equations can be nondimensionalized by dividing to 𝑘0, that yield for example in two 

degrees of freedom as: 

 

 
�̈�1 + 4𝜁�̇�1 − 2𝜁�̇�2 + (1 + 𝑘𝑐 + 𝑘𝑚 cos(𝜔𝑚𝜏 − 𝜙1))𝑦1 − 𝑘𝑐𝑦2 = 𝐹1𝑐𝑜𝑠(𝜔𝑓𝜏) (4.26) 

 𝜇�̈�2 + 4𝜁�̇�2 − 2𝜁�̇�1 + (1 + 𝑘𝑐 + 𝑘𝑚 𝑐𝑜𝑠(𝜔𝑚𝜏 − 𝜙2))𝑦2 − 𝑘𝑐𝑦1 = 𝐹2𝑐𝑜𝑠(𝜔𝑓𝜏) (4.27) 

where 𝜔0
2 =

𝑘0

𝑚1
 is a neutral frequency of the unforced system (a simple free vibration system 

without parametric excitation). The 𝜁 is the damping ratio for the unforced vibration equal to 

𝑐

2𝜔0𝑚1
  and 𝜇 =

𝑚2

𝑚1
. The new nondimensional time scale 𝜏 is equal to 𝜔0𝑡. Assuming 𝑦1and 𝑦2 the 

same as 𝑋1and 𝑋2 at Eq. (4.19) and Eq. (4.20), respectively. The following values are chosen for 

the system parameters in this section: 

 𝑘𝑐 = 1.5, 𝑘𝑚 = 0.2, 𝜇 = 1,𝜔𝑚 = 0.23, 𝜁 = 0.008,𝜙1 = 𝜙2 = 0.  

The system is solved in two opposite directions. In the first case, the second mass is selected as the 

source and excited by a periodic external force (𝐹1 = 0, 𝐹2 = 1) and the first mass assumed as the 

receiver. Then for studying the reciprocity effect, we swap the source and receiver by changing the 

force location (𝐹1 = 1, 𝐹2 = 0). The first case is shown by a superscript (i), and the second is 

shown by a superscript (ii). If the responses of the two receivers are identical, then we say that the 

response is reciprocal. We expect a reciprocal behavior for the system described by Eqs. (4.26) 

and (4.27) when there is no phase difference between the parametric excitations applied to the two 

masses (𝜙1 = 𝜙2).  

The frequency response curve that is presented in Figure 4.17(a) has several maximums and 

minimums. The main peaks occur near the natural frequencies of a non-parametric oscillator 

(𝜔1 = √𝑘0/𝑚 = 1 𝑎𝑛𝑑 𝜔2 = √1 + 2𝐾𝑐 = 2). There are several smaller peaks near 𝜔𝑛 ± 𝜔𝑚 in 

𝜔𝑓/𝜔𝑛 = 0.77 and 1.23 for the first ANF and 𝜔𝑓/𝜔𝑛 = 1.77 and 2.23 for the second ANF. Other 

important peaks of this curve appear near the 𝜔𝑛 ± 𝑛𝜔𝑚 (𝑛 = 2,3,4…). The system's antiresonant 

https://en.wikipedia.org/wiki/Physical_system
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frequency appears between the two ANFs (𝜔𝑓/𝜔𝑛 = 1.6). The results of the HB method for both 

cases are validated by DNI. Figure 4.17(b) shows the excellent agreement of result with DNI. The 

error of the HB method in this example is less than 1%. 

 

Figure 4.17: Comparing the result of reciprocity test by HB method with DNI for two degrees of freedom (𝑁𝐻𝐵 = 11). (a) The 

logarithm of maximum amount of amplitude for all the frequency results of both methods are compared. (b) error percentages of 

source and receiver in compare by DNI.  

The system is tested for the reciprocity as a function of the phase difference (𝜙1, 𝜙2) between 

the two parametric excitation frequencies. Figure 4.18(a) shows the result of the test for five 

different values of 𝜙2. According to this figure, the response of the system without 𝜙2 is 

reciprocal, but it becomes nonreciprocal by adding the delay to the parametric excitation. In these 

new situations, the system’s response is not reciprocal except on some particular frequencies. For 

example, the system behaves reciprocally far from the ANFs or on the intersections of two 

response curves near ANFs. 

As another example, a large value of 𝑘𝑚 is selected near the instability threshold (𝑘𝑚=0.7 

according to Figure 4.8). Like the first example, the response of the system with 𝜙2 = 0 is entirely 

reciprocal. Increasing the 𝜙2 cause the system shows nonreciprocal behavior, except at two 

particular frequencies (see Figure 4.18(b)). These frequencies are not fixed and depend on the 𝑘𝑚, 

but there are near ANFs. The outcome of these two examples shows increasing the 𝑘𝑚 can cause 

to increase in the nonreciprocity effect.  
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As Figure 4.19 shows, adding freedom degrees to this system increases the number of primary 

resonances and their side bonds. These primary resonances are caused by additional degrees of 

freedom. The reciprocity test shows the same behavior of the source and receiver with some more 

peaks (see Figure 4.20). The number of peaks in the reciprocity test rises by adding additional 

mass to the system, but the maximum nonreciprocity effect generally stays the same. 

 

Figure 4.18: Reciprocity test in different phase angles with (a) 𝑘𝑚 = 0.2, (b) 𝑘𝑚 = 0.7 (𝜔𝑚 = 0.23, 𝑘𝑐 = 2, 𝜁 = 0.008). 
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Figure 4.19: The amplitude response of source and receiver masses for (a) three degree of freedom and (b) four degrees of 

freedom (𝜔𝑚 = 0.23, 𝑘𝑚 = 0.2, 𝑘𝑐 = 2, 𝜁 = 0.008). 

 

Figure 4.20: Reciprocity test in different phase angles for (a) three degrees of freedom and (b) four degrees of freedom (𝜔𝑚 =
0.23, 𝑘𝑚 = 0.2, 𝑘𝑐 = 2, 𝜁 = 0.008). 
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The response of the nonlinear system shows some unstable points, as is represented in Figure 

4.21(a). The result of the non-reciprocity effect is the same as the linear oscillator with more 

sensitivity to the phase of modulators (see Figure 4.22).  

