

Bike Sharing Network Design with Service Levels: The Case of Montreal City

Mehdi Khatib

A Thesis

in

The Department

of

Mechanical Industrial and Aerospace Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Industrial Engineering) at

Concordia University

Montreal, Quebec, Canada

December 2021

© Mehdi Khatib, 2021

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mehdi Khatib

Entitled: Bike Sharing Network Design with Service Levels: The

Case of Montreal City

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Industrial Engineering

complies with the regulations of the University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. Daria Terekhov Chair

Dr. Navneet Vidyarthi Examiner

Dr. Daria Terekhov Examiner

Dr. Onur Kuzgunkaya Supervisor

Approved by ___________________________________

 Graduate Program Director: Dr. Sivakumar Naranswamy

____________2021 ___________________________________

 Dean of faculty: Dr. Mourad Debbabi

iii

Abstract

Bike Sharing Network Design with Service Levels: The Case of Montreal City

Mehdi Khatib

The rapid growth of urbanization and use of motor vehicles in the recent decades has led to many

social and economic problems such as: rising fuel prices, energy crises, environmental problems

and traffic congestion. All these problems together have decreased the quality of life of people all

around the world. In recent years, municipal planners have increasingly focused on extending

policies to promote a culture of using bicycles instead of cars. In many cases, urban planners try

to build the infrastructure needed to increase the usage of bicycles and one of the measures that

has been widely used by them in recent years is bike sharing programs. In this study, we design a

bike sharing network considering the objectives of users and system designers simultaneously.

From the customers’ view point, walking short distances before picking up and after dropping off

a bike would be a preference and they will be satisfied when they find available bikes or empty

docks in the system. From the system designer’s perspective, the objective is to achieve these

service levels with the minimum network design cost. To achieve this, we develop a mixed integer

linear programming model to minimize the cost of opening stations and transportation costs. We

consider the pickup and drop off service level constraints in determining the location, dock

capacity and demand allocation to the bike stations. A Mixed Integer Linear Programming model

is developed and solved using CPLEX Software. In order to validate the network design solutions,

we simulate the results of small to medium size instances in Arena. To solve the larger instances

of the problem, a Genetic Algorithm is proposed that uses a heuristic method to generate a part of

initial solutions and improves the solutions in its stochastic iterations and reaches near-optimal

solutions in a reasonable amount of time. The proposed method is illustrated using the city of

Montreal as case study.

iv

Acknowledgement

First and foremost, I would like to thank my thesis supervisor, Dr. Onur Kuzgunkaya for his

understanding, encouragement and assiduous commitment to the highest standards which inspired

and motivated me during my studies. I learnt a lot from his knowledge, wisdom and intelligence.

Moreover, I am deeply indebted to my compassionate dawshi, Aria Azami for his unlimited

kindness and support. I want to thank all my dawshis: Hamid, Hamed, Babak and Erfan.

I also wish to thank my family, especially my parents, who have always provided me with such a

pure love. I am blessed to have such great brothers for bringing joy to my life. Finally, I would

like to thank my beloved wife for believing in me and her love.

Dedicated to my Parents

v

Table of Contents

List of Figures ... vii

List of Tables ... viii

Chapter 1 - Introduction .. 1

1.1. Goal of the study .. 2

1.2. Research contributions ... 3

1.3. Outline of the thesis.. 3

Chapter 2 - Literature Review ... 5

2.1. Network Design.. 5

2.2. Service Level .. 8

2.3. Conclusion .. 11

Chapter 3 - Problem Statement and Methodology .. 14

3.1. Assumptions ... 15

3.2. Input Parameters and Decision Variables .. 16

3.3. Objective Function ... 17

3.4. Network Constraints ... 18

3.5. Service Level Constraints... 19

3.5.1. Service level of Pick up and drop off .. 22

3.5.2. Linearization of Service Level Expression ... 26

3.6. The MILP Model .. 28

3.7. Proposed Genetic Algorithm (Solution Method) ... 29

3.7.1. Step 1: Coding and defining the chromosome .. 30

3.7.2. Step 2: Creating the initial population .. 31

3.7.3. Step 3: Crossover .. 33

3.7.4. Step 4: Mutation .. 37

vi

3.7.5. Step 5: Evaluation and Selection .. 38

3.7.6. Step 6: Termination Condition.. 38

Chapter 4 - Numerical Experiments ... 42

4.1. Input Data ... 42

4.2. Sensitivity analysis of the main parameters ... 43

4.3. Validation of design solutions with simulation .. 51

4.4. Computational Results ... 54

Chapter 5 - Conclusion and Future Research Directions .. 62

Bibliography ... 64

Appendices .. 68

vii

List of Figures

Figure 1. Bike Sharing Network ... 14

Figure 2. Bike Sharing Trips ... 15

Figure 3. State Transition Diagram ... 20

Figure 4. Subdomains according to the number of bikes at the station .. 21

Figure 5. Graph of service level of pick up with respect to capacity .. 23

Figure 6. Graph of service level of drop off with respect to capacity .. 25

Figure 7. Coding a problem with 4 demand zones and 3 possible stations 30

Figure 8. An example of roulette wheel selection method ... 32

Figure 9. Roulette Wheel Selection Method ... 33

Figure 10. Sample of a single-point crossover .. 34

Figure 11. Sample of a two-point crossover ... 35

Figure 12. Sample of a random number crossover ... 36

Figure 13. Sample of a light mutation .. 37

Figure 14. Genetic Algorithm Flow Diagram ... 40

Figure 15a and 15b. Change in the number of open stations and total capacity........................... 44

Figure 16. Change in the number of total bikes .. 45

Figure 17. Change in transportation cost .. 46

Figure 18. Change in total cost ... 47

Figure 19. Average monthly demand of 20 zones (zone 65 to 84) ... 48

Figure 20. Bike sharing network with α=0.7, β=0.8, r=0.1, s=0.2 (LO,LO) 49

Figure 21. Bike sharing network with α=0.7, β=0.8, r=0.25, s=0.35 (LO,HI) 49

Figure 22. Bike sharing network with α=0.8, β=0.9, r=0.1, s=0.2 (HI,LO) 50

Figure 23. Bike sharing network with α=0.8, β=0.9, r=0.25, s=0.35 (HI,HI) 50

Figure 24. A simulated bike sharing network ... 52

Figure 25. Result of a simulated problem ... 54

Figure 26. The average CPU time for solving the problem .. 60

Figure 27. Gap analysis of genetic algorithm solutions .. 61

viii

List of Tables

Table 1. Summary of main articles in network design ... 11

Table 2. Summary of main articles in service level .. 12

Table 3. Different sets of parameters .. 43

Table 4. Comparison of the performance of optimum method and genetic algorithm; (LO,LO) 56

Table 5. Comparison of the performance of optimum method and genetic algorithm; (HI,LO) . 57

Table 6. Comparison of the performance of optimum method and genetic algorithm; (LO, HI) 58

Table 7. Comparison of the performance of optimum method and genetic algorithm; (HI,HI) ... 59

1

Chapter 1 - Introduction

The rapid growth of urbanization and use of motor vehicles in the recent decades has led to many

social and economic problems such as: rising fuel prices, energy crises, environmental problems

and traffic congestion. All these problems together have decreased the quality of life of people all

around the world (Pucher et al. 1999). In recent years, municipal planners have increasingly

focused on extending policies to promote a culture of using bicycles instead of cars. The more use

of less polluting transportation modes creates a sustainable mobility in the city. In addition to its

social benefits such as environmental and economic sustainability, it also has many benefits at the

individual level. Cycling can be a fun way to travel, while it can minimize the hassle of using

motor vehicles. Since cycling is healthy and an economic transportation mode, it can be more

efficient in big city centers compared to private cars and public transportation (Zahedian-Tejenaki

and Tavakkoli-Moghaddam 2015, Heinen et al. 2010).

Nowadays, in most developed European cities, having a plan to encourage people to travel by bike

is one of the most important issues in any political parties to succeed in elections. In many cases,

urban planners try to build the infrastructure needed to increase the usage of bicycles and one of

the measures that has been widely used by them in recent years is bike sharing programs (Stinson

and Bhat 2005, Midgley 2011). The first public use of a bike sharing system took place in

Amsterdam in 1965, known as the white bicycle system. Since then, these systems have been

expanded greatly and many models have been developed for them (Bonnette 2007).

The development of bicycle sharing systems in large cities helps to create stability in transportation

and public systems, and in addition, it can be used to enable citizens to travel to places in the city

or pass some ways that cannot be accessed through other vehicles. The main components of a bike

sharing system include bicycles, bike stations and riders. In these systems, rider picks a bike up

from a station (origin of the trip), and after a period of time, returns it to the same station or another

station in the network (the destination of the trip) (Büttner et al. 2011, Caggiani and Ottomanelli

2013).

However, bicycle sharing systems have some limitations, including the fact that bicycles are often

used for short to medium trips and are mostly used for one-way trips. This issue can disrupt the

equilibrium of the system over a period of time and in some areas of the network. Therefore, in

order to improve the system and increase the users’ satisfaction, locating stations in the network

2

and considering appropriate fleet size is very important (Caggiani and Ottomanelli 2013). Today,

it is estimated that there are more than 375 bike sharing networks all around the world and there

are about 240,000 bicycles in them. One of the most important factors in the success of these

programs is how stations are spread in the bike sharing networks and in what level they satisfy the

demand. In order to increase the utilization of bike stations, they should not be too far apart, and

the distances in the network must be suitable for traveling by bicycle (Lin and Yang 2011, Shu et

al. 2010).

Due to the fact that these systems are designed for public use, the stations should be close to

recreational areas, tourist attractions and major commercial centers. Another important factor in

locating bicycle stations is its connection to the public transportation system. Actually bicycle can

be used as a complement to the transportation system and increase the coverage of public

transportation systems. A designer should be aware of the potential distribution of demand at

different zones and prioritize the areas that produce more trips (Martens, K. 2007, García-

Palomares et al. 2012).

1.1. Goal of the study

In this study, we design a bike sharing network considering the objectives of users and system

designers simultaneously. From the customers’ view point, walking short distances before picking

up and after dropping off a bike would be a preference and they will be satisfied when they find

available bikes or empty docks in the system. From the system designer’s point of view, the

objective is to maximize the revenue with lowest network building cost. This can be achieved by

building the infrastructure with the lowest investment while satisfying bike pick up and drop off

service levels. In this research we combine both points of view considering the impact of service

level of pick up and drop off on all components of the system. Actually a bike sharing system

usually provides two types of service to users. First is the availability level to pick up a bike from

a specific station which is called service level of pick up, and second is the availability level of

docks for users arriving to drop off a bike in the station, which is called drop off service level.

Our objective is to minimize the cost of opening stations and transportation costs, and there are

two main decisions in the problem under this study. First the location decision which is affected

by the cost of building stations, demands and distances between demand zones and stations. The

second one is the allocation decision which allocates the demand of each zone to those stations

which are more cost efficient than others. Also aforementioned service level rates have an

3

important role in this model and affect the whole allocations in the network and the capacity

and number of initial bikes in each station.

The city of Montreal is considered as the case study and the data for the experiments is obtained

from Bixi’s website, bike sharing network of Montreal. Actually, all information needed to fulfill

our numerical experiment is extracted from the statistics of the previous years of Bixi company.

A Mixed Integer Linear Programming model is developed for the designed bike sharing network

and CPLEX Software with an underlying branch and bound algorithm is used to solve the model.

In order to validate the network design solutions and by the help of ARENA Simulation Software,

we simulate the result of some experiments in small to medium sizes out of CPLEX.

In order to solve the model in large scales, a Genetic Algorithm is proposed that uses a heuristic

method to generate a part of initial solutions and improves the solutions in its stochastic iterations

and reaches near-optimal solutions in a reasonable amount of time.

1.2. Research contributions

While previous studies in the literature of the problem are mostly categorized as a bike sharing

network design or closed queuing network independently, we integrate these two major problems

together and provide a mixed integer optimization model which not only deal with a capacitated

location-allocation problem, but also consider the service level of pick up and drop off in all

stations. To the best of our knowledge, most articles using queuing models, have studied a single

bike station or have concentrated on the service level of pick up in a closed queuing network

problem, whereas we incorporate both service levels in a bike sharing network problem. The

proposed mixed integer programming model cannot handle large size instances due to the

computational complexity of the problem. We propose a genetic algorithm method to deal with

instances in large scales and use a heuristic to generate good initial population in assisting the

solution methodology to find near-optimal solutions as fast as possible.

1.3. Outline of the thesis

The thesis is organized into five chapters. Following the introductory chapter, we review the

related literature in the second chapter. Chapter three begins with a description of the problem and

is followed by the MILP model formulation. The service level function is described in detail and

the solution method for large size problems is also presented in this chapter. In chapter four, first

4

we describe the setting of the numerical experiments followed by the sensitivity analysis of the

main parameters on the results. We then validate the design solutions with simulation and study

the performance of the proposed genetic algorithm by presenting the computational results in small

to large scale instances. The results are also analyzed in this chapter. Finally, chapter five provides

conclusions and future research directions.

5

Chapter 2 - Literature Review

The literature in bicycle sharing systems include different types of decision framework, from

strategic to operational levels. Strategic decisions provide a design of the bike sharing network and

define the main policy such as location and capacity of stations. Operational decisions are taken

daily or weekly basis and adjust the system to increase its efficiency. As the scope of research

under this study is at the strategic level and also service level has been considered as a main factor

in designing a bike sharing network, we categorize the previous studies and articles into two groups

and review them in detail.

2.1. Network Design

In order to stablish a bicycle sharing system and to increase its efficiency, many variables and

parameters must be taken into account at the strategic level. All decisions related to the number of

bike stations and their locations, capacity of each station, total fleet size and number of bikes in

each station, allocation of customers and routing allocations can be considered as strategic

decisions. In this section we review articles that are focused on these aspects and propose strategic

models to design a bike sharing network.

Lin et al. (2013) designed a bike sharing network with the assumption of unlimited bicycle stocks

per each station. The main decisions of their model are number of bike stations and their location

in the network, building the bike lanes and paths selection between demand zones. They defined

the problem as a set of origin and destination demand zones and potential bike stations to be opened

and measured the rental availability rate of bicycles for pick up and the coverage of demand

between zones. Their objective was to optimize the cost of opening stations (which includes the

number and inventory of stations) and the traveling cost of customers. In addition, they determined

a penalty for uncovered demands between each pair of origins and destinations, and in this way

they wanted to reduce the number of problematic stations in the network (problematic stations are

those facing shortage in available bikes or empty docks). Although they just considered the

problem of pick up side.

Due to the complexity of the problem the authors could not provide exact solutions for practical

situations. To overcome this issue, they proposed a heuristic method for finding near-optimal

solutions for larger sizes. The authors extended a greedy heuristic where all stations and bike lanes

to be open initially and computes the total costs of the network. Then it identifies the costly stations

6

and lanes one by one in subsequent steps, and close one of the most expensive stations or lanes in

each step to make as large reduction as possible in the total costs. The algorithm repeats these steps

until a maximum number of iterations is reached or improving the objective function becomes

impossible. At the end, by doing a sensitivity analysis they realized the important parameters

affecting the inventory holding decision and routing selections.

Liu et al. (2019) studied a bike network design by assuming the bicycle routes to be separated from

the main roadways. They wanted to optimize the utilization of bike routes and study the behavior

of cyclists’ paths selection. They assumed that all roadways are appropriate to construct a bicycle

path, the demand for bike is fixed and the users select the roads based on the travel conveniences

(such as the existing facilities for bikes or road slopes). They also considered a limited budget for

constructing the bike network and used a model to make the bicycle path selection behavior of

customers more realistic.

The authors designed a mixed-integer nonlinear model and then solved it with a global

optimization method and a novel math-heuristic. The idea of global optimization method was to

linearize the main model using some techniques in order to guarantee an exact solution near the

global optimum. Whereas the proposed math-heuristic method has been used to improve the

efficiency of solutions for large scale instances. Actually, the procedure of this method was to

embed a surrogate-model–based heuristic in the global optimization method and by updating the

feasible regions, convert the original model and make some estimations. In this way, an

approximation is provided in each iteration and then is evaluated in the first solution method. The

computational results verified the performance of the proposed method as well.

Frade and Ribeiro (2015) introduced a bike sharing network that combines strategic and

operational decisions. The strategic decisions include the location of stations and its capacity, and

number of bikes, while the operational decisions include how bicycles should be relocated in the

system. Their objective was to maximize the coverage of demands and to this end they considered

a limited budget and the quality of service. Their model also considers the revenue and yearly costs

of the system and helps the investor to build the network. The city of Coimbra in Portugal was

selected to apply the model and the results of case study illustrated the performance of the system.

It should be noted that, they tried to make the demand zones as small as possible (in terms of area)

and the proposed model just allocates stations per each zone (it does not locate the stations

accurately). They reminded that in order to find the exact location of stations in each demand zone,

the proposed method should be coordinated with a model that minimizes the distance between

demand zones and stations.

7

Nair and Miller-Hooks (2016) proposed a bicycle sharing network in Washington, D.C. which was

focused on locating stations across the city and configuring the optimal fleet size in the system.

By having fixed demand, a set of potential stations, an existing transit network, resource

constraints and users’ behavior as assumptions, their goal was to maximize the utilization of the

system (the flow) and using a bi-level mixed-integer programming formulation with non-convex

feasible area. In order to solve the model for large scales, they developed a Genetic Algorithm as

solution method using the idea to decouple the lower-level flow variables from the upper-level

design variables and solving the upper-level problem independently. The benefit of decoupling

these two levels was that the problem could be broken down by origin-destination pairs or just

destinations. The results verified that the configured network could integrate with existing transit

system properly, and also travel times and system usage improved significantly. The analysis of

results provided information of flow between stations as well.

Yan et al. (2017) designed four bike rental networks using deterministic and stochastic demands.

In order to minimize the total cost of system and based on a time-space network, a deterministic

and a stochastic bicycle location and allocation model (DBLAM and SBLAM) were formulated.

