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Abstract

Connectivity and Consensus in Multi-Agent Systems with Uncertain Links

Mina Babahaji

In the analysis and design of a multi-agent system (MAS), studying the graph representing the

system is essential. In particular, when the communication links in a MAS are subject to uncertainty,

a random graph is used to model the system. This type of graph is represented by a probability ma-

trix, whose elements reflect the probability of the existence of the corresponding edges in the graph.

This probability matrix needs to be adequately estimated. In this thesis, two approaches are pro-

posed to estimate the probability matrix in a random graph. This matrix is time-varying and is used

to determine the network configuration at different points in time. For evaluating the probability

matrix, the connectivity of the network needs to be assessed first. It is to be noted that connectivity

is a requirement for the convergence of any consensus algorithm in a network. The probability ma-

trix is used in this work to study the consensus problem in a leader-follower asymmetric MAS with

uncertain communication links. We propose a novel robust control approach to obtain an approxi-

mate agreement among agents under some realistic assumptions. The uncertainty is formulated as

disturbance, and a controller is developed to debilitate it. Under the proposed controller, it is guaran-

teed that the consensus error satisfies the global L2-gain performance in the presence of uncertainty.

The designed controller consists of two parts: one for time-varying links and one for time-invariant

links. Simulations demonstrate the effectiveness of the proposed methods.
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Chapter 1

Introduction

1.1 Motivation

Multi-agent systems (MASs) have attracted much attention recently in different fields due to

their importance in a wide range of engineering and scientific applications such as smart grids,

transportation systems, biological systems, power systems, etc. [1, 2, 3, 4, 5, 6]. One of the

main objectives of this type of system is to properly coordinate individual agents to achieve a global

objective collectively [7]. Some of the important problems in a MAS include formation, rendezvous,

flocking, and consensus [8, 9, 10, 11, 12, 13]. In particular, in the consensus problems, it is desired

that all agents converge to the same value, which could be the leader’s state in a leader-follower

configuration [9, 10, 14]. On the other hand, the formation problem is concerned with coordinating

every agent’s motion to maintain a specific relative position with respect to the other agents (see

[12, 13]). Several distributed control strategies are proposed in the literature for MASs with a small

or large number of agents, linear or nonlinear agent dynamics, and fixed or switching topology [15,

16, 17, 18].

Consensus protocols for MASs are distributed control rules designed to achieve a prescribed

objective. For example, it is desired to perform data aggregation tasks in a sensor network. The

connectivity of the graph representing the network is a crucial requirement for achieving any global

objective [19]. Network connectivity is closely related to the information flow between the nodes.

A graph is said to be connected if there is a directed path from any node to any other node in the
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network. When the information exchange between each pair of neighboring nodes in the network

is bi-directional, the network is symmetric, and the graph representing it, is undirected. On the

other hand, if the information flow between the nodes is not symmetric, the corresponding graph

is directed and is referred to as a digraph. An underwater acoustic sensor network and traffic flow

network of a city are examples of asymmetric networks [19, 20, 21, 22]. This thesis is mainly

concerned with MASs with asymmetric communication channels, and hence, directed graphs.

A static graph is often used to model a deterministic MAS. However, the communication links in

a real-world MAS are subject to uncertainty [23, 24, 25]. As a result, the convergence of a consensus

algorithm may be negatively impacted if the uncertainty in the communication channels is not taken

into consideration. Therefore, a random graph is employed to model a MAS with uncertain links

[19].

1.2 Literature Review and Preliminaries

Over the past two decades, various problems in MASs have been investigated, such as consen-

sus, rendezvous, flocking, and formation problems [9, 10, 11, 12, 13, 14]. In a graph-theoretic

approach, agents in a MAS are represented by vertices and connections between them by edges

[26, 27]. In these types of systems, it is desired to design a local control protocol for each node

to achieve a global objective described above by minimal information exchange [28]. In particular,

leader-following consensus, also known as coordinated tracking, is of interest to researchers in var-

ious fields [9, 16, 18, 29, 30]. This problem is more challenging than leaderless consensus and has

more applications [23]. For example, leader-follower behavior is observed in biological systems

such as the flock of birds and the school of fish [31]. Most of the existing studies in the literature

consider a deterministic time-invariant topology for the leader-follower structure. Although there

are some studies on time-varying leader-follower MASs, still many important challenges need to be

addressed [29].

Like any real-world system, a MAS is subject to different types of uncertainty in the environ-

ment or system’s dynamic [14, 32]. For example, in an uncertain environment, the communication
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links between agents are subject to change. Different strategies are introduced in the MAS litera-

ture to deal with an uncertain environment. In [33], the uncertainties are formulated using a neural

network. The concept of a random graph model was first introduced by Erdös and Rényi [34, 35,

36, 37]. They used random variables to represent the communication links. This concept was then

further developed in [38, 39]. Such models effectively describe networks with unpredictable com-

munication links, e.g., underwater sensor networks with different sources of uncertainty like the

water temperature, sound speed, and underwater currents [40]. The authors in [19, 40, 41] use a

random graph to model a network with uncertain channels, where a weighted edge in the graph

represents the probability of the corresponding link in the network. Consensus algorithms based on

a random graph process have also attracted considerable interest. In [42], the authors investigate

the consensus of linear dynamics using communication graphs, defined as a series of independently,

identically distributed (iid) random graphs and prove its convergence. In the mentioned paper, the

communication links between agents are undirected and not weighted, so all edges have the same

probability of existence. They then generalized the results to random digraphs in [43] and to ran-

dom weighted digraphs in [44], where different communication links do not necessarily have the

same probability of existence. The authors in [45] introduce a necessary and sufficient condition on

almost sure asymptotic consensus for iid random graphs. They show that a stochastic discrete-time

linear dynamical system almost surely converges to a fixed vector under this condition. The authors

in [46, 47] investigate distributed average consensus in sensor networks with quantized data and

random link failures, and the authors in [28] study the distributed dynamic average consensus for

asymmetric networks.