 

Figure 4.21: Reciprocity test in oscillator with cubic nonlinearity. The logarithmic illustrated of frequency response in both 

directions. (𝜔𝑚 = 0.23, 𝑘𝑚 = 0.2, 𝑘𝑐 = 2, 𝜁 = 0.008, 𝛼 = 0.01,𝜙1 = 𝜙2 = 0). 

 

Figure 4.22: Reciprocity test in different phase angles of oscillator with cubic nonlinearity. 

4.4 Summary 

The main issue that separates this Chapter from others is the relationship between excitation 

frequencies (internal and external). This Chapter started with introducing this type of dynamic 

system and the difficulty of applying the HB method. The AFT technique is no longer applicable 
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in this Chapter because of the system's non-harmonic nature. Therefore, applying the HB needs a 

lot of cumbersome hand-done calculations, especially in nonlinear systems. The AHBM showed 

excellent agreement at linear problems in comparison with numerical results. Although using this 

technique in nonlinear problems did not have a good agreement with the system's dynamic, it 

remains helpful in showing the steady-state frequency response with acceptable accuracy. 

In the last part, the validated method was used to analyze the behavior of systems with two 

degrees of freedom and is extended by analyzing the non-reciprocity phenomenon. This last 

example shows the ability of the Fourier series-based method to predict the behavior of complex 

phenomena.  
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CHAPTER 5 Conclusion 

5.1 Summary of contributions 

The objective of this work was to develop computer codes based on  the harmonic balance (HB) 

method to compute the steady-state response of vibrating systems that exhibit quasi-periodic 

motion. The HB method is a classical approach for the analysis of the steady-state response of 

nonlinear structures. While the procedural aspects of the HB method are straightforward for many 

common types of problems involving periodic steady-state response, their application for the study 

of quasi-periodic dynamics is not as well established. The nature of quasi-periodic motion is 

different from that of periodic motion, which necessitates a different methodology for HB 

analysis.  

In this work, the HB method was used to analyze quasi-periodic vibrations in two classes of 

problems: (i) a nonlinear oscillator subject to external quasi-periodic excitation, (ii) a 

parametrically excited system subject to external harmonic excitation. Two different scenarios 

were considered for the parametrically excited system: (a) when the ratio of the frequencies of 

parametric and external excitations is a rational number, (b) when the frequencies of parametric 

and external excitations can be incommensurate. While we focused on the periodic response in the 

first case, the response in the second case is generally quasi-periodic. 

The exponential form of the multidimensional harmonic balance method (MHBM) makes the 

calculation of the quasi-periodic response more straightforward. In Chapter 2, we evaluated the 

accuracy of this method and used it to analyze the response of a system with two degrees of 

freedom. Moreover, the commonly used Newton-Raphson root-finding procedure was replaced 

with the trust-region algorithm to reduce the computation cost.  

The Galerkin projection used in Chapter 3 for periodic response is not useful for HB analysis of 

the quasi-periodic response of forced parametric oscillator because of its non-harmonic nature. 

The alternating frequency time-domain (AFT) technique is inapplicable for the same reason. 

Nevertheless, applying the HB method by balancing the terms with the same frequency (in the 

style of hand calculations) still results in an acceptable approximation when a small number of 

harmonics are needed. This approach works well in linear problems but is very cumbersome in 

nonlinear problems. When effects due to higher harmonics of the modulation frequency need to be 

incorporated, applying the HB method is no longer feasible, and one needs to resort to 

perturbation methods. 
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In Chapter 4, we used the methodology based on two independent variables to approximate the 

forced parametric oscillator (FPO) with incommensurate frequencies; the adjusted harmonic 

balance method (AHBM). This approach can be used regardless of whether the response is 

periodic or quasi-periodic. After validation, the method was used for analyzing parametrically 

excited systems with two or more degrees of freedom. For this purpose, the reciprocity invariance 

was explored in linear and nonlinear systems. This short parametric study showcases the ability of 

the methodology developed in Chapter 4 to predict the steady-state response of complicated 

systems. 

5.2 Suggestions for future work 

While many non-periodic examples have been solved in this thesis by the HB method, there are 

still several unresolved issues that can be considered as current challenges or future work. We can 

summarize the main challenges in two categories. The first category involves advancements in the 

methodology of HB analysis: 

(i) Performing stability analysis for the response calculated by the HB method.  

(ii) Analysis of the quasi-periodic response in nonlinear problems with piecewise-smooth 

characteristics, such as bilinear stiffness and dry friction. 

(iii) Developing efficient algorithms for the analysis of the quasi-periodic response in large 

systems (i.e., with many degrees of freedom). 

(iv) Finding a new method to calculate the nonlinear force in forced parametric excitation 

problems with no relation between excitation frequencies. As the AFT method is not 

applicable, we need a new technique to compute the nonlinear force in the frequency 

domain. 

Because this work was focused on developing numerical methods, certain theoretical aspects of 

the quasi-periodic response were not analyzed in detail. The second category of suggestions for 

future work is for further theoretical analysis of these aspects: 

(i) We showed in Chapter 4 that the HB method cannot predict the combination resonance 

that occurs at a frequency between the primary and first lower sideband frequency 

(LSF) of the nonlinear system when the frequencies of the external and parametric 

forces are incommensurate. Although direct numerical simulation of the system shows 
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the subharmonic modulation frequency is responsible for this peak, it is not 

straightforward to include this term in the HB method. 

(ii) In Chapter 4, we showed the effect of the super-harmonic frequency of the external 

excitation on the steady-state response of nonlinear force parametric systems. This 

effect is shown in Figure 4.9 based on direction simulation of the governing equations. 

It would be interesting to explore this further using the HB method. 

(iii) In Section 4.3.2, only studied the effect of modulation amplitude, phase, and the 

external frequency on the reciprocity of the response. The numerical approach 

developed here can be used for further parametric studies of non-reciprocity in 

parametrically excited systems. 
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Appendix A 

This appendix is about the example of applying the HB method on Duffing oscillator subject to 

the external harmonic force according to Chapter 1, plus a Matlab function used to solve it. 