Their focus was on locating the potential stations, fleet size and route allocations, and they

proposed a mixed-integer programming model. The other two models were the conversion of

DBLAM and SBLAM to a maximal service level objective (in order to increase the number of

bicycle rental requests).

The two deterministic models were solved then within a reasonable time in CPLEX, however the

stochastic models were solved using a threshold-accepting-based heuristic. The heuristic method

used a two phase algorithm that first identifies the set of open stations, and then allocates bikes

and routes to the open stations. The threshold value was defined as a factor multiplied by the fixed

cost of opening stations, and was used to decrease the solution area and force the problem to search

among the solutions having fitness values less than the threshold. The authors performed

computational tests using the open data of New Taipei City bicycle program and the results verified

the model and the performance of their solution method.

Alizadeh et al. (2019) proposed a stochastic model for a capacitated location-allocation problem

and assumed the demand to be Bernoulli distributed. Their objective function was to minimize the

total cost of facilities, customers’ allocations, outsourcing and anticipated service, simultaneously,

by finding the locations of facilities and allocation of users optimally. They assumed that the

additional demands for facilities can be satisfied using the outsourcing recourses. They first solved

small scale instances by normal distribution approximation. Then in order to solve medium to large

8

instances, and using the discrete colonial competitive algorithm (DCCA), they extended the DCCA

and proposed a new solution approach called EDCCA. The main idea of EDCCA was based on a

vectorization technique, which substitutes the scalar-oriented and loop-based code in DCCA by

adding matrix and vector operations. At the end, the computational results showed the proficiency

of proposed methods and verified that the EDCCA obtained better results in terms of time and

accuracy, compared to DCCA method.

2.2. Service Level

One of the most important issues we are facing in a bike sharing network is service level. Service

level in a bike sharing network can be defined in two ways: the probability of finding an available

bike to pick up and the probability of finding an empty dock to return a bicycle. In this section we

review papers that study formulation of these criteria and investigate the problematic bike stations.

Problematic stations are those that users face a shortage either in egress side to find any slot to

drop a bicycle off, or in access side to pick up a bike. In the literature researchers addressed the

modeling of service level using the following methods: open queuing network, closed queuing

network, mean-field method, and Markov decision process.

George and Xia (2011) studied a closed queuing vehicle network for finding the optimal fleet size

and also they considered the availability of vehicles in stations in their model. Vehicles in their

research could be bicycle or electric cars. The presented closed queuing network model was

extended from the viewpoint of the vehicles. For achieving some principles in the system as

network balancing methods, they presented a framework that considering the fleet size, could

derive an asymptotic behavior of vehicle availability in an arbitrary station. They measured the

quality of service by the vehicle availability which is defined by the percentage of passengers who

find a vehicle upon their arrivals. They assumed the customer leaves the network without service

if he finds no vehicles available upon arrival and also they assumed unlimited parking space at

each station for dropping the vehicles off. In their study vehicles are waiting for arrival of

customers to be served and view each station as a single server. Indeed, they considered each

rental station as M/M/1/T queue with state-dependent Exponential arrival rate and service rate.

The class of network which they presented is BCMP network which has product-form solutions

and according to the steady-state probability that they presented, they reach the queue length and

actual throughput. They then presented a profit-based mathematical model to maximize the

revenue per-unit-time and considered the maintenance cost and penalty cost of vehicles

9

unavailability in the objective function as well. There are two ways for obtaining the mean

performance measures of network as convolution method and mean value analysis. George and

Xia developed mean value analysis (MVA) because they wanted to direct the primary performance

measures and also they used the Schweitzer–Bard MVA approximation method because the MVA

was computationally expensive for the large number of fleet sizes. Kochel et al. (2003) used a

closed queueing network model for fleet sizing and allocation problem as well. They presented a

steady-state optimization formulation and their goal was to optimize the fleet size and vehicle

repositioning jointly. In order to solve the joint problem, they developed a simulation optimization

method and focused on an iterative method to reach appropriate solutions for the fleet-sizing

problem.

Li et al. (2016) presented a unified framework for analyzing the closed queuing bike sharing

network with multi-class of customers and defined some virtual costumers and nodes. They tried

to achieve the product-form solution to the steady state joint probability of queue lengths and give

performance analysis of the bicycle sharing network. To this end, they assumed that by having a

bike available in the origin station, the user picks it up and chooses a road with a specific

probability according to the routing matrix, otherwise the customer leaves the system. On the other

side if there is an empty slot in the destination station, the bike is returned instantly, otherwise the

user select another route with a specific probability from the routing matrix and this pattern could

be repeated successively to finally find a space to drop the bike off. The traveling time and the

road selections could be different from others.

Li et al. designed their bike-network with N different stations and the number of roads to be equal

to N*(N-1) at most. The arrival of the customers is considered as a Poisson process with

homogenous rate and the traveling time has exponential distribution function. Despite the physical

attribute and functionality of routes and stations, they considered both of them as virtual nodes

and by viewing the system from the bicycles perspective, they assumed the bicycles as virtual

customers as well and divided them to two classes. The first class were those that riding in the

system for the first time and the second group were those riding in the routes for at least two times

successively. The service disciplines for stations and roads were FCFS (first come first service)

and PS (processor sharing), respectively. In order to analyze the presented system, authors

obtained a unified framework and by calculating the service rates, routing matrices and the relative

rates of the closed queuing network, they provided a product-form solution to the steady state joint

probability of N*(N-1) queue lengths.

10

Celebi and Isik (2018) designed an integrated bike sharing network to minimize the unsatisfied

demands for pick up and drop off by locating bike stations and capacity allocation. The method

that they used was combination of set-covering model to assign demands to stations with queue

model for measuring the service level. They assumed a specific capacity for stations to address

the uncertainty issue for demand satisfaction in picking and returning sides and applied their model

in the area of Istanbul Technical University. To this end, they estimated the demand for bikes

using an approximation method based on a survey prior to the design of the network in the

university. They then claimed that according to their results, in practical the number of relocations

would decrease. Their mathematical model minimizes the probability of having problematic

stations by having capacity limitation and traffic intensity as some constraints. And by using queue

theory and a dynamic calculation of bicycle pick-up and return rates, they estimated the unsatisfied

demand in the university. The notable key point is that authors did not consider any cost factor in

their analysis to avoid some misleading results caused by cost structures. Also it is remarkable

that, as their model has a non-linear form and they used a dynamic programming-based algorithm

to solve their model, they weren’t able to apply it for larger sizes like big cities.

Li et al. (2017) designed a practical bicycle sharing network system to be able to calculate the

probability of the full or empty stations (problematic stations). To this end, they assumed the users’

arrival to follow Markovian process which illustrates that their arrival is heterogeneous in terms

of time and space in practice. Also considering the geographical structure of the bike network,

users ride in an irreducible path graph which is directed by N different stations and N-1 straight

roads. In order to record the dynamic position of bikes, they used the concept of virtual nodes for

roads and stations. Also they imagined each bike as a virtual customer in a multi-class closed

queueing network. So by these assumptions passengers’ arrival can be considered as the service

time of station nodes and riding bikes on routes as the service time of road nodes. Then in order

to make a routing matrix, they gathered data by observing the bike sharing system’s physical

behavior, and to calculate the relative rate of arrivals they introduced a nonlinear solution using

the obtained routing matrix. The steady state probabilities of joint queue lengths in virtual nodes

were computed using the product-form solution as well.

Fricker and Gast (2014) studied the effects of users’ random choices on the number of problematic

stations and presented a stochastic model with homogeneous scenario for bike sharing network.

In their model the influence of stations’ capacities is calculated, and in order to minimize the

percentage of the problematic stations, the optimal fleet size is computed. In their assumption there

are N stations in the network and each station has K bikes. So, the total fleet size is equal to N*K

11

and each bike can be served in a station or in a road between stations. They consider incentives

and redistribution by trucks for the framework that they presented. Customers arrive to pick up a

bike at each station with Poisson rate and the traveling time is distributed exponentially. For

returning the bicycle, each customer chooses a destination randomly and rides towards there. In

the case of finding an empty dock the bike is dropped off there, otherwise that station is called

saturated and the user opts another station randomly and this procedure repeats until an unsaturated

station be found.

At first authors modeled the simplest version of the problem without considering any incentives

or redistributions and the system showed a poor performance. So then, they set an incentive for

passengers to return their bikes to the least loaded station among two stations and the performance

was improved with an exponential factor. They mentioned that even if a fraction of customers

follows the incentive, the performance metric changes significantly. Also, they designed a

situation that trucks redistribute a specific rate of bikes for insuring a given service quality and

this redistribution rate was dependent to the fleet size and stations’ capacities. For the verification

of their model, they investigated different trip-time distributions and then simulated them and

compared the results. They also added the geometry to their model and studied the influence of it

on the proposed model. At the end the mean-field approximation methodology was used to gain

the asymptotic behavior of the model when the system size grows up.

2.3. Conclusion

In this section we overview the main investigated articles in network design and service level, and

then explain the features of our research and its differences with previous studies.

Table 1. Summary of main articles in network design

Authors Problem Objective Solution Method

Lin et al. (2013)
Bicycle sharing

network design
Minimizing the total cost Heuristic

Liu et al. (2019)
Bicycle sharing

network design

Maximizing the bike path

utilization

Global optimization

and Math-heuristic

Frade and Ribeiro

(2015)

Bicycle sharing

network design

Maximizing the demand

coverage
Heuristic

12

Nair and Miller-

Hooks (2016)

Bicycle sharing

network design

Maximizing the utilization

of system (the flow)
Genetic algorithm

Yan et al. (2017)
Bicycle sharing

network design
Minimizing the total cost

Heuristic and

Threshold-accepting-

based method

Alizadeh et al.

(2019)

Capacitated

location-allocation

problem

Minimizing the total cost

Normal

approximation and

EDCCA

Table 2. Summary of main articles in service level

Authors Problem Objective Solution Method

George and Xia

(2011)

Closed queuing

vehicle network

Maximizing the vehicles

availability
Mean value analysis

Li et al. (2016)
Closed queuing bike

network
Minimizing queue length

Product-form

solution

Celebi and Isik

(2018)

Closed queuing bike

network

Minimizing the

unsatisfied demands

Programming-based

algorithm

Li et al. (2017)
Closed queuing bike

network

Minimizing the number of

problematic stations

Product-form

solution

Fricker and Gast

(2014)

Closed queuing bike

network

Minimizing the

percentage of problematic

stations

Mean-field

approximation

Previous studies in bicycle sharing system are mostly considered as a bike sharing network design

or closed queuing network independently, while we have integrated these two major problems

together and have provided a mixed integer optimization model which not only propose a

capacitated location-allocation problem, but also consider the service level of pick up and drop

off. To the best of our knowledge, most articles with Markovian process, have concentrated on the

service level of pick up or have studied a single bike station satisfying both service levels, where

we have provided a model integrating both service levels in a bike sharing network problem.

13

In the next chapter, at first the problem is defined and the mathematical model is presented, then

the service level function is described and the solution methodology is explained in detail.

14

Chapter 3 - Problem Statement and Methodology

In this study, we design a bike sharing network considering the service level of pick up and drop

off bikes in all stations. Given a set of origin and destination points for travelers and the amount

of demand in each origin point, the goal is to determine the locations and sizes of bike stations

such that it minimizes the cost of opening stations and transportation costs. In this model it is

crucial to know where to locate the bicycle stations, which routes should be selected considering

the distances from demand zones to stations and the capacity level of each station to serve with a

desired level of bike and dock availability.

Figure 1. Bike Sharing Network

Building stations’ cost is dependent on the number of stations to be opened and the level of

capacity in each opened station, and the transportation cost consists of a walking trip from

customer’s origin to a station to pick up a bike and another walking trip from return station to the

15

final destination. In order to fulfill these walking trips the pedestrian needs to spend some time to

travel the distances and this time is converted to cost using the average time value of each person.

Figure 2. Bike Sharing Trips

There are two main decisions in this model. First the location decision which is affected by the

cost of building station, demands and distances between demand zones and stations. The second

one is the allocation decision which allocate the demand of each zone to those stations which are

more cost efficient than others. Also, service level rates which are expressed by the availability of

either bicycle or idle dock in each station, have important role in this model and affect the whole

allocations in the network and the capacity and number of initial bikes in each station.

3.1. Assumptions

 The monthly demand follows exponential distribution and is allocated to stations without

loss.

 The stations can be opened at different capacity levels.

 Each bicycle serves one person at a time, so during the travelling the bike is busy and

would be available again, once it drops off in one station in the system.

 Balking is considered for users to pick up or drop off the bikes in all stations in the network.

 Fixed cost of maintaining a station depends on the location and the capacity level.

16

 The bike sharing network is closed, meaning that no bike leaves the system.

 Drop off service level is assumed to be greater than the service level of pick up all the

times.

 The number of active days and hours are given as parameters to the model, so the network

could be out of reach of users for some days or hours as the designer decides.

3.2. Input Parameters and Decision Variables

For the formulation of this problem, the following notation is used:

Sets:

𝑖. 𝑗 ∈ 𝐼 Index for origin and destination

𝑏. 𝑙 ∈ 𝐵 Index for potential bike stations

𝑘 ∈ 𝐾 Index for capacity level of a bike station

Parameters:

Λ𝑖𝑗 Monthly customer demand from origin point i to destination point j

d𝑖𝑏 Distance from origin point i to pick up station b (meters)

d𝑏𝑙 Distance from pick up station b to drop off station l (meters)

d𝑙𝑗 Distance from drop off station l to destination point j (meters)

𝑐 Unit walking cost ($/meter)

f𝑏𝑘 Monthly fixed cost of operating a station at b with capacity level k ($/station)

𝑡 Number of active days per month

𝑛 Number of active hours per day

𝑝 Lower bound for 𝜇𝑏/𝜆𝑏 in each station to satisfy service level rates

𝑟 Upper bound for 𝜇𝑏/𝜆𝑏 in each station to satisfy service level rates

𝑒 Monthly fixed cost of providing each bike in the network ($/bike)

𝑔 Riding speed of a passenger by bike (meter/hour)

17

Decision Variables:

X𝑏𝑘 Binary variable that equals 1 if station b is opened with capacity level k and 0

otherwise

Y𝑖𝑏𝑙𝑗 Binary variable that equals 1 if customers travel from point i to j using stations b and

l, and 0 otherwise

λ𝑏 Daily arrival rate of customers to pick up a bike from station b

μ𝑏 Daily arrival rate of customers to drop off a bike at station b

S𝑏 Number of initial bikes in station b

The unit walking cost is calculated based on the average time value of users ($/hour) and the average

walking speed of users (meter/hour). The monthly fixed cost of operating a station depends on its

location and capacity level. The monthly fixed cost of providing each bike in the network includes the

capital cost and the maintenance cost per month and the riding speed is also the average speed of each

passenger in the network (meter/hour). The upper bound and lower bound for 𝜇𝑏/𝜆𝑏 in each station are

described in detail in the section of service level function.

3.3. Objective Function

A bicycle sharing network can be designed to optimize the objectives of users and system

designers. The first one is viewpoint of customers which benefits the travelers most and tries to

satisfy their needs of resources and minimize their cost simultaneously. Walking short distances

before pick up and after drop off a bike would be users preference and they will be satisfied when

they find resources available in the system. The second one is system designer’s point of view,

which imposes the highest revenue out of the system with lowest network building cost. This can be

achieved by building the infrastructure with the lowest investment and the most possible successful

bike renting. The following objective function combines both point of views by minimizing the

building costs of investor and transportation costs of customers.

𝑀𝑖𝑛 ∑ ∑ ∑ ∑ 𝑐

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑏 𝜖 𝐵𝑖 𝜖 𝐼

d𝑖𝑏 Y𝑖𝑏𝑙𝑗 Λ𝑖𝑗 + ∑ ∑ ∑ ∑ 𝑐

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑏 𝜖 𝐵𝑖 𝜖 𝐼

d𝑙𝑗 Y𝑖𝑏𝑙𝑗 Λ𝑖𝑗

+ ∑ ∑ f𝑏𝑘 X𝑏𝑘

𝑘 𝜖 𝐾

+

𝑏 𝜖 𝐵

∑ 𝑒 S𝑏

𝑏 𝜖 𝐵

(1)

18

In the objective function (1), the first term represents walking cost from an origin point to a station to

pick up a bike, the second term denotes walking cost from the return station to the destination, the

third term is fixed cost of opening a station considering its location and with a specific level of

docking capacity and the last term indicates cost of total bikes in the network.

