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Abstract 

Stress analysis of straight and initially curved composite tubular beams using an analytical 

meshless dimensional reduction method 

Saeid Khadem Moshir, Ph.D.  

Concordia University, 2021. 

Due to high strength to weight ratio of thermoplastic composite structures, their use attracted 

industrial interests, especially in the aerospace industry. The application of composite curved tubes 

for landing gear of helicopters instead of aluminum is the subject of interest for the aerospace 

industry. The focus of the present work is to study mechanical behavior of composite straight and 

curved composite tubes subjected to the bending loading which is similar to the loading conditions 

of cross tubes for landing gear of helicopters during landing. The analysis of these structures with 

a large number of layers may be computationally expensive. The finite element method is widely 

used for stress analysis of initially curved composite tubes. This method is computationally 

expensive for design and optimization process. The main objective of the present thesis is to 

develop an efficient, simple-input method for stress analysis of initially curved and straight 

composite tubes under four-point bending loadings. To do so, different methodologies for stress 

analysis of straight and initially curve tubes are introduced. The advantages and disadvantages of 

the methods are presented. The first part of this thesis focuses on the stress analysis of straight 

composite cylinders under pure bending moment. The 3D elasticity of Lekhnitskii is employed to 

carry out the stress analysis of an anisotropic cylinders with many layers. In the second part, an 

analytical meshless polynomial based method in conjunction with dimensional reduction method 

are presented to carry out cross-sectional analysis as well as determining strain distribution in 

straight and curved composite tubes under bending loading (four-point bending loading) in which 

the effect of shear strains is taken into consideration. In order to obtain the stiffness constants of 

the cross-section and strains, the powerful mathematical Variational Asymptotic Method (VAM) 

is employed to decompose a three-dimensional elasticity problem into a two-dimensional cross-

sectional analysis and a one-dimensional analysis along the length. The VAM presents Classical 

and Timoshenko beam models and cross-sectional stiffness matrices. In the Classical beam model 

cross-sectional stiffness matrix, the effect of shear is not considered. In order to achieve a more 

precise beam model for the analysis of initially curved and straight tubular beams, the 
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Timoshenko-like beam model and the effect of shear strain is taken into consideration. VABS is a 

commercial finite element-based software for cross-sectional analysis of composite beams having 

complex cross-section shape. For the case of simple cross-sections such as rectangular, circular 

and elliptical shape, the modeling process of VABS can be eliminated by employing meshless 

method. The presented polynomial meshless dimensional reduction method is employed for tubes 

with circular and elliptical cross-sections which is the main novelty of this work. In the present 

work, the utilization of the Pascal polynomials for the cross-sectional analysis of the beams takes 

advantage of the meshless method compared with the three-dimensional finite element method or 

VABS. Moreover, a one-dimensional finite element solution is provided for straight and initially 

curved composite tubes. The presented method for the analysis of initially curved and straight 

tubes is computationally more efficient and simple-input compared to the 3D finite element 

method. In addition, it eliminates generating two-dimensional cross-sectional mesh and dividing 

the cross-section into different segments for straight and curved tubes compared to Variational 

Asymptotic Beam Sectional Analysis (VABS) software. So, the present method can be more 

efficient and straightforward in terms of modeling procedure compared to VABS. The parametric 

study such as determining cross-sectional stiffness constants, strains and displacements for design 

and optimization will be more straightforward.  

The experimental tests are carried out to validate the present method of solution. Test setups for 

four-point bending test of the straight and initially curved tubes are provided by a teamwork at 

Concordia Center for Composites (CONCOM). The obtained strains at different spots of the tubes 

as well as the transverse displacement are compared with the theoretical solution. The effect of 

lay-up sequence, initial curvature on the mechanical behavior of the composite tubes are studied.  
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1. Chapter1: Introduction 

1.1 Introduction 

Laminated composite beams play a crucial role due to outstanding mechanical properties in the 

production of innovative structures which include light-weight, high-stiffness to weight, high 

damping, excellent corrosion, thermal and high impact resistance. However, the stress analysis of 

a composite tubular structure under complex loading conditions is often a complex task. This is 

due to the change of the fiber angle at each layer so that in the three-dimensional finite element 

analysis (3D FEA) one element is needed to be used for each layer (ply-wise analysis). This issue 

makes the analysis to be time consuming and expensive procedure. Moreover, the governing 

equations for composite structures are much more complicated than those of the structures made 

of isotropic materials. Moreover, the three-dimensional elasticity analysis methods often are not 

able to consider all the loading effects (e.g. shear loading, boundary conditions). Finally, a major 

source of intricacy is the layer-wise failure of composite materials. In fact, as soon as a layer fails, 

a sort of delamination occurs or a crack propagates in plies, and material properties and sometimes 

governing equations could be different. This readily adds a lot of complexity to the analysis of 

composite structures. 

1.2 Motivation 

Currently, the helicopter industry uses Aluminum alloys (e.g. 7075 T6) for landing gear structure. 

Landing gear consists of two parallel curved tubes connecting the two skis of the helicopter as 

shown in Fig. 1. Although there are many issues in the maintenance, fabrication, and failure 

weakness due to the corrosion, the aluminum landing gear is the choice of the industry, 

experimental and theoretical works such as analytical and numerical works have been done for 

developing the landing gears. Derisi [1] and Moshir el al. [2] tested and analyzed straight 

thermoplastic orthotropic tubes under three-point and four-point bending loadings. However, an 

analytical simple-input and fast method which takes into account all the components of the strains, 

displacements of a composite curved and straight tubes under complex loading such as four-point 

bending loading is needed. Developing a simple, fast and accurate meshless method for design 

purpose of an initially curved and straight composite tubes is the main motivation of the present 

work.  
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1.3 Literature survey 

Due to high strength to weight ratio of the composite with respect to isotropic materials, the 

attraction of the aerospace industry in applying composite structures is growing in recent years. 

The conventional Bell helicopter landing gear consists of two parallel curved cross-tubes, each are 

connected by two longitudinal skid tubes. Fig. (1.1) shows the cross-tube for landing gear of 

helicopter. The cross-tube of the landing gear of a helicopter consists of initially curved and 

straight tubes.  

 

  

Fig. (1.1) Bell 412 landing gear system [3]. 

1.3.1 Straight composite tubes 

The utilization of aluminum tube for landing gear of helicopter has disadvantages such as the 

manufacturing problem (acid etching to obtain variation in the thickness), and pit corrosion due to 

impact by small hard particles from ground during take-off or landing which can reduce the fatigue 

life of the tube, [4].  

Recently, there have been interests in thick composite structures. One type of composite structure 

is a straight tube that is used for the fabrication of the landing gear of the helicopter or any other 

engineering structure. Thin composite tubes have many applications and there are a large number 

of analytical methods for studying the mechanical behavior of these structures. The study of 

mechanical behavior of composite tubes can be divided into two main categories. The first 

category treats the composite tubes as multi-layered composite cylinders. These methods usually 

use three-dimensional (3D) elasticity and use equilibrium equations, displacement field or stress 

functions to carry out stress analysis of tubes. They are able to analyze composite tubular cylinders 

(usually straight) under pure bending moment, torsion, internal pressure and extensional loads. In 
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these methods, the boundary conditions at two ends of a tube, and variation of support and loadings 

along the length of the tube, are not taken into consideration and so the structural behavior of a 

composite tube under loading such as transverse displacement cannot be predicted. Also, these 

methods may not be able to handle initially curved tube. The second category treats the composite 

tubes as a beam with boundary conditions in which a composite tube mechanical behavior under 

transverse loading can be evaluated.  

1.3.1.1 3D elasticity 

To study the elasticity of anisotropic cylindrical body, several solutions have been proposed for 

the basic equations of the mathematical theory of anisotropic elasticity. Lekhnitskii for the first 

time, obtained a set of partial differential equations for cylindrical anisotropy problem of single 

layered cylinder subjected to the axisymmetric loading and bending loading, [5]. Following 

Lekhnitskii, number of research have been conducted for stress analysis of composite cylinders 

subjected to axisymmetric loading including internal pressure, hygrothermal loading, torque and 

tension loading. Davis and Bruce [6] proposed the stress analysis of thick-walled concentric 

orthotropic cylinders subjected to internal pressure, uniaxial tension or torsion. Hu et al. [7, 8] 

employed Lekhnitskii’s [5] stress functions to study stress distribution of 55 filament wound 

composite tube subjected to internal pressure or tension load. Bouhfas et al. [9] developed an 

analytical method to study mechanical behavior of thick composite pipes under internal pressure. 

The model applied the plane strain states of multi-layered cylinders under internal pressure. Akosy 

et al. [10] conducted stress analysis of laminated homogeneous cylinders subjected to thermal or 

inertia force due to rotation using 2D equilibrium equations in the cylindrical coordinates. In 

addition, a number of works have been done regarding the bending of the composite orthotropic 

cylinders subjected to pure bending moment which also can be considered as the displacement 

based linear elasticity solution. Yuan [11] provided an exact solution for bending of laminated 

cylindrical shells using Lekhnitskii’s stress functions. He also derived closed form solutions on 

the basis of classical shell theory and Donnel’s theory. In the most notable work, Jolicoeur and 

Cardou [12] conducted the stress analysis of coaxial orthotropic cylinders in which all the stresses 

are considered. Two types of interaction at the interfaces between the layers including no slip and 

no friction are assumed. Under the no slip condition which assumes the perfect bonding between 

the layers, there is the continuity of the radial stress 
r , the in-plane plane shear stress 

r  as 
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well as out-of-plane shear stress 
rz  and displacements such as the radial displacement 

ru , the 

circumferential displacement u  and the longitudinal displacement w. In the no friction case, 

there is only the continuity of 
r  and 

ru . Tarn and Wang [13] applied an exact analytical solution 

to study extension, torsion, bending, shearing and pressuring of laminated composite tubes based 

on general expressions for the displacements obtained by Lekhnitskii [5]. For the sake of 

simplicity, they used the state space approach so that the problem of generalized plane strain, 

generalized torsion and bending of laminated tubes are formulated for the stress analysis. Xia et 

al. [14] provided an exact solution based on classical laminate-plate theory for pure bending 

analysis of multi-layered filament-wound composite pipes based on Lekhnitskii’s stress function. 

It is noted that the out-of-plane shear stress effects were not considered in their analysis. Zhang et 

al. [15] found that the analytical solution provided by Jolicoeur and Cardou [12] for determining 

flexural stiffness as well as stress analysis of composite cylindrical tubes under bending loading 

which was based on stress function of Lekhnitskii [5]. The method presented in [12] was not 

capable of analyzing cylinders including 0°or 90° helical angle due to some parameters became 

singular. In order to overcome this issue, they provided a modified limit based solution. In another 

work, Zhang et al. [16] provided a solution for the composite tubes including 0°or 90° layers and 

any arbitrary angle. The approximations of singular parameters for special layers (0°or 90°) near 

other angles are provided. To this end, a Taylor series expansion as a powerful tool for special 

layers is utilized. Guechy and Hoa [17] obtained flexural stiffness of two-layered thick composite 

tubes by utilizing the solution based on the three dimensional theory of elasticity proposed by 

Jolicoeur and Cardou [12]. They examined and compared theoretical results and experimental ones 

only for tubes with lay-up of [25/-25]. Sun et al. [18] carried out a stress analysis of hollow 

cylindrical structures including multiple anisotropic layers using stress functions proposed by 

Lekhnitskii [5]. They also provided solutions for a homogenized composite cylinder with single-

layer. Their solution is sufficient for stress analysis of thin-walled or moderately thick-walled 

hollow composite cylindrical structures. They compared the obtained results which were for 

composite tube with lay-up excepted for 0 or 90 winding angle degree of the layers by the FEM. 

Menshykova and Guz [19] investigated stress analysis of multi-layered thick-walled fiber 

reinforced composite straight pipes manufactured by filament winding process under bending 

loading. They used the axial stress relation of Lekhnitskii then used stress-strain relation of Xia et 
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al. [14]. The out-of-plane shear stresses were not taken into account in their solution. Blom et al. 

[20] tested bending of carbon-fiber reinforced composite cylinders including baseline laminate and 

circumferentially varying laminate stiffness. They also carried out a FEA of tubes in order to 

compare between results.  Derisi et al. [1] experimentally investigated three and four-point bending 

of thermoplastic composite tubes in which a strain-controlled design and large deformations are 

considered. They also carried FEA of tubes using ANSYS software package. They showed that 

the composite thermoplastic tubes can have the same flexural stiffness, slightly higher strength, 

load carrying capacity and large strain to failure as an aluminum counterpart. In this research, 

mostly Lekhnitskii’s stress functions are used to obtain a system of partial differential equations. 

Since the cylinder is under pure bending moment, not only the stresses are independent of the axial 

coordinate but also the end effects are not taken into account. In addition, it should be noted in the 

all the studies using Lekhnitskii’s stress function, the solutions provided are for straight orthotropic 

cylinders. 

Yazdani et al.  [21-23] used a displacement-based method to analyze orthotropic single layered 

curved tubes under pure bending moment. In his work, a higher-order displacement field of 

elasticity of thick laminated composite curved tubes is developed employing a displacement 

approach of Toroidal Elasticity and the layer-wise method. Since the cylinder is under pure 

bending moment, not only the stresses are independent of the axial coordinate but also the end 

effects are not taken into account.  

1.3.1.2 Classical plate and shell theories 

Theories use classical plate and shell assumptions are commonly used for thin-walled beams. The 

classical shell theory of Donnell’s solution for bending of composite cylinders has good agreement 

for thin-cylinders [24] in which the combination of three-dimensional equilibrium equations of 

elasticity is applied to obtain the inter-laminar stresses. However, they have substantial difference 

with 3D elasticity solutions for thick-walled cylinders [25]. Furthermore, the radius to the wall-

thickness ratio is limited to 50 (limited to thin) [24]. Tatting et al. [26] provided a nonlinear 

bending response of finite length of thin composite tubes based on the classical shell theory. The 

nonlinear strain-displacement relations are implemented where the terms related to the shear strain 

are kept. Then, they expanded the displacements in terms of a Fourier series in the circumferential 

direction. The cross-sectional deformations associated with Brazier’s flattening influence was 
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demonstrated using the classical shell theory in which the nonlinear strain-displacement relation 

of Sander [27] was used. Di and Rothert [28] calculated stress fields of orthotropic cylindrical 

shells using a higher-order shear deformation theory. Their formulations were derived to present 

displacement and transverse shear stresses for bending of a thin cross-ply composite straight tube 

with the simply supported boundary condition at one end. Kollar and Springer [29] provided only 

some formulations for a stress analysis of thin and thick-walled composite cylinders and 

cylindrical segments subjected to hygrothermal and mechanical loads (shear, bending and torque). 

Their analysis is based on the equilibrium equations of Love [30] and applicable to loads which 

results in small deformation and linearly elastic material. The loads and therefore stresses and 

strains are independent of the axial direction. Chan et al. [31] presented approaches based on 

laminate plate and shell theories to calculate the flexural stiffness of thin composite tubes. They 

also carried out FEA using ANSYS to compare the theories. Saggar [32] experimentally studied 

four point bending of thin composite tubes and compared their data with classical lamination 

approach. 

1.3.1.3 Brazier effect, [27] 

Brazier effect is a nonlinear phenomenon related to the bending of long tubes with deformable 

cross-section. Because of the curvature of the tube axis subjected to the pure bending, the 

compressive and tensile stresses act at an angle to the un-rotated cross-section and deform the 

original circular shape into an oval and flattened pattern, Fig. (1.2). Therefore, the ovalization 

decreases the moment of inertia and thus the bending rigidity of the cross-section and results in a 

nonlinear load-displacement relation. Moreover, not only the axial bending stresses increase but 

also the buckling load is lowered. In order to capture the Brazier effect properly, the nonlinear 

strain-displacement relation plays an important role. Kim et al. [33] used a modified Brazier 

approach for bending of composite circular composite spar subjected to bending loading using a 

linear elastic energy method. The failure mode of the cylinders is determined by flattening the 

cross-section and the Castigliano’s theorem is used for solution.  

 

Fig. (1.2) Mechanism of Brazier effect to produce ovalization [26]. 
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1.3.1.4 3D models for analysis of composite tubular straight beams 

The other category for analysis of composite tubes treats the composite tubes as beams. Beams are 

structures in which one dimension is much larger than the other two. A beam theory is often used 

to model helicopter blades, aircraft wings, wind-turbine blades etc. Depending on the complexity 

of the beam, beam theories can be divided into a) Euler-Bernoulli beam theory, b) shear 

deformable beam theories (i.e. Timoshenko theory, third order shear theory, layer wise shear 

theory, etc.), c) 3D beam theories. In 3D beam theories both out-of-plane and in-plane warpings 

are taken into account. In-plane warpings are due to transverse normal strains and in-plane shear 

strain. So, effects due to 3D stresses are accounted for 3D beam theories [34]. For laminated 

composite beams, box beams or tubes, some non-classical effects such as transverse shear 

deformations, in-plane warpings due to bending and extension, in-plane shear stresses, transverse 

normal stresses are significant because of anisotropy. These effects are characterized by in-plane 

and out-of-plane warping displacements. These effects can be accounted for using 3D beam 

models which include 3D stress effects, geometric nonlinearity and anisotropy and initial 

curvatures.  

The 3D analysis of composite tubular beams can be divided into two groups. The first group 

applies simplifying assumptions such as displacement or stress field. These analytical models have 

restrictions for the cross-section geometry. These theories use classical plate and shell assumptions 

and usually used for thin-walled cross-sections. The non-classical beam theory can be considered 

as one of the 3D beam models. The other group here called dimensional reduction method does 

not have any ad-hoc assumption such as displacement field will be discussed hereafter.  

1.3.1.5 Non- classical beam theory 

The non-classical composite beam theory mainly considers the effect of primary and secondary 

warpings and transverse shear effects. As the thickness of the beam increases the effect of 

secondary warping increases. Librescu and Song [35] for the first time presented an approach 

related to refined theory of thin-walled straight beams with arbitrary cross-section including non-

classical effects. Their approach was based on the assumption that a) the original shape of every 

cross-section of the beam is assumed to remain unchanged after deformation which means that the 

cross-section does not deform in its own plane, b) the transverse shear effects (
rz  and 

z ) were 
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considered, c) the rate of twist is a function of spanwise coordinate, d) both the primary and 

secondary warpings are considered, e) the hoop stress resultant is assumed to be negligibly small.  

In the work of Rehfield et al. [36], the non-classical effects of the behavior of thin-walled 

composite beams such as elastic bending-shear coupling and restrained torsional warping were 

studied. The displacement field is derived in such a way that it has rigid-body translation and 

rotation of the frame which coincides with the cross-section of the undeformed beam. Further, 

warping of the cross-section relative to the translated and rotated frame is considered. Kim and 

White [37] provided an analysis based on non-classical theory for thin and thick-walled composite 

beams subjected to several loadings in which the primary and secondary warpings, coupled 

stiffness effects and transverse shear (
rz  and 

z ) were taken into account. It is noted stress 

components such as (normal stress 
r , hoop stress 

  and in-plane shear 
r ) are neglected. 

On the basis of the thin-walled theory proposed by Librescu and Song [35], Shadmehri et al. [38] 

determined the flexural stiffness of orthotropic composite tubes made of multiple layers. In their 

work, it was assumed that all deformations are small and the in-plane deformations are not allowed 

in the cross-section plane. Silvestre [39] presented a formulation of generalized beam theory which 

is developed to analyze the influence of non-classical effects on the structural behavior of 

composite circular hollow members. The elastic material couplings, deformation of cross-section, 

warping deformation and the shear deformations are considered in this theory. The strain-

displacement was based on the relations of the Love-Kirchhoff theory where the stress distribution 

in the section of the tube is not investigated 

1.3.1.6 Dimensional reduction method 

In another composite beam analysis group, the Variational Asymptotic Method (VAM) has strong 

appeal. This method can allow the analysis of a 3D problem to be decoupled into a two-

dimensional (2D) cross-section analysis and a one-dimensional (1D) analysis. The kinematics of 

beam deformations can be considered as a linear combination of 1D beam generalized strains and 

warping deformations of the cross-section. The method has been developed by Hodges and 

coworkers [40]. The cross-section analysis is carried out which uses 3D elasticity for beam 

modeling and therefore the simplified kinematic assumptions are not applied. All the components 

of warping which are the cross-sectional deformations may be coupled together, are calculated. 

Therefore, 3D stress effects can be evaluated. Hodges and his co-workers were pioneers in the 
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analysis of cross-section of initially curved and twisted composite box, rectangular, T and I beams 

using FE method [40-42] and Variational Asymptotic Method (VAM). Prior to their work, 

Berdichevsky [43] appears to be the first who stated VAM that the geometrically nonlinear 

problem of the 3D theory of elasticity for a beam can be split into a nonlinear 1D problem and a 

linear 2D problem (dimensional reduction). In the VAM, the 2D analysis can determine all the 

stiffness constants of the cross-section of the composite beam including extensional, shear, 

torsional, bending and their couplings. With the help of FE method, the stiffness matrix of an 

arbitrary cross-section can be achieved. The VAM perturbs the warping which leads to perturbing 

the energy functional to different orders, with respect to small parameters and then asymptotically 

minimize the variational problem. Therefore, this method simplifies the variational problem and 

eliminates solving differential equations. In addition, Hodges and his co-workers [40, 44] provided 

a cross-sectional analysis code called VABS (Variational Asymptotic Beam Sectional Analysis) 

based on the formulation of VAM. The classical model of prismatic beams based on the VAM 

[45], for initially curved and twisted beams are presented by [46, 47]. It is noted that the classical 

theory is sufficient in many situations, namely when the beam is slender, is not a thin-walled open 

section, and undergoes motions with large wavelength (i.e. low-frequency modes of vibration). 

However, a refined theory is required for high accuracy in other situations. To this regard, Yu et 

al. [48, 49] formulated a FE based cross-sectional analysis for nonhomogeneous and initially 

curved and twisted box, rectangular, T and I beams based on 3D elasticity and using VAM. They 

provided a refined Timoshenko-like model in which the non-classical couplings (extension-shear, 

bending-shear, and shear torsion) are considered. They reported a 6 6 stiffness matrix of the 

cross-section for isotropic and anisotropic rectangular and box cross-sections based on 

Timoshenko-like model of VABS. For the analysis of straight beams with a circular cross-section, 

Ghafari and Rezaeepazhand [50] used VAM to determine the stiffness matrix of the cross-section 

of a straight isotropic tube. They obtained 4 4  stiffness matrix of the cross-section based on lower 

order of the small parameter of the problem that gives the classical beam theory. Rajagopal [51] 

proposed an analytical closed-form expressions to derive the shear correction factor of isotropic 

beams with annular cross-section. They extracted the cross-section stiffness matrix of an isotropic 

tube using VAM. Harursamapth and Hodges [52] used VAM for a thin-walled circular straight 

tube with Circumferentially Uniform Stiffness (CUS) made of anisotropic material. It is noted that 

due to the circular symmetry assumption of the tube there is no bending-torsion or extension-
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torsion couplings for the CUS tube. The cross-sectional analysis in this solution is non-linear so 

that this method can incorporate the Brazier effect for analysis of thin-walled tubes. Jian et al. [53] 

used classical beam model of the VABS for nonlinear sectional analysis of beams with airfoil, and 

circular cross-section and hyperplastic material. The FE is used in the cross-sectional analysis of 

the beams. Fang and Yu  [54] incorporated the damage modeling constitutive  model to the VABS. 

They compared the elastic-to-damage beam behavior with the finite element analysis (FEA). They 

studied beams with tubular and rectangular cross-sections. Popescu and Hodges [55] extracted 

4 × 4 Classical and 6 × 6 Timoshenko stiffness matrices for straight anisotropic tubes using FE 

based VABS. 

1.3.2 Initially curved composite beams and tubes 

Composite curved tubes are structures that are used frequently in the aerospace industry. The stress 

analysis of initially curved thick tubes is more important due to the effect of shear. In addition, for 

a landing gear structure which is a combination of straight and curved composite tubes, the stress 

analysis will be more challenging. This is due to change in the location of the neutral axis of the 

tube at a point where there is a connection in the curved and straight parts. These reasons make 

the stress analysis of the initially curved composite tubes and beams to be more complicated than 

straight tubes.  In the following section, different methods to study curved beams are presented.  

 Zupan and Saje [56] presented the equations of the linearized geometrically exact 3D beam theory 

of curved and twisted beams. They proposed a FE formulation for the linearized theory. Their 

solution was limited to isotropic material. In addition, the deformations are restricted to be small. 

Tabarrok et al. [57] presented a set of governing equations and strain-displacement relations in 

terms of translational and three rotational degrees of freedom for initially curved and twisted 

isotropic beams. They developed a FE model by using displacement modes of rods. The effects of 

cross-sectional warping for rods are neglected. In addition, the stress analysis was not performed. 

Ecsedi and Dluhi [58] utilized 1D mechanical beam model based on the Classical Euler-Bernoulli 

beam theory for the static and dynamic response analysis and to determine the displacements of 

non-homogenous symmetrical cross-section of curved beams and closed rings. Hajianmaleki and 

Qatu [59] applied the First order Shear Deformation Theory (FSDT) with modified ABD matrices 

to perform static and free vibration of curved rectangular orthotropic beams. Generalized 

Differential Quadrature (GDQ) method is used to find the exact solutions of simply supported 
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beams. Yu and Nie [60] derived a formula for the shearing stress as well as radial stress in curved 

isotropic beams. Moreover, in most FE models of the curved beams the effect of shear deformation 

has not been considered and the geometries of the curved beams are restricted to be circular and 

isotropic material. Sheikh [61] and Dasgupta [62] presented a horizontally curved beam element 

of arbitrary shape which has three nodes and three degrees of freedom at each node for determining 

displacements of neutral axis of isotropic curved beams. Sarvestani and Hojjati [63] presented a 

displacement field using Toroidal Elasticity and layerwise method to investigate stresses, strains 

and deformations of thick laminated composite curved tubes subjected to pure bending moment. 

In their solution, the curved tube is under pure bending moment so that this solution is not able to 

calculate the behavior of a curved tube under complex loading (e.g. three-point bending loading).  

The above review shows that there is a shortage of developing a fast, simple-input method to 

analyze composite curved beams and tubes which captures all the effect of strains and deflections 

under complex loading. In composite beams which there may be elastic coupling among all the 

forms of deformation, the 3D beam models based on dimensional reduction method [40] are able 

to take into account all these couplings. In the curved beams the extensional stiffness, the flexural 

stiffness, and the extension-bending coupling plays a significant role in the mechanical behavior 

of the curved beams. In addition, the nonlinear 3D beam models take into account lateral large 

deflection of the beam without ad-hoc assumption. The dimensional reduction method which takes 

advantage of small parameter of the problem (thickness to length or thickness to radius of curvature 

ratio) may lead to perform cross-sectional analysis. In the dimensional reduction method of beam 

structures, a 3D elasticity is split into a two-dimensional (2D) cross-sectional analysis and a 1D 

beam model. The VAM was introduced to carry out the cross-sectional analysis for modeling of 

anisotropic beams by Berdichevky [64]. Borri and Merlini [65] presented both linear and nonlinear 

formulations for initially curved anisotropic beams with large displacement. They obtained 

geometric stiffness of the cross-section. Giavotto et al. [66] presented a formulation of problem of 

calculating cross-sectional stiffness matrix and stresses of anisotropic prismatic beams. The cross-

section is discretized by FE method. Their work was developed for the case of curved and twisted 

beams by Borri et al. [67]. For a 3D elasticity formulation of isotropic and anisotropic beams with 

initial twist and curvature, Cesnik and  Hodges [47] applied VAM to perform cross-sectional 

analysis. The cross-section of the beam is discretized using the FE method. This work turns out a 

FE based cross-sectional analysis tool called Variational Asymptotic Beam Sectional Analysis 
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(VABS). Then, a generalized Timoshenko beam model was developed by  Yu et al. [48] in the 

VABS which leads to a fully populated 6 × 6 stiffness matrix capturing all the elastic couplings 

of initially curved and twisted beams. Yu et al. [49] developed FE based VABS based on Classical 

beam model and Timoshenko beam model which considers the transverse shear effect for initially 

curved and twisted anisotropic beams. To the best of the author’s knowledge, a 1D model for 

analysis of initially curved composite beams has not been done.  

1.3.3 Elliptical composite tubes 

Composite tubes with elliptical cross-section represent some variation form the circular tubes.  

Few studies have been conducted to determine mechanical behavior of elliptical hollow beams. In 

1988, Stemple and Lee [68] developed special FEM for the analysis of hollow beams. Each 

element has three translational and rotational nodes, and 24 warping nodes. Each translational and 

rotational node has three translational DOF and three rotational DOF. Each warping node has 1 

DOF, which is normal to the deformed cross-section. In 1997, Myers and Hyer [69] studied the 

response of elliptical composite cylinders subjected to internal pressure. They used a semi-

analytical approach based on methods of Marguerre, Rayleigh-Ritz and Kantorovich, where the 

radius of curvature and displacement are approximated by expansions in harmonic series in the 

circumferential arc-length coordinate, and the coefficients of the displacement series being 

unknown functions that are solved using the finite-difference method.  In 1999, Myers and Hyer 

extended the method to study the elliptical composite cylinders subjected to compressive loading 

[70].  Since the radial distance of points on the surface varies along the circumferential directions, 

in these papers, they used a semi-analytical approach based on the methods of Marguerre, 

Rayleigh-Ritz, and Kantorovich. In 2001, Lin and Chan [71] developed a method to determine the 

tension and bending stiffness of elliptical composite tubes using laminate theory, and parallel axis 

treatment. Akgun and Kurtaran [72] investigated nonlinear analysis of laminated composite 

elliptical beams using first order shear deformation theory and Von-Karman strain-displacement 

relation to take into account geometric nonlinearity. They used differential quadrature method for 

solving the equations. The relative orientation between the fibers and the different coordinate axes 

are not considered so that only the cross-ply tubes were studied.  

The use of finite element method as in reference [68] can obtain results (longitudinal deflection, 

rotation and transverse deflection). However, for composite tubes with many layers, the 
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computational time for the beam analysis might be an issue, especially for the parametric study. 

Myers and Hyer [69, 70] studied only beams with elliptical cross-section that are subjected to 

internal pressure, and compression load. The work of Lin and Chan [4] only focused on bending 

stiffness and does not address torsional stiffness. Also, they used laminate theory which does not 

take shear into consideration.   

1.4 Experimental bending tests of composite tubes  

The structure of cross-tube for landing gear of helicopters are mainly subjected to four-point 

bending loadings. Where the two ends of the tubes are connected to the skis so that they can slide 

during landing. The landing gears have been manufactured from elastic-plastic metal alloys which 

dissipate energy during plastic bending. The Aluminum 7075-T6 is usually used for the landing 

gear structure of helicopters. The fracture strain of this aluminum alloy is about 11%, [1].   

A large number of studies have been carried out for experimental bending test of composite straight 

tubes. Derisi and Hoa [1] carried out four-point bending test of [90/0] thermoplastic composite 

tube for the design of cross-tube for landing gear of helicopters. Then, they performed three-point 

bending test on thermoplastic (Carbon/PEKK) tubes with lay-up of 
10 10 3 25[(90 / 0 ) / 45 ] , in 

another attempt, they tested a tube with lay-up 
30 45 5 20 5 20[90 / 25 / 90 / 30 / 90 / 45 ]   , and the last 

tube had the lay-up of 
20 25 5 25 5 10[90 / 25 / 90 / 30 / 90 / 45 ]    where they obtained the failure 

sequence, maximum strain to failure, the equivalent bending stiffness using the laminate theory 

and load-strain graph. They used glass fiber reinforcements pads to avoid stress concentration and 

aluminum rings to increase bending stiffness and abrupt failure at the mid-length of the tube. 

Geuchy and Hoa [17] determined flexural stiffness of thick walled composite tubes using pure 

bending test. A test setup for pure bending test of thick tubes were fabricated for this purpose. 

Chen et al. [73] carried out quasi static three-point and crunching test of hat-shaped composite 

tubes in which different stacking sequence are studied. Characteristics of energy absorption to 

weight of the hat-shaped tubes were explored. Saggar [32] experimentally investigated four-point 

bending of composite tubes. They compared the experimental results with the laminated plate and 

shell theory. The effects of tube radius, stacking sequence, and wall thickness on the bending 

stiffness and the strength of the tubes were studied. They utilized techniques of x-ray radiography 

and optical microscopy for the failure process. The lay-up sequences were including the [0/45] 

tubes. Blom et al. [20] carried out bending test of carbon-fiber-reinforced composite cylinders. 
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They tested a composite tube including  0 , 90  and 45  layers and tubes including variable 

stiffness layers where the fiber orientations varied in the circumferential direction. They optimized 

tubes for maximum buckling load carrying capability under bending. The experimental response 

of the composite tubes were compared with the FEA. Szabó et al. [74] provided an experimental 

study and ANSYS finite element analysis for bending of filament-wound composite tube including 

[ 55 / 55 ]  . The tube was subjected to three-point bending loading.  

Three and four-point bending tests have been standardized for testing of the metallic and composite 

beams with rectangular-cross-section. However, there is no standard test for bending test of tubes. 

On the other hand, similar conditions of the bending of cross-tubes of the landing gear of the 

helicopters should be considered. To do so, a test setup for three-point and four-point bending test 

of straight and initially curved (similar to the structure as the cross-tube of helicopter) has been 

developed at CONCOM (Concordia Center for Composites). 

1.5 Objective of the thesis 

Regarding the analytical works, a large number of the studies on the stress analysis of composite 

tubes are limited to the straight tubes and symmetric loading conditions, while the cross-tubes for 

landing gear of helicopters are subjected to four-point bending loading. Moreover, in most of the 

methods, only the isotropic tubular beams are studied. In addition, the utilization of 3D finite 

element analysis for the stress analysis of composite tubes is time consuming. Especially, the 3D 

finite element analysis may not be efficient for the design and parametric study purposes. Each 

time one changes some parameters such as the number of layers, lay-up sequences, length and 

radius of tube cross-section, one has to re-mesh and this is cumbersome. 

The objective of the thesis is the development of a simplified, efficient and simple-input method 

to determine the displacement and strains for straight and curved composite tubular beams. As the 

outcome of this method, the displacement, and strains can be obtained using less computational 

time. To analyze the cross-section of tubular straight and curved beams using VAM, one can use 

the VABS commercial software which needs modeling of cross-section, and it uses finite element 

for generating mesh over the cross-section. This is time consuming and is not necessary for cross 

sections of regular shapes such as circular, rectangular, or elliptical. In the present work, the VAM 

in conjunction with the polynomial based method are used for the first time for composite straight 
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and curved composite tubes of regular shapes to determine cross-sectional stiffness constants, 

strain distribution and transverse displacement, without generating mesh over the cross-section.  

1.6 Thesis outline 

The present work is devoted to development of a simple-input, fast and accurate method for 

analysis of straight and initially curved composite tubes, of regular shaped section, subjected to 

complex loading. In the beginning, different methodologies such as 3D elasticity solution provided 

by Lekhnitskii, non-classical beam theory for composite tubes and 3D FEM are examined and 

evaluated by comparing with experimental tests. Then, the main novelty of this thesis in the 

utilization of meshless method in conjunction with VAM is employed to analyze straight and 

initially curved beams, of regular shaped sections, subjected to complex loading condition. The 

thesis is divided into the following chapters.  

Chapter 1 (Literature review): A literature survey on the different methods for analysis of straight 

and initially curved composite tubes.  

Chapter 2 (Conventional methods for stress analysis of straight composite tubes under pure 

bending moment): The 3D elasticity solution provided by Lekhnitskii, non-classical beam theory 

for tubular beams, 3D regular FEM, strength of materials solution, and experiment have been 

employed to examine the accuracy of each method. The stress analyses of tubes under four-point 

bending loading, and three-point bending loading were done and compared with experimental 

tests. The capability of Lekhnitskii’s elasticity solution for failure of tubes is examined by 3D 

regular FEM and experiment.  

Chapter 3 (Introduction to Variational Asymptotic Method (VAM)): This chapter introduces the 

kinematics of anisotropic beam based on decomposition of rotation tensor. The strain field is 

applied to derive the strain energy of a beam as a 3D body. The powerful method of Variational 

Asymptotic Method is employed to minimize the strain energy into different orders based on the 

small parameters of the problem. This work is done by perturbing the warping field into various 

orders. Then, the cross-sectional discretization is performed using FEM. The first and second 

approximations of the strain energy lead to Classical and Timoshenko-like beam models. The 

Classical beam model results in a 4 × 4 cross-sectional stiffness matrix without the effect of 

transverse shear. The Timoshenko-like beam model results in a 6 × 6 cross-sectional stiffness 

matrix where the effect of transverse shear is considered. In the next step, we introduce the Pascal 



16 
 

polynomials. The Pascal polynomials are transformed into polar coordinates to perform cross-

sectional discretization. The cross-sectional discretization is performed using Pascal polynomial.) 