As noted before, network connectivity is an essential requirement for implementing any dis-

tributed algorithm in a MAS. Furthermore, given its importance in data propagation, a quantitative

measure of connectivity would be beneficial in designing a high-performance MAS. Note that the

information is propagated more efficiently in a more-connected network [48]. The in-network data

propagation in random networks, where random variables represent communication links, is highly

dependent on the underlying expected communication graph’s connectivity level [45]. The Fiedler

value, defined as the smallest nonzero eigenvalue of the Laplacian matrix of an undirected graph,

is a commonly used algebraic measure of connectivity for symmetric networks. This measure is

3



closely related to the convergence rate of any consensus algorithm applied to the network [49]. The

paper [50] proposes a distributed approach for estimating and controlling the Fiedler value in ad-

hoc networks with a random topology, but it is only applicable to symmetric networks. Note that

random networks with bi-directional links, which are the focus of this thesis, are asymmetric. The

Fiedler’s notion of algebraic connectivity is extended to asymmetric networks in [51], where it is

shown that many properties of Fiedler’s definition apply to asymmetric networks as well. In [52],

the magnitude of the smallest non-zero eigenvalue of the Laplacian matrix is proposed as algebraic

connectivity for asymmetric networks. The authors in [53] generalize the algebraic connectivity

measure to asymmetric networks by introducing the notion of generalized algebraic connectivity

(GAC) and studying its relationship with various graph characteristics. They also show that the

expected convergence speed of cooperative algorithms is highly dependent on the GAC.

1.3 Thesis Contributions

In this thesis, different algorithms are developed to estimate the existence probabilities of edges

in a random graph which are required for assessing the GAC of the network. The proposed algo-

rithms are based on data propagation in a strongly connected network and Q-learning update rules.

These algorithms use the local knowledge of each agent to estimate the configuration of the net-

work and then send these estimates to other agents. The main objective is to find the expected graph

configuration and then evaluate the network’s connectivity to assess the speed of convergence to

consensus. This work generalizes the result of [19] presented for networks with time-invariant (or

slowly varying) weights.

Another contribution of this work is concerned with consensus control in a MAS subject to

uncertainty. First, the upper bounds on time-varying elements of the probability matrix are derived.

Then, the uncertainty is formulated in the continuous-time domain as a bounded disturbance. The

probability matrix is subsequently modeled as the sum of two matrices, one containing the nominal

values and the other containing the time-varying elements (due to disturbances). A robust distributed

control approach for a leader-follower MAS with time-varying edge probabilities is presented using

the probability matrix of the expected digraph and linear matrix inequalities (LMIs). The proposed
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distributed control technique can be applied to any asymmetric leader-follower MAS with time-

varying weighted links subject to bounded uncertainty. It is demonstrated that under this consensus

algorithm, the consensus error decreases, as confirmed by simulations.

1.4 Thesis Layout

The thesis follows the following structure.

• Chapter 1 includes the problem statement and motivation, a literature survey on consensus

control, random graphs and network connectivity, and the overview of the current work.

• Chapter 2 introduces notations used in this thesis and two adaptive Q-learning-based algo-

rithms to estimate the expected graph of a MAS. These algorithms are used to estimate the

probability matrix, which is required for assessing the GAC. The two algorithms are com-

pared in terms of their performance in different scenarios. The simulation results confirm the

effectiveness of the proposed methods compared to existing results.

• Chapter 3 introduces a distributed algorithm for the random digraph representing a leader-

follower MAS. It is assumed that the environmental uncertainty is time-varying, and hence,

so is the probability of existence of edges. Each element in the probability matrix is consid-

ered as the sum of fixed (nominal) and time-varying (uncertain) terms. A novel robust control

strategy is then proposed to achieve a satisfactory leader-follower agreement. The global con-

sensus error is guaranteed to satisfy the global L2-gain performance described in the chapter,

in the presence of uncertainty. Numerical examples are provided to validate the theoretical

findings in this chapter.

• Chapter 4 presents the conclusions as well as some suggestions for future research directions.
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Chapter 2

Random Graphs Estimation using

Q-Learning

2.1 Overview

To correctly estimate a random graph it is important to be able to estimate, in a distributed

fashion, the probability matrix (characterizing the probability of the existence of the graph’s edges)

and the graph connectivity. In this chapter, first, by leveraging Q-learning arguments, two different

solutions to the probability estimation problem are proposed. Then, a method for the estimation of

the algebraic connectivity is given. The accuracy of the proposed methods are verified by simulation

for an underwater sensor network.

This chapter is based on the following publication:

M. Babahaji, S. Blouin, W. Lucia, M. M. Asadi, H. Mahboubi and A. G. Aghdam, ”Random graphs

estimation using Q-learning”, In: 2021 IEEE International Conference on Wireless for Space and

Extreme Environments (WiSEE) (2021), pp. 109-114.
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2.2 Introduction

The notion of random graphs was first introduced in [34] and then developed in [38, 39]. Such

graphs are used to emulate a network under uncertain conditions with unpredictable network con-

nections e.g. underwater sensor networks with different uncertainty resources like: the water tem-

perature, sound speed, and underwater currents [40, 41].

The connectivity of a graph is particularly important because it is closely related to the efficiency

of data propagation [48] and to the solution of consensus problems. The concept of the algebraic

connectivity of symmetric graphs was introduced in [54] as the second smallest eigenvalue of the

Laplacian matrix. However, this definition can not be applied to random graphs, since they might

be asymmetric. In [55], a bound for the algebraic connectivity of directed graphs (digraphs) is

suggested. The authors in [56] investigated the connection between the Laplacian and adjacency

matrices for random graphs. In [53], a more general form of the algebraic connectivity called

the generalized algebraic connectivity (GAC) which can be applied to the asymmetric graphs, is

introduced for random graphs. This is the method used in this research.

To compute the GAC, the adjacency matrix or the probability matrix is required. In addition,

an algorithm is needed to estimate the probability matrix of the network in order to estimate the

network configuration. For random graphs, computing probability matrix is needed to estimate the

Laplacian matrix. The authors of [19] developed an algorithm based on Q-learning to estimate the

probability matrix for random graphs using local knowledge. The algorithm is reliable for networks

with slowly changing weights.

In this chapter, the estimation of the probability matrix of random graphs is performed by each

sensor. The goal is to use the local knowledge of the sensors from their neighborhood to approximate

the Ĝ. We propose adaptive algorithms to estimate the probability matrix of a time-varying random

graph, which is then used to compute the GAC. This problem is particularly important when the

dynamics’ model of the environment is unknown and there are uncertainties in the environment like

underwater conditions.

The rest of the chapter is as follows: notations and preliminaries as well as the problem formu-

lation are introduced in Section 2.3, the adaptive algorithms for estimating the probability matrix

7



are proposed in Section 2.4. In Section 2.5, the connectivity assessment for a digraph is explained.

Simulation results are provided in Section 2.6, and the conclusion is provided in Section 2.7.

