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Abstract

Human Activity Recognition: A Comparative Study to Assess the Contribution Level of
Accelerometer and vital Signals

Mahsa Sadat Afzali Arani

Inertial sensors (IMU) are widely used in the field of human activity recognition (HAR), since

this source of information is the most informative time series among non-visual datasets. HAR

researchers are actively exploring other approaches such as different feature extraction methods,

machine learning models and classifiers, different sources of signals and sensor positioning to im-

prove the performance of HAR systems.

Human physical activities have a significant impact on human body, specifically heart activity

and oxygen delivery, thus, we explore heart activity related bio-signals to check if these signals

are advantageous in the field of HAR research. In this thesis, we investigate the impact of com-

bining bio-signals with dataset acquired from accelerometer on recognizing human daily activities.

To achieve this aim, we used PPG-DaLiA dataset consisting of 3D-accelerometer (3D-ACC), elec-

trocardiogram (ECG), photoplethysmogram (PPG) signals acquired from 15 individuals while per-

forming daily activities. We extracted hand-crafted time and frequency domain features, then we

applied correlation-based feature selection approach to reduce feature-set dimensionality. After in-

troducing early fusion scenarios, we trained and tested random forest models with subject-dependent

and subject-independent setups. Our results indicate that combining features extracted from 3D-

ACC signal with ECG signal improve the classifier’s performance F1-scores by 2.72% and 3.00%

(from 94.07% to 96.80%, and 83.16% to 86.17%) for subject-dependent and subject-independent

approaches, respectively.
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Chapter 1

Introduction

1.1 Research Problem Explanation

With the recent increase in the use of smart phones and wearable devices, we can record and

access a plethora of raw data and information from built-in inexpensive sensors. Human activ-

ity recognition (HAR) refers to analyzing this data to extract meaningful information about human

daily habits and physical activity patterns Chung, Lim, Noh, Kim, and Jeong (2019). Breakthroughs

in HAR research has led to various applications in health care and rehabilitation, elderly fall detec-

tion, fitness trackers, assisted living and smart homes Y. Wang, Cang, and Yu (2019). One of the

most frequently used sources of data for activity recognition purposes is the inertial sensor Aguileta,

Brena, Mayora, Molino-Minero-Re, and Trejo (2019); Demrozi, Pravadelli, Bihorac, and Rashidi

(2020); Lara and Labrador (2012). Inertial measurement unit (IMU) contains triaxial accelerom-

eter (3D-ACC), gyroscope, and magnetometer to measure velocity and acceleration, rotation, and

strength of a magnetic field, respectively. Based on previous studies, the 3D-ACC sensor outper-

forms gyroscope and magnetometer; interestingly, combining 3D-ACC with gyroscope performs

better in classifying activities A. Wang, Chen, Yang, Zhao, and Chang (2016). This suggests sensor

combination has the potential to offer better classification power for a HAR system. To improve

a HAR system, researchers investigate different sources of signals as well as different analyzing

approaches. In many cases, researchers evaluate the significance of one signal individually or IMU

signals combination, thus, combined contribution of other types of signals (e.g, bio-signals) require
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more exploration Ravi, Wong, Lo, and Yang (2016); Shoaib, Bosch, Incel, Scholten, and Havinga

(2016).

1.2 Motivation

In this thesis, we aim to investigate the impact of using bio-signals on the performance of a HAR

system. Bio-signal refers to any signal generated by a living creature and can be recorded continu-

ously Hadjileontiadis (2006). Bio-signals sensors have been shown to be quite accurate in capturing

the bio-signals Athavale and Krishnan (2017), but they have not yet been extensively explored in the

context of HAR systems. Given that heart rate is sensitive to physically demanding activities Strath

et al. (2013), can we rely on bio-signals to complement 3D-ACC sensors in recognizing certain

types of activities?

To compare the performance of different signals, we analyse the data acquired from 3D-ACC,

electrocardiogram (ECG) and, photoplethysmogram (PPG) sensors individually. Moreover, we use

fusion methods to combine data from mentioned signals to examine their contribution level in the

system’s output. Fusion methods refer to any integration of information from different sources, at

the sensor, feature or classifier levels Aguileta et al. (2019). To analyse the signals’ contribution

in HAR systems, we segment the signals, using a sliding window method to extract time and fre-

quency domain features. Finally, we train random forest classifier models for subject-dependent and

subject-independent setups.

We evaluate the bio-signals significance in HAR using two types of models: subject-specific

and cross-subject models. Both models are commonly used in HAR systems and research, and

more importantly, each has its advantages and disadvantages Lee, Khan, and Kim (2011); Micucci,

Mobilio, and Napoletano (2017). Subject-specific models are personalized models, trained and

evaluated using the data of a single user. Hence, subject-specific are usually more accurate than

cross-subject models, at a cost of requiring training data from the target user. A cross-subject

model, on the other hand, is trained on multiple users and attempts to recognize the activity of a

previously untrained user. This model tends to be more generic and is commonly used in practice,

since cross-subject models are cheaper to train and easier to deploy Ferrari, Micucci, Mobilio, and
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Napoletano (2021); Lara, Pérez, Labrador, and Posada (2012).

1.3 Contributions

In relation to the aforementioned points, more investigation about the bio-signals’ contribution,

fusion approaches and different evaluation setups, we formulate our research questions to cover both

subject-specific and cross-subject models. Thus, in our thesis, we focus on answering two research

questions.

RQ1: What is the contribution level of signals under study in subject-specific HAR systems?

With this research question we investigate the impact of bio-signals in subject-specific setup, mean-

ing how ECG and PPG signals recorded from the same subject would help a HAR system for its

future classifications.

RQ2: What is the contribution level of signals under study in cross-subject HAR systems?

Since cross-subject models are more complicated, we want to further investigate the impact of bio-

signals in addition to the 3D-ACC signal for potential added values.

In addition to answering both of the research questions, we explore and discuss other aspect of

fusing the signals, such as per activity contribution level or the impact of physical characteristics on

contribution level of bio-signals in HAR systems. To summarize, we provide an overview of our

contributions:

• To the best of our knowledge, we are the first study to compare the combined performance

of the 3D-ACC, ECG and PPG signals recorded simultaneously from subjects performing the

same set of activities. We use hand-crafted features to evaluate the performance of classifiers

for HAR.

• We investigate the significance of bio-signals and compare the usefulness of ECG and PPG

signals in HAR.

• We investigate the impact of combining 3D-ACC signal with ECG signal in recognizing some

specific activities in detail. For instance, the importance of ECG signal in distinguishing

walking activity from ascending/descending stairs.
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• For further analyzes on cross-subject models, we study the impact of fitness level, height, and

weight, etc. on the contribution level of ECG signal

• We also explore and compare the late fusion approach with the early fusion method

1.4 Overview

The rest of this thesis is organized as follows; we describe the related work in Chapter 2. In

Chapter 3, we elaborate on the characteristics of the sensors and signals we evaluate then we review

detailed information about the dataset that we use. Next, in Chapter 4, we explain our methodology

and workflow, from data pre-processing to feature extraction and selection. We allocate Chapter 5

to explain the fusion scenarios as well as classification and evaluation methods. Chapter 6 describes

the results and findings of our work and we answer our research questions. In Chapter 7, we discuss

the impact of ECG signal in HAR system’s performance per activity and with respect to the subjects

physical characteristics. Moreover, we explore and compare the late fusion method with the early

fusion approach and provide its results. Lastly, in our discussion we point out the most important

features for the best fusion scenario. We conclude this thesis by mentioning limitation of our work

as well as the future work, and finally, the overall conclusion of this thesis in Chapter 8.
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Chapter 2

Related Work

In this chapter, we discuss the results and insights from previous studies. HAR research lever-

ages multiple approaches to advance the accuracy and performance of systems, such as different

sensor positioning Chung et al. (2019), varying feature extraction approaches Machado, Gomes,

Gamboa, Paixão, and Costa (2015) and exploring several classification methods Catal, Tufekci, Pir-

mit, and Kocabag (2015); Chen, Zhong, Zhang, Sun, and Zhao (2016) to extract more informative

knowledge from dataset and enhance the HAR systems performance.

In terms of different sensor positioning using a single sensor, Bayat et al., conducted a study to

evaluate the effectiveness of builtin 3D-ACC in a smartphone in recognizing human activities Bayat,

Pomplun, and Tran (2014). Participants were instructed to perform tasks first using the smartphone

in their hands then perform the same tasks with the phone in their pockets. Based on the reported

result, smart phone positioning in hand and in the pocket yield similar results in the HAR models.

Moreover, they applied the average of probabilities method to combined classifiers and they claimed

this method outperforms using only one classifier. Casale et al., used data acquired from only one

3D-ACC sensor and proposed a new set of feature extraction methods to be used with a random

forest classifier in recognizing five different daily activities Casale, Pujol, and Radeva (2011). They

observed that the new feature set is more informative compared to the commonly used feature sets,

thus they reported model’s performance enhancements after using the new feature set.

To overcome the limitations of using a single sensor, researchers have explored the idea of

applying fusion methods to enhance a HAR system Aguileta et al. (2019). Fusion methods can be
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categorized into early fusion and late fusion methods Vrigkas, Nikou, and Kakadiaris (2015).

To elaborate, early fusion refers to combining raw data or extracted features, then feed the new

combined dataset or feature set to a classifier Mendes Jr, Vieira, Pires, and Stevan Jr (2016). Thus,

early fusion can be categorized accordingly: 1. data-level or sensor-level fusion Mendes Jr et al.