Then, a 1D FEM solution is developed based on Classical beam model which considers 3D effects 

of orthotropic material. Finally, the recovery is performed to capture the 3D strains based on 

Timoshenko-like beam model.  

Chapter 4 (Pascal polynomial dimensional reduction method for straight tubes):  

In this chapter, the Pascal polynomial method in polar coordinates system in conjunction with 

VAM has been developed for determining cross-sectional stiffness constants of straight tubes. 

Then, a 1D FEM solution has been provided for determining the transverse deflections of tube 

based on Timoshenko beam model. The 1D FEM solution considers all the 3D coupling effects. 

The validation with 3D regular FEM as well as VABS, and parametric study have been done to 

examine the method.  

Chapter 5 (Dimensional reduction method for structural analysis of Elliptical composite tubes): 

The Pascal polynomial dimensional reduction method is developed for elliptical orthotropic 

sections. The cross-sectional analysis of elliptical sections is different from tubes with circular 

round sections where the orientation of layer through the circumference varies. The validation and 

parametric studies have been performed to have insight into the mechanical behavior of elliptical 

composite tubes under complex loadings.  

Chapter 6 (Stress analysis of initially curved composite beams):  

This chapter provides the use of Pascal polynomial dimensional reduction method in conjunction 

with VAM for determining the cross-sectional stiffness constants as well as strains of curved tubes 

under pure bending moment. Then, the provided 1D FEM for the analysis of initially curved beams 

is presented to obtain the deflections under transverse loadings. The provided meshless Pascal 

polynomial dimensional reduction method and VAM presented in chapter 3 is evaluated and 

validated for different cases. First, we compared the obtained cross-sectional stiffness matrices of 

rectangular sections with the literature. Then, we compared the strain of these beams with 3D 

regular FEM. Next, the method for initially curved tubes for different levels of complexity of the 

material and lay-up sequence is examined with regular 3D FEM in terms of strain. The obtained 

cross-sectional stiffness matrices are also compared with VABS for different values of initial 
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curvatures. The provided 1D FEM analysis based on Classical beam model for different loading 

conditions and lay-ups of composite tubes has been compared with regular 3D FEM. The 

parametric study has been done to observe the effect of initial curvature on the cross-sectional 

stiffness constants as well as displacements. Finally, the cross-sectional analysis of initially curved 

tube tested at CONCOM has been carried out using the Pascal polynomial dimensional reduction 

method and VABS. The obtained strains have been compared with the experimental results.  

Chapter 7 (Contributions and conclusions): The main contributions of this thesis and the 

recommendations for future works are explained.  
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2 Chapter 2: Conventional methods for stress analysis of straight composite tubes under 

pure bending moment  

This chapter does not deal with dimensional reduction method, but it serves to introduce the 

complexity of stress analysis of thick composite beams subjected to bending loads, and 

conventional methods for the solution. This helps to give rationale for the development of the 

dimensional reduction method.   

2.1 Theoretical formulations 

In this chapter, the theoretical formulations for the stress analysis of composite straight tubes are 

provided. First, the analytical 3D elasticity method of Lekhnitskii [5], Jolicoeur and Cardou [12] 

for determining the stress distribution and flexural stiffness of straight cylindrical anisotropic body 

under pure bending moment is provided and compared with experimental tests and 3D FEA. Then, 

other available methods such as non-classical beam theory and strength of materials for 

determining the flexural stiffness composite tubes will be employed and compared with 

experiment for a composite tube under four-point bending loading.  

2.1.1 Analytical 3D elasticity method of Lekhnitskii [5], Jolicoeur and Cardou [12] 

A composite tube consisting of different cylindrical layers (N) is shown in Fig. (2.1). The tube has 

elastic moduli E1 and E2 in fiber and transverse directions of each layer, respectively. The in-plane 

shear modulus and Poisson’s ratios are G12, G13, v12, v13 and the out-of-plane shear moduli and 

Poisson’s ratio are G23 and v23. The tube with a winding angle of φ which is the angle between z 

axis and fiber direction is subjected to bending moments Mx and My. In the cylindrical coordinate 

system, r, θ and z are the radial, circumferential and longitudinal directions. The inside radius of 

each layer is denoted as bn. 

 

Fig. (2.1) A composite tube subjected to pure bending [16]. 
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The fundamental equations of an analytical mathematical approach were provided by Lekhnitskii 

[5] for the first time. He derived a set of partial differential equations for anisotropic one cylinder 

under axisymmetric loading. Following this approach, a coaxial hollow circular orthotropic 

cylinder subjected to combined bending, tensile and torsion loads was analyzed analytically by 

Jolicoeur and Cardou [12] in order to obtain stresses, flexural stiffness as well as displacements. 

Two types of no slip and no friction condition between layers were considered. According to 

constitutive equations in this approach, the flexural stiffness for a composite tube can be calculated 

by the following formula  
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Where Cij (i,j=1..6) are material property constants [75] and 
ij

 are reduced elastic constants as 
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By utilizing continuity conditions at interfaces for either no slip or no friction cases, the bending 

stiffness of the composite tube can be obtained. It is noted that in the case of no slip condition 

between the layers (i.e. there is perfect bonding between layers), there is continuity of stresses 

,  r r   and 
rz  and of displacements ,  ru u

 and w. Whereas, in the case of no friction 

condition, there is some discontinuity of u  and w. It means that longitudinal as well as tangential 

slip between layers are allowed. The in-plane and out-of-plane stresses for either no slip or no 

friction cases can be expressed as 
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In which 𝜅𝑥 and 𝜅𝑦are the bending curvatures of the center line.  

It was realized by Zhang et al. [16] that in the method provided by Jolicoeur and Cardou [12] some 

of parameters are singular when the tube includes 0° and 90° layer orientations although the 

stresses and displacement are nonsingular. Therefore, the continuity condition between 0° layers 

or 90°layers and other ordinary layers cannot be performed. In order to overcome this issue, Taylor 

series expansions were applied to obtain parameters for winding angles of the tube including (0°  

or 90°), [16]. In this method, the flexural stiffness may be calculated as follows 
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The unified coefficients can be introduced as 

𝐾∗ = {
𝐾𝑗𝑔𝑗              𝜑 ≠ 90 𝑜𝑟 0

𝐾𝑗𝑔�̃�          𝜑 = 90 𝑜𝑟 0
    j=3, 4 (2.14) 

The calculation of 𝐾∗ is explained below. The corresponding parameters can be introduced as 

1

*
     0   or  90

     j=3, 4
0        0   or  90

j

j

g
g





−


=
=





 (2.15) 

It should be noted that for the 0 or 90  layers, we have * *

3 4
0g g= = by using Eq. (2.14) then the 

*

3K and *

4K for special layers can be derived by using the continuity condition rather than by using 

Eq. (2.15).  
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By applying boundary conditions at inner and outer surfaces of the tube and continuity condition 

at the interface between the layers, the constants
*

1,nK , 
*

2,nK , 
*

3,nK  and *

4,nK  can be determined. 

The in-plane as well as out-of-plane stresses can be as the following 
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Using this method, all the stresses are taken into consideration and the distribution of stresses in 

the thickness of the tube can be achieved.  

2.1.2 Strength of materials equation, [17] 

The simplest method is the strength of materials approach. The flexural stiffness can be given as: 

4 4

1

1

( )
( )

4

N
x n

n n

n

E
EI b b


+

=

= −  (2.21) 

Where En is the modulus along the axial direction for layer n. bn+1 and bn are the outer radius and 

inner radius of layer n, respectively. En can be obtained from the elastic constants of the layer (E1, 

E2, G12) and its fiber orientation θ as [76]: 



23 
 

1

4 2 2 41 1

12 2

cos sin cos sin
x

E
E

E E

G E
   

=

+ +

 
(2.22) 

2.1.3 Thin-walled composite tubes  

In the thin-walled composite beam theory provided by Librescu and Song [35], in a unified way, 

a number of necessary effects in the design of composite thin-walled structures such as transverse 

shear deformation, torsion related nonuniform warping and secondary warping which are assumed 

to vary across the thickness are taken into consideration [77]. Based on the formulations provided 

by Shadmehri et al. [38], the flexural stiffness of composite tubes can be determined as follows 
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R is the average radius of the tube, and we have 
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In which, 
/2 /2 /2

2

/2 /2 /2

,  ,  

h h h

ij ij ij ij ij ij

h h h

A C dz B C zdz D C z dz
− − −

= = =    are laminate stiffness constants, h is the 

thickness of each layer, and 
2

11 33 13
A A A A= − .  

 In this approach, it is assumed that all deformations are small, and the in-plane deformations are 

not allowed in the cross-section plane.  

2.2 Evaluation of methods 

The theoretical solutions such as 3D elasticity of multi-layered orthotropic cylinder of Lekhnitskii, 

will be compared with experimental data of three and four-point bending test of Carbon/PEKK 

composite tubes. First, two composite Carbon/PEKK tubes with 110 and 210 layers under three-

point bending loading are analyzed using the 3D elasticity of Lekhnitskii as well as 3D finite 

element analysis. Next, four-point bending analysis of hybrid composite tube with Carbon/Epoxy 

and Carbon/PEKK is performed. 

2.2.1 Three-point bending analysis of straight composite tubes  

In this section, we provided two tubes with 110 and 210 layers. A composite tube (tube number 1) 

with 110 layers and lay-up 
10 10 3 25

[(90 / 0 ) / 45 ] and a thick composite tube (tube number 2) with 

210 layers and a complex lay-up 
30 45 5 20 5 20

[90 / 25 / 90 / 30 / 90 / 45 ]   were fabricated by Derisi 

et al.  [1]  are studied in which 90° layers are located at inner surface of the tube. The tube number 

1 has 56 mm and 78 mm inner and outer diameters, respectively. The material properties of this 

composite tube (Carbon/PEKK) are tabulated in Table (2.1). 

Table (2.1). Mechanical properties of Carbon/PEKK composite tube. 

E1 (GPa) 140 

E2=E3 (GPa) 10 

G12=G13=G23 (GPa) 5.56 

12 13 =  0.31 

23  0.33 

XT (MPa) 1900 

Xc (MPa) 1500 
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YT (MPa) 80 

Yc (MPa) 250 

S (MPa) 180 

where, the XT and Xc are the strengths in the fiber direction in tension and compression, 

respectively. YT and Yc are the strengths in the transverse to the fiber direction in tension and 

compression, respectively. S is the shear strength of the composite material. For the tube which is 

subjected to three-point bending loading, the bending moment at the mid-length of the tube is 

4
x

PL
M =  (2.26) 

 and the load-strain relation at mid-length and bottom surface can be written as 

( )8

z o

EIP

LD
=  (2.27) 

 

Fig. (2.2). Composite tube subjected to three-point bending loading. 

2.2.1.1 Finite element analysis 

In order to investigate the stress analysis of composite tubes using FEM, ANSYS 19 3D FEM is 

employed. The element 3D Solid 185 with 8 nodes and three degrees of freedom at each node has 

been used for the analysis. The number of elements for a final mesh of each tube in longitudinal, 

circumferential and thickness directions are shown in Table (2.2). The modeling to find the 

longitudinal strain has been done in such a way that the tube subjected to bending moment at one 

side and clamped at other side and the stress/strain distribution are extracted at the mid-length of 

the tube which are far away from the location of applied moment and the support to eliminate the 

stress concentrations of the clamped boundary. The magnitude of the moment is equivalent to the 

values obtained by Eqs. (2.26 and 2.27). In addition, a three-point bending modeling using ANSYS 

19 with the same conditions of the test reported by [1] is done for the failure analysis. Fig. (2.3) 
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shows a schematic drawing of the tube over the boundary support and under loading support. The 

boundary conditions at the supports are considered as they have 0
x y

u u= =  at the nodes which 

have contact with the supports. The length of supports is 20 mm. The loading nose has the length 

of 45 mm and the circumferential angle of 45 of the tube.  

Table (2.2). Total number of elements (Longitudinal*Circumferential*thickness) 

in FEM of each tube. 

10 10 3 25
[(90 / 0 ) / 45 ]  223 61 110   

30 45 5 20 5 20
[90 / 25 / 90 / 30 / 90 / 45 ]    162 62 210   

 

 

a) 

 

b) 

Fig. (2.3). a) A schematic of a tube under three-point bending loading, b) loading and 

boundary conditions of the tube. 
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2.2.1.2 Flexural stiffness, failure and stress analysis of tube 1, (
10 10 3 25

[(90 / 0 ) / 45 ] ) 

The tube number 1 with lay-up sequence of 
10 10 3 25

[(90 / 0 ) / 45 ] and inner and outer diameters of 

56 mm and 78 mm with the thickness ratio of (0.141) and a span of 890 mm is subjected to three-

point bending loading. The force-longitudinal strain at the mid-span and bottom of tube is shown 

in the Fig. (2.4). The slope of the diagram leads to the flexural stiffness of the tube. It can be seen 

that the Lekhnitskii solution and the FEM predict the flexural stiffness of the tube 22.1% and 

20.1% more than the experiment does  [1], respectively. 

 

Fig. (2.4) Change of longitudinal strain (mid-length and bottom surface) with applied force for 

three-point bending of tube 1, 
10 10 3 25

[(90 / 0 ) / 45 ] . 

According to the Tsai-Wu failure criterion, the first ply failure is occurred at the moment of 

Mx=17.3 KN.m which occurs at the outermost layer of 90 layers. The inter-laminar radial stress 

distribution at the first ply-failure moment is demonstrated in Fig. (2.5 a). It can be seen that at the 

90  and 0  layers the inter-laminar radial stress has stepwise change and it has linear variation at 

the 45  layers. The distribution of circumferential stress through the thickness is shown in the 

Fig. (2.5 b). The longitudinal stress (Fig. (2.5 a)) is also has fluctuations as the circumferential 

Lekhnitskii 
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stress. The tube does not carry the out-of-plane shear stress 
z  at the 90  and 0  layers, however, 

it has periodical change at the 45  layers as shown in Fig. (2.5 b).  

The carried moment of the tube 1 according to the Tsai-Wu, maximum stress criterion and 

experiment is reported in the Table (2.3). It can be observed there is a large difference between the 

experimental results and the theoretical ones. The experimental first ply failure value was reported 

by Derisi [1]. Fig. (2.7) shows the final failure of tube 1 [1].  

 

a) 

 

b) 

Fig. (2.5)  The distribution of a) inter-laminar radial stress b) circumferential stress, through 

the thickness of the tube 1 (
10 10 3 25

[(90 / 0 ) / 45 ] ) at 90 = , at first ply failure based on Tsai-

Wu criterion (Mx=17.3 KN.m). 
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a) 

 

b) 

Fig. (2.6) The distribution of a) the longitudinal stress b) the out-of-plane shear stress through the 

thickness of the tube 1 (
10 10 3 25

[(90 / 0 ) / 45 ] ) at 90 = , at first ply failure based on Tsai-Wu 

criterion (Mx=17.3 KN.m). 

 

Table (2.3). Bending moment (in KN.m) of the tube 1 at first ply failure. 

Method Maximum stress  Tsai-Wu  

Lekhnitskii   20 17.3 

FEM 20 17.3 

Experiment, [1] 10.0 

 

Fig. (2.7). Final failure of tube 1 due to stress concentration at the loading nose, [1]. 
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2.2.1.3 Flexural stiffness, stress analysis and failure of tube 2, 

30 45 5 20 5 20
[90 / 25 / 90 / 30 / 90 / 45 ]    

The stress analysis of the tube 2 with lay-up 
30 45 5 20 5 20

[90 / 25 / 90 / 30 / 90 / 45 ]   by considering 

Lekhnitskii method (no slip) between layers and the FE has been carried out in order to find the 

distribution of inter-laminar radial, circumferential and shear stresses. The cross-section of the 

tube is shown in Fig. (2.8). The tube is subjected to pure bending moment Mx=4450 N.m. The 

provided pure bending moments at the ends of the tube are equivalent to three-point loading loads 

(Eq. (2.26)). Moreover, the stress analysis of this tube has been done by FEM. The inter-laminar 

radial stress distribution through the thickness of the tube at various circumferential positions

30 ,  60 = and 90 is demonstrated in Fig. (2.9). Although an excellent agreement between the 

Lekhnitskii and FEM results can be observed, the FEM consumes huge amount of time to find the 

stress distribution in the tube while the Lekhnitskii’s (No slip) takes much less time for this 

purpose. Therefore, applying FEM can be cumbersome for parametric study. It should be pointed 

out that 
r  is a function of sine and cosine of angle θ which means that at 90 = , it has maximum 

compressive negative value, and it decreases gradually by decreasing the circumferential angle. 

The radial stress has an effect on the delamination. In addition, it can be realized that at the inside 

layers of the tube (90° layers, r=31.2 mm), the radial stress has the maximum magnitude, and it 

diminishes gradually to zero at the outside layers. The distribution of inter-laminar radial stresses 

at different angles 𝜃 = 210°, 240° and 270° are shown in Fig. (2.10). As the angle θ increases, the 

magnitude of radial stress increases, and it has the maximum distribution at 270 = which is a 

positive value, and it indicates that delamination can be occurred between layers. Moreover, the 

inter-laminar radial stress has discontinuity at the interface of the layers when the orientation of 

them varies.   
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Fig. (2.8) Cross-section of the tube 2 with 
30 45 5 20 5 20

[90 / 25 / 90 / 30 / 90 / 45 ]   . 

 

Fig. (2.9). The inter-laminar radial stress through the thickness of the tube 2 at various 

circumferential positions 30 0,  6 = and 90 ,  (Mx=4450 N.m.). 
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Fig. (2.10). The inter-laminar radial stresses through the thickness of the tube 2                            

at various circumferential positions 210 ,  240 =  and 270 , (Mx=4450 N.m.). 

The distribution of circumferential stress at 90 = is depicted in Fig.  (2.11). This type of stress 

has substantial effect on the buckling of the tube. A large variation in circumferential stress at 90° 

layers can be observed. Also, 90° layers can resist circumferential stress. However, low angle 

layers including 25  have less contribution in circumferential stress. The distribution of 

longitudinal stress through the thickness of the tube is shown in Fig. (2.12). It is seen that although 

90  layers have less contribution in longitudinal stress the layers with low winding angle such as 

25 can have the most longitudinal stress resistance. In other words, low angle layers can provide 

extensional stiffness and flexural property of the tube. Due to low interlaminar strength of 

laminated cylinders, the interlaminar stress can cause failure. The in-plane shear stress (𝜏𝑟𝜃) 

distribution at 0 = is shown in Fig. (2.13) where the same behavior as inter-laminar radial stress 

can be observed. In addition, it is noted that at 90 =  the in-plane shear stress is close to zero. 

In Figs. (2.14) and (2.15) the distribution of out-of-plane shear stress (𝜏𝜃𝑧) obtained by Lekhnitskii 

(No slip) and FE are depicted, respectively. A periodic change of this stress through the thickness 

of the tube can be observed due to change of the sign of layer angle. Moreover, it is seen that 90  
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layers do not have any contribution in out-of-plane shear stress. However, as the layer winding 

angles decrease, they can resist more this type of stress.  

 

Fig. (2.11). The circumferential stress through the thickness of the tube 2                                      

at circumferential position 90 = , (Mx=4450 N.m.). 

 

 

Fig. (2.12). The longitudinal stress distribution through the thickness of the tube 2                                           

at circumferential position 90 = , (Mx=4450 N.m.). 
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Fig. (2.13). The in-plane shear stress 𝜏𝑟𝜃through the thickness of the tube 2                                           

at 0 = , (Mx=4450 N.m.). 

 

 

Fig. (2.14). The out-of-plane shear stress τθzthrough the thickness of the tube 2                                           

at 90 = , (Mx=4450 N.m.). 
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Fig. (2.15). The out-of-plane shear stress 𝜏𝜃𝑧through the thickness of the tube 2                                           

at 90 = , (Mx=4450 N.m.). 

 

In the following section, we study the failure of composite tube 2 and compare the theoretical 

results with the experimental ones.  

The first ply failure analysis of tube 2 (
30 45 5 20 5 20

[90 / 25 / 90 / 30 / 90 / 45 ]   ) under pure 

bending load is investigated by using the maximum stress failure criterion, Tsai-Wu failure 

criterion with Lekhnitskii (No slip) and FE. The maximum bending moment until the first ply 

failure is shown in Table (2.4). It is seen that first ply failure occurs at outermost 905
°   layers at 

90 = with the transverse matrix cracking in the moment of 47 KN.m.  

According to Tsai-Wu criterion, the maximum bending moment carried by the tube until its first 

ply failure obtained by Lekhnitskii (No slip) method and FE is 35 KN.m. The similar bending 

moment is also reported through experimental study which is 36.7 KN.m. Fig. (2.16) shows the 

failure test of the tube. According to Tsai-Wu the first ply failure occurs at the outermost 905
°    

plies. In addition, the three-point bending analysis using FEM (ANSYS) shows that the first ply 

failure occurs at the load of 170 KN (37.8 KN.m). In other words, one can apply 3D elasticity 

analytical Lekhnitskii’s (No slip) method without noticeable error for the first ply failure analysis 

of three-point bending of composite tube where the stress concentration does not have substantial 

effect on the failure. Moreover, a comparison between the failure moments obtained by two failure 

criteria shows that the Tsai-Wu has better prediction than maximum stress.  
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Table (2.4). Maximum bending moment (in KN.m) of the tube 2,  

30 45 5 20 5 20
[90 / 25 / 90 / 30 / 90 / 45 ]   until its first ply failure. 

Method Maximum stress  Tsai-Wu  

 Lekhnitskii 47 35 

FEM (pure bending) 47 35 

FEM (3-point bending) 52 37.8 

Experiment  36.7 

 

 

Fig. (2.16). Failure of tube 2, 
30 45 5 20 5 20

[90 / 25 / 90 / 30 / 90 / 45 ]   [1]. 

2.2.2 Stress analysis of composite tube under four-point bending loading using 3D 

elasticity of Lekhnitskii and FE 

The stress analysis of four-point bending of straight composite tube (tube number 3) with lay-up 

7 4 4 4 4 4 4[(5  satin) / 90 / ( 25) / 90 / ( 35) / 90 / ( 45) ]Harness     is performed using Lekhnitskii 

solution and compared with experiment in this section. We also provided the solution of strength 

of material and Thin-walled composite tubes solution [38].   

2.2.2.1 Experimental test of tube 7 4 4 4 4 4 4
[(5  satin) / 90 / ( 25) / 90 / ( 35) / 90 / ( 45) ]Harness      

The experimental tests in this thesis have been conducted by a teamwork at Concordia Center for 

Composites (CONCOM), under the umbrella of the NSERC Industrial Chair on Automated 

Composites Manufacturing held by Professor Suong V. Hoa, in collaboration with Bell Flight Ltd. 
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The general configuration of the tubes has been guided by people at Bell Flight (Pierre Beulieu 

and Simon Bernier). The design and fabrication of the test set up was done by Dr. Ashraf Ahmed 

Fathy. Dr. Daniel Rosca developed the manufacturing procedure and fabricated the tubes using the 

Automated Fiber Placement machine at Concordia. Dr. Daniel Rosca and Ashraf Fathy carried out 

the test of the tubes. The following is reproduced from the joint publication “ Moshir SK, Hoa SV, 

Shadmehri F, Rosca D, Ahmed A. Mechanical behavior of thick composite tubes under four-point 

bending. Composite structures. 2020; 242:112097. 

In order to obtain experimental values to validate the results obtained from the analytical and 

numerical methods, a straight composite tube was made and tested. The tube was made using an 

automated fiber placement (AFP) machine available at Concordia Center for Composites. In order 

to process thermoplastic composites, a hot gas torch was used to melt the thermoplastic resin so 

that consolidation can be done in-situ. The mandrel needs to be sufficiently stiff to support the 

compaction load exerted by the placement head of the machine. Another requirement is that the 

mandrel should be removable to assure the lightness of the final structure. In order to satisfy these 

requirements, a layer of woven fabric was used on the inner side of the tube. As such the thickness 

of the tube has the composition as shown in Fig. (2.17). 

 

 

Fig. (2.17). Composition of the thickness of the tube. 
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The composite tube lay-up has 7 layers of Carbon/Epoxy five-harness satin woven fabric with the 

thickness of each layer 0.285 mm, and 36 layers made of Carbon/PEEK thermoplastic (average 

layer thickness of 0.115 mm), with the following lay sequence: 

7 4 4 4 4 4 4[(5  satin) / 90 / ( 25) / 90 / ( 35) / 90 / ( 45) ]Harness     

The total thickness of the tube is 6.14 mm. This lay-up sequence follows the strain-controlled 

design guidelines developed in [1] where the outer layers should possess larger strain to failure as 

compared to the inner layers, and the [90n] layers are used to buffer the effect of transmission of 

failure from layers with smaller deformation capability to layers of larger deformation capability. 

The tube has the length L = 1352.4 mm, inner and outer diameters Di = 72.71 mm and Do = 85 

mm, respectively. The material properties of woven fabrics and unidirectional Carbon/PEEK are 

shown in Tables (2.5) and (2.6), respectively. 

Table (2.5) Mechanical properties of 5-harness satin, [78] 

E1 (GPa) 54 

E2 (GPa) 54 

E3 (GPa) 9.964 

G12 (GPa) 4 

G13 (GPa) 2.5 

G23 (GPa) 2.5 

12  0.05 

13
 0.254 

23  0.289 

 

Table (2.6) Mechanical properties of unidirectional Carbon/PEEK composite [1].  

E1 (GPa) 138 

E2=E3 (GPa) 10.2 

G12=G13=G23 (GPa) 5.7 

12 13 =  0.31 

23  0.33 
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The tube is subjected to four-point bending loading arrangement as shown in the Fig. (2.18). The 

loading noses and the supports have concave shape which cover 180° of the circumference. The 

supports and the loading noses are made of steel. The supports can rotate around x axis. The 3D 

schematic and the front view of the test setup are shown in Fig. (2.19a and b). The setup includes 

the supports with radius the same as the outer radius of the tube. The supports also can rotate. In 

addition, the loading noses have the cylindrical shape which is the same as the outer radius of the 

tube. The loading noses are free to rotate. Six rosette strain gauges are installed at the mid-length, 

on the outer surface of the tube and at circumference positions 0 ,45 ,90 ,135 ,180 ,270 =

(coordinate axes shown in Fig. (2.18). Table (2.7) shows the positions of the gauges which are 

located at the outer surface of the tube, at section A-A. Two T type strain gauges are installed at 

sections B-B and C-C of the tube, (Table (2.8)).  

Table (2.7). Locations of strain gauges on the surface of the tube, Section A-A. 

Rosette No. 
Channel 

No. 

z 

(mm) 
  (degree) 

Strain gauge  

angle with z 

1 

1 0 88 90 

2 0 90 45 

3 0 92 0 

2 

4 -1 132 90 

5 -1 134 45 

6 -1 136 0 

3 

7 -0.5 179 90 

8 -0.5 180 45 

9 -0.5 182 0 

4 

10 0 272 90 

11 0 270 45 

12 0 268 0 

5 

13 -1 359 90 

14 -1 360 45 

15 -1 2 0 

6 

16 -0.5 44 90 

17 -0.5 46 45 

18 -0.5 48 0 

 

Table (2.8). Locations of strain gauges on the surface of the tube, Sections B-B, and C-C. 

T type No. Channel No. / Type z (mm) 
r 

(mm) 
 (degree) 

T1 
20 / hoop 431.8 42.5 90 

21 / axial 431.8 42.5 90 
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T2 
22 / hoop -431.8 42.5 90 

23 / axial -431.8 42.5 90 

 

 

Fig. (2.18). Schematic of composite tube under four-point bending loadings. 

 

a)  

 

 

b)  

Fig. (2.19) a) 3D schematic of the test setup of a tube under four point bending loading, b) 

Front view of the test setup of tube under four-point bending loading. 
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Fig. (2.20) Composite tube in a tube bending test setup. 

2.2.2.2 Flexural stiffness of the tube 7 4 4 4 4 4 4
[(5  satin) / 90 / ( 25) / 90 / ( 35) / 90 / ( 45) ]Harness     

Value of the flexural stiffness can be determined using the equivalent product <EI>, where E 

stands for modulus of elasticity and I for cross section inertia. 

• Strength of materials approach: Using Eq. (2.21): 
3 2

33 10  N.mEI =   

• Thin-walled composite tubes: Using Eq. (2.23): 
3 2

62 10  N.mEI =   

• 3D elasticity (Lekhnitskii): Using Eq. (2.13): (no-slip condition) 
3 2

57.5 10  N.mEI =   

• 3D elasticity (Lekhnitskii): Using Eq. (2.13): (no-friction condition): 

3 2
32.7 10  N.mEI =   

• Experiment: 
 8

)(

2

oo DdceaFMDMR
EI

−−+
===   where 

Do is the outer diameter of the tube 

a is the length between support point 

d is width of the load pad 

e is width of the support pad  

c is the length between loading point 

F is the machine load 

ɛ is the axial strain at mid length of the tube, either at the bottom or top 

F/ɛ is obtained from the slope of the load versus axial strain either at the bottom or top of the tube. 

From the above: 
3 2

58.1 10  N.m  EI =   
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2.2.2.3 Strains of the tube 7 4 4 4 4 4 4
[(5  satin) / 90 / ( 25) / 90 / ( 35) / 90 / ( 45) ]Harness     

Fig. (2.21) shows the experimental strains at θ = 0o (rosette # 5) and θ = 180o (rosette # 3). The 

calculated values show that these strains are 0. Reasons for this are presented in the Discussion 

section below. 

 

Fig. (2.21). Longitudinal and circumferential strains versus load F at 𝜃 = 0° and 𝜃 = 180°  

(F=2P). (Strains from rosettes 3 and 5) 

Fig. (2.22) shows the strain variations at 𝜃 = 45°. (Strain rosette # 6), and Fig. (2.23) shows the 

strains at θ = 135o (rosette # 2). These two positions are nominally symmetrical with respect to the 

vertical axis of the cross section. It can be observed from these two figures that the calculated 

values are the same. However, the longitudinal strains in Fig. (2.22) are larger than the calculated 

strains while those in Fig. (2.23) are smaller than the calculated strains. Reasons for this are given 

in the Discussion section below. 
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Fig. (2.22). Longitudinal and circumferential strains versus machine loading at 𝜃 = 45°, (rosette 

# 6) (F=2P). 

 

Fig. (2.23). Longitudinal and circumferential strains versus load F at 𝜃 = 135°, (F=2P). 
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Fig. (2.24) shows the variation of the strains at θ = 90o (strain rosette # 1, top of the section), and 

Fig. (2.25) shows the strains at θ = 270o (rosette # 4, bottom of the section). Results obtained from 

3D elasticity solution (no-slip condition), FEM, and experiments are shown. It can be seen that the 

results agree very well. 

 

 

Fig. (2.24). Longitudinal and circumferential strains versus load F at 𝜃 = 90°, (F=2P). 

 

Fig. (2.25). Longitudinal and circumferential strains versus machine loading at 𝜃 = 270°,  

(rosette # 4) (F=2P). 

0

1

2

3

4

5

6

7

8

9

10

-1200 -1000 -800 -600 -400 -200 0 200 400

F
 (

K
N

)

ε (µε)

Experiment Longitudinal Strain

Experiment (Circumferential Strain)

3D Elasticity (Longitudinal Strain)

FEM (Longitudinal Strain)

3D Elasticity (Circumferential

Strain)

0

1

2

3

4

5

6

7

8

9

10

-400 -200 0 200 400 600 800 1000 1200

F
 (

K
N

)

ε (µε)

Experiment (Longitudinal Strain)

Experiment (Circumferential

Strain)

3D Elasticity (Longitudinal

Strain)

FEM (Longitudinal Strain)

3D Elasticity (Circumferential

Strain)

FEM (Circumferential Strain)



45 
 

Fig. (2.26) shows the strains variation at 𝜃 = 90°, section B-B, (T#1) 

 

Fig. (2.26). Longitudinal and circumferential strains versus machine loading at 𝜃 = 90°, (Section 

B-B, rosette # T1), (F=2P). 

2.2.3 Discussion 

Flexural stiffness: 

• There is general agreement between values obtained using thin-walled theory (Eq. (2.23)), 

3D elasticity (Eq. (2.1) using no-slip condition), and experimental measurement. Values of 

<EI> obtained from these methods vary from 57,500 N.m2 to 62,000 N.m2, giving an 

average of 59,200 N.m2 with deviation of 4.7%. 

• The strength of materials solution (Eq. (2.21)) seems to agree with the 3D elasticity 

solution (Eq. ((2.1)) using no friction condition). The EI values are 33,000 N.m2 and 32,700 

N.m2 which are very close. However, these values are much smaller than the experimental 

value. No friction condition means that the layers are not bonded together, which is far 

from reality.  

Strains 

• Fig. (2.21) shows the strains at θ = 0o and 180o, which are the horizontal positions of the 

section. It is expected that the strains be close to 0. Rosette # 3 show small values because 

it is located at θ = 182o which is slightly away from 180o. 

•  Fig. (2.22) and (2.23) show the strains at θ = 45o (rosette # 6) and 135o (rosette # 2). These 
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= 45o are larger than the calculated strains while those at θ = 135o are smaller than the 

calculated strains. Examination of Table (2.7) shows that the axial gage in rosette # 6 is 

located at θ = 48o while that of rosette # 2 is located at θ = 136o. The distance from the 

neutral axis of the axial strain in rosette # 6 is more than that of the axial strain in rosette # 

2. This may explain the larger amplitude in the gage at the nominal θ = 45o.  

• Fig. (2.24) and (2.25) show the strains at θ = 90o (rosette # 1, top of section) and at θ = 

270o (rosette # 4, bottom of the section). There is a good agreement between the 3D 

elasticity solution, FEM solution and experimental measurement. 

• The above analysis shows that the analytical methods (3D analytical with no-slip condition, 

and FEM) can predict the strains well. The small differences can be explained due to the 

slight deviation of the position of the gages as compared to the theoretical positions. 

Between 3D analytical and FEM, 3D analytical is simpler and less time consuming. 

• It is of interest to compare the experimental longitudinal strains from Figs. (2.24) and 

(2.26). Fig. (2.24) shows the strain from rosette # 1 which is at the top and mid-length of 

the tube. This is the region of pure bending. Fig. (2.26) shows the strain from T1 gage at 

section B-B, which is at the top of the cylinder but located within the region where there is 

a bending moment and a shear load. From Table (2.8) and Fig. (2.18), it can be shown that 

the bending moment at section B-B is MB-B = (168.2 mm) P, and the pure bending moment 

at section A-A is MA-A = (255.6 mm)P. At a load F = 10 kN, Fig. (2.24) shows a longitudinal 

experimental strain of about -940 µɛ while Fig. (2.26) shows a longitudinal experimental 

strain of about -565 µɛ. The ratio between the bending moments is (255.6/168.2 = 1.52) 

while the ratio between the two strains is (940/565 = 1.66). If one were to use the section 

A-A under pure bending moment as the reference, the strain due to bending at section B-B 

would be (-940)(168.2)/(255.6) = -618.6 µɛ. The difference between -618.6 µɛ and -565µɛ 

(53.6 µɛ) is due to the presence of the shear load at section B-B. The ratio (53.6/618.6 = 

8.7%) represents the relative importance of shear with respect to bending moment. 

• It is of interest to see the variation of the circumferential strain along the circumferential 

direction. This can be done by plotting the calculated circumferential strains at different θ 

values. Fig. (2.27) shows the variation. It can be seen that at the top of the section A-A, the 

longitudinal strain is compressive while the circumferential strain is tensile. The opposite 

occurs at the bottom of the section.  
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Fig. (2.27). Variation of the circumferetial strain versus circumference at the outer surface of the 

tube, mid-length. (F=10 KN). 

2.3 Conclusion 

In this chapter, the 3D elasticity solution of Lekhnitskii for pure bending of straight composite 

cylindrical tubes is employed to predict flexural stiffness as well as failure of composite tubes. 

The predicted failure load is compared with experimental test. 

• The stress and failure analyses of composite tubes with different lay-up are investigated to find 

the correlation between the analytical method proposed by [16], FEM and experimental results.  

• The failure load based on the Tsai-Wu obtained by the analytical method does not agree well 

with the experiment for tube with 
10 10 3 25

[(90 / 0 ) / 45 ]  which stress concentration effect (due 

to loading nose) is dominant in the failure of this tube. However, there is a good agreement 

between the experimental results and the analytical method for tube 

30 45 5 20 5 20
[90 / 25 / 90 / 30 / 90 / 45 ]   . It means that the effect of stress concentration does not 

have substantial effect on the failure of the tube 
30 45 5 20 5 20
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• It was shown that for flexural stiffness, the thin-walled theory, 3D elasticity (with no slip 

condition), FEM show results that agree well with experimental values, while the strength of 

materials approach, and 3D elasticity (with no friction condition) agree with each other but 

both give flexural stiffness values much lower than the experimental values.  