The Duffing oscillator, named after Georg Duffing [36], is a nonlinear dynamic system that is 

selected to explain the method. This system has a nonlinear spring in which the stiffness is a 

function of the displacement. As the stiffness is assumed symmetric, it is related to cubic of 

displacement. The equation with a periodically excited can be written in a nondimensional form 

as: 

 

 
�̈� + 2𝜁�̇� + 𝑥 + 𝛾𝑥3 = 𝑔 sin(𝜔𝑡) (A.1) 

where the 𝜁, 𝛾, and 𝑔 stand for damping parameter, nonlinear term coefficient, and excitation 

harmonic components, respectively, with the following values: 

 

 
𝜁 = 0.1, 𝛾 = 0.2, 𝑔 = 5 (A.2) 

that the excitation harmonic component can be represented in complex form 

 

 
𝑔 sin(𝜔𝑡) =  

𝑔

2𝑖
(𝑒𝑖𝜔𝑡 − 𝑒−𝑖𝜔𝑡), (A.3) 

to solve by the method that was explained. By choosing fifteen harmonic terms or only even 

harmonic terms until fifteen, the primary resonance and the seven super-harmonic resonances can 

be captured (see Fig. 0.1). 

The Matlab function that is used to solve this example is based on what M. Krack and J. Gross [8] 

did in their book. The function is expressed as: 

function R = Arcresidual(X,M,zeta,kappa,gamma,P,H,N,OldX,ds) 

%% Conversion of sine-cosine to complex-exponential representation 

Q_ce =[flipud(X(2:2:end-1)+1i*X(3:2:end-1))/2;... 

              X(1);... 

             (X(2:2:end-1)-1i*X(3:2:end-1))/2]; 

  

%% Excitation frequency 

Om = X(end); 

  

%% Periodic Excitation 

Fex_ce = [zeros(H-1,1);1i*P/2;0;-1i*P/2; zeros(H-1 ,1)]; 

  

%% AFT for cubic spring nonlinearity 

% Determine inverse discrete Fourier transform matrix 

% N : number of time instants from Ref.[4] Eq.(2.19) N = 2H + 1 Ref.[4] Eq.(2.64)  

E_NH = exp(1i*2*pi/N*(0:N-1)'*(-H:H)); 
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% Apply inverse discrete Fourier transform  

q = real(E_NH*Q_ce); 

  

% Evaluate nonlinear force in the time domain 

fnl = gamma*q.^3; 

  

% Apply discrete Fourier transform 

% from 2.65 

Fnl_ce = E_NH'/N*fnl; 

  

%% Dynamic force equilibrium 

  

% The time derivative of a Fourier series is still a Fourier series of the 

% same truncation order. The Fourier coefficients are just multiplied by 

% kπ and rotated by pi/2. 

  

R_ce = ( -((-H:H)'*Om).^2 * M + 1i*(-H:H)'*Om * zeta + kappa ).* Q_ce+… 

    Fnl_ce-Fex_ce; 

 

%% Arc-length calculating 

 

Arc= ((norm(OldX - X)).^2) - (ds)^2; 

 

%% Conversion of complex-exponential to sine-cosine representation 

% R=[f(0);cosine Fourier coefficients; sine Fourier coefficients; Arc-length equation] 

R = [real(R_ce(H+1));real(R_ce(H+2: end));-imag(R_ce(H+2: end));Arc]; 

  

end 

 

 

Figure 0.1: Mono-periodic-Excitation Duffing Oscillation by fifteen harmonic terms. 
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Appendix B 

This appendix is about what we expect to see in the frequency response of the force parametric 

oscillators. We assume the simple answer for Eq. 4.1: 

 𝑋 = 𝐴𝑐𝑜𝑠(𝜔𝑓𝑡) (B.1) 

Substituting this assumption to the that equation yield the especial term for stiffness: 

 
𝑘𝑚cos (𝜔𝑚t)𝑋 =

𝐴𝑘𝑚

2
{𝑐𝑜𝑠((𝜔𝑓 + 𝜔𝑚)𝑡) + 𝑐𝑜𝑠((𝜔𝑓 − 𝜔𝑚)𝑡)}. (B.2) 

For capturing this term in a method like HB, terms with (𝜔𝑓 ± 𝜔𝑚) angular frequency must be 

added to the assumption. Additional terms also cause to terms with (𝜔𝑓 ± 2𝜔𝑚) appear in the 

equation. From these calculations, we expected the frequency response of force parametric made 

from a series of terms with (𝜔𝑓 ± 𝑛𝜔𝑚) angular frequency. That series can be truncated to 

achieve acceptable accuracy. 

Appendix C 
 

This appendix will review the Galerkin projection procedure and represents the sample 

MATLAB code. The general equation of motion for a nonlinear system is given as follows: 

 

 
𝑀�̈� + 𝐶�̇� + 𝐾𝑥 + 𝑓𝑁𝐿(𝑥, �̇�, 𝑡) = 𝑔(𝑡) (C.1) 

Assume the solution of Eq. (C.1) is periodic that can be represented as a Fourier series: 

 

 
𝑋(𝑡) =  ∑ �̃�𝑥 cos(𝑘𝜔𝑡) + �̃�𝑥sin (𝑘𝜔𝑡)

𝐻

𝑘=0

 (C.2) 

Next, Substituting Eq. (C.2) in Eq. (C.1) yields an equation based on different harmonic of 𝜔 that 

need to obtain onto the sine and cosine and disregard the terms in higher frequencies than 𝐻𝜔. To 

computerize this process the Galerkin projection can be useful. The scalar product of the Galerkin 

projection is given as follows: 

 

 
< 𝑓, 𝑔 >= ∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑡

2𝜋/𝜔

0

 (C.3) 
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A set of 𝑛(2𝐻 + 1) nonlinear algebraic equations can be derived by this method. A simple 

example of this process is presented as MATLAB code below: 

clear;clc;close all; 
 
syms t w A0 A1 B1 C K F real 
  
X =A0+A1*cos(w*t)+B1*sin(w*t); 
  