2.3 Preliminaries and Notations

In this section, first we introduce the notation, then some important graph theory concepts [19,

40, 53, 57] used in the rest the chapter are reviewed. Let R and C be the set of real and complex

numbers. Furthermore, for any positive integer n, Nn denotes the restricted set of natural numbers

{1, . . . , n}. Let G = (V, E) be a random graph, where V = Nn and E are referred to as the set

of nodes and edges, respectively. The probability matrix, P = [pij |0 ≤ pij ≤ 1], represents the

existence probability of the edge (j, i) ∈ E , and A = [aij ] ∈ Rn×n is the adjacency matrix, where

aij =

 1 with probability pij

0 with probability 1− pij
(1)

Definition 1 The directed graph (digraph) Ĝ = (V, Ê) is defined as the expected digraph G, where

V contains the same vertices as in G, and Ê represents the set of edges. The adjacency matrix of Ĝ

is equal to the probability matrix Â = [pij ] for each i and j in V . Therefore, Ê can be formulated

as

Ê = {(i, j) ∈ V × V | pji ̸= 0} (2)

If the digraph is time-varying (i.e., the elements of the probability matrix change over time), the

expected digraph is denoted as Ĝ(t) and its adjacency matrix as Â(t).

Let L = [lij ] ∈ Rn×n denote the Laplacian matrix of a graph. For a weighted digraph, L is a

real matrix whose entries are [53]

lij =


−pij , if (j, i) ∈ E∑

k ̸=i pik, if j = i

0, otherwise

(3)
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Furthermore, the degree matrix is defined as D, which for an expected graph is equal to D =

diag{
∑n

j=1p1j , ...,
∑n

j=1pnj}. The neighbor set of node i, denoted by Ni, is the set of all nodes

from which there is an incoming edge to node i.

Definition 2 Let A be an asymmetric matrix, φ(A) = {(λi(A), vi(A),wi(A))| i ∈ Nn} defined

as a triple comprised of λi ∈ C, which is the ith eigenvalue of A, vi ∈ Cn and wi ∈ Cn which

are the ith associated left and right eigenvectors, respectively. φ(A) is sorted in increasing order

according to the real parts of the eigenvalues. Therefore, Real(λ1(A)) ≤ Real(λ2(A)) ≤ ... ≤

Real(λn(A)).

2.4 Probability Matrix Estimation

The authors in [19] proposed an algorithm based on Q-learning to estimate the probability matrix

of an expected graph. The probability estimation algorithm presented in [19] is a non-adaptive

estimation algorithm (NAE). As experimentally is shown there, such a solution is not designed to

deal with unknown fast variations of P (t). The main drawback is that the proposed approach is a

NAE, and its learning rate is constant, while the rate of change of P (t) can change over time.

Let P̂ (t) be the estimation of P (t) for the expected graph Ĝ(t) at the tth broadcast cycle. P̂ i(t)

represents the estimation of P̂ (t) by sensor i. The row j and column k of P̂ i(t) shows the probability

of existence of (k, j) ∈ E estimated by sensor i.

After computing the probability matrix from each sensor, the sensors broadcast their expectation

of P (t). Therefore, sensor i can estimate the edges that are not in its vicinity. The nodes commu-

nicate with each other by broadcasting the information. To avoid data interference, we assume that

each broadcast cycle comprises of n time slots, and during each time slot, only one node is allowed

to transmit data. For more information about the broadcasting algorithms refer to [19].

Let τ be the most recent broadcasting cycles (also known as time window) considered to update

p̂ikj , and w be its length (i.e., τ = {t1, ..., tw}). The Q-learning estimation is based on a greedy

algorithm. In other words, for updating the estimation using Q-learning we need to define a learning

rate. This learning rate shows which portion of learning is based on exploration or exploitation.

9



0 ≤ α ≤ 1 is the learning rate of the Q-learning update rule in this work. P̂ i(t) is updated using the

number of data which sensor i receives during the previous window τ . This element is computed

using the moving average approach. Moving average is a measure that uses a sequence of averages

of various subsets of the entire data set to analyze data points.

In what follows, two different scenarios are discussed to motivate why α and w should be

selected adaptively for an accurate estimation. Assume the number of data transferred from sensor

j to i changes suddenly; the algorithm should learn fast enough to be able to estimate it correctly. In

this case, if the estimation algorithm is configured to use a small window length and a large learning

rate, then fast convergence to the new probability value will occur. This choice of parameters would

reduce the impact of older data so that learning occurs mostly based on newer data. On the other

hand, when the rate of change of p̂ijk is slow, there is no need to learn fast and update quickly. In

this case, the learning rate could be low (near zero) and window size large to be more robust in the

presence of noise. As a consequence, p̂iij relies more on its previous values and it is less sensitive

to noise. The above discussion implies that different values of w and α might be used in various

scenarios. It is important to note that when the α is large and w is small, however the system tracks

the changes faster, it is more vulnerable to noise and if the learning rate is too high and the window

size too small, the estimates might follow the noise more than the actual probability.

In this chapter, we develop two algorithms based on two moving average methods to estimate

P i(t). In the first one, estimation is performed using a simple moving average (SMA) over the

receiving data, while in the second algorithm, an exponential moving average (EMA) is used to

improve the estimation when the probability matrix changes rapidly. These two approaches are

explained in the next two subsections.

2.4.1 Probability estimation via SMA

Denote by nij the number of times the node i receives uncorrupted information from node j

within the time window τ , i.e.,

nij =
∑

ntij
t∈τ

(4)
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where ntij is the number of received data points by node i from node j at time t ∈ τ . According

to the SMA scheme, all the data have the same weight (irrespective of time), and the probability of

existence of (j, i) is estimated as

σ(t) =
nij
w

(5)

where σ represents the SMA of the number of information received by node i from node j. At

the beginning, the initial estimate is only based on the number of messages node i receives in the

broadcast cycle from parent nodes (the nodes in the vicinity). Following a receding horizon strategy,

the window is moved one step forward at the next broadcast cycle, and the operations (4)-(5) are

repeated. Then the previously computed probability piij(t) is updated according to an adaptive Q-

learning paradigm as

p̂iij(t) = (1− α(t))p̂iij(t− 1) + α(t)σ(t) (6)

where the first component is known as the ”exploitation” term, and the second one as the ”explo-

ration” term. The rate-of-change (r(t)) of the probability matrix is derived after updating each

estimation. This allows the learning rate and window length to be adjusted at the next iteration by

f1(r(t)) and f2(r(t)), respectively. The functions f1(·) and f2(·) need to be properly defined based

on the application. They should be designed such that a larger r(t) results in a larger α(t) and a

smaller w(t), and vice versa. In the simulation part of Section 2.6 a possible choice for f1(·) and

f2(·) is given for a specific graph. All the mentioned steps are collected in Algorithm 1. In the

sequel, such an estimation scheme is referred to as the adaptive SMA (ASMA).