3.4. Network Constraints

Based on the defined notation the network constraints are as follows:

∑ ∑ Y𝑖𝑏𝑙𝑗

𝑙 𝜖 𝐵 ≠𝑏

= 1 . ∀ 𝑖. 𝑗 ∈ 𝐼 ; 𝑖 ≠ 𝑗

𝑏 𝜖 𝐵

 (2)

∑ Y𝑖𝑏𝑙𝑗 + ∑ Y𝑖𝑙𝑏𝑗

𝑙 𝜖 𝐵 ≠𝑏

≤ ∑ X𝑏𝑘

𝑘 𝜖 𝐾

. ∀ 𝑖. 𝑗 ∈ 𝐼 ; 𝑖 ≠ 𝑗

𝑙 𝜖 𝐵 ≠𝑏

 . ∀ 𝑏 ∈ 𝐵 (3)

∑ X𝑏𝑘

𝑘 𝜖 𝐾

 ≤ 1 . ∀ 𝑏 ∈ 𝐵 (4)

λ𝑏 = (
1

𝑡
) ∑ ∑ ∑ Y𝑖𝑏𝑙𝑗 Λ𝑖𝑗

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑖 𝜖 𝐼

 . ∀ 𝑏 ∈ 𝐵 (5)

μ𝑏 = (
1

𝑡
) ∑ ∑ ∑ Y𝑖𝑙𝑏𝑗 Λ𝑖𝑗

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑖 𝜖 𝐼

 . ∀ 𝑏 ∈ 𝐵 (6)

∑ S𝑏

𝑏 𝜖 𝐵

≥ (
∑ ∑ ∑ ∑ d𝑏𝑙 Y𝑖𝑏𝑙𝑗 Λ𝑖𝑗𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑏 𝜖 𝐵𝑖 𝜖 𝐼

𝑡 𝑛 𝑔
) (7)

S𝑏 ≥ (
∑ X𝑏𝑘𝑘 𝜖 𝐾 𝑘

2
) + ∑ X𝑏𝑘

𝑘 𝜖 𝐾

− 0.5. ∀ 𝑏 ∈ 𝐵 (8)

S𝑏 ≤ (
∑ X𝑏𝑘𝑘 𝜖 𝐾 𝑘

2
) + ∑ X𝑏𝑘

𝑘 𝜖 𝐾

. ∀ 𝑏 ∈ 𝐵 (9)

λ𝑏 ≤ S𝑏 + μ𝑏 . ∀ 𝑏 ∈ 𝐵 (10)

μ𝑏 ≤ ∑ X𝑏𝑘

𝑘 𝜖 𝐾

𝑘 − S𝑏 + λ𝑏 . ∀ 𝑏 ∈ 𝐵 (11)

19

 λ𝑏 ≥ ∑ X𝑏𝑘

𝑘 𝜖 𝐾

 . ∀ 𝑏 ∈ 𝐵 (12)

λ𝑏 . μ𝑏 ≥ 0 . S𝑏 ≥ 0 & 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 . X𝑏𝑘 . Y𝑖𝑏𝑙𝑗 𝜖 {0.1} ∀ 𝑖. 𝑗 ∈ 𝐼. ∀ 𝑏. 𝑙 ∈ 𝐵. ∀ 𝑘 ∈ 𝐾 (13)

Constraint (2) denotes that any demand between each pair of origin and destination points can

travel through just one route (one pair of pick up and drop off stations), Constraint (3) ensures that

there could be an allocation for pick up or drop off a bike at a station, if and only if that station is

open. Constraint (4) denotes only one capacity level can be selected for an open station. Constraint

(5) represents the total arrival rate of customers per day to pick up a bike from each station.

Constraint (6) is the drop off rate of bikes to each returning station per day. Constraint (7)

calculates the minimum number of bikes in the network (fleet size) needed to satisfy demand. The

numerator is total distances should be traveled by bikes in the network to satisfy demand and the

denominator computes the maximum distance each bike can cover in the network. Constraints (8) and

(9) are calculating the initial number of bikes in each open station in the system considering the

capacity of them, and in order to maximize the utilization of each station. The same sources were

considered in C. Fricker and N. Gast (2014), where they developed a stochastic model to decrease

the number of problematic stations (in a problematic station users face shortage in available bike

for pick up or empty dock for drop off) and increase the performance of system to reach a given

quality of service. In their study, they proved that for different cases considered, the number of

bikes per stations that corresponds to the best performance of the network is half of the number of

docks plus a very few more. Constraints (10) and (11) are bounding the rates of pick up and drop

off in each open station logically, considering the capacity and initial number of bikes in that

station. Constraint (12) denotes that there must be at least one passenger to pick up a bike for each

open station. Constraint (13) demonstrates the type of decision variables.

3.5. Service Level Constraints

A bike sharing system usually provides two types of service to users. First is the availability level

to pick up a bike from a specific station and second is the availability level of docks for users

arriving to drop off a bike in the station. The service level of both distinct flows of users’ arrival

to the station is restricted by the capacity of the station (k) and number of bikes (h).

20

First type of users are the pickup users, who are pedestrians arrive to get a bicycle. Let’s assume

the arrival rate of this type is Poisson distributed with mean λ. Also, some users are willing to wait

for pickup, when there is no bike available at the station. The probability of accepting to wait for

pick up is defined with r which is called balking for pick up. Second type of users are return ones

who have travelled toward the station and look for an idle dock to drop off their bikes. The arrival

rate of this group of people is Poisson distributed with mean µ. Some travelers are also willing to

wait for return when there is no idle dock available at the station. The probability of accepting to

wait for drop off the bike is defined with s and is called balking for drop off (F. Laurent 2012).

Each station can be modeled with two random processes which are pedestrian arrivals and bicycle

arrivals. All states of idle bike availability, empty dock availability, waiting of pedestrians or riders

to pick up or drop off a bike are defined with state variable (h). For any given value of (h) the

transition will occur to the neighboring values of (h + 1) or (h – 1) according to the following rules.

a) From h to h + 1, because of the arrival of return users and the transition rate would be µ if

h < k (state of dock availability) or µs if h ≥ k (state of dock shortage).

b) From h to h -1, due to the arrival of users to pick up a bike and the transition rate is λ if h

> 0 (state of bike availability) or λr if h ≤ 0 (state of bike shortage).

c) Any transition between h and h + m, for m ∉ {−1.1} has null rate.

Figure 3 shows the state transition diagram for a bi-sided waiting system;

Figure 3. State Transition Diagram

21

Considering the arrival rates (λ, µ) and balking rates (r, s), the following parameters are represented

to show the transition states and their probabilities;

𝜌 =
𝜆𝑟

𝜇
 𝜎 =

𝜇𝑠

𝜆
 𝜙 =

𝜇

𝜆

Figure 4 depicts all possible states of a station and there would be three main subdomains;

A) When there is no bike available (state of bike shortage)

B) When both bike and dock are available (state of availability)

C) When there is no dock available (state of dock shortage)

Figure 4. Subdomains according to the number of bikes at the station

Subdomain A; State of bike shortage

Subdomain A illustrates a situation when there is no bike available in the station to pick up and

the user will decide to leave the station or wait to get service (F. Laurent 2012). The total

probability of subdomain A is:

∑ 𝑝−𝑘

𝑘≥0

=
𝑝0

(1 − 𝜌)
 . where 𝜌 < 1

Subdomain B; State of availability

Subdomain B denotes a situation when there is at least one bicycle available for pickup and at least

one empty dock to drop off a bike. The number of bicycles in the station may vary from 1 to k-1

and this condition ensures that any type of customer will be satisfied. The total probability of

subdomain B is:

∑ 𝑝𝑘

𝑘−1

𝑘=1

=
𝑝0(𝜙 − 𝜙𝑘)

(1 − 𝜙)
 . where 𝜙 ≠ 1.

22

∑ 𝑝𝑘

𝑘−1

𝑘=1

= (𝑘 − 1) 𝑝0 . where 𝜙 = 1

Subdomain C; State of dock shortage

Subdomain C states a situation when there is no empty dock available in the station to drop off a

bike and the rider will decide to leave the station or wait to get service. The total probability of

subdomain C is:

∑ 𝑝𝑘+𝑚

𝑚≥0

=
𝑝0𝜙𝑘

(1 − 𝜎)
 . where 𝜎 < 1

Overall distributions:

The total probability function which contains all subdomains is:

∑ 𝑝𝑘 = (∑ 𝑝−𝑘

𝑘≥0

) + (∑ 𝑝𝑘

𝑘−1

𝑘=1

)

𝑘∈𝑧

+ (∑ 𝑝𝑘+𝑚

𝑚≥0

) =
𝑝0

(1 − 𝜌)
+

𝑝0(𝜙 − 𝜙𝑘)

(1 − 𝜙)
+

𝑝0𝜙𝑘

(1 − 𝜎)

This function includes all possible scenarios so the total probability will be equal to 1, and the

pivot probability 𝑝0 (under the condition that
(𝜙−𝜙𝑘)

(1−𝜙)
= 𝑘 − 1 where 𝜙 = 1) would be:

𝑝0 =
1

[
1

(1 − 𝜌)
+

(𝜙 − 𝜙𝑘)
(1 − 𝜙)

+
𝜙𝑘

(1 − 𝜎)
]

3.5.1. Service level of Pick up and drop off

Evaluating the service level of each user is dependent on the type of resources that user is looking

for in the bike station. A user coming to a station, will look for a bike to pick up and one’s demand

will be satisfied if there is at least one bicycle available. By contrary the demand of a rider would

be an empty dock to drop off the bike. Therefore, the service levels of pick up and drop off users

are different and will be extracted from the probability functions of aforementioned subdomains.

23

Service level of pick up (𝛼) consists of subdomains B and C, where there would be at least one

bike available for a user to pick up and it is the combination of these subdomains probabilities:

𝑝0(𝜙 − 𝜙𝑘)

(1 − 𝜙)
+

𝑝0𝜙𝑘

(1 − 𝜎)
 ≥ 𝛼

Or as the summation of all subdomains’ probabilities is equal to 1, so the service level of pick up

(𝛼) can be calculated using the probability of subdomain A as follows:

𝑝0

(1 − 𝜌)
 ≤ 1 − 𝛼

For a given set of arrival rates (λ, µ) and balking rates (r, s) for pick up and drop off, the graph of

service level of pick up with respect to the capacity would be as shown in figure 5.

Figure 5. Graph of service level of pick up with respect to capacity

This function was proved to be concave as its second derivative was smaller than zero (for all

possible given sets of parameters) and it is formulated as follows:

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Se
rv

ic
e

Le
ve

l (
α

)

Capacity (K)

𝜆=8, 𝜇=9, r=0.1, s=0.05

24

𝑓(𝑘) =
𝑝0(𝜙 − 𝜙𝑘)

(1 − 𝜙)
+

𝑝0𝜙𝑘

(1 − 𝜎)
 →

𝑓(𝑘) =
(1 − 𝜌) (𝜙 − 𝜙𝑘) (1 − 𝜎) + (1 − 𝜌)𝜙𝑘 (1 − 𝜙)

(1 − 𝜙) (1 − 𝜎) + (𝜙 − 𝜙𝑘) (1 − 𝜌) (1 − 𝜎) + 𝜙𝑘 (1 − 𝜌) (1 − 𝜙)

𝑓′(𝑘) =
(−1 + 𝜌) (−1 + 𝜎)(𝜎 − 𝜙)(−1 + 𝜙) 𝜙𝑘 𝐿𝑜𝑔[𝜙]

 (−1 + 𝜎 − 𝜎𝜙𝑘 + 𝜙1+𝑘 − 𝜌 𝜙 (−1 + 𝜙𝑘) + 𝜌 𝜎 (−𝜙 + 𝜙𝑘))2

𝑓"(𝑘)

=
(−1 + 𝜌) (−1 + 𝜎)(𝜎 − 𝜙)(−1 + 𝜙) 𝜙𝑘 (1 + 𝜙1+𝑘 − 𝜌 𝜙 (1 + 𝜙𝑘) + 𝜎 (−1 − 𝜙𝑘 + 𝜌 (𝜙 + 𝜙𝑘)))𝐿𝑜𝑔[𝜙]2

 (−1 + 𝜎 − 𝜎𝜙𝑘 + 𝜙1+𝑘 − 𝜌 𝜙 (−1 + 𝜙𝑘) + 𝜌 𝜎 (−𝜙 + 𝜙𝑘))3

On the other side, the service level of drop off (𝛽) comprises subdomains A and B, where there

would be at least one empty dock available for a user to drop a bike off and it is the combination

of these subdomains’ probabilities:

𝑝0(𝜙 − 𝜙𝑘)

(1 − 𝜙)
+

𝑝0

(1 − 𝜌)
 ≥ 𝛽

Or as the summation of all subdomains’ probabilities is equal to 1, so the service level of drop off

(𝛽) can be calculated using the probability of subdomain C as follows:

𝑝0𝜙𝑘

(1 − 𝜎)
 ≤ 1 − 𝛽

This function was also proved to be concave as its second derivative was always smaller than zero

and for a given set of parameters, the graph of service level of drop off with respect to the capacity

is as follows:

25

Figure 6. Graph of service level of drop off with respect to capacity

and it is formulated as follows:

𝑓(𝑘) =
𝑝0(𝜙 − 𝜙𝑘)

(1 − 𝜙)
+

𝑝0

(1 − 𝜌)
 →

𝑓(𝑘) =
(1 − 𝜎) (𝜙 − 𝜙𝑘) (1 − 𝜌) + (1 − 𝜎) (1 − 𝜙)

(1 − 𝜎) (1 − 𝜙) + (1 − 𝜎)(𝜙 − 𝜙𝑘) (1 − 𝜌) + 𝜙𝑘 (1 − 𝜌) (1 − 𝜙)

𝑓′(𝑘) = −
(−1 + 𝜌) (−1 + 𝜎)(−1 + 𝜙) 𝜙𝑘(−1 + 𝜌𝜙) 𝐿𝑜𝑔[𝜙]

 (−1 + 𝜎 − 𝜎𝜙𝑘 + 𝜙1+𝑘 − 𝜌 𝜙 (−1 + 𝜙𝑘) + 𝜌 𝜎 (−𝜙 + 𝜙𝑘))2

𝑓"(𝑘)

=
(−1 + 𝜌) (−1 + 𝜎)(−1 + 𝜙) 𝜙𝑘(−1 + 𝜌𝜙) (1 + 𝜙1+𝑘 − 𝜌 𝜙 (1 + 𝜙𝑘) + 𝜎 (−1 − 𝜙𝑘 + 𝜌 (𝜙 + 𝜙𝑘)))𝐿𝑜𝑔[𝜙]2

 (−1 + 𝜎 − 𝜎𝜙𝑘 + 𝜙1+𝑘 − 𝜌 𝜙 (−1 + 𝜙𝑘) + 𝜌 𝜎 (−𝜙 + 𝜙𝑘))3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Se
rv

ic
e

Le
ve

l (
β

)

Capacity (K)

𝜆=8, 𝜇=9, r=0.1, s=0.05

26

3.5.2. Linearization of Service Level Expression

Since the nonlinear service levels formula can’t be used in the optimization model, for any given

set of parameters (𝛼. 𝛽. 𝑟. 𝑠), we approximate them based on possible ranges of phi (𝜙 =
𝜇

𝜆
) and

capacity (k). To this end, we solve two separate optimization problems using the excel nonlinear

programming solver to find the minimum and maximum acceptable values for phi. In addition, the

exact value for the minimum possible capacity (k to satisfy a specified service level for pick up

and drop off can be extracted approximately from the aforementioned graph of service levels as

well, it should be noted that the graphs are just some examples).

For the formulation of these two problems, the following notation is used:

Parameters:

𝛼 Service level of pick up (%)

𝛽 Service level of drop off (%)

𝑟 Probability of acceptance to wait for pick up (balking for pick up) (%)

𝑠 Probability of acceptance to wait for drop off (balking for drop off) (%)

𝑘 Minimum possible capacity

Decision Variables:

𝜆 Arrival rate of users to pick up a bike (daily)

𝜇 Arrival rate of users to drop off a bike (daily)

Based on the defined notation the optimization models can be formulated as follows: (as the

constraints of both models are the same, we have merged them together)

𝑀𝑖𝑛
𝜇

𝜆
 (1)

𝑀𝑎𝑥
𝜇

𝜆
 (2)

27

Subject to:

𝜆 ≥ 0 (3)

𝜇 ≥ 0 (4)

(
(

𝜇

𝜆
)−(

𝜇

𝜆
)𝑘

1−(
𝜇

𝜆
)

+
(

𝜇

𝜆
)𝑘

1−s(
𝜇

𝜆
)
)/(

1

1−
r

(
𝜇
𝜆

)

+
(

𝜇

𝜆
)−(

𝜇

𝜆
)𝑘

1−(
𝜇

𝜆
)

+
(

𝜇

𝜆
)𝑘

1−s(
𝜇

𝜆
)
) ≥ α (5)

(
(

𝜇

𝜆
)−(

𝜇

𝜆
)𝑘

1−(
𝜇

𝜆
)

+
1

1−
r

(
𝜇
𝜆

)

)/(
1

1−
r

(
𝜇
𝜆

)

+
(

𝜇

𝜆
)−(

𝜇

𝜆
)𝑘

1−(
𝜇

𝜆
)

+
(

𝜇

𝜆
)𝑘

1−s(
𝜇

𝜆
)
) ≥ β (6)

In the objective function, in the first model (1) it represents the minimization of phi and in the

second model (2) it represents the maximization of phi. Constraints (3) and (4) denote that the rate

of pick up and drop off in each station cannot take a negative value. Constraint (5) denotes the

service level of pick up must be satisfied in an open station. The left side of the formula shows the

probability of having bike available in an open station and the right side is the given service level

of pick up to the model that must be satisfied. Constraint (6) indicates the drop off service level

must be satisfied in an open station. The left side of the formula illustrates the probability of having

empty dock available in an open station and the right side is the given service level of drop off to

the model that must be satisfied.

So for any given set of parameters (𝛼. 𝛽. 𝑟. 𝑠), the range of phi and the minimum capacity per each

open station (minimum k) are calculated and then are used in the main linear programming model.

The minimum and maximum possible values for phi are named 𝑟 and 𝑝 respectively, and are given

as parameters to the main model. Thus the minimum number of docks per each open station along

with the following constraints are added to the main bike sharing model to satisfy the service level

of pick up and drop off per each open station in the network.

μ𝑏 ≥ 𝑝 λ𝑏 . ∀ 𝑏 ∈ 𝐵 (14)

28

μ𝑏 ≤ 𝑟 λ𝑏 . ∀ 𝑏 ∈ 𝐵 (15)

Constraints (14) and (15) together are bounding the range of
𝜇

𝜆⁄ for each open station in the bike

sharing network.