F_t = (diff(diff(X,t),t) + C*diff(X,t) + K*X + alpha*X^3) - F*cos(w*t); 
  
F_A0 = int(F_t,t,[0 2*pi/w]) 
 
Fcos = int(F_t*cos(w*t),t,[0 2*pi/w]) 
 
Fsin = int(F_t*sin(w*t),t,[0 2*pi/w]) 
 

 

 

Appendix D 
 

A solution for decoupled excitation frequencies 

This section is about finding the algebraic equations from AHBM for linear system with 

uncoupled parametric and external forces. The explanation of method for five terms is given as 

follow: 

 

𝑋 = 𝐴1 cos(𝜔𝑓𝑡) + 𝐵1 sin(𝜔𝑓𝑡) + 𝐴2 cos((𝜔𝑓 + 𝜔𝑚)𝑡) + 𝐵2 sin((𝜔𝑓 + 𝜔𝑚)𝑡)

+ 𝐴3 cos((𝜔𝑓 − 𝜔𝑚)𝑡) + 𝐵3sin ((𝜔𝑓 − 𝜔𝑚)𝑡)

+ 𝐴4 cos((𝜔𝑓 + 2𝜔𝑚)𝑡) + 𝐵4 sin((𝜔𝑓 + 2𝜔𝑚)𝑡)

+ 𝐴5 cos((𝜔𝑓 − 2𝜔𝑚)𝑡) + 𝐵5sin ((𝜔𝑓 − 2𝜔𝑚)𝑡) 

(D.1) 

 

Substituting the Eq. (D.1) to Eq. (4.1) by 𝑀 = 1 and without nonlinearity results to 
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− 𝐴1𝑤𝑓
2𝐶𝑜𝑠(𝑤𝑓𝑡) + 𝐵1𝐶𝑜𝑠(𝑤𝑓𝑡)𝐶𝑤𝑓  + 𝐴1𝐶𝑜𝑠(𝑤𝑓𝑡)𝑘0 +

𝐴2𝑘𝑚𝐶𝑜𝑠(𝑤𝑓𝑡)

2
+

𝐴3𝑘𝑚𝐶𝑜𝑠(𝑤𝑓𝑡)

2
  

−  𝐹𝐶𝑜𝑠(𝑤𝑓𝑡)  + 𝐵1𝑠𝑖𝑛(𝑤𝑓𝑡) − 𝐴1𝑠𝑖𝑛(𝑤𝑓𝑡)𝐶𝑤𝑓 +
𝐵2𝑘𝑚𝑠𝑖𝑛(𝑤𝑓𝑡)

2
 

+
𝐵3𝑘𝑚𝑠𝑖𝑛(𝑤𝑓𝑡)

2
 − 𝐵1𝑤𝑓

2𝑠𝑖𝑛(𝑤𝑓𝑡) + 𝐵2𝐶𝑜𝑠(𝑤𝑓𝑡 + 𝑤𝑚𝑡)𝐶𝑤𝑓  

+ 𝐵2𝐶𝑜𝑠(𝑤𝑓𝑡 + 𝑤𝑚𝑡)𝐶𝑤𝑚  −  𝐴2𝐶𝑜𝑠(𝑤𝑓𝑡 + 𝑤𝑚𝑡)𝑤𝑓
2  

− 𝐴2𝐶𝑜𝑠(𝑤𝑓𝑡 + 𝑤𝑚𝑡)𝑤𝑚
2  +  𝐴2𝐶𝑜𝑠(𝑤𝑓𝑡 + 𝑤𝑚𝑡)𝑘0  +

𝐴1𝑘𝑚𝐶𝑜𝑠(𝑤𝑓𝑡 + 𝑤𝑚𝑡)

2
 

−  2𝐴2𝐶𝑜𝑠(𝑤𝑓𝑡 + 𝑤𝑚𝑡)𝑤𝑓𝑤𝑚 +
𝐴4𝑘𝑚𝐶𝑜𝑠(𝑤𝑓𝑡 + 𝑤𝑚𝑡)

2
 

+ 𝐵3𝐶𝑜𝑠(𝑤𝑓𝑡 − 𝑤𝑚𝑡)𝐶𝑤𝑓  − 𝐵3𝐶𝑜𝑠(𝑤𝑓𝑡 − 𝑤𝑚𝑡)𝐶𝑤𝑚  

− 𝐴3𝐶𝑜𝑠(𝑤𝑓𝑡 − 𝑤𝑚𝑡)𝑤𝑓
2  − 𝐴3𝐶𝑜𝑠(𝑤𝑓𝑡 − 𝑤𝑚𝑡)𝑤𝑚

2  +  𝐴3𝐶𝑜𝑠(𝑤𝑓𝑡 − 𝑤𝑚𝑡)𝑘0  

+
𝐴1𝑘𝑚𝐶𝑜𝑠(𝑤𝑓𝑡 − 𝑤𝑚𝑡)

2
 +  2𝐴3𝐶𝑜𝑠(𝑤𝑓𝑡 − 𝑤𝑚𝑡)𝑤𝑓𝑤𝑚

+
𝐴5𝑘𝑚𝐶𝑜𝑠(𝑤𝑓𝑡 − 𝑤𝑚𝑡)

2
  −  𝐴2𝑠𝑖𝑛(𝑤𝑓𝑡 + 𝑤𝑚𝑡)𝐶𝑤𝑓  − 𝐴2𝑠𝑖𝑛(𝑤𝑓𝑡 + 𝑤𝑚𝑡)𝐶𝑤𝑚  

− 𝐵2𝑠𝑖𝑛(𝑤𝑓𝑡 + 𝑤𝑚𝑡)𝑤𝑓
2  − 𝐵2𝑠𝑖𝑛(𝑤𝑓𝑡 + 𝑤𝑚𝑡)𝑤𝑚

2  +  𝐵2𝑠𝑖𝑛(𝑤𝑓𝑡 + 𝑤𝑚𝑡)𝑘0

+
𝐵1𝑘𝑚𝑠𝑖𝑛(𝑤𝑓𝑡 + 𝑤𝑚𝑡)