Algorithm 1: Estimation of P̂ i(i, :) using the ASMA

Initial values← p̂ii:(0), α0, w0, r0;
for each node j ∈ Ni do

if t ≤ w0 then
p̂iij(t) =

nij

t ;
else

α(t) = f1(r(t− 1));
w(t) = ⌈f2(r(t− 1))⌉;
p̂iij(t) = (1− α(t))p̂iij(t− 1) + α(t)σ(t);

end
r(t) = p̂iij(t)− p̂iij(t− 1);

end
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2.4.2 Probability estimation via EMA

Unlike the SMA method, the EMA approach uses a weighting scheme that gives more impor-

tance to recent data. In particular, Sij(t) is the assigned weight to the number of data sets received

by node i from node j at the time t ∈ τ and it is equal to

Sij(t) = ηntij + (1− η)(Sij(t− 1)− (1− η)(t−w)nt−w
ij ) (7)

where 0 ≤ η ≤ 1 is the smoothing factor which defines how fast the weighting factor decays with

time.

When η = 1, Sij(t) is updated only based on the new data, and the data from all the previous

cycles are not considered. On the other hand, when η = 0, Sij(t) updates only according to the

previous cycles and ignores the new data. The EMA, denoted by µ, is defined as

µ(t) =
Sij(t)

D(t)
(8)

where D(t) is defined as

D(t) = 1 + (1− η)(D(t− 1)− (1− η)(t−w)) (9)

Algorithm 2 shows the resulting adaptive estimation scheme with the EMA. Such a scheme is here-

after referred to as the adaptive EMA (AEMA). Let t1 represent the time steps that are less than t.

2.4.3 Comparing algorithms

In the NAE algorithm, the updating rule is similar to the one used in Algorithm 1, with the

important difference that the values of w and α are time-invariant. Therefore, the NAE algorithm

does not have enough flexibility to deal with changing environments. Algorithms 1, 2, and the NAE

algorithm employ two low-pass filters. The first one is used to compute the number of transmitted

data from j to i and the second one to update p̂iij . However, while Algorithm 1 and NAE use a SMA

low-pass filter, Algorithm 2 uses an EMA low-pass filter.
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Algorithm 2: Estimation of P̂ i(i, :) using the AEMA

Initial values← p̂ii:(0), Sij(0), D(0), α0, w0, r0;
for each node j ∈ Ni do

if t ≤ w0 then
for t1 ≤ t do

Sij(t1) = (1− η)Sij(t1 − 1) + ηnt1ij ;
D(t1) = (1− η)D(t1 − 1) + 1;

end
p̂iij(t) =

Sij(t)
D(t) ;

else
w(t) and α(t) are updated similarly to Algorithm 1.
p̂iij(t) = (1− α(t))p̂iij(t− 1) + α(t)µ(t);

end
end

According to (7), the following advantages and drawbacks can be underlined for the use of

EMA: when the value of η is close to 1, AEMA tracks the changes faster compared to ASMA and

the NAE algorithms, as they smooth out sudden changes. This property makes Algorithm 2 more

sensitive to noise. However, both proposed algorithms outperform the NAE algorithm in terms of

accurate tracking because they can adjust the variables (α and w) to achieve the best result. More-

over, faster tracking is expected for ASMA and AEMA by choosing α and w, respectively, close to

one and zero. On the other hand, such a tuning has the drawback of making the estimation algo-

rithms sensitive to noise. Further work is required in order to tune the parameters more effectively.

Both EMA and SMA methods are elaborated in terms of noise-attenuation capabilities in [58].

2.4.4 Estimation of the entire probability matrix

As noted before, sensor i estimates the probability of existence of edge (k, i) ∈ E , where k is

any of the graph nodes. If node k is connected to node i, it can easily use the estimates of node i

of its connected edges. However, there is no guarantee that sensor k will always receive sensor i’s

broadcasts [19]. As a result, sensor k will update its estimate of the existence probability of edge

(j, i) in the expected graph Ĝi(t) based on the estimated values performed by all sensors, given

the connectivity of the graph. Each sensor receives the estimation of every edge’s probability from

different sensors at any broadcast cycle and find the most appropriate estimation.
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Definition 3 [19] Time stamp matrix Qk = [qkij ] is defined as a matrix that holds the broadcast

cycle qkij in which sensor i generated the current estimate of pkij held by sensor k.

The following algorithm is used to update the rows 1, . . . , i− 1, i+1, . . . , n of matrix P̂ i(t). It

is assumed that the edges with a probability smaller than a prescribed threshold value ϵ are removed.

Algorithm 3: Computing the P̂ i(: /{i}, :)
for (k, j) ∈ Ê i(t) & j ̸= i do

s∗ = argmaxs∈{i}∪Ni
qsjk;

qijk = qs
∗

jk;
if ps∗jk ≥ ϵ then

pijk(t) = ps
∗
jk;

else
pijk(t) = 0;
Ê i(t) = Ê i(t)/{(k, j)}

end
end

2.5 Connectivity Assessment

Since the random graphs considered in this study are asymmetric, the notion of algebraic con-

nectivity for symmetric graphs cannot be applied here. In fact, unlike symmetric networks, the

eigenvalues of the Laplacian of an asymmetric network can be complex. Therefore, a more general

form of connectivity is needed for directed graphs. The generalized algebraic connectivity (GAC)

for weighted directed graphs is introduced in [53] to address this shortcoming. This notion reflects

the convergence rate to consensus in a directed graph, similar to undirected graphs. The GAC is

defined as the real part of the second smallest eigenvalue of the Laplacian matrix of a connected

directed graph, as described next.

Definition 4 [53] Let L be the Laplacian matrix of the expected digraph Ĝ given by (3). The GAC

is defined as

λ̃(L) = min
λi(L)̸=0,λi(L)∈Λ(L)

Real (λi(L))

where Λ(L) = {λi(L)|i ∈ V}.

14



For an unknown graph G, after estimating the probability matrix of Ĝ via Algorithm 3, the

Laplacian matrix is given by (3). It can be rewritten as

Li(t) = P i(t)−Di(t)

where Di(t) is the estimated degree matrix by i at broadcast cycle t. Then, each node can compute

the GAC using Definition 4, as an estimate of network connectivity. These steps are summarized in

Algorithm 4.