3.6. The MILP Model

The proposed MILP model is represented in its finalized form as follows

Objective Function:

𝑀𝑖𝑛 ∑ ∑ ∑ ∑ 𝑐

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑏 𝜖 𝐵𝑖 𝜖 𝐼

d𝑖𝑏 Y𝑖𝑏𝑙𝑗 Λ𝑖𝑗 + ∑ ∑ ∑ ∑ 𝑐

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑏 𝜖 𝐵𝑖 𝜖 𝐼

d𝑙𝑗 Y𝑖𝑏𝑙𝑗 Λ𝑖𝑗

+ ∑ ∑ f𝑏𝑘 X𝑏𝑘

𝑘 𝜖 𝐾

+

𝑏 𝜖 𝐵

∑ 𝑒 S𝑏

𝑏 𝜖 𝐵

(1)

Subject to:

∑ ∑ Y𝑖𝑏𝑙𝑗

𝑙 𝜖 𝐵 ≠𝑏

= 1 . ∀ 𝑖. 𝑗 ∈ 𝐼 ; 𝑖 ≠ 𝑗

𝑏 𝜖 𝐵

 (2)

∑ Y𝑖𝑏𝑙𝑗 + ∑ Y𝑖𝑙𝑏𝑗

𝑙 𝜖 𝐵 ≠𝑏

≤ ∑ X𝑏𝑘

𝑘 𝜖 𝐾

. ∀ 𝑖. 𝑗 ∈ 𝐼 ; 𝑖 ≠ 𝑗

𝑙 𝜖 𝐵 ≠𝑏

 . ∀ 𝑏 ∈ 𝐵 (3)

∑ X𝑏𝑘

𝑘 𝜖 𝐾

 ≤ 1 . ∀ 𝑏 ∈ 𝐵 (4)

λ𝑏 = (
1

𝑡
) ∑ ∑ ∑ Y𝑖𝑏𝑙𝑗 Λ𝑖𝑗

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑖 𝜖 𝐼

 . ∀ 𝑏 ∈ 𝐵 (5)

μ𝑏 = (
1

𝑡
) ∑ ∑ ∑ Y𝑖𝑙𝑏𝑗 Λ𝑖𝑗

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑖 𝜖 𝐼

 . ∀ 𝑏 ∈ 𝐵 (6)

∑ S𝑏

𝑏 𝜖 𝐵

≥ (
∑ ∑ ∑ ∑ d𝑏𝑙 Y𝑖𝑏𝑙𝑗 Λ𝑖𝑗𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑏 𝜖 𝐵𝑖 𝜖 𝐼

𝑡 𝑛 𝑔
) (7)

29

S𝑏 ≥ (
∑ X𝑏𝑘𝑘 𝜖 𝐾 𝑘

2
) + ∑ X𝑏𝑘

𝑘 𝜖 𝐾

− 0.5. ∀ 𝑏 ∈ 𝐵 (8)

S𝑏 ≤ (
∑ X𝑏𝑘𝑘 𝜖 𝐾 𝑘

2
) + ∑ X𝑏𝑘

𝑘 𝜖 𝐾

. ∀ 𝑏 ∈ 𝐵 (9)

λ𝑏 ≤ S𝑏 + μ𝑏 . ∀ 𝑏 ∈ 𝐵 (10)

μ𝑏 ≤ ∑ X𝑏𝑘

𝑘 𝜖 𝐾

𝑘 − S𝑏 + λ𝑏 . ∀ 𝑏 ∈ 𝐵 (11)

 λ𝑏 ≥ ∑ X𝑏𝑘

𝑘 𝜖 𝐾

 . ∀ 𝑏 ∈ 𝐵 (12)

μ𝑏 ≥ 𝑝 λ𝑏 . ∀ 𝑏 ∈ 𝐵 (13)

μ𝑏 ≤ 𝑟 λ𝑏 . ∀ 𝑏 ∈ 𝐵 (14)

λ𝑏 . μ𝑏 ≥ 0 . S𝑏 ≥ 0 & 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 . X𝑏𝑘 . Y𝑖𝑏𝑙𝑗 𝜖 {0.1} ∀ 𝑖. 𝑗 ∈ 𝐼. ∀ 𝑏. 𝑙 ∈ 𝐵. ∀ 𝑘 ∈ 𝐾 (15)

3.7. Proposed Genetic Algorithm (Solution Method)

According to the mentioned contents in the second chapter and the researches done by the

researchers, the degree of difficulty of such facility location problems, especially when the number

of demand zones and potential stations increases, is NP hard and the accuracy of this theory is

verified by (R. J. Fowler et al. 1981, N. Megiddo et al. 1982 and T. Gonzalez et al. 1985) who

have proved that the different scenarios of facility location problem are NP hard. Thus, we resort

to meta-heuristic methods in order to achieve an acceptable solution in a reasonable time for larger

size instances of the problem.

According to our studies on meta-heuristic algorithms and among several methods that were tried

to be applied on the model under this study, the genetic algorithm was selected and used to solve

our model in this research. Its acceptable results and compliance with our model ensured us that

this method is appropriate to be applied for large scale instances as well. Defining the chromosome

30

in a way to apply the steps of genetic algorithm practically and search the solution area properly,

was the most difficult part of our job. So in order to encode the problem, matrix string was selected

and designed in such a way that using the crossover and mutation operators, it be possible to search

the solution area appropriately (M. Zandieh and N. Karimi 2010).

The steps of this algorithm are as follows:

3.7.1. Step 1: Coding and defining the chromosome

Firstly, in order to make a chromosome, two matrices presenting the pick-up and drop off stations

are defined. In both matrices the rows are representing the origin zones and columns the destination

ones. Then in the pick-up matrix each cell shows the selected station to pick up the bike and ride

among each pair of origin and destination zones. Similarly, in the drop off matrix each cell depicts

the opted station to drop off the bike after riding among each pair of origin and destination zones.

An example of coding and defining a chromosome for a problem with 4 demand zones and 3

possible stations are as follows:

Pick up 1 2 3 4

1 0 3 3 2

2 1 0 2 1

3 2 2 0 2

4 1 1 3 0

Drop off 1 2 3 4

1 0 1 2 1

2 3 0 1 3

3 3 1 0 1

4 3 2 2 0

Figure 7. Coding a problem with 4 demand zones and 3 possible stations

In this example in order to satisfy the demand among 4 zones and using 3 possible stations there

are 12 routes as follows:

31

Origin zone Pick up station Drop off station Destination zone

1 3 1 2

1 3 2 3

1 2 1 4

2 1 3 1

2 2 1 3

2 1 3 4

3 2 3 1

3 2 1 2

3 2 1 4

4 1 3 1

4 1 2 2

4 3 2 3

3.7.2. Step 2: Creating the initial population

In order to create the initial population, different scenarios are used in this algorithm. A part of

initial solutions is made randomly using all possible stations to be allocated to demand zones.

Another part of initial solutions is made using the Roulette Wheel strategy which gives a direction

to make the initial population. To this end, by knowing the distances of all possible stations to each

demand zone in the network, we give more chance to some closest stations to be selected to satisfy

the demand. In order to calculate the probability of stations’ selection for each demand zone, we

define a table where each cell shows the distance of a demand zone to a station. We first take the

inverse of the value of cells (distances) followed by computing the probability of selecting each

station which is equal to the ratio of its inversed value over the summation of inversed values of

all stations to a specific demand zone. To clarify the mentioned calculation, an example with a

table of distances, inversed values and probabilities are presented in the following.

Distances (D)

(meters)
Stations (B,L)

Zones (I,J) 1 2 3

1 905.873 2609.643 2787.243

32

2 57.692 1769.180 1960.178

3 797.601 917.009 1124.910

4 1656.541 190.604 453.186

5 2535.227 886.679 856.133

Inversed values

(1/D)
Stations (B,L)

Sum

Zones (I,J) 1 2 3

1 0.00110 0.00038 0.00036 0.00185

2 0.01733 0.00057 0.00051 0.01841

3 0.00125 0.00109 0.00089 0.00323

4 0.00060 0.00525 0.00221 0.00806

5 0.00039 0.00113 0.00117 0.00269

Probabilities

(1/D/Sum)
Stations (B,L)

Sum

Zones (I,J) 1 2 3

1 0.598039 0.207594 0.194367 1

2 0.941583 0.030704 0.027713 1

3 0.387774 0.33728 0.274946 1

4 0.074927 0.651191 0.273882 1

5 0.146617 0.419213 0.43417 1

Figure 8. An example of roulette wheel selection method

The selection probability distribution can be generated using the following equation:

𝑃(𝑏) =
𝑅(𝑏)

∑ 𝑅𝑖
𝑛
𝑖=1

In this equation the 𝑃(𝑏) is the probability of selecting station b for a specific zone to satisfy its

demand, 𝑅(𝑏) is the inversed distance of station b to that demand zone and ∑ 𝑅𝑖
𝑛
𝑖=1 is the

summation of inversed distances of all possible stations to the demand zone.

In fact, in this method, the stations are placed on the roulette wheel and each station occupies a

part of the wheel according to its probability. Then the wheel is rotated and after stopping, the

station indicated by the indicator is selected. The selection process turns the roulette wheel enough

times, and it is logical that each time a station with more space on the wheel has more chance of

being selected (S. N. Sivanandam and S. N. Deepa 2008).

33

Figure 9. Roulette Wheel Selection Method

In order to help the algorithm to find the best solutions as fast as possible, an engineered solution

can be added to other solutions initially, which specify the closest station to each demand zone at

first and then provide us with a solution using the closest station to each zone for pick up and drop

off. This solution can be infeasible but going through the crossover and mutation operators in the

next steps and by the help of other solutions produces better offspring in next generations. It can

be noted that, the number of initial solutions is given to the algorithm as a parameter, so it is

obvious that whatever this value (the number of initial solutions) decreases, the effect of

engineered solution increases.

3.7.3. Step 3: Crossover

The crossover operator combines the characteristics of parents to make offspring and to create

better chromosomes. There are a variety of ways to do this step and in this study, according to the

specific form of coding and the formation of the chromosomes, three methods are used. Which

among all parents, one third of them are combined using the first method, one third using the

second one and the rest of parents follow the third way to be mixed.

The first method of crossover is done in such a way that after selecting one third of chromosomes

as parents, one demand zone of each chromosome is randomly selected, and a single point

34

crossover operation is performed on this zone. This is done by selecting a point on the bits of this

zone and then the genes before this point on the first chromosome and the genes after this point on

the second chromosome are used to form the first child. To form the second child, this operation

is done inversely (B. Zarei, M. R. Meybodi and M. Abbaszadeh 2007).

An example of a single-point crossover and the formation of offspring chromosomes for a problem

with 4 demand zones and 3 possible stations is as follows.

Figure 10. Sample of a single-point crossover

In figure 10, the first demand zone was randomly selected and according to the identified

breakpoint, the combination of these two chromosomes was performed.

The second method of crossover is done in such a way that after selecting the second part of

chromosomes as parents (one third of total), one demand zone of each chromosome is randomly

selected, and a two-point crossover operation is implemented on this zone. This is done by

35

selecting two points on the bits of this demand zone and then the genes between these points are

exchanged with each other. (B. Zarei, M. R. Meybodi and M. Abbaszadeh 2007).

An example of a two-point crossover and the formation of offspring chromosomes for a problem

with 4 demand zones and 3 possible stations is as follows.

Figure 11. Sample of a two-point crossover

In figure 11, the third demand zone was randomly selected and according to the identified

breakpoints, the combination of these two chromosomes was performed.

The third method of crossover is done in such a way that after selecting the last part of the

chromosomes as parents, a demand zone is randomly selected. Then some random numbers are

generated between 0 and 1 (corresponding to the bits of this demand zone), and the crossover

operation is performed on the selected zone using the random values. In this way that, in order to

form the first child, if the random value is less than a specific amount like 0.6, the corresponding

36

gene from the first chromosome will be transferred to the child chromosome, otherwise the gene

from the second chromosome is selected to form the child chromosome. In order to make the

second child, an inverse operation will be done (number 0.6 has been selected experimentally) (J.

C. Bean 1994).

An example of a random number crossover and the formation of offspring chromosomes for a

problem with 4 demand zones and 3 possible stations is as follows:

Figure 12. Sample of a random number crossover

In figure 12, the fourth demand zone was randomly selected and according to the generated random

numbers, the combination of these two chromosomes was performed.

37

3.7.4. Step 4: Mutation

3.7.4.1. Light Mutation

At this stage, a certain number of new generation chromosomes are selected not on the basis of

their fitness value, but randomly and with the same chance of mutation which is given as a

parameter. Then, on each selected chromosome, one bit (gene) of a demand zone is randomly

selected and its value is replaced by another possible value (among all possible stations). The light

mutation operation is more random than the crossover operation and causes a change in the new

generation at a lower rate. However, it can improve the optimization process by providing essential

features that are not available in the current generation (S. Olariu and A. Y. Zomaya 2005).

An example of a light mutation and the formation of offspring chromosomes for a problem with 4

demand zones and 3 possible stations is as follows.

Figure 13. Sample of a light mutation

In figure 13, the third genes of pick up and drop off from the second demand zone were randomly

selected and replaced by another possible values (among all possible stations).

38

3.7.4.2. Heavy Mutation

In this algorithm an offspring can only be selected to transfer to the next generation if it is at least

better than one of its parents. So after light mutation, the fitness value of the solutions is calculated

according to the objective function of the mathematical model, and a process called heavy mutation

takes place in the case that during one reproduction no child is nominated to go to the next

generation (in other words, no child is found to be better than at least one of its parents and the

population remains unchanged). Under such condition, which happens rarely and indicate that the

chromosomes converge to a specific part of the solution area, all chromosomes except the best

chromosome are replaced with completely random solutions (among possible solutions) by

performing a heavy mutation, so that the algorithm retaining the best chromosome found so far,

move randomly to another part of the solution area and continue searching to find better solutions.

3.7.5. Step 5: Evaluation and Selection

At this stage, after the completion of a new generation, the fitness value of new solutions is

calculated, and the selection process takes place among the chromosomes of the previous

generation and the new generation. In this method, any solution with higher fitness value has more

chance of being selected and the best solutions are selected to be transferred to the next generation

proportional to the population size. For example, if we start with 100 initial solutions and set the

rate of crossover 1.5, for the next generation the algorithm reproduces 150 (100*1.5) offspring and

calculates the fitness value of whole solutions after mutation operation. Then during the selection

process the algorithm chooses the best 100 solutions (population size) out of the 250 solutions

(100 parents + 150 offspring) to make the next generation.

It should be noted that, during the evaluation process and in order to avoid using a same station

for both pick up and drop off bike among two specific origin and destination zones, and totally in

order to find good feasible solutions, a penalty is added to the objective function of infeasible

solutions. In this way, as time goes on, using the crossover and mutation operations and during the

evolution process to make new generations, infeasible solutions get replaced by feasible ones with

appropriate fitness values.

3.7.6. Step 6: Termination Condition

In order to stop the algorithm, a criterion is considered as the termination condition. This criterion

can be a certain number of iterations (generations) in general or a certain number of constant

39

consecutive iterations (consecutive iterations without improvement). In the proposed algorithm in

this research, the criterion for termination is determined by a certain number of consecutive

iterations without improving the objective function.

An overview of the solution methodology is as follows.

40

Figure 14. Genetic Algorithm Flow Diagram

Start with initial

population

Crossover

Light Mutation

Any

Improvement?

No
Heavy Mutation

Yes

Evaluation &

Selection

Termination

Condition?

End

Yes

No

41

In this chapter, at first the problem and its features were defined. Then by describing the

assumptions, parameters and decision variables of the problem, a mathematical model was

presented, and the objective function and constraints of the model were explained. Then, the

service level function was described in detail. Finally, after implying the difficulty degree of the

problem, the genetic algorithm was examined and all its steps were explained.

42

Chapter 4 - Numerical Experiments

In this chapter, we first describe the way our data have been gathered and analyze the sensitivity

of the main parameters in detail. We then validate the design solutions with simulation and study

the performance of the proposed genetic algorithm by presenting the computational results in small

to large scale instances. The mathematical model has been coded using OPL and solved by IBM

ILOG CPLEX Optimization Studio Version 12.8.0.0. Also, the genetic algorithm has been

encoded using C++ in Microsoft Visual Studio Professional 2013 Version 12.0.21005.1 REL and

ran on a computer with a Core i5 – 6500 CPU 3.2 GHz Processor and 16 GB of RAM.

4.1. Input Data

Since the city of Montreal was considered as the case study, the input data had to be consistent

with the population, area and geography of the city. The raw information of Bixi company was

accessed through their open-source data in their website (https://www.bixi.com/en/open-data).

Using the statistics from the previous years, the following information was extracted: The number

of daily and monthly trips between all stations, Stations of origin and destination of each trip,

Time spent for each trip to be completed and also the number, address and location of stations

(latitude and longitude of each station).

To structure the data, the city of Montreal was divided into different zones and the amount of

monthly travel demands between the identified zones were extracted from the bixi open data

(according to the number and location of stations in different zones). All required distances from

origin zone (i) to pick up station (b), from pick up station (b) to drop off station (l), and from drop

off station (l) to destination zone (j) were extracted and calculated in meters. The average time

value of users was assumed to be $25 per hour and the average walking speed of users 4700 meters

per hour, so the unit walking cost was calculated as 25/4700=$0.00532 per meter. The monthly

fixed cost of opening a station was considered based on its capacity level starting $125 per month

for each dock, where the maximum capacity level was set as 30 docks. The monthly fixed cost of

providing bikes in the network, including the capital cost and maintenance cost was measured

$128 per month for each bike. The average riding speed of each passenger by bike in the network

was considered to be 16000 meters per hour. The minimum and maximum possible values for

𝜇𝑏/𝜆𝑏 in each station were calculated based on the different set of given parameters (α, β, r, s) for

service levels (as described in the service level section in chapter 3). For example for a set of

43

α=0.7, β=0.8, r=0.1, s=0.2, the minimum possible value for 𝜇𝑏/𝜆𝑏 in each station were calculated

as 0.76938 and the maximum as 1.0551. Also the number of operational days per month was set

as 30 days and the number of active hours per day as 12 hours.

4.2. Sensitivity analysis of the main parameters

In this section, we study the effects of the main parameters (α, β, r, s) on the different components of

the proposed bike sharing network. We observe the changes in the value of objective function and

decision variables of the model, by changing the value of main parameters. To this end, four different

sets of α, β, r, s are considered and in each instance the couple (α, β) (or (r, s)) has been kept constant

while changing the values of (r, s) (or (α, β)). The different sets of parameters are as follows:

Table 3. Different sets of parameters

Four different sets of parameters First term: Couple (α, β) Second term: Couple (r, s)

(LO,LO) α=0.7, β=0.8 r=0.1, s=0.2

(LO,HI) α=0.7, β=0.8 r=0.2, s=0.35

(HI,LO) α=0.8, β=0.9 r=0.1, s=0.2

(HI,HI) α=0.8, β=0.9 r=0.2, s=0.35

Then the model is solved in different sizes from small to large scales and the results are analyzed in

detail. In what follows, we examine the effects of these parameters on each component of the designed

network.