2
 −  2𝐵2𝑠𝑖𝑛(𝑤𝑓𝑡 + 𝑤𝑚𝑡)𝑤𝑓𝑤𝑚  +

𝐵4𝑘𝑚𝑠𝑖𝑛(𝑤𝑓𝑡 + 𝑤𝑚𝑡)

2
 

− 𝐴3𝑠𝑖𝑛(𝑤𝑓𝑡 − 𝑤𝑚𝑡)𝐶𝑤𝑓  +  𝐴3𝑠𝑖𝑛(𝑤𝑓𝑡 − 𝑤𝑚𝑡)𝐶𝑤𝑚 − 𝐵3𝑠𝑖𝑛(𝑤𝑓𝑡 − 𝑤𝑚𝑡)𝑤𝑓
2  

− 𝐵3𝑠𝑖𝑛(𝑤𝑓𝑡 − 𝑤𝑚𝑡)𝑤𝑚
2  +  𝐵3𝑠𝑖𝑛(𝑤𝑓𝑡 − 𝑤𝑚𝑡)𝑘0 +

𝐵1𝑘𝑚𝑠𝑖𝑛(𝑤𝑓𝑡 − 𝑤𝑚𝑡)

2
 

+  2𝐵3𝑠𝑖𝑛(𝑤𝑓𝑡 − 𝑤𝑚𝑡)𝑤𝑓𝑤𝑚 +
𝐵5𝑘𝑚𝑠𝑖𝑛(𝑤𝑓𝑡 − 𝑤𝑚𝑡)

2
 

+ 𝐵4𝐶𝑜𝑠(𝑤𝑓𝑡 +  2𝑤𝑚𝑡)𝐶𝑤𝑓 

(D.2) 

+ 2𝐵4𝐶𝑜𝑠(𝑤𝑓𝑡 +  2𝑤𝑚𝑡)𝐶𝑤𝑚 +
𝐴2𝑘𝑚𝐶𝑜𝑠(𝑤𝑓𝑡 +  2𝑤𝑚𝑡)

2
 −  4𝐴4𝐶𝑜𝑠(𝑤𝑓𝑡 +  2𝑤𝑚𝑡)𝑤𝑓𝑤𝑚  

+ 𝐴4𝐶𝑜𝑠(𝑤𝑓𝑡 +  2𝑤𝑚𝑡)𝑘0 − 𝐴4𝐶𝑜𝑠(𝑤𝑓𝑡 +  2𝑤𝑚𝑡)𝑤𝑓
2 −  4𝐴4𝐶𝑜𝑠(𝑤𝑓𝑡 +  2𝑤𝑚𝑡)𝑤𝑚

2  

+ 𝐵5𝐶𝑜𝑠(𝑤𝑓𝑡 −  2𝑤𝑚𝑡)𝐶𝑤𝑓  −  2𝐵5𝐶𝑜𝑠(𝑤𝑓𝑡 −  2𝑤𝑚𝑡)𝐶𝑤𝑚  

+
𝐴3𝑘𝑚𝐶𝑜𝑠(𝑤𝑓𝑡 −  2𝑤𝑚𝑡)

2
 +  4𝐴5𝐶𝑜𝑠(𝑤𝑓𝑡 −  2𝑤𝑚𝑡)𝑤𝑓𝑤𝑚  

+ 𝐴5𝐶𝑜𝑠(𝑤𝑓𝑡 −  2𝑤𝑚𝑡)𝑘0  −  𝐴5𝐶𝑜𝑠(𝑤𝑓𝑡 −  2𝑤𝑚𝑡)𝑤𝑓
2  −  4𝐴5𝐶𝑜𝑠(𝑤𝑓𝑡 −  2𝑤𝑚𝑡)𝑤𝑚

2

− 𝐴4𝑠𝑖𝑛(𝑤𝑓𝑡 +  2𝑤𝑚𝑡)𝐶𝑤𝑓 −  2𝐴4𝑠𝑖𝑛(𝑤𝑓𝑡 +  2𝑤𝑚𝑡)𝐶𝑤𝑚  +
𝐵2𝑘𝑚𝑠𝑖𝑛(𝑤𝑓𝑡 +  2𝑤𝑚𝑡)

2
−  4𝐵4𝑠𝑖𝑛(𝑤𝑓𝑡 +  2𝑤𝑚𝑡)𝑤𝑓𝑤𝑚  + 𝐵4𝑠𝑖𝑛(𝑤𝑓𝑡 +  2𝑤𝑚𝑡)𝑘0  − 𝐵4𝑠𝑖𝑛(𝑤𝑓𝑡 +  2𝑤𝑚𝑡)𝑤𝑓

2

−  4𝐵4𝑠𝑖𝑛(𝑤𝑓𝑡 +  2𝑤𝑚𝑡)𝑤𝑚
2  −  𝐴5𝑠𝑖𝑛(𝑤𝑓𝑡 −  2𝑤𝑚𝑡)𝐶𝑤𝑓  

+  2𝐴5𝑠𝑖𝑛(𝑤𝑓𝑡 −  2𝑤𝑚𝑡)𝐶𝑤𝑚  +
𝐵3𝑘𝑚𝑠𝑖𝑛(𝑤𝑓𝑡 −  2𝑤𝑚𝑡)

2
 

+  4𝐵5𝑠𝑖𝑛(𝑤𝑓𝑡 −  2𝑤𝑚𝑡)𝑤𝑓𝑤𝑚  +  𝐵5𝑠𝑖𝑛(𝑤𝑓𝑡 −  2𝑤𝑚𝑡)𝑘0  − 𝐵5𝑠𝑖𝑛(𝑤𝑓𝑡 −  2𝑤𝑚𝑡)𝑤𝑓
2

−  4𝐵5𝑠𝑖𝑛(𝑤𝑓𝑡 −  2𝑤𝑚𝑡)𝑤𝑚
2 +

𝐵5𝑘𝑚𝑠𝑖𝑛(𝑤𝑓𝑡 −  3𝑤𝑚𝑡)

2
 +

𝐵4𝑘𝑚𝑠𝑖𝑛(𝑤𝑓𝑡 +  3𝑤𝑚𝑡)