• For strains, it is also shown that the analytical method (3D elasticity solution with no slip 

condition), and FEM can obtain results that agree with experimental measurement. Among the 

calculated method, 3D elasticity solution is less time consuming, and simpler. 

• The strains at sections where there is a combination of bending moment, and a shear load 

shows that there is significant influence of the shear load on the strains.  

In this chapter, the stress analysis of straight composite tubes using conventional methods 

including 3D FEM, 3D elasticity of Lekhnitskii, non-classical beam theory has been presented. 

The 3D FEM is able to take into account the effect of boundary conditions and loading effect as 

stress concentration. However, the computational time is considerable. The 3D elasticity solution 

of Lekhnitskii is a fast method while it treats a composite tube as a multi-layered cylinder under 

pure bending moment in which the effect of boundary conditions is not taken into account. As 

such the longitudinal and transverse deflections of the tube subjected to transverse loadings cannot 

be calculated. The VABS and the meshless dimensional reduction methods which are based on 

VAM will be presented in the next chapter treat a composite tube as a beam. Therefore, one can 

model a straight and curved tubes with the desired boundary conditions. The methods consider a 

composite beam as a 3D body so that all the effects of shear and normal strains will be considered 

without any ad-hoc assumption.  
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3 Chapter 3: Introduction to Variational Asymptotic Method (VAM)  

The kinematics of the initially curved beam deformation formulations based on the concept of the 

rotational decomposition will be demonstrated, [40]. The motion and deformation of the set of 

particles that make up the cross-sectional plane of the undeformed beam can be considered as rigid 

body translation and rotation of the undeformed beam plus a relatively small elastic deformation. 

The concept of rotational decomposition is that the large rotation of the beam cross-section is 

separated into two parts as local rotation and global rotation. The rigid translation and rotation of 

the cross-sectional frame are grouped with the beam global deformation, whereas the deformation 

of the cross-section is classified as local deformation or, simply, warping. Then, the 3D strains and 

the energy formulation for an orthotropic beam and the Variational Asymptotic Method (VAM) 

for the cross-sectional analysis of the beams will be presented [49]. Based on the VAM, different 

orders of the strain energy which are obtained by perturbations of warping field through orders of 

small parameters of the problem are obtained. The VAM is used to minimize the strain energy to 

obtain unknown of the problem which is the warping. This method splits the 3D strain energy into 

a 2D cross-sectional analysis and a 1D through the length. The VABS uses 2D FEM for cross-

sectional discretization. Next, the analytical meshless dimensional reduction method for the cross-

sectional analysis of anisotropic tubular curved beams will be introduced, [79]. The Pascal 

polynomials which are defined in Cartesian coordinates system are transformed to polar 

coordinates system to carry out cross-sectional discretization. The complete procedure of 

kinematics of the beam theory and VABS is reported by Hodges [40].  

3.1 Dimensional reduction method using variational asymptotic method 

Theoretical derivations begin with 3D formulations of the kinematic of the beam along with strain 

energy that governs the behavior of structure in terms of intrinsic 1D variables and 3D warping 

functions. The VAM is then applied to split the 3D problem into a 1D beam analysis and 2D cross-

sectional analysis. The 2D analysis provides constitutive models such as classical beam model and 

Timoshenko model, for the 1D global analysis. Recovery analysis for 3D displacement, strain field 

and stress are found expressions that are consistent with the procedure to attain the strain energy. 

The flow chart of VABS is shown in Fig. (3.1). The gray box in the flow chart indicates that the 

FE shape functions will be used for cross-sectional discretization in the VABS.  
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Fig. (3.1) Flow chart summarizing the VABS method. 

The VAM consists of many steps. Details of the steps are presented below. 

3.1.1 Step 1: Identification of small parameters and formulation for 3-D strains 

In step 1, three aspects are considered. One is the identification of the small parameters essential 

for the application of VAM. The small parameters are the maximum of the axial strain axm  , the 

thickness-to-radius ratio of the tube ( /
o

h r ) and the radius-to-length ratio of the tube( /
o

r L ), or 

thickness-to-radius of curvature of the tubular beam (h/R) [52]. It is assumed that the / 1
o

h r  

and / 1
o

r L or / 1
o

r R . So that one can conclude that / 1h L . The other aspect is the 

formulation to obtain relations between the 3D strains in terms of warping functions and the 1D 

strains, using vector mechanics. 

3.1.2 Step 2: Kinematical relations 

Consider an anisotropic beam with a circular hollow cross-section. The orthonormal coordinates 

x1, x2 and x3 with triad b1, b2 and b3 are considered for the undeformed beam cross-section, (Fig. 

(3.2)). The location of the reference line of the undeformed cross-section is denoted by the position 

vector r. The location of reference line of the deformed cross-section is denoted by R. The triad 

T1, T2 and T3 are attached to the cross-section in the deformed configuration. It is noted that T1 is 

tangent to the reference line of the deformed configuration. This means that the transverse shear is 

a part of warping field.  A triad B1, B2 and B3 is also defined in the deformed beam configuration 

where B1 is not necessarily tangent to the beam reference line. A polar coordinate system is defined 

where ρ is the radius of each point on the cross-section and θ is the circumferential angle. The 



51 
 

position vector of any particle in the undeformed beam r̂  and the deformed beam R̂  are as 

follows.  

1
ˆ ( )x x b = +r r , 2,  3 =  (3.1) 

( ) ( ) ( ) ( ) ( )1 2 3 1 1 1 2 3 1
ˆ , , , ,i ix x x x x T x w x x x T x = + +R R  (3.2) 

 

Fig. (3.2). Deformed and undeformed configurations of a tubular curved beam cross-section. 

where, wi (i=1, 2, 3) representing the components of unknown warping functions which should be 

determined. w1, w2 and w3 is the warping displacement of each point of the cross-section along x1, 

x2 and x3, respectively. The warping functions are the difference between the position of deformed 

body and those which are described by deformation of the reference curve x1 in terms of 

2 2 3 3x T x T+ +R  where = +R r u . Where u describes the beam displacement. The 1D moment-

strain measures i  are defined based on the rate of change along x1 of the triad Ti. 1  is the twist, 

2 and 3 are the curvatures of the reference line about x2, x3, respectively.  we have,  

( )     , =1, 2, 3i j j j iT k T T i j = +   (3.3) 

where, k1 is the initial twist, k2 and k3 are initial curvatures of the reference line about x2 and x3, 

respectively. ki are defined in bi basis. The following 1D generalized strains are defined. 

11 1 1(1 ) 2     2,  3T T    = + + =R  (3.4) 
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i iT T= K  (3.5) 

In which the prime denotes derivative to x1, 11  is the longitudinal strain of the reference line, 1  

are the transverse shears. K is the final curvature of the reference line of the beam and 

j i iK k = −  The contravariant base vectors for the undeformed configuration is defined as 

follows.  

1 2 3

ˆ
( , , )i

i

g x x x
x


=


r
 (3.6) 

For a beam with initial curvature, we have: 

1
2 3 3 2 3 3 2

1 1 1 1

2 2 3

2 3

ˆ ( )
( ) ( ) (1 )

ˆ ˆ
,  

x
x x x k x k

x x x x

x x

   
= = + + = − +
   

 
= = = =
 

1 2 1

3

r r
g b b b

r r
g b g b

 (3.7) 

The covariant base vectors of the deformed configuration of a beam with initial curvatures are 

expressed as 

1 2 3

1
( , , )

2
ijkx x x e


= i

j k
g g g ; 

2, ,


= = =1 31
2 3

b
g g b g b  (3.8) 

Where   is the determinant of the metric tensor for the undeformed geometry ( . )ij i j  =  and 

ijke is the permutation symbol. we have:  

1 2 3 1. 1 2 3 3 2.( ) 1g g g g b x k x k =  = = − +  (3.9) 

The covariant components of the deformed state of a beam with initial curvature can be obtained 

as 

2 3 3 1 1 1 2 2 3 3

1

11 2 3 3 3 2 2 1 2 3 3 3 2 2

3 1 1 3 3 2 3 1 2

2 1 1 1 2 2 2 1 3 3

ˆ

((1 ) ( ) ( ) ( ) ( ))

( ( ) )

( ( ) ( ) )

R
x x w w w w w w

x

x k x k w w k w k

x w k w w

x k w k w w

    

  

  


        = = + + + + + + + +



= + − + + + + − + + +

+ − + + + −

+ + − + + +

1 2 1 2 2 3 3

1

G R T T T T T T T T

T

T

T

 (3.10) 



53 
 

3 31 2 1 2
2 2 3 3 2 3

2 2 2 2 3 3 3 3

ˆ ˆ
;  

w ww w w w

x x x x x x x x

     
= = + + + = = + + +
       

2 1 3 1

R R
G T T T T G T T T T  

The deformation gradient tensor can be formulated as  

. .k

ij i k jF T b= G g  (3.11) 

The Jauman-Cauchy strain components for small local rotation are given by 

( )
1

2
ij ij ji ijF F  = + −  (3.12) 

where, ij is the Kronecker delta. The strain components for a beam with initial curvature is written 

as follows.  

11 11 11 11

11 2 3 3 3 2 2 1 2 3 3 3 2 2

1 1 1
( ) ( )

2 2

1
( ( ) ( ) ( ) ( ))

F F

x k x k w w k w k




    


 = + − = + + −

= − + + + + − + + +
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(3.13) 

One can express   as  
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[ ] [ ] [ ] [ ]h R l
=  +  +  + w w w  (3.14) 

11 12 13 22 23 33[  2  2   2  ]T=        (3.15) 

where,  is the 1D strain of the reference line of the beam as 

 11 1 2 3

T
   =  

(3.16) 

The warping displacements of the cross-section of the beam are defined as the following vector. 

1 2 3[   ]Tw w w=w  (3.17) 

The operators in Eq. (3.14)  can be defined as 
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3.1.3 Strain energy 

The strain energy of the curved beam with the cross-section area of   and the length L can be 

described as follows.  

2 3 1

2 3 1

2 ([ ] [ ] [ ] [ ] ) [ ]([ ]

[ ] [ ] [ ] )

T T

h R l h

L L

R l

U D dx dx dx D

dx dx dx





 

= =  +  +  +  

+  +  + 

       w w w w

w w





 (3.19) 

[D] is a matrix of material stiffness which carries the information of material property and fiber 

orientation and layer orientation as follows. 

1 1 1[ ] [ ] [ ] [ ][ ] [ ] TD T T C T T   

− − − −=  (3.20) 

where [C] is the 6 × 6 anisotropic material stiffness matrix Eq. (3.21) which relates the stresses and 

strains in the material coordinates e1, e2, e3, [80], [ ]T is the transformation matrix Eq. (3.22) 

that transforms fiber orientation in its own plane by angle  and [ ]T is the transformation matrix 

Eq. (3.23) which transforms layer orientation by angle   with the coordinates y1, y2 and y3  to the 

beam coordinates (x1, x2, x3) as shown in Fig. (3.3).  
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2 2
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cos ( ) 2cos( )sin( ) 0 sin ( ) 0 0
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0 0 cos( ) 0 sin( ) 0
[ ]

sin ( ) 2sin( )cos( ) 0 cos ( ) 0 0
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0 0 0 0 0 1
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(3.22) 
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 (3.23) 

 

 

Fig. (3.3) The fiber and layer coordinates in the VABS. 

3.1.4 Step 3: cross-sectional discretization using finite element method in VABS 

In Eq. (3.19), the unknowns are the warping functions w (x1, x2, x3), and the strains of the reference 

line  . The VABS approach to provide solution is to assume that the warping function is a product 

of two entities, one is some function of x2 and x3, and the other is function of only on x1.  

The warping field is discretized as 

1 2 3 2 3 1( , , ) [ ( , )] ( )x x x W x x x=w V  (3.24) 

where, 2 3[ ( , )]W x x is the matrix of finite-element shape functions, and 1( )xV as a column vector 

of the nodal values of the warping displacement over the cross-section in VABS method.  
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In VABS, in order to eliminate the warping (w) from the strain energy of Eq. (3.19), one has to 

turn to a numerical solution. The FE is the choice of the VABS, in which arbitrary geometry and 

material distribution are present in the domain of the problem. Since the domain must be 

homogenous at the element level, elements are not allowed to cross a lamina boundary. In addition, 

due to the manufacturing process used in laminated composite structures, the planar quadrilateral 

element is the recommended choice. There are three types of elements generated to deal with the 

cross-section discretization. a) 4-node rectangular element, b) 6-node isoparametric element, c) 8-

node isoparametric element, they are presented in Fig. (3.4).  

 
  

a) b) c) 

Fig. (3.4). a) four-node rectangular element; b) six-node isoparametic element; c) eight-node 

isoparametic element [47]. 

The 4-node rectangular element has the main advantage of being simple. However, for most of the 

practical applications, the cross-section has one or more curved boundaries and a higher-order 

interpolation is necessary. So, quadratic interpolation was used on each side of the element along 

with isoparametric formulation, providing a way to model curved boundaries. That leads to the 8-

node isoparametric element, [47].  

3.1.5 Step 4: Asymptotically-Correct Refined Theory 

According to the VAM, the warping field is perturbed using the small parameter of the beam as 

Eq. (3.25). 

max max

0 1

/h L
= +w ww or 

max max

0 1

/h R

w ww


= +  (3.25) 

where, 0w  has the order of max  and 1w has the order of max /h L or max /h R . We can write: 
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max

00 W



= Vw , 

max

11

/h L

W



= Vw  or 

max

11

/h R

W



= Vw  (3.26) 

and,  

0 1= +V V V  (3.27) 

Therefore, the strain field can be expressed as  

2max maxmax maxmax max max

0 1 0 1 0 1

// / ( / )

R Rh h l l

h Rh L h L h L

W W W W W W

   

+ +       = + + + +  V V V V V V  
 (3.28) 

In the strain field of Eq. (3.28), the first and second terms have the order of max , the third term 

has the order of max /h L and the fifth term has the order of max /h R , and the last  term has the 

order of the 
2

max ( / )h L . By considering Eqs. (3.27),  (3.28) and Eq. (3.19), the strain energy of 

an initially curved anisotropic can be expressed as follows.  
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V V V V V VV V

 
(3.29) 

where, the matrices [ ]D
, [ ]hD 

, [ ]hhD , [ ]hlD , [ ]llD , [ ]lD 
 , [ ]hRD , [ ]

RR
D , [ ]

R
D


, and [ ]

Rl
D

carry the information on the material properties and geometry of the cross-section as  
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2 3 2 3

2 3 2 3

2 3 2 3

[ ] [ ] [ ][ ] ,  [ ] [ ] [ ][ ]

[ ] [ ] [ ][ ] ,  [ ] [ ] [ ][ ]

[ ] [ ] [ ][ ] ,  [ ] [ ] [ ][ ]

T T

hh h h h h

T T

hl h l
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ll l l l l

D W D W dx dx D W D dx dx

D W D W dx dx D D dx dx
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=   =  

=   =  

=   =  

   

   

   

 

2 3[ ] [ ] [ ][ ]T

hR h RD W D W dx dx


=    , 
2 3[ ] [ ] [ ][ ]T

RR R RD W D W dx dx


=     

2 3[ ] [ ] [ ][ ]T

R RD W D dx dx 



=    , 
2 3[ ] [ ] [ ][ ]T

Rl R lD W D W dx dx


=     

(3.30) 

3.1.6 Step 5: First and second approximation of the strain energy 

The expression of the energy in Eq. (3.29) has terms of different orders. By dropping terms of 

smaller magnitudes, different levels of solution can be obtained.  

3.1.6.1 First Approximation 

The first approximation in the warping field in the VAM comes from keeping the terms up to order 

2

max in the strain energy of Eq. (3.29). Therefore, the order-zero of the linear strain density is as 

follows. 

0 0 0 0 12 ( [ 2 [ [ )T T T

hh h

L

U D D D dx =  +  +    V V V    (3.31) 

The strain energy in Eq. (3.31) is minimized with respect to the unknown warping 0
V using the 

following relation.  

0

0

0
U

=
V

 (3.32) 

This yields the classical beam model in which the effects of transverse shear are neglected. 

Substituting Eq. (3.31) into Eq. (3.32) leads to  

0[ ] [ ] 0h hhD D + = V  (3.33) 

Therefore, the unknown warping coefficients according to the order-zero of the strain energy is 

obtained as 
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1

0 0
ˆ[ ] [ ] [ ]hh hD D V

−= −  V  
(3.34) 

It is difficult to invert the matrix [ ]hhD  in Eq. (3.34). To find the inverse of this matrix, a 

mathematical Pseudo method [81] is used. Using the obtained column matrix of Eq. (3.34) and the 

order-zero of the strain energy Eq. (3.31), the first approximation of strain energy and stiffness 

constants of the classical beam model can be achieved as follows.  

11 1111 12 13 14

1 121 22 23 24

1 1

2 231 32 33 34

3 341 42 43 44

0 0( ] [ ] ]ˆ2 ([ [ ) )T

L L

T

T
h

S S S S

S S S S

S S S S

S S S S

U V D D dx dx

 

 

 

 

    
    

    
   

 
   

 
        

= + =    
(3.35) 

Once can write, 

10 [2 ]
L

TU S dx=    (3.36) 

where S  is a 4 × 4 stiffness matrix that expresses the beam cross-sectional stiffness coefficients. 

For a cross-section with area  , second moment of inertia I, polar moment of inertia J,  elastic 

modulus E and shear modulus G, the stiffness constant 11S  or (E) is extensional stiffness, 22S

or (GJ) is torsional stiffness, 33S or 
2

( )
x

EI and 44S or 
3

( )
x

EI are cross-sectional bending stiffness 

about x2 and x3 coordinates, respectively. Moreover, 12S is the extension-twist coupling, 13S and 

14S are the extension-bending coupling stiffnesses. 

3.1.6.2 Second approximation 

The first approximation which leads to the classical beam model may not be accurate sufficiently 

for analysis of composite tubular beams with various lay-ups through the section. The second 

approximation of the strain energy with considering the transverse shear effect (Timoshenko 

refinement) may be accurate to predict the behavior of composite tubes. The strain energy up to 

order
2 2 2

max( / )O h L can be written as 
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0 0 0 0 0 0 0 0
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  1)dx

 (3.37) 

It is noted that in the equation above the terms 0 12 [ ]T

hhDV V and 12 [ ]T

hD  V cancel out each other, 

[46]. Also, in Eq. (3.37), the term 0 0[ ]T
hhDV V  is not mentioned in the strain energy obtained by 

Hodges [40]. However, this term is of low order. In order to eliminate the derivatives of the 

warping (
1V  ), the Eq. (3.37) is integrated by parts. We have:  

1 0 1 0 1 1 0 1 0 1 1

1 0 0 0 0 0 0 1

0 0 0 0 0 0 0
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 = + + +
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 + + + + +

+ +

−

−

 V V V V V V V V V V

V V V V V V V V

V V V V V V V

V

 

 

  1)]D dx



 (3.38) 

Substituting Eq. (3.34) back into Eq. (3.38), and using Euler-Lagrange equation (
1

1

0
U

V


=


), we 

have:  

(
)

1

1 0 0 0 0

1 1

ˆ ˆ ˆ ˆ[ ] ( [ ] [ ][ ] [ ] [ ]) ([ ] [ ] [ ][ ]

[ ]) [ ] [ ]

T T

hh l hl hl Rh Rh

R S R

V D D D V V D V D D V

D V V





− = − − + − + +

+  +



  
 (3.39) 

Substituting Eq. (3.39) to Eq. (3.38), we have 
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(1 0 0 0 0

1 1 1 0 1 0 1 0

1 0 1 0 0 0 0

ˆ ˆ ˆ ˆ2 ([ ] [ ] [ ] 2[ ] [ ][ ] 2[ ] [ ]

ˆ ˆ ˆ[ ] [ ][ ] 2[ ] [ ][ ] 2[ ] [ ] [ ] 2[ ] [ ][ ]

ˆ ˆ ˆ ˆ2[ ] [ ] [ ] 2[ ] [ ] [ ][ ][ ]) (2[ ] [ ]

2[

T T T T

h hR R

L

T T T T T

R hh R R hR R hR R hR

T T T T T

R hR R R RR hl

U V D D V D V V D

V D V V D V V D V V D V

V D V V D V D V V D

  



= + + +

+ + + +

+ + + +

+



V



 

0 1 1 1 1 1 0

1 0 1 1 0 0 1

1 0 1 1 1 0

ˆ ˆ][ ] [ ] [ ][ ] [ ][ ] [ ] 2[ ][ ] [ ]

ˆ ˆ ˆ2[ ][ ][ ] 2[ ][ ] 2[ ][ ][ ] 2[ ] [ ][ ]

ˆ ˆ2[ ][ ] 2[ ] [ ]) ([ ][ ][ ] 2[ ] [ ][ ]

ˆ[

T T T T T T

l R hh S S hh R S hR

T T T

S hR S R R hl hl R

T T T T

R l Rl S hh S S hl

V D V D V V D V V D V

V D V V D V D V V D V

V D V D V D V V D V







+ + +

+ + + +

 + + + +

+

 

0 0 0 1 1 1
ˆ] [ ][ ]) (2[ ] [ ][ ] 2[ ] [ ]) )T T T T
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(3.40) 

The above strain energy can be rewritten in the following form 

(1 1 2 3 4 12 [ ] 2 [ ] [ ] 2 [ ] )T T T T

L

U Y Y Y Y dx   = + + +          (3.41) 

where, 
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(3.42) 

2 0 0 0 1 1 1 1

1 0 1 0 1 1 0

0 1 1 0

ˆ ˆ[ ] 2[ ] [ ][ ] 2[ ][ ] [ ] [ ][ ] [ ][ ] [ ]
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S hR S hR S R R hl
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= + + +

+ + + +

+ + +

 (3.43) 

3 1 1 1 0 0 0
ˆ ˆ ˆ[ ] [ ][ ][ ] 2[ ] [ ][ ] [ ] [ ][ ]T T

S hh S S hl llY V D V V D V V D V= + +  (3.44) 

4 0 1 1[ ] 2[ ] [ ][ ] 2[ ] [ ]T T

hl S l SY V D V D V= +  (3.45) 

The matrix [Y1] is the classical cross-sectional stiffness matrix corresponding to the second order 

strain energy which takes into account the initial curvature of the beam. This matrix will be used 

for 1D analysis of the beam. 

The Eq. (3.41) involves derivatives of  . In order to eliminate the derivatives of the classical strain 

measures, Popescu and Hodges [55] used 1D equilibrium equations to build a relationship between 

the strains and derivatives of strains. One has to change the asymptotically-correct formulation to 
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be expressed by the strain measures of Timoshenko theory. Because of shear deformation, B1 is 

not tangent to the x1. Based on the relation between Ti and Bi and assuming small strains, one can 

derive a kinematic identity between classical strains in the Ti system and the Timoshenko strains 

in the Bi system. So, we have 

[ ] [ ]s sQ P= + +     (3.46) 

2 3

0 0 0 0

0 0
[ ] ,  [ ]=

0 0 0 1

0 0 1 0

k k
P Q

   
   
   =
   −
   
   

 (3.47) 

Where, 11 1 2 3[ ]T   =  represents the 1D generalized strains associated with Bi system 

due to extension, torsion and bending, and  12 132 2
T

s  =  is the column matrix of transverse 

shear strain measures associated with the Bi basis. By substituting Eq. (3.47) into the strain energy 

Eq. (3.41), one has 

( )( ( ) ( )

( ) ( ) ( )
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Y

   = + + + + + + +

    + + + + + + +

 + + + + +

        

        

     

 
(3.48) 

By neglecting the higher order terms, the strain energy in the form of Timoshenko-like beam 

strain measures can be expressed as  

(

)

1 1 1 1 2 3

4 1

2 [ ] 2 [ ][ ] 2 [ ][ ] 2 [ ] [ ]

2 [ ]

T T T T T

s s

L

T

U Y Y Q Y P Y Y

Y dx

   = + + + +

+

          

 

 (3.49) 

The generalized Timoshenko strain energy should be written as 

( )1 2 3 12 [ ] 2 [ ] [ ]T T T

s s s

L

U X X X dx= + +        (3.50) 

The [X1] is a 4 4 , [X2] is a 4 2 , and [X3] is a 2 2 unknown matrices. If the generalized 

Timoshenko theory is asymptotically-correct, Eqs. (3.49) and Eq. (3.50) should be equivalent. To 
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make Eq. (3.50) fit into the generalized Timoshenko form as in Eq. (3.41), one has to express the 

derivatives of the strain measures in terms of strain measures themselves. So, one has to eliminate 

the derivatives in Eq. (3.41). Using the equilibrium equations is a feasible way to achieve this. The 

nonlinear 1D equilibrium equations for initially curved and twisted beams without distributed 

forces can be written as, [48]. 

1

[ ] 0

[ ] ( ) 0

K

K

 + =

 + + + =

F F

M M e F
 

(3.51) 

and, 

1 11 12 12[1 0 0] ; [ 2 2 ] ;T T  = = = +e K k   

3 2
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2
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[ ] 0 0

0 0

k k

K k

k

− − 
 

=
 
  

 

(3.52) 

Where, F is the column matrix of the cross-sectional stress resultant measures as  

 1 2 3

T
F F F=F  in the Bi basis, and M is the column matrix of the cross-sectional moment 

resultant measures as  1 2 3

T
M M M=M in the Bi basis. The terms of order O(h3) are 

considered. Because the strain energy is only asymptotically-correct up to the second order of the 

h, nonlinear terms in the equilibrium equations do not affect the strain energy. As such, for the 

purpose of creating the cross-sectional model, Eq. (3.51)  can be simplified to  

1

2 1

1

2
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3
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F M
D

MF

M

 
     

+ =   
    

  

 (3.53) 

1 1

1 1 2

2 3

2 2 3

3 3
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M M F
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 (3.54) 
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In which,  
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3 1[ ] [ ] [ ]TD Q D= −  

(3.55) 

The   and  can be expressed in terms of  and  from Eqs. (3.54) and (3.55) as 

1

1 2[ ] ([ ] [ ] )sN B B− = +    (3.56) 

1 1 1

3 2 1 1 2 2 2 1 1[ ] [([ ] [ ] [ ] [ ][ ]) ([ ] [ ] [ ] [ ][ ]) ]T T

s sX X N B D X X N B D X− − − = − + + +    (3.57) 

where,       

1

1 3 3 2 3 1 2 2[ ] [ ][ ] ([ ][ ] [ ] [ ])[ ]B D X X X D D X−= − + −  
(3.58) 

1 1

2 1 1 23 2 2 3 1[ [ ([ [ )[] ][ ] [ ] ][ ] [ ] ] ]T
B B X X X X D D Y− −

= + −  
(3.59) 

1

1 2 3 2[ [] ][ ] [ ]T
N X X X X

−
= −  (3.60) 

Differentiating the both sides of Eq. (3.58), we can express  in terms of   and   as 
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sN X X D D B B X D X

N X X D D B B X D X

− − −

− − −

 = − −

+ − −

 


 

(3.61) 

Substitution of Eqs. (3.56), (3.57) and (3.61) back into Eq. (3.49), the Timoshenko-like strain 

energy expression can be obtained. By setting Eqs. (3.49) and (3.50) equal to each other, the 

following expressions for the [X1], [X2] and [X3] can be extracted, [40]. 

1 1

1 13 3[ [ ] ]] ] [ [ ][ [ ]T
X B N N BY− −

=  
(3.62) 
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1 1 1

2 1 3 2 1 1 2 2 1 1

1 1 1 1

2 3 1 1 1 4 2 3 1

1

2 1 1 3 1 2

[ ] [ ][ ][ ] ([ ][ ] [ ] [ ][ ]) [ ][ ] [ ]

[ ] [ ] [ ][ ] [ ] [ ][ ] [ ][ ] [([ ][ ] [ ]

[ ])[ ] [ ][ ] [ ][ ]]

T

X Y Q X Y N B D Y X X B

B N Y Y B Y P Y N X X D

D B B X D X

− − −

− − − −

−

= − + +

+ + +

− −

 

1 1 1

2 1 2

1 1 1 1

2 2 1 2 2

1

1 1

1 1 1 3 2 1 2

3 3 2 3

3 1

[ [ 2[ ][ ([ ] [ ) 2[ ]

[ ] ] 2[ ] [([ [ )[

[ [ ]

] ] ][ ] ][ [ ] ][ ] ][ [ ]

] [ [ ][ [ ] ][ ][ ] [ ] ] ]

][ ] ][ ]

T

X Y Q X X N B D X Y N B

B N Y N B Y N X X D D B

B X D X

Y − − −

− − − −

−

= − + +

+ + −

−

 

The Eq. (3.62) is a system of matrix equations. The perturbation method is used to solve this, [49]. 

The details of the solution procedure are reported in Yu et al. [49]. The one-dimensional strain 

energy in the form of Timoshenko theory can be expressed as  

4 4 4 2

1

2 2

1 2

1

2 4 2 3

[ [ ]
2

[

]

[ ] ]

T

s sL

T

X X
U dx

XX

 



=
    

    
    

 

 
 

(3.63) 

From the above strain energy relation, the strain energy in the form of Timoshenko can be 

rearranged as the following. 

1

11 1111 12 13 14 15 16

12 1212 22 23 24 25 26

13 1313 23 33 34 35 36

1

14 24 34 44 45 461 1

15 25 35 45 55 562 2

16 26 36 46 56 663

2

2 2

2 2
[ ] T

L

T

T

L

U dx

S S S S S S

S S S S S S

S S S S S S
S

S S S S S S

S S S S S S

S S S S S S

 

 

 

 

 



=
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   1

3

dx



 
 
 
  
 
 
 
 
  

 (3.64) 

In Eq. (3.64),  11 12 13 1 2 32 2
T

     = and [S] is a 6 × 6 cross-sectional Timoshenko 

stiffness matrix.  

In the Timoshenko model of Eq. (3.64), 11S is the extensional, 22S and 33S are shear cross-section 

stiffness constants in the x2 and x3 directions, respectively, 
44S is the twisting stiffness, and 

55S

and 
66S are bending stiffnesses in the x2 and x3 directions, respectively. The other stiffnesses are 

the coupling stiffness (i.e. 
14S  is the extension-twisting coupling stiffness constant). The one- 

dimensional strain energy relation Eq. (3.64) stands for the one-dimensional beam model which 
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includes the 3D deformation effects of the cross-section. Using this 1D beam strain energy with 

the contribution of beam cross-sectional stiffness matrix, the 1D static analysis can be conducted. 

3.1.7 Recovery analysis 

The 3D strain distribution through the thickness of the tube can be obtained using Eqs. (3.14), 

(3.46), (3.56), (3.57) , and the following recovery relation. 

   0 1 1 0 1 1( )( ) ( ) ( )a R R a R S l R l SV V V V V V     =  + + + +  + + + +  (3.65) 

Use of   obtained from Eq. (3.66) [40]. 

11 111 12 13 14 15 16

12 212 22 23 24 25 26

13 313 23 33 34 35 36

14 24 34 44 45 461 1

15 25 35 45 55 562 2

16 26 36 46 56 663 3

1

2

2

FS S S S S S

FS S S S S S

FS S S S S S

S S S S S S M

S S S S S S M

S S S S S S M













−
    
    
    
       

=    
    
    
   
      




 (3.66) 

 

3.2 Dimensional reduction using Pascal polynomial method 

In Eq. (3.24), the warping functions are assumed to be a product of functions W(x2, x3) and V(x1). 

The VABS software performs FEA for cross-sectional discretization of Eq. (3.24). It provides the 

equivalent stiffness for the section to be used in the subsequent 1D analysis (step 7) and recovery 

of the strains (step 8). The procedure solution of Pascal polynomial method is demonstrated in Fig. 

(3.5).  

 

Fig. (3.5). Pascal polynomial method solution procedure. 
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For composite beams of circular sections consisting of many layers such as that shown in Fig.  

(3.5), the procedure to discretize the section using VABS is complex. The cross-section modeling 

procedure includes: a) Defining two laminate sections as upper and lower laminate sections (the 

upside of the horizontal solid line is the upper laminate section and downside is the lower laminate 

section) as shown in Fig. (3.6a), b) Decomposing each laminated section into segments and 

defining the lamination direction based on the defined mold lines (Fig. (3.6b)), c) Generating areas 

of each layer (Fig. (3.6c)), d) Meshing the areas over the cross-section using triangular or 

quadrilateral elements (Fig. (3.6d)). 

  

 
 

 a) Cross-sectional modeling of a tube. b) Segments of the laminated section. 

  

c) Area of each layer. d) The generated mesh of the cross-section. 

Fig. (3.6) Discretization procedure in VABS. 

The modeling process of the circular cross-section in the VABS is time-consuming, particularly 

for parametric study. The analysis of composite circular cross-section can be more straightforward 

and faster using polynomial based method. 
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Note that in Eq. (3.19), the first equality expresses the strain energy in terms of the 3D strains, and 

the second equality expresses the strain energy in terms of the warping functions w, its derivative 

with respect to the axis x1 ( w ), and the 1D strains of the reference line. For the analysis of 

composite tube, a cylindrical coordinate system is introduced. Fig. (3.2) shows the beam Cartesian 

coordinates (x1, x2, and x3) located on the centroid of the cross-section, material coordinates (e1, e2, 

and e3) where e1 is along the fiber direction, and the beam reference line. The position of an 

arbitrary point in the cross-section is shown by a radial position ρ and a circumferential angle θ in 

the polar coordinate system.   represents the fiber orientation angle in its plane (winding angle). 

The cross-section of a single-layered tube with the inner and outer radius of ρin and ρout, 

respectively. The angle β denotes the layer orientation to axis x2. A relation between [C] and [D] 

is required. This is done through two coordinate transformations. In the first transformation, the 

axis e1 is rotated by an angle α to coincide with x1. The transformation matrix [ ]T  is given as Eq. 

(3.22) at the end of this rotation, the axes e2, e3 become 
2e , 

3e  and these may not coincide with 

the axes x2, x3. The angle β between the axis 
2e and x2 which takes into account the orientation of 

the layer is used. A rotation of the axis 
2e  by angle β to coincide with axis x2 is done through a 

rotation matrix [ ]T  as shown in Eq. (3.23). As such one has 

1 1[ ] [ ] [ ] [ ][ ] [ ]T TD T T C T T   

− − − −=  (3.67) 

The relation between the circumferential angle and layer orientation can be introduced by a change 

of variable as
2


 = − . In the discretization of warping field of Eq. (3.24) used by VABS, the 

function 2 3[ ( , )]W x x  consists of FE shape functions, and the vector V is a column matrix of the 

nodal values of the warping displacement over the cross-section, [40]. In the proposed Pascal 

polynomial approach, 1 2 3( , , )kw x x x  is proposed to be a simple polynomial as 

𝑤𝑘(𝑥1, 𝑥2, 𝑥3) = 𝑎1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥2
2 + 𝑎5𝑥2𝑥3 + 𝑎6𝑥3

2 + 𝑎7𝑥2
3 + 𝑎8𝑥2

2𝑥3

+ 𝑎9𝑥2𝑥3
2 + 𝑎10𝑥3

3 + 𝑎11𝑥2
4 + 𝑎12𝑥2

3𝑥3 + 𝑎13𝑥2
2𝑥3

2 + 𝑎14𝑥2𝑥3
3 + 𝑎15𝑥3

4 
(3.68) 

where, k =1, 2, 3. wk can be expressed in the vector form as 

𝑤𝑘 = ⌊1 𝑥2  … 𝑥2𝑥3
3  𝑥3

4 ⌋. [𝑎1  𝑎2 … 𝑎14  𝑎15  ]T (3.69) 

The cross-sectional discretization in the polynomial method would be as follows. 
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𝑤𝑘(𝑥1, 𝑥2, 𝑥3) = 𝑾𝒌(𝑥2, 𝑥3)𝑽𝒌(𝑥1) (3.70) 

where the vector Vk consists of unknown Pascal coefficients ai which is a function of axial 

coordinate and should be determined. The Pascal polynomials as the warping functions are used 

for the whole section and the strain energy will be minimized with respect to a vector of 

coefficients 𝑽𝒌(𝑥1). It should be pointed out that in VABS which applies FE, the warping at the 

common nodes at the interface between layers must set be to the same value, while in the Pascal 

polynomial method, the warping functions will be considered for the whole domain so that the 

problem of continuity of warping at the interfaces will be ensured. Using the polar coordinates, 

the transformation can be as 2 cos( )x  =  and 3 sin( )x  = .  For polynomial with order m (i.e. m 

= 4), we have 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2

3 3 3 2 3 2 3 3 4 4

4 3 4 3 4 2 2 4 4

[1 cos sin cos cos s sin

cos cos sin cos sin sin cos

cos sin cos sin cos sin sin ]

in          

           

          

=W

 (3.71) 

and, 

Vk(x1) = a(x1) (3.72) 

 The order of the polynomial can determine the accuracy of solution. A large number of layers will 

require higher polynomial order to assure accuracy.  From Eq. (4), 1 2 3[   ]Tw w w w= , the matrix 

form for the warping function is  

1 1 11 1 1 1

2 1 2 1 1 2 1

1 1 3 13 3 13

( )[ ] [ ] [ ]

[ ] [ ] [ ] . ( ) [ ]. ,  3

[ ] [ ] [ ] ( )

p p p

p p p

p p p q

w V xW O O

w O W O V x W where q p

O O Ww V x

  

  

   

    
    

=  =    
        

V  (3.73) 

where, p is the number of terms in the polynomial and 
1 pO 

is a null matrix. The relation between 

the polynomial order m and the number of terms in the polynomial is
2( 3 2) / 2p m m= + + .  