(2016), 2. feature-level fusion. Data-level fusion is an approach in which data acquired from multi-

ple sensors of same type (homogeneous sensor), or varying type of sensors (heterogeneous sensors

Nweke, Teh, Mujtaba, and Al-Garadi (2019)) positioning on different body parts. Feature-level fu-

sion, on the other hand, refers to combining extracted features from varying modalities into a new

feature matrix with larger dimensions. It is relevant to mention that combining features extracted

with different approaches, i.e. time domain and frequency domain features, is also considered as

early fusion Nweke et al. (2019).

Another combination method for a HAR system is called late fusion, or decision-level fusion

with the purpose of providing stronger classifier models. As the name implies, in this method the

models are trained separately on each signal, but their predictions are combined into an ensemble

model (e.g., voting system), that predicts the final classifications Vrigkas et al. (2015). In this work,

we apply the early fusion method for cross-subject and within-subject setups, moreover, we explore

and discuss the late fusion method for the cross-subject setup.

2.1 Early Fusion with IMU

Early fusion methods fuse extracted features from different signal sources into a combined

dataset, which serve as input for human-activity classifier. Several works have applied this tech-

nique to improve the performance of classifier models. Concerning IMU signal fusion, Chung et

al. applied the sensor fusion approach by placing eight IMU sensors on different body parts of five

right-handed individuals Chung et al. (2019). They trained a Long Short-Term Memory (LSTM)

network model to classify nine activities. Based on their results, to get a reasonable classification

performance one sensor should be placed on upper half of the body and one on lower half; particu-

larly, on right wrist and right ankle. Regarding signal fusion, the authors stated that 3D-ACC sensor
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combined with gyroscope performed better (with accuracy 93.07%) than its combination with mag-

netometer. Moreover, Shoaib et al. followed the same data-level fusion approach and generated

their own data set by placing one smart phone in subject’s pocket and another one on his dominant

wrist and recording 3D-ACC, gyroscope, linear acceleration signals Shoaib et al. (2016). They tried

different scenarios such as combination of 3D-ACC and gyroscope signals which they claim leads

to more accurate results, particularly for “stairs” and “walking” activities. Moreover, they claim that

the combination of signals captured from both packet and wrist improve the performance specially

for complex activities.

2.2 Early Fusion with Bio-Signals

Regarding using bio-signal combination approach, Park et al. experiment was to extract Heart-

Rate Variability (HRV) parameters from recorded ECG data and combine it with 3D-ACC signal for

HAR researches Park, Dong, Lee, and Youn (2017). They employed feature-level fusion approach

by fusing features extracted from HRV and 3D-ACC signals. They classified five activities by ex-

amining three different scenarios. First, using only four features extracted from 3D-ACC (83.08%);

second, considering 31 more features extracted from ECG signal along with ones used in the first

scenario (94.81% ). Finally, using features extracted from 3D-ACC and only some selected features

from ECG signal which outperformed previous scenarios by achieving 96.35% accuracy. Park et al.

conclude that ECG signal performs as a complementary source of information along with 3D-ACC

for HAR researches. Tapia et al. applied early fusion by recording acceleration signal obtained from

five 3D-ACC in addition to heart rate (HR) information Tapia et al. (2007). The authors, applied

C4.5 decision tree and Naı̈ve Bayes classifier to classify 30 gymnastic activities with different levels

of intensity. They claim adding HR to 3D-ACC can improve the models’ performance by 1.20%

and 2.10% for subject-dependent and subject-independent approaches, respectively. Based on Tapia

et al. (2007), for subject-independent approach, different fitness level and variation in heartbeat rate

during non-resting activities are potential reasons for this minor recognition improvement.

As for PPG signal fusion, Biagetti et al. investigated the level of contribution of PPG sig-

nal in addition to 3D-ACC signal toward accurately detecting human activities Biagetti, Crippa,
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Falaschetti, Orcioni, and Turchetti (2017). The authors proposed feature extraction technique based

on singular value decomposition (SVD) in addition to Karhunen-Loeve transform (KLT) method

for feature reduction. According to the authors, employing only PPG signal is not enough for phys-

ical activity recognition. Thus, they compared applying only 3D-ACC signal with a combination of

PPG and 3D-ACC, consequently, they conclude that signal fusion incremented the overall accuracy

by 12.30% to 78.00%. In another study, Mehrange et al. used a single PPG-ACC wrist-worn sensor

placed on the dominant wrist of 25 male subjects to evaluate fused HAR system power in classify-

ing indoor activities with different intensity Mehrang, Pietilä, and Korhonen (2018). They extracted

time and frequency domain features and feed it to a random forest classifier. In terms of contribution

level of PPG-based HR related features in classifying activities, their results suggests a very slight

overall improvement. Regarding per activity performance, HR addition did not help the classifier

to indicate most of the activities except for intensive stationary cycling with 7% improvement in

accuracy.

2.3 Late fusion

An empirical study was conducted by Sun el al. Sun, Kamel, and Wong (2005) to compare

different late fusion strategies, namely, classifier-, class- and sample-based weighting schemes. In

terms of fusing different type of classifiers, Catal et al. proposed an ensemble classifier model to

detect six different activities present in the WISDM dataset Catal et al. (2015). They trained three

classifiers, particularly, a decision tree algorithm named J48, logistic regression, and a multi-layer

perceptron neural network. Then as their proposed model, they combined the mentioned classifiers

using voting strategies to get the final label for each class. The authors claimed their model outper-

formed using each classifier separately. The authors also tested different voting strategies, stating

that the average of probabilities yielded the best performance.

On the other hand, class-based weighting late fusion approach was applied by Chowdhury et al.

Chowdhury, Tjondronegoro, Chandran, and Trost (2017) on two datasets, both recording accelera-

tion data while 3D-ACC sensors were placed on three different body parts. As part of the aim of

their study, they evaluate and compare the sensor positioning using fusion methods on data obtained
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from sensors positioned on different body parts (ankle, chest, and wrist). As weighting metric,

they used F1-score obtained after applying the 10-fold cross validation method on training data,

then they adjusted the obtained weights and calculated the final prediction on test data. Tsanousa

et al. Tsanousa, Meditskos, Vrochidis, and Kompatsiaris (2019), also investigated the class-based

weighted late fusion approach, however, modified the weighting strategy. Instead of F1-score, they

proposed using class weights based on detection rate. Detection rate is the ratio of true positive to

all the instances. They used this method to late-fuse models trained with 3D-ACC and gyroscope

data.

This thesis differs and complements the former studies in the following ways. First, thanks

to the dataset that we used, we have 3D-ACC, ECG and PPG signals all recorded simultaneously

and related to same group of subjects, thus, beside evaluating the added value of bio-signals to

3D-ACC, we can also compare the significance of each of the mentioned bio-signals. Moreover,

we investigate the impact of bio-signal, not only on the overall performance of the HAR models,

but also per single activity, to assess the impact of bio-signals on each set of activities. We use the

class-based weighting late fusion approach for the LOSO setup to evaluate the contribution level of

3D-ACC, ECG and PPG signals using both mentioned weighting schemas. Also, we compare the

performance of the late fusion approach to the early fusion one.
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Chapter 3

Studied Dataset

In this chapter, first, we describe the characteristics of each signal under study (Section 3.1),

which is relevant to our methodology. Then, we describe the publicly available dataset we use in

this thesis (Section 3.2).

3.1 Sensors and Signals Overview

In our thesis, we consider three sources of signals, 3D-ACC, ECG, and PPG, for each of which,

we outline a brief explanation. Inertial Measurement Unit, known as IMU sensor, is a set of mea-

surement units placed together in one device to capture information about kinetic status of a device.

This measurement tool may include a 3D-ACC, gyroscope and magnetometer sensors. 3D-ACC

is a source of information frequently used in HAR researches and applications. This sensor is an

mechanical device converting mechanical forces to electrical signals. Thus, 3D-ACC is capable of

measuring constant forces caused by gravity and rotation along three axes, in addition to dynamic

forces such as acceleration and vibration (Andrejašic, 2008). Having this knowledge is critical

for the feature extraction phase. Figure 3.1 depicts 3D-ACC signal while subject number 1 was

performing “Sitting” and “Cycling” activities. Notice the 3D-ACC signal fluctuations in cycling

activity, compared to the one related to the sitting activity.

Bio-signals are capable of capturing meaningful information about human body. ECG is one

of the bio-signals and generated by electrical activity of the heart. In order to record this electrical
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Figure 3.1: Five seconds window of 3D-ACC signal related to “Sitting” and “Cycling” activities
performed by subject number 1.

activity, a certain number of electrodes must be placed on a person’s chest; these electrodes record

changes in voltage during each phase of cardiac cycle, then the recorded voltage is plotted against

time based on the sampling rate frequency. ECG signal has a specific pattern and a complete ECG

period is made up of different intervals corresponding to a specific phase. The most well-known

and obvious peak in one period of ECG signal is called the R peak which represents one heartbeat

(McSharry, Clifford, Tarassenko, & Smith, 2003). Counting R peaks in a fixed time interval is

equivalent to the number of heartbeats during that specific time interval, thus, this information is

capable of illustrating how fast the heart is beating, which may be a source of information in HAR

researches. In figure 3.2, we compare two 5 seconds time windows of ECG signal related to “sitting”

and “cycling” activities.

Recently, another source of information has been used for HAR research called PPG signal.

