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Abstract 

 

Bike Sharing Network Design with Service Levels: The Case of Montreal City 

 

Mehdi Khatib 

 

The rapid growth of urbanization and use of motor vehicles in the recent decades has led to many 

social and economic problems such as: rising fuel prices, energy crises, environmental problems 

and traffic congestion. All these problems together have decreased the quality of life of people all 

around the world. In recent years, municipal planners have increasingly focused on extending 

policies to promote a culture of using bicycles instead of cars. In many cases, urban planners try 

to build the infrastructure needed to increase the usage of bicycles and one of the measures that 

has been widely used by them in recent years is bike sharing programs. In this study, we design a 

bike sharing network considering the objectives of users and system designers simultaneously. 

From the customers’ view point, walking short distances before picking up and after dropping off 

a bike would be a preference and they will be satisfied when they find available bikes or empty 

docks in the system. From the system designer’s perspective, the objective is to achieve these 

service levels with the minimum network design cost. To achieve this, we develop a mixed integer 

linear programming model to minimize the cost of opening stations and transportation costs. We 

consider the pickup and drop off service level constraints in determining the location, dock 

capacity and demand allocation to the bike stations. A Mixed Integer Linear Programming model 

is developed and solved using CPLEX Software. In order to validate the network design solutions, 

we simulate the results of small to medium size instances in Arena. To solve the larger instances 

of the problem, a Genetic Algorithm is proposed that uses a heuristic method to generate a part of 

initial solutions and improves the solutions in its stochastic iterations and reaches near-optimal 

solutions in a reasonable amount of time. The proposed method is illustrated using the city of 

Montreal as case study. 
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Chapter 1 - Introduction 

The rapid growth of urbanization and use of motor vehicles in the recent decades has led to many 

social and economic problems such as: rising fuel prices, energy crises, environmental problems 

and traffic congestion. All these problems together have decreased the quality of life of people all 

around the world (Pucher et al. 1999). In recent years, municipal planners have increasingly 

focused on extending policies to promote a culture of using bicycles instead of cars. The more use 

of less polluting transportation modes creates a sustainable mobility in the city. In addition to its 

social benefits such as environmental and economic sustainability, it also has many benefits at the 

individual level. Cycling can be a fun way to travel, while it can minimize the hassle of using 

motor vehicles. Since cycling is healthy and an economic transportation mode, it can be more 

efficient in big city centers compared to private cars and public transportation (Zahedian-Tejenaki 

and Tavakkoli-Moghaddam 2015, Heinen et al. 2010). 

Nowadays, in most developed European cities, having a plan to encourage people to travel by bike 

is one of the most important issues in any political parties to succeed in elections. In many cases, 

urban planners try to build the infrastructure needed to increase the usage of bicycles and one of 

the measures that has been widely used by them in recent years is bike sharing programs (Stinson 

and Bhat 2005, Midgley 2011). The first public use of a bike sharing system took place in 

Amsterdam in 1965, known as the white bicycle system. Since then, these systems have been 

expanded greatly and many models have been developed for them (Bonnette 2007). 

The development of bicycle sharing systems in large cities helps to create stability in transportation 

and public systems, and in addition, it can be used to enable citizens to travel to places in the city 

or pass some ways that cannot be accessed through other vehicles. The main components of a bike 

sharing system include bicycles, bike stations and riders. In these systems, rider picks a bike up 

from a station (origin of the trip), and after a period of time, returns it to the same station or another 

station in the network (the destination of the trip) (Büttner et al. 2011, Caggiani and Ottomanelli 

2013). 

However, bicycle sharing systems have some limitations, including the fact that bicycles are often 

used for short to medium trips and are mostly used for one-way trips. This issue can disrupt the 

equilibrium of the system over a period of time and in some areas of the network. Therefore, in 

order to improve the system and increase the users’ satisfaction, locating stations in the network 
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and considering appropriate fleet size is very important (Caggiani and Ottomanelli 2013). Today, 

it is estimated that there are more than 375 bike sharing networks all around the world and there 

are about 240,000 bicycles in them. One of the most important factors in the success of these 

programs is how stations are spread in the bike sharing networks and in what level they satisfy the 

demand. In order to increase the utilization of bike stations, they should not be too far apart, and 

the distances in the network must be suitable for traveling by bicycle (Lin and Yang 2011, Shu et 

al. 2010). 