44

Figure 15a and 15b. Change in the number of open stations and total capacity

0

5

10

15

20

25

30

5,3 10,3 10,5 20,10 20,15 30,15 30,20 30,25 45,25

N
U

M
B

ER
 O

F
O

P
EN

 S
TA

TI
O

N
S

SIZE OF PROBLEM (DEMAND ZONES, POTENTIAL STATIONS)

Change in the number of open stations

(LO,LO) (HI,LO) (LO,HI) (HI,HI)

0

50

100

150

200

250

300

350

400

450

5,3 10,3 10,5 20,10 20,15 30,15 30,20 30,25 45,25

N
U

M
B

ER
 O

F
TO

TA
L

D
O

C
KS

SIZE OF PROBLEM (DEMAND ZONES, POTENTIAL STATIONS)

Change in total capacity (number of docks)

(LO,LO) (HI,LO) (LO,HI) (HI,HI)

45

The very first thing to be studied in a designed bike sharing network is the number of open stations and

their total capacities by having different sets of parameters and for different sizes. Obviously as the size

of problem increases, the number of opened stations and total docks grows regardless of the parameter

settings. what stands out in this figure is that, for the same sizes of the problem, having higher service

level rates and balking for pick up and drop off results in fewer open stations and higher capacities and

the effect of these parameters on capacities are more than their effect on the number of open stations.

Also the trends (especially in figure 15b) show that the effect of service level rates (α, β) is more than

the effect of balking rates (r, s) on both the number of open stations and total docks.

Figure 16. Change in the number of total bikes

The graph of total bikes is almost similar to the graph of total capacity as the fleet size is proportional

to the number of docks. The fleet size in all instances has increased considerably as the size of problem

has enlarged, and this increase rate is faster when it comes to the trend with highest service level and

balking rates (the blue line). Also for the same sizes instances, as the service level and balking rates

increases, the fleet size increases as well. The other important takeaway from this graph is that the effect

of service level rates (α, β) is more than the effect of balking rates (r, s) on the number of total bikes. It

is because the amount of increase in fleet size of gray line (with higher service level rates) compared to

0

50

100

150

200

250

5,3 10,3 10,5 20,10 20,15 30,15 30,20 30,25 45,25

N
U

M
B

ER
 O

F
TO

TA
L

B
IK

ES

SIZE OF PROBLEM (DEMAND ZONES, POTENTIAL STATIONS)

Change in total bikes (Fleet Size)

(LO,LO) (HI,LO) (LO,HI) (HI,HI)

46

the red line, is more than the increase in fleet size of orange line (with higher balking rates) compared

to the red line for all examined sizes.

With regard to the fixed cost of designing the bike sharing network, as it consists of the cost of open

stations, capacities and fleet size, the changes of the fixed cost are proportional to the changes of total

capacities and fleet size. Thus, the main takeaways from the graph of change in total capacity and total

bikes are applied for fixed cost as well.

Figure 17. Change in transportation cost

Transportation cost is dependent on the way customers have been allocated to the open stations in the

network, and the routes which have been used to satisfy the demand. It is notable that the changes of

transportation cost for all different sets of given parameters have almost a same shape with different

values. It is because the model has tried to minimize the walking distances all the time and the closest

stations to each demand zone have been used to satisfy the demand of that zone for all examined sizes

of the problem, and this fact is not a matter of service level or balking rates.

It is also notable that although all trends have had an increasing orientation (as the size of problem has

increased), they have fluctuated considerably when the number of demand zones are the same and the

0

500000

1000000

1500000

2000000

2500000

3000000

5,3 10,3 10,5 20,10 20,15 30,15 30,20 30,25 45,25

TR
A

N
SP

O
R

TA
TI

O
N

 C
O

ST

SIZE OF PROBLEM (DEMAND ZONES, POTENTIAL STATIONS)

Change in transportation cost

(LO,LO) (HI,LO) (LO,HI) (HI,HI)

47

number of potential stations have increased. Actually by having more potential stations for the same

number of demand zones, the transportation costs have decreased as the model has opened more stations

enabling shorter routing allocations. Also for the same sizes of the problem, having higher service level

and balking rates have resulted in higher transportation costs which is due to an increase in the number

of satisfied customers and the effect of service level rates has been more than the effect of balking rates

on transportation costs as well. It is because the amount of increase in transportation cost of gray line

(with higher service level rates) compared to the red line, is more than the increase in transportation

cost of orange line (with higher balking rates) compared to the red line for all instances.

Figure 18. Change in total cost

As total cost is the value of objective function of the model, the results of five larger instances have

been added to figure 18. It should be noted that for these larger instances the CPLEX was able to provide

us just with the value of objective function and not the rest of results in detail (all decision variables),

so the results of these five largest instances have been obtained by genetic algorithm and just added to

this graph. It is notable that for the large size instances, the variance of changes in total costs increases

significantly. Also as the amount of transportation costs are more than the fixed costs for all examined

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

5,3 10,3 10,5 20,10 20,15 30,15 30,20 30,25 45,25 45,30 45,35 60,30 60,35 60,40

TO
TA

L
C

O
ST

SIZE OF PROBLEM (DEMAND ZONES, POTENTIAL STATIONS)

Change in total cost

(LO,LO) (HI,LO) (LO,HI) (HI,HI)

48

instances, the graph of total cost is more similar to the graph of transportation cost and the main

takeaways of figure 17 are applied here as well.

In addition, in order to visualize the bike sharing network, an instance with 20 demand zones and 10

potential stations are followed. The average monthly demand of these 20 zones (out of 100 zones) are

as follows:

Figure 19. Average monthly demand of 20 zones (zone 65 to 84)

Out of the results of CPLEX for different given sets of parameters, the map of Montreal with the

location of 20 demand zones and 10 potential stations are followed. It should be noted that the numbers

in the icon of demand zones show the zone number based on our data set, and the numbers in the

parenthesis next to the icon of stations show the amount of capacity and initial bikes of each open

station, respectively.

49

Figure 20. Bike sharing network with α=0.7, β=0.8, r=0.1, s=0.2 (LO,LO)

Figure 21. Bike sharing network with α=0.7, β=0.8, r=0.25, s=0.35 (LO,HI)

50

Figure 22. Bike sharing network with α=0.8, β=0.9, r=0.1, s=0.2 (HI,LO)

Figure 23. Bike sharing network with α=0.8, β=0.9, r=0.25, s=0.35 (HI,HI)

51

The main observations from figures 20 to 23 are summarized as follows:

 The number of open stations has decreased marginally as the service level and balking rates

have increased. In figures 20 and 21 with α=0.7, β=0.8 (lower service level rates), 9 stations

out of 10 potential stations have been opened while in figure 22 (HI,LO), the number of open

stations has decreased to 8 out of 10. In figure 23 (HI,HI), we have another decrease and 7

stations out of 10 potential stations have been opened.

 The number of total docks and bikes have increased as the service level and balking rates have

increased. It is notable that in figure 20, the minimum capacity and initial bikes per each open

station are 6 and 4 respectively, while they have a marginal increase to 8 docks and 5 bikes, by

having the same service level rates and increasing the balking rates in figure 21. They have

increased to 13 docks and 7 bikes by increasing the service level rates in figure 22 and by

increasing the balking rates in figure 23, they have surged to 18 and 10 respectively.

4.3. Validation of design solutions with simulation

In order to validate the network design solutions and by the help of ARENA Simulation Software

Version 15.00, we have simulated the result of some experiments in small to medium sizes out of

CPLEX. To this end, we have first set the ARENA run setup as following: Number of replications:

300, Time unit: minute, Replication length: 21600 minutes (30 days per month and 12 hours per

each day).

Next by having the number of total pick up of bikes per each station per day (𝜆𝑏) (the result of

CPLEX), and in order to set the arrival distributions in ARENA, we have converted the arrival

rates to calculate them per minute (𝜆𝑏/(12 ∗ 60)). It should be noted that the number of passengers

arriving at a fixed interval of time (minute) follows the Poisson distribution. Then as these events

(arrival of passengers) occur independently but continuously at a constant average rate, and as the

time between events in a Poisson process follows Exponential distribution, we have set the

distribution of arrivals to be Exponential with mean
1

𝜆𝑏/(12∗60)
 (Haight, Frank A. 1967, Johnson,

Kotz and Balakrishnan, 1994).

A simulated bike sharing network in ARENA is as following.

52

Figure 24. A simulated bike sharing network

In this simulated bike sharing network, a user arrives to station 1 and looks for a bike to pick it up.

If there are any bikes available, the user picks a bike up and is counted as successful pick up,

otherwise the user either waits for a bike availability by a chance (which is given as balking rate

for pick up) or leaves the system and is considered as unsatisfied user in pick up side.

53

A satisfied user in pick up side, rides the bike towards station 2. If there are any empty docks there,

the user drops the bike off and is counted as successful drop off, otherwise the user either waits

for an empty dock to become available by a chance (which is given as balking rate for drop off)

or rides towards the next close station which is station 3 and is considered as unsatisfied user in

drop off side.

Using the decisions obtained from the proposed mixed integer programming model we have

simulated the bike sharing network and compared the statistic of simulated problems with the

results of CPLEX. The output statistic of all simulated samples verifies the solution of

implemented experiments. The results of CPLEX and ARENA for a simulated problem with 10

demand zones and 3 possible stations and with α=0.7, β=0.8, r=0.1, s=0.2 (LO,LO) are as follows.

Output of CPLEX

 (LO,LO)
Number of

docks

Number of

bikes

Total allocation

for pick up

(monthly)

Route allocation (out of total pick up)

Total allocation

for drop off

(monthly)

Station 1 22 12 34607
station 1 to 2 24432

34782
station 1 to 3 10175

Station 2 10 6 31128
station 2 to 1 23792

31000
station 2 to 3 7336

Station 3 6 4 17558
station 3 to 1 10990

17511
station 3 to 2 6568

Output of ARENA (pick up)

 (LO,LO)

Total pick

up

(monthly)

Successful

pick up

(monthly)

Successful

rate for pick

up

Average

waiting time

for pick up

(min)

Half Width of

waiting time for

pick up

Average

number of

users waiting

for pick up

Half Width of

number of users

waiting for pick

up

Station 1 34601 25317 0.732 0.86 < 0.00 0.04 < 0.00

Station 2 31102 22858 0.735 0.95 < 0.00 0.04 < 0.00

Station 3 17562 12516 0.713 1.76 < 0.01 0.05 < 0.00

54

Output of ARENA (drop off)

 (LO,LO)

Total drop

off

(monthly)

Successful

drop off

(monthly)

Successful

rate for drop

off

Average

waiting time

for drop off

(min)

Half Width of

waiting time for

drop off

Average

number of

users waiting

for drop off

Half Width of

number of users

waiting for drop

off

Station 1 25307 25307 1.000 0 < 0.00 0.00 < 0.00

Station 2 22540 22492 0.998 0.68 < 0.05 0.0002 < 0.00

Station 3 12828 12466 0.972 1.31 < 0.025 0.0028 < 0.00

Figure 25. Result of a simulated problem

In this example, the successful rates for pick up and drop off in all stations show that the service

levels have been satisfied. Also, the average waiting times of passengers in queues and the number

of users waiting in the network in queues shows the consistency of the designed network of bike

sharing. The average waiting times to pick up or drop off a bike are less than 2 minutes in all

stations. Also the average number of people waiting in queues is very small, and the half width of

both waiting time and number of customers in queues (for pick up and drop off), proves the

confidence level of the designed network and this fact that the number of replications is big enough

to trust the statistic of the simulated network. The result of ARENA (in detail) for this instance

(with 10 demand zones and 3 potential stations) has been added to the appendix as well.

4.4. Computational Results

In this section, by presenting numerical experiments, we evaluate the performance of the proposed

genetic algorithm. The criterion used to measure the performance of the proposed meta-heuristic

algorithm is the GAP factor, which is calculated using the following equation. In this regard, OMH

means the value of the objective function of the metaheuristic method and Oopt means the optimal

value of the exact method.

(
(OMH − Oopt)

Oopt
) × 100

55

Numerical results for different sizes of the problem are presented in the following tables. It should

be noted that for each of these dimensions, four problems (with different values of genetic

algorithm parameters) have been evaluated and solved.

56

Table 4. Comparison of the performance of optimum method and genetic

algorithm; (LO,LO)

α = 0.7 , β = 0.8

r = 0.1 , s = 0.2

Visual Studio, C++

(Genetic Algorithm)
CPLEX

(Optimum Method)

Number

of Zones

Number

of

Stations

Minimum

Gap (%)

Maximum

Gap (%)

Average

Gap (%)

Minimum

Time

(Sec)

Maximum

Time (Sec)

Average

Time

(Sec)

Minimum

Time

(Sec)

Maximum

Time

(Sec)

Average

Time

(Sec)

5 3 0.4 0.98 0.7 1.00 2.12 1.6 2.16 4.73 3.4

10 3 0.48 1.7 1.1 1.83 3.74 2.8 2.31 5.02 3.7

10 5 0.9 2.2 1.6 5.92 8.32 7.1 2.61 5.16 3.9

20 10 1.9 2.7 2.3 11.38 37.93 24.7 17.95 22.38 20.2

20 15 2.1 3.5 2.8 33.01 39.57 36.3 30.53 36.82 33.7

30 15 2.9 4.3 3.6 24.67 61.80 43.2 116.66 124.72 120.7

30 20 4.0 4.3 4.2 39.81 66.78 53.3 593.09 619.76 606.4

30 25 3.2 3.6 3.4 40.34 64.62 52.5 727.36 781.49 754.4

45 25 3.8 4.2 4.0 68.05 86.44 77.2 3512.77 3755.46 3634.1

45 30 4.9 5.2 5.1 125.8 153.69 139.7 14212 14862 14537

45 35 5.0 5.9 5.5 142.37 176.62 159.5 30157 36125 33141

60 30 5.9 6.1 6.0 801 1274 1037.5 43834 45218 44526

60 35 4.9 5.3 5.1 560 1740 1150.0 59696 61521 60608

60 40 6.0 6.3 6.2 674 2129 1401.5 100315 108413 104364

Average 3.7 % 310 Secs 18740 Secs

57

Table 5. Comparison of the performance of optimum method and genetic

algorithm; (HI,LO)

α = 0.8 , β = 0.9

r = 0.1 , s = 0.2

Visual Studio, C++

(Genetic Algorithm)

CPLEX

(Optimum Method)

Number

of Zones

Number

of

Stations

Minimum

Gap (%)

Maximum

Gap (%)

Average

Gap

(%)

Minimum

Time

(Sec)

Maximum

Time

(Sec)

Average

Time

(Sec)

Minimum

Time

(Sec)

Maximum

Time

(Sec)

Average

Time

(Sec)

5 3 0.7 1.0 0.9 1.21 2.57 1.9 2.04 4.2 3.1

10 3 0.9 1.2 1.1 2.98 4.13 3.6 2.24 5.22 3.7

10 5 1.7 1.9 1.8 4.39 8.63 6.5 2.35 5.31 3.8

20 10 2.3 3.5 2.9 12.47 55.38 33.9 7.05 11.42 9.2

20 15 2.9 3.2 3.1 59.74 71.13 65.4 19.54 25.73 22.6

30 15 3.9 4.2 4.1 34.00 73.67 53.8 67.11 75.48 71.3

30 20 4.3 4.6 4.5 51.91 101.15 76.5 373.52 381.88 377.7

30 25 2.9 3.1 3.0 47.02 72.19 59.6 2688.26 2716.55 2702.4

45 25 4.3 4.4 4.4 60.07 87.62 73.8 2868.87 2912.46 2890.7

45 30 4.9 5.1 5.0 160.09 192.55 176.3 35080 39178 37129

45 35 4.5 4.8 4.7 423.92 520.44 472.2 48538 52955 50746

60 30 5.7 6.0 5.9 391.43 895.54 643.5 75960 83670 79815

60 35 5.7 6.2 6.0 725.77 1563.22 1144.5 93960 97388 95674

60 40 5.7 6.4 6.1 1327.45 1713.32 1520.4 118419 125099 121759

Average 3.8 % 309 Secs 27943 Secs

58

Table 6. Comparison of the performance of optimum method and genetic

algorithm; (LO, HI)

α = 0.7 , β = 0.8

r = 0.25 , s = 0.35

Visual Studio, C++

(Genetic Algorithm)

CPLEX

(Optimum Method)

Number

of Zones

Number

of

Stations

Minimum

Gap (%)

Maximum

Gap (%)

Average

Gap

(%)

Minimum

Time

(Sec)

Maximum

Time

(Sec)

Average

Time

(Sec)

Minimum

Time

(Sec)

Maximum

Time

(Sec)

Average

Time

(Sec)

5 3 0.3 0.6 0.5 2.63 3.31 3.0 2.16 3.92 3.0

10 3 0.9 1.2 1.1 3.92 5.11 4.5 2.27 5.01 3.6

10 5 1.0 1.4 1.2 9.26 13.11 11.2 2.81 5.84 4.3

20 10 3.1 3.3 3.2 32.36 64.61 48.5 18.44 23.61 21.0

20 15 3.7 4.1 3.9 50.16 102.48 76.3 29.03 34.83 31.9

30 15 2.6 2.9 2.8 61.39 82.12 71.8 110.31 120.79 115.6

30 20 4.2 4.4 4.3 78.44 121.78 100.1 572.71 580.12 576.4

30 25 3.3 3.7 3.5 49.87 125.22 87.5 964.95 972.74 968.8

45 25 3.8 4.4 4.1 105.66 246.33 176.0 6071.42 6202.76 6137.1

45 30 5.1 5.3 5.2 193.89 278.67 236.3 25657 28031 26844

45 35 5.4 5.8 5.6 258.54 304.56 281.6 52101 54878 53489

60 30 6.0 6.3 6.2 487.31 499.56 493.4 67575 70230 68902

60 35 5.3 6.1 5.7 983.35 1380.49 1181.9 83389 89951 86670

60 40 6.4 6.7 6.6 453.31 605.31 529.3 107930 114866 111398

Average 3.8 % 236 Secs 25369 Secs

59

Table 7. Comparison of the performance of optimum method and genetic

algorithm; (HI,HI)

α = 0.8 , β = 0.9

r = 0.25 , s = 0.35

Visual Studio, C++

(Genetic Algorithm)

CPLEX

(Optimum Method)

Number

of Zones

Number

of

Stations

Minimum

Gap (%)

Maximum

Gap (%)

Average

Gap

(%)

Minimum

Time

(Sec)

Maximum

Time

(Sec)

Average

Time

(Sec)

Minimum

Time

(Sec)

Maximum

Time

(Sec)

Average

Time

(Sec)

5 3 0.6 0.7 0.7 1.75 2.43 2.1 2.19 4.08 3.1

10 3 0.9 1.1 1.0 3.91 6.22 5.1 2.4 5.16 3.8

10 5 1.6 1.7 1.7 4.51 7.48 6.0 2.52 5.28 3.9

20 10 3.2 3.4 3.3 33.77 45.10 39.4 6.99 10.43 8.7

20 15 3.5 3.9 3.7 50.67 76.49 63.6 31.31 36.57 33.9

30 15 2.2 2.6 2.4 61.33 82.62 72.0 68.86 76.94 72.9

30 20 3.4 3.6 3.5 80.02 101.12 90.6 430.17 437.56 433.9

30 25 4.4 5.0 4.7 110.47 225.96 168.2 721.8 735.91 728.9

45 25 4.9 5.2 5.1 187.77 309.77 248.8 2309.88 2412.63 2361.3

45 30 5.1 5.3 5.2 253.24 326.21 289.7 27268 29813 28540

45 35 5.4 5.6 5.5 438.68 1024.54 731.6 39133 44541 41837

60 30 6.4 6.8 6.6 791.99 1080.12 936.1 58466 66112 62289

60 35 6.0 6.2 6.1 372.13 1009.06 690.6 74820 77131 75975

60 40 5.8 6.4 6.1 667.95 1041.43 854.7 96887 102233 99560

Average 4.0 % 300 Secs 22275 Secs

60

The results of all instances show that the time required to solve the problem and obtain an optimal

solution by CPLEX increases dramatically as the size of problem increases. However, the time

needed to solve the problem using the genetic algorithm does not change significantly with the

higher dimensions of the problem. A comparison of the average time needed to solve the problem

using both methods is presented in the following graph (out of tables 4-7).