This signal is generated when infrared light passes through a human finger, wrist or earlobe, then

captured by a light-detector after crossing the body part. During this process some of the light is

absorbed by the skin, bones and especially by hemoglobin protein in the red blood cells, the rest of

the light is recorded. The resulting signal is called the PPG signal (Castaneda, Esparza, Ghamari,
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Figure 3.2: Five seconds window of ECG signal related to “Sitting” and “Cycling” activities per-
formed by one subject

Soltanpur, & Nazeran, 2018). Every time the heart pumps blood throughout the body, more lights

gets absorbed by the hemoglobin protein and the PPG signal can represent this as heart beats. An

advantage of using PPG signal over ECG is that PPG can be recorded via a wrist-worn device, which

is a more convenient solution for a subject to wear, than ECG signal that needs a chest-worn device.

However, PPG signals suffer from motion artifacts. Motion artifacts refer to any sort of voluntary or

involuntary movements that are recorded by the PPG sensor but are actually noise associated with

the signal. Luckily, there are ways to eliminate motion artifacts or even use them; as Boukhechba et

al., (Boukhechba, Cai, Wu, & Barnes, 2019) analyzed the PPG signal and decomposed this signal

to cardiac and respiratory signals; moreover, they took advantage of motion artifact noise associated

with PPG signal to recognize five type of human daily activities. Figure 3.3 presents two 5 seconds

sample of PPG signal, again for “Sitting” and “Cycling” activities, respectively.
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Figure 3.3: Five seconds window of PPG signal related to “Sitting” and “Cycling” activities per-
formed by subject number 1.

3.2 Used Dataset

We use the PPG-DaLiA dataset (Reiss et al., 2019) in our thesis. This dataset was collected

by Reiss et al. (Reiss et al., 2019), in which 15 volunteers, 7 male and 8 female, took part. Table

3.2 presents physical characteristics about the participants. Reiss et al. used two different devices

to acquire desired signals. A chest-worn device, RespiBAN (BiosignalsPLUX. RespiBAN Profes-

sional. 2019. Available online:, 2019) was placed on each subjects’ chest to record ECG signals,

their respiration, and 3D-ACC at a 700 Hz sampling rate. In addition, subjects wore a device on

their non-dominant wrist called Empatica E4 (Empatica. E4Wristband. 2018. Available online:,

2018) to collect 3D-ACC at a 32Hz sampling rate, blood volume pulse (BVP) signal which contains

PPG signal at 64Hz, electrodermal activity (EDA) and body temperature both at 4Hz. After placing

the mentioned devices on volunteers’ chest and wrist, Reiss et al. asked them to perform some daily

activities: sitting, ascending and descending stairs, playing table soccer, outdoor cycling, driving a

car, being on lunch break, walking and working. Beside the mentioned activities, the authors also

recorded the transient activities in between each of the aforementioned activities.

A noteworthy point about the PPG-DaLiA dataset is that the initial motivation for its collection
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Table 3.1: Physical characteristics of the participants.

Characteristics Average Min Max

Age (years) 30.14 21 55
Height (cm) 175.21 164 195
Weight (kg) 68.93 56 105
Fitness level 4.79 2 6

was not for HAR research, but for extracting heart rate estimations using the PPG signal. This is

why the chest-worn device sampling rate is relatively high compared to wrist-worn recorded signals

in this dataset. We select this dataset for the following reasons; first and foremost, the experiments

were performed indoors and outdoors which makes it more realistic and closer to daily life ex-

periences compared to in-lab signal recording. While the researchers provided some protocols to

instruct participants, they were free to execute each task in their own natural way. In addition to

the recorded dataset, labels were provided for each activity, along with other significant informa-

tion about each individual’s age, height, weight, fitness level, gender and skin type. Each subject

performed all the activities for a total duration of 2.5 hours. Table 3.2 provides detailed information

about each activity completion protocol.

Table 3.2: Type of activities and detailed protocol based on the study of Reiss et al. (Reiss et al.,
2019)

ID Activity Protocol

1 Sitting Sitting while reading
2 Ascending/ descending stairs Climbing six floors up and going down, repeated two times
3 Play table soccer Playing table soccer, 1 vs. 1
4 Cycling Cycling 2km outdoors cycling with gravel and paved road condition
5 Driving a car Driving on a defined road for 15 minutes
6 Lunch break Includes queuing and fetching food, eating, and talking at the table
7 Walking Walking back from the canteen to the office, with some detour
8 Working Subjects’ work mainly consisted of working on a computer.
0 Transient periods Each transition between activities

We analyze only five human activities from the dataset: sitting, ascending/descending stairs,

playing table soccer, outdoor cycling, and walking. It is important to highlight that this dataset is an
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imbalanced dataset. That is, more than 50% of all the instances are related to walking and sitting

activities, 27% and 24% respectively; and the smallest category is playing table soccer which make

up 13% of the entire dataset. At first glance, it may seems that this is a problem that we must

address, however, this is a real life challenge which reflected in this dataset.

We disregard the remaining recorded activities, such as driving a car, lunch break, and working,

because these activities are clasified as complex activities (Sakr, Abu-Elkheir, Atwan, & SOLIMAN,

2018). Complex activities are categorized as sequential, concurrent or interleaved human activities,

and analysing them is beyond the scope of this experiment.

Sequential human activities are those occurring in sequence, for example, in case of lunch break,

one may first heat the food, then bring the food to the table and start eating. Moreover, concurrent

activities are those in which two different activities accruing at the same time, for instance, people

may start a conversation at the table or a phone call while eating food. Third category, interleaved

human activities are basically one long-term task interrupted by other short-term tasks, for example,

consider the working activity in which the subject may leave their desk to access the printer.

Among all the recorded signals, we only consider the wrist-worn 3D-ACC, PPG and chest-worn

ECG signals for our thesis. We disregard the chest-worn 3D-ACC data, as we already gather 3D-

ACC data from the wrist device, which provides better quality data for a HAR system (Chung et al.,

2019; Shoaib et al., 2016). Finally, we also disregard the data related to one of the subjects due to

hardware issues during data recording.

In this chapter, we explained the type of the data and the dataset that we used in detailed. Next,

we will discuss the initial part of our methodology including, signal pre-processing, windowing and

feature extraction and selection.
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Chapter 4

Feature Extraction and Selection

In this chapter, we describe the methodology used in our thesis to evaluate the importance of

the three different signals in HAR. Figure 4.1 presents an overview of the steps we take to segment

the data, extract and select the most relevant features to feed it to ML model.

Figure 4.1: Human activity recognition workflow

4.1 Data Pre-processing

As described in Section 3.2, the dataset we use in this thesis contains signals with different

sampling rates, as 3D-ACC was captured at 32 Hz while PPG was recorded at 64 Hz. To analyze

the 3D-ACC and PPG signals captured from the wrist worn device, we up-sample the 3D-ACC

signal from 32 Hz to 64 samples per seconds. We decide not to down-sample the PPG signal, as this

would mean eliminating half of the PPG dataset which was not appropriate. Thus, we up-sample

the 3D-ACC signal by interpolating two-consecutive data points with their average value. We use

the original chest-worn ECG signal, which was recorded at 700 Hz sampling rate.
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4.2 Windowing

Before we start extracting features from the data, we segment the entire signal into small se-

quences of fixed size (same number of data points). This approach is known as sliding window.

The main intuition for windowing technique is to retrieve meaningful information from the time

series. Each single datapoint in the time-series is not representative of any specific activity, how-

ever, a group of consecutive datapoints (a slice in the time series) is capable of providing insightful

information about the human activity.

The size of the window is an important parameter in sliding window techniques. Each window

must be wide enough to capture enough information for further signal processing and analyzing.

However, the window size should not be too large, since larger windows may delay the real-time

signal processing and the eventual activity recognition. The reason being that the model has to wait

for the entire duration of the window to be able to start recognizing the next activity. Thus, there is

a trade-off between capturing the appropriate amount of information and the speed of recognition.

There is no standard fixed window size that researchers can utilize, as the appropriate window size

depends highly on the characteristics of the signal. For instance, if we have a periodic signal, an

adequate window size may be the one that is wide enough to cover at least one period of the signal

in each segment.

Researchers have attempted different strategies to select an appropriate window size. One strat-

egy is to use adaptive window sizes in which a feedback system is employed to calculate the like-

liness of a signal belonging to an activity, then the desired window size is selected based on the

probabilities (Noor, Salcic, Kevin, & Wang, 2017). In most cases, however, researchers opt for

fixed window sizes, Banos et al. (Banos, Galvez, Damas, Pomares, & Rojas, 2014), studied the

impact of different window sizes on human activity recognition accuracy. They observed that many

researchers have applied varying fixed window sizes from 0.1 to 12.8 seconds, although, near 50%

of the considered studies have used 0.1 to 3 seconds window sizes.

In this work, we examine different fixed window sizes from 0.5 to 15 seconds on all three

sources signals, and we select window size of seven seconds. As depicted in Figure 4.2, larger

window sizes, provide only a slight improvement in the performance of the 3D-ACC signal. This
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Figure 4.2: Comparison between different window sizes for 3D-ACC, PPG, ECG signals. X-axis:
Window sizes represents in seconds. Y-axis: Area under the receiver operating characteristic curve
after train and test random forest models.

means that smaller window sizes are still capable of capturing enough information out of the 3D-

ACC signal and at the same time preserve a reasonable speed in recognizing an activity. Contrasting

with 3D-ACC signals, larger window sizes are more informative for the bio-signals (ECG and PPG).

Because having a larger window means capturing more than one period of cardiac activity in one

window, thus, the heartbeat rate can also be taken into account.