2
 

+
𝐴4𝑘𝑚𝐶𝑜𝑠(𝑤𝑓𝑡 +  3𝑤𝑚𝑡)

2
  +

𝐴5𝑘𝑚𝐶𝑜𝑠(𝑤𝑓𝑡 −  3𝑤𝑚𝑡)

2
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By collecting terms with the same angular frequency and disregarding terms in 𝐶𝑜𝑠(𝑤𝑓𝑡 ± 3𝑤𝑚𝑡) 

and 𝑆𝑖𝑛(𝑤𝑓𝑡 ± 3𝑤𝑚𝑡), ten algebraic equations are obtained as follow: 

 − 𝐴1𝑤𝑓
2 + 𝐵1𝐶𝑤𝑓 + 𝐴1𝑘0  +

𝐴2𝑘𝑚

2
 +

𝐴3𝑘𝑚

2
 =  𝐹 (D.3) 

  𝐵1𝑘0  − 𝐴1𝐶 𝑤𝑓  +
𝐵2𝑘𝑚

2
 +

𝐵3𝑘𝑚

2
 − 𝐵1𝑤𝑓

2 = 0 (D.4) 

  𝐵2𝐶𝑤𝑓 + 𝐵2𝐶𝑤𝑚  − 𝐴2𝑤𝑓
2  −  𝐴2𝑤𝑚

2 + 𝐴2𝑘0 +
𝐴1𝑘𝑚

2
 −  2𝐴2𝑤𝑓𝑤𝑚 +

𝐴4𝑘𝑚

2
= 0 (D.5) 

 − 𝐴3𝐶𝑤𝑓 + 𝐴3 𝐶𝑤𝑚  − 𝐵3𝑤𝑓
2  −  𝐵3𝑤𝑚

2  + 𝐵3𝑘0 +
𝐵1𝑘𝑚

2
 +  2𝐵3𝑤𝑓𝑤𝑚  +

𝐵5𝑘𝑚

2
= 0 (D.6) 

 𝐵3𝐶𝑤𝑓 − 𝐵3𝐶𝑤𝑚  − 𝐴3𝑤𝑓
2 − 𝐴3𝑤𝑚

2  +  𝐴3𝑘0  +
𝐴1𝑘𝑚

2
 +  2𝐴3𝑤𝑓𝑤𝑚 +

𝐴5𝑘𝑚

2
= 0 (D.7) 

 − 𝐴2𝐶𝑤𝑓 − 𝐴2𝐶𝑤𝑚  −  𝐵2𝑤𝑓
2  −  𝐵2𝑤𝑚

2  +  𝐵2𝑘0  +
𝐵1𝑘𝑚

2
 −  2𝐵2𝑤𝑓𝑤𝑚  +

𝐵4𝑘𝑚

2
= 0 (D.8) 

 + 𝐵4𝐶𝑤𝑓  +  2𝐵4𝐶𝑤𝑚  +  𝐴2

𝑘𝑚

2
 −  4𝐴4𝑤𝑓𝑤𝑚  + 𝐴4𝑘0  − 𝐴4𝑤𝑓

2 −  4𝐴4 𝑤𝑚
2 = 0 (D.9) 

 − 𝐴4𝐶𝑤𝑓 −  2𝐴4𝐶𝑤𝑚  +
𝐵2𝑘𝑚

2
 −  4𝐵4𝑤𝑓𝑤𝑚  + 𝐵4𝑘0  −  𝐵4𝑤𝑓

2 −  4𝐵4𝑤𝑚
2 = 0 (D.10) 

  𝐵5𝐶𝑤𝑓  −  2𝐵5𝐶𝑤𝑚  +
𝐴3𝑘𝑚

2
+  4𝐴5𝑤𝑓𝑤𝑚  + 𝐴5𝑘0  − 𝐴5𝑤𝑓

2  −  4𝐴5𝑤𝑚
2 = 0 (D.11) 

 − 𝐴5𝐶𝑤𝑓  +  2𝐴5𝐶𝑤𝑚  +
𝐵3𝑘𝑚

2
 +  4𝐵5𝑤𝑓𝑤𝑚  +  𝐵5𝑘0  −  𝐵5𝑤𝑓

2  −  4𝐵5𝑤𝑚
2 = 0 (D.12) 

 

where Eq. (D.3) to (D.12) stand for 𝐶𝑜𝑠(𝑤𝑓𝑡), 𝑆𝑖𝑛(𝑤𝑓𝑡), 𝐶𝑜𝑠(𝑤𝑓𝑡 + 𝑤𝑚𝑡), 𝑆𝑖𝑛(𝑤𝑓𝑡 +

𝑤𝑚𝑡), 𝐶𝑜𝑠(𝑤𝑓𝑡 − 𝑤𝑚𝑡), 𝑆𝑖𝑛(𝑤𝑓𝑡 − 𝑤𝑚𝑡), 𝐶𝑜𝑠(𝑤𝑓𝑡 + 2𝑤𝑚𝑡), 𝑆𝑖𝑛(𝑤𝑓𝑡 + 2𝑤𝑚𝑡), 𝐶𝑜𝑠(𝑤𝑓𝑡 −

2𝑤𝑚𝑡), 𝑆𝑖𝑛(𝑤𝑓𝑡 − 2𝑤𝑚𝑡), respectively. 

  



 
 

62 
 

 

References 
 

[1] K. Lambeck, “The earth’s variable rotation: geophysical causes and consequences.,” earth’s Var. 

Rotat. Geophys. causes consequences., 1980, doi: 10.1016/0031-9201(81)90054-6. 

[2] A. R. Ingram and S. E. Motta, “A review of quasi-periodic oscillations from black hole X-ray 

binaries: Observation and theory,” New Astronomy Reviews, vol. 85. 2019, doi: 

10.1016/j.newar.2020.101524. 

[3] M. Guskov, J.-J. Sinou, F. Thouverez, and F. T. Multi, “Multi-dimensional harmonic balance 

applied to rotor dynamics,” Mech. Res. Commun., vol. 35, pp. 537–545, 2008, doi: 

10.1016/j.mechrescom.2008.05.002ï. 