Due to the fact that these systems are designed for public use, the stations should be close to 

recreational areas, tourist attractions and major commercial centers. Another important factor in 

locating bicycle stations is its connection to the public transportation system. Actually bicycle can 

be used as a complement to the transportation system and increase the coverage of public 

transportation systems. A designer should be aware of the potential distribution of demand at 

different zones and prioritize the areas that produce more trips (Martens, K. 2007, García-

Palomares et al. 2012). 

1.1. Goal of the study 

In this study, we design a bike sharing network considering the objectives of users and system 

designers simultaneously. From the customers’ view point, walking short distances before picking 

up and after dropping off a bike would be a preference and they will be satisfied when they find 

available bikes or empty docks in the system. From the system designer’s point of view, the 

objective is to maximize the revenue with lowest network building cost. This can be achieved by 

building the infrastructure with the lowest investment while satisfying bike pick up and drop off 

service levels. In this research we combine both points of view considering the impact of service 

level of pick up and drop off on all components of the system. Actually a bike sharing system 

usually provides two types of service to users. First is the availability level to pick up a bike from 

a specific station which is called service level of pick up, and second is the availability level of 

docks for users arriving to drop off a bike in the station, which is called drop off service level. 

Our objective is to minimize the cost of opening stations and transportation costs, and there are 

two main decisions in the problem under this study. First the location decision which is affected 

by the cost of building stations, demands and distances between demand zones and stations. The 

second one is the allocation decision which allocates the demand of each zone to those stations 

which are more cost efficient than others. Also aforementioned service level rates have an 
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important role in this model and affect the whole allocations in the network and the capacity 

and number of initial bikes in each station. 

The city of Montreal is considered as the case study and the data for the experiments is obtained 

from Bixi’s website, bike sharing network of Montreal. Actually, all information needed to fulfill 

our numerical experiment is extracted from the statistics of the previous years of Bixi company. 

A Mixed Integer Linear Programming model is developed for the designed bike sharing network 

and CPLEX Software with an underlying branch and bound algorithm is used to solve the model. 

In order to validate the network design solutions and by the help of ARENA Simulation Software, 

we simulate the result of some experiments in small to medium sizes out of CPLEX. 

In order to solve the model in large scales, a Genetic Algorithm is proposed that uses a heuristic 

method to generate a part of initial solutions and improves the solutions in its stochastic iterations 

and reaches near-optimal solutions in a reasonable amount of time. 

1.2. Research contributions 

While previous studies in the literature of the problem are mostly categorized as a bike sharing 

network design or closed queuing network independently, we integrate these two major problems 

together and provide a mixed integer optimization model which not only deal with a capacitated 

location-allocation problem, but also consider the service level of pick up and drop off in all 

stations. To the best of our knowledge, most articles using queuing models, have studied a single 

bike station or have concentrated on the service level of pick up in a closed queuing network 

problem, whereas we incorporate both service levels in a bike sharing network problem. The 

proposed mixed integer programming model cannot handle large size instances due to the 

computational complexity of the problem. We propose a genetic algorithm method to deal with 

instances in large scales and use a heuristic to generate good initial population in assisting the 

solution methodology to find near-optimal solutions as fast as possible. 

1.3. Outline of the thesis 

The thesis is organized into five chapters. Following the introductory chapter, we review the 

related literature in the second chapter. Chapter three begins with a description of the problem and 

is followed by the MILP model formulation. The service level function is described in detail and 

the solution method for large size problems is also presented in this chapter. In chapter four, first 



4 
 

we describe the setting of the numerical experiments followed by the sensitivity analysis of the 

main parameters on the results. We then validate the design solutions with simulation and study 

the performance of the proposed genetic algorithm by presenting the computational results in small 

to large scale instances. The results are also analyzed in this chapter. Finally, chapter five provides 

conclusions and future research directions. 
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Chapter 2 - Literature Review 

The literature in bicycle sharing systems include different types of decision framework, from 

strategic to operational levels. Strategic decisions provide a design of the bike sharing network and 

define the main policy such as location and capacity of stations. Operational decisions are taken 

daily or weekly basis and adjust the system to increase its efficiency. As the scope of research 

under this study is at the strategic level and also service level has been considered as a main factor 

in designing a bike sharing network, we categorize the previous studies and articles into two groups 

and review them in detail. 