Based on the purpose of this research, which is comparing the performance of mentioned sig-

nals, we must select equal window sizes, in terms of time duration, to have a reasonable comparison.

Thus, we need to keep the balance between selecting smaller window sizes for 3D-ACC and larger

ones for PPG and ECG. As stated, according to aforementioned explanations and figure, we decided

to select a window size of seven seconds to start our next step, feature extraction phase.

Since, each window of the segmented signal is not completely independent and identical from its

neighboring windows, we applied non-overlapping sliding windows. Based on the results obtained

from Dehghani et al. (Dehghani, Sarbishei, Glatard, & Shihab, 2019), such signals are not inde-

pendent and identically distributed (i.i.d.), so that overlapping would lead to classification model

overfitting.

18



4.3 Feature extraction

After segmenting the signals in windows of seven seconds, we extract two types of features

from each window: hand-crafted time- and frequency-domain features. In the following we provide

more detailed information about these two categories of features.

4.3.1 Time-domain features

Time-domain features are the statistical measurements calculated and extracted from each win-

dow in time series. As formerly described, we segmented five raw signals 3D-ACC, PPG and ECG

with sampling rate of 64, 64 and 700 hertz, respectively. In total, we extract seven statistical fea-

tures from each of these windows. Table 4.1 presents the type of the features and their respective

description. Features that we mention in the following table are easy to understand and are not com-

putationally expensive, moreover, are capable of providing relevant information for HAR systems.

Therefore, these features are frequently used in the filed of human activity recognition (Attal et al.,

2015; Koskimaki, Siirtola, et al., 2016; Shoaib et al., 2016).

Table 4.1: Hand-crafted time domain features and descriptions. Each of these features calculated
over data points within each window.

Hand-crafted Descriptiontime-domain feature

mean average value of the data-points
min smallest value
max largest value
median the value at the 50% percentile
standard deviation measures how scatter are the data-points from the average value
zero-crossing rate counts the number of times that the time-series crosses the line y = 0
mean-crossing rate counts the number of times that the time-series crosses the line y = mean

4.3.2 Frequency-domain features

Transferring time domain signals to the frequency domain provides insights from a new per-

spective of the signal. This approach is widely used in signal processing researches as well as

human activity recognition field (Attal et al., 2015; Hassan, Uddin, Mohamed, & Almogren, 2018;

Koskimaki et al., 2016).
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In the first step to extract frequency domain features, we segment the raw time-domain signals

into fixed window sizes. Then, we transfer each segmented signal into the frequency domain using

Fast Fourier Transform (FFT) method (Cochran et al., 1967). It is important to perform these two

steps in the aforementioned order, otherwise, each window would not contain all the frequency

information. That is, low frequency information would appear in the early windows and then the

high frequency components would be placed in the last windows. By contrast, the correct way is

that each window must have all the frequency components. After obtaining frequency components

from each window, we extract eight statistical and frequency-related features. Table 4.2 presents

different extracted features and a brief description for each of them.

Table 4.2: Hand-crafted frequency-domain features and descriptions. Each of these features calcu-
lated over frequency component within each window.

Hand-crafted Descriptionfrequency-domain feature

mean average value of the data-points inside one window
min smallest value
max largest value (only for bio-signals, PPG and ECG)
second-max second largest value (only for 3D-ACC signal)
DC component zero frequency component
standard deviation measures how scatter are the data-points from the average
median is the middle value after sorting data-points from smallest value to the largest one
dominant frequency is the frequency correspond to maximum energy (amplitude)
mean-crossing counts the number of times that the time-series crosses the line y = mean

From the frequency-domain features presented in Table 4.2, the DC component and dominant

frequency are the less intuitive ones. Thus, next we explain these two features in more detail. The

“DC component” is the frequency-domain amplitude value which occurs at zero frequency. In other

words, DC component is the average value of signal in time-domain over one period. Regarding

3D-ACC signal, its DC component corresponds to gravitational accelerations (He & Jin, 2009).

To be more precise, in the absence of device acceleration, the 3D-ACC output is equivalent to

device rotation along axes (Pedley, 2013). This explains the reason why its DC component value

is relatively larger than the rest of the frequency coefficients in the same window (Figo, Diniz,

Ferreira, & Cardoso, 2010). As for bio-signals, however, DC component is not highly greater

than other frequency coefficients for which the reason is that bio-signals such as PPG and ECG are

dynamic signals. Figure 4.3 represents PPG and X-axis of accelerometer signals related to a specific

20



Figure 4.3: A seven seconds window of PPG and X-axis of accelerometer signals transformed to
frequency domain related to the “cycling” activity. Notice the difference between DC components,
moreover, maximum amplitude and its correspond frequency (predominant frequency) for different
sources of signals.

time span of seven seconds of cycling activity in frequency domain. The difference between DC

component values between these two signals is clear.

Regarding 3D-ACC signal, since DC component is also the maximum amplitude, we decide

to introduce another feature, namely, “second-max” to avoid feature redundancy and differentiate

between mentioned features. However, for bio-signals, we only consider the maximum amplitude.

Dominant frequency is the frequency at which the highest amplitude occurs (Telgarsky, 2013).

Based on this definition, again for 3D-ACC signal, we disregard the amplitude corresponding to

the zero frequency (DC component); instead, we consider the frequency correspond to the second

largest amplitude value (second max) as the “dominant frequency”. However, for the bio-signals,

namely ECG and PPG signals, “dominant frequency” is based on the first maximum amplitude

value.

4.4 Feature standardization

Since we are examining different sources of signals with different characteristics, feature values

will inevitably have different ranges, thus, we need to standardize the features before the model
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classification. For instance, the scale difference between X-axis of the ACC and the PPG signals

have clearly distinct standard deviation of 0.18 and 64.2, respectively. This shows a huge difference

in the amplitude of these signals which must be addressed. To standardize the extracted features, we

calculate the standard score for each feature using formula 1, this approach used in some previous

HAR studies Park et al. (2017); Ronao and Cho (2016).

zi =
fi − µ

σ
, 0 ≤ i < m (1)

where for a given feature vector of size m, fi represents the ith element in the feature vector,

µ and σ are the mean and standard deviation for the same vector, respectively. The resulted value,

zi, is the scaled version of the original feature value, fi. Using this method, we reinforce each

feature vector to have zero mean and unit variance. However, the mentioned transformation retains

the original distribution of the feature vector. Note that we split the dataset into train and test set

before the standardization step. It is necessary to standardize the train set and the test set separately;

because we do not want the test set data to influence the µ and σ of the training set, which would

create an undesired dependency between the sets Buitinck et al. (2013).

4.5 Feature Selection

In total, we extract 77 features out of all sources of signals. Following the scaling phase, we

remove the features which were not sufficiently informative. Omitting redundant features helps re-

ducing the feature table dimensionality, hence, decreasing the computational complexity and train-

ing time. To perform feature selection, we apply the Correlation based Feature Selection (CFS)

method and calculate the pairwise Spearman rank correlation coefficient (Saeys, Abeel, & Van de

Peer, 2008) for all features. Correlation coefficient has a value in [−1,+1] interval, for which zero

indicates having no correlation, +1 or −1 refer to a situation in which two features are strongly cor-

related in a direct and inverse manner, respectively. In this thesis, we set the correlation coefficient

threshold to 0.85, moreover, among two recognized correlated features, we omit the one which was

less correlated to the target vector. Finally, we select 45 features from all signals. It is worth men-

tioning that the DC component feature related to 3D-ACC signal was among the dropped features,
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however, for bio-signals this feature was taken into count.

In the current chapter, we described our methodology up to and including creating desired fea-

ture tables to be able to proceed to the next steps. In the following chapter, we will explain how

we use the feature tables to feed and run the classification models considering two different setups,

namely, subject-specific and cross-subject models.
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Chapter 5

Classifiers and Experiment Setup

In this chapter, we present our designed early fusion scenarios, then we discuss the classifier

that we use and its related parameters. Finally, we explain the models evaluation setups, namely,

subject-specific and cross-subject models.

5.1 Proposed scenarios

To evaluate the level of contribution for each of the 3D-ACC, ECG and PPG signals, we take

advantage of the early fusion technique and introduce seven scenarios presented in Table 5.1. Sub-

sequently, we feed the classifier with feature matrices constructed based on each of these scenarios.

We use the Python Scikit-learn library for our implementation (Pedregosa et al., 2011).

Table 5.1: Different proposed scenarios to evaluate the level of contribution for each of the 3D-ACC,
ECG and PPG signals and their combination, in addition to the total number of applied features (time
and frequency domains) after feature selection.

Scenario ID Considered signals Total number of features

1 3D-ACC 24
2 ECG 12
3 PPG 9
4 3D-ACC + ECG 36
5 3D-ACC + PPG 33
6 ECG + PPG 21
7 3D-ACC + ECG + PPG 45
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5.2 Classifier

In our work, we examine three different machine learning models, namely, multinomial logistic

regression, k-nearest neighbors, and random forest. Based on our initial observations, the random

forest classifier outperformed the other models in recognizing different activities. Thus, we conduct

the rest of our experiment using only the random forest classifier.

Random forest is an ensemble model consisting of a set of decision trees each of which votes

for specific class, which in this case is the activity-ID, then the random forest decides on the final

label of an instance (Ho, 1995). In this thesis, we set the total number of trees to 300, and to prevent

the classifier from being overfitted, we assign a maximum depth of each of these trees to 25. One

advantage about using random forest as a classifier is that this model provides extra information

about feature importance, which is useful in recognizing the most essential features.