Figure 26. The average CPU time for solving the problem

The results indicate the proposed genetic algorithm finds appropriate feasible solutions in a

reasonable amount of time. It is notable that, for small to medium sizes of the problem the average

CPU time of both methods are almost the same, however with larger dimensions of the problem

(starting 45 demand zones and 25 potential stations), the time needed to solve the problem by

CPLEX has increased remarkably. The average time needed to solve any instance with genetic

algorithm is 289 seconds while the average time that CPLEX required to find the optimal solution

is 23582 seconds. So, the proposed genetic algorithm is about 82 times faster than the optimum

method (CPLEX) on average for all reported instances. It should be noted that even for very large

instances that CPLEX is not able to build the problem or reach any result, the proposed genetic

algorithm provides us with feasible solutions in a reasonable time.

0

20000

40000

60000

80000

100000

120000

5,3 10,3 10,5 20,10 20,15 30,15 30,20 30,25 45,25 45,30 45,35 60,30 60,35 60,40

TI
M

E
(S

EC
O

N
D

S)

SIZE OF PROBLEM (DEMAND ZONES, POTENTIAL STATIONS)

CPU time

Visual Studio, C++ (Genetic Algorithm) CPLEX (Optimum Method)

61

The following graph shows the average gap between the genetic algorithm solutions and optimal

solutions (out of tables 4-7).

Figure 27. Gap analysis of genetic algorithm solutions

It is notable that, the average gap between the genetic algorithm solutions and optimal solutions

has increased slightly as the dimension of the problem has increased. The average gap is about

3.8% for all reported instances and it has started from 0.66% for the smallest size with 5 demand

zones and 3 potential stations and has ended to 6.21% for the largest size with 60 demand zones

and 40 potential stations.

In summary, the proposed genetic algorithm performs very well for all given sets of parameters

and is able to gain suitable solutions in a reasonable amount of time. Its performance is remarkable

specially when the size of problem increases and it is about 82 times faster than the optimum

method (CPLEX). We also show that our method provides solutions with acceptable gaps even for

the large size instances of problem.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

5,3 10,3 10,5 20,10 20,15 30,15 30,20 30,25 45,25 45,30 45,35 60,30 60,35 60,40

G
A

P
 (

%
)

SIZE OF PROBLEM (DEMAND ZONES, POTENTIAL STATIONS)

GAP Analysis

Visual Studio, C++ (Genetic Algorithm)

62

Chapter 5 - Conclusion and Future Research Directions

The objective of this study was to design a bike sharing network considering the service level of

pick up and drop off bikes in all stations, which had not been simultaneously studied in previous

works. For a given set of origin and destination points for travelers and the amount of demand in

each origin point, a mixed integer programming model was developed in order to determine the

location of bike stations and their capacities so as to minimize the total cost of opening stations

and passengers’ transportation. In this model it was crucial to know which routes should be

selected considering the distances from demand zones to stations and the capacity level of each

station to serve with a desired level of bike and dock availability. We also considered balking

(probability of waiting) of users for an available bike or an empty dock in all stations, and

investigated their impact on the capacity and number of bicycles in the opened stations and selected

routes in the network.

To overcome the computational complexity of the problem, we developed a genetic algorithm

method to solve the problem in large size instances and provided illustrative examples to examine

the performance of our proposed solution method. By presenting the numerical results for different

sizes of the problem with various instance sets of parameters, we compared the performance of

our meta-heuristic method and the one resulted by CPLEX, in terms of the computation time and

optimality gap.

In order to validate the network design solutions, we simulated the network design obtained in

small to medium sizes using Arena simulation software. All simulated instances provided

equivalent performance levels compared to the conditions stated in the optimization model,

achieving acceptable pick up and drop off service levels. In addition, the average waiting times of

passengers in queues and the number of users waiting in the network in queues indicated the

consistency of the designed network of bike sharing.

We considered the city of Montreal as our case study and in order to conduct our numerical

experiments, we obtained needed data from Bixi’s website (current bike sharing network of

Montreal). In our experiments, the optimal solutions indicated that, as the size of problem

increases, the number of opened stations, capacities, fleet size and fixed costs increases as well.

However, although transportation costs trends had an increasing orientation (as the size of problem

increased), by having more potential stations for the same number of demand zones, the

transportation costs decreased as the model opened more stations with better routing allocations.

63

We also studied the effects of the main parameters on the model and the main insights from the

experiments are summarized below:

(i) For the same sizes of the problem, having higher service level and balking rates resulted

in fewer open stations.

(ii) For the same sizes of the problem, having higher service level and balking resulted in

higher capacities, fleet sizes and costs.

(iii) The effect of service level rates was more than the effect of balking rates.

The results of all instances showed that the time required to obtain an optimal solution by CPLEX

increased dramatically as the size of problem increased, however, the needed time to solve the

problem using the genetic algorithm did not change significantly with increasing the dimensions

of the problem. The proposed genetic algorithm was about 82 times faster than the optimum

method (CPLEX) on average for all reported instances. It was also notable that for very large

instances, which CPLEX was not able to reach any result within the 30 hours’ time limit, the

proposed genetic algorithm provided us with feasible solutions in less than half an hour. Regarding

the gap between the genetic algorithm solutions and optimal solutions, it increased marginally with

increasing the dimensions of the problem and the average optimality gap was about 3.8% for all

instances.

This research can be expanded in many ways and future studies may consider different goals,

limitations or scenarios to apply service levels. Bicycle path construction and its cost would be a

suggestion to be added to the model in the future. Considering CO2 emission savings as a key

factor which can be studied in bike sharing network design and may be added to the proposed

model as a component in the objective function or as a constraint. Taking the operational functions

like relocation of bikes between opened stations in the network and its cost, into account and

combining them with the proposed model under this study can be another interesting aspect in the

future works. In terms of solution methodology, using other solution methodologies like

considering other heuristic or meta-heuristic methods to solve the problem and comparing the

performance of them with the genetic algorithm used in this study deserves for further

investigation.

64

Bibliography

Alizadeh M., Ma J., Mahdavi-Amiri N., Marufuzzaman M. and Jaradat R., “A stochastic

programming model for a capacitated location-allocation problem with heterogeneous demands”,

Computers & Industrial Engineering, Volume 137, 106055, 2019.

Bean J. C., "Genetic Algorithms and Random Keys for Sequencing and Optimization.," ORSA

Journal on Computing, vol. 6, no. 2, pp. 154-160, 1994.

Bonnette, B. “The implementation of a public-use bicycle program in Philadelphia”. Urban Studies

Program. Senior Seminar Papers. Pennsylvania University, 2007.

Broach, J., Dill, J., Gliebe, J., “Where do cyclists ride? A route choice model developed with

revealed preference GPS data”. Transp. Res. Part A, 46 (10) 1730–1740, 2012.

Büttner, J., Mlasowsky, H., Birkholz, T., Groper, D., Fernandez, A. C., Emberger and Banfi, M.

“Optimizing Bike Sharing in European Cities: A Handbook”, Intelligent Energy Europe program,

2011.

Caggiani, L. and Ottomanelli, M. “A dynamic simulation based model for optimal fleet

repositioning in bike-sharing systems”. Procedia - Social and Behavioral Sciences. Vol. 87, No.

1, pp. 203-210, 2013.

Çelebi D., Yörüsün A. and Işık H., “Bicycle sharing system design with capacity allocations”,

Transportation Research Part B: Methodological, Volume 114, Pages 86-98, 2018.

David C., An Introduction to Genetic Algorithms for Scientists and Engineers, World Scientific,

1999.

Fowler, R. J., Paterson, M. S., Tanimoto, S. L. "Optimal packing and covering in the plane are NP-

complete", Information Processing Letters, 12 (3): 133–137, 1981.

Frade I. and Ribeiro A., “Bike-sharing stations: A maximal covering location approach”,

Transportation Research Part A: Policy and Practice, Volume 82, Pages 216-227, 2015.

65

Fricker C. and Gast N., "Incentives and redistribution in homogeneous bike-sharing systems with

stations of finite capacity", Springer-Verlag Berlin Heidelberg and EURO J Transp Logist, pp.

261–291, 2014.

García-Palomares, J. C., Gutiérrez, J. and Latorre, M. “Optimizing the location of stations in bike

sharing programs: A GIS approach”. Applied Geography, Vol. 35, No. 1, pp. 235-246, 2012.

George, D.K and Xia, C.H,. “Fleet-sizing and service availability for a vehicle rental system via

closed queueing networks”, European Journal of Operational Research, Volume 211, Issue 1,

Pages 198-207, 2011.

Gonzalez, T., "Clustering to minimize the maximum intercluster distance", Theoretical Computer

Science, 38: 293–306, 1985.

Haight, Frank A., Handbook of the Poisson Distribution, New York, NY, USA: John Wiley &

Sons, 1967.

Haupt R. L. and Haupt S. E., Practical Genetic Algorithms, 2nd Edition, John Wiley & Sons Inc,

2004.

Heinen, E., van Wee, B. and Maat, K. “Commuting by bicycle: An overview of the literature”,

Transport Reviews, Vol. 30, No. 1, pp. 59-96, 2010.

Holland J. H., Adaptation in Natural and Artificial Systems., Cambridge, MA: MIT Press., 1975.

https://www.bixi.com/en/open-data

Jenn-Rong L., Ta-Hui Y. and Yu-Chung C., “A hub location inventory model for bicycle sharing

system design: Formulation and solution”, Computers & Industrial Engineering, Volume 65, Issue

1, Pages 77-86, 2013.

Johnson, Kotz and Balakrishnan, Continuous Univariate Distributions, Volumes I and II, 2nd. Ed.,

John Wiley and Sons, 1994.Kochel, P., Kunze, S. and Nielander, U., “Optimal control of a

distributed service system with moving resources: Application to the fleet sizing and allocation

problem”, International Journal of Production Economics, 81–82, 443–459, 2003.

Leurent F., "Modelling a vehicle-sharing station as a dual waiting system: stochastic framework

and stationary analysis.," 19 pages. 2012. <hal-00757228>

66

Lin, J. R. and Yang, T. H. “Strategic design of public bicycle sharing systems with service level

constraints”, Transportation Research - Part E: Logistics and Transportation Review. Vol. 47, No.

2, pp. 284-294, 2011.

Liu H., Szeto W.Y., Long J., “Bike network design problem with a path-size logit-based

equilibrium constraint: Formulation, global optimization, and matheuristic”, Transportation

Research Part E: Logistics and Transportation Review, Volume 127, Pages 284-307, 2019.

Martens, K. “Promoting bike and ride: The Dutch experience”, Transportation Research - Part A:

Policy and Practice. Vol. 41, No. 4, pp. 326-338, 2007.

Megiddo N. and Arie T., "On the complexity of locating linear facilities in the plane", Operations

Research Letters, 1 (5): 194–197, 1982.

Midgley, P. “Bicycle-sharing schemes: Enhancing sustainable mobility in urban areas”,

Background Paper No. 8, CSD19/2011/BP8, Commission on Sustainable Development, United

Nations, 2011.

Nair R. and Miller-Hooks E., “Equilibrium design of bicycle sharing systems: the case of

Washington D.C.”, EURO Journal on Transportation and Logistics, Volume 5, Issue 3, Pages

321-344, 2016.

Olariu S. and Zomaya A. Y., Handbook of Bioinspired Algorithms and Applications, Chapman

and Hall/CRC, 2005.

Pucher, J., Komanoff, Ch., Schimek, P., “Bicycling Renaissance in North America Recent Trends

and Alternative Policies to Promote Bicycling”, Transportation Research Part A, 33: 625, 1999.

Quan L.L, Rui N.F, and Jing Y.M, “A Unified Framework for Analyzing Closed Queueing

Networks in Bike Sharing Systems”, Information Technologies and Mathematical Modelling,

Queueing Theory and Applications, Volume 638, 2016.

Quan L.L, Rui N.F, and Zhi-Yong Q., “A Nonlinear Solution to Closed Queueing Networks for

Bike Sharing Systems with Markovian Arrival Processes and Under an Irreducible Path Graph”,

Queueing Theory and Network Applications, Volume 10591, Pages 118-140, 2017.

67

Shu, J., Chou, M., Liu, Q., Teo, C. P. and Wang, I. L. “Bicycle-sharing system: Deployment,

utilization and the value of re-distribution”. Singapore: National University of Singapore - NUS

Business School, 2010.

Sivanandam S. N. and Deepa S. N., Introduction to genetic algorithms., Springer Berlin

Heidelberg, 2008.

Stinson, M.A., Bhat, C.R. “A comparison of the route preferences of experienced and

inexperienced bicycle commuters”, Transportation Research Board: 110-121, 2005.

Yan S., Lin J., Chen Y. and Xie F., “Rental bike location and allocation under stochastic demands”,

Computers & Industrial Engineering, Volume 107, Pages 1-11, 2017.

Zahedian-Tejenaki, Z. and Tavakkoli-Moghaddam, R. “A Fuzzy bi-objective mathematical model

for sustainable hazmat transportation”. International Journal of Transportation Engineering, Vol.

2, No. 3, pp. 231-243, 2015.

Zandieh M. and Karimi N., "An adaptive multi-population genetic algorithm to solve the multi-

objective group scheduling problem in hybrid flexible flowshop with sequence-dependent setup

times," Intelligent Manufacturing Systems, vol. 22, pp. 979-989, 2010.