2.1. Network Design 

In order to stablish a bicycle sharing system and to increase its efficiency, many variables and 

parameters must be taken into account at the strategic level. All decisions related to the number of 

bike stations and their locations, capacity of each station, total fleet size and number of bikes in 

each station, allocation of customers and routing allocations can be considered as strategic 

decisions. In this section we review articles that are focused on these aspects and propose strategic 

models to design a bike sharing network. 

Lin et al. (2013) designed a bike sharing network with the assumption of unlimited bicycle stocks 

per each station. The main decisions of their model are number of bike stations and their location 

in the network, building the bike lanes and paths selection between demand zones. They defined 

the problem as a set of origin and destination demand zones and potential bike stations to be opened 

and measured the rental availability rate of bicycles for pick up and the coverage of demand 

between zones. Their objective was to optimize the cost of opening stations (which includes the 

number and inventory of stations) and the traveling cost of customers. In addition, they determined 

a penalty for uncovered demands between each pair of origins and destinations, and in this way 

they wanted to reduce the number of problematic stations in the network (problematic stations are 

those facing shortage in available bikes or empty docks). Although they just considered the 

problem of pick up side. 

Due to the complexity of the problem the authors could not provide exact solutions for practical 

situations. To overcome this issue, they proposed a heuristic method for finding near-optimal 

solutions for larger sizes. The authors extended a greedy heuristic where all stations and bike lanes 

to be open initially and computes the total costs of the network. Then it identifies the costly stations 
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and lanes one by one in subsequent steps, and close one of the most expensive stations or lanes in 

each step to make as large reduction as possible in the total costs. The algorithm repeats these steps 

until a maximum number of iterations is reached or improving the objective function becomes 

impossible. At the end, by doing a sensitivity analysis they realized the important parameters 

affecting the inventory holding decision and routing selections. 

Liu et al. (2019) studied a bike network design by assuming the bicycle routes to be separated from 

the main roadways. They wanted to optimize the utilization of bike routes and study the behavior 

of cyclists’ paths selection. They assumed that all roadways are appropriate to construct a bicycle 

path, the demand for bike is fixed and the users select the roads based on the travel conveniences 

(such as the existing facilities for bikes or road slopes). They also considered a limited budget for 

constructing the bike network and used a model to make the bicycle path selection behavior of 

customers more realistic. 

The authors designed a mixed-integer nonlinear model and then solved it with a global 

optimization method and a novel math-heuristic. The idea of global optimization method was to 

linearize the main model using some techniques in order to guarantee an exact solution near the 

global optimum. Whereas the proposed math-heuristic method has been used to improve the 

efficiency of solutions for large scale instances. Actually, the procedure of this method was to 

embed a surrogate-model–based heuristic in the global optimization method and by updating the 

feasible regions, convert the original model and make some estimations. In this way, an 

approximation is provided in each iteration and then is evaluated in the first solution method. The 

computational results verified the performance of the proposed method as well. 

Frade and Ribeiro (2015) introduced a bike sharing network that combines strategic and 

operational decisions. The strategic decisions include the location of stations and its capacity, and 

number of bikes, while the operational decisions include how bicycles should be relocated in the 

system. Their objective was to maximize the coverage of demands and to this end they considered 

a limited budget and the quality of service. Their model also considers the revenue and yearly costs 

of the system and helps the investor to build the network. The city of Coimbra in Portugal was 

selected to apply the model and the results of case study illustrated the performance of the system. 