The matrices [ ]D
, [ ]hD 

, [ ]hhD , [ ]hlD , [ ]llD , [ ]lD 
 , [ ]hRD , [ ]RRD , [ ]RD 

, and [ ]RlD  for n 

number of layers in the polynomial method for composite tube with n number of layers can be 

expressed as follows.  
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(3.74) 

The integrations above over the cross-section are done using Gauss quadrature method. To do so, 

at first the warping functions which were transferred to polar coordinates are transformed to the 

Cartesian coordinate using 
2 2

2 3x x = + ,  and 
1

3 2tan ( / )x x
−

= . Then, the Gauss quadrature 

method is applied as Eqs. (3.75a) and (3.76).  
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2 3 2 3

1 1

1 1

( ) ( )

( ) ( )
2 2 2 2 2

b d

a c

f x f x dx dx

b a b a b a d c d c
f f d d   

− −

=

− − + − +
+ +

 

 

 

(3.75) 

 

2 3 2 3

1 1

( ) ( )

( ) ( )
2 2 2 2 2 2

b d

a c

n n

i j i j

i j

f x f x dx dx

b a d c b a b a d c d c
f f   

= =

=

− − − + − +
+ +

 



 

(3.76) 

 

where, 
2 2 2 2

2 2, , ,i i i ia b c x d x   = − = = − − = − . This integration calculation is done for 

inner and outer radiuses of each layer and then they are subtracted to calculate the final values of 

integration over cross-section of each layer. i  can be inner and outer radius of ith layer. The 

weight and abscissae for n=10 are shown in the Table (3.1).  

Table (3.1). Weight and Abscissae for n=10 

i Weight (
i ) Abscissa (

i , i ) 

1 0.2955242247147529 -0.1488743389816312 

2 0.2955242247147529 0.1488743389816312 

3 0.2692667193099963 -0.4333953941292472 

4 0.2692667193099963 0.4333953941292472 

5 0.2190863625159820 -0.6794095682990244 

6 0.2190863625159820 0.6794095682990244 

7 0.1494513491505806 -0.8650633666889845 

8 0.1494513491505806 0.8650633666889845 

9 0.0666713443086881 -0.9739065285171717 

10 0.0666713443086881 0.9739065285171717 
 

The use of VAM and VABS can greatly reduce the computational time and efforts for beams or 

tubes with complex cross-section, [49]. For tubular composites with a large number of layers, the 

use of Pascal polynomial simplifies the input data and provides better insight into the problem. 

3.3 Conclusion 

In this chapter, the cross-sectional analysis for initially curved anisotropic beams based on VAM 

is brought in. A finite element discretization is introduced for solving 2D minimization problem. 

The minimization problem is generated by application of VAM, which enables the solution of 
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problems related to functionals when there are small parameters. The use of VAM produces a 

model that has derivatives of classical 1D generalized strain measures (extension, twist and 

bending).  

Then the Pascal polynomial dimensional reduction method is introduced. The Pascal polynomials 

are applied to the warping field and the cross-sectional discretization is performed. For beams with 

tubular cross-section, the polynomials are transformed to the polar coordinate system. The present 

method does not need to generate mesh where in the VABS one needs to generate mesh and model 

the tubular cross-section of the tube. It is noted that the order of polynomial has effect on the 

accuracy of the solution.  
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4 Chapter 4: Pascal polynomial dimensional reduction method for straight tubes  

In this chapter, the polynomial based dimensional reduction method for analysis of straight 

composite tubes with circular cross-section is developed. The dimensional reduction procedure of 

chapter 3 is reduced for the case of straight tubes. A simple example of the meshless Pascal 

polynomial based dimensional reduction method is introduced for unidirectional tubes. Then, the 

polynomial based solution is provided for tubes in the general case of tubes with arbitrary lay-up. 

Finally, a 1D FE solution is developed for determining transverse deflection of composite tubes 

under four-point bending loading.  Next, the numerical results and discussion are represented for 

validation of the present method for composite tubes and compared with ANSYS 3D, VABS, 

literature and experiment.  

4.1 Strain energy of a straight tube 

Consider a composite beam with a circular cross-section. The orthonormal coordinates x1, x2 and 

x3 are considered for the undeformed beam cross-section, Fig. (4.1). A polar coordinate is defined 

where ρ is the radius and θ is the circumferential angle over the cross-section. The origin of the 

coordinate is located at the centroid of the cross-section. At a point on the circle, the tangent at the 

point makes an angle β with respect to the horizontal axis x2. The strain energy of a straight beam 

with the cross-section area   is expressed as follows [40]. 

 

 

a) b) 

Fig. (4.1). a) Coordinate systems of a composite tubular beam, b) The layer orientation of (β) 

in the circumference of a one-layer tube with inner and outer radius ρin and ρout.  
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T

h l h l

L
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D dx dx dx 





=

 =  +  +   +  + 

 

 

 

w w w w 
 (4.1) 

The strain field 
11 12 13 22 23 33[  2  2   2  ]

T
 =       for a straight beam can be expressed as 

follows, [49].  

[ ] [ ] [ ]h l
=  +  +  w w  (4.2) 

where, the 1D strains of the reference line  can be expressed in terms of 11  (the extensional 

strain), 1 (twist per unit length), 2 and 3  (bending curvatures of the reference axis of the 

beam about x2 and x3, respectively), as the following  

 11 1 2 3

T
   =  (4.3) 

Moreover, ( )•  stands for derivative with respect to x1. The operators [ ]h , [ ]  and [ ]l  are 

expressed in Eq. (3.18) with 2 3 0k k= = . The warping displacements of the cross-section of the 

beam are defined as the following vector. 

1 2 3[   ]Tw w w=w  (4.4) 

where w1 represents the warping displacement of the cross-section in direction x1 (out-of-plane) 

and w2 and w3 are in-plane warping displacements of an arbitrary point in directions x2 and x3 (in-

plane), respectively. The calculated warping functions in terms of 1D strains of reference line of 

the beam results in transformation of 3D model into a 1D beam model which maintains the 3D 

effects. Using the 3D strain field above, the dimensional reduction process can be performed. The 

material stiffness matrix [D] which carries the information of material property and fiber 

orientation and layer orientation as follows. The matrices [ ]T , [ ]T , and [ ]C  are introduced in Eq. 

(3.20).  

1 1[ ] [ ] [ ] [ ][ ] [ ]T TD T T C T T   

− − − −=  (4.5) 
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4.2 Example of pascal polynomial dimensional reduction method for a straight 

unidirectional circular tube 

In this section, we use the Pascal polynomial based dimensional reduction method and we will 

arrive at the strain energy of the Classical beam model. The cross-sectional stiffness constants of 

the unidirectional straight tubular section based on Classical beam model will be determined. Then, 

the polynomial based dimensional reduction method for straight tubes will be demonstrated. The 

strain energy of the Eq. (5.18) for an orthotropic beam can be written in the following form. 

3 32 2
1 11 2 21 3 31 41 51 61 1

2 3 2

3 32 2
1 12 2 22 3 32 42 52 62 2

2 3 2 3

32 2
1 13 2 23 3 33 43

2 3 2

2
3

L

w ww w
U A D A D A D D D D A

x x x x

w ww w
A D A D A D D D D A

x x x x

ww w
A D A D A D D

x x x



    
= + + + + + +         

    
+ + + + + + +        

  
+ + + + + +
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w
D D A
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x x x x x
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+ + + + + + +         

        
+ + + + + + + +              

+ + + 3 3 32 2
3 36 46 56 66 3 2 1

2 3 2 3 3
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A D D D D dx dx dx

x x x x x

     
+ + + +            

 (4.6a) 

where, 

1 1 1
1 11 3 2 2 3 3 2

1 2 3

1 2 2 2
2 3 1 3 2

2 1 2 3

3 3 31
3 2 1 3 2

3 1 2 2

( )

( )

w w w
A x x x x

x x x

w w w w
A x x x

x x x x

w w ww
A x x x

x x x x

  





  
= + − + + −

  

   
= − + + −
   

  
= + + + −
   

 (4.6b) 

In the dimensional reduction method, three characteristic parameters are introduced. The 

characteristic size of domain   is denoted by h. max is the maximum of the 1D strain vector and 

L is the characteristic length of the beam, [46]. According to the VAM, we now consider the 

perturbation in the warping field using the small parameter of the problem as follows.  
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(4.7) 

Substituting the Eq. (4.7) into Eq. (4.6) and selecting the order 2

max( )O  , one can obtain first 

approximation of the strain energy of an orthotropic beam as follows. 
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(4.8) 

The Pascal polynomials are introduced to each component of the warping functions.  

2 2

10 1 2 3 1 1 2 1 2 3 1 3 4 1 2 5 1 3 2 6 1 3

2 2

20 1 2 3 7 1 8 1 2 9 1 3 10 1 2 11 1 3 2 12 1 3

2

30 1 2 3 13 1 14 1 2 15 1 3 16 1 2 17 1

( , , ) ( ) ( ) ( ) ( ) ( ) ( )

( , , ) ( ) ( ) ( ) ( ) ( ) ( )

( , , ) ( ) ( ) ( ) ( ) (

w x x x a x a x x a x x a x x a x x x a x x

w x x x a x a x x a x x a x x a x x x a x x

w x x x a x a x x a x x a x x a x

= + + + + +

= + + + + +

= + + + + 2

3 2 18 1 3) ( )x x a x x+

 (4.9) 

We consider the material properties for a unidirectional tube as, [82] 

1 2 3 12 13 21 12 2 1 23

32 23 3 2 31 13 3 1 12 13 23

; ; ; / ; ;

/ ; / ; ;

t p tp p

t p

E E E E E v v v v v E E v v

v v E E v v E E G G G G G

= = = = = = =

= = = = =
 (4.10) 
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where, 
2(1 )

p

p

p

E
G

v
=

+
 and p stands for “in-plane” and t strands for “transverse”. It can be shown that 

for the case of tubes made by unidirectional composites (fibers oriented along the axis of the tube), [D] = 

[C]. Substituting Eq. (4.8) into Eq. (4.9), we have:  

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2

2 3 3 2 11 10 2 11 3 8 2 18 3 15

0

4 5 5

2 2

2 3 3 2 11 1 3 4 2 5 3 2 1 2 5 2 6 3 3

2

10 2 11 3 82 3 3 2 11

5

γ ν 1 2 ν 17 2 ν
2

γ 2 2

2 νγ ν

t p p t tp p t tp

L

t t

p tp pp t tp

x x E a x a x a E E a x a x a E E
U

A A A

x x x a x a x a G x a x a x a G

a x a x a E Ex x E E

A

 

   

 



 − + − + + + +
 = − −
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10 2 11 3 8 17 2 18 3 152 3 3 2 11

5 6 6

17

2 ν ν

2 2
2

2(ν 1)

2 ν ν 2 νγ ν

t p tp p p t

p

p

p tp p p t p tp p tp t tp
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A A

a x a x a x a x a a E
a x a x a
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 −
 
 

+ + + + +
+ + +

+

 + + + + + −− +
 + − − +
 
 

( ))2 18 3 15 3 2 12a x a dx dx dx+ +

 

(4.11a) 

where, 

( )

( )

2

4

2

5

2 2

6

ν 1 2ν

2ν ν

2 ν ν ν

p t tp p

tp p p t t

p p p tp t p t

A E E

A E E E

A E E E E

= − +

= + −

= + + −

 (4.11b) 

We perform the change of variables to polar coordinates as (𝑥2 = 𝜌𝑐𝑜𝑠𝜃, 𝑥3 = 𝜌𝑠𝑖𝑛𝜃) for Eq. 

(4.11). The integration of Eq. (4.11) in polar coordinates leads to an equation in terms of the Pascal 

coefficients ia  and ( =1..18i ). The procedure of VAM is to minimize the obtained strain energy 

with respect to unknown warping. So, the strain energy is minimized with respect to each Pascal 

coefficient as 

0 1..180,  =
i

U
i

a


=


 (4.12) 

The Eq. (4.12), leads to a system of algebraic equations with nine equations and nine variables. 

Substituting the obtained coefficients into the strain energy, one can obtain the final strain energy 

with the polynomial order of (m=2) as follows.  
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 (4.13) 

Selecting the coefficients of 2

11  results in 
11S (extensional stiffness) , coefficients of 2 2

1 2, ,  and 

2

3 lead to 
22S  (torsional stiffness), 

33S (bending stiffness about x2) and 
44S  (bending stiffness about 

x3), respectively  as Eq. (4.14). 

2 2 4 4 4 4 4 4

11 1 22 33 1 44 1( );  ( );  ( );  ( )
2 4 4

out in out in out in out inS E S S E S E
  

        = − = − = − = −  (4.14) 

4.3 General case: circular tubular cross-section with arbitrary lamination [79] 

For a composite circular tube with arbitrary fiber angle and arbitrary number of layers, we use 

matrix notation. In the dimensional reduction method, the strain energy is minimized with respect 

to the unknown warping functions to find the warping field in terms of 1D strains of the reference 

line of the beam. The warping field w is approximated by the Pascal polynomials as follows. 

1 2 3 2 3 1( , , ) [ ( , )] ( )k kw x x x W x x x= V  (4.15) 

where, 

2 3 1( , ) [ ... ]nW x x W W= , 
0 1[ ... ]k k k T

k nV V V=V , k =1, 2, 3 (4.16) 

2 3( , )W x x includes Pascal polynomials and 
1( )k xV consists of unknown coefficients which is a 

function of axial coordinate and should be determined. It should be pointed out that the warping 

functions are used for the whole section so that the strain energy will be minimized with respect 
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to a vector of coefficients 
1( )xV . For the case of cross-section, the Pascal polynomials will be 

transformed to polar coordinates by changing variables as (𝑥2 = 𝜌𝑐𝑜𝑠𝜃, 𝑥3 = 𝜌𝑠𝑖𝑛𝜃). For the 

polynomial order four (m = 4), the warping functions can be described as 

1 1 1

1 1 1

1 1 1 3

[ ( , )] ,  3

p p p

p p p

p p p q

W O O

W r O W O where q p

O O W



  

  

   

 
 

= = 
 
 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 3 3 3 2 3 2

3 3 4 4 4 3 4 3

4 2 2 4 4

[1 cos sin cos cos s

sin cos cos sin cos sin

sin cos cos sin cos sin

cos sin sin ]

W in        

         

         

    

=

 

(4.17) 

where, p is the number of terms in the polynomial and 1 pO  is a null matrix. The number of terms 

p for a polynomial with an order m is
2( 3 2) / 2p m m= + + . The total warping field can be written 

as Eq. (4.18).  

11 1 1

1 1 1 1 2

1 1 1 3

( , , )

p p p

p p p

p p p

W O O

x r O W O

O O W



  

  

  

   
   

=   
     

V

w V

V

 (4.18) 

V1, V2 and V3 are the vectors which consist of pascal coefficients. It is noted that the Pascal 

polynomials are used for the whole section and therefore there is no need to generate mesh for the 

cross-section of the elliptical beam consisting many layers. The strain energy can be written by 

substituting the warping function of Eq. (4.18) into Eq. (4.1) as  

( )1 2 3 4 5 6 12 [ ] [ ] 2 [ ] 2 [ ] 2 [ ] [ ]T T T T T T

L

U dx   = + + + + +         V V V V V V V V  (4.19) 

where the matrices (
1

 -
6

 ) for n number of layers can be expressed in the following form 
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(4.20) 

The Eq. (4.20) is the counterpart of Eq. (3.20) which was used for initially curved tubes. The strain 

energy of Eq. (4.19) should be minimized with respect to unknown warping coefficients V. The 

VAM is applied to minimize the strain energy in which it perturbs the strain energy into different 

orders according to the small parameters of the problem and then the strain energy is minimized 

using the Euler-Lagrange equation, [49]. Based on the VAM, the unknown warping coefficients 

will be perturbed as follows where V1 is one order higher than V0. We have 

V=V0+V1 (4.21) 

4.3.1 First approximation (Classical beam model) 

The first approximation of the strain energy is obtained as follows.  

0 0 2 0 0 3 1 12 ( [ 2 [ [ )T T T

L

U dx  =  +  +    V V V    (4.22) 

The Euler-Lagrange equation as Eq. (4.23) is used to minimize the strain energy with respect to 

the unknown warping 
0

V .  

0

0

0
U

=
V

 (4.23) 

Substituting Eq. (4.22) into Eq. (4.23) leads to  



82 
 

3 2 0[ ] [ ] 0 + = V  (4.24) 

The unknown warping coefficients obtained using the first approximation of the strain energy is 

1

0 2 3 0
ˆ[ ] [ ] [ ]V−

 = −  V  (4.25) 

The matrix 2  is singular and non-invertible. Pseudo method [81] is used to evaluate its inverse. 

Substituting Eq. (4.25) into Eq. (4.22), one can achieve the first approximation of strain energy 

and obtain stiffness constants of a tube with a circular cross-section based on the classical beam 

model.  

11 12 13 14

21 22 23 24

1 1 1

31 32 33 34

41 42 43 44

0 0 3 1] [ ] ] [ˆ2 ([ [ ) ]T

L L L

T T T

S S S S

S S S S
dx dx dx

S S S S

S S S S

U V S 

 
 
 
 
 
  

= + = =         (4.26) 

where S  is a 4 4  classical stiffness matrix that expresses the beam cross-sectional stiffness 

coefficients. 11S is extensional stiffness, 22S is torsional stiffness, 33S and 44S are cross-sectional 

bending stiffness about x2 and x3 coordinates, respectively. In addition, 12S is the extension-twist 

coupling, 13S and 14S are the extension-bending coupling stiffness, 23S  and 24S  are the torsion-

bending coupling stiffness. 

4.3.2 Second approximation (Timoshenko-like beam) 

Utilizing the Eqs. (4.19) and (4.21), the second approximation of the strain energy will be achieved 

by collecting the order 2 2

max( ( ) )
h

O
L

  as follows. 

1

51 1 2 1 1 0 2 0 0 6 0 0 3 0

51 0 4 0 0 4 1 0 4

( [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] )

2 2 2

2 2 2 2

L

T T T T T T

T T T T dx

U      

   

 = + + + + +

  + + + +



1

V V V V V V V V

V V V V V V V

   



 (4.27) 

The energy functional Eq. (4.27) is minimized with respect to unknown warping V1. The following 

relation is obtained.  

4 ] ] ] ][ [ [ [ 0T T

hl hh l     − + + − =0 0 1V V V  (4.28) 

Therefore, V1 can be obtained as  
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1

2 4 4 0 5 1
ˆ ˆ[ ] ([ ] [ ]) [ ]T TV V−

      = − + 
 1V ε ε  (4.29) 

Substitution of Eqs. (4.25, and 4.29) into Eq. (4.27) leads to the following 1D strain energy.  

( )1 1 2 3 4 12 [ ] [ ] [ ] [ ]T T T T

L

U A A A A dx    = + + + ε ε ε ε ε    (4.30) 

In which the relations A1, A2, A3 and A4 are as follows, [55]. 

1 1 0 3 0 2 0

2 5 0 0 4 0

3 1 4 0 1 2 1 0 6 0

4 0 4 1 5 1

ˆ ˆ ˆ[ ] [ ] 2 [ ] [ ]

ˆ ˆ ˆ[ ] 2[ ] 2 [ ]

ˆ ˆ ˆ ˆ ˆ ˆ[ ] 2 [ ] [ ] [ ]

ˆ ˆ ˆ[ ] 2 [ ] 2[ ]

T

T

T T T

T

A V V V

A V V V

A V V V V V V

A V V V

  

 

  

 

= + +

= +

= + +

= +

 (4.31) 

Since the 1D strain energy of Eq. (4.30) includes derivatives of generalized strains, it will be 

complicated to perform 1D analysis and it is preferred to transform it to Timoshenko-like beam 

model [40] is used by deriving the equilibrium equations of the cross-section, and the generalized 

strain energy of the Timoshenko beam model. So, the effect of shear will be taken into account 

and the cross-sectional reference plane is not normal to the reference line in contrast to Classical 

beam model. The generalized Timoshenko beam model can be presented as 

( )1 1 2 3 12 [ ] 2 [ ] [ ]T T T

s

L

U Y Y Y dx= + + s s
γ γ     (4.32) 

In which [Y1], [Y2] and [Y3] are unknown stiffness matrices and  12 13
2  2

T

 =
s
γ includes 

generalized shear strains caused by the transverse shear deformation.  11 1 2 3

T

   =ε

contains Timoshenko model generalized strains. In the transformation to the generalized 

Timoshenko beam model, we need to find the matrices [Y1], [Y2] and [Y3].  The details of the 

transformation to the generalized Timoshenko beam model are provided in Yu et al. [49]. The 

unknown stiffness matrices [Y1], [Y2] and [Y3] are obtained as follows.  

( )
1

1 1 1

3 1 3 2 1 2 1

1

2 2 1 3

1

1 2 1

[ ] [ ] [ ] ([ ] [ ] [ ] [ ])[ ] [ ]

[ ] [ ] [ ] [ ][ ]

[ ] [ ][ ] [ ] [ ]

T T

T

T

Y P A A A A A A P

Y A A P Y

Y Y G Y A

−
− − −

−

−

= −

=

= +

 (4.33) 

The strain energy Eq. (4.32) is rearranged to the form of strain energy of Eq. (4.34) which takes 

into account the effect of shear.  
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11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

1 1 1

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

2 [ ]T T

L L

S S S S S S

S S S S S S

S S S S S S
U dx S dx

S S S S S S

S S S S S S

S S S S S S

 
 
 
 

= = 
 
 
 
 

      (4.34) 

where,  11 12 13 1 2 32 2
T

     = . Moreover, the 6 6 matrix S contains the 

Timoshenko-Like cross-sectional stiffness constants. S11 is the extensional stiffness, S22 and S33 

are shear stiffness along x2 and x3, respectively and S44 is the torsional stiffness, S55 
2

( )xEI and S66 

3
( )xEI are bending stiffness about x2 and x3, respectively. The off-diagonal elements are coupling 

stiffness constants i.e., S14 is the extension-twist coupling and so on. 

4.4 1D analysis of straight beams 

The strain energy Eq. (4.34) which is applied for 1D beam analysis, includes 3D deformation 

effects of the cross-section. Therefore, the 1D static analysis of the tubular beam can be performed 

using this strain energy equation. The 1D strain energy of beam element is as follows. 

  12 [ ]

e

e T

L

U S dx=     
(4.35) 

where  11 12 13 1 2 32 2
T

     = and Le is the element length. We can calculate the 

stiffness of an element if we express the strains in Eq. (4.35) in terms of degrees of freedom of 

beam element. For a Timoshenko beam model, we can use an element with three nodes which can 

prevent shear locking [83]. The element and its coordinate are shown in Fig. (4.2). The element 

has 6 degrees of freedom at each node including three displacements ( u , v  and w ) and three 

cross-sectional rotations (
1 2 3
, ,x x x   ) in the x1, x2 and x3, respectively. Hence, eighteen degrees 

of freedom for the element is considered. In this model, the following polynomials for the 

approximation of the degree of freedom in the length is used, [84]. 
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Fig. (4.2). A beam element with three nodes, [83]. 

2

1 2 1 3 1
u x x  = + +  (4.36a) 

2 3

4 5 1 6 1 7 1
v x x x   = + + +  (4.36b) 

2 3

8 9 1 10 1 11 1
w x x x   = + + +  (4.36c) 

1

2

12 13 1 14 1x x x   = + +  (4.36d) 

12 15 16 12 x  = +  (4.36e) 

13 17 18 12 x  = +  (4.36f) 

For a Timoshenko beam model, the 1D strains can be written as 

11 u =  (4.37a) 

11 x =  (4.37b) 

22 x =  (4.37c) 

33 x =  (4.37d) 

3122 xv = −  (4.37e) 

2132 xw = +  (4.37f) 

It is noted that the 
2x and 

3x are the bending rotations of the beam section with respect to x2 and 

x3, respectively, while 122  and 132 are rotation of beam section about x3 and x2 for transverse 

shear deformation, respectively. Using strain-displacement Eq. (4.37) and Eq. (4.36), the rotations 

can be expressed as 

2

2

17 18 1 9 10 1 11 12 3x x x x     = + − − −  (4.38a) 
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3

2

15 16 1 5 6 1 7 12 3x x x x     = − − + + +  (4.38b) 

The column matrix of degrees of freedom of the beam element will be as follows. 

1 2 3

1 2 3

1 2 3

[

]

i i i i i i

x x x

j j j j j j

x x x

k k k k k k T

x x x

u v w

u v w

u v w

  

  

  

=δ

 (4.39) 

The unknown coefficients matrix is as the following. 

1 2 18[   ... ]  =  
(4.40) 

The unknowns (
1 18 − ) in the Eq. (4.36) are expressed in terms of the nodal displacement 

vector  by substituting u , v , w , 
1x

 , 
2x and 

3x  at all three nodes of the beam element. we 

have 

1
[ ]  or [ ]T T

−
= =     (4.41) 

The matrix [T] has an order of 18 18 includes the element nodal coordinates. The 1-D strain 

vector  can be expressed in terms of   using Eq. (4.37) as 

[ ]N=   (4.42) 

where matrix [N] has order of 6 18 which is a function of x1. Finally, the strain vector  can be 

expressed in terms of nodal displacement vector   using Eq. (4.42) as 

1
[ ][ ] [ ]N T R

−
= =    (4.43) 

The strain energy relation of the element can be written as 

1

1
[ ] ][ ]

2
[

e

e T T

L

U R S R dx=
  
 
  
   (4.44) 

The stiffness matrix of the beam element is  

1
[ [ ][] ][ ]

e

e T

L

K R S R dx=   (4.45) 

The nodal force vector caused by external loads and moments can be expressed as 
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1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

[

]

i i i i i i

j j j j j j

k k k k k k T

f f f m m m

f f f m m m

f f f m m m

=f

 (4.46) 

where f is the vector of nodal force and
1 1 1, ,ji kf f f are extensional forces, 2 2 2, ,i j kf f f and 

3 3 3, ,ji kf f f are transverse forces at nodes i, j and k, and 1

im , 1

jm , 1

km  are the torsional moments, 

2

im , 2

jm , 2

km and 3

im , 3

jm , 3

km  are bending moments at nodes i, j and k. The nodal displacement 

vector is achieved as follows. 

1[ ]eK −= f  (4.47) 

4.5 Stress analysis of straight circular tube under four-point loading using Pascal 

polynomial dimensional reduction method and VABS 

In this section, the pascal polynomial based dimensional reduction method presented in this 

chapter is used for cross-sectional analysis (determining cross-sectional stiffness constants), 

determination of strain distribution in the cross-section and finding transverse displacement under 

four-point bending loading. The presented polynomial based dimensional reduction method is 

examined with several examples of isotropic and orthotropic tubes with various range of 

thicknesses. Then, the four-point bending analysis of the straight composite tube tested in chapter 

(2) will be performed.  

A program in Maple 15 has been developed named AMTSM (Analytical Meshless Tubular 

Sectional Method). To do so, various tubular sections with different lay-ups are utilized as case 

studies. The parametric study to investigate the effect of polynomial order and lay-up sequence on 

the accuracy of the method is presented.  

4.5.1 Aluminum tube 

An aluminum 6061 T6 [85] isotropic tubular section with the elastic modulus E=69.7 GPa, Poisson 

ratio 0.33 = , an outer diameter Dout =88.9 mm and the thickness h=3.175 mm is studied. The 

obtained stiffness constants reported in Table (4.1) are compared with those extracted through the 

latest version of VABS as VABS 3.8 with the Classical beam model, and the Timoshenko beam 

model. The comparison between the proposed method and VABS 3.8 results of Timoshenko and 

Classical are in terms of the stiffness constants which are obtained from 6 × 6 stiffness matrix 
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(Timoshenko beam model) and 4× 4  matrix (Classical beam model), respectively. As mentioned 

before, in the Timoshenko beam model, the effect of shear is considered while in the Classical 

beam model the effect of shear is not considered. It is noted that the present solution (Aluminum 

tube) has been done with (m=4) of Pascal polynomials. On the other hand, the VABS 3.8 analysis 

is carried out with 6000 elements. It is observed that there is no difference in the obtained 

Timoshenko and Classical beam models in both methods of solutions.  

 Table (4.1). The non-zero cross-sectional stiffness constants of an aluminum tube. 

(non-zero 

stiffness 

constants) 

Present 

(Classical 

beam model) 

Present 

(Timoshenko 

beam model) 

VABS 3.8 

(Classical beam 

model) 

VABS 3.8 

(Timoshenko 

beam model) 

Strength of 

materials  

S11 (N) 5.891× 107 5.891× 107 5.959× 107 5.959× 107 5.959× 107 

S22 (N) - 1.140× 107 - 1.122× 107 - 

S33 (N) - 1.140× 107 - 1.122× 107 - 

S44 (N.m2) 4.168× 104 4.168× 104 4.121× 104 4.168× 104 4.217× 104 

S55 (N.m2) 5.419× 104 5.419× 104 5.482× 104 5.482× 104 5.482× 104 

S66 (N.m2) 5.419× 104 5.419× 104 5.482× 104 5.482× 104 5.482× 104 

 

4.5.2 Composite tube with lay-up , 2
[20 / -70 / 20 / (-70) / 20] , [55] 

As a second case study for the validation of the presented Pascal polynomial dimensional reduction 

method, a thin Circumferentially Uniform Stiffness (CUS) composite tubular section is studied 

and the stiffness constants are compared with those in Ref. [55] which used an earlier version of 

VABS, Ref. [36], and VABS 3.8. The obtained results are tabulated in Table (4.2). The tube has 

lay-up sequence 2[20 / 70 / 20 / ( 70) / 20]− −  as shown in Fig. (4.3). It has inner diameter Din = 

1.934 in (49.12 mm) and outer diameter Dout = 2 in (50.8 mm) with the thickness of each layer of 

0.0055 in (0.1397 mm). It is made of IM6/R6376 with the material properties as 
6

11 23.1 10E =   

psi (159.268 GPa), 6

22 1.4 10E =   psi (9.652 GPa), 12 13 23 0.338  = = = and 
6

12 0.73 10G =  psi 

(5.033 GPa). The stiffness constants based on the Timoshenko beam model (proposed method) 

agree well with Rehfield et al. [36]. There are errors in the VABS (Timoshenko) results obtained 

by Popescu and Hodges [55] with respect to both present (Timoshenko) and Rehfield et al. [36]. 

This error was modified in the higher versions of VABS proposed by Yu et al. [49]. To this end, 
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we analyzed this tube using VABS 3.8 with 7588 elements and the obtained results are reported.  

It can be seen that there is a large difference in the obtained stiffness constants between 

Timoshenko solution and Classical Solution, which can be due to the higher-order approximation 

of energy in Timoshenko and considering the shear effect. There is a sign difference in the 

calculated 14
S  and 36S  of  Rehfield et al. [36]  and the results of Ref. [55] which can be a result 

of sign convention in each of the works. Moreover, the stiffness constants of the tube are computed 

with different orders of the polynomial (m=3 and 4). The obtained stiffness constants are 

converged by m=4.  

 

Fig. (4.3) Cross-section with lay-up of  2[20 / -70 / 20 / -70 / 20] . 

Table (4.2). Stiffness constants of CUS tube, 2[20 / -70 / 20 / -70 / 20] . 

(non-zero 

stiffness 

constants) 

Beam 

theory 

S11 

6
( 10 )  

(lb) 

S22 

5
( 10 )  

(lb) 

S33 

5
( 10 )  

(lb) 

S14 

5
( 10 )  

(lb.in) 

S25 

6
( 10 )  

(lb.in) 

S36 

6
( 10 )  

(lb.in) 

S44 

5
( 10 )  

(lb.in2) 

S55 

5
( 10 )  

(lb.in2) 

S66 

5
( 10 )  

(lb.in2) 

m=3 

(Cl.) 1.938 - - -6.452 - - 4.408 4.902 4.902 

(Tim.) 1.938 2.333 2.333 -6.452 3.226 3.226 4.408 9.364 9.364 

m = 4 

(Cl.) 1.938 - - -6.452 - - 4.408 4.799 4.799 

(Tim.) 1.938 2.333 2.333  -6.452 3.226 3.226 4.408 9.364 9.364 

m = 5 

(Cl.) 1.938 - - -6.452 - - 4.407 4.799 4.799 

(Tim.) 1.938 2.280 2.280 -6.452 3.226 3.226 4.407 9.364 9.364 

m = 7 

(Cl.) 1.938 - - -6.452 - - 4.407 4.798 4.798 

(Tim.) 1.938 2.279 2.279 -6.452 3.226 3.226 4.407 9.363 9.363 

VABS 3.8 (Cl.) 1.896 - - -6.249 - - 4.386 4.798 4.901 
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(Tim.) 1.896 2.276 2.259 -6.161 3.220 3.028 4.386 9.354 8.959 

Rehfield 

et al. [36] 
Non-Cl. 1.972 2.317 2.317 6.680 -3.340 4.634 4.159 9.862 9.862 

Popescu 

and 

Hodges 

[55] 

(Cl.) 1.886 - - 6.086 - - 4.159 4.831 4.831 

Popescu 

and 

Hodges 

[55]  

(Tim.) 1.886 1.137 1.137 6.086 -1.609 -1.609 4.159 7.109 7.109 

 

4.5.3 A thick composite tube with lay-up [9030/±2545/905/±3020/905/±4520] 

The third case study is related to a thick composite tube with complicated lay-up sequence 

[9030/±2545/905/±3020/905/±4520]. The tube is fabricated using Automated Fiber Placement (AFP) 

technique with material of Carbon/PEKK with E1 = 138.3 GPa, E2 = E3 = 10.1 GPa, 𝑣12 = 𝑣13 =

0.31, 𝑣23 = 0.33 and G12 = G13 = G23 = 5.56 GPa. The tube has inner and outer diameters Din = 56 

mm and Dout = 98 mm, respectively. The tube cross-section is meshed using VABS 3.8 with 9098 

elements as shown in Fig. (4.4). The obtained stiffness constants are reported in Table (4.3). There 

is a large difference in the obtained flexural stiffness (S55 and S66) between Cl. and Timoshenko 

models. In addition, the obtained stiffness constants are compared with those of the 3D elasticity 

solution of Lekhnitskii for multi-layered composite tubes proposed by Jolicoeur and Cardou [12] 

and Moshir et al. [2] with no-slip assumption at the interfaces of the layers as well as Shadmehri 

et al. [38] who used non-classical beam theory to calculate flexural stiffness of composite tube. A 

good agreement between the obtained stiffness constants and the literature is observed.  
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Fig. (4.4). a) The lay-up sequence, b) generated mesh of the composite tube with 9098 

number of elements. 

Table (4.3). Non-zero stiffness constants for tube [9030/±2545/905/±3020/905/±4520]. 

(non-zero 

stiffness 

constants) 

Beam 

theory 

S11 

8( 10 )  

(N) 

S22 

7( 10 )  

(N) 

S33 

7( 10 )  

(N) 

S14 

6( 10 )  

(N.m) 

S25 

6( 10 )  

(N.m) 

S36 

6( 10 )  

(N.m) 

S44 

5( 10 )  

(N.m2) 

S55 

5( 10 )  

(N.m2) 

S66 

5( 10 )  

(N.m2) 

m=4 
(Cl.) 2.955 - - -5.088 - - 1.795 1.035 1.035 

(Tim.) 2.955 5.073 5.073 -5.088 2.408 5.073 1.795 2.178 2.178 

m=5 
(Cl.) 2.953 - - -5.087 - - 1.795 1.017 1.031 

(Tim.) 2.953 5.008 5.010 -5.087 2.407 2.378 1.795 2.175 2.160 

m=7 
(Cl.) 2.953 - - -5.087 - - 1.795 1.017 1.017 

(Tim.) 2.953 5.008 5.010 -5.087 2.407 2.378 1.795 2.175 2.160 

VABS 3.8 
(Cl.) 2.945 - - -5.071 - - 1.787 0.993 0.994 

(Tim.) 2.945 4.786 4.786 -5.071 2.328 2.326 1.787 2.126 2.125 

Shadmehri 

et al. [38] 
Non-Cl. - - - - - - - 2.228 2.228 

Jolicoeur 

and Cardou 

[12] 

3D 

elasticity 
- - - - - - - 2.162 2.162 
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4.5.4 Effect of polynomial order (m), and lay-up sequence, on the accuracy of the stiffness 

constants of the cross-section 

The selected order of Pascal polynomial in the warping field, and lay-up sequence may affect the 

accuracy of not only the stiffness constants of the tube but also on the 3D strains of the tube. To 

this end, we examined composite tubes with material properties E1 = 140 GPa, E2 = E3 = 10 GPa, 

𝑣12 = 𝑣13 = 0.31, 𝑣23 = 0.33 and G12 = G13 = G23  = 5.53 GPa. The outer and inner radiuses of 

the tubes are rout =59 mm and rout =39 mm, respectively. The thickness of each layer is assumed to 

be 2 mm. Note that all the following reported stiffness constants are in SI. 