68

Appendices

CPLEX Code:

.mod

/* Sets */

int i = ...; /*number of rider zones*/

range I = 1..i; /*origin of rider*/

int j = ...; /*number of rider zones*/

range J = 1..j; /*destination of rider*/

int b = ...; /*number of potential bike stations*/

range B = 1..b; /*pick up station*/

int l = ...; /*number of potential bike stations*/

range L = 1..l; /*drop off station*/

int k = ...; /*maximum possibility of capacity level*/

range K = 6..k; /*capacity level of a specific bike station*/

/* Parameters */

int capital_lamda[I][J] = ...; /*monthly customer demand from origin point i to destination

point j*/

float d[I][B] = ...; /*distance from origin point i to pick up station b*/

float d_prime[B][L] = ...; /*distance from pick up station b to drop off station l*/

float d_double_prime[L][J] = ...; /*distance from drop off station l to destination point j*/

float c = ...; /*unit walking cost from each zone (i or j) to each station (b or l) (per

meter per trip)*/

int f[B][K] = ...; /*monthly fixed cost of locating any station at b with capacity level

k*/

69

int t = ...; /*number of days per month*/

int n = ...; /*number of active hours per day*/

float p = ...; /*minimum possible value for Mu[b]/Lamda[b] in each station to

satisfy service level constraints*/

float r = ...; /*maximum possible value for Mu[b]/Lamda[b] in each station to

satisfy service level constraints*/

int e = ...; /*monthly fixed cost of providing each bike in the network*/

int g = ...; /*riding speed of a passenger by bike (meters per hour)*/

/* Decision Variables */

dvar boolean X[B][K]; /*equals 1 if station b is opened with capacity level k and 0

otherwise*/

dvar boolean Y[I][B][L][J]; /*equals 1 if customers travel from point i to j using stations b

and l, and 0 otherwise*/

dvar float+ Lamda[B]; /*daily arrival rate of customers to pick up bike from station b*/

dvar float+ Mu[B]; /*daily arrival rate of customers to drop off bike at station b*/

dvar int S[B]; /*number of initial bikes in each station*/

/* Mathematical Model */

minimize sum(i in I, b in B, l in L, j in J) c*d[i][b]*Y[i][b][l][j]*capital_lamda[i][j] + sum(i in I,

b in B, l in L, j in J) c*d_double_prime[l][j]*Y[i][b][l][j]*capital_lamda[i][j] + sum(b in B, k in

K) f[b][k]*X[b][k] + sum(b in B) e*S[b];

subject to {

 forall(i in I, j in J : i!=j)

70

 Const2: sum(b in B, l in L : b!=l) Y[i][b][l][j] == 1;

 forall(i in I, j in J : i!=j, b in B)

 Const3: sum(l in L : b!=l) Y[i][b][l][j] + sum(l in L : b!=l) Y[i][l][b][j] <= sum(k

in K) X[b][k];

 forall(b in B)

 Const4: sum(k in K) X[b][k] <= 1;

 forall(b in B)

 Const5: Lamda[b] == (1/t)*sum(i in I, j in J : i!=j, l in L : b!=l)

Y[i][b][l][j]*capital_lamda[i][j];

 forall(b in B)

 Const6: Mu[b] == (1/t)*sum(i in I, j in J : i!=j, l in L : b!=l)

Y[i][l][b][j]*capital_lamda[i][j];

 Const7: sum(b in B) S[b] >= sum(i in I, b in B, l in L, j in J)

(d_prime[b][l]*Y[i][b][l][j]*capital_lamda[i][j]) / (t*n*g);

 forall(b in B)

 Const8: S[b] >= ((sum(k in K) (X[b][k]*k))/2 + sum(k in K) X[b][k] - 0.5);

 forall(b in B)

 Const9: S[b] <= ((sum(k in K) (X[b][k]*k))/2 + sum(k in K) X[b][k]);

 forall(b in B)

 Const10: Lamda[b] <= S[b] + Mu[b];

71

 forall(b in B)

 Const11: Mu[b] <= sum(k in K) (X[b][k]*k) - S[b] + Lamda[b];

 forall(b in B)

 Const12: Lamda[b] >= sum(k in K) X[b][k];

 forall(b in B)

 Const14: Mu[b] >= p * Lamda[b];

 forall(b in B)

 Const15: Mu[b] <= r * Lamda[b];

 }

.dat

i=30;

j=30;

b=15;

l=15;

k=30;

SheetConnection sheet("Data_Set.xlsx");

capital_lamda from SheetRead(sheet,"Demand!BN365:EY454");

72

d from SheetRead(sheet,"Distance!HW1319:KI1408");

d_prime from SheetRead(sheet,"Distance!HW1413:KI1477");

d_double_prime from SheetRead(sheet,"Distance!HW1483:LH1547");

c = 0.00532; /*Assumptions: Walking speed 4700 meters per hour, Time value of users $25 per

hour, So 25/4700=0.00532 (dollars/meter)*/

f from SheetRead(sheet,"Fixed_Cost!H3:AF67");

t=30;

n=12;

p=0.76938;

r=1.0551;

e=128;

g=16000; /*Assumption: riding speed of a passenger by bike is 16000 meters per hour*/

73

C++ Code (Genetic Algorithm):

#include <iostream>

using std::cout;

using std::cin;

using std::endl;

using std::fixed;

using std::ios;

using std::cerr;

#include <deque>

using namespace std;

#include <vector>

using namespace std;

#include <cmath>

#include <cstdlib> // Contains function prototype for rand

using std::rand;

#include <time.h>

#include <iomanip>

using std::setprecision;

using std::setw;

#include <string>

using std::string;

using std::getline;

74

#include <fstream> // file stream

using std::ifstream; // input file stream

using std::ofstream; // output file stream

#define RC_EPS 1.0e-6

#define BIG 1.0e7

ifstream DATA("DATA.txt", ios::in);

ofstream RESULT("RESULT.txt", ios::out);

//Global Variables

bool *Open_Station;

int NO_Zone, NO_Station, Min_Cap, Max_Cap, NO_Day, NO_Hour, Sum_Open_Station;

int **Demand, *Cap;

int *Init_Bicycle, *Near1, *Near2, *Near3, *Near4, *Near5;

double **SS_Dis, **ZS_Dis, UWC, *FC, Min_p, Max_r, FCB, Speed, Sum_Initial_Bike,

*Lambda, *Mu, **Pr_Dis;

template< typename T >

T Max (T x,T y) {

 T maximum = x;

 if (y > maximum)

 maximum = y;

 return maximum;

}

75

void DefineVariables();

void FinalFree();

double Genetic();

double Fitness(int ** , int **);

int main() {

 cout.precision(6);

 double Total_Cost;

 //time_t start, end;

 //time (&start);

 try {

 cout << "Please Enter the Value of the Following Parameters:\nNumber of

Excecution: ";

 int NoE = 1; cin >> NoE;

 for (int problem = 1; problem <= NoE; problem++) {

 //RESULT << "Problem " << problem << " : ";

 DefineVariables();

 Total_Cost = Genetic();

 FinalFree();

 //time (&end);

 //RESULT << "time = " << difftime(end, start) << endl;

 RESULT << "Total Cost = " << fixed << Total_Cost << endl;

 RESULT << "---------------------------------" << endl;

 DATA.clear();

76

 DATA.seekg(0);

 }

 }

 catch (...) {

 cerr << "Error" << endl;

 }

 cout << "\n\t\t\"Please See the RESULT File.\"\n\n";

 return 0;

}

void DefineVariables() {

 register int i, j;

 DATA >> NO_Zone >> NO_Station >> Min_Cap >> Max_Cap;

 Demand = new int*[NO_Zone + 1];

 for(i = 1; i <= NO_Zone; i++){

 Demand[i] = new int[NO_Zone + 1];

 for(j = 1; j <= NO_Zone; j++)

 DATA >> Demand[i][j];

 }

77

 ZS_Dis = new double*[NO_Zone + 1];

 for(i = 1; i <= NO_Zone; i++){

 ZS_Dis[i] = new double[NO_Station + 1];

 for(j = 1; j <= NO_Station; j++)

 DATA >> ZS_Dis[i][j];

 }

 SS_Dis = new double*[NO_Station + 1];

 for(i = 1; i <= NO_Station; i++){

 SS_Dis[i] = new double[NO_Station + 1];

 for(j = 1; j <= NO_Station; j++)

 DATA >> SS_Dis[i][j];

 }

 DATA >> UWC;

 FC = new double[Max_Cap + 1];

 FC[0] = 0;

 for(i = Min_Cap; i <= Max_Cap; i++)

 DATA >> FC[i];

 DATA >> NO_Day >> NO_Hour >> Min_p >> Max_r >> FCB >> Speed;

 Near1 = new int[NO_Zone + 1];

 Near2 = new int[NO_Zone + 1];

 Near3 = new int[NO_Zone + 1];

78

 Near4 = new int[NO_Zone + 1];

 Near5 = new int[NO_Zone + 1];

 Cap = new int[NO_Station + 1];

 Open_Station = new bool[NO_Station + 1];

 Init_Bicycle = new int[NO_Station + 1];

 Lambda = new double[NO_Station + 1];

 Mu = new double[NO_Station + 1];

 for(i = 1; i <= NO_Zone; i++){

 Near1[i] = Near2[i] = 1;

 for(j = 2; j <= NO_Station; j++){

 if(ZS_Dis[i][j] < ZS_Dis[i][Near1[i]]){

 Near2[i] = Near1[i];

 Near1[i] = j;

 }

 }

 if(Near1[i] != 1){

 for(j = Near1[i] + 1; j <= NO_Station; j++)

 if(ZS_Dis[i][j] < ZS_Dis[i][Near2[i]])

 Near2[i] = j;

 }

 else{

 Near2[i] = 2;

79

 for(j = 3; j <= NO_Station; j++)

 if(ZS_Dis[i][j] < ZS_Dis[i][Near2[i]])

 Near2[i] = j;

 }

 }

 for(i = 1; i <= NO_Zone; i++){

 Near3[i] = 0;

 for(j = 1; j <= NO_Station; j++){

 if (ZS_Dis[i][j] > ZS_Dis[i][Near2[i]] && (Near3[i] == 0 || ZS_Dis[i][j] <

ZS_Dis[i][Near3[i]]))

 Near3[i] = j;

 }

 if (Near3[i] == 0){

 for(j = 1; j <= NO_Station; j++){

 if (ZS_Dis[i][j] == ZS_Dis[i][Near2[i]] && j != Near2[i] && j !=

Near1[i]){

 Near3[i] = j;

 break;

 }

 }

 }

 }

 for(i = 1; i <= NO_Zone; i++){

 Near4[i] = 0;

 for(j = 1; j <= NO_Station; j++){

80

 if (ZS_Dis[i][j] > ZS_Dis[i][Near3[i]] && (Near4[i] == 0 || ZS_Dis[i][j] <

ZS_Dis[i][Near4[i]]))

 Near4[i] = j;

 }

 if (Near4[i] == 0){

 for(j = 1; j <= NO_Station; j++){

 if (ZS_Dis[i][j] == ZS_Dis[i][Near3[i]] && j != Near3[i] && j !=

Near2[i] && j != Near1[i]){

 Near4[i] = j;

 break;

 }

 }

 }

 }

 for(i = 1; i <= NO_Zone; i++){

 Near5[i] = 0;

 for(j = 1; j <= NO_Station; j++){

 if (ZS_Dis[i][j] > ZS_Dis[i][Near4[i]] && (Near5[i] == 0 || ZS_Dis[i][j] <

ZS_Dis[i][Near5[i]]))

 Near5[i] = j;

 }

 if (Near5[i] == 0){

 for(j = 1; j <= NO_Station; j++){

 if (ZS_Dis[i][j] == ZS_Dis[i][Near4[i]] && j != Near4[i] && j !=

Near3[i] && j != Near2[i] && j != Near1[i]){

 Near5[i] = j;

 break;

81

 }

 }

 }

 }

 Pr_Dis = new double*[NO_Zone + 1];

 for(i = 1; i <= NO_Zone; i++)

 Pr_Dis[i] = new double[6];

 for(i = 1; i <= NO_Zone; i++){

 Pr_Dis[i][0] = 1 / ZS_Dis[i][Near1[i]] + 1 / ZS_Dis[i][Near2[i]] + 1 /

ZS_Dis[i][Near3[i]] + 1 / ZS_Dis[i][Near4[i]] + 1 / ZS_Dis[i][Near5[i]];

 Pr_Dis[i][1] = (1 / ZS_Dis[i][Near1[i]]) / Pr_Dis[i][0]; Pr_Dis[i][2] = (1 /

ZS_Dis[i][Near2[i]]) / Pr_Dis[i][0];

 Pr_Dis[i][3] = (1 / ZS_Dis[i][Near3[i]]) / Pr_Dis[i][0]; Pr_Dis[i][4] = (1 /

ZS_Dis[i][Near4[i]]) / Pr_Dis[i][0];

 Pr_Dis[i][5] = (1 / ZS_Dis[i][Near5[i]]) / Pr_Dis[i][0];

 for(j = 2; j <= 5; j++)

 Pr_Dis[i][j] = Pr_Dis[i][j - 1] + Pr_Dis[i][j];

 }

}

double Genetic() {

 register int counter, g, h, j, i;

 /*const*/ int Population_Size = 30; cout << "Population Size: "; cin >> Population_Size;

82

 /*const*/ double Crossover_Rate = 1.5; cout << "Crossover Rate: "; cin >>

Crossover_Rate;

 /*const*/ double Mutation_Rate = 0.1; cout << "Mutation Rate (between 0 and 1): "; cin

>> Mutation_Rate;

 int NO_Offspring = (int) floor(Population_Size * Crossover_Rate);

 time_t T;

 int TEMP, THE_BEST, Generation = 1, start, end, parent1, parent2, candid,

Generation_Without_Improvement = 0;

 double THE_BEST_Fitness, Before, After, TEMPD;

 bool Heavy_Mutation_flag;

 int ***P_Chromosome = new int**[Population_Size + 1];

 for(counter = 1; counter <= Population_Size; counter++){

 P_Chromosome[counter] = new int*[NO_Zone + 1];

 for(g = 1; g <= NO_Zone; g++)

 P_Chromosome[counter][g] = new int[NO_Zone + 1];

 }

 int ***D_Chromosome = new int**[Population_Size + 1];

 for(counter = 1; counter <= Population_Size; counter++){

 D_Chromosome[counter] = new int*[NO_Zone + 1];

 for(g = 1; g <= NO_Zone; g++)

 D_Chromosome[counter][g] = new int[NO_Zone + 1];

 }

 int ***New_P_Chromosome = new int**[NO_Offspring + 1];

83

 for(counter = 1; counter <= NO_Offspring; counter++){

 New_P_Chromosome[counter] = new int*[NO_Zone + 1];

 for(g = 1; g <= NO_Zone; g++)

 New_P_Chromosome[counter][g] = new int[NO_Zone + 1];

 }

 int ***New_D_Chromosome = new int**[NO_Offspring + 1];

 for(counter = 1; counter <= NO_Offspring; counter++){

 New_D_Chromosome[counter] = new int*[NO_Zone + 1];

 for(g = 1; g <= NO_Zone; g++)

 New_D_Chromosome[counter][g] = new int[NO_Zone + 1];

 }

 double *Chromosome_Fitness = new double[Population_Size + 1];

 int **P_Offspring = new int*[NO_Zone + 1];

 for(g = 1; g <= NO_Zone; g++)

 P_Offspring[g] = new int[NO_Zone + 1];

 int **D_Offspring = new int*[NO_Zone + 1];

 for(g = 1; g <= NO_Zone; g++)

 D_Offspring[g] = new int[NO_Zone + 1];

 double *Candid_Fitness = new double[NO_Offspring + 1];

 int *Candid_List = new int[NO_Offspring + 1];

84

 T = time(0);

 srand((unsigned int) T);

 /**

 *

 *

 * Initial Population

 *

 *

 *

 ***/

 for(i = 1; i <= NO_Zone; i++){

 for(j = 1; j < i; j++){

 if(Near1[i] != Near1[j]){

 P_Chromosome[1][i][j] = Near1[i];

 D_Chromosome[1][i][j] = Near1[j];

 }

 else if (ZS_Dis[i][Near1[i]] + ZS_Dis[j][Near2[j]] < ZS_Dis[i][Near2[i]]

+ ZS_Dis[j][Near1[j]]){

 P_Chromosome[1][i][j] = Near1[i];

 D_Chromosome[1][i][j] = Near2[j];

 }

 else{

 P_Chromosome[1][i][j] = Near2[i];

 D_Chromosome[1][i][j] = Near1[j];

 }

85

 }

 for(j = i + 1; j <= NO_Zone; j++){

 if(Near1[i] != Near1[j]){

 P_Chromosome[1][i][j] = Near1[i];

 D_Chromosome[1][i][j] = Near1[j];

 }

 else if (ZS_Dis[i][Near1[i]] + ZS_Dis[j][Near2[j]] < ZS_Dis[i][Near2[i]]

+ ZS_Dis[j][Near1[j]]){

 P_Chromosome[1][i][j] = Near1[i];

 D_Chromosome[1][i][j] = Near2[j];

 }

 else{

 P_Chromosome[1][i][j] = Near2[i];

 D_Chromosome[1][i][j] = Near1[j];

 }

 }

 }

 /***/

 for (counter = 2; counter <= Population_Size; counter++){

 for (i = 1; i <= NO_Zone; i++){

 for (j = 1; j <= NO_Zone; j++){

 if (i == j) continue;

 TEMPD = (double)rand()/(double)(RAND_MAX) - RC_EPS;

 g = 1;

86

 while(Pr_Dis[i][g] < TEMPD) g++;

 switch(g){

 case 1: P_Chromosome[counter][i][j] = Near1[i]; break;

 case 2: P_Chromosome[counter][i][j] = Near2[i]; break;

 case 3: P_Chromosome[counter][i][j] = Near3[i]; break;

 case 4: P_Chromosome[counter][i][j] = Near4[i]; break;

 case 5: P_Chromosome[counter][i][j] = Near5[i]; break;

 }

 do {

 TEMPD = (double)rand()/(double)(RAND_MAX) -

RC_EPS;

 g = 1;

 while(Pr_Dis[j][g] < TEMPD) g++;

 switch(g){

 case 1: D_Chromosome[counter][i][j] = Near1[j];

break;

 case 2: D_Chromosome[counter][i][j] = Near2[j];

break;

 case 3: D_Chromosome[counter][i][j] = Near3[j];

break;

 case 4: D_Chromosome[counter][i][j] = Near4[j];

break;

 case 5: D_Chromosome[counter][i][j] = Near5[j];

break;

 }

 }

 while (D_Chromosome[counter][i][j] ==

P_Chromosome[counter][i][j]);

87

 }

 }

 }

 for(counter = 1; counter <= Population_Size; counter++){

 Chromosome_Fitness[counter] = Fitness(P_Chromosome[counter],

D_Chromosome[counter]);

 }

 THE_BEST = 1;

 THE_BEST_Fitness = Chromosome_Fitness[1];

 for (counter = 2; counter <= Population_Size; counter++) {

 if (Chromosome_Fitness[counter] < THE_BEST_Fitness) {

 THE_BEST = counter;

 THE_BEST_Fitness = Chromosome_Fitness[counter];

 }

 }

 /**

 *

 *

 * start of MA algorithm

 *

 *

 *

88

 ***/

 int Stopping_Criteria = 100;

 cout << "Stopping Criteria (Number of Generations without Improvement): "; cin >>

Stopping_Criteria;

 while /*stopping criteria not satisfied*//* (time(0) - T <=

60*/(Generation_Without_Improvement <= Stopping_Criteria/*&&(THE_BEST_Fitness < 0)*/)

{

 Heavy_Mutation_flag = true;

 candid = 0;

 Before = THE_BEST_Fitness;

 for (counter = 1; counter <= Population_Size * Crossover_Rate; counter++) {

 /**

 *

 *

 * Selection

 *

 *

 *

 ***/

 parent1 = rand() %(Population_Size) + 1;

 parent2 = rand() %(Population_Size) + 1;

 if (parent2 == parent1) parent2 = Population_Size + 1 - parent1;