5.3 Performance Evaluation

In our thesis, we evaluate two types of models, the subject-specific model and the cross-subject

model. In the following we provide detailed explanation about these two models and evaluation

techniques.

5.3.1 Subject-specific model

Subject-specific models are the most accurate types of models, as they train and test using the

data belonging to same user. Hence, it is important we evaluate if bio-signals can be useful to make

such models even better.

To evaluate the performance of our subject-specific model, we employ a k-fold cross validation

technique (Kohavi et al., 1995). K-fold cross validation is a widely-used method for performance

evaluation and consists in randomly segmenting the dataset into k parts (folds). The machine learn-

ing model is trained on k − 1 partitions and is tested on the remaining partition; this procedure

repeats k times, always testing the model on a different fold. For each of the k runs, the evaluation

procedure is done based on the scoring parameter. Finally, the average value of obtained scores is

reported as the overall performance of the classifier.
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As stated in Section 3.2, we have an imbalanced dataset, therefore, it is important to specify how

to split the dataset into folds. We use the stratified k-fold method to preserve the proportion of each

class label in each fold to be similar to the proportion of each class label in the entire set. Regarding

scoring parameters, we evaluate our models with two metrics, namely, F1-score and area under

the receiver operating characteristic (ROC) curve (Elamvazuthi, Izhar, Capi, et al., 2018; Fawcett,

2006). Since our study is a multi-class classification problem, we aggregate mentioned scores using

average weighted by support.

In our case, to evaluate the subject-specific model, we consider one feature set related to only

one subject and split it into a train set (80%) and a test set (20%). Subsequently, we apply the 10−

fold CV technique on the training set and store the resulting F1-score and AUC measurements per

fold. Finally, we apply the trained model on the test set, then we record its classification performance

in terms of F1-Score and AUC. Our objective of evaluating the model’s performance on the train

set, and then on test set, was to confirm that the model is not overfitting the data. An overfitted

model fits perfectly on the train set, but has poor performance on the test set (Domingos, 2012).

We repeat described procedure 14 times, as many as the number of subjects. Eventually, we

calculate the average F1-Score and AUC, over all subjects’ results and will report its performance

in Chapter 6.

Within-subject evaluation approach is a subject-dependent technique, since we train the model

on features related to one subject and then test the model using the remaining features belonging

to the same subject; also known as “personal model” in the study of Weiss et al. (Weiss, Timko,

Gallagher, Yoneda, & Schreiber, 2016).

5.3.2 Cross-subject model

Cross-subject models are not as accurate as the subject-specific models, however, since such

models are cheaper, in practice these are more commonly used. Cross-subject models are cheaper

because these do not require the user’s personal data, instead, need data from other individuals.

Therefore, knowing that bio-signals can contribute to this type of model is important to improve the

generalization of the model.

To evaluate the performance of our cross-subject model we use the Leave-One-Subject-Out
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(LOSO) evaluation method (Hastie, Tibshirani, & Friedman, 2009; Saeb, Lonini, Jayaraman, Mohr,

& Kording, 2017). This method consists in training models on a group of subjects and testing the

model on an unseen individual data (test set). Similar to the k-fold, in a group with n subjects, the

model is trained in n − 1 subjects and tested on the remaining subject’s data. This process repeats

n times, to cover all subjects in the test set, always using the other subjects’ data for training.

In our case, to evaluate the cross-specific model, we create a larger feature table consisting of 13

feature sets related to all subjects but one. We use this table as an input matrix to train the random

forest model. Then we test our model by the feature table of the remaining subject. Again, we

aggregate F1-score and AUC measurement using average weighted by support.

We rerun this process fourteen times. Then, we calculate the average F1-Score and AUC, over

all subjects’ results and will report its performance in Chapter 6.

The aforementioned evaluation method, minimizes the risk of overfitting, moreover, it is subject

independent; also called as “impersonal model” in the study of Wiess et al. (Weiss et al., 2016).

Hence, if a classification model performs well given the LOSO evaluation method, then this model

is generalizable to other subjects.

In this chapter, we had a detailed explanation about our fusion scenarios, as well as the applied

classification algorithm with two different setups. In the next chapter, we will provide the resulting

information with respect to the scenarios and setups and present related figures.
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Chapter 6

Early fusion methods results

In this chapter, we report the results obtained from aforementioned evaluation strategies. We

answer our initial questions about how informative are each of the sources of signals and whether

sensor fusion improves the performance of a HAR classifier. We organize the result section based

on the scenarios presented in Table 5.1, that is, using only one source of signal (scenario 1, 2 and 3),

considering a combination of two signals (scenario 4, 5, and 6), and scenario 7 which is related to

3D-ACC, ECG and PPG signals fusion. We conclude each subsection by reporting our observations

regarding per activity performance of the HAR models.

6.1 RQ1: What is the contribution level of signals under study in

subject-specific HAR systems?

We explained in Section 5.3.1 that we train and test subject-specific models and we are interested

in the contribution level of each source of signals in these models. We report the results of the

subject-specific model evaluation in Figure 6.1.

One type of signal. Considering only one source of signal, 3D-ACC signal (Scenario 1) out-

performs the other two bio-signals in recognizing human activities (Scenarios 1 - 3). Interestingly,

a model using exclusively the ECG signal (Scenario 2) performs relatively satisfactory, with a com-

parable AUC performance to a 3D-ACC trained model, yielding a much better performance than

the model trained solely with PPG signal (Scenario 3).
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Two signals fusion. When combining the 3D-ACC with the ECG signal (Scenario 4), the

performance of the model surpasses the model using only 3D-ACC (Scenario 1). As shown in

Figure 6.1, adding ECG to 3D-ACC improves the human activity recognition by 2.72% in terms of

F1-Score. Our results suggest that including the ECG signal in HAR systems that are based solely

on the 3D-ACC can slightly improve the model’s performance. However, adding PPG signal to the

3D-ACC signal (Scenario 5) does not provide any significant enhancement for our HAR models.

Combining solely bio-signals (PPG and ECG in Scenario 6) does not yield a model with superior

performance than just a 3D-ACC model, even if they outperform models trained with one bio-signal

(Scenarios 2 and 3).

Three signals fusion. Regarding Scenario 7, when we consider all three sources of signals, we

realize that human activity recognition performance remain almost the same compared to Scenario

4 when we only took 3D-ACC and ECG signals into account. Therefore, we conclude that PPG

signal fusion did not add any strength to the classifiers in our evaluation. In addition, it is obvious

from Figure 6.1 that the PPG signal is not very informative, not exclusively nor in combination with

other sources of signals for subject-dependent HAR systems.

Per activity performance. Figure 6.2 represents results of the subject-specific model per activ-

ity. It is noticeable that “ascending/descending stairs” and “walking” are the two activities that our

models have difficulty distinguishing when using only the 3D-ACC signal. However, feeding the

model with features extracted from both 3D-ACC and ECG signals (Scenario 4), improves “stairs”

and “walking” distinction significantly by 6.54% and 6.05% F1-score, respectively. An important

takeaway from Figure 6.2 is that bio-signals have reliable power in distinguishing stationary activi-

ties such as “sitting” from non-stationary ones such as “walking” and “cycling”. When comparing

the contribution of the PPG signal to the 3D-ACC per activity, we note that the combination did not

yield any improvement in distinguishing mentioned activities. In fact, model’s performance when

combining 3D-ACC and PPG is highly similar to its performance when we apply only 3D-ACC

signal (as in Scenario 1), which indicates an inadequacy of the PPG signal features in distinguishing

any information not already captured by the 3D-ACC.
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Figure 6.1: Subject-specific random forest model results

Figure 6.2: Subject-specific random forest model results per activity
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6.2 RQ2: What is the contribution level of signals under study in

cross-subject HAR systems?

In Section 5.3.2, we mentioned the cross-subject models and the fact that these models tend

to perform worse than subject-specific models, given that cross-subject are more general. There-

fore, for the current evaluation setup, we observe a more significant contribution from bio-signals.

Figure 6.3 shows the overall performance of signals under study in terms of F1-score and AUC

measurements (aggregated as stated above). As expected, cross-subject models’ performance have

an overall lower performance than the subject-specific models. This decrease in performance is

expected as cross-subject models are trained on other individual’s data, and individuals perform

activities differently. Moreover, other factors such as subject’s height, weights, gender and level of

fitness may contribute in this variation.

One type of signal. According to the Figure 6.3, 3D-ACC signal provides the most informative

data to our cross-subject models, yielding a performance with a F1-score of 83.16 (Scenario 1).

Contrasting with the results observed for subject-specific models, a model trained only with ECG

(Scenario 2) did not yield comparable performance with a 3D-ACC model (Scenario 1). Still,

cross-subject models trained using only ECG signal (Scenario 2) outperforms the models trained

exclusively with the PPG signal (Scenario 3), by 13.49% in terms of F1-score.

Two signals fusion. The combination of 3D-ACC and ECG signals (Scenario 4) has shown

to improve the performance of our cross-subject model by 3% (F1-score), compared to using ex-

clusively the 3D-ACC signal. Once again, a fusion of PPG and 3D-ACC signals has shown to not

yield performance improvements (Scenario 5) to trained 3D-ACC models. Interestingly, combining

both ECG and PPG (Scenario 6) yields a model with better performance than the models trained

exclusively with ECG (Scenario 2) and PPG (Scenario 3), even if it still underperforms against

pure 3D-ACC trained model (Scenario 1). In the end, we conclude that ECG signal can be com-

plement well 3D-ACC signal in HAR systems, while PPG did not provide informative data to our

cross-subject models.