[4] K. Prabith and I. R. P. Krishna, “The stability analysis of a two-spool rotor system undergoing rub-

impact,” Nonlinear Dyn., vol. 104, no. 2, pp. 941–969, Apr. 2021, doi: 10.1007/S11071-021-06370-

X/FIGURES/32. 

[5] M. Urabe, “Galerkin’s procedure for nonlinear periodic systems,” Arch. Ration. Mech. Anal., vol. 

20, no. 2, pp. 120–152, Aug. 1965, doi: 10.1007/BF00284614. 

[6] M. Urabe and A. Reiter, “Numerical computation of nonlinear forced oscillations by Galerkin’s 

procedure,” J. Math. Anal. Appl., vol. 14, no. 1, pp. 107–140, 1966, doi: 10.1016/0022-

247X(66)90066-7. 

[7] S. L. Lau, Y. K. Cheung, and S. Y. Wu, “Incremental harmonic balance method with multiple time 

scales for aperiodic vibration of nonlinear systems,” J. Appl. Mech. Trans. ASME, vol. 50, no. 4, pp. 

871–876, 1983, doi: 10.1115/1.3167160. 

[8] M. Krack and J. Gross, Harmonic Balance for Nonlinear Vibration Problems. 2019. 

[9] E. Sarrouy and J.-J. Sinou, “Non-Linear Periodic and Quasi-Periodic Vibrations in Mechanical 

Systems - On the use of the Harmonic Balance Methods,” Adv. Vib. Anal. Res., no. April, 2011, doi: 

10.5772/15638. 

[10] L. Xie, S. Baguet, B. Prabel, and R. Dufour, “Bifurcation tracking by Harmonic Balance Method 

for performance tuning of nonlinear dynamical systems,” Mech. Syst. Signal Process., vol. 88, pp. 

445–461, May 2017, doi: 10.1016/j.ymssp.2016.09.037. 

[11] T. Detroux, L. Renson, L. Masset, and G. Kerschen, “The harmonic balance method for bifurcation 

analysis of large-scale nonlinear mechanical systems,” Comput. Methods Appl. Mech. Eng., vol. 

296, pp. 18–38, Nov. 2015, doi: 10.1016/j.cma.2015.07.017. 

[12] F. H. Ling, “An Alternating frequency/time domain method for calculating the steady-state 

response of nonlinear dynamic systems,” Journal of Applied Mechanics, Transactions ASME, vol. 

57, no. 1. p. 251, 1990, doi: 10.1115/1.2888315. 

[13] J. J. Stoker, Nonlinear vibrations in mechanical and electrical systems, no. v 2. Wiley, 1950. 

[14] J. Moré and D. Sorensen, “COMPUTING A TRUSTREGION STEP,” SIAM J. Sci. Comput., vol. 4, 

no. 3, pp. 553–572, 1983, Accessed: Nov. 09, 2021. [Online]. Available: 

https://epubs.siam.org/page/terms. 

[15] S. Incerti, F. Zirilli, and F. Parisi, “A Fortran Subroutine for solving systems of nonlinear 



 
 

63 
 

simultaneous Equations,” Comput. J., vol. 24, no. 1, pp. 87–90, 1981. 

[16] K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. 

Math., vol. 2, no. 2, pp. 164–168, 1944, doi: 10.1090/qam/10666. 

[17] D. W. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” J. Soc. 

Ind. Appl. Math., vol. 11, no. 2, pp. 431–441, Jun. 1963, doi: 10.1137/0111030. 

[18] J. J. Moré, “The Levenberg-Marquardt algorithm: Implementation and theory,” Springer, pp. 105–

116, 1978, doi: 10.1007/bfb0067700. 

[19] A. Takamatsu, R. Tanaka, H. Yamada, T. Nakagaki, T. Fujii, and I. Endo, “Spatiotemporal 

symmetry in rings of coupled biological oscillators of physarum plasmodial slime mold,” Phys. Rev. 

Lett., vol. 87, no. 7, pp. 78102-1-78102–4, 2001, doi: 10.1103/PhysRevLett.87.078102. 

[20] S. V. Tikhov and D. V. Valovik, “Perturbation of nonlinear operators in the theory of nonlinear 

multifrequency electromagnetic wave propagation,” Commun. Nonlinear Sci. Numer. Simul., vol. 

75, pp. 76–93, 2019, doi: 10.1016/j.cnsns.2019.03.020. 

[21] K. Asadi, J. Yu, and H. Cho, “Nonlinear couplings and energy transfers in micro-and nano-

mechanical resonators: Intermodal coupling, internal resonance and synchronization,” 

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering 

Sciences, vol. 376, no. 2127. 2018, doi: 10.1098/rsta.2017.0141. 

[22] K. S. Kundert, G. B. Sorkin, and A. Sangiovanni-Vincentelli, “Applying Harmonic Balance to 

Almost-Periodic Circuits,” IEEE Trans. Microw. Theory Tech., vol. 36, no. 2, pp. 366–378, 1988, 

doi: 10.1109/22.3525. 

[23] S. Wang, P. Crouch, and D. Armbruster, “Bifurcation analysis of oscillations in electric power 

systems,” Proceedings of the IEEE Conference on Decision and Control, vol. 4. pp. 3864–3869, 

1996, doi: 10.1109/cdc.1996.577266. 

[24] Y. B. Kim and S. K. Choi, “A multiple harmonic balance method for the internal resonant vibration 

of a non-linear Jeffcott rotor,” J. Sound Vib., vol. 208, no. 5, pp. 745–761, 1997, doi: 

10.1006/jsvi.1997.1221. 

[25] K. Huang, Y. Yi, Y. Xiong, Z. Cheng, and H. Chen, “Nonlinear dynamics analysis of high contact 

ratio gears system with multiple clearances,” J. Brazilian Soc. Mech. Sci. Eng., vol. 42, no. 2, p. 98, 

Feb. 2020, doi: 10.1007/s40430-020-2190-0. 

[26] D. H. Hibner, “Dynamic response of viscous-damped multi-shaft jet engines,” J. Aircr., vol. 12, no. 