4.5.4.1 Unidirectional composite tube [010] 

The effect of polynomial order on the accuracy of stiffness constants of a unidirectional tube is 

investigated in Table (4.4). Values are compared with those obtained from VABS 3.8. Except for 

S22 and S33 of (m=2), the other stiffness constants are close to which obtained by VABS 3.8. The 

obtained S22 and S33 of orders (m=5 and 7) are more accurate compared to other orders. It is noted 

that both the obtained Timoshenko and Classical are the same. 

Table (4.4). Stiffness constants for tube [010], rout=0.059 m, ply thickness t=2 mm, 

for both (Cl. and Tim.). 

(non-zero stiffness 

constants) 

S11 

8( 10 )  

S22 

7( 10 )  

S33 

7( 10 )  

S44 

4( 10 )  

S55 

6( 10 )  

S66 

6( 10 )  

m=2 8.620 3.404 3.404 8.516 1.077 1.077 

Diff.% 0 87.130 87.130 0 0 0 

m=3 8.620 1.983 1.983 8.516 1.077 1.077 

Diff.% 0 9.015 9.015 0 0 0 

m=4 8.620 1.983 1.983 8.516 1.077 1.077 

Diff.% 0 9.015 9.015 0 0 0 

m=5 8.620 1.890 1.890 8.516 1.077 1.077 

Diff.% 0 3.903 3.903 0 0 0 

m=7 8.620 1.890 1.890 8.516 1.077 1.077 

Diff.% 0 3.903 3.903 0 0 0 

VABS 3.8 8.620 1.819 1.819 8.516 1.077 1.077 

Strength of mat.  8.620 - - 8.516 1.077 1.077 



93 
 

4.5.4.2 Composite tubes with lay-up [905/05] 

The effect of polynomial order (m) on the accuracy of the obtained flexural stiffness of cross-ply 

tube [905/05], is demonstrated in Table (4.5). It is observed that the obtained Classical and 

Timoshenko flexural stiffness of the tube are similar when polynomial order increases. Increasing 

the polynomial order from 4 to 7 does not have a significant effect on the accuracy of the predicted 

flexural stiffness for tubes. Also, both the Timoshenko and Classical common stiffness constants 

are the same. The obtained results converge for [905/05] with order (m=7) of the polynomial. 

 

 

4.5.4.3 Composite tubes with lay-up 
5

[±60 ]  

The influence of polynomial order on the non-zero stiffness constants of the tube 
5

[ 60 ] is 

investigated, as shown in Table (4.6). It is observed that for order (m=2) of the polynomial, except 

for S14, there is no significant difference between the obtained (Cl.) results and those obtained by 

VABS 3.8. By increasing the order of the polynomial, the values of S14 become close to VABS 

3.8. The two stiffness constants S22 and S33 of the order (m=2) have a large difference compared 

Table (4.5). Stiffness constants for tube [905/05], rout=0.059 m, ply thickness 

t=2 mm, for both (Cl. and Tim.) theories. 

(non-zero stiffness 

constants) 

S11 

8
( 10 )  

S22 

7
( 10 )  

S33 

7
( 10 )  

S44 

4( 10 )  

S55 

5( 10 )  

S66 

5( 10 )  

m=2 5.104 3.405 3.405 8.516 7.315 7.315 

Diff.% 1.189 65.935 65.935 0 0.480 0.480 

m=3 5.047 2.207 2.207 8.516 7.315 7.315 

Diff.% 0.059 7.553 7.553 0 0.480 0.480 

m=4 5.047 2.207 2.207 8.516 7.281 7.281 

Diff.% 0.059 7.553 7.553 0 0.480 0.013 

m=5 5.047 2.131 2.189 8.516 7.281 7.281 

Diff.% 0.059 6.676 6.676 0 0.480 0.013 

m=7 5.045 2.131 2.189 8.516 7.281 7.281 

Diff.% 0.029 6.676 6.676 0 0.480 0.013 

VABS 3.8 5.044 2.052 2.052 8.516 7.280 7.280 

Strength of mat.  5.026 - - 8.516 7.256 7.256 
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with VABS 3.8. As the polynomial order increases, the difference decreases noticeably. A very 

good agreement between the results of the present approach with (m=7) compared to VABS 3.8 is 

observed. In addition, it can be observed that the Classical and Timoshenko stiffness constants for 

this type of lay-up sequence  5 are the same. 

Table (4.6). Stiffness constants for tube 
5

[±60 ] , rout=59 mm, ply thickness t=2 mm, for both (Cl. and 

Tim.). 

(non-zero 

stiffness 

constants) 

Beam 

theory 

S11 

7( 10 )  

S22 

7( 10 )  

S33 

7( 10 )  

S14 

4( 10 )  

S25 

4( 10 )  

S36 

5( 10 )  

S44 

5( 10 )  

S55 

4( 10 )  

S66 

4( 10 )  

m=2  

(Cl.) 7.281 - - -3.340 - - 4.395 9.085 9.085 

Diff% 0.289 - - 25.346 - - 0.365 0.0771 0.0771 

(Tim.) 7.281 9.410 9.410 -3.340 2.226 2.226 4.395 9.085 9.085 

Diff% 0.289 4.416 4.416 25.346 14.318 14.351 0.365 0.066 0.066 

m=3 

(Cl.) 7.261 - - -4.351 - - 4.390 9.084 9.084 

Diff% 0.013 - - 2.749 - - 0.251 f0.055 0.055 

(Tim.) 7.261 9.118 9.118 -4.351 2.094 2.094 4.390 9.085 9.085 

Diff% 0.013 1.176 1.176 2.749 19.399 19.399 0.251 0.066 0.066 

m=4 

(Cl.) 7.261 - - -4.351 - - 4.390 9.075 9.075 

Diff% 0.013 - - 2.749 - - 0.251 0.033 0.033 

(Tim.) 7.261 9.128 9.128 -4.351 2.565 2.565 4.390 9.076 9.076 

Diff% 0.013 1.287 1.287 2.749 1.270 1.270 0.251 0.044 0.033 

m=5 

(Cl.) 7.260 - - -4.383 - - 4.389 9.075 9.075 

Diff% 0.000 - - 2.033 - - 0.228 0.033 0.033 

(Tim.) 7.260 9.106 9.124 -4.383 2.552 2.567 4.389 9.076 9.076 

Diff% 0.000 1.043 1.242 2.033 1.770 1.231 0.228 0.033 0.033 

m=7 

(Cl.) 7.263 - - -4.844 - - 4.390 9.077 9.077 

Diff% 0.0413 - - 8.270 - - 0.251 0.011 0.011 

(Tim.) 7.263 9.108 9.125 -4.844 2.749 2.762 4.390 9.078 9.078 

Diff% 0.0413 1.065 1.253 8.270 5.812 6.271 0.251 0.011 0.011 

VABS 3.8 
(Cl.) 7.260 - - -4.474 - - 4.379 9.078 9.078 

(Tim.) 7.260 9.012 9.012 -4.474 2.598 2.599 4.379 9.079 9.079 
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4.5.4.4 Composite tubes with lay-up [455/155] 

To further investigate the effect of lay-up sequence on the accuracy of the present approach, we 

evaluate flexural stiffness of angle-ply [455/155] tube. Table (4.7) shows the effect of polynomial 

order on the stiffness of tubes [455/155]. Also, it is seen that increasing Pascal polynomial order, 

increases the accuracy of stiffness prediction.  

There is a large difference between the obtained flexural stiffness (S55 and S66) of the Classical and 

Timoshenko for both methods. This means that combination of angle-ply layers causes difference 

between the Classical and Timoshenko results. This difference between Classical and Timoshenko 

is due to the effect of shear strains which are considered in Timoshenko beam model. It is observed 

that the other common stiffness constants of the Classical and Timoshenko are the same. The 

percentage difference of the m=2 values compared to VABS 3.8 is large. By increasing the 

polynomial order to (m=5 or 7), the percentage difference decreases. The maximum of the 

percentage difference between the present results and VABS 3.8 is 7.690 for S22, whereas the 

minimum of the percentage difference is 0.485 for flexural stiffness (S66). 

Table (4.7). Stiffness constants for tube [455/155], rout=59 mm, ply thickness t=2 mm, (Cl. and Tim.) 

(non-zero 

stiffness 

constants) 

Beam 

theory 

S11 

8( 10 )  

S22 

7( 10 )  

S33 

7( 10 )  

S14 

6( 10 )  

S25 

6( 10 )  

S36 

6( 10 )  

S44 

5( 10 )  

S55 

5( 10 )  

S66 

5( 10 )  

m=2  

(Cl.) 4.615 - - -6.805 - - 2.533 4.884 4.884 

Diff% 3.847 - - 17.024 - - 29.300 7.152 7.152 

(Tim.) 4.615 7.482 7.482 -6.805 3.603 3.603 2.533 6.619 6.619 

Diff% 3.847 42.081 42.081 17.024 16.038 16.038 29.300 3.599 3.599 

m=3 

(Cl.) 4.479 - - -6.004 - - 2.060 4.692 4.692 

Diff% 0.078 - - 3.250 - - 5.155 2.939 2.939 

(Tim.) 4.479 6.833 6.833 -6.004 3.532 3.532 2.060 6.518 6.518 

Diff% 0.078 29.756 29.756 3.250 13.752 13.752 5.155 2.019 2.019 

m=4 

(Cl.) 4.479 - - -6.004 - - 2.060 4.620 4.620 

Diff% 0.078 - - 3.250 - - 5.155 1.360 1.360 

(Tim.) 4.479 5.690 5.690 -6.004 3.203 3.203 2.060 6.424 6.424 

Diff% 0.078 8.051 8.051 3.250 3.156 3.156 5.155 0.547 0.547 

m=5 (Cl.) 4.468 - - -5.939 - - 2.023 4.613 4.619 
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Diff% 0.540 - - 2.132 - - 3.266 1.206 1.338 

(Tim.) 4.468 5.678 5.675 -5.939 3.205 3.197 2.023 6.423 6.420 

Diff% 0.540 7.823 7.766 2.132 3.220 2.962 3.266 0.532 0.485 

m=7 

(Cl.) 4.468 - - -5.939 - - 2.023 4.613 4.617 

Diff% 0.540 - - 2.132 - - 3.266 1.206 1.338 

(Tim.) 4.468 5.671 5.662 -5.939 3.203 3.194 2.023 6.422 6.420 

Diff% 0.540 7.690 7.519 2.132 3.156 2.866 3.266 0.532 0.485 

VABS 3.8 
(Cl.) 4.444 - - -5.815 - - 1.959 4.558 4.558 

(Tim.) 4.444 5.266 5.266 -5.815 3.105 3.105 1.959 6.389 6.389 

 

4.5.5 Validation of 3D strains 

4.5.5.1 Distribution of strain in tube 40 40 20 40 20 40[90 / 25 / 90 / 30 / 90 / 45 ]  

To study the capability of the present method to predict strain distribution in the cross-section, the 

distribution of the 3-D strain components in a composite cross-section with a complex lay-up 

40 40 20 40 20 40
[90 / 25 / 90 / 30 / 90 / 45 ] , the material properties of the section (4.5.4), the length of 1 m, 

outer radius rout = 59 mm, inner radius rin = 39 mm and thickness of each layer 0.1 mm subjected to 

a pure bending moment M2 =1 KN.m are illustrated in Figs. (4.5) to (4.8), respectively. The 

distribution variation and magnitude of 11 , 122 , 22 and 33 of the present method with (m=7) 

have a good correlation with respect to ANSYS 3D. The distribution of the normal strains through 

the thickness at 90 = of the circumference are demonstrated in Fig. (4.9). The obtained results of 

the present method are compared with ANSYS 3D FE solution. In the ANSYS 3D solution, the 

element SOLID 185 has been used. The tube body is meshed with 3,192 k elements. The total 

computational time of ANSYS 3D solution is 55 minutes while the present polynomial method 

computational time is only 15 seconds. 
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a) ANSYS 3-D                                                             b) Present 

Fig. (4.5). Distribution of 11 in the tubular section 40 40 20 40 20 40[90 / 25 / 90 / 30 / 90 / 45 ]  under 

(M2 = 1 KN.m), a) ANSYS 3D, b) present. 

 

a) ANSYS 3-D                                                             b) Present 

Fig. (4.6). Distribution of 12 in the section 40 40 20 40 20 40[90 / 25 / 90 / 30 / 90 / 45 ]  under (M2 = 1 

KN.m), a) ANSYS 3D, b) present. 

   

a) ANSYS 3-D                                                             b) Present  

Fig. (4.7). Distribution of 22 in the section 40 40 20 40 20 40[90 / 25 / 90 / 30 / 90 / 45 ]  under (M2=1 

KN.m), a) ANSYS 3D, b) present. 
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a) ANSYS 3-D                                                             b) Present  

Fig. (4.8). Distribution of 33 in the section 40 40 20 40 20 40[90 / 25 / 90 / 30 / 90 / 45 ]  under (M2 = 1 

KN.m), a) ANSYS 3D, b) present. 

 

 
 

Fig. (4.9). Distribution of 11 , 22 , and 33 through the thickness of 

40 40 20 40 20 40[90 / 25 / 90 / 30 / 90 / 45 ] tube at 90 =  of the circumference under M2=1 KN.m. 
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4.5.5.2 Distribution of 3-D strains of 
5

[±60 ]  tube 

The distribution of longitudinal strain 11 , 22  (normal strain along x2), 33  (normal strain along 

x3) and out-of-plane shear strain 12 through the thickness at 
2


 =  of the tube 

5
[ 60 ]  with the 

material properties and dimensions of the section 4.5.4 under M2=1 KN.m are demonstrated in Fig. 

(4.10). The order (m=7) of the polynomial is used for the analysis. An excellent correlation 

between the present method and VABS 3.8 can be observed. It is noted that the tube is meshed 

with 97800 elements in ANSYS 3D and the cross-section is meshed with 3740 2D elements in 

VABS 3.8.  

 

Fig. (4.10). Distribution of 11 , 22 , and 33 through the thickness of 
5

[±60 ] tube at 90 =  of 

the circumference under M2=1 KN.m. 

4.5.5.3 Cross-sectional analysis of composite tube 

7 4 4 4 4 4 4
[(5  satin) / 90 / ( 25) / 90 / ( 35) / 90 / ( 45) ]Harness     

The stress analysis of four-point bending of straight composite tube proposed in chapter (3) with lay-up 

7 4 4 4 4 4 4[(5  satin) / 90 / ( 25) / 90 / ( 35) / 90 / ( 45) ]Harness    is done using Pascal Polynomial 

dimensional reduction method proposed in this chapter. The material properties, lay-up sequence and 

loading conditions are reported in section 2.2.2. The distribution of longitudinal strain along x1 ( 11 ), shear 

strain 23 , normal strain along x3 ( 22 ), and normal strain along x3 ( 33 ) subjected to bending 
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moment M2=-1277 N.m are shown in Figs. (4.11-4.14). The obtained strains using the present 

pascal polynomial dimensional reduction method are compared with ANSYS 3D FEA.  

 

 
a) b) 

Fig. (4.11). Distribution of longitudinal strain 11 in the section of tube 

7 4 4 4 4 4 4
[(5  satin) / 90 / ( 25) / 90 / ( 35) / 90 / ( 45) ]Harness     subjected to M2=-1277 N.m., a) 

ANSYS 3D, b) Present. 

 

 

 
a) b) 

Fig. (4.12). Distribution of longitudinal strain 23 in the section of tube 

7 4 4 4 4 4 4
[(5  satin) / 90 / ( 25) / 90 / ( 35) / 90 / ( 45) ]Harness     subjected to M2=-1277 N.m., a) 

ANSYS 3D, b) Present. 
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a) b) 

Fig. (4.13). Distribution of longitudinal strain 22 in the section of tube 

7 4 4 4 4 4 4
[(5  satin) / 90 / ( 25) / 90 / ( 35) / 90 / ( 45) ]Harness     subjected to M2=-1277 N.m., a) 

ANSYS 3D, b) Present. 
 

 

 
a) b) 

Fig. (4.14). Distribution of longitudinal strain 33 in the section of tube 

7 4 4 4 4 4 4
[(5  satin) / 90 / ( 25) / 90 / ( 35) / 90 / ( 45) ]Harness     subjected to M2=-1277 N.m., a) 

ANSYS 3D, b) Present. 

The distribution of normal strains 11
Γ  and 22Γ at position of 90 = of the circumference and outer 

radius of the tube (location of strain gage shown in Fig. (4.15a) of the tube under four-point 

bending loading subjected to loading F=2P are calculated using the present Pascal polynomial 
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dimensional reduction method and compared with the experiment presented in chapter (2). At the 

position, the 11
Γ  is the longitudinal strain and 22Γ  is the circumferential strain. A good correlation 

between the present method of solution and the experiment is obtained.  

 
a) 

 
b) 

Fig. (4.15), a) cross-section of the circular composite tube and the installed strain gage, b) 

Longitudinal and circumferential strains versus load F at 90 = . 

 

4.6 1-D FE modeling of straight composite tube 

7 4 4 4 4 4 4
[(5  satin) / 90 / ( 25) / 90 / ( 35) / 90 / ( 45) ]Harness     

The deflection of the tubular composite beam calculated using the present polynomial method and 

1-D FE (section 4.4) is compared with VABS 3.8 and experimental result. For the experiment, we 

carried out a test on a composite tube under four-point bending loading (section 2.2.2). The tube 

was under the load 10 KN. The obtained VABS 3.8 stiffness matrix was imported to ANSYS 

0

2

4

6

8

10

12

-1000 -800 -600 -400 -200 0 200 400

F
 (

K
N

)

Г (με)

Г11 (Longitudinal) (Present)

Г11 (Longitudinal) (Experiment)

Г22 (Circumferential) (Present)

Г22 (Circumferential) (Experiment)



103 
 

APDL package to perform 1D FE analysis. In the ANSYS modeling, beam 189 element type was 

selected which has 3 nodes and 3 degrees of freedom at each node. The boundary conditions are 

considered as (
1 3

0,  0x xu v w  = = = = = ) at two ends of the beam. The distribution of 

transverse displacement in the length of the tube is demonstrated in Fig. (4.16), with the 

experimental point at mid length of the tube. The convergence study shows that the obtained 

displacement converges with 40 number of 1D elements. It can be seen that a good agreement is 

obtained.  

 

Fig. (4.16). Transverse displacement of tube 

7 4 4 4 4 4 4
[(5Harness satin) / 90 / (±25) / 90 / (±35) / 90 / (±45) ]  under four-point bending loading. 

4.7 Parametric study 

In the Figs. (4.17-4.19) , we investigated the influence of the fiber angle α on the change of stiffness 

constants S11, S14, S36, S33, S55, and S66 of the composite tubes with lay-up
5

[ ] . The dimensions 

and material properties are similar to section 4.5.4. It is seen from Fig. (4.17) that as the fiber angle 

increases, the extensional stiffness (S11) decreases. The change of S11 is considerable until the fiber 

angle of 45 = . The change of extensional-torsional (S14) and torsional-bending (S36) stiffness 

versus the fiber angle are depicted in Fig. (4.18). At the fiber angle 30 = , the maximum of the 

S14 and S36 can be observed. Then, the value of them decrease considerably by 60 = . The 

variation of torsional and bending stiffness in Fig. (4.19) show that the torsional stiffness (S33) is 
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maximum at 45 = and the bending stiffness (S55 and S66) decreases by increasing the fiber 

angle.  

 

Fig. (4.17). Extensional stiffness (S11) of the composite tube 
5

[±α ]  versus fiber angle (α). 

 

Fig. (4.18). Extensional-torsional (S14) and torsional-bending (S36) stiffness of the composite tube 

5
[±α ]versus fiber angle (α). 
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Fig. (4.19). Torsional (S44) and bending (S55, S66) stiffness of the composite tube 
5

[±α ]versus 

fiber angle (α). 

4.8 Conclusion 

The presented meshless dimensional reduction method for analysis of straight tubes can be studied 

from two aspects: The accuracy of the simple Pascal polynomial method, and the effect of the lay-

up sequence on the need to use refined theory. 

It was shown that the simple Pascal polynomial method can provide results that are as accurate as 

the VABS method and more computationally efficient than 3-D FEA. This has been demonstrated 

for the determination of the stiffness constants, the through-section strains, and the deflection of 

beams. This has also been demonstrated for tubes of different lay-up sequences, from simple lay-

up sequence such as cross-ply to complicated lay-up sequences with different fiber angle 

orientations. For example, it has been shown the present cross-sectional analysis can substantially 

reduce the computational cost compared to 3-D FEM. As such, the present method would be 

beneficial for structural optimization.  

• For tubes made of cross-ply layers i.e. [90m/0n], there is no significant difference between the 

stiffness constants obtained using Classical model and Timoshenko model. This is due to the 

absence of shear coupling terms. 

• For straight tubes with the lay-up sequence  
5

 , there is no difference between the obtained 

flexural stiffness of Classical and Timoshenko models.  

• In order to obtain sectional stiffness constants of cross-ply tubes, it is not necessary to use 

higher degree of the polynomial. The polynomial order (m=4) is sufficient.  
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• For straight tubes with lay-up sequence made of layers of different fiber orientation such as 

[455/155], there is a significant difference in the flexural stiffness of Timoshenko and Classical 

models obtained by both the Pascal polynomial method and VABS 3.8. 

• To achieve higher precision of 3D strains for tubes with combination of angle ply layers, the 

order of applied polynomial needs to be increased, ( 5m  ).   

• The extensional stiffness (S11) decreases by increasing the fiber angle of a composite tube.  

• The magnitude of extensional-torsional (S14) and torsional-bending (S36) of a composite 

straight tube are maximum at 30 =  of the fiber angle of 
5

[±α ]  tubes.  

• The torsional stiffness (S44) of a straight composite tube is maximum at 45 = of the fiber 

angle of 
5

[±α ]  tubes.  

• As the fiber angle increases, the bending stiffness (S55 and S66) of a composite tube with lay-

up 
5

[±α ]decrease.  

• The present 1D FE formulation agrees well with 1D FE of ANSYS for a tube with complex 

lay-up sequence.  

• The present method saves computation time considerably. As an example, the analysis of tube 

of section 4.5.5.1 takes 55 minutes, while the analysis of this tube using Pascal polynomial 

dimensional reduction method takes only 15 seconds.  
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5 Chapter 5: Pascal polynomial dimensional reduction method for elliptical tubes 

In this chapter, the dimensional reduction method for determining the cross-sectional stiffness 

constants, strain distribution of composite tubes with elliptical cross-section is presented. The 1D 

FE solution presented in section 4.4 will be employed to determine transverse deflection of straight 

elliptical tubes.  

5.1 Pascal polynomial dimensional reduction method for elliptical cross-sections 

The dimensional reduction procedure using VAM for straight tubes with elliptical section is similar 

the case of straight tubes presented in chapter (4) except that the angle of layer through the 

circumference of the tube is not constant and it varies through the circumference. So, this angle 

should be considered. The matrix [D] in the strain energy for an elliptical tube is considered as 

follows, see Eq. (3.20).  

1 1[ ] [ ] [ ] [ ][ ] [ ]T TD T T C T T   

− − − −=  (5.1) 

where [C] is the 6 × 6 orthotropic material stiffness matrix (Eq. (3.21)) which relates the stresses 

and strains in the material coordinates e1, e2, e3, [80], [ ]T  is the transformation matrix                     

(Eq. (3.22))  that connects the material coordinate system to the coordinate system x1, y2 and y3, 

and [ ]T is the transformation matrix (Eq. (3.23)) which connects the coordinate system x1, y2, y3 

to the x1, x2, x3 coordinate system.  

It is important that for an elliptical tubular beam the layer angle β changes by the variation of the 

circumferential angle θ. So, it is important to establish a relation between the circumferential angle 

θ and the layer angle β. To find this relation, an axillary angle 𝜙 is defined as shown in Fig. (5.1). 

The angle 𝜙 is defined as the counter-clockwise angle between x2 and y3. The relation between the 

layer angle β and this axillary angle 𝜙  is / 2 −= + . It can be shown that the circumferential 

angle θ is related to the angle 𝜙, for the first quadrant, as follows, [86].  

2 2

arctan( / tan( ))a b =  (5.2) 

when θ = π/2, the use of Eq. (5.2) has uncertainty for the determination of ϕ. There are also 

complexities for the other quadrants. From geometry considerations, the relationships between ϕ 

and θ for the whole section can be shown as 
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 (5.3) 

The relations between ϕ and θ are plotted using Eq. (5.3) in Fig. (5.2). The piecewise function 

showing the relation between ϕ and θ (Eq. (5.3)) in conjunction with / 2 −= +  , may be used 

in calculation of [ ]T to calculate the [D] matrix. It is noticed that if Eq. (5.3) is approximated by 

a polynomial function (e.g., order of 13), the time required for numerical integration later in the 

analysis is faster using Maple software. 

 

 

 

 

a) b) 

Fig. (5.1). Coordinate sytem, dimensions, fiber angle and position angle orientation of elliptical 

composite tube. 
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Fig. (5.2). The change of  versus  for an ellipse with various b/a. 

5.2 Pascal polynomial dimensional reduction method for unidirectional elliptical tubes  

The strain energy of the Eq. (4.1) for a beam with orthotropic material is shown in the Eq. (5.4).  

1 1 1 1 2 2 2
11 3 2 2 3 3 2 11 3 1 3 2 21

1 2 3 2 1 2 3

3 3 31 2 2
2 1 3 2 31 41

3 1 2 3 2 3

2
L R

w w w w w w w
U x x x x D x x x D

x x x x x x x

w w ww w w
x x x D D

x x x x x x

   



      
                

   
    

   

      
= + − + + − + − + + −

      

    
+ + + + − + + +

     

  

3 3
51 61

2 3

1 1 1 1 1 1
11 3 2 2 3 3 2 11 3 2 2 3 3 2 12

1 2 3 1 2 3

1 2 2 2 1
3 1 3 2 22

2 1 2 3 3

w w
D D

x x

w w w w w w
x x x x x x x x D

x x x x x x

w w w w w
x x x D x

x x x x x

     






 

      
               

  
   

  

 
+

 

     
+ − + + − + + − + + −

     

    
+ − + + − + +

    

1 1 1
11 3 2 2 3 3 2 13

1 2 3

3 3 3 2
2 1 3 2 32 42

1 2 3 2

3 32 1 2 2 2
52 62 3 1 3 2

3 2 3 2 1 2 3

w w w
x x x x D

x x x

w w w w
x x D D

x x x x

w ww w w w w
D D x x x

x x x x x x x

  





  
   

  

     
      

     

    
+ + − + + −       

   
+ + − +
   

     
+ + + − + + −

      

3 3 3 3 31 2 2

2 1 3 2 33 43 53 63

3 1 2 3 2 3 2 3

3 3 31

2 1 3 2

3 1 2 3

1 2 2 2
3 1 3 2 23

2 1 2 3

w w w w ww w w
x x x D D D D

x x x x x x x x

w w ww
x x x

x x x x

w w w w
x x x D

x x x x







      
+ + + + − + + + +

       

  
+ + + −

   

     
+ − + + −         

     
     

     

  
  

  

1 1 1

11 3 2 2 3 3 2 14

1 2 3

3 3 31 2 2 2 1

3 1 3 2 24 2 1 3 2 34

2 1 2 3 3 1 2 3

3 32 2

44 54

2 3 2

w w w
x x x x D

x x x

w w ww w w w w
x x x D x x x D

x x x x x x x x

w ww w
D D

x x x

  

 

  
+ + − + + −

  

      
+ − + + − + + + + −

       

  
+ + + +
   

  
   

  

      
      

      

 
 
 

2 1 1 1

64 11 3 2 2 3 3 2 15

3 2 1 2 3

w w w w
D x x x x D

x x x x x
  

   
+ + − + + −

   

   
   

   

 

 

(5.4) 
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where R is the region of the cross-section. In the dimensional reduction method, the VAM is used 

to perturb the warping field and therefore the strain energy of the beam using the small parameters 

of the problem. The perturbation is done considering the magnitude of the small terms. These small 

terms are: axm is the maximum of the axial strain, /
o

h r is the thickness-to- radius ratio and /
o

r L  

radius-to-length ratio. 
o

r is the mean radius of the elliptical beam cross-section. One can conclude 

that h/L≪ 1. The warping field can be written in the following form, [55]. 

max max max
max max max

1 10 11 2 20 21 3 30 31; ;

h h h

L L L

w w w w w w w w w
  

  

= + = + = +
 

(5.5a) 
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x x
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(5.5b) 

2 2 2
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1 1

( ) ( ) ( )

10 20 3 30 311 11 2 21

1 1 1 1 1 1 1

;  ;  

h h h h h h

L L L L L L

x x

w w w w ww w w w

x x x x x x x

     



 

     
= + = + = +

      
 

(5.5c) 

In Eq. (5.5a), the warping displacements w1, w2, w3 are considered to consist of terms of order O (

max ) as (w10, w20, w30) and terms of order O ( max ( )
h
L

 ) as (w11, w21, w31). Substituting Eq. (5.5) into 

Eq. (5.4) and collecting the different orders of the strain energy expressions, we collect the 

expressions up to order 
2

max( )O   which leads to the first approximation of the strain energy. 

Selecting the expressions up to the order
2 2

max( ( ) )
h

O
L

 , we achieve the second approximation of 

the strain energy of the beam. First approximation of the strain energy for an anisotropic beam can 

be written as Eq. (5.6).  
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(5.6) 

5.2.1 Pascal polynomial method 

Eq. (5.6) consists of derivatives with respect to the coordinate variables x1, x2, x3 of order 
2

max( )O   

of the warping displacement w10, w20, w30, along with the 1D strain variables 11 , 1 , 2 , 3 and 

the material constants Dij.  
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In the VAM, the warping displacements are assumed to be functions of the coordinates x2 and x3 

only. The VABS uses finite element mesh for the cross-sectional discretization. The displacement 

for the different type of elements (linear or quadratic) can be assumed, and the degree of accuracy 

depends on the mesh size. This is the basis for the development of the VABS software. For sections 

of regular geometry such as circular cross-section, finite element method is not necessary, and a 

simpler approach can be used. The Pascal polynomial method was introduced in [79]. Here for the 

elliptical cross section, a similar approach is used. The Pascal polynomials are: 

2 2

10 1 2 3 1 1 2 1 2 3 1 3 4 1 2 5 1 3 2 6 1 3

2 2

20 1 2 3 7 1 8 1 2 9 1 3 10 1 2 11 1 3 2 12 1 3

2

30 1 2 3 13 1 14 1 2 15 1 3 16 1 2 17 1

( , , ) ( ) ( ) ( ) ( ) ( ) ( )

( , , ) ( ) ( ) ( ) ( ) ( ) ( )

( , , ) ( ) ( ) ( ) ( ) (

w x x x a x a x x a x x a x x a x x x a x x

w x x x a x a x x a x x a x x a x x x a x x

w x x x a x a x x a x x a x x a x

= + + + + +

= + + + + +

= + + + + 2

3 2 18 1 3) ( )x x a x x+

 (5.7) 

The warping displacements of the Eq. (5.7), contain unknown coefficients a1 to a18 that need to be 

determined. The number of the coefficients may depend on the complexity of the section. The 

determination of these coefficients is done by the minimization of the strain energy of the beam. 

Substituting the Eq. (5.7) into the strain energy of the Eq. (5.6), the strain energy, which is a 

function of coordinates x2, x3 and Pascal coefficients (a1 to a18) will be obtained. We consider the 

material properties for a unidirectional elliptical tube as, [82] 

1 2 3 12 13 21 12 2 1 23

32 23 3 2 31 13 3 1 12 13 23

; ; ; / ; ;

/ ; / ; ;

t p tp p

t p

E E E E E v v v v v E E v v

v v E E v v E E G G G G G

= = = = = = =

= = = = =
 (5.8) 

where, 
2(1 )

p

p

p

E
G

v
=

+
 and p stands for “in-plane” and t strands for “transverse”. It can be shown 

that for the case of tubes made by unidirectional composites (fibers oriented along the axis of the 

tube), [D] = [C]. Substituting Eq. (5.7) into Eq. (5.6), the strain energy can be expressed as follows. 

The calculation of the strain energy is performed in Maple software.  



113 
 

( ) ( )

( )
( )

2

3 2 2 3 11 32
0 2 2 2

2 3

22

3 2 2 3 111 1
3 2 2 3 11 3 1 2 1

2 3

ν 1 ν ν
2

ν 2ν ν 2.ν 1. 2ν ν

ν

ν 2

t p p t tp p t tp

p t tp p t p t tp p t tp p p t tL R

p t tp

t t

p t

x x E E E E E ww
U

E E E E E E x E E E x

x x E Ew w
x x x G x G

x x E

  

  
    

 − + − 
 = − −
  + − + −  + − 
 

− +   
− + + − + + + −  

  +   

  

( )
( )( )

( )
( )( )

( )

( )
( )

2

2 2

32 2

2 2
2 3 2

2

32

3 2 2 3 113 2

2

2

2

.ν

ν ν ν

1 ν ν 2ν 1 ν ν 2ν

ν1

2 1 ν 2ν ν

ν ν

1 ν ν 2ν

tp p t

p t tp p p tp p p t

p p t tp p t p p t tp p t

p

p t tp

p tp p p t t

p tp p p t

p p t tp

E E

E E E E E E ww w

x x xE E E E E E

ww
E

x x E Ex x

E E E

E E E

E E

  


 −

− + +  
+ −
  + + − + + −


 
+   − +  

+ + − −+ + −

+

+ +( )
( )

( )( )

2

3 32
3 2 12

2 3 3

ν

1 ν ν 2ν

p t tp p

p t p p t tp p t

E E E w ww
dx dx dx

x x xE E E E

− +  
+

   − + + −
 

 

(5.9) 

The aim is to carry out the integration of Eq. (5.9) in an elliptical region
22

32

2 3 2 2
( , ) | 1

xx
R x x

a b
= + 
 
 
 

. A change of variable can be considered as in Eq. (5.10). 

2

3

x a

x b





=

=
 (5.10) 

where a and b are major and minor radii of the ellipse.   and  are the coordinates in which an 

ellipse is transformed to a circle and 0 1   and 0 1  , where the region of the integration 

is  2 2( , ) | 1R    = +  . The integration of Eq. (5.9) will be as 

0 2 3 3 2 1 12 ( , ) ( ( , ), ( , ))
L R L R

U f x x dx dx dx f g h Jd d dx     = =     
(5.11) 

Where J is the Jacobian, 
3 32 2

x xx x
J

   

  
= −
   

. One can transform the coordinates   and   to 

polar coordinates by substituting cos( )r =  and sin( )r =  where r is a non-dimensional 

variable ( 0 1r  ) and 0 2   . Therefore, the strain energy of the elliptical tube with inner 

major radius of ai, inner minor radius bi, outer major radius aout and outer minor radius bout is 

written by subtraction of the strain energy of an ellipse rod with the outer radii of (𝑎𝑜𝑢𝑡, 𝑏𝑜𝑢𝑡) and 

an imaginary ellipse rod with the radii of (𝑎𝑖, 𝑏𝑖) with the same material. The strain energy can be 

expressed as Eq. (5.12). 
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= = = = = =

= −       (5.12) 

The simplified strain energy of Eq. (5.12) is written in Eq. (5.13).  
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The procedure of VAM is to minimize the strain energy of Eq. (5.13) with respect to unknown 

warping. So, the strain energy is minimized with respect to each Pascal coefficient as 

0 0,  =1..18
i

U
i

a


=


 (5.14) 

Eq. (5.14), leads to a system of algebraic equations with nine equations and nine variables. By 

solving Eq. (5.14) and substituting into Eq. (5.13), we have 
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(5.15) 
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Collecting the coefficients of 2

11  results in 11S , coefficients of 2 2

1 2, ,  and 2

3 lead to 22S , 33S  

and 44S , respectively, as in Eq. (5.16). 
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 (5.16) 

The stiffness constants 11S , 33S  and 44S  are the same as those from strength of materials. However, 

there is a difference in the torsional stiffness ( 22S ) of Eq. (5.16) and strength of materials. The 

torsional stiffness of a unidirectional tube using the strength of materials is as the following, [87].  
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= −

+ +
 (5.17) 

This difference will be investigated in section 5.4.2 where we will compare the obtained 22S of the 

Present Pascal polynomial dimensional reduction method and the obtained values of strength of 

materials approach. 