Three signals fusion. Once we fuse all three sources of signals, we observe a decrease in the

model’s performance compared to just combining ACC-3D and ECG signals (Scenario 4). This
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Figure 6.3: Cross-subject random forest model results

further corroborates with the notion that adding PPG signal to the combination of 3D-ACC and

ECG signals is disadvantageous.

Per activity performance. Figure 6.4 shows the performance of the models broken down per

activity. First, we note that “cycling”, “table-soccer” and “sitting” activities remain rather stable

in all models trained with 3D-ACC, exclusively or in combination. Second, cross-subject models

often miss-classifies “stairs” and “walk” activities. Once we fuse both 3D-ACC and ECG signal, the

model is better able to distinguish between the two activities, which explains the gain in the overall

performance of the model. Third, models trained exclusively with bio-signals have very distinct

performance profiles per activity. Note that PPG is reasonably good at distinguishing the “sitting”

activity, as this is the least physically demanding activity in our dataset (lower heart rate). ECG

models, on the other hand, outperforms PPG models in all other activities, further corroborating that

ECG signal is, on average, more informative for cross-subject HAR models than the PPG signal.
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Figure 6.4: Cross-subject random forest model results per activity

The present chapter was allocated to the resulting insight about the contribution level of the

bio-signals in a HAR system. In the subsequent chapter, we will dive into the detailed impact of

ECG signal on HAR systems performance in terms of per activity impact and try to answer “Why

ECG is not always helpful”. Moreover, we will discuss about late fusion approach and the resulting

information. Last but not least, we present the top 20 important features.
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Chapter 7

Discussion

In this chapter we elaborate more on the impact of ECG signal (scenario 4) on models’ per

activity performance. We check confusion matrices related to all subjects in both subject-specific

and cross-subject models, and explore the subjects characteristics to understand why ECG signal

provide more performance improvement for some subjects compared to the others. Additionally, we

investigate the impact of the fusion method on the performance of a HAR system. We apply a class-

based weighting late fusion approach to fuse the 3D-ACC, ECG and PPG signals and compare its

performance with the early fusion method. At the end of this chapter we review the most important

features in the best model which is the combination of 3D-ACC and ECG signal.

7.1 Detailed impact of ECG signal addition

In this section we explore the detailed per activity impact of adding ECG signal to the 3D-ACC

signal and investigate the impact of subjects’ fitness level on the contribution of the ECG signal.

7.1.1 ECG signal on Subject-specific model

As our results suggested in Chapter 6, considering only 3D-ACC signals, models already reach

a high recognition performance of 94.07% F1-score. Thus, most of the instances in confusion ma-

trices are labeled accurately. However, the activities of using stair and walking were frequently con-

fused with each other. Therefore, we contrast the confusion matrices of the model which includes
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Figure 7.1: Comparison between confusion matrices in subject-specific models. On the left: the
model performance when considering only 3D-accelerometer. On the right: the model performance
when combining 3D-accelerometer with ECG signal.

only 3D-ACC (Scenario 1) against the models including both 3D-ACC and ECG signals (Sce-

nario 4). We observe significant improvement in distinguishing mentioned activities after adding

ECG signal. Figure 7.1 presents confusion matrices related to subject number 8 in subject-specific

model. On the left side of Figure 7.1, we can observe the model performance when considering only

3D-ACC. Note the instances which are miss-classified and confused between “Stairs” and “Walk-

ing” activities. On the right side of Figure 7.1, however, it is clear that after adding ECG signal,

mentioned confusions is solved.

It is important to mention that for 10 out of 14 subjects we observe “Stairs - Walking” improve-

ment after adding ECG signal to 3D-ACC, however, in 3 out of 14 cases adding ECG signal does

not improve the “Stairs - Walking” classification. Moreover, in 1 case, the model perfectly distin-

guishes between “Stairs - Walking” by just using the 3D-ACC, leaving no space for improvement

for the 3D-ACC and ECG fusion model.

7.1.2 ECG signal on Cross-subject model

Analyzing the ECG signal contribution in cross-subject models yielded a more insightful anal-

ysis, since these models miss-classify activities more often, compared to subject-specific models.

As depicted in Figure 6.3, using only the 3D-ACC signal we obtained F1-score of 83.16% which is
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relatively lower than model’s performance in subject-specific setup. After a detailed investigation in

confusion matrices of the 3D-ACC trained model, we once again identify that the activities“stairs”

and “walking” are miss-labeled. In addition to the mentioned pair of activities, another pair is miss

classified in cross-subject models, namely, “sitting” and “playing table soccer”.

We once again compare the confusion matrices related to the models trained with 3D-ACC

(Scenario 1) signal versus the model trained with both 3D-ACC and ECG signals (Scenario 4). We

observe that ECG signal significantly helps the model recognize “Stairs - Walking”, however, it does

not add any value when it comes to distinguishing “Sitting - Table-Soccer” pair. Figure 7.2 depicts

both confusion matrices related to subject number 7 in cross-subject model. The left side of Figure

7.2 is related to the model performance when considering only 3D-ACC, note the huge portion of

“Walking” instances which are miss-classified as “Stairs”. However, on the right side of Figure 7.2,

it is obvious that after adding ECG signal “Stairs - Walking” detection enhances noticeably.

It is worth noting that for 9 out of 14 subjects, we observe “Stairs - Walking” improvement

after adding ECG signal to a pure 3D-ACC model. In 3 out of 14 cases, adding ECG signal yield

no significant impact; and, in 2 out of 14 cases ECG signal addition resulted in a decline in the

“Stairs - Walking” classification.

Figure 7.2: Comparison between confusion matrices in cross-subject models. On the left: the model

performance when considering only 3D-accelerometer. On the right: the model performance when

combining 3D-accelerometer with ECG signal.
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7.1.3 Why ECG is not always helpful?

In the past two sections we stated that the ECG and 3D-ACC signal fusion does not always yield

a performance improvement in the cross-subject HAR system; more precisely, we observed decline

in the model’s performance in 2 out of 14 cases. Since the used dataset (Section 3.2) provided the

information related to the subjects characteristics (e.g., height, weight, etc.), we investigate these

factors on the cross-subject models for the scenario number 1 and 4 to answer the question “Why

ECG is not always helpful?”. Table 7.1 shows the detailed information about the subjects. The last

three columns in the table present per subject resulting F1-scores obtained from models trained with

3D-ACC exclusively (scenario 1), the models’ performance after ECG fusion (scenario 4), and the

last column provides the F1-score improvement after ECG addition. We sort the table based on the

performance improvement.

First looking at the subjects’ characteristics and the exclusive 3D-ACC models performance.

In the cross-subject models, where we train on a group of people and test the model on an unseen

subject, we observe that the more the unseen subject’s physical characteristics matches or is close to

the average of the people in the train set, the better the performance that the 3D-ACC will yield. As

an example, the best performance for scenario 1, is when we test the model on subject number 14,

whose physical characteristics factors are the closest to median measurement of the factors related

to all subjects; the test F1-score for this model is equal to 91.37%. However, a potential reason for

a 3D-ACC based model not performing as great on the unseen subject, could be that the subject

is an outlier in terms of the physical characteristics presented in the Table 7.1, such as in the case

of subjects 7 and 10 who are the outliers in fitness level and age, respectively; also, for subjects

2 and 12 who are outliers in both height and weight, for whom, we observe the least 3D-ACC

performance.

Elaborating on the contribution level of the ECG signal after fusing it with 3D-ACC signal,

we observe the greatest impact of this bio-signal on subject 7 who has the lowest fitness level.

Based on a study by (Bjørnstad, Storstein, Meen, & Hals, 1993), increasing in fitness level results

in lower heart rate. Thus, for people who are less fit, their heart reacts more significantly to physical

activities. Moreover, we observe that for subject 12 who is the tallest person among the subjects,
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ECG signal adds value to the model’s performance. On the other hand, we observe that, for subject

14, where the exclusive 3D-ACC had the best performance, the signal fusion caused a decline in

model’s performance.

Table 7.1: Detailed information about subjects characteristics and resulted F1-score for scenario 1
and 4. Last column is the models improvement/ decline after fusing the ECG signal with 3D-ACC.

Subject ID Gender Age Height Weight Fitness level ACC ACC + ECG Improvement

7 F 21 168 58 2 78.36 95.59 17.22
12 M 43 195 105 5 75.88 86.06 10.17
4 M 25 168 57 5 84.33 89.95 5.62
3 M 25 170 60 5 85.70 91.10 5.40
1 M 34 182 78 6 86.69 90.87 4.17

13 F 21 170 63 6 85.29 89.23 3.93
5 F 21 180 70 4 78.81 82.62 3.81
8 M 43 179 70 5 82.63 85.19 2.55
2 M 28 189 80 5 70.27 72.36 2.08

11 F 24 168 62 5 88.69 90.45 1.75
15 M 28 183 79 5 86.72 88.29 1.57
9 F 28 167 60 5 86.92 88.40 1.47

14 F 26 170 67 4 91.37 84.28 -7.08
10 F 55 164 56 5 82.57 71.86 -10.70

Median - 27 170 65 5 84.81 88.35 3.18

We proceed with studying the characteristics of the subjects by adding this information to the

feature matrix in addition to the time and frequency features, to see its effect on the model’s per-

formance. To that end, we add six more columns to the feature table, namely, height, weight, age,

gender, and fitness level as well as height-weight ratio which we calculate. We train and test the

cross-subject models using the new feature table for Scenario 1 in which we consider subjects char-

acteristics in addition to 3D-ACC features and we observe 1.53% F1-score improvement compared

to using only 3D-ACC features. Regarding Scenario 4, in which we use features extracted from

3D-ACC and ECG signals, we observe 0.15% performance decline after we add the subjects’ char-

acteristics as features. It is worth noting that in both cases, all the subjects’ characteristic features

were considered as less important features in comparison to the 3D-ACC and ECG related features.