4, pp. 305–312, 1975, doi: 10.2514/3.44448. 

[27] Y. B. Kim and S. T. Noah, “Quasi-periodic response and stability analysis for a non-linear Jeffcott 

rotor,” J. Sound Vib., vol. 190, no. 2, pp. 239–253, 1996, doi: 10.1006/jsvi.1996.0059. 

[28] L. Chua and A. Ushida, “Algorithms for Computing Almost Periodic Steady-State Response of 

Nonlinear Systems to Multiple Input Frequencies,” IEEE Trans. Circuits Syst., vol. 28, no. 10, pp. 

953–971, 1981, doi: 10.1109/TCS.1981.1084921. 

[29] R. R. Pušenjak and M. M. Oblak, “Incremental harmonic balance method with multiple time 

variables for dynamical systems with cubic non-linearities,” Int. J. Numer. Methods Eng., vol. 59, 

no. 2, pp. 255–292, Jan. 2004, doi: 10.1002/nme.875. 

[30] M. Guskov and F. Thouverez, “Harmonic balance-based approach for quasi-periodic motions and 

stability analysis,” J. Vib. Acoust. Trans. ASME, vol. 134, no. 3, 2012, doi: 10.1115/1.4005823. 



 
 

64 
 

[31] K. Prabith and I. R. P. Krishna, “A Time Variational Method for the Approximate Solution of 

Nonlinear Systems Undergoing Multiple-Frequency Excitations,” J. Comput. Nonlinear Dyn., vol. 

15, no. 3, 2020, doi: 10.1115/1.4045944. 

[32] T. Rook, “An alternate method to the alternating time-frequency method,” Nonlinear Dyn., vol. 27, 

no. 4, pp. 327–339, 2002, doi: 10.1023/A:1015238500024. 

[33] H. Liao, Q. Zhao, and D. Fang, “The continuation and stability analysis methods for quasi-periodic 

solutions of nonlinear systems,” Nonlinear Dyn., vol. 100, no. 2, pp. 1469–1496, 2020, doi: 

10.1007/s11071-020-05497-7. 

[34] M. Legrand and M. L. Mod, “Mod ` eles de pr ´ ediction de l ’ interaction rotor / stator dans un 

moteur d ’ avion To cite this version : Thèse de Doctorat,” 2006. 

[35] G. Duffing, “Erzwungene schwingungen bei veränderlicher eigenfrequenz und ihre technische 

bedeutung,” Braunschweig Vieweg, vol. 41, p. 42, 1918. 

[36] T. D. Equation and N. Oscillators, Ivana Kovacic, Michael J. Brennan-The Duffing Equation_ 

Nonlinear Oscillators and Their Behaviour-John Wiley and Sons (2011). 2011. 

[37] W. B. Case, “The pumping of a swing from the standing position,” Am. J. Phys., vol. 64, no. 3, pp. 

215–220, 1996, doi: 10.1119/1.18209. 

[38] Y. A. Amer, H. S. Bauomy, and M. Sayed, “Vibration suppression in a twin-tail system to 

parametric and external excitations,” Comput. Math. with Appl., vol. 58, no. 10, pp. 1947–1964, 

2009, doi: 10.1016/j.camwa.2009.07.090. 

[39] V. Ramakrishnan and B. F. Feeny, “Resonances of a forced Mathieu equation with reference to 

wind turbine blades,” J. Vib. Acoust. Trans. ASME, vol. 134, no. 6, pp. 1–14, 2012, doi: 

10.1115/1.4006183. 

[40] J. F. Rhoads and S. W. Shaw, “The impact of nonlinearity on degenerate parametric amplifiers,” 

Appl. Phys. Lett., vol. 96, no. 23, pp. 6–9, 2010, doi: 10.1063/1.3446851. 

[41] V. Ramakrishnan and B. F. Feeny, “Second order perturbation analysis of a forced nonlinear 

Mathieu equation,” Proc. ASME Des. Eng. Tech. Conf., vol. 1, no. PARTS A AND B, pp. 1073–

1082, 2012, doi: 10.1115/DETC2012-71532. 

[42] S. Neumeyer, V. S. Sorokin, and J. J. Thomsen, “Effects of quadratic and cubic nonlinearities on a 

perfectly tuned parametric amplifier,” J. Sound Vib., vol. 386, pp. 327–335, 2017, doi: 

10.1016/j.jsv.2016.09.013. 

[43] G. G. Tehrani, C. Gastaldi, and T. M. Berruti, “Trained Harmonic Balance Method for 

Parametrically Excited Jeffcott Rotor Analysis,” J. Comput. Nonlinear Dyn., vol. 16, no. 1, 2021, 

doi: 10.1115/1.4048578. 

[44] K. Yi, S. Karkar, and M. Collet, “One-way energy insulation using time-space modulated 

structures,” J. Sound Vib., vol. 429, pp. 162–175, 2018, doi: 10.1016/j.jsv.2018.05.017. 

[45] I. Kovacic, R. Rand, and S. M. Sah, “Mathieu’s equation and its generalizations: Overview of 

stability charts and their features,” Appl. Mech. Rev., vol. 70, no. 2, 2018, doi: 10.1115/1.4039144. 

[46] H. Lamb, “On reciprocal theorems in dynamics,” Proc. London Math. Soc., vol. s1-19, no. 1, pp. 

144–151, Nov. 1887, doi: 10.1112/plms/s1-19.1.144. 

[47] J. D. Achenbach, Reciprocity in Elastodynamics. 2004. 



 
 

65 
 

[48] H. Nassar et al., “Nonreciprocity in acoustic and elastic materials,” Nature Reviews Materials, vol. 

5, no. 9. pp. 667–685, 2020, doi: 10.1038/s41578-020-0206-0. 

[49] Y. Wang, B. Yousefzadeh, H. Chen, H. Nassar, G. Huang, and C. Daraio, “Observation of 

Nonreciprocal Wave Propagation in a Dynamic Phononic Lattice,” Phys. Rev. Lett., vol. 121, no. 

19, 2018, doi: 10.1103/PhysRevLett.121.194301. 

 