It should be noted that, they tried to make the demand zones as small as possible (in terms of area) 

and the proposed model just allocates stations per each zone (it does not locate the stations 

accurately). They reminded that in order to find the exact location of stations in each demand zone, 

the proposed method should be coordinated with a model that minimizes the distance between 

demand zones and stations. 
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Nair and Miller-Hooks (2016) proposed a bicycle sharing network in Washington, D.C. which was 

focused on locating stations across the city and configuring the optimal fleet size in the system. 

By having fixed demand, a set of potential stations, an existing transit network, resource 

constraints and users’ behavior as assumptions, their goal was to maximize the utilization of the 

system (the flow) and using a bi-level mixed-integer programming formulation with non-convex 

feasible area. In order to solve the model for large scales, they developed a Genetic Algorithm as 

solution method using the idea to decouple the lower-level flow variables from the upper-level 

design variables and solving the upper-level problem independently. The benefit of decoupling 

these two levels was that the problem could be broken down by origin-destination pairs or just 

destinations. The results verified that the configured network could integrate with existing transit 

system properly, and also travel times and system usage improved significantly. The analysis of 

results provided information of flow between stations as well. 

Yan et al. (2017) designed four bike rental networks using deterministic and stochastic demands. 

In order to minimize the total cost of system and based on a time-space network, a deterministic 

and a stochastic bicycle location and allocation model (DBLAM and SBLAM) were formulated. 

Their focus was on locating the potential stations, fleet size and route allocations, and they 

proposed a mixed-integer programming model. The other two models were the conversion of 

DBLAM and SBLAM to a maximal service level objective (in order to increase the number of 

bicycle rental requests). 

The two deterministic models were solved then within a reasonable time in CPLEX, however the 

stochastic models were solved using a threshold-accepting-based heuristic. The heuristic method 

used a two phase algorithm that first identifies the set of open stations, and then allocates bikes 

and routes to the open stations. The threshold value was defined as a factor multiplied by the fixed 

cost of opening stations, and was used to decrease the solution area and force the problem to search 

among the solutions having fitness values less than the threshold. The authors performed 

computational tests using the open data of New Taipei City bicycle program and the results verified 

the model and the performance of their solution method. 

Alizadeh et al. (2019) proposed a stochastic model for a capacitated location-allocation problem 

and assumed the demand to be Bernoulli distributed. Their objective function was to minimize the 

total cost of facilities, customers’ allocations, outsourcing and anticipated service, simultaneously, 

by finding the locations of facilities and allocation of users optimally. They assumed that the 

additional demands for facilities can be satisfied using the outsourcing recourses. They first solved 

small scale instances by normal distribution approximation. Then in order to solve medium to large 
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instances, and using the discrete colonial competitive algorithm (DCCA), they extended the DCCA 

and proposed a new solution approach called EDCCA. The main idea of EDCCA was based on a 

vectorization technique, which substitutes the scalar-oriented and loop-based code in DCCA by 

adding matrix and vector operations. At the end, the computational results showed the proficiency 

of proposed methods and verified that the EDCCA obtained better results in terms of time and 

accuracy, compared to DCCA method. 

2.2. Service Level 

One of the most important issues we are facing in a bike sharing network is service level. Service 

level in a bike sharing network can be defined in two ways: the probability of finding an available 

bike to pick up and the probability of finding an empty dock to return a bicycle. In this section we 

review papers that study formulation of these criteria and investigate the problematic bike stations. 

Problematic stations are those that users face a shortage either in egress side to find any slot to 

drop a bicycle off, or in access side to pick up a bike. In the literature researchers addressed the 

modeling of service level using the following methods: open queuing network, closed queuing 

network, mean-field method, and Markov decision process. 

George and Xia (2011) studied a closed queuing vehicle network for finding the optimal fleet size 

and also they considered the availability of vehicles in stations in their model. Vehicles in their 

research could be bicycle or electric cars. The presented closed queuing network model was 

extended from the viewpoint of the vehicles. For achieving some principles in the system as 

network balancing methods, they presented a framework that considering the fleet size, could 

derive an asymptotic behavior of vehicle availability in an arbitrary station. They measured the 

quality of service by the vehicle availability which is defined by the percentage of passengers who 

find a vehicle upon their arrivals. They assumed the customer leaves the network without service 

if he finds no vehicles available upon arrival and also they assumed unlimited parking space at 

each station for dropping the vehicles off. In their study vehicles are waiting for arrival of 

customers to be served and view each station as a single server. Indeed, they considered each 

rental station as M/M/1/T queue with state-dependent Exponential arrival rate and service rate. 