However, out of these characteristic features, height and weight were the most informative ones,

respectively. Overall, we summarize this section by noting that the subjects’ fitness level has a
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significant impact of the ECG signal performance after we fuse this signal with the 3D-ACC sig-

nal. However, since we only have one subject with low fitness level, more experiment is required.

Moreover, in some cases ECG signal fusion is capable of mitigating the impact of outlier height and

weight.

7.2 Class-based weighting late fusion

In Chapter 2, in addition to the early fusion approach, we mentioned the late fusion methods

in which fusion happens at the decision level. More precisely, in class-based weighting late fusion

approach, during the train phase, multiple models are trained and weights are calculated for each

model and each class, then, in the test phase, these weights are applied on the corresponding models’

output. Aggregating the weights and models’ outputs result in late fusion. As weighting technique,

Chowdhury et al. suggested F1-score calculation for each class (Chowdhury et al., 2017). Later,

Tsanousa et al. proposed a class-based weighting late fusion algorithm which uses the following

equations, referred to as detection rate (DR) (Tsanousa et al., 2019).

DR =
TP

TP + FP + TN + FN
(2)

Where DR is basically the ratio of true positive (TP) instances, meaning the instances which are

correctly labeled to the total number of instances. Now to calculate the weight vector based on the

DR, Tsanousa et al. proposed using Equation 3, by which we can give more weights to the classes

which are harder to classify (Tsanousa et al., 2019).

wij = 1−DRij (3)

Where i refer to the ith model and j refers to the jth class. After weight calculation, we proceed

to the test phase in which we apply the trained models on the test instances. That is, for each sources

of signals, we use its specific model and get the outputs as probability matrix. The dimensionality

of this matrix is equivalent to total number of test instances (observations) multiply by total number

of the existing classes (activity labels). As the final step, we need to apply the weight vector on the
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probability matrix using the following equation.

PM = awi + (1− a) Pi (4)

final label = arg max(PM) (5)

Where PM is the final probability matrix calculated for fusing all three models. Equation 4

shows the approach to aggregate the weights with the probably matrix by calculating the matrix en-

try wise multiplication and then summation. The adaptation parameter a is a adjustment parameter

to perform the summation. Based the Tsanousa et al. study, a is a value between 0 and 1, we set a to

be a vector representing the population of each class in percentage, with this approach we can adjust

the weights in case of having imbalanced dataset. Moreover, in Equation 5 we apply the arg max

function on the final probability matrix to get the final labels. For each row of the final probability

matrix, arg max function returns the index of the maximum probability which represents an ac-

tivity label. As for the F1-score based weighting method, we calculate per class F1-score during

10-fold cross validation on train instances, thus, wij = F1 − scoreij (related to ith model and jth

class). Then, we follow the same steps, that is using Equations 4 and 5.

In the current thesis, we only perform and evaluate the late fusion method for the cross-subject

(LOSO) setup, since cross-subject models are more complicated. To calculate the weights, we train

random forest models for each of the three signals under study. For each subject, we train and

evaluate the models using the 10-fold cross-validation approach (only on train instances) in order to

calculate an average weight for each class. Then, we use Equation 6 which is derived from Equation

3 to fuse models for different scenarios. Equation 6, is related to scenario 7 where we fuse all three

sources of signals. We apply and compare both F1-score and DR-based weighting approaches to

perform the late fusion on 3D-ACC, ECG and PPG signals. Table 7.2 summarizes the results we

obtained for the late fusion method with both of the weighting approaches and compares its results

with the early fusion and the basic models with no fusion.

PM = (aWACC + (1−a) PACC)+(aWECG + (1−a) PECG)+(aWPPG + (1−a) PPPG) (6)
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Table 7.2: Resulted F1-score for LOSO set up performing early and late fusion method as well as
the base lines with no fusion

LOSO F1-score ACC ECG PPG ACC + ECG ACC + PPG ECG + PPG All

No fusion (baseline) 83.16 60.34 46.85 - - - -
Early fusion - - - 86.17 83.62 69.39 85.58
Late fusion (f1-score) - - - 86.09 80.42 64.61 83.29
Late fusion (detection rate) - - - 86.90 82.03 66.56 85.07

As the results in Table 7.2 indicate both early and late fusion approaches yield almost similar

results, meaning that the combination of the 3D-ACC and ECG signals (scenario 4) is providing

the best performance. It is worth mentioning that the late fusion approach does not necessarily

perform better than the early fusion. In the Table 7.2, we observe that for 3D-ACC and ECG signals

combination, DR-based late fusion performs slightly better than the early fusion, however, for the

rest of the fusion scenarios, early fusion performs better. We provide the resulting figures for per

activity and overall models’ performance in late fusion approach. Figure 7.3 shows a comparison

between overall performance of the models weighted DR-based and F1-score based approaches.

We can observe that the DR-based weighting method performed slightly better than the F1-score

based weighting method. Moreover, Figures 7.4 and 7.5 presents the per activity performance of

the detection rate and F1-score weighting late fusion approaches, respectively.
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Figure 7.3: Resulting F1-score for overall performance for a cross-subject late fusion model and a
comparison between per class detection rate and per class F1-score weighting approach.

Figure 7.4: Resulting F1-score performance for a cross-subject late fusion model using per class

detection rate weighting approach.

42



Figure 7.5: Resulting F1-score performance for a cross-subject late fusion model using per class

F1-score weighting approach.

7.3 Feature importance

We have shown that fusing 3D-ACC and ECG signals yielded the best performance in classify-

ing human activities in our thesis. However, which features from both signals were the most relevant

to our model? In this section we present the feature importance ranking of the model that combines

3D-ACC and ECG (Scenario 4) using the cross-subject model, as we want to investigate the best

features across multiple subjects. We calculate the feature importance using the Mean Decrease in

Impurity (MDI) of our random forest model Louppe (2014). To aggregate the importance score for

each model evaluated on a single subject, we calculate the average score for each feature over all the

subjects and rank their importance score. As Table 7.3 shows, out of top 20 features, 16 features are

related to the 3D-ACC signal and 4 of them to the ECG signal. Naturally, as 3D-ACC provides the

best signal of the individual signal models (scenario 1), we expect to see a dominance of 3D-ACC

features in the top-20 ranking. Interestingly, frequency domain features rank higher than time do-

main ones, confirming that frequency-based feature provides informative data to the our classifiers.
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Another pattern that emerges is that, for 3D-ACC axis Y and Z are relatively more important than

X-axis of the accelerometer sensor. As the original authors of the PPG-DaLiA dataset collected

the accelerometer using a wristband, when the subject’s hand is positioned alongside the body,

the X-axis captures movement in the forwards-backwards direction, the Y-axis captures up-down

movements, and finally, the Z-axis captures left-right movements Empatica. E4Wristband. 2018.

Available online: (2018).

Table 7.3: Feature importance for 3D-ACC + ECG model (scenario 4) in the cross subject setup.

Rank Feature domain Signal Feature name Importance score

1 Frequency ACC-Y median 0.0990
2 Time ACC-Z median 0.0812
3 Frequency ACC-Y second-max 0.0799
4 Frequency ACC-Z standard deviation 0.0633
5 Frequency ACC-Y standard deviation 0.0626
6 Frequency ACC-X second-max 0.0579
7 Frequency ACC-Y mean-crossing 0.0535
8 Time ACC-X max 0.0475
9 Frequency ACC-Z mean-crossing 0.0454

10 Time ACC-Y max 0.0385
11 Time ACC-X median 0.0365
12 Time ACC-Y median 0.0361
13 Time ACC-Y mean 0.0343
14 Time ECG mean-crossing 0.0318
15 Time ECG zero-crossing 0.0279
16 Time ECG standard deviation 0.0276
17 Frequency ACC-Z predominant frequency 0.0275
18 Frequency ECG mean-crossing 0.0203
19 Time ACC-Z min 0.0191
20 Frequency ACC-Y predominant frequency 0.0188

In this chapter, we provided the complementary insight about the overall topic of this thesis.

More precisely, we discussed about the detailed contribution level of ECG signal in HAR systems,

a comparison between the late fusion and the early fusion and the most important features. In the

chapter that follows, we will wrap up this thesis by the conclusion and the potential future works.
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Chapter 8

Conclusion and Future work

8.1 Limitation and future work

In this section we discuss the limitation and the potential future works. We explained in Chap-

ter 3 that a variety of recorded signals are provided in PPG-DaLiA dataset, however, out of IMU

sensors (3D-ACC, gyroscope, and magnetometer), the available signals are limited to the 3D-ACC.

This limitation prevent us from further investigating the contribution level of bio-signals when com-

bined with gyroscope, and magnetometer signals. Another limitation of our work is the significant

difference between different sources of signals sampling rates, to review, 3D-ACC (32 Hz), PPG (64

Hz), and ECG (700 Hz). We stated in Chapter 4 that we up-sample the 3D-ACC signal, however, we

keep the ECG signal as its original sampling rate. We decide not to down-sample the ECG signal

because we do not want to eliminate some of the ECG information. To this end, as our future work,

we plan to record our dataset including all the IMU sensors information, as well as PPG and ECG

signals all recorded with comparable sampling rates to reduce the impact of other factors (sampling

rate and information volume) on the comparison and contribution level evaluation of different sig-

nals. Furthermore, we plan to have more examples of subjects with similar characteristics, in terms

of fitness level, height and weight.