89

 if (Chromosome_Fitness[parent2] < Chromosome_Fitness[parent1]) {

 TEMP = parent1; parent1 = parent2; parent2 = TEMP;

 }

 /**

 *

 *

 * Cross over

 *

 *

 *

 ***/

 if(counter < NO_Offspring / 3){

 start = rand() %NO_Zone + 1;

 end = rand() %NO_Zone + 1;

 if (start > end) {

 TEMP = start; start = end; end = TEMP;

 }

 for (g = 1; g < start; g++){

 for(i = 1; i <= NO_Zone; i++){

 P_Offspring[i][g] = P_Chromosome[parent2][i][g];

 D_Offspring[g][i] = D_Chromosome[parent2][g][i];

 }

90

 }

 for (g = start; g <= end; g++){

 for(i = 1; i <= NO_Zone; i++){

 P_Offspring[i][g] = P_Chromosome[parent1][i][g];

 D_Offspring[g][i] = D_Chromosome[parent1][g][i];

 }

 }

 for (g = end + 1; g <= NO_Zone; g++){

 for(i = 1; i <= NO_Zone; i++){

 P_Offspring[i][g] = P_Chromosome[parent2][i][g];

 D_Offspring[g][i] = D_Chromosome[parent2][g][i];

 }

 }

 }

 else if(counter < 2 * NO_Offspring / 3){

 start = rand() %NO_Zone + 1;

 for (g = 1; g < start; g++)

 for(i = 1; i <= NO_Zone; i++)

 P_Offspring[i][g] = P_Chromosome[parent1][i][g];

 for (g = start; g <= NO_Zone; g++)

 for(i = 1; i <= NO_Zone; i++)

 P_Offspring[i][g] = P_Chromosome[parent2][i][g];

91

 start = rand() %NO_Zone + 1;

 for (g = 1; g < start; g++)

 for(i = 1; i <= NO_Zone; i++)

 D_Offspring[g][i] = D_Chromosome[parent1][g][i];

 for (g = start; g <= NO_Zone; g++)

 for(i = 1; i <= NO_Zone; i++)

 D_Offspring[g][i] = D_Chromosome[parent2][g][i];

 }

 else{

 for (g = 1; g <= NO_Zone; g++){

 for(i = 1; i <= NO_Zone; i++){

 TEMPD = (double)rand()/(double)(RAND_MAX);

 if (TEMPD <= 0.5){

 P_Offspring[i][g] =

P_Chromosome[parent1][i][g];

 }

 else{

 P_Offspring[i][g] =

P_Chromosome[parent2][i][g];

 }

 TEMPD = (double)rand()/(double)(RAND_MAX);

 if (TEMPD <= 0.5){

 D_Offspring[g][i] =

D_Chromosome[parent1][g][i];

92

 }

 else{

 D_Offspring[g][i] =

D_Chromosome[parent2][g][i];

 }

 }

 }

 }

 /**

 *

 *

 * Light Mutation

 *

 *

 *

 ***/

 if ((double)rand()/(double)(RAND_MAX) <= Mutation_Rate) {

 g = rand() %(NO_Zone) + 1;

 h = rand() %(NO_Zone) + 1;

 if (g == h) h = NO_Zone + 1 - g;

 i = rand() %(5) + 1;

 switch(i){

 case 1: P_Offspring[g][h] = Near1[g]; break;

93

 case 2: P_Offspring[g][h] = Near2[g]; break;

 case 3: P_Offspring[g][h] = Near3[g]; break;

 case 4: P_Offspring[g][h] = Near4[g]; break;

 case 5: P_Offspring[g][h] = Near5[g]; break;

 }

 i = rand() %(5) + 1;

 switch(i){

 case 1: D_Offspring[g][h] = Near1[h]; break;

 case 2: D_Offspring[g][h] = Near2[h]; break;

 case 3: D_Offspring[g][h] = Near3[h]; break;

 case 4: D_Offspring[g][h] = Near4[h]; break;

 case 5: D_Offspring[g][h] = Near5[h]; break;

 }

 }

 Candid_Fitness[candid + 1] = Fitness(P_Offspring, D_Offspring);

 /**

 *

 *

 * Insertion new individuals policy

 *

 *

 *

 ***/

94

 if (Candid_Fitness[candid + 1] < Chromosome_Fitness[parent2]) {

 candid++;

 Heavy_Mutation_flag = false;

 for (i = 1; i <= NO_Zone; i++){

 for (j = 1; j <= NO_Zone; j++){

 New_P_Chromosome[candid][i][j] =

P_Offspring[i][j];

 New_D_Chromosome[candid][i][j] =

D_Offspring[i][j];

 }

 }

 Candid_List[candid] = parent2;

 }

 }//End of Crossover counter

 /**

 *

 *

 * Heavy Mutation

 *

 *

 *

 ***/

 if (Heavy_Mutation_flag == true) {

95

 for (counter = 1; counter < THE_BEST; counter++) {

 for (i = 1; i <= NO_Zone; i++){

 for (j = 1; j <= NO_Zone; j++){

 if (i == j) continue;

 TEMPD = (double)rand()/(double)(RAND_MAX) -

RC_EPS;

 g = 1;

 while(Pr_Dis[i][g] < TEMPD) g++;

 switch(g){

 case 1: P_Chromosome[counter][i][j] =

Near1[i]; break;

 case 2: P_Chromosome[counter][i][j] =

Near2[i]; break;

 case 3: P_Chromosome[counter][i][j] =

Near3[i]; break;

 case 4: P_Chromosome[counter][i][j] =

Near4[i]; break;

 case 5: P_Chromosome[counter][i][j] =

Near5[i]; break;

 }

 do {

 TEMPD =

(double)rand()/(double)(RAND_MAX) - RC_EPS;

 g = 1;

 while(Pr_Dis[j][g] < TEMPD) g++;

 switch(g){

 case 1:

D_Chromosome[counter][i][j] = Near1[j]; break;

96

 case 2:

D_Chromosome[counter][i][j] = Near2[j]; break;

 case 3:

D_Chromosome[counter][i][j] = Near3[j]; break;

 case 4:

D_Chromosome[counter][i][j] = Near4[j]; break;

 case 5:

D_Chromosome[counter][i][j] = Near5[j]; break;

 }

 }

 while (D_Chromosome[counter][i][j] ==

P_Chromosome[counter][i][j]);

 }

 }

 Chromosome_Fitness[counter] = Fitness(P_Chromosome[counter],

D_Chromosome[counter]);

 if (Chromosome_Fitness[counter] < THE_BEST_Fitness) {

 THE_BEST = counter;

 THE_BEST_Fitness = Chromosome_Fitness[counter];

 }

 }

 for (counter = THE_BEST + 1; counter <= Population_Size; counter++) {

 for (i = 1; i <= NO_Zone; i++){

 for (j = 1; j <= NO_Zone; j++){

 TEMPD = (double)rand()/(double)(RAND_MAX) -

RC_EPS;

 g = 1;

 while(Pr_Dis[i][g] < TEMPD) g++;

97

 switch(g){

 case 1: P_Chromosome[counter][i][j] =

Near1[i]; break;

 case 2: P_Chromosome[counter][i][j] =

Near2[i]; break;

 case 3: P_Chromosome[counter][i][j] =

Near3[i]; break;

 case 4: P_Chromosome[counter][i][j] =

Near4[i]; break;

 case 5: P_Chromosome[counter][i][j] =

Near5[i]; break;

 }

 do {

 TEMPD =

(double)rand()/(double)(RAND_MAX) - RC_EPS;

 g = 1;

 while(Pr_Dis[j][g] < TEMPD) g++;

 switch(g){

 case 1:

D_Chromosome[counter][i][j] = Near1[j]; break;

 case 2:

D_Chromosome[counter][i][j] = Near2[j]; break;

 case 3:

D_Chromosome[counter][i][j] = Near3[j]; break;

 case 4:

D_Chromosome[counter][i][j] = Near4[j]; break;

 case 5:

D_Chromosome[counter][i][j] = Near5[j]; break;

 }

98

 }

 while (D_Chromosome[counter][i][j] ==

P_Chromosome[counter][i][j]);

 }

 }

 Chromosome_Fitness[counter] = Fitness(P_Chromosome[counter],

D_Chromosome[counter]);

 if (Chromosome_Fitness[counter] < THE_BEST_Fitness) {

 THE_BEST = counter;

 THE_BEST_Fitness = Chromosome_Fitness[counter];

 }

 }

 }

 /**

 *

 *

 * Updating Population

 *

 *

 *

 ***/

 for (counter = 1; counter <= candid; counter++) {

 if (Chromosome_Fitness[Candid_List[counter]] >

Candid_Fitness[counter]) {

99

 Chromosome_Fitness[Candid_List[counter]] =

Candid_Fitness[counter];

 if (Candid_Fitness[counter] < THE_BEST_Fitness) {

 THE_BEST = Candid_List[counter];

 THE_BEST_Fitness = Candid_Fitness[counter];

 }

 for (g = 1; g <= NO_Zone; g++){

 for (j = 1; j <= NO_Zone; j++){

 P_Chromosome[Candid_List[counter]][g][j] =

New_P_Chromosome[counter][g][j];

 D_Chromosome[Candid_List[counter]][g][j] =

New_D_Chromosome[counter][g][j];

 }

 }

 }

 }

 After = THE_BEST_Fitness;

 if ((After - Before) >= -RC_EPS){

 Generation_Without_Improvement += 1;

 }

 else {

 Generation_Without_Improvement = 0;

 }

 //cout << Generation <<"\t"<< THE_BEST_Fitness <<"\t"<< time(0) - T <<"\n";

100

 //RESULT << Generation <<"\t"<< THE_BEST_Fitness <<"\t"<< time(0) - T

<<"\n";

 Generation++;

 }//End Of While

 TEMPD = Fitness(P_Chromosome[THE_BEST], D_Chromosome[THE_BEST]);

 RESULT << "Zone" <<"\t"<< "Pickup" <<"\t"<< "Drop" << "\t" << "Zone" << "\n";

 for(i = 1; i <= NO_Zone; i++){

 for(j = 1; j < i; j++)

 RESULT << i <<"\t\t"<< P_Chromosome[THE_BEST][i][j] <<"\t\t"<<

D_Chromosome[THE_BEST][i][j] << "\t\t" << j << "\n";

 for(j = i + 1; j <= NO_Zone; j++)

 RESULT << i <<"\t\t"<< P_Chromosome[THE_BEST][i][j] <<"\t\t"<<

D_Chromosome[THE_BEST][i][j] << "\t\t" << j << "\n";

 }

 RESULT << "Lambda" << "\n";

 for(i = 1; i <= NO_Station; i++)

 RESULT << Lambda[i] <<"\t";

 RESULT << "\n" << "Mu" << "\n";

 for(i = 1; i <= NO_Station; i++)

 RESULT << Mu[i] <<"\t";

 RESULT << "\n" << "Capacity" << "\n";

 for(i = 1; i <= NO_Station; i++)

 RESULT << Cap[i] <<"\t";

101

 RESULT << "\n" << "Initial Bicycle" << "\n";

 for(i = 1; i <= NO_Station; i++)

 RESULT << Init_Bicycle[i] <<"\t";

 RESULT << "\n";

 for(counter = 1; counter <= Population_Size; counter++){

 for(g = 1; g <= NO_Station; g++){

 delete [] P_Chromosome[counter][g];

 delete [] D_Chromosome[counter][g];

 }

 delete [] P_Chromosome[counter];

 delete [] D_Chromosome[counter];

 }

 delete [] P_Chromosome; delete [] D_Chromosome;

 for(counter = 1; counter <= NO_Offspring; counter++){

 for(g = 1; g <= NO_Zone; g++){

 delete [] New_P_Chromosome[counter][g];

 delete [] New_D_Chromosome[counter][g];

 }

 delete [] New_P_Chromosome[counter];

 delete [] New_D_Chromosome[counter];

 }

 delete [] New_P_Chromosome;

 delete [] New_D_Chromosome;

102

 delete [] Chromosome_Fitness;

 for(g = 1; g <= NO_Zone; g++){

 delete [] P_Offspring[g];

 delete [] D_Offspring[g];

 }

 delete [] P_Offspring;

 delete [] D_Offspring;

 delete [] Candid_Fitness;

 delete [] Candid_List;

 return THE_BEST_Fitness;

}

double Fitness(int **Pickup , int **Drop){

 register int i, j;

 double FitValue = 0;

 for(i = 1; i <= NO_Station; i++){

 Lambda[i] = 0;

 Mu[i] = 0;

 }

103

 for(i = 1; i <= NO_Zone; i++){

 for(j = 1; j < i; j++){

 Lambda[Pickup[i][j]] = Lambda[Pickup[i][j]] + Demand[i][j];

 Mu[Drop[i][j]] = Mu[Drop[i][j]] + Demand[i][j];

 }

 for(j = i + 1; j <= NO_Zone; j++){

 Lambda[Pickup[i][j]] = Lambda[Pickup[i][j]] + Demand[i][j];

 Mu[Drop[i][j]] = Mu[Drop[i][j]] + Demand[i][j];

 }

 }

 for(i = 1; i <= NO_Station; i++){

 Lambda[i] = Lambda[i]/NO_Day;

 Mu[i] = Mu[i]/NO_Day;

 }

 for(i = 1; i <= NO_Station; i++)

 Open_Station[i] = 0;

 Sum_Initial_Bike = 0;

 Sum_Open_Station = 0;

 for(i = 1; i <= NO_Zone; i++) {

 for(j = 1; j < i; j++) {

 Sum_Initial_Bike = Sum_Initial_Bike + Demand[i][j] *

SS_Dis[Pickup[i][j]][Drop[i][j]];

 Open_Station[Pickup[i][j]] = 1;

 Open_Station[Drop[i][j]] = 1;

104

 }

 for(j = i + 1; j <= NO_Zone; j++) {

 Sum_Initial_Bike = Sum_Initial_Bike + Demand[i][j] *

SS_Dis[Pickup[i][j]][Drop[i][j]];

 Open_Station[Pickup[i][j]] = 1;

 Open_Station[Drop[i][j]] = 1;

 }

 }

 for(i = 1; i <= NO_Station; i++)

 if(Lambda[i] == 0 && Mu[i] == 0) Open_Station[i] = 0;

 for(i = 1; i <= NO_Station; i++)

 Sum_Open_Station = Sum_Open_Station + Open_Station[i];

 Sum_Initial_Bike = Sum_Initial_Bike/(NO_Day * NO_Hour * Speed);

 Cap[0] = Max(Min_Cap, (int) ceil(Sum_Initial_Bike/Sum_Open_Station));

 for(i = 1; i <= NO_Station; i++){

 if (Open_Station[i] && (Lambda[i] - Mu[i]) > 0){

 Init_Bicycle[i] = (int) ceil(Lambda[i] - Mu[i]);

 Cap[i] = 2 * Init_Bicycle[i] - 1;

 if (Cap[i] < Cap[0]){

 Cap[i] = Cap[0];

 Init_Bicycle[i] = (int) ceil((double) (Cap[i] + 1)/2);

 }

 }

105

 else if (Open_Station[i] && (Lambda[i] - Mu[i]) <= 0){

 Init_Bicycle[i] = (int) ceil(Mu[i] - Lambda[i] + 1);

 Cap[i] = 2 * Init_Bicycle[i] - 1;

 if (Cap[i] < Cap[0]){

 Cap[i] = Cap[0];

 Init_Bicycle[i] = (int) ceil((double) (Cap[i] + 1)/2);

 }

 }

 else{

 Cap[i] = 0;

 Init_Bicycle[i] = 0;

 }

 }

 for(i = 1; i <= NO_Zone; i++){

 for(j = 1; j < i; j++)

 FitValue = FitValue + UWC * Demand[i][j] * (ZS_Dis[i][Pickup[i][j]] +

ZS_Dis[j][Drop[i][j]]);

 for(j = i + 1; j <= NO_Zone; j++)

 FitValue = FitValue + UWC * Demand[i][j] * (ZS_Dis[i][Pickup[i][j]] +

ZS_Dis[j][Drop[i][j]]);

 }

 for(i = 1; i <= NO_Station; i++)

 if(Cap[i] <= Max_Cap)

106

 FitValue = FitValue + FC[Cap[i]] + FCB * Init_Bicycle[i];

 else

 FitValue = FitValue + (Cap[i] - Max_Cap) * FC[Max_Cap] + FCB *

Init_Bicycle[i];

 for(i = 1; i <= NO_Station; i++){

 if(Open_Station[i]){

 if(Mu[i]/Lambda[i] < Min_p)

 FitValue = FitValue + BIG * (Min_p - Mu[i]/Lambda[i]) * (Min_p

- Mu[i]/Lambda[i]);

 else if(Mu[i]/Lambda[i] > Max_r)

 FitValue = FitValue + BIG * (Max_r - Mu[i]/Lambda[i]) * (Max_r

- Mu[i]/Lambda[i]);

 }

 }

 for(i = 1; i <= NO_Zone; i++){

 for(j = 1; j < i; j++)

 if(Pickup[i][j] == Drop[i][j])

 FitValue = FitValue + BIG;

 for(j = i + 1; j <= NO_Zone; j++)

 if(Pickup[i][j] == Drop[i][j])

 FitValue = FitValue + BIG;

 }

107

 return FitValue;

}

void FinalFree(void) {

 register int i;

 for(i = 1; i <= NO_Zone; i++){

 delete Demand[i];

 delete ZS_Dis[i];

 delete Pr_Dis[i];

 }

 delete [] Demand;

 delete [] ZS_Dis;

 delete [] Pr_Dis;

 for(i = 1; i <= NO_Station; i++)

 delete SS_Dis[i];

 delete [] SS_Dis;

 delete [] FC;

 delete [] Init_Bicycle;

 delete [] Cap;

 delete [] Near1;

 delete [] Near2;

108

 delete [] Near3;

 delete [] Near4;

 delete [] Near5;

 delete [] Open_Station;

}

109

The result of Arena for a bike sharing network with 10 demand zones and 3 possible stations:

110

111

112

113

114

115

116