5.3 Pascal polynomial dimensional reduction method for elliptical tubes with arbitrary 

lay-up 

For elliptical tubes with arbitrary lay-up, the matrices of Eq. (4.20) will be modified to Eq. (5.18).  
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(5.18) 
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where each of the expressions above consist of subtraction of the area of the transformed ellipse 

with the major and minor radius of ai+1 and bi+1 from the area of the transformed ellipse with the 

major and minor radius of ai and bi. In Eq. (5.18), the relations Eq. (3.22) and Eq. (3.23)  with the 

help of Eq. (5.3) are used to take into account the change of the angle of the fiber through the 

circumference of the elliptical section.  

5.4 Stress analysis of elliptical composite tubular beams using meshless dimensional 

reduction method 

A program in Maple 15 named AMESM (Analytical Meshless Elliptical Sectional Method) is 

developed in order to validate the present method of solution for elliptical tubes. Different elliptical 

sections with different minor to major radius ratios (b/a) are examined and compared with the 

literature, VABS 3.8 (the latest version of VABS tool), experiment, and Strength of materials. The 

parametric study is performed to investigate the effect of lay-up sequence as well as aspect ratio 

on the cross-sectional stiffness constants and the transverse displacement of the tube under four-

point bending loading. 

5.4.1 Validation 

First, elliptical tubes made by IM6/3501-6 graphite/epoxy with material properties of E11=24.8 

Msi (170 GPa), E22=E33=1.41 Msi (9.72 GPa), G12=G23=G13=0.9 Msi (6.20 GPa), 

v12=v23=v13=0.329 with the thickness of each layer of 0.0052 in, with the lay-up sequence 

[±452/02/±45]𝑠 is studied and results are compared with those of reference [71]. The elliptical 

cross-section has a ratio of major to minor radii of 0.75. The cross-section of the tube is 

demonstrated in Fig. (5.3). The bending stiffness of the elliptical tube with various major axes 

obtained from the present method are compared to those obtained by [71] in Fig. (5.4). The 



118 
 

obtained bending stiffness by the present method (Timoshenko beam model) with order (m=4) 

agrees well with that obtained by an analytical method, [71]. 

 

Fig. (5.3). Cross-section of an elliptical tube with lay-up [±452/02/±45]𝑠. 

 
Fig. (5.4). Comparison of bending stiffness of composite elliptical tubes with b/a=0.75, 

[±452/02/±45]𝑠. 

 

5.4.2 Analysis for unidirectional elliptical tube 

The difference between the obtained 
22S of Eq. (5.16) obtained through Pascal polynomial method 

and (5.17) obtained through mechanics of materials approach is studied. To do so, a composite 

Carbon/PEEK tube with E1 = 138.3 GPa, E2 = E3 = 10.2 GPa, 𝑣12 = 𝑣13 = 0.31, 𝑣23 = 0.33 and 

G12 = G13 = G23 = 5.56 GPa, [2] is studied. We used this composite material in all the following 

composite case studies throughout this section unless other properties are mentioned.  

The torsional stiffness of elliptical unidirectional [0]2 tubes with the thickness of each layer 1 mm 

(total thickness of 2 mm), and (a = 0.06 m) with different b/a ratios using Eq. (5.16) and Eq. (5.17) 
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are shown in Fig. (5.5). We used the thickness of 1 mm for a layer in all the composite cases 

throughout this chapter unless the other thickness is mentioned. It can be seen that even though 

the expressions for the twisting coefficients are different, their values are practically the same. 

 
Fig. (5.5). Torsional stiffness change versus minor to major axes ratio of 

elliptical unidirectional tubes, (a = 0.06 m). 

5.4.3 Analysis for [90/0] elliptical tube 

The change of torsional and bending stiffness of [90/0] elliptical tubes versus b/a are demonstrated 

in Figs. (5.6), and (5.7), respectively. As expected, by increasing the b/a ratio, the torsional and 

the bending stiffness increase. Moreover, only the diagonal stiffness constants are non-zero. It is 

noted for the case of [90/0] tubes, the common Classical and Timoshenko beam model stiffness 

constants are identical.  
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Fig. (5.6). Torsional stiffness change versus minor to 

major axes ratio of elliptical [90/0] tubes, a=0.06 m. 

Fig. (5.7). Bending stiffness change versus minor to 

major axes ratio of elliptical [90/0] tubes, a=0.06 m. 

 

5.4.4 Elliptical tubes containing off-axis fibers 

In order to investigate the capability of the Pascal polynomial method to handle elliptical tubes 

with complex lay-up sequences, CUS (Circumferentially Uniform Stiffness) tubes made of lay-up 

sequences [0/α] are examined. These lay-up sequences will give rise to couplings among different 

modes such as axial-torsion or shear-bending. The results obtained from the present Pascal 

polynomial method for both the Classical and Timoshenko beam models will be compared with 

those obtained from VABS, and Strength of Materials. Stiffness constants for laminates having α 

= 0o, 15o, 30o, 45o, 60o, 90o were determined. Values of the stiffness constants for two cases (α = 

30o and α = 60o) are shown in Tables (5.1) and (5.2). The cross-section of these tubes is meshed 

by 2560 elements in VABS 3.8. It can be observed that the off-diagonal stiffness constants are 

non-zero when the tube is angle-ply. Comparing the tables (5.1) and (5.2), one can see that there 

is a significant increase in the absolute values of shear couplings as S14, S25 and S36 as the angle α 

decreases from 60° to 30°. 

Table (5.1). Stiffness constants of CUS elliptical tube, [0/30], a=0.06 m.  

(non-zero 

stiffness 

constants) 

b/a 
Beam 

theory 

S11 

7
)( 10  

(N) 

S22 

6
( 10 )  

(N) 

S33 

6
( 10 )  
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( 10 )  

(N.m) 
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(N.m) 
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(N.m) 
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3
( 10 )  

(N.m2) 

S55 

4
( 10 )  

(N.m2) 

S66 

4
( )10  

(N.m2) 

Present ½ 
(Cl.) 5.336 - - -2.859 - - 10.740 2.222 6.746 

(Tim.) 5.336 5.409 2.154 -2.859 1.497 1.607 10.740 2.636 7.946 
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VABS 3.8 
(Cl.) 5.433 - - -2.759 - - 10.913 2.266 6.798 

(Tim.) 5.433 5.302 1.717 -2.759 1.426 1.209 10.913 2.650 7.650 

Present 

2/3 

(Cl.) 5.950 - - -3.901 - - 18.094 4.264 8.054 

(Tim.) 5.950 4.552 2.797 -3.901 1.931 1.825 18.094 5.016 9.244 

VABS 3.8 
(Cl.) 5.959 - - -3.739 - - 18.040 4.280 8.006 

(Tim.) 5.959 5.208 2.713 -3.739 1.934 1.698 18.040 4.998 9.069 

Present 

5/6 

(Cl.) 6.570 - - -4.933 - - 26.323 7.038 9.376 

(Tim.) 6.570 4.858 4.183 -4.933 2.389 2.558 26.323 8.214 10.940 

VABS 3.8 
(Cl.) 6.524 - - -4.683 - - 26.014 7.055 9.318 

(Tim.) 6.524 5.048 3.747 -4.683 2.436 2.154 26.014 8.321 10.556 

Present 

1 

(Cl.) 7.224 - - -5.990 - - 35.084 10.704 10.704 

(Tim.) 7.224 4.877 4.877 -5.990 2.945 2.945 35.084 12.483 12.483 

VABS 3.8 
(Cl.) 7.151 - - -5.728 - - 34.790 10.721 10.721 

(Tim.) 7.151 4.871 8.807 -5.728 2.943 2.694 34.790 12.481 12.231 

 

Table (5.2). Stiffness constants of CUS elliptical tube, [0/60], a=0.06 m.  

(non-zero 

stiffness 

constants) 

b/a 
Beam 

theory 

S11 

7
)( 10  

(N) 

S22 

6
( 10 )  

(N) 

S33 

6
( 10 )  

(N) 

S14 

4
( 10 )  

(N.m) 

S25 

4
( 10 )  

(N.m) 

S36 

4
( 10 )  

(N.m) 

S44 

3
( 10 )  

(N.m2) 

S55 

4
( 10 )  

(N.m2) 

S66 

4
( )10  

(N.m2) 

Present 

½ 

(Cl.) 4.109 - - -2.323 - - 6.443 1.964 5.828 

(Tim.) 4.109 2.859 1.223 -2.323 1.059 1.126 6.443 1.968 5.839 

VABS 3.8 
(Cl.) 4.216 - - -2.214 - - 6.566 1.995 5.991 

(Tim.) 4.216 3.200 1.044 -2.214 1.150 0.972 6.566 1.999 6.000 

Present 

2/3 

(Cl.) 4.581 - - -3.143 - - 10.431 3.754 7.040 

(Tim.) 4.581 2.875 1.866 -3.143 1.488 1.532 10.431 3.761 7.052 

VABS 3.8 
(Cl.) 4.617 - - -2.996 - - 10.869 3.775 7.071 

(Tim.) 4.617 3.146 1.648 -2.996 1.554 1.364 10.869 3.783 7.083 

Present 

5/6 

(Cl.) 5.053 - - -3.944 - - 14.685 6.229 8.251 

(Tim.) 5.053 2.921 2.448 -3.944 1.914 1.931 14.685 6.242 8.266 

VABS 3.8 
(Cl.) 5.053 - - -3.760 - - 15.703 6.230 8.215 

(Tim.) 5.053 3.050 2.281 -3.760 1.954 1.738 15.703 6.243 8.228 

Present 

1 

(Cl.) 5.522 - - -4.761 - - 21.039 9.457 9.457 

(Tim.) 5.522 2.934 2.934 -4.761 2.353 2.353 21.039 9.476 9.476 

VABS 3.8 
(Cl.) 5.522 - - -4.589 - - 20.985 9.460 9.460 

(Tim.) 5.522 2.943 2.918 -4.589 2.357 2.167 20.985 9.479 9.476 
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In the above tables, the bending stiffness constants are S55 ≡
2

( )xEI and S66 ≡
3

( )xEI . One may 

make a simple approximation for the bending stiffness constant using the Strength of Materials 

approach [76] in the following Eqs. (5.19) where n is the number of layers.  

( )
2

3 31

2 2 4
41 1 1

12 2

( ) . ( ) ( )
sin cos sin4

cos

in
i i i i

x o oi i i i i
ii

i i

in in

E
EI a b a b

E E

G E



  
=

 
 
 = −
 

+ + 
 

 , i=1..n (5.19) 

Figs. (5.8) and (5.9) show the variations of the bending stiffness constants with respect to the 

variation of the angle α using Present polynomial method, VABS, and strength of materials 

approach of Eq. (5.19). 

  
Fig. (5.8). The change of 

2
( )xEI versus the fiber 

angle of the elliptical tube [0 / ]  with b/a=0.5, 

a=0.06 m. 

Fig. (5.9). The change of 
3

( )xEI versus the fiber 

angle of the elliptical tube [0 / ]  with b/a=0.5, 

a=0.06 m. 

The following can be observed: 

• Values obtained from Pascal polynomial solutions agree with those obtained from VABS 

solution. 

• (EI)x3 is larger than (EI)x2 for b/a < 1.0, but the two stiffness constants are the same at b/a 

= 1 (circular shape). This is to be expected. 

• Variation of the angle α only has significant effect on the stiffness constants for the range 

0o < α < 60o. Above 60o, variation of α has negligible effect on the stiffness constants.   
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• For α < 60o, the bending stiffness constants obtained from Classical model are significantly 

smaller than those obtained from the Timoshenko model.  

• The Strength of Material solution provides smaller stiffness constants than either the 

Classical model or the Timoshenko model. This can be due to the fact that the Strength of 

Material solution does not take into account the shear coupling between the 0o and α layers.  

Tubes with elliptical cross-section can be useful for torsional applications. The torsional stiffness 

constants are shown as S44 in Tables (5.1) and (5.2). A simple approximation for the torsional 

stiffness may be obtained using Strength of Materials approach as shown in Eq. (5.20), [19]. Fig. 

(5.10) shows the variation of the torsional stiffness with the variation of the angle α in the lay-up 

[0/α]. The following can be observed: 
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Fig. (5.10). The change of torsional stiffness GJ versus the winding angle of the elliptical 

tube [0 / ]  with b/a=0.5. 
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• The torsional stiffness from Strength of Materials approach are less than those obtained 

using Pascal or VABS.  This can be due to the fact that Strength of Materials approach 

does not take into account the coupling between the 0o and α layers. 

The maximum value of torsional stiffness from Strength of Materials occurs at α = 45o while that 

obtained from VABS, or Pascal occur at an angle α =30o. This is due to the coupling between the 

α layers and the 0o, which is not taken into account in the Strength of Materials solution. 

5.4.5 1D analysis of tubes under four-point bending loading 

The 1D FE analysis of [0/60] (total thickness 2 mm) for two values of (b/a) is performed using the 

solution presented in section 4.4 and displacement results are compared with those obtained using 

VABS in combination with ANSYS 1D FE solution. The tubes have (a=0.06 m). The loading 

conditions of the tubes are illustrated in Fig. (5.11) where the beams have the simply supported 

boundary condition and subjected to the loadings 2P. The displacements of two ends are restricted 

in three directions and they can only rotate about x2. The beams are 1 m long (L=1 m). The 

transverse displacement distribution ( w ) through the length of the elliptical tubes under four-point 

bending loading are demonstrated in Fig. (5.12). It is noted that in the ANSYS 1D FE solution, we 

used the element beam 189 which has three nodes and 6 degrees of freedom at each node, [88]. In 

both the present 1D solution as well as 1D ANSYS FE, the number of elements is 40 and the 

transverse displacement is converged with this number of elements. The order (m=4) is used for 

the cross-sectional analysis in the Pascal polynomial method. The presented cross-sectional 

analysis has the similar computational time compared to VABS without considering preprocessing 

time including meshing of the cross-section while the present method is simple-input, and the 

modeling and mesh procedure can be eliminated. Moreover, the same computational time for 1D 

analysis compared to the VABS is obtained.  

 

Fig. (5.11). Schematic of four point bending of elliptical tubes under loading 2P. 
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Fig. (5.12). Transverse displacement of three composite tubes under four-point bending loading, 

(a=0.06 m), (P=1 KN). 

5.4.6 3D strain distribution in an elliptical tube with b/a=2/3 under pure bending 

The recovery analysis can be carried out to determine the 3D strains in the cross-section of the 

elliptical tube under arbitrary loading. The ability of the dimensional reduction method to 

determine the strain or stress distribution in the cross-section of the beam makes it to be an efficient 

method compared to 3D FEM, [49]. Fig. (5.13) illustrates the distribution of 3D strains 11 , 12

, 22 and 33  where 11 is the normal strain along x1,  22 is the normal strain along x2, 33  is 

the normal strain along x3, and 12 is the shear strain. The tube is subjected to pure bending 

moment of M2 =1 KN.m. The obtained strains using the present method are compared with VABS 

3.8.  

In the VABS 3.8, first the cross-section of the elliptical tube is modelled, then the lay-up sequence 

is defined, next the modelled mold lines of the cross-section is divided into different segments and 

then it is meshed with quadrilateral 8-noded elements. The number of elements is 2558. While in 

the present method, it is not necessary to create mesh over the cross-section which can make the 

present method to be more straightforward than VABS.  

 

-0.0018

-0.0016

-0.0014

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0

0 0.2 0.4 0.6 0.8 1

w
 (

m
)

Length (m)

(b/a=1/2), (ANSYS 1D+VABS)

(b/a=1/2), (Present)

(b/a=2/3), (ANSYS 1D+VABS)

(b/a=2/3), (Present)



126 
 

 

Fig. (5.13). Distribution of 3D strains at 90 =  of the elliptical tube with [0/60] with b/a=2/3. 

 

5.5 Conclusion 

An analytical meshless method for cross-sectional analysis of composite elliptical tubes subjected 

to bending loadings is provided. Utilizing Pascal polynomials in the polar coordinates, the warping 

functions of the beam are evaluated where there is no need to generate mesh of the cross-section.  

• The main difference between the analysis for beams with elliptical cross-section and for those 

of circular section is the change of the radial distance along the circumferential direction, and 

a new procedure has been introduced to handle this. 

• The method not only provide the traditional sectional stiffness constants such as along the axial 

direction, twisting and bending, but also the coupling stiffness constants between different 

modes.  

• The effect of different ratios between major/minor axes, and the effect of lay-up sequences, 

are studied. 

• The global behavior of elliptical composite tubes as well as the strains can be predicted. The 

present method of solution is computationally more efficient than 3D FE solution for elliptical 

composite beams. 
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6 Chapter 6: Stress analysis of initially curved composite beams  

6.1 Introduction 

The analysis of initially curved beams has been done before by a few researchers [56, 57, 59, 60]. 

These are mainly for isotropic materials, [56, 57]. Zupan and Saje [56] used FE for initially curved 

and twisted beams with small deformations. Tabarrok et al. [57] provided a set of governing 

equations for initially curved and twisted beams made of isotropic materials. For tubes made of 

composite materials, Yazdani [21] applied a displacement-based method to analyze orthotropic 

single layered curved tubes under pure bending moment. These techniques have shortcomings, the 

methods are restricted to beams with isotropic material, or rectangular cross-section. For the 

analysis of initially curved orthotropic tubes the investigators analyzed the tubes only subjected to 

pure bending moment.   

There is the possibility to use VAM for the analysis of initially curved tubes. The development of 

the relevant equations has been given in chapter 3. Using the procedure in chapter 3, with VABS, 

one can obtain the stiffness coefficients for the initially curved beam. These stiffness coefficients 

can be used for the analysis of beam under pure bending, or four-point bending loading. First, we 

validate the presented method (meshless Pascal polynomial-based method) with VABS 3.8 and 

the literature for the cross-sectional stiffness constants of isotropic rectangular sections. Then, we 

compared the strains of the isotropic and unidirectional rectangular beams with ANSYS 3D under 

pure bending moment. In the next step, we validate the present meshless method for the case of 

isotropic and orthotropic tubes.  

For the case where there are boundary conditions (general load case), in addition to the 2D 

sectional analysis, 1D analysis using FE needs to be done. In this case, curvilinear coordinates 

need to be done for the development of the individual elements ([61, 62]). However, development 

of elements using curvilinear coordinates is very complex. It was suggested by Kovvali and 

Hodges [89] that the equivalent stiffness coefficients obtained from straight elements could be 

used to model the curved structure, as long as there are sufficient number of straight elements to 

model the curved geometry. Moreover, it is suggested by Hodges that it would be more efficient 

to be as close as possible to the real structure. So that one can use the initially curved cross-

sectional stiffness matrix to model a curved beam with straight (piecewise cartesian) elements. 

One part of this chapter would be to evaluate the accuracy of this procedure. The results from the 
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1D straight finite elements will be compared against the result obtained from the ANSYS 3D 

analysis for the whole structure. For determining the transverse displacement of beams under 

transverse loading, we bring in the elasticity solution for determination of displacement of initially 

curved beam with isotropic and rectangular cross-section under tip loading proposed by 

Timoshenko [90]. The presented 1D FE solution for initially curved rectangular section is 

compared with elasticity solution and then we examined the method for initially curved composite 

tubes under tip loading and four-point bending loading. The solution is compared with ANSYS 

3D FEM. The effect of initial curvature on the stiffness constants, and deflection of the composite 

tubes are investigated.  

6.2 Treatment of the initially curved beam using VAM, VABS and Pascal polynomial to 

obtain equivalent stiffness coefficients 

In this section, the validation is done regarding the cross-sectional dimensional reduction method 

using Pascal polynomials as well as VABS 3.8 modeling. To do so, we perform the validation with 

the available cases in the literature. Then, we performed the validation of strains distribution 

obtained using Pascal polynomials dimensional reduction method with those obtained via ANSYS 

3D FEM. In following, we do the cross-sectional analysis of unidirectional rectangular sections 

using the presented method and VABS 3.8. In the next step, we perform the validation of the 

present method for the case of isotropic, unidirectional, cross-ply, and angle ply tubes with VABS 

3.8. Also, the strain distribution of a tube with a complex lay-up is presented and compared with 

ANSYS 3D. 

6.2.1 Isotropic square section 

As the first case study, curved aluminum beams with square section are studied. The obtained 

sectional stiffness constants are compared with Yu et al. [48]. The section has dimensions 0.5 in × 

0.5 in with Young modulus 
7

2.6 10  psiE =  (179 GPa) and =0.3 . Tables (6.1) and (6.2) show 

the obtained stiffness constants for curved beams with k2=0.05 1/in and k2=0.1 (1/in) by the present 

Pascal polynomial method, Borri et al. [91] who provided a constitutive equations for cross-

sectional analysis of beams based on FEM, Yu et al. [48], and VABS 3.8 version 2019. In Yu et 

al. [48] they used VABS provided in 2002 for cross-sectional analysis. They meshed the square 

section with 8×8 quadrilateral elements (a total of 675 degrees of freedom). The cross-section is 

meshed with 1059 elements in VABS 3.8. A good agreement between the present polynomial 
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based method and other references is observed. Comparing the stiffness constants of the straight 

beams reported in Chapter (4) and curved beams in Table (6.1), one can observe that when an 

isotropic straight beam becomes curved, two stiffness constants are added to the beam stiffness 

constants as extensional-bending (S15) and shear-torsion (S24). When the curvature of the beam 

increases, the magnitude of these two stiffness constants increases. Comparison of Tables (6.1) 

and (6.2)  shows that increasing the initial curvature, increases the magnitude of extension-bending 

(S15) and shear-torsion (S24) of a beam. While the other stiffness constants remain the same. There 

is a difference between VABS 3.8 and the other results. This can be because of an update in its 

formulation. The physical meaning of extension-bending (S15) is considerable for initially curved 

beams which can be figured out from Eq. (3.66). This means that when a curved beam is under 

bending moment, the longitudinal strain of the reference line is non-zero. The Classical stiffness 

matrix up to 2nd order does not take into account the effect of transverse shear. This stiffness matrix 

which is obtained through Eq. (3.42) is more accurate compared to Classical stiffness matrix 

obtained by first approximation of strain energy of the beam. The Cross-sectional stiffness matrix 

up to 2nd order will be used for 1D FE analysis of curved tubes.  

Table (6.1). Stiffness constants of isotropic beam with square cross-section with initial 

curvature (k2=0.05 (1/in)). 

S 
Borri et al. 

[91] 

Yu et al. 

[48] 

VABS 3.8 
Classic (2nd 

order) 

VABS 3.8 
(Timoshenko) 

Present 
Classic (2nd 

order) 

Present 
(Timoshenko) 

S11 (lb) 6.500× 106 6.500× 106 6.500× 106 6.500× 106 6.490× 106 6.490× 106 

S15 (lb.in) -9.340× 103 -8.800× 103 -9.330× 103 -9.330× 103 -8.800× 103 -8.800× 103 

S22 (lb) 2.070× 106 2.070× 106 - 2.070× 106 - 2.060× 106 

S24 (lb.in) 2.120× 103 2.120× 103 - 1.490× 103 - 2.170× 103 

S33 (lb) 2.070× 106 2.070× 106 - 2.070× 106 - 2.070× 106 

S44 (lb.in2) 8.790× 104 8.790× 104 8.780× 104 8.780× 104 8. 780× 104 8.780× 104 

S55 (lb.in2) 1.350× 105 1.350× 105 1.350× 105 1.350× 105 1.350× 105 1.350× 105 

S66 (lb.in2) 1.350× 105 1.350× 105 1.350× 105 1.350× 105 1.350× 105 1.350× 105 

  

Table (6.2). Stiffness constants of isotropic beam with square cross-section with initial 

curvature, (k2=0.1 (1/in)). 

S 
Borri et al. 

[91] 

Yu et al. 

[48] 

VABS 3.8 
Classic (2nd 

order) 

VABS 3.8 
(Timoshenko) 

Present  
Classic (2nd 

order) 

Present 
(Timoshenko) 

S11 (lb) 6.500× 106 6.500× 106 6.500× 106 6.500× 106 6.490× 106 6.490× 106 

S15 (lb.in) -1.870× 104 -1.760× 104 -1.760× 104 -1.860× 104 -1.750× 104 -1.750× 104 

S22 (lb) 2.070× 106 2.070× 106 - 2.070× 106 - 2.060× 106 

S24 (lb.in) 4.360× 103 4.520× 103 - 2.990× 103 - 4.360× 103 

S33 (lb) 2.070× 106 2.070× 106 - 2.070× 106 - 2.070× 106 
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S44 (lb.in2) 8.790× 104 8. 790× 104 8.780× 104 8.780× 104 8.780× 104 8.780× 104 

S55 (lb.in2) 1.350× 105 1.350× 105 1.350× 105 1.350× 105 1.350× 105 1.350× 105 

S66 (lb.in2) 1.350× 105 1.350× 105 1.350× 105 1.350× 105 1.350× 105 1.350× 105 

  

In the cross-sectional analysis, one can perform the recovery analysis to obtain the 3D strains in 

the cross-section. This is an advantage of the cross-sectional analysis compared to the 3D analysis. 

For instance, the distribution of the normal and shear strains in the aluminum beam with initial 

curvature k2=0.1 (1/in) and square section with the reported dimensions and material properties 

under bending moment M2=1 lb.in are illustrated in Figs. (6.1-6.4).  

The obtained strains from the present polynomial based method are compared with ANSYS 3D 

FEA. The ANSYS modeling is performed in such a way that the curved beam is under pure 

bending moment at one side and clamped (fixed) at the other side. The element SOLID 185 has 

been used for the analysis. It is noted that the curved beam is meshed with 50400 3D elements. A 

very good correlation between the present solution and ANSYS 3D is observed. The maximum of 

4.76% difference between the Pascal polynomial solution and ANSYS 3D is observed for shear 

strain 23 . The other shear stains 12 and 13 are very small compared to the other shear strain 

( 23 ).  

 
 

 

 

a) ANSYS 3D b) Present 

Fig. (6.1). Distribution of 11 in the section of the rectangular aluminum curved beam k2=0.1 

(1/in), a) ANSYS 3D, b) Present 
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a) ANSYS 3D b) Present 

Fig. (6.2). Distribution of 22 in the section of the rectangular aluminum curved beam k2=0.1 

(1/in), a) ANSYS 3D, b) Present.  

 

 

 

a) ANSYS 3D b) Present 

Fig. (6.3).  Distribution of 33 in the section of the rectangular aluminum curved beam k2=0.1 

(1/in), a) ANSYS 3D, b) Present. 
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a) ANSYS 3D b) Present 

Fig. (6.4). Distribution of 23 in the section of the rectangular aluminum curved beam k2=0.1 

(1/in), a) ANSYS 3D, b) Present.  
 

In order to observe the effect of initial curvature on the accuracy and variation of longitudinal 

strain through the thickness, we plotted the strain distribution for rectangular sections with the 

mentioned material properties and dimensions for different values of initial curvatures in Fig. (6.5). 

It is observed that for the case of straight beam (k2=0), the longitudinal strain variation is linear. 

While as the initial curvature increases, this strain distribution varies non-linearly. 

 

Fig. (6.5). distribution of longitudinal strain through the thickness of curved beams with 

rectangular cross-section with various initial curvatures (E=2.6× 107 psi, v=0.3). 
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6.2.2 Unidirectional square section 

A square section with dimensions of (0.5 in×0.5 in) with material properties E1=21.5× 106 psi 

(1.48 GPa), E2=1.46× 106 psi (10 GPa), v12=0.3, v13=0.3, v23=0.3, G12= G13= G23=0.81× 106 psi 

(5.58 GPa) is studied. The obtained cross-sectional stiffness constants of the prismatic and curved 

unidirectional square sections with k2=0.1 1/in are shown in Table (6.3). It is observed that two 

stiffness constants will be added to the prismatic ones as S15 and S24. The values of the obtained 

stiffness constants by the polynomial method with (m=7) agree well with VABS 3.8.  

Table (6.3). Stiffness constants of unidirectional square cross-section with (k2=0.1 1/in). 

S 
VABS 3.8 

Classic (2nd order) 
VABS 3.8 

(Timoshenko) 
Present 

Classic (2nd order) 
Present 

(Timoshenko) 

S11 (lb) 5.376× 106 4.327× 106 5.376 × 106 4.264× 106 

S15 (lb.in) -1.456× 104 -1.233× 104 -1.456× 104 -1.228× 104 

S22 (lb) - 1.678× 105 - 1.697× 105 

S24 (lb.in) - 1.425× 102 - 2.482× 102 

S33 (lb) - 1.675× 105 - 1.664× 105 

S44 (lb.in2) 7.118 × 103 7.119× 103 7.119× 103 7.174 × 103 

S55 (lb.in2) 1.116× 105 1.116× 105 1.120× 105 1.120× 105 

S66 (lb.in2) 1.116× 105 1.114× 105 1.120× 105 1.110× 105 

6.2.3 Tubular isotropic section 

The next case study is the tubular curved and straight aluminum beams. The tubes have inner and 

outer radii ri=0.049 m and ro=0.059 m and material properties E=69.7 GPa and v=0.3. The stiffness 

constants of this section for straight and curved beams are reported in Table (6.4).  It is seen that 

two values of S15 and S24 are added to the straight tube stiffness constants. Moreover, it is observed 

that there is a good agreement between the presented polynomial based method (with m=4) and 

VABS 3.8. It is noted that the tubular cross-section is meshed with 2891 elements whereas there 

is no need to mesh the cross-section with the presented polynomial method. The generated mesh 

of the cross-section with VABS 3.8 is shown in Fig. (6.6). The values for extension-bending 

stiffness (S15) of Classical beam model up to 2nd order and Timoshenko are different. This 

difference can affect the distribution of normal strains of the tube in the recovery analysis.  
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Table (6.4). Stiffness constants of aluminum tubular cross-section with initial curvature. 
Beam 

type  
Straight k2=0.1 (1/m) 

S 
VABS 3.8 

(Timoshenko) 
Present 

(Timoshenko) 

VABS 3.8 
Classic (2nd 

order) 

VABS 3.8 
(Timoshenko) 

Present  
Classic (2nd 

order) 

Present 
(Timoshenko) 

S11 2.364× 108 2.365× 108 2.364× 108 2.364× 108 2.365× 108 2.365× 108 

S15 0 0 -4.520× 104 -5.543× 104 -4.517× 104 -5.515× 104 

S24 0 0 - 8.538× 103 - 8.342× 103 

S22 4.605× 107 4.724× 107 - 4.605× 107 - 4.725× 107 

S33 4.605× 107 4.720× 107 - 4.605× 107 - 4.718× 107 

S44 2.674× 105 2.677× 105 2.674× 105 2.674× 105 2.677× 105 2.677× 105 

S55 3.475× 105 3.476× 105 3.475× 105 3.475× 105 3.476× 105 3.476× 105 

S66 3.475× 105 3.483× 105 3.475× 105 3.475× 105 3.483× 105 3.483× 105 

 

 

Fig. (6.6). The generated tubular section mesh in VABS 3.8. 

The normal strains of the studied aluminum tube with k2=0.1 (1/m) using Timoshenko-Like beam 

model subjected to the bending moment M2=1 KN.m are shown in Figs. (6.7-6.9). The obtained 

strains are compared with ANSYS 3D FEM. The tube is under pure bending moment at one side 

and clamed at the other side in ANSYS 3D solution. The mesh is refined to 1794460 number of 

3D elements. A good agreement between the present solution and ANSYS 3D is observed. The 

maximum difference between the Pascal polynomial solution and ANSYS 3D is 10.7% for 22 . 

It is noted that the values of 12 and 13 are zero for the tube under pure bending moment. The 

distribution of normal strains at θ = 90° of the tube has been demonstrated in Fig. (6.10). A good 



135 
 

agreement for normal strains has been obtained for this tube, there is a difference between the 

present method and ANSYS 3D for shear strain 23  in which the maximum of 23  is negligible 

compared to the normal strains.  

 
 

a) ANSYS 3D b) Present 

Fig. (6.7). Distribution of 11 in the section of the tubular aluminum curved beam k2=0.1 1/m, 

a) ANSYS 3D, b) Present  
 

  
a) ANSYS 3D b) Present 

Fig. (6.8).  Distribution of 22 in the section of the tubular aluminum curved beam k2=0.1 

1/m, a) ANSYS 3D, b) Present. 
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a) ANSYS 3D b) Present 

Fig. (6.9). Distribution of 33 in the section of the tubular aluminum curved beam k2=0.1 1/m, 

a) ANSYS 3D, b) Present. 
 

 
Fig. (6.10). Distribution of strains at 𝜃 = 90° of the isotropic curved tube with, ri=0.049 m and 

ro=0.059 m, k2=0.1 1/m. 

To observe the effect of initial curvature on strains distribution of curved tubes, we studied two 

isotropic tubes with initial radius of curvatures of R=2 m and 10 m with the same material 

properties and cross-section dimensions. The longitudinal Γ11, circumferential and radial strains at 
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𝜃 = 90° of the section are investigated. It can be observed from Fig. (6.11) that by changing the 

initial curvature, there is no significant change in the longitudinal strain Γ11. While as the radius 

of initial curvature decreases from 10 m to 2 m, the distribution of circumferential Γ22 and radial 

strains Γ33 at this position change noticeably.  

 
a) Distribution of Γ11 

 
b) Distribution of Γ22 and Γ33 

Fig. (6.11). Distribution of strains a) Γ11, b) Γ22 and Γ33 at 𝜃 = 90° of the isotropic curved tube 

with, ri=0.049 m and ro=0.059 m, for two values of k2=0.1 and 0.5 1/m. 
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6.2.4 Tubular orthotropic sections 

Unidirectional [0]10, [90]10 and cross-ply tubes 

Initially curved beams with tubular sections stiffness constants with inner and outer radii ri=0.049 

m, ro=0.059 m, and material properties E1=138 GPa, E2=10.5 GPa, v12=0.3, v13=0.31, v23=0.33, 

G12= G13= G23=5.57 GPa are studied. The thickness of each layer is 1 mm. These cross-sectional 

dimensions and material properties are used for composite tubular beams in the following cross-

sections in this chapter unless the other material properties or dimensions are mentioned. The 

obtained stiffness constants of unidirectional [0]10 and [90]10 curved tubes are calculated and 

compared with VABS 3.8 in the Tables (6.5) and (6.6), respectively. It is seen that the values of 

S11, S15, S55 and S66 decrease by changing the fiber angle of the curved tube from [0]10 to [90]10.  

Table (6.5). Stiffness constants of [0]10 tubular cross-section, (ri=0.049 m and ro=0.059 m, 

k2=0.1 (1/m)). 

S 
VABS 3.8 

Classic (2nd order) 
VABS 3.8 (Timoshenko) Present Classic (2nd order) Present (Timoshenko) 

S11 4.682× 108 4.524× 108 4.670× 108 4.670× 108 

S15 -9.019× 104 - 1.082× 105 -8.916× 104 -8.916× 104 

S22 - 9.422× 106 - 1.003× 107 

S24 - 2.089× 103 - 1.968× 103 

S33 - 9.420× 106 - 9.789× 106 

S44 5.558× 104 5.558× 104 5.563× 104 5.563× 104 

S55 6.826× 105 6.826× 105 6.876× 105 6.876× 105 

S66 6.826× 105 6.826× 105 6.973× 105 6.973× 105 

 

Table (6.6). Stiffness constants of [90]10 tubular cross-section, (ri=0.049 m and ro=0.059 m, 

k2=0.1 (1/m)). 

S 
VABS 3.8 

Classic (2nd order) 
VABS 3.8 

(Timoshenko) 

Present Classic (2nd 

order) Present (Timoshenko) 

S11 3.574× 107 3.574× 107 3.586× 107 3.586× 107 

S15 -5.391× 103 -5.518× 103 -5.216× 103 -5.534× 103 

S22 - 9.577× 106 - 9.814× 106 

S24 - 2.055× 103 - 2.114× 103 

S33 - 9.577× 106 - 9.801× 106 

S44 5.558× 104 5.558× 104 5.563× 104 5.563× 104 

S55 5.254× 104 5.258× 104 5.258× 104 5.258× 104 

S66 5.254× 104 5.258× 104 5.268× 104 5.268× 104 

The cross-sectional stiffness constants of composite tubes with lay-up [905/05] for two values of  

k2=0.1 and 0.5  1/m  have been calculated and reported in Tables (6.7-6.8) using the present method 

and VABS 3.8. Comparison of stiffness constants of tubes with k2=0.1 and 0.5 1/m shows that by 
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changing the curvature from 0.1 to 0.5, the value of S11 (Timoshenko) decreases, while the 

magnitude of S15 increases, while the value of S55 reduces slightly. Also, a good correlation 

between the present method and VABS 3.8 is observed.  