Regarding our methodology, we suggest applying other feature extraction approaches such as

wavelet transformation or even applying the deep learning approaches to avoid the limitation of

conventional machine learning models. A potential future work is to perform the same investigation
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considering other types of activities, the transition activities (meaning the activity performed in be-

tween two certain activities, e.g. the duration between sitting and standing up) or even the complex

activities (such as sequential, concurrent or interleaved human activities which explained in Chapter

3) to evaluate the contribution level of PPG and ECG signals. Even though, our main aim in this

thesis is to evaluate the contribution level of heart related data, namely ECG and PPG (indirectly

related to heart activity), we suggest including and evaluating other type of bio-signals fusion such

as electromyogram (EMG) in HAR systems.

8.2 Conclusion

In this thesis, we perform a comparative study to evaluate the contribution level of different

sources of signals in HAR systems. We use a dataset consisting of 3D-ACC, PPG, and ECG signals

recorded while 14 subjects were performing daily activities.

After examining different window sizes, we identify that window size of seven seconds is the

best segment duration to obtain sufficient information out of the mentioned signals. Afterwards,

we extract time and frequency domain features from each segment, then standardize features so

that all the features have zero mean and unit variance. Next, we omit features with more than 85%

correlation and select 45 features out of total 77 extracted features. We introduce seven scenarios

of evaluation, including models trained solely by one source of signal and models trained by a

combination of signal features. Finally, we evaluate two types of HAR models using Random

Forest classifiers, a subject-specific model and a cross-subject model.

We conclude that in both subject-specific and cross-subject models, 3D-ACC signal is the most

informative signal if the HAR system designer’s purpose is to record and use only one source of

signal. However, our results suggest that 3D-ACC and ECG signal combination improves recog-

nizing activities such as walking and ascending/descending stairs. It is worth mentioning that not

in all cases ECG addition would improve the HAR performance, it is highly correlated with sub-

ject’s fitness level. Moreover, we experimentally assess that features extracted from the PPG signal

are not informative for HAR system, not exclusively, nor when applying signal fusion. Although,

both bio-signals yield a satisfactory performance in distinguishing stationary activities (e.g. sitting)
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from non-stationary activities (e.g. walking, cycling). Lastly, the early fusion and the late fusion ap-

proaches yield almost similar results in terms of F1-score and different signals contribution. Overall,

our results indicate that it might be beneficial to combine features from the ECG signal in scenarios

in which pure 3D-ACC models struggle to distinguish between activities that have similar motion

(walking vs walking up/down the stairs) but differ significantly in their heart rate signature.
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Table 8.1, represents the abbreviations we used in this thesis:

Table 8.1: Table of abbreviations

Abbreviation Definition

HAR Human Activity Recognition
IMU Inertial Measurement Unit
3D-ACC Three dimensional accelerometer signal
ECG Electrocardiogram signal
PPG Photoplethysmogram signal
FFT Fast Fourier Transform
CFS Correlation based Feature Selection
AUC Area Under Curve
ROC Receiver Operating Characteristic
LOSO Leave-One-Subject-Out cross validation
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Mehrang, S., Pietilä, J., & Korhonen, I. (2018). An activity recognition framework deploying the

random forest classifier and a single optical heart rate monitoring and triaxial accelerometer

wrist-band. Sensors, 18(2), 613.

Mendes Jr, J. J. A., Vieira, M. E. M., Pires, M. B., & Stevan Jr, S. L. (2016). Sensor fusion and

smart sensor in sports and biomedical applications. Sensors, 16(10), 1569.

Micucci, D., Mobilio, M., & Napoletano, P. (2017). Unimib shar: A dataset for human activity

recognition using acceleration data from smartphones. Applied Sciences, 7(10), 1101.

Noor, M. H. M., Salcic, Z., Kevin, I., & Wang, K. (2017). Adaptive sliding window segmentation

for physical activity recognition using a single tri-axial accelerometer. Pervasive and Mobile

Computing, 38, 41–59.

Nweke, H. F., Teh, Y. W., Mujtaba, G., & Al-Garadi, M. A. (2019). Data fusion and multiple clas-

sifier systems for human activity detection and health monitoring: Review and open research

52



directions. Information Fusion, 46, 147–170.

Park, H., Dong, S.-Y., Lee, M., & Youn, I. (2017). The role of heart-rate variability parameters

in activity recognition and energy-expenditure estimation using wearable sensors. Sensors,

17(7), 1698.

Pedley, M. (2013). Tilt sensing using a three-axis accelerometer. Freescale semiconductor appli-

cation note, 1, 2012–2013.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, E.

(2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,

12, 2825–2830.

Ravi, D., Wong, C., Lo, B., & Yang, G.-Z. (2016). A deep learning approach to on-node sensor data

analytics for mobile or wearable devices. IEEE journal of biomedical and health informatics,

21(1), 56–64.

Reiss, A., Indlekofer, I., Schmidt, P., & Van Laerhoven, K. (2019). Deep ppg: large-scale heart rate

estimation with convolutional neural networks. Sensors, 19(14), 3079.

Ronao, C. A., & Cho, S.-B. (2016). Human activity recognition with smartphone sensors using

deep learning neural networks. Expert systems with applications, 59, 235–244.

Saeb, S., Lonini, L., Jayaraman, A., Mohr, D. C., & Kording, K. P. (2017). The need to approximate

the use-case in clinical machine learning. Gigascience, 6(5), gix019.

Saeys, Y., Abeel, T., & Van de Peer, Y. (2008). Robust feature selection using ensemble fea-

ture selection techniques. In Joint european conference on machine learning and knowledge

discovery in databases (pp. 313–325).

Sakr, N. A., Abu-Elkheir, M., Atwan, A., & SOLIMAN, H. (2018). Current trends in complex hu-

man activity recognition. Journal of Theoretical & Applied Information Technology, 96(14).

Shoaib, M., Bosch, S., Incel, O. D., Scholten, H., & Havinga, P. J. (2016). Complex human activity

recognition using smartphone and wrist-worn motion sensors. Sensors, 16(4), 426.

Strath, S. J., Kaminsky, L. A., Ainsworth, B. E., Ekelund, U., Freedson, P. S., Gary, R. A., . . .

Swartz, A. M. (2013). Guide to the assessment of physical activity: clinical and research

applications: a scientific statement from the american heart association. Circulation, 128(20),

2259–2279.

53



Sun, Y., Kamel, M. S., & Wong, A. K. (2005). Empirical study on weighted voting multiple

classifiers. In International conference on pattern recognition and image analysis (pp. 335–

344).

Tapia, E. M., Intille, S. S., Haskell, W., Larson, K., Wright, J., King, A., & Friedman, R. (2007).

Real-time recognition of physical activities and their intensities using wireless accelerometers

and a heart rate monitor. In 2007 11th ieee international symposium on wearable computers

(pp. 37–40).

Telgarsky, R. (2013). Dominant frequency extraction. arXiv preprint arXiv:1306.0103.

Tsanousa, A., Meditskos, G., Vrochidis, S., & Kompatsiaris, I. (2019). A weighted late fusion

framework for recognizing human activity from wearable sensors. In 2019 10th international

conference on information, intelligence, systems and applications (iisa) (pp. 1–8).

Vrigkas, M., Nikou, C., & Kakadiaris, I. A. (2015). A review of human activity recognition

methods. Frontiers in Robotics and AI, 2, 28.

Wang, A., Chen, G., Yang, J., Zhao, S., & Chang, C.-Y. (2016). A comparative study on human

activity recognition using inertial sensors in a smartphone. IEEE Sensors Journal, 16(11),

4566–4578.

Wang, Y., Cang, S., & Yu, H. (2019). A survey on wearable sensor modality centred human activity

recognition in health care. Expert Systems with Applications, 137, 167–190.

Weiss, G. M., Timko, J. L., Gallagher, C. M., Yoneda, K., & Schreiber, A. J. (2016). Smartwatch-

based activity recognition: A machine learning approach. In 2016 ieee-embs international

conference on biomedical and health informatics (bhi) (pp. 426–429).

54


	List of Figures
	List of Tables
	Introduction
	Research Problem Explanation
	Motivation
	Contributions
	Overview

	Related Work
	Early Fusion with IMU
	Early Fusion with Bio-Signals
	Late fusion

	Studied Dataset
	Sensors and Signals Overview
	Used Dataset

	Feature Extraction and Selection
	Data Pre-processing
	Windowing
	Feature extraction
	Time-domain features
	Frequency-domain features

	Feature standardization
	Feature Selection

	Classifiers and Experiment Setup
	Proposed scenarios
	Classifier
	Performance Evaluation
	Subject-specific model
	Cross-subject model


	Early fusion methods results
	RQ1: What is the contribution level of signals under study in subject-specific HAR systems?
	RQ2: What is the contribution level of signals under study in cross-subject HAR systems?

	Discussion
	Detailed impact of ECG signal addition
	ECG signal on Subject-specific model
	ECG signal on Cross-subject model
	Why ECG is not always helpful?

	Class-based weighting late fusion
	Feature importance

	Conclusion and Future work
	Limitation and future work
	Conclusion

	Bibliography