The class of network which they presented is BCMP network which has product-form solutions 

and according to the steady-state probability that they presented, they reach the queue length and 

actual throughput. They then presented a profit-based mathematical model to maximize the 

revenue per-unit-time and considered the maintenance cost and penalty cost of vehicles 
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unavailability in the objective function as well. There are two ways for obtaining the mean 

performance measures of network as convolution method and mean value analysis. George and 

Xia developed mean value analysis (MVA) because they wanted to direct the primary performance 

measures and also they used the Schweitzer–Bard MVA approximation method because the MVA 

was computationally expensive for the large number of fleet sizes. Kochel et al. (2003) used a 

closed queueing network model for fleet sizing and allocation problem as well. They presented a 

steady-state optimization formulation and their goal was to optimize the fleet size and vehicle 

repositioning jointly. In order to solve the joint problem, they developed a simulation optimization 

method and focused on an iterative method to reach appropriate solutions for the fleet-sizing 

problem. 

Li et al. (2016) presented a unified framework for analyzing the closed queuing bike sharing 

network with multi-class of customers and defined some virtual costumers and nodes. They tried 

to achieve the product-form solution to the steady state joint probability of queue lengths and give 

performance analysis of the bicycle sharing network. To this end, they assumed that by having a 

bike available in the origin station, the user picks it up and chooses a road with a specific 

probability according to the routing matrix, otherwise the customer leaves the system. On the other 

side if there is an empty slot in the destination station, the bike is returned instantly, otherwise the 

user select another route with a specific probability from the routing matrix and this pattern could 

be repeated successively to finally find a space to drop the bike off. The traveling time and the 

road selections could be different from others. 

Li et al. designed their bike-network with N different stations and the number of roads to be equal 

to N*(N-1) at most. The arrival of the customers is considered as a Poisson process with 

homogenous rate and the traveling time has exponential distribution function. Despite the physical 

attribute and functionality of routes and stations, they considered both of them as virtual nodes 

and by viewing the system from the bicycles perspective, they assumed the bicycles as virtual 

customers as well and divided them to two classes. The first class were those that riding in the 

system for the first time and the second group were those riding in the routes for at least two times 

successively. The service disciplines for stations and roads were FCFS (first come first service) 

and PS (processor sharing), respectively. In order to analyze the presented system, authors 

obtained a unified framework and by calculating the service rates, routing matrices and the relative 

rates of the closed queuing network, they provided a product-form solution to the steady state joint 

probability of N*(N-1) queue lengths. 
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Celebi and Isik (2018) designed an integrated bike sharing network to minimize the unsatisfied 

demands for pick up and drop off by locating bike stations and capacity allocation. The method 

that they used was combination of set-covering model to assign demands to stations with queue 

model for measuring the service level. They assumed a specific capacity for stations to address 

the uncertainty issue for demand satisfaction in picking and returning sides and applied their model 

in the area of Istanbul Technical University. To this end, they estimated the demand for bikes 

using an approximation method based on a survey prior to the design of the network in the 

university. They then claimed that according to their results, in practical the number of relocations 

would decrease. Their mathematical model minimizes the probability of having problematic 

stations by having capacity limitation and traffic intensity as some constraints. And by using queue 

theory and a dynamic calculation of bicycle pick-up and return rates, they estimated the unsatisfied 

demand in the university. The notable key point is that authors did not consider any cost factor in 

their analysis to avoid some misleading results caused by cost structures. Also it is remarkable 

that, as their model has a non-linear form and they used a dynamic programming-based algorithm 

to solve their model, they weren’t able to apply it for larger sizes like big cities. 