Algorithm 4: Estimation of the GAC

for each node i do
for node j ∈ Ni do

Compute piij(t) using Algorithm 1 or 2;
end
Broadcast the expectations using Algorithm 3 to estimate the other rows of P i(t);
Li(t) = P i(t)−Di(t);
λ̃(Li(t)) = minλi(L)̸=0,λi(L)∈Λ(L) Real (λi(L));

end

2.6 Simulation Results

To evaluate the effectiveness of the proposed algorithm, we have considered an underwater

sensor network consisting of 5 sensors. The simulation results are obtained in MATLAB/Simulink

environment. To this end, the probabilities of the existence of edges are assumed to evolve as

follows:

P (t) =



0 0.9 0 0.8 0

0.6 0 0.6 0 0.8

0 0.6 0 F1(t) 0

0.8 F2(t) 0.8 0 F3(t)

0 0.7 0 0.9 0


(10)
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Figure 2.1: The topology of directed graph

where F1(t), F2(t), and F3(t) are the time-varying elements of the probability matrix, and are equal

to 
F1(t)

F2(t)

F3(t)

 =


0.4 + 0.2 sin(0.005t)

0.6 + 0.1 sin(0.005t)

0.5 + 0.2 sin(0.01t)

 (11)

The frequencies of the above sinusoids are chosen in accordance with real-world underwater ap-

plications. The broadcast cycle length is considered T = 5 seconds, and the length of each time

interval is 1 second. Therefore, during each one-second interval, only one sensor can broadcast

information. The update function α is considered as

α(t) = f1(r(t− 1)) =



0.99 if r(t− 1) ≥ 0.99

0.5 if 0.8 ≤ r(t− 1) < 0.99

0.03 if 0.001 < r(t− 1) < 0.8

0.02 if r(t− 1) ≤ 0.001

(12)

and w is given by

w(t) = f2(r(t− 1)) =

 1 if r(t− 1) ≥ 0.9

2 if r(t− 1) < 0.9
(13)
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These two functions meet the required conditions. If the environment varies rapidly, a sufficiently

large α (close to 1) and small w must be selected, and vice versa. The mean-square error (MSE) of

the probabilities estimated by sensor 5 using Algorithms 1 and 2 for different parameters are shown

in Table 2.1. First, it is important to remark that some delay in the estimation are unavoidable due to

the delay to receive broadcasted information from other sensors. As an example, from (10) it can be

noticed that sensor 5 directly receives information only from 2 and 4, while the information pertain-

ing to the other sensors are delayed. In this simulation, NAE, ASMA, and AEMA are compared. It

is predictable that the adaptive Algorithms 1 and 2 almost always have better result than the NAE,

as this algorithm uses a fixed window and learning rate, but in the two other ones, the window size

and learning rate are changing according to rate-of-change. This is shown in Table 2.1 where the

NAE is used with different learning rate and in Table 2.2, where it is tested for a fixed α = 0.1

and different window length. The obtained results show that the AEMA and ASMA methods in all

cases result in a smaller MSE compared to NAE.

Fig. 2.2 illustrates how p45 is estimated by Algorithm 3 based on Algorithms 1 and 2. The

ASMA method relies on the previous values, as much as the new ones. This attitude causes a

delay in reacting to the parameter variations and makes it smoother than the AEMA method, where

the estimator relies more on the latest data. This leads to a faster but more fluctuating estimator.

In both cases, the learning rate and window size are updated using (12) and (13) and react faster

to rapidly varying data. Fig. 2.2 demonstrates the effect of the distance and connectivity. Sensor

4, which directly computes p45 using Algorithms 1 and 2 provides the most accurate estimate of

this probability of p45 to its actual value. Sensors 5 and 1, which are connected to sensor 4 with

weights 0.9 and 0.8, respectively, have the second fastest reaction to the change of p45. Sensor 2,

which receives the data directly from sensor 1 but not from sensor 4, has some delay in updating

its estimation. As for sensor 3, on the other hand, there is an edge from it to sensor 4, but its

weight is relatively small, which means that this edge is not reliable, and that is why it has the most

considerable delay in tracking the changes.
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(a)

(b)

Figure 2.2: Comparison of the estimation of p45 by different sensors using two methods: (a) ASMA,
and (b) AEMA
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Table 2.1: Comparison of the MSE of three different methods

NAE (α = 0.01) NAE (α = 0.1) NAE (α = 0.3) NAE (α = 0.5) NAE (α = 0.7) ASMA AEMA
0.096 0.081 0.123 0.2576 0.2706 0.035 0.028

Table 2.2: Comparison of the MSE of NAE with different window lengths

NAE (w=1) NAE (w=2) NAE (w=3) NAE (w=4)
0.0502 0.081 0.139 0.199

Fig. 2.3 compares the GAC computed using the ASMA and AEMA methods from the per-

spective of each sensor with different initial choices for P̂ (0): 0.3I5, 0.6I5, and 0.8I5. This figure

demonstrates that the EMA method converges faster to the actual GAC. The reason is that the

ASMA method seeks to smooth out the changes; therefore, it takes longer to converge to the actual

GAC. On the other hand, the AEMA method uses the most recent information. Note that since there

are five time-steps in each broadcast cycle, at each time step, only one sensor updates its estimation

using the other sensors’ estimations, and then broadcasts it. For instance, sensor 5 receives all other

sensors’ estimations and then updates the entries of P̂ 5(t). As a result, the estimation of sensor 5

would be the nearest to the actual value because it is the last sensor. However, both methods show

relatively good tracking properties, in general.

2.7 Conclusions

In this work, we estimate the probability matrix of a random graph using two different proce-

dures. These algorithms differ in terms of how the moving average is computed, and they have

similarities in terms of adaptive learning rate and window length. As an application of estimating

a random graph, the expected graph based on the estimated probability matrix is used to assess

the GAC. The two proposed methods (ASMA and AEMA) are applied to a network of 5 sensors

in the simulation section. Then, the impact of the connectivity between sensors on the delay in

the estimation is discussed. The proposed procedures outperform the previously proposed NAE in

most scenarios due to their adaptive nature. As future work, one can investigate how the proposed
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Figure 2.3: Comparison of the estimation of the GAC using the ASMA and AEMA method for
each sensor. The gray/light blue lines show different ASMA/AEMA estimations with different
initial conditions of P̂ . The black/dark blue lines are the mean values over the number of broadcast
cycles.

algorithms perform when applied to a real underwater sensor network subject to packet loss.
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Chapter 3

Consensus Control of Multi-Agent

Systems with Uncertain Communication

Links

3.1 Overview

This chapter is devoted to the consensus control of a leader-follower multi-agent system (MAS)

modeled by a random digraph. Due to the uncertainties in the environment, the communication

links between distinct agents are represented by a time-varying probability matrix. We propose a

novel robust control strategy to achieve approximate agreement among agents in the presence of

an asynchronous network with uncertain communication links. The uncertainties are modeled as

disturbances, and the controller is designed to debilitate them. Under the proposed controller, it is

guaranteed that the global consensus error satisfies the L2-gain performance in the presence of un-

certainties. The designed controller consists of two components: one for time-varying links and the

other for the nominal links. The functionality of the proposed controller is proved mathematically

and verified by simulations.