Table (6.7). Stiffness constants of [905/05] tubular cross-section, (ri=0.049 m and ro=0.059 m, 

k2=0.1 (1/m)). 

S 
VABS 3.8 

Classic (2nd order) 
VABS 3.8 (Timoshenko) Present Classic (2nd order) Present (Timoshenko) 

S11 2.631 × 108 2.606× 108 2.630 × 108 2.605× 108 

S15 -4.492× 104 -4.667× 104 -5.105× 104 -4.693× 104 

S22 - 1.023× 107 - 1.033× 107 

S24 - 1.940× 103 - 2.664× 103 

S33 - 1.024× 107 - 1.040× 107 

S44 5.558× 104 5.558× 104 5.518× 104 5.518× 104 

S55 4.156× 105 4.156× 105 4.160× 105 4.160× 105 

S66 4.155× 105 4.155× 105 4.160× 105 4.163× 105 

 

Table (6.8). Stiffness constants of [905/05] tubular cross-section, (ri=0.049 m and ro=0.059 m, 

k2=0.5 (1/m)). 

S 
VABS 3.8 

Classic (2nd order) 
VABS 3.8 (Timoshenko) Present Classic (2nd order) Present (Timoshenko) 

S11 2.632 × 108 1.944 × 108 2.631 × 108 2.005 × 108 

S15 −2.247 × 105 −1.753 × 105 −2.554 × 105 −1.806 × 105 

S22 - 9.598 × 106 - 1.034 × 107 

S24 - 1.032 × 104 - 1.427 × 104 

S33 - 9.614 × 106 - 1.041 × 107 

S44 5.558 × 104 5.561 × 104 5.520 × 104 5.562 × 104 

S55 4.029 × 105 4.028 × 105 4.164 × 105 4.165 × 105 

S66 4.023 × 105 4.018 × 105 4.162 × 105 4.137 × 105 

Angle-ply tubes 

To study the cross-sectional properties of the angle-ply curved tubes, a [30]10 and [05/455] tubes 

are considered. In Table (6.9), the cross-sectional stiffness constants of the curved [30]10 tubes are 

reported. It is seen that the additional stiffness constants S14, S25, S36 and S45 are added to the section 

properties of the angle-ply curved tube compared to unidirectional. Moreover, it can be seen that 

the obtained S55 and S66 of the Classical beam model (up to second order of the strain energy) are 

smaller than the Timoshenko beam model results.  
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Table (6.9). Stiffness constants of [30]10 tubular cross-section, (ri=0.049 m and ro=0.059 m, 

k2=0.1 (1/m)). 

S 
VABS 3.8 

Classic (2nd order) 
VABS 3.8 

(Timoshenko) 

Present 
Classic (2nd order) 

Present 

(Timoshenko) 

S11 1.723× 108 1.727× 108 1.748× 108 1.761× 108 

S14 -4.029× 106 -4.037× 106 -4.175× 106 -4.156× 106 

S15 -5.415× 104 -5.468× 104 -5.354× 104 -5.584× 104 

S22 - 3.115× 107 - 3.017× 107 

S24 - 7.579× 103 - 8.367× 103 

S25 - 2.078× 106 - 2.046× 106 

S33 - 3.121× 107 - 2.990× 107 

S36 - 2.075× 106 - 2.014× 106 

S44 1.750× 105 1.753× 105 1.755× 105 1.786× 105 

S45 1.647× 103 1.228× 103 1.603× 103 1.903× 103 

S55 1.189× 105 2.576× 105 1.150× 105 2.544× 105 

S66 1.190× 105 2.571× 105 1.157× 105 2.540× 105 

The 3D strains of a curved section with lay-up of [30]10 subjected to the moment of M2=1 KN.m 

is calculated and compared with ANSYS 3D FEA, Figs. (6.12-6.16). The obtained strains agree 

well with ANSYS 3D FEA.  

  

a) ANSYS 3D b) Present 

Fig. (6.12). Distribution of 11 in the section of the tubular [30]10 curved beam k2=0.1 

1/m, a) ANSYS 3D, b) Present 
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a) ANSYS 3D b) Present 

Fig. (6.13). Distribution of 12 in the section of the tubular [30]10 curved beam k2=0.1 

1/m, a) ANSYS 3D, b) Present. 

 

 

 

 

a) ANSYS 3D b) Present 

Fig. (6.14). Distribution of 13 in the section of the tubular [30]10 curved beam k2=0.1 

1/m, a) ANSYS 3D, b) Present. 
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a) ANSYS 3D b) Present 

Fig. (6.15). Distribution of 22 in the section of the tubular [30]10 curved beam k2=0.1 

1/m, a) ANSYS 3D, b) Present. 

 

 

 

a) ANSYS 3D b) Present 

Fig. (6.16). Distribution of 33 in the section of the tubular [30]10 curved beam k2=0.1 1/m, a) 

ANSYS 3D, b) Present. 

The cross-sectional stiffness constants of curved tubes [05/455] with initial curvatures of k2=0.05 

(1/m) and k2=0.1 (1/m) are reported in the Table (6.10). A good agreement between the obtained 

stiffness constants of the present method and the VABS 3.8 is observed for the complex lay-ups. 

Moreover, it can be observed that there is not a substantial difference in the S55 and S66 of the 

obtained Classical beam model (up to the second order of the strain energy) and the Timoshenko 

stiffness constants.  
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Table (6.10). Stiffness constants of [05/455] tubular cross-section, (ri=0.049 m and ro=0.059 

m). 
Curva

ture k2=0.05 (1/m) k2=0.1 (1/m) 

S VABS 3.8 
(Timoshenko) 

Present 
(Timoshenko) 

VABS 3.8 
Classic (2nd 

order) 

VABS 3.8 
(Timoshenko) 

Present 
Classic (2nd 

order) 

Present 
(Timoshenko) 

S11 2.610× 108 2.617× 108 2.612× 108 2.607× 108 2.612× 108 2.620× 108 

S14 -1.109× 106 -1.145× 106 -1.112× 106 -1.113× 106 -1.114× 106 -1.149× 106 

S15 -3.873× 104 -4.417× 104 -6.167× 104 -7.694× 104 -6.039× 104 -8.870× 104 

S22 1.738× 107 1.669× 107 - 1.730× 107 - 1.669× 107 

S24 2.627× 103 2.968× 103 - 5.200× 103 - 5.951× 103 

S25 4.910× 105 4.950× 105 - 4.903× 105 - 4.955× 105 

S33 1.739× 107 1.679× 107 - 1.730× 107 - 1.681× 107 

S36 4.868× 105 4.944× 105 - 4.871× 105 - 4.939× 105 

S44 1.242× 105 1.268× 105 1.243× 105 1.243× 105 1.268× 105 1.269× 105 

S45 7.263× 102 7.285× 102 1.592× 103 1.455× 103 1.583× 103 1.459× 103 

S55 3.564× 105 3.570× 105 3.417× 105 3.556× 105 3.426× 105 3.573× 105 

S66 3.561× 105 3.575× 105 3.417× 105 3.553× 105 3.428× 105 3.574× 105 

 

The cross-sectional analysis of a tubular section with complex lay-up [9040/6060/-6060] is 

performed. This tube has the inner and outer diameters of Di=78 mm and Do=110 mm, respectively. 

The thickness of each ply is 0.1 mm. In Table (6.11), the cross-sectional stiffness constants of this 

tube with two values of initial curvature k2=0.1 1/m and k2=0.5 1/m are demonstrated. The 

polynomial order (m=7) is employed for the analysis. The distribution of 3D strains in the curved 

tube with initial curvature of k2=0.5 1/m is illustrated in Figs. (6.17-6.19). The total number of 

elements for analysis of this tube in ANSYS is 1924640. The total computational time for analysis 

of this tube in ANSYS is 1 hour and 45 minutes. The required time for calculation of stiffness 

constants and the strains using the Pascal polynomial dimensional reduction method is 30 minutes. 

It is noted that the Pascal polynomial solution is performed in Maple 19 software. Maple uses only 

one cores of the CPU. The programming in other programming software (e.g. C++) may reduce 

the computational time considerably with respect to MAPLE.  

Table (6.11). Stiffness constants of [9040/6060/-6060] tubular cross-section, (Di=78 mm 

and Do=110 mm). 
Beam 

type k2=0.1 (1/m) k2=0.5 (1/m) 

S VABS 3.8 
(Timoshenko) 

Present 
(Timoshenko) 

VABS 3.8 
Classic (2nd 

order) 

VABS 3.8 
(Timoshenko) 

Present 
Classic (2nd 

order) 

Present 
(Timoshenko) 

S11 6.067× 107 6.098× 107 6.069× 107 6.073× 107 6.101× 107 6.116× 107 

S14 -6.899× 104 -7.387× 104 -6.917× 104 -6.949× 104 -7.395× 104 -6.745× 104 

S15 -1.024× 104 -1.033× 104 -4.243× 104 -5.132× 104 -4.369× 104 -5.138× 104 
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S22 5.255× 107 5.420× 107 - 5.248× 107 - 5.403× 107 

S24 -3.813× 103 -1.229× 103 - -1.856× 104 - -6.593× 104 

S25 1.455× 104 1.560× 104 - 1.466× 104 - 1.568× 104 

S33 5.222× 107 5.340× 107 - 5.216× 107 - 5.410× 107 

S36 1.035× 104 1.587× 104 - 1.031× 104 - 1.594× 104 

S44 2.580× 105 2.622× 105 2.580× 105 2.583× 105 2.620× 105 2.377× 105 

S55 6.738× 104 6.823× 104 6.736× 104 6.738× 104 6.827× 104 6.829× 104 

S66 6.732× 104 6.823× 104 6.727× 104 6.726× 104 6.827× 104 6.801× 104 

 

 
 

a) VABS 3.8 b) Present 

Fig. (6.17). Distribution of 11 in the section of the tubular [9040/-6060/6060] curved beam 

with k2=0.5 1/m, a) VABS 3.8, b) Present. 

 

 
 

a) VABS 3.8 b) Present 

Fig. (6.18). Distribution of 122 in the section of the tubular [9040/-6060/6060] curved beam 

with k2=0.5 1/m, a) VABS 3.8, b) Present. 
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a) VABS 3.8 b) Present 

Fig. (6.19). Distribution of 22 in the section of the tubular [9040/-6060/6060] curved beam 

with k2=0.5 1/m, a) VABS 3.8, b) Present. 

 

 
 

a) VABS 3.8 b) Present 

Fig. (6.20). Distribution of 33 in the section of the tubular [9040/-6060/6060] curved beam 

with k2=0.5 1/m, a) VABS 3.8, b) Present. 

Distribution of normal strains such as longitudinal strain, circumferential strain and radial strain at 

the circumference angle of 𝜃 = 90° of the tube [9040/-6060/6060] with initial curvature k2=0.5 1/m 

is shown in Fig. (6.21a). A good agreement between the present method and VABS 3.8 is 

observed. The distribution of shear strain ( 122 ) is shown in Fig. (6.21b) in which some difference 

between the VABS and the present solution is observed. Increasing the polynomial order may 
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reduce this difference. The distribution of other shear strains 132 and 232  are negligible 

compared to the other strains at this circumferential position.  

 

a) 

 

b) 

Fig. (6.21). a) Normal strains, b) shear strain, through the radial position of tube with lay-up 

[9040/-6060/6060] and (k2=0.5 1/m) at 90 = of the circumference. 

 

6.3 1D analysis using straight elements to model a curved beam  

In this section, a 1D FE solution is provided for determining the global behavior of beams under 

complex loadings. In the presented curved beam solution, we model the beam with straight 

elements (piecewise Cartesian). The modeling can be performed using two ways. The first 
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modeling can be done by setting k2=0 to obtain the cross-sectional stiffness matrix. The second 

way, one can set 𝑘2 ≠ 0 for obtaining the cross-sectional stiffness matrix. In both the ways, we 

should model with sufficiently large number of elements to have convergence.  

6.3.1 1D analysis of initially curved beams   

In order to study the global behavior of the orthotropic curved beam, a simple 1D FE solution is 

developed. Using the stiffness matrix of Eq. (3.42), the one-dimensional strain energy can be 

constructed as Eq. (6.1).  

 1 12 [ ]

e

e T

L

U Y dx=     
(6.1) 

[Y1] is the classical cross-sectional stiffness matrix up to the second order of the strain energy 

which considers the initial curvature.   is the strain vector of the reference line. 

 11 1 2 3

T
   = and Le is the element length. We define a global coordinate ( , ,x y z ) 

for the beam element. The beam element has the local coordinate (x1, x2, x3). Fig. (6.22) shows the 

beam element in space. The element has 6 degrees of freedom at each node including three 

displacements (u , v  and w) and three cross-sectional rotations (
1 2 3
, ,x x x   ) in the local 

coordinate (x1, x2 and x3), respectively. Hence, twelve degrees of freedom for the element is 

considered. 

The following polynomials for the approximation of the degree of freedom in the beam local 

coordinate is used, [84]. 

1 2 1u x = +  (6.2a) 

2 3

3 4 1 5 1 6 1
v x x x   = + + +  (6.2b) 

2 3

7 8 1 9 1 10 1
w x x x   = + + +  (6.2c) 

1 11 12 1x
x  = +  (6.2d) 

2

2

8 9 1 10 12 3x x x   = − − −  (6.2e) 

3

2

4 5 1 6 12 3x x x   = + +  (6.2f) 
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Fig. (6.22). Presentation of the beam element with two nodes in space. 

For a Timoshenko beam model, the 1D generalized strain components in the local coordinate are 

as follows.   

1

2

3

11

1

2

3

x

x

x

u





 

  
   

   
=   

   
      

 (6.3) 

The unknowns ( )1 2 12, ,...,   in the Eq. (6.2) are expressed in terms of nodal displacement vector   

by substituting u, v, w, 
1x

  , 
2x

  and 
3x

  at the nodes of the beam element in the local coordinate. We 

have: 

1

12 12[ ]  or [ ]N N
−

= =     (6.4) 

where
1 2 12, ,...,[ ]T

  = , 
1 2 3

     [ i i i i i i

x x xu v w   =  
ju  

jv  
1 2 3

   ]j j j j T

x x xw    . The matrix [ ]N  

contains the nodal local coordinates. The strain vector   can be expressed in terms of   using 

Eqs. (6.2-6.3) as follows.  

6 12[ ]B =   (6.5) 

where the matrix [ ]B  is a function of x1. The strain vector   can be represented in terms of the 

nodal displacement vector   in the local coordinate using Eq. (6.5).  
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1
[ ][ ] [ ]B N B

−
= =   (6.6) 

The next step is to transform the element load vector 
1 2 31 2 3     [ i i i i i i

x x xm m mf f f=f 1

jf 2

jf  

1 2 33     j j j j

x x xf m m m ]T  and the element displacement vector   in the global coordinate system so that 

the individual elements can be combined in the assembly process. Consider a beam element at an 

arbitrary orientation described by an angle φ, measured counter-clockwise from the horizontal, and 

a global coordinate system (Fig. (6.22)). The loads and displacements in the global coordinate 

system can be related to the loads and displacements in the element coordinate system.  

ˆ[ ]=   (6.7a) 

ˆ[ ]=f f  (6.7b) 

The hat in Eq. (6.7) indicates that loads and displacements in global coordinates. The 

transformation matrix ˆ[ ]  is given by, [34] 

3 3

3 3

3 3

3 3

3 3 3 3 3 3

3 3 3 3 3 3 6 1 6 16 1

6 1 3 3 3 3 3 3 6 1 6 1

3 3 3 3 3 3

[ ]

[ ] [ ] [ ][ ] ˆ[ ]
[ ] [ ] [ ] [ ]

[ ]

i ii

j j j

O O O

O O O f ff

f O O O f f

O O O


















  

    

     

  

 
 

          
=       

         
 
 

 (6.8) 

where,  

11 1

22 2

33 3

cos cos cos

[ ] cos cos cos

cos cos cos

zxxx yx

zxxx yx

zxxx yx

  

   

  

 
 
 
 
 
 

=  (6.9) 

The element stiffness matrix transformed to global coordinates is obtained as  

ˆ ˆ[ ] [ ] [ ][ ]Tk k =  (6.10) 

[ ]k is the element stiffness matrix in the global coordinates. The nodal displacement vector in the 

global coordinate is achieved as follows. 

1[ ]ek −= f  (6.11) 
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6.3.2 Elasticity solution for bending of a curved beam with rectangular section by a force 

at the end ([90]) 

A bar of a narrow rectangular cross-section and with a circular axis is considered at the lower end 

and bent by a force P applied at the upper end in the radial direction, Fig. (6.23). The bending 

moment at any cross-section mn, is proportional to sin( ) , and the normal stress  , according 

to elementary theory of the bending of curved beams, is proportional to the bending moment. The 

stress function  satisfies the equation below, [90].  

2 2 2 2

2 2 2 2 2 2

1 1 1 1
0

r r r r r r r r

  

 

       
+ + + + =  

       
 (6.12) 

 

 

Fig. (6.23) curved beam under tip loading, [90]. 

This equation is proportional to sin( ) , and ( )sin( )f r = . The general solution of the 

differential equation is 

3 1
( ) logf r Ar B Cr Dr r

r
= + + +  (6.13) 

Where A, B, C, and D are constants of integration, which are determined from boundary 

conditions. Using the stress functions, we find the following expressions for the stress components.  
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 (6.14) 

From conditions that the outer and inner boundaries of the curved bar are free from external forces, 

at =  and =  r a r b we have 0r r = = . The other condition is that the sum of the shearing forces 

distributed over the upper of the bar should equal the force P. Applying the boundary conditions, 

the following stress components for upper end of the bar, 0 =  will be as follows. 

2 2
2 2

3

0

1
[ ( )]r

P a b
r a b

N r r









=

−
= + − +

 (6.15) 

For the lower end, 
2


 = , we have 0r =  and 

2 2
2 2

3

1
(3 ( ) )

P a b
r a b

N r r
 = − − +  and, 

2 2N a b= −  2 2( ) log( / )a b b a+ + . The displacements produced by the force P can be obtained 

using the strain displacement relations ( /r ru r =   , / / ( )ru r u r  = +   , and 

/ ( )r ru r =    /u r+   /u r− ) as well as Hooke’s law, we have 
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 (6.16) 

Where, 
2 2

2 2,  B=- ,  D=- ( )
2 2

P Pa b P
A a b

N N N
= + . Solving the differential equations, leads to the 

following displacement 0( )u  =  as 

2 2

0 2 2 2 2

( )
( )

[( ) ( ) log( / )]
r

P a b
u

E a b a b b a



=

− +
=

− + +
 (6.17) 
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6.3.3 Validation of the presented 1D solution for beams with rectangular section by a 

force at the end   

To validate the present method of solution for initially curved beams with rectangular section, the 

transverse displacement ( w ), longitudinal displacement (u ) of a cantilever initially curved beam 

with isotropic rectangular section subjected to a tip loading proposed by Tang et. al. [92] is 

calculated which is based on Euler-Bernoulli beam theory and 1D FEM for the solution. Moreover, 

the elasticity solution presented in previous section Eq. (6.17) is also used for validation purpose. 

The rectangular cross-section and its dimensions are represented in Fig. (6.24). Moreover, the 

cross-sectional stiffness constants are calculated using VABS 3.8 and imported to ANSYS-APDL 

19 to perform 1D FE analysis of the beam. The Timoshenko beam model of curved beams is used 

for cross-sectional analysis in VABS 3.8 so that the effect of shear and curvature are taken into 

account while the presented solution is based on the Classical beam model. It is noted that the 

ANSYS-APDL has only the Timoshenko beam element. Moreover, comparing the presented 

Classical beam solution gives us the range of validity of the present solution. In ANSYS APDL, 

the element type beam 188 has been used for the modeling. The element has two nodes and 6 

degrees of freedom at each node, [88]. Also, the element is based on Timoshenko beam theory. 

Fig. (6.25) shows the curved beam and loading condition. The beam is clamped at one side where 

all the displacements and rotations are zero and subjected to a tip loading at the other side in both 

the present and ANSYS solutions. The beam has a width of b=1 in and height of h=1 in. The tip 

loading value is P=-1 lb. The beam has Young modulus E=10.5e6 psi and poisson’s ration v=0.3.  

 

Fig. (6.24). Cross-section of rectangular curved beam with width b and height h, (b=1 in, and 

h=1 in). 

The obtained transverse displacements of different beams with different slenderness ratios R/h are 

evaluated. To obtain the cross-sectional stiffness constants of the rectangular section of curved 

beams using the present method, the Pascal polynomials with order (m=4) are used in the Cartesian 
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coordinates. For 1D FE solution, we used the presented solution in section 6.3.1. Table (6.12) 

shows the obtained displacements of the beam. Moreover, ANSYS 3D solution is used for 

validation in which the element type Solid 185 is used. For the beam with R/h=4, the number of 

3D elements is 3242529, for R/h=10 the number of elements is 1004800. For R/h=20, the number 

of elements is 251600. It is noted that 0( )ru  =  of Eq. (6.17) is equivalent to w  of 1D solution at 

tip of the beam Eq. (6.25).  

 

Fig. (6.25). Initially curved beam under tip loading P. 

 

Table (6.12). Comparison of the obtained displacements of the present method for an isotropic curved beam with 

rectangular section, b=1 in and h=1 in, E=10.5e6 psi, v=0.3. 

Slendern

ess ratio 

(R/h) 

u ([92]) w ([92]) 
u  

(Present) 

w  

(Present) 

u  

(VABS+

ANSYS 

1D) 

w  

(VABS+A

NSYS 

1D) 

u  

(ANSYS 

3D) 

w  

(ANSYS 

3D) 

w        

(Eq. 

(6.17)) 

2 - - 4.480e-6 -7.634e-6 4.810e-6 -8.240e-6 4.722e-6 -7.310e-6 -7.435e-6 

4 3.638e-5 -5.774e-5 3.620e-5 -5.741e-5 3.701e-5 -5.951e-5 3.679e-5 -5.753e-5 -5.797e-5 

10 5.709e-4 -8.983e-4 5.707e-4 -8.971e-4 5.722e-4 -9.015e-4 5.710e-4 -8.962e-4 -8.989e-4 

20 4.570e-3 -7.182e-3 4.571e-3 -7.176e-3 4.571e-3 -7.181e-3 4.567e-3 -7.173e-3 -7.183e-3 

50 7.142e-2 -1.122e-1 7.147e-1 -1.121e-1 7.138e-2 -1.120e-1 7.139e-2 -1.121e-2 -1.122e-1 

100 5.714e-1 -8.976e-1 5.719e-1 -8.975e-1 5.710e-1 -8.960e-1 5.712e-1 -8.973e-1 -8.983e-1 

The transverse and longitudinal displacement distributions of the beams with rectangular section 

under loading conditions of Fig. (6.25) with different slenderness ratios (R/h) are demonstrated in 

Figs. (6.26) and (6.27). Two solutions for determining the deflections are provided in which first 
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the solution is done when the k2 in the cross-sectional stiffness matrix is set to zero, and second 

the k2 is non-zero and is equal to the geometrical curvature of the beam. There is no difference 

between two situations. Comparison of the present work and VABS 3.8 shows that the present 

method agrees with (VABS+ANSYS 1D) for R/h=4 and R/h=10. One can say that for determining 

the deflections of a curved beam with isotropic material, one can use the straight cross-sectional 

stiffness matrix to model a curved beam. This conclusion was also made by Kovvali and Hodges 

[89]. The number of 1D elements in all the present and (VABS+1D FE ANSYS) is 30. As the 

slenderness ratio increases the difference between the present method and VABS decreases. The 

slight deference between the present method which is based on the Classical beam model and the 

(VABS+ANSYS 1D), which is based on Timoshenko beam solution, for (R/h=4) is due to the 

effect of transverse shear.  

 

a) 

 

b) 
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Fig. (6.26). a) longitudinal displacement �̅�, b) transverse displacement 𝑤ഥ  of the 

beam with rectangular section under tip loading with (R/h=4). 

 

  

a) 

 

b) 

Fig. (6.27). a) longitudinal displacement �̅�, b) transverse displacement 𝑤ഥ  of the 

beam with rectangular section under tip loading with (R/h=10). 

6.3.4 Present 1D curved beam solution for tubular cross-sections under tip loading 

The effect of initial curvature for the analysis of composite tubes has two aspects. The first aspect 

is that the initial curvature changes the values of extensional stiffness, bending stiffness, and 

extension-bending stiffness. The study on the effect of these stiffness constants show that the 
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bending stiffness has substantial effect on the 1D behavior of the beam. The second aspect is that 

all the values of stiffness constants affect more the distribution of strain in the tubes, subjecting to 

bending moment. To show the effect of initial curvature on the 1D longitudinal and transverse 

displacements of tubes, we analyzed composite tubes [-α5/α5] with different levels of initial 

curvature. The tubes are subjected to tip loading of Fig. (6.25) with the value of P=-100 N. The 

tubes have dimensions explained in the beginning of section 6.2.4. Moreover, the obtained 

displacements of the present solution are compared with ANSYS 3D. It is noted that we used the

4 4 Classical cross-sectional stiffness matrix (up to second order of the strain energy) which takes 

into account the initial curvature in the cross-sectional stiffness matrix (𝑘2 ≠ 0) and Classical 

stiffness matrix of the straight tube in which the initial curvature is not considered in the cross-

sectional stiffness matrix (𝑘2 = 0). In ANSYS 3D, we used element Solid 185 for the analysis. In 

ANSYS 3D modeling, the one side ring surface of the tube is fixed (all the displacements and 

rotations) and the other side is under tip loading on the ring surface.  Moreover, for the tubes with 

k2=0.5 1/m, the tubes are meshed with 1461960 elements and for tubes with k2=1 1/m, we meshed 

the tubes with 730980 elements in ANSYS 3D solution. The tube [-455/455] is subjected to tip 

loading P=-100 N at one side and clamped at the other side as shown in Fig. (6.28). The 

longitudinal and transverse displacements of the tube are illustrated in Fig. (6.29). The change of 

tip longitudinal and transverse deflection of composite tubes [-α5/α5] under loading with different 

levels of initial curvature and various fiber angles are shown in Figs. (6.30) and (6.31).  

 

Fig. (6.28) Modeling of initially curved (R=1 m) composite tube [-455/455] under tip loading 

P=100 N.  
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a) Longitudinal  b) Transverse  

  

c) ANSYS 3D, longitudinal (�̅�) d) transverse (𝑤ഥ) 

Fig. (6.29). The obtained displacements a) Longitudinal, b) Transverse, of [-455/455] tube 

under tip loading P=100 N using the present, VABS 3.8+ANSYS 1D, and c,d) ANSYS 3D, 

(Ri=49 mm, Ro=59 mm, P=-100 N). 

It can be observed from Fig. (6.30) that as the initial curvatures changes two times from 0.5 to 1, 

the values of longitudinal tip displacements decrease by 6 to 8 times. Moreover, it can be observed 

from Fig. (6.31) that by increasing the initial curvature from 0.5 to 1, the transverse deflections 

decrease by 6 to 7 times. Additionally, for a certain value of initial curvature, by increasing the 

fiber angle, the magnitudes of longitudinal and transverse deflections increase. For the fiber angles 

more than α=50°, the increase in the displacements is more. In the Fig. (6.31) the obtained 
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transverse displacements of the present solution are shown for two cases when the initial curvature 

has been considered (𝑘2 ≠ 0) in the stiffness matrix and when the initial curvature is not taken into 

account (𝑘2 = 0). In both the analyses the number of elements is 50.  

 

Fig. (6.30). Variation of longitudinal displacement ( u ) at tip point of composite tubes [-α5/α5] 

under tip loading versus fiber angle for various levels of initial curvature, (Ri=49 mm, Ro=59 

mm, P=100 N). 

 

Fig. (6.31). Variation of transverse displacement ( w ) at tip point of composite tubes [-α5/α5] 

under tip loading versus fiber angle for various levels of initial curvature, (Ri=49 mm, Ro=59 

mm, P=100 N). 
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6.3.5 Presented 1D solution for initially curved tubes under four-point bending loading 

Initially curved composite tubes under four-point bending are the subject of interest in the 

helicopter industry. The cross-tubes for landing gear of helicopters are the initially curved tubes. 

The analysis of initially curved composite tubes under four-point bending loading is a complex 

task. In this section, we analyzed displacements of initially curved tubes under four-point bending 

loading. Tubes with cross-ply, and [-α5/α5] with aforementioned inner and outer diameters (section 

6.2.4) and radius of curvature R=2.5 m under four-point bending loading and simply supported-

simply supported boundary conditions are analyzed using the presented method and ANSYS 3D. 

Fig. (6.32) shows the loading and boundary conditions.  

 

Fig. (6.32). Four-point bending of the initially curved beam. 

Fig. (6.33) demonstrates transverse displacement distribution of simply supported-simply 

supported tube with [905/05] lay-up sequence. The solution is done with 50, 100 and 200 elements 

and it is converged with 100 elements. The obtained displacement is compared with ANSYS 3D 

(with 74670 3D elements (Solid 185)). In both the present 1D solution and ANSYS 3D, the 

displacements at the ends are restricted, and the rotation is free about z coordinate.  
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a) Present, ANSYS 3D (at mid-span) 

 

b) ANSYS 3D 

Fig. (6.33). Transverse displacement distribution of simply supported-simply supported curved 

tube [905/05] under four-point bending loading, a) Present, ANSYS 3D (at mid-span), b) 

ANSYS 3D (P=-500 N), (Do=118 mm, Di=98 mm, R=2.5 m). 

Tubes with [-α5/α5] 

The transverse displacements obtained through the present solution (Classical beam model up to 

2nd order of strain energy) for [-α5/α5] tubes under four-point bending loading (P=-500 N) and 

simply-supported are reported in Figs. (6.34-6.35). The analyses have been done for initially 

curved tubes with straight (k2=0) and curved (k2≠ 0) of the cross-sectional stiffness matrix. The 

analyses have been done with 100 number of elements. Increasing the fiber angle of the tube, 

increases the transverse deflection of the tubes. The percentage difference between the Classical 
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up to 2nd order and ANSYS 3D for [-155/155] is 15%. This difference for VABS+ANSYS 1D 

which uses Timoshenko beam model is 10%. The percentage difference between Classical up to 

2nd order and ABSYS 3D for tubes with [-605/605] is 6.25% while this difference between 

VABS+ANSYS 1D and ANSYS 3D is 3.75%. By increasing the fiber angle, the difference 

between the Classical up to 2nd order and ANSYS 3D decreases which is due to the effect of shear. 

Comparison of VABS+ANSYS 1D which uses Timoshenko and Classical up to 2nd order shows 

that the transverse shear will have more effect for lower fiber angles of the tube.  

 

Fig. (6.34). Transverse displacement distribution of simply supported-simply supported curved 

tube [-155/155] under four-point bending loading, (P=-500 N), (Do=118 mm, Di=98 mm, R=2.5 

m). 

 

Fig. (6.35). Transverse displacement distribution of simply supported-simply supported curved 

tube [-605/605] under four-point bending loading, (P=-500 N), (Do=118 mm, Di=98 mm, R=2.5 

m). 
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6.4 Investigating the location of tension center (Neutral axes) 

The neutral axes or the tension center ( , )X Y  is defined as the point of the cross-section through 

which no bending deformation will occur when an axial force applied at this point [40]. Fig. (6.36)  

shows the cross-section of a tube with its tension center point.  

 

Fig. (6.36). Cross-section of a tube with initial curvature and its tension center point. 

For the applied axial force F1 at the point P. The moments induced by this force are  

2

3

1

1

x

x

M FY

M F X

= −

=
 (6.18) 

We look for the positions where 2 3 0 = = . From the cross-section constitutive relation as Eq. 

(3.42), we have.  

11 111 12 13 14

1 112 22 23 24

13 23 33 342 2

14 24 34 443 3

FP P P P

MP P P P

P P P P M

P P P P M









    
    
    =   

    
        

 (6.19) 

Where the matrix [P] is the cross-sectional flexibility matrix and is 1

1[ ] [ ]P Y −= . The matrix 1[ ]Y  is 

the classical stiffness matrix (up to second order) obtained from Eq. (3.42). Using the Eq. (6.19), 

the following relation is obtained.  

2 13 1 33 2 34 3

3 14 1 34 2 44 3

0

0

P F P M P M

P F P M P M





= + + =

= + + =
 (6.20) 

Substitution of Eq. (6.19) into Eq. (6.20) and solving X and Y leads to the following relations which 

are the coordinates of the location of tension center of a curved beam.  
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6.4.1 Strength of materials (rectangular section, [93]) 

The location of neutral axes of rectangular sections with height h, width b, curvature center C (see 

Fig. (6.37) using the strength of materials method is as follows.  

2

1

ln( )

h
R

r

r

=  
(6.22) 

where, R is the radius of location of neutral axis r1 and r2 are the distances of edges of cross-section 

from curvature center.  

 

Fig. (6.37). Radius of neutral axis for a rectangular section. 

The location of neutral axis of rectangular sections with various radius of curvature of beam 

reported in section 6.3.3 have been shown in Table (6.13). A good correlation between the present 

method and strength of materials is observed. As the radius of curvature increases, the location of 

neutral axis becomes close to the centroid of the cross-section. 
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Table (6.13). Location of neutral axis of rectangular sections 

with various values of initial curvatures, (b=1 in, h=1 in).  

R/h 
Strength of materials 

(Eq. (6.22)) (Y (in)) 

Eq. (6.21) 

(Y (in)) 

2 0.0423 0.0424 

4 0.0209 0.0209 

10 0.0083 0.0083 

20 0.0041 0.0041 

50 0.0016 0.0016 

100 0.0008 0.0008 

6.4.2 Tubular orthotropic section ([-α5/α5]) 

Fig. (6.38) shows the change of location of neutral axes of composite tube [-α5/α5] for different 

values of initial curvature. It is seen that the location of tension center has the maximum distance 

from the center of the cross-section for the case of 𝛼 = 15°.  

 

Fig. (6.38). The Y coordinate of the location of tension center of composite tubes [-α5/α5] versus 

initial curvature k2, (outer diameter Do=118 mm, and inner diameter Di=98 mm). 

6.5 Influence of initial curvature 

The initial curvature has influences on the obtained cross-sectional stiffness matrix of composite 

beam and therefore on the strain distributions of the composite beam under loading. This affects 
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observe the effect of initial curvature on the strain energy and consequently on the cross-sectional 

stiffness constants of the beam. We first start with a simple case of a beam with isotropic material 

and rectangular cross-section. Then, we will study the effect of initial curvature on the more 

complex cases such as isotropic and orthotropic tubular curved beams.  

6.5.1 Effect of initial curvature on the stiffness constants of an isotropic rectangular 

cross-section 

As presented in chapter (3), the first approximation of the strain energy in the VAM comes from 

keeping the terms up to order O ( 2

max ). One can write the first approximation of the strain energy 

(Classical beam model) for an orthotropic beam with rectangular cross-section as the following 

format.  
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(6.23) 

The beam strain energy for a beam with isotropic material and rectangular cross-section with 

initial curvature k2 can be written as follows. 
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(6.24) 

The warping functions can be discretized using the Pascal Polynomials as follows. 

1 2 3 2 3 1( , , ) [ ( , )] ( )k kw x x x W x x x= V  (6.25) 

2 3( , )W x x includes Pascal polynomials and 
1( )k xV consists of unknown coefficients which is a 

function of axial coordinate and should be determined. The Pascal polynomials in the Cartesian 

coordinates may be defined as follows. 

2 2

2 3 1 2 2 2 3 2 4 2 3 4 3( , ) 1 ...W x x a x a x a x a x x a x= + + + + + +  (6.26) 

The order of pascal polynomial is the maximum of the degree of the polynomial. We use the order 

one of the Pascal polynomials as  

2 3 1 2 2 2( , ) 1W x x a x a x= + +  (6.27) 

So that the warping field can be written as follows. 

10 1 2 2 3 3

20 4 5 2 6 3

30 7 8 2 9 3

w a a x a x

w a a x a x

w a a x a x

= + +

= + +

= + +

 (6.28) 

Substituting the above equation into the strain energy, the strain energy of an isotropic beam with 

rectangular cross-section  2 3 2 3( , ) | / 2 / 2, / 2 / 2x x b x b h x h = −   −   is obtained by 

integrating the strain energy over the region  . Where b and h are the width height of the beam, 

respectively. The relation after integration will be as follows.  