This chapter is based on the following publication:

M. Babahaji, E. Firouzmand, A. G. Aghdam, and H. A. Talebi, “Consensus control of multi-agent
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systems with uncertain communication links”, submitted.

3.2 Introduction

MASs have attracted much attention recently in different fields due to their importance in a

wide range of engineering and scientific applications such as smart grids, transportation systems,

biological systems, power systems, etc. [59, 60]. Some of the important problems in a MAS include

formation, rendezvous, flocking, consensus, etc. [9, 10, 11, 12, 13]. In particular, leader-following

consensus, also known as coordinated tracking, is of interest to researchers in various fields e.g.

biological systems, vehicle platoon, etc. [31, 61].

Like any real-world system, a MAS is subject to different types of uncertainty in the environ-

ment or system’s dynamic [14, 32]. For example, in an uncertain environment, the communication

links between agents are subject to change. Different strategies are introduced in the MAS litera-

ture to deal with an uncertain environment. In [33], the uncertainties are formulated using a neural

network. The concept of a random graph model was first introduced in [34]. They used random

variables to represent the communication links. The authors in [40] use a random graph to model

a network with uncertain channels, where a weighted edge in the graph represents the probability

of the corresponding link in the network. The authors in [62] introduce a controller for MASs with

uncertainties and delays where the dynamic model of each agent is a single integrator. The results

are extended to the MAS with double-integrator dynamics in [32], and to the MAS with dynamics

having at least one zero eigenvalues [14]. In a different application, a distributed H∞ control law

is proposed in [63] to model the cyber-physical attacks as external disturbances in order to mitigate

their impact using control-theoretic methods. The approach does not impose any limitations on the

number of attacked agents.

This chapter considers the leader-follower consensus problem for a random graph, where the

leader is the root node of the directed spanning tree. Each follower only has access to its own

local information and that of its neighbors, and estimates the network configuration using [64].

The probabilities of the existence of the edges in the graph are represented by a matrix, which is

considered as the weight of the graph. A robust controller is subsequently designed to achieve the
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desired objectives, described in Section 3.4. One of the advantages of the proposed approach is that

some of the restrictions imposed on the system dynamics in the prior literature (e.g. [14, 32, 62],

discussed above) are not assumed here.

The rest of the chapter is organized as follows. The notations and preliminaries are introduced

in Section 3.3. The problem is then formulated in Section 3.4. The control strategy for the random

graph is proposed in Section 3.5. Simulations are presented in Section 3.6 to demonstrate the

effectiveness of the proposed method. Finally, the concluding remarks are given in Section 3.7.

3.3 Preliminaries and Notations

In this section, some background information about the graph theory is provided [63, 64, 65].

Let R and C be the set of real and complex numbers, ⊗ be the Kronecker product, and IN be a

N ×N identity matrix. Let also G = (V, E) be a random digraph with the set of vertices and edges

denoted, respectively, by V = {1, ..., N} and E ⊆ V×V . The adjacency matrixA = [aij ] ∈ RN×N

is defined as

aij =

 1 with probability pij

0 with probability 1− pij
(14)

where 0 ≤ pij ≤ 1, i, j ∈ V , are the elements of the probability matrix P , which represents the

existence probability of edge (j, i) ∈ E .

The expected digraph Ĝ = {(V̂, Ê)| V̂ = V, Ê ⊆ V̂ × V̂} is defined as an estimate of the

digraph G, where (Â = [pij ]) for each i and j in V . Note that the expected digraph Ĝ is used to

represent a random digraph in the analysis and design of networked control systems in the presence

of uncertainties. Let the degree matrix D = diag(di) ∈ RN×N be the total number of the incoming

edges of node i, where di =
∑N

j=1 pij , and the Laplacian matrix L be defined as L = D − Â.

For the case of a time-varying network, the time-dependency of the probability matrix is denoted as

P(t). The degree matrix and Laplacian are then represented by D(t) and L(t), respectively. Also,

Ni is the neighbor set of node i, which is the set of all nodes from which there is an incoming edge

to node i.
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3.4 Problem Formulation

Consider a MAS with linear time-invariant (LTI) dynamics as follows:

.
xi(t) = Axi(t) +Bui(t) (15)

where xi ∈ Rn is the state, A ∈ Rn×n, B ∈ Rn×m are the constant matrices (which are the same

for all agents), and ui ∈ Rm is the control input.

Assumption 1 There are N + 1 nodes, N of them representing the followers with dynamics repre-

sented by (15), and one representing the leader.

Assumption 2 The leader is represented by the root node and does not receive information from

the followers.

Assumption 3 Assume that the network of followers is strongly connected and that the leader sends

its information to at least one follower.

Assumption 3 is essential as the information of the entire network is not available to the agents.

Hence, the agents need to exchange their estimation of the whole network with other agents. Note

that due to the strong connectivity of the followers, each agent’s perception about network configu-

ration converges to the exact configuration.

Let the agent dynamics be rewritten as [63]:

ẋi(t) = Axi(t) +Buai (t) +Bfi(t,∆pij(t)) (16)

where fi(t,∆pij(t)), i ∈ V , is the uncertain term of the control signal in (15), which will hereafter

be denoted by fi(t), for simplicity. Write the probability matrix P as P̂ + ∆P(t), where P̂ is the

nominal component, and ∆P(t) includes the time-varying elements, which are bounded. Note that

ui
a(t) and fi(t) are, respectively, associated with the terms in P̂ and ∆P(t).

Assumption 4 ∥∆pij(t)∥ is less than or equal to ψij for any pij ̸= 0, and is zero otherwise, where

ψij is a prescribed positive constant which is less than or equal to the nominal value p̂ij , and ∥.∥

denotes the 2-norm.
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Let the agents’ dynamics (16) be written in the augmented form as:

.
X(t) = (IN ⊗A)X(t) + (IN ⊗B)Ua(t) + (IN ⊗B)F (t,∆P(t)) (17)

whereX(t) = [x1
T (t), . . . , xN

T (t)]T ,Ua(t) = [ua1
T (t), . . . , uaN

T (t)]T , andF (t) = [fT1 (t), . . . , f
T
N (t)]T .

Definition 5 [63] The synchronization error between the leader and each follower is defined as

δi(t) = xi(t)− x0(t), i ∈ V (18)

Bounded L2-Gain Synchronization Problem [66, 63]: Given the system (17) with N nodes, design a

distributed control protocol ui(t), such that for any F (t) ∈ L2[0,∞) the bounded L2-gain condition

is satisfied as follows: ∫ ∞

0
δTQδdt ≤ γ2

∫ ∞

0
F TWFdt (19)

where γ is a positive real scalar representing the disturbance attenuation level. In addition, Q and

W are positive definite matrices.

It is desired to develop a control strategy that satisfies (19). This problem is studied in the next

section.

3.5 Main Results

For a MAS described by (17), the static control protocol proposed in [14] is adopted as a dy-

namic law in the presence of uncertainties. For the case when the agents have time-invariant dy-

namics like (16), one can use the following time-varying control law:

ui(t) = cK(
∑
j∈Ni

pij(t)(xi(t)− xj(t)) + pi0(t)(xi(t)− x0(t))), i ∈ V (20)

where Ni is the neighbor set of node i, c > 0 is the common coupling weight among neighboring

agents, K ∈ Rm×n is the feedback gain matrix, and pij(t) is the (i, j) element of the probability

matrix. Furthermore, pi0(t) is the probability of existence of an edge from the leader to follower
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i. This control law aims to minimize the disagreement between the leader and followers by using a

proper feedback gain matrix. The control law U(t) equals:

U(t) = c(L ⊗K)δ(t) (21)

where L = L+diag{pi0}i∈V , and can be decomposed into a fixed nominal term and a time-varying

deviation term as L̂+∆L(t). In addition,

δ(t) = [δT1 (t), . . . , δ
T
N (t)]T (22)

According to (16), ui(t) can be expressed as uai (t) + fi(t), where

uai (t) = cK(
∑

j∈Ni
p̂ij(xi(t)− xj(t))+

p̂i0(xi(t)− x0(t))), i ∈ V
(23a)

fi(t) = cK(
∑

j∈Ni
∆pij(t)(xi(t)− xj(t))+

∆pi0(t)(xi(t)− x0(t))), i ∈ V
(23b)

Based on (23),

Ua(t) = c(L̂ ⊗K)δ(t) (24a)

F (t) = c(∆L(t)⊗K)δ(t) (24b)

Using the above equations

δ̇(t) = (IN ⊗A+ cL̂ ⊗BK)δ(t) + (IN ⊗B)F (t) (25)

where Ac = IN ⊗A+ cL̂ ⊗BK.

The following lemma is essential in the proof of the main result.

Lemma 1 [63] Let L̂ be such that L̂ = V ΣV −1, where Σ = diag{λi}i∈V (λi’s are the eigenvalues

of L̂), and V is a matrix whose columns are the full complement of the corresponding eigenvalues.
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Then, Q2 ∈ RN×N is defined as

Q2 = cR1L̂ (26)

where R1 = RT
1 = (V −1)TV −1 exists such that Q2 = QT

2 > 0.

Theorem 1 Consider a MAS whose communication graph G satisfies Assumptions 1-4, and let

agents’ dynamics be described by (16). Let also the pair (A,B) be stabilizable, and apply the con-

trol law (20) with K = −BTP1 and c > 1/2min(Re{λi}), where λi’s, i ∈ V , are the eigenvalues

of L̂, and P1 ∈ Rn×n is the solution of the following linear matrix inequality (LMI):

ATP1 + P1A+Q1 + (1− 1

γ2
)P1BB

TP1 < 0 (27)

for a given symmetric positive-definite matrix Q1 = QT
1 > 0, Q1 ∈ Rn×n, where γ is the distur-

bance attenuation level defined earlier. Then,

(1) if ∥∆pij∥ = 0, the synchronization error asymptotically converges to zero, and

(2) if ∥∆pij∥ ̸= 0, the synchronization error satisfies the L2-gain condition.

Proof: Consider the following non-negative quadratic function

V (t) = δT (t)(Q2 ⊗ P1)δ(t) (28)

where δ(t) is given by (22), and Q2 is defined in (26). The derivative of the above function is

V̇ (t) = δ̇T (t)(Q2 ⊗ P1)δ(t) + δT (t)(Q2 ⊗ P1)δ̇(t) (29)

From (25):

V̇ (t) = [δT (t)(IN ⊗AT + cL̂T ⊗ (BK)T )

+ F T (t)(IN ⊗BT )](Q2 ⊗ P1)δ(t)+

δT (t)(Q2 ⊗ P1)[(IN ⊗A+ cL̂ ⊗BK)δ(t) + (IN ⊗B)F (t)] (30)
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It follows from (26) that

V̇ (t) = δT (t)[Q2 ⊗ (ATP1 + P1A)

− 2Q2R
−1
1 Q2 ⊗ P1BB

TP1]δ(t)

+ F T (t)(Q2 ⊗BTP1)δ(t)

+ δT (t)(Q2 ⊗ P1B)F (t) (31)

Adding and subtracting

δT (t)

(
Q2 ⊗

(
(
1

γ2
− 1)P1BB

TP1

))
δ(t)

to (31) yields:

V̇ (t) ≤ −δT (t)(Q2 ⊗Q1)δ(t)

+ δT (t)
((
Q2 − 2Q2R

−1
1 Q2

)
⊗ P1BB

TP1

)
δ(t)

− 1

γ2
δ(t)T

(
Q2 ⊗ P1BB

TP1

)
δ(t)

+ F T (t)(Q2 ⊗BTP1)δ(t) + δT (t)(Q2 ⊗ P1B)F (t) (32)

To find conditions under which the second term in the right side of the above inequality is negative,

based on Lemma 1, one can write:

(
Q2 − 2Q2R

−1
1 Q2

)
=

(
V −1

)T [
cΣ− 2c2Σ2

]
V −1 < 0 (33)

The above inequality holds if:

cΣ− 2c2Σ2 < 0 (34)

Since c > 0 and Σ > 0, thus

I − 2cΣ < 0 (35)
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This implies that for (33) to hold, it suffices to have:

c >
1

2min(Re{λi})
(36)

On the other hand, the third term on the right side of (32) is also negative (as it is a quadratic term

with a negative sign).

V̇ (t) ≤ −δT (t)(Q2 ⊗Q1)δ(t)

− 1

γ2
δT (t)

(
Q2 ⊗ P1BB

TP1

)
δ(t)

+ F T (t)(Q2 ⊗BTP1)δ(t) + δT (t)(Q2 ⊗ P1B)F (t) (37)

And since the second term is negative, then

V̇ (t) ≤ −δT (t)(Q2 ⊗Q1)δ(t) + F T (t)(Q2 ⊗BTP1)δ(t)

+ δT (t)(Q2 ⊗ P1B)F (t) (38)

In the case of no uncertainties (∥∆pij∥ = 0), F (t) is zero, and hence, it results from the above

inequality that V̇ (t) < 0, and δ(t) is asymptotically stable. The proof of part 1 is now complete.