167 
 

2 3 3 2 3 2 3 2 3

0 9 2 6 8 2 5 2 6 2 8 22 3

2

2 3 2 3 2 2 2 2 2

2 2 3 2 2 11 2 2 2 1 2 2 11 2

2 2 2 2

2 11 2 2 2 2 1

2 ( ( ν ν ν ν
(2ν ν 1)

1
ν ν 2 ν ν ln 1

2

1 1 1
ln 1 ln 1 ν ln 1 ν

2 2 2

eL

Eh
U a bk a a bk a bk a bk a bk

k

a bk a bk bk bk bk k b k

k b k k b k b

    

  

= − + + +
+ −

 
+ + − − − − + 

 

     
+ − + + + + +     

     

−



2 2 3 3

2 2 2 1 5 11 2 5 9 2

1 1
ln 1 ν ln 1 ν 2 ν 2 ν

2 2
k b k b a bk a a bk  

   
− + − − + − −   
   

3 3 2 2 2 2

9 11 2 6 8 2 2 11 2 2 1 2

2 2 2 2 2 2

3 2 2 3 2 2

2 2 2

2 1 2 2 2 11 2

1
2 ν 2 ν 2 ν 0.08ln 1 ν

2

1 1
0.08 ln 1 ν 0.08 ln 1 ν

2 2

1 1
0.08ln 1 ν 2.ln 1 ν

2 2

a bk a a bk bk k b h k

k b h k k b h k

k b h k k b k

   

 

  

 
− + + − − + 

 

   
− − + + +   

   

   
+ + + − +   

   

2 2 2 3 2 3

2 2 11 2 2 2 1 2 5 2 6 2

2 3 2 3 2 3 2 3 2 2

8 2 9 2 2 2 3 2 2 11 2

2 2

2 2 11 2 2 2 11 2 2 11 2

1 1 1
2ln 1 ν

2 2 2

1 1 1 1
ln 1 ν

2 2 2 2

1 1 1
2.ln 1 2ln 1 ln 1 ν

2 2 2

0.0

k b k bk bk a bk a bk

a bk a bk a bk a bk k b k

k b k k b k k b k

   



    

 
− + + + − − 

 

 
− − − − − − + 

 

     
− − + + + + +     

     

− 2 2 2 2 2 2 2 2 2

2 1 2 2 1 2 3 2 2

2 2 2 2

3 2 2 2 2

2 2 2

2 1 2 2 1

1 1 1
4ln 1 0.04 ln 1 0.08 ln 1

2 2 2

1 1
0.08 ln 1 ln 1

2 2

1 1 1 1 1
ln 1 ln 2 1. ln 1 )

2 2 2 2 2

k b h k k b h k k b h k

k b h k k b

k b k b k b

  

 

  

     
+ + − + + − +     

     

   
− + − +   

   

     
− + + − + + − +     

     

 

(6.29) 

The procedure of dimensional reduction method using Pascal polynomials is to minimize the 

obtained strain energy using the Euler-Lagrange equation as follows.  

0 0,  1..9i

i

U
a

a


= =


 (6.30) 

The obtained coefficients ai can be substituted in the strain energy Eq. (6.30). Collecting the 

coefficients of 2

11 leads to extensional stiffness (
11S ), coefficients of  1 results in torsional stiffness (

22S ), coefficients of 2 and 3 lead to bending stiffness 
33S and 

44S , respectively. The coefficients of 11

and 2  leads to extension-bending stiffness of the curved beam.  
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The 1D strain energy of the beam is 

  1
2 [ ]

e
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U S dx=     (6.36) 

Using Eq. (6.31-6.35), and (6.36), and  11 1 2 3

T
   = , the expanded 2D strain energy 

of the beam is  
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For the case of a straight beam, the stiffness constants of Eqs. (6.31- 6.35) can be changed by 

setting the limit of k2 to be zero, as follows.  
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Comparison of the Eqs. (6.31-6.35) and (6.38-6.41) shows that the initial curvature has effect on 

the cross-sectional stiffness constants. The values of 
13S  becomes zero for the case of straight 

beam while this value for the case of curved beam is non-zero. 

For the studied rectangular section with isotropic material, the change of 
11S , 

22S , 
33S , 

44S , and

13S based on classical beam model versus the initial curvature are shown in Fig. (6.39). Different 

orders of polynomial are applied for this study. For the order (m=1), the Eqs. (6.31-6.35) are used. 

The orders (m=2, 4, and 5) are also used to obtain more accurate results. By increasing the initial 

curvature the values of 
11S , 

22S , 
33S , and 

44S do not change significantly for the isotropic 

rectangular section. While, the magnitudes of 
13S increase considerably. 
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a) b) 

  
c) d) 

 
e) 

Fig. (6.39). The variation of stiffness constants of the rectangular isotropic cross-section versus 

initial curvature, (b=1 in, h=1 in, 
610.5 10E =  psi, v=0.3). 
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6.5.2 Effect of initial curvature on the stiffness constants of initially curved tubes 

We selected isotropic and orthotropic tubes to study the effect of curvature on their mechanical 

behavior such as cross-sectional stiffness constants and displacement. All the isotropic and 

orthotropic tubes have outer diameter of Do=118 mm and inner diameter of Di=98 mm. The 

isotropic tubes have E=69.7 Gpa and v=0.3. The orthotropic tubes have material properties of 

E1=138 GPa, E3= E2=10.5 GPa, v12=v13=0.3 and v23=0.33, G12=G13=G23=5.53 GPa. The tubes have 

the lay-up of [-α5/α5]. Each layer has the thickness of t= 1 mm. The variation of S11 for different 

initial curvatures of isotropic and orthotropic tubes with various fiber angles α are shown in Table 

(6.14). It can be observed that by increasing the initial curvature, the values of S11 have 

fluctuations. This fluctuation will have effect on the distribution of strains as well as changes the 

1D global behavior of the tube. But these fluctuations should be considered with the other stiffness 

constants to have a correct judgement to understand the behavior of the tube.  This augmentation 

in the S11 is more prominent for lower fiber angles. By increasing the fiber angle, the effect of 

initial curvature on the S11 decreases. A good agreement between the present polynomial based 

method and VABS is observed. It should be pointed out that the order (m=7) of pascal polynomials 

has been applied to calculate the stiffness constants.  

Table (6.14). Variation of S11 (N) of Timoshenko beam model for different initial curvatures k2 

(1/m) of isotropic and orthotropic tubes [-α5/α5] with various fiber angles (α). 

Fiber angle 

(α) 

 (Straight) 

(Present) 

(k2=0.5) 

(Present) 

(k2=0.5) 

(VABS) 

(k2=1) 

(Present) 

(k2=1.5) 

(Present) 

(k2=1.5) 

(VABS) 

Isotropic 2.36× 108 2.37× 108 2.35× 108 2.44× 108 2.21× 108 2.24× 108 

0 4.68× 108 4.68× 108 4.68× 108 4.72× 108 4.77× 108 4.70× 108 

15 3.82× 108 3.59× 108 3.34× 108 3.94× 108 3.87× 108 3.85× 108 

45 6.63× 107 6.62× 107 6.63× 107 7.05× 107 6.69× 107 7.53× 107 

50 5.32× 107 5.30× 107 5.32× 107 5.54× 107 5.43× 107 5.85× 107 

60 4.09× 107 4.10× 107 4.09× 107 4.16× 107 4.15× 107 4.28× 107 

90 3.57× 107 3.58× 107 3.57× 107 3.59× 107 3.51× 107 3.59× 107 

The influence of change of initial curvature on the variation of S55 of isotropic and orthotropic 

tubes is shown in Table (6.15). It can be seen that for the case of isotropic tube, as the initial 

curvature increases, the values S55 do not change significantly. While, for the case of orthotropic 
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tubes, the initial curvature has more effect on the change of S55, specifically in the lower fiber 

angles of angle-ply tubes.  

Table (6.15). Variation of S55 (N.m2) of Timoshenko beam model for different initial curvatures k2 

(1/m) of isotropic and orthotropic tubes [-α5/α5] with various fiber angles (α). 

Fiber 

angle (α) 

(Straight) 

(Present) 

(k2=0.5) 

(Present) 

(k2=0.5) 

(VABS) 

(k2=1) 

(Present) 

(k2=1.5) 

(Present) 

(k2=1.5) 

(VABS) 

Isotropic 3.47× 105 3.48× 105 3.42× 105 3.53× 105 3.58× 105 3.04× 105 

0 6.88× 105 6.89× 105 6.88× 105 6.90× 105 6.90× 105 6.93× 105 

15 5.61× 105 5.00× 105 4.70× 105 5.60× 105 6.05× 105 5.63× 105 

45 9.78× 104 9.68× 104 9.67× 104 1.03× 105 9.02× 104 8.81× 104 

50 7.84× 104 7.83× 104 7.78× 104 8.48× 104 8.39× 104 7.32× 104 

60 6.02× 104 6.01× 104 5.99× 104 6.01× 104 6.20× 104 5.80× 104 

90 5.25× 104 5.26× 104 5.24× 104 5.27× 104 5.29× 104 5.20× 104 

The effect of fiber angle of tubes [-α5/ α5] on the 
13S of the classical stiffness matrix of (up to 

second order) for various levels of initial curvature is demonstrated in Fig. (6.40) . It is seen that 

the maximum of values of 
13S happens at fiber angle of α=15° for different levels of initial 

curvature. Moreover, the values of 
13S do not change significantly as the fiber angle is more than 

α=50°. Also, as the initial curvature increases, the values of S13 increase. It is noted that for the 

case of beams with initial curvature k2=0 1/m (straight), S13 is zero. The variation of extension-

bending stiffness (S15) of tubes based on Timoshenko-Like beam model for different levels of 

initial curvature and various fiber angles is shown in Fig. (6.41). Comparing the obtained 

extension-bending stiffness of Fig. (6.40) and Fig. (6.41), one can find that the magnitudes of S15 

are higher than those of 
13S .  
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Fig. (6.40). The variation of S13 of cross-sectional stiffness matrix (up to second order) for 

different levels of initial curvature k2 of composite tubes [-α5/α5]. 

 

 
Fig. (6.41). The variation of S15 of cross-sectional stiffness matrix (Timoshenko) for different 

levels of initial curvature k2 of composite tubes [-α5/α5]. 

 

6.6 Stress analysis of initially curved tube under four-point bending loadings 

The experimental tests in this thesis have been conducted by a teamwork at Concordia Center for 

Composites (CONCOM), under the umbrella of the NSERC Industrial Chair on Automated 

Composites Manufacturing held by Professor Suong V. Hoa, in collaboration with Bell Flight Ltd. 
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The general configuration of the tubes has been guided by people at Bell Flight (Pierre Beulieu 

and Simon Bernier). The design and fabrication of the test set up was done by Dr. Ashraf Ahmed 

Fathy. Dr. Daniel Rosca developed the manufacturing procedure and fabricated the tubes using the 

Automated Fiber Placement machine at Concordia. Dr. Daniel Rosca and Ashraf Fathy carried out 

the test of the tubes. 

6.6.1 Four-point bending experimental test of curved tube 

An initially curved tube is fabricated using Automated Fiber Placement (AFP) machine. The tube 

consists of 7 layers of a 5-harness carbon epoxy satin woven which is used as a mandrel and 36 

layers of Carbon/PEEK lay-up using AFP. The fabrication process is shown in Fig. (6.42).  

 

Fig. (6.42) Fabricating the curved tube using AFP. 

The tube has the stacking sequence of 
7 4 4 4 4 4 4

[(5  satin) / 90 / ( 30) / 90 / ( 35) / 90 / ( 45) ]Harness    , inner 

and outer radiuses of rin=36.33 mm and rout=42.32 mm. The thickness of each layer of 5 harness 

satin woven is 0.285 mm and the thickness of each layer of Carbon/PEKK is 0.111 mm. Fig. (6.43) 

shows the lay-up of the tube. 
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Fig. (6.43). Lay-up sequence of the tube 

7 4 4 4 4 4 4[(5  satin) / 90 / ( 30) / 90 / ( 35) / 90 / ( 45) ]Harness    . 

The material properties of the 5-harness satin woven are E1= E2=54 GPa, E3=9.964 GPa, G12=4 

GPa, G13= G23= 2.5 GPa and poisson ratio of v12=0.05, v13=0.254 and v23=0.289 [78]. The material 

properties of Carbon/PEKK are E1=138 GPa, E2=E3=10.2 GPa, G12=G13=G23=5.7 GPa and v12= 

v13=0.31 and v23=0.33.  

A test setup for bending test of the tube which simulates the bending of cross-tube for landing gear 

of helicopter is fabricated and shown in Fig. (6.44).  

  

Fig. (6.44) Bending test setup of curved tube. 

The locations of the tube which are under loading are boosted by using glass fibers to prevent local 

failure and stress concentration. The supports at the two ends of the tube can rotate and slide. The 
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test setup and tube dimensions are illustrated in Fig. (6.45). The tube is attached to the two steel 

arms where the arms can slide in the z direction.  

 

Fig. (6.45). Composite tube and the test setup dimension, (dimensions are in millimeter). 

Six rosettes at section A-A and two longitudinal strain gages at top and bottom surfaces of section 

B-B and section C-C are installed to capture all the strains. The circumferential position of each 

strain gage according to the coordinate of the Fig. (6.45), are reported in the Table (6.16). The 

circumferential locations of longitudinal strain gages at sections B-B and C-C are shown in Table 

(6.17).  

Table (6.16) Circumferential position of each rosette 

at section A-A. 

Rosette number Circumferential angle ( ) 

1 90° 

2 45° 

3 0° 

4 270° 

5 180° 

6 135° 
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Table (6.17) Circumferential position of each strain gage at 

sections B-B and C-C. 

Strain gage number Circumferential angle ( ) 

1 (Section B-B) 90° 

2 (Section B-B) 270° 

3 (Section C-C) 90° 

4 (Section C-C) 270° 

Three spots of the tube are considered for measuring the strains. The first spot is at the center of 

the tube which is section A-A located at the straight region (mid-length) of the tube and second 

spot is the section B-B located at the curved region of the tube. The third spot is located at section 

C-C. 

VABS modeling 

The VABS modeling of the tube under four-point bending loadings has been reported in Appendix 

A.  

ANSYS 3D modeling 

In this section, we provided the explanation concerning with the modeling procedure of the curved 

tubular beam including steel arms as well as the composite part. The tube has three parts, the steel 

part has the inner and outer radiuses similar to the composite part mentioned in section 6.6.1. The 

Steel parts have the material properties E=210 GPa and v=0.3. The dimensions of the curved part 

is measured and imported to ANSYS workbench. All the three parts are then imported to ANSYS 

in which the two Steel arms are joined to the composite part by bonding contact method in ANSYS. 

So, the arms are clamped to the composite part. Fig. (6.46) shows the designed tube and the arms 

which is based on the measurements in CATIA.  
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Fig. (6.46). The configuration of measured and designed tube in CATIA. 

The stack-up sequence of the curved part is 
7 4 4 4 4 4 4

[(5  satin) / 90 / ( 30) / 90 / ( 35) / 90 / ( 45) ]Harness     

where two fabrics are defined as 5-Harness satin and Carbon/PEKK. The rosettes which are 

coordinate systems used to set the reference direction of oriented selection sets are defined to be 

edgewise. They follow an edge parallel to the reference axis of the whole the tube. Fig. (6.47) 

shows the fiber direction of 90° layers in the tube as an example.  

 

Fig. (6.47). Direction of 90° fibers throughout the tube. 

The schematic of the modelled tube in ANSYS workbench is demonstrated in Fig. (6.48). The 

boundary conditions at two end rings (C and D; two ends of the Steel arms) of the beam are defined 

in which along the z direction the displacement is free (𝑢𝑧 ≠ 0), along the y and x directions the 

displacements are restricted (𝑢𝑥 = 𝑢𝑦 ≠ 0). The rotations about z and y directions are restricted 

(𝑅𝑜𝑡𝑧 = 𝑅𝑜𝑡𝑦 = 0) and rotation about x direction is free (𝑅𝑜𝑡𝑥 ≠ 0). The loadings are applied at 

nodes (nodal force at points A and B) with the amount of -1500 N along the y coordinate where 

the applied loading is divided by nodes, (Fig. (6.48)). It is noted that the center point of the loading 

is similar to the experiment, while the loading surface area is less than the experiment due to 

surface imperfections of the tube in the experiment. A single node at the middle of the tube is 
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selected and restricted along z axis to avoid rigid body motion of the beam. The element SOLID 

186 has been used for the composite part. This element is a higher order 3D with 20 node solid 

element that exhibits quadratic displacement behavior. The element is defined by 20 nodes having 

three degrees of freedom at each node. The element SOLID 187 has been used for Steel arms. This 

element is a higher order 3D with 10 nodes. This element is suitable for modeling of irregular 

meshes (such as those produced form CAD systems), [88]. The total number of elements of the 

tube is 231020. Due to the hardware limitation, it was not possible to increase the number of 

elements.  

 

Fig. (6.48). The modeled tube in ANSYS, loadings and boundary conditions. 

Section A-A 

The obtained Timoshenko-like 6 6 cross-sectional stiffness constants of section A-A which is 

the straight region of the tube is shown in Table (6.18).  

Table (6.18). Timoshenko-Like stiffness constants of straight region (k2=0) of the tube.  

Method 
S11 

(N) 

S14 

(N.m) 

S22 

(N) 

S33 

(N) 

S44 

(N.m2) 

S25 

(N.m) 

S36 

(N.m) 

S55 

(N.m2) 

S66 

(N.m2) 

VABS 3.9 7.045e7 4.131e4 1.173e7 1.160e7 4.104e4 -1.962e4 -2.188e4 5.429e4 5.405e4 

Present 7.176e7 6.850e4 1.269e7 1.271e7 4.427e4 -3.287e4 -3.288e4 5.495e4 5.495e4 

The value of S55 indicates the flexural stiffness of the tube about axis x2. This value has substantial 

effect on the longitudinal strain of the straight part of the tube. The load-longitudinal and load-

circumferential strain diagrams of the section A-A at different circumferential positions of section 

A-A are obtained as follows.  

• Strains at rosette 1 where 90 = and outer surface of the tube are shown in Fig. (6.49). 
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• Strains at rosette 2 where 45 =  and outer surface of the tube are shown in Fig. (6.50). 

• Strains at rosette 4 where 270 =  and outer surface of the tube are shown in Fig. (6.51). 

• Strains at rosette 6 where 135 =  and outer surface of the tube are shown in Fig. (6.52). 

It can be observed that there is a good agreement between the VABS and experimental strains 

at section A-A.  

 

 

Fig. (6.49). Load-strain at section A-A and 90 =  (rosette 1) of the tube, F=2P. 

 

Fig. (6.50). Load-strain at section A-A and 45 =  (rosette 2) of the tube, F=2P.  
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Fig. (6.51). Load-strain at section A-A and 270 =  (rosette 4) of the tube, F=2P.  

 

 

Fig. (6.52). Load-strain at section A-A and 135 =  (rosette 6) of the tube, F=2P.  

The distribution of longitudinal strain and circumferential strain of the tube at section A-A under 

load 3000 N are demonstrated in Fig. (6.53). It can be seen that at top surface of the tube, there is 

a compression and at the bottom of the tube there is tension.  
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a) Longitudinal (VABS 3.8) b) Circumferential (VABS 3.8) 

 
 

c) Longitudinal (ANSYS 3D) d) Circumferential (ANSYS 3D) 

Fig. (6.53). Distribution of longitudinal strain and circumferential strain at section A-A under 

load 3000 N, F=2P. 

Section B-B 

At the section B-B, since the tube is curved and there exist the shear loading, the loading condition 

is more complicated. At the section B-B, the tube has k2=1.61 1/m curvature. Due to the initial 

curvature, the additional stiffness constants will be added to the stiffness matrix, (see Table (6.19)). 

Moreover, the flexural stiffness constant (S55) of the curved tube decreases compared to straight 

part. In spite of the fact that the values of S11 and S55 decrease compared to straight part, it does 

not have meaning that the curved part has less stiffness with respect to the straight part. The value 

of S15 increases. Moreover, it is observed that the FE stiffness matrix of curved tube will be more 

affected which is due to the change of geometry of the tube. These are the main effects of initial 

curvature on the strain and displacement behavior of a beam. Fig. (6.54) shows the force-strain at 
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strain gages 1 and 2 located at top and bottom surfaces of the tube. The longitudinal strain at top 

surface of the theoretical method agrees well with the experiment. However, there is a difference 

at the bottom surface between the experiment and theoretical strain after the load 3000 N. 

Table (6.19). The non-zero Timoshenko-Like cross-sectional stiffness constants of the curved part with 

k2=1.61 1/m, (Section B-B). 

Method 
S11 

(N) 

S14 

(N.m) 

S15 

(N.m) 

S22 

(N) 

S24 

(N.m) 

S25 

(N.m) 

S33 

(N.m) 

S36 

(N.m) 

S44 

(N.m2) 

S55 

(N.m2) 

S66 

(N.m2) 

VABS 3.9 5.501e7 -1.05e6 -6.05e4 1.038e7 1.898e4 4.320e5 1.036e7 4.168e5 4.155e4 3.859e4 3.737e4 

Present 5.842e7 -7.700e5 -6.147e4 1.057e7 1.049e5 4.367e5 1.05e7 4.367e5 3.732e4 3.763e4 3.720e4 

The distribution of longitudinal and circumferential strains are shown in Fig. (6.55). Comparison 

of distribution of strains of curved and straight regions show that the initial curvature affects the 

distribution of strains along both directions in terms of distribution pattern. 

 

Fig. (6.54). Force-strain at section B-B and 90  and 270 =  (strain gages 1 and 2) of the tube, 

F=2P.  
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a) b) 

Fig. (6.55). Distribution of a) Longitudinal, and b) Circumferential strains at section B-B 

under load F=3000 N, F=2P. 

Section C-C 

At the section C-C, the tube has k2=2.06 1/m curvature. The curvature of this section is more than 

section B-B. The 1D FE stiffness matrix of section C-C will be stiffer with respect to section B-B 

which is due to change in geometry. The obtained cross-sectional stiffness constants of this section 

are tabulated in Table (6.20). 

 Table (6.20). The non-zero Timoshenko-Like cross-sectional stiffness constants of the curved 

part (Section C-C). 

Method S11 

(N) 

S14 

(N.m) 

S15 

(N.m) 

S22 

(N) 

S24 

(N.m) 

S25 

(N.m) 

S33 

(N.m) 

S36 

(N.m) 

S44 

(N.m2) 

S55 

(N.m2) 

S66 

(N.m2) 
VABS 3.8 6.019e7 -1.178e6 -7.707e4 9.956e6 3.930e4 4.286e5 1.003e7 4.116e5 4.170e4 3.847e4 3.570e4 

Present 7.509e7 -9.042e5 -6.214e4 1.281e7 3.996e4 4.342e5 1.281e7 4.342e5 3.966e4 3.783e4 3.720e4 

The force-longitudinal strain at top and bottom surfaces of the tube at section C-C are shown in 

Fig. (6.56). It can be seen that there is a good agreement between VABS and experiment 

longitudinal strain at top surface ( 90 = ). However, there is a difference between the theoretical 

and experimental strain after the load of 4000 N at the bottom surface.  
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Fig. (6.56). Load-strain at section C-C and 90  and 270 =  (strain gages 3 and 4) of the tube, 

F=2P. 

The distribution of longitudinal strain at section C-C under load 3000 N is shown in Fig. (6.57).  

  

a) b) 

Fig. (6.57). Distribution of a) Longitudinal, and b) circumferential strains at section C-C under 

load F=3000 N, F=2P. 

 

Transverse Displacement calculation by ANSYS 3D 

The transverse displacement (along y) distribution of the tube under total loading F=3000 N using 

ANSYS 3D is demonstrated in Fig. (6.58). The maximum magnitude of transverse displacement 

of the tube is 19.59 mm.  
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Fig. (6.58). Transverse displacement distribution (in m) along y of the tube using ANSYS 3D. 

Transverse displacement using VABS+ANSYS 1D  

To model a curved beam which consists of combinations of curved and straight parts, we use the 

obtained cross-sectional stiffness matrices calculated by VABS. The beam consists of a straight 

composite part with cross-sectional stiffness matrix (S1), two curved composite parts with cross-

sectional stiffness matrices (S2 and S3), and two Steel arms with cross-sectional stiffness matrix 

(S4), as shown in Fig. (6.59). These matrices are imported to assemble the complete beam in 

ANSYS-APDL. The element type beam 189 is employed in ANSYS-APDL. For each straight and 

curved part, different mesh attribute with its specific section type is defined. The total number of 

elements is 200 for the whole tube. The boundary conditions are defined that the displacement at 

two ends of the beam structure along z direction is free ( 0zu  ), and the displacements along y and 

x directions are restricted ( 0
x y

u u= = ). The rotations about y and z are restricted ( 0
y z

 = = ) and 

about x is free ( 0x  ). The loads P are applied at the center of crossheads. The transverse 

displacement distribution of the tube under total loading F=3000 N along y is shown in Fig. (6.60). 

A good agreement between the ANSYS 3D and VABS+ANSYS 1D for transverse displacement 

is observed. It should be pointed out that for each straight and curved part, a specific cross-sectional 

stiffness matrix with its initial curvature (k2) is used. The joint at straight and curved parts might 

have relatively little effect on the overall accuracy except in the vicinity of the discontinuity. A 

sufficiently large number of elements should be used to make sure that the results are converged. 

The maximum magnitude of transverse displacement at the middle of the beam is 19.71 mm which 

agrees with what obtained by ANSYS 3D.  
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Fig. (6.59). 1D sketch of the tube with straight and curved parts under four-point bending 

loading. 

 

Fig. (6.60). Transverse displacement of the tube along y direction using VABS+ANSYS-APDL. 

The obtained transverse displacement distribution of this tube using the presented 1D FE solution 

using Classical beam model up to 2nd order stiffness matrix is shown in Fig. (6.61). A percentage 

difference of 24% is observed between the VABS+ANSYS 1D and the present solution. This 

difference can be due to the effect of shear which has not been considered in the present solution. 
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Fig. (6.61). Transverse displacement of the tube along y direction using VABS+ANSYS-APDL. 

6.7 Conclusion remarks 

The analytical meshless Pascal polynomial method for cross-sectional analysis of initially curved 

composite beams with rectangular and tubular sections presented in chapter (3) is examined. Using 

the VAM, the Pascal polynomials in the Cartesian coordinates are introduced to the warping field 

in the Cartesian coordinates for rectangular cross-section and they are applied to the polar 

coordinates system for tubular section with considering the layer angle in the circumference. The 

presented method is examined by comparing the obtained strains and cross-sectional stiffness 

constants with the literature, ANSYS 3D and VABS 3.8. The present method is computationally 

more efficient compared to the ANSYS 3D for determining the mechanical behavior of composite 

curved tubes under complex loading condition since there is no need to generate mesh of the 3D 

body. The parametric study is performed, and the following conclusions can be drawn for curved 

tubes.  

• As a simple example, the explicit formulations for the strain energy of the curved isotropic 

beam with rectangular cross-section are provided to understand the utilization of Pascal 

polynomial method in conjunction with the VAM. Then, the cross-sectional stiffness 

constants of curved rectangular isotropic section have been obtained. 

• The presented meshless cross-sectional analysis for composite tubes saves computational 

time compared to ANSYS 3D. (from hours to minutes) 

• It is observed that the change of initial curvature does not have effect on the extensional 

stiffness (S11), shearing stiffness (S22, S33), torsional stiffness (S44) and bending stiffness (S55, 

and S66) of the curved isotropic beam. While, as the initial curvature increases, the magnitudes 
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of extension-bending (S15 (Timoshenko-Like) or 
13S  (Classic up to 2nd order)) stiffness 

increase.  

• It is seen that increasing the initial curvature, increases the S11 and S55 and then they decrease 

for higher values of initial curvature of [-α/ α] tubes.  

• For composite tubes with complex lay-up, the change of curvature affects more the S11 and S55 

of the tube.  

• It can be concluded that two factors affect the global behavior of composite tubes under 

bending loading as the initial curvature increases, one is the cross-sectional stiffness constants 

and the other is the change of geometry of the beam which affects the FE global stiffness 

matrix.  

• The obtained extensional-bending (S15) and shear-torsion (S24) stiffness have substantial effect 

on the strain distributions of the curved composite tubes under bending loading. 

• A good agreement between the present meshless method and VABS 3.8 has been observed for 

strains and cross-sectional stiffness constants for different values of initial curvature.  

• The obtained bending stiffness of the [α]10 of the Timoshenko beam model and Classical beam 

model (up to 2nd order of the strain energy) are different. However, for the curved tubes with 

the fiber angles (i.e. [05/455]), the obtained Timoshenko bending stiffness is similar to Classical 

beam model (up to 2nd order of the strain energy).  

• As the fiber angle increases for tubes with [-α/α], the value of the transverse deflection 

increases dramatically for the curved tubes. Moreover, increasing the initial curvature, 

decreases the transverse deflection of the beam noticeably.  

• One can model a composite curved tube with straight elements where the cross-sectional 

stiffness matrix can be curved (with k2≠ 0) or (with k2=0). The number of elements should be 

large enough to have convergence.  

• By meshing a tube with sufficiently large number of elements, it is possible to model a 

composite tube which is a combination of straight and curved parts using VABS method with 

a very good agreement compared to ANSYS 3D.  
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7 Chapter 7: Contributions and conclusions 

7.1 Contributions 

In this dissertation, first, a 3D elasticity solution of Lekhnitskii for anisotropic cylindrical bodies 

under pure bending moment has been used for stress analysis of straight composite tubes under 

four-point bending loadings. The first ply failure analysis using Tsai-Wu and maximum stress 

criteria of composite tubes has been done. Then, a new methodology for investigating the 

mechanical behavior of composite straight and initially curved tubular beams has been presented. 

The presented methodology for analysis of straight and initially curved composite tubes allows an 

engineer to take advantage of composite materials when designing composite beams in which the 

modeling procedure is simple-input, easy to use and computational time is much less than regular 

3D FEA.  

A meshless dimensional reduction of a composite tubular beam structure is developed for 3D 

orthotropic initially curved and straight composite tube. The method takes advantage of small 

parameters associated with the tube geometry. The dimensional reduction has been done using 

variational asymptotic method and a 3D beam problem is split into a 2D cross-sectional analysis 

and a 1D beam analysis along the length. The Pascal polynomials in polar coordinates have been 

used to perform cross-sectional discretization. Therefore, one does not need to model and mesh 

the tubular composite beam cross-section. As such, the optimization procedure to find the best lay-

up sequence and dimensional geometry of a composite tube will be straightforward. Moreover, the 

stress analysis of a composite tube will be carried out easily. 

The contributions of these new developments can be summarized as follows: 

• Development of a meshless dimensional reduction method for stress analysis of straight 

composite tubes under complex loading in which Pascal polynomials in polar coordinates are 

used for warping field. Unlike the 3D regular FEM which uses 3D elements for generating 

mesh and VABS which uses the 2D FEM for cross-sectional discretization, the present work 

eliminates generating CAD modeling and mesh of composite tube. Therefore, the optimization 

and parametric study is more straightforward. The computational time reduces considerably 

compared to ANSYS 3D. As the radius of curvature increases, the number of elements to 

predict the behavior of the curved composite tube need to be increased. This leads to more 

computational time. The analysis of tube [9040/6060/-6060] in section 6.2.4 spends about two 
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hours while the analysis of this tube using the Pascal polynomial dimensional reduction method 

takes 30 minutes. 

• The obtained 6 × 6 cross-sectional stiffness matrix based on Timoshenko-Like beam model is 

incorporated to a developed 1D FE for determining the displacements of straight composite 

tubes under complex loadings. The obtained 4× 4 is incorporated into a developed 1D FE for 

initially curved beams to determine transverse deflection of curved tubes under complex 

loading condition.  

• A meshless dimensional reduction method to perform the cross-sectional analysis of 

elliptical composite tubes has been developed to obtain the 6 × 6 as well as 4 × 4 cross-

sectional stiffness matrix of elliptical composite tube. The strain distribution within the section 

of elliptical tube has been obtained. Also, the 1D FE analysis of elliptical tubes has been done 

to obtain the transverse deflection of tube under complex loadings.  

• A meshless dimensional reduction method for determining cross-sectional stiffness matrices 

(Classical and Timoshenko-Like) as well as strains distribution of cross-section of initially 

curved composite tubes has been developed.  

• The global behavior and strain distribution of initially curved composite tubes under tip 

loading has been done.  

• The parametric study has been performed to provide insight into mechanical behavior of 

straight and curved composite tubes including cross-sectional analysis and determining 

strain and deflections under four-point bending loadings.  

• The presented method of solution can be used for analysis of tubes under axial force, 

torque, shear loading and bending moment.  

• To determine the transverse deflection of an initially curved tube one can use elements with 

curved and straight cross-sectional stiffness matrices. 

7.2 Recommendation for future works 

The methodology presented in this dissertation fulfills the objectives of this thesis work. Potential 

works can be listed as  

• The order of Pascal polynomial affects substantially the accuracy of the strain distribution. 

Increasing the polynomial order increases the accuracy of the determined strains. 
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• Investigating failure of composite tubes using meshless polynomial based method is 

feasible.  

• Performing vibration analysis of straight and initially curved composite tubes and also 

transient analysis.  

• An analysis for helicopter landing gears under impact loading conditions can be conducted. 

• An optimization technique can be developed to propose proper lay-up sequences based on 

cross-sectional and structural analyses.  

• Developing an initially curved element for finite element analysis of curved tubes can 

predict more accurate the global behavior of composite tubes.  
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8 Appendix A 

VABS modeling of initially curve tube under four-point bending loadings 

In this section, we provided the procedure of modeling of the curved tube in VABS 3.8 and 

performing 1D FEM in ANSYS. The VABS modeling of composite beams has been provided in 

VABS user manual, [94].  

Defining the material properties 

Defining the material properties in the VABS using ANSYS-APDL interface. The material 

properties are then imported in the VABS input file control.  

  

a) 5-harness satin woven b) Carbon/PEKK 

Fig. (A 1). Defined material properties in VABS. 

Defining the lay-up sequence and layers thickness 

The material properties and layer thickness are defined in the user layout types as follows: 
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a) b) 

Fig. (A 2). a) The defined lay-up sequence in VABS, b) The defined layer thickness in VABS. 

Input the basic settings in VABS 

At this step one needs to input the beam model and total number of layers. For straight tubes, the 

k1=k2=k3=0. For initially curved tubes we set k1=k3=0 and k2=1.61 1/m (section B-B) and k2=2.06 

1/m (section C-C). We selected the Timoshenko beam model. 
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Fig. (A 3). VABS user input control. 

 

Defining the mold lines of the cross-section  

The mold lines of the tubular cross-section are created in the preprocessor of the ANSYS. The 

following APDL ANSYS code is created for the cross-section of the tube.  

 
Fig. (A 4). The created mold line code of ANSYS APDL. 
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The obtained cross-section mold line in the ANSYS APDL is shown in the following Figure. 

The figure consists of two mold lines as L1 and L2.  

 
Fig. 6. The generated mold lines of the tubular section. 

Defining the lamination direction 

In the next step we input the number of laminas, file name of the VABS lay-out as well as define 

the lamination direction vector. For the mold line L1, we select -Y which determines the direction 

of the lamination from the mold line to downward. For the mold line L2 we select +Y as the 

direction of the laminating to the upward or positive direction. The projection direction on X axis 

is selected as default. The Fig. 7a shows the segment overview through the segment layout 

procedure. Fig. 7b shows the generated area by selecting and gluing all areas.  

 

 

Fig. (A 5). a) Segment overview in VABS, b) generated area of the section 
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Assign laminating  

In this step, we assign the laminates that were defined before on each mold line. The figure 

below shows the laminate on the mold line for the mold lines L1 and L2.  

 
Fig. (A 6). The created laminates on the mold lines in VABS. 

Selecting the element type and quick mesh in VABS 

The element 8-node quadrilateral has been selected for both the segment mold lines L1 and L2 

with the smart size level of the mesh.  

 
Fig. (A 7). Selecting the element type and quick mesh 

The generated mesh for the mold lines L1 and L2 are as follows.  
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Fig. (A 8).  The generated mesh through the element type and quick mesh of VABS. 

Extracting the cross-sectional stiffness matrix 

The cross-sectional stiffness matrix for tube at section B-B is reported in Table (6.19). 

Recovery Analysis 

According to the recovery analysis presented in [94], we carried out the recovery analysis of the 

tube under bending moment M2=-906 N.m. and shear loading F3=-1409 N. �̅�, �̅�, and 𝑤ഥ  are the 

displacements obtained through 1D analysis. Cij are the direction cosines. In order to obtain the 

3D strains, it is not necessary input �̅�, �̅�, and 𝑤ഥ  and direction cosines. F1 is the sectional axial force, 

F2 and F3 are the sectional transverse shear forces along x2 and x3. M1 is the sectional torque, M2 

is the sectional bending moment about x2 and M3 is the sectional bending moment about x3. f1, f2, 

f3 are distributed forces (including both applied forces and inertial forces) per unit span along x1, 

x2 and x3, respectively. m1, m2, m3 are distributed moment (including both applied and inertial 

moments) per unit span along x1, x2 and x3. Prime is the derivative with respect to x1. For the 

recovery, VABS requires the following data. 
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Fig. (A 9). Required data for recovery analysis of a beam in VABS. 

The moment M2=-906 N.m and the shear force F3=-1556 N input in VABSInputFile. 
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