For the case when F (t) ̸= 0, consider the Hamiltonian as

H = V̇ (t) + δT (t)(Q2 ⊗Q1)δ(t)− γ2F T (t)(Q2 ⊗ I)F (t) (39)

From (39) and (32), and on noting that some of the terms on the right side of (32) are shown to be

negative so far, one has:

H = − 1

γ2
δT (t)

(
Q2 ⊗ P1BB

TP1

)
δ(t)

+ F T (t)(Q2 ⊗BTP1)δ(t) + δT (t)(Q2 ⊗ P1B)F (t)

− γ2F T (t)(Q2 ⊗ I)F (t) (40)
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Figure 3.1: The topology of the digraph of the MAS of Example 1. Node 0, shown in gray, repre-
sents the leader; other nodes are followers.

Thus,

H ≤ −
∥∥∥∥γ(Q 1

2
2 ⊗ IN )(z − F T (t))

∥∥∥∥2 (41)

where z = 1
γ2 δ

T (t)P1B. Taking the integral of (39) and using the above inequality yields:

V (T )− V (0) +

∫ T

0
(δT (t)(Q2 ⊗Q1)δ(t)

− γ2F T (t)(Q2 ⊗ I)F (t))dt ≤ 0 (42)

Since V (0) = 0 and V (T ) > 0, one has:

∫ T

0
(δT (t)(Q2 ⊗Q1)δ(t)− γ2F T (t)(Q2 ⊗ I)F (t))dt ≤ 0 (43)

Therefore, the resultant controller satisfies the L2-gain condition. ■

3.6 Simulations

Example 1. Consider a MAS with the digraph given in Fig. 3.1, where the leader (represented

by the gray node) sends its data only to agent 1. It can be observed that the leader is the root node,

and Assumptions 1-3 are met. The information of the leader is only sent to node 1.
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Assume that each agent has the following state-space matrices:

A =


0 1 0

0 0 1

1 0 0

 , B =


1

1

0

 (44)

It is straightforward to verify that the above system is controllable, therefore it is stabilizable, too.

Let the probability matrix (corresponding to the communication links) be given by:

P =



0 0 1 0 0

0.5 0 0 0 0

0 0.8 + 0.1 sin(t/20) 0 0 0.3

0.8 0 0 0 0

0 0 0 0.7 + 0.2 sin(t/10) 0


(45)

The nominal and time-varying components of the probability matrix can, respectively, be expressed

by:

P̂ =



0 0 1 0 0

0.5 0 0 0 0

0 0.8 0 0 0.3

0.8 0 0 0 0

0 0 0 0.7 0


(46)

and

∆P(t) =



0 0 0 0 0

0 0 0 0 0

0 0.1 sin(t/20) 0 0 0

0 0 0 0 0

0 0 0 0.2 sin(t/10) 0


Assume also that the probability of the existence of a link from the leader to agent 1 is equal to 0.5.
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Figure 3.2: The norm of the synchronization error signal when u0 = 0

Solving the LMI equation (27) using Matlab CVX [67, 68] results in:

P1 =


3.2425 1.5769 2.8715

1.5769 2.0827 2.1753

2.8715 2.1753 4.6914

 (47)

Now, with the above matrix and the parameters γ = 0.5, Q1 = 4I3 and c = 20, the feedback gain

matrix is obtained as

K =

[
−4.8194 −3.6595 −5.0468

]
By applying the control signal (20), to this MAS, states of the followers converge to the leader’s

states, and the norm of the synchronization error ∥xi − x0∥ converges to a small value. This is

demonstrated in Fig. 3.2 for u0 = 0. It can be observed from this figure that if the leader does not

have any input, the norm of the error signal converges to an arbitrarily small value by increasing Q1

and c. Fig. 3.3 demonstrates the results for the above MAS when an external input equal to 8 sin(5t)

is applied to the leader. This figure shows that the synchronization error of each agent, in this case,

reaches a small neighborhood of zero, which satisfies the L2-gain synchronization problem.
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(a)

(b)

(c)

Figure 3.3: The synchronization error signal for three states when u0 = 8 sin(5t)
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3.7 Conclusions

The consensus problem for an asymmetric leader-follower MAS is investigated in this chapter.

The network contains unknown communication links and hence is represented by a random digraph.

A robust control protocol is developed to account for network uncertainties of a prespecified limited

magnitude. Simulations confirm the effectiveness of the results for various scenarios.
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Chapter 4

Conclusions and Future Research

Directions

In this thesis, we introduce new Q-learning-based strategies for estimating the probability of

the existence of different edges in a random digraph representing a multi-agent system (MAS).

These approaches use adaptive learning rates for updating the information. This information is

then used to compute the digraph’s generalized algebraic connectivity (GAC), which is closely

related to the convergence rate of consensus algorithms performed on the network. Finally, as an

experimental example, a network with five underwater sensors is considered, and the performance

of the proposed estimation algorithms is evaluated. The computed probability matrix is then used to

study the consensus problem in a MAS subject to uncertain communication links. A robust control

law is designed to reduce the impact of uncertainty on the disagreement error among the leader and

followers. Finally, simulations confirm the theoretical results.

4.1 Suggestions for Future Work

The following problems are suggested for future work:

(1) The learning rate of the update rule (α) and window size (w) can be selected by defining a

cost function and solving the corresponding optimization problem.
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(2) There are different data transformation methods and different environmental conditions. By

implementing the probability matrix estimation in a real-world application and developing a

proper algorithm for different cases, one can select the most appropriate one at any point in

time.

(3) For the cases where the size of uncertainty is relatively large, one can use a multiple-model

approach with a proper switching control strategy to achieve consensus. To this end, a family

of models is obtained first for the network according to the uncertain parameters. A consensus

control law is then designed for each network.

(4) One can minimize the disturbance attenuation level γ in the consensus problem described in

Theorem 1 of Chapter 3, which makes it more realistic in practice.

(5) An adaptive control method can also be used to deal with the time-varying nature of the

network. Both model-reference adaptive control and model-predictive control approaches

can be used to account for the parameter variation.

(6) For a certain class of nonlinear systems, one can use the hashing-based neurofuzzy network

(HBNN) introduced in [69] and design a control law for the linearized model accordingly.
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