Li et al. (2017) designed a practical bicycle sharing network system to be able to calculate the 

probability of the full or empty stations (problematic stations). To this end, they assumed the users’ 

arrival to follow Markovian process which illustrates that their arrival is heterogeneous in terms 

of time and space in practice. Also considering the geographical structure of the bike network, 

users ride in an irreducible path graph which is directed by N different stations and N-1 straight 

roads. In order to record the dynamic position of bikes, they used the concept of virtual nodes for 

roads and stations. Also they imagined each bike as a virtual customer in a multi-class closed 

queueing network. So by these assumptions passengers’ arrival can be considered as the service 

time of station nodes and riding bikes on routes as the service time of road nodes. Then in order 

to make a routing matrix, they gathered data by observing the bike sharing system’s physical 

behavior, and to calculate the relative rate of arrivals they introduced a nonlinear solution using 

the obtained routing matrix. The steady state probabilities of joint queue lengths in virtual nodes 

were computed using the product-form solution as well. 

Fricker and Gast (2014) studied the effects of users’ random choices on the number of problematic 

stations and presented a stochastic model with homogeneous scenario for bike sharing network. 

In their model the influence of stations’ capacities is calculated, and in order to minimize the 

percentage of the problematic stations, the optimal fleet size is computed. In their assumption there 

are N stations in the network and each station has K bikes. So, the total fleet size is equal to N*K 
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and each bike can be served in a station or in a road between stations. They consider incentives 

and redistribution by trucks for the framework that they presented. Customers arrive to pick up a 

bike at each station with Poisson rate and the traveling time is distributed exponentially. For 

returning the bicycle, each customer chooses a destination randomly and rides towards there. In 

the case of finding an empty dock the bike is dropped off there, otherwise that station is called 

saturated and the user opts another station randomly and this procedure repeats until an unsaturated 

station be found. 

At first authors modeled the simplest version of the problem without considering any incentives 

or redistributions and the system showed a poor performance. So then, they set an incentive for 

passengers to return their bikes to the least loaded station among two stations and the performance 

was improved with an exponential factor. They mentioned that even if a fraction of customers 

follows the incentive, the performance metric changes significantly. Also, they designed a 

situation that trucks redistribute a specific rate of bikes for insuring a given service quality and 

this redistribution rate was dependent to the fleet size and stations’ capacities. For the verification 

of their model, they investigated different trip-time distributions and then simulated them and 

compared the results. They also added the geometry to their model and studied the influence of it 

on the proposed model. At the end the mean-field approximation methodology was used to gain 

the asymptotic behavior of the model when the system size grows up. 

2.3. Conclusion 

In this section we overview the main investigated articles in network design and service level, and 

then explain the features of our research and its differences with previous studies. 

Table 1. Summary of main articles in network design 

Authors Problem Objective Solution Method 

Lin et al. (2013) 
Bicycle sharing 

network design 
Minimizing the total cost Heuristic 

Liu et al. (2019) 
Bicycle sharing 

network design 

Maximizing the bike path 

utilization 

Global optimization 

and Math-heuristic 

Frade and Ribeiro 

(2015) 

Bicycle sharing 

network design 

Maximizing the demand 

coverage 
Heuristic 
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Nair and Miller-

Hooks (2016) 

Bicycle sharing 

network design 

Maximizing the utilization 

of system (the flow) 
Genetic algorithm 

Yan et al. (2017) 
Bicycle sharing 

network design 
Minimizing the total cost 

Heuristic and 

Threshold-accepting- 

based method 

Alizadeh et al. 

(2019) 

Capacitated 

location-allocation 

problem 

Minimizing the total cost 

Normal 

approximation and 

EDCCA 

 

Table 2. Summary of main articles in service level 

Authors Problem Objective Solution Method 

George and Xia 

(2011) 

Closed queuing 

vehicle network 

Maximizing the vehicles 

availability  
Mean value analysis 

Li et al. (2016) 
Closed queuing bike 

network 
Minimizing queue length 

Product-form 

solution 

Celebi and Isik 

(2018) 

Closed queuing bike 

network 

Minimizing the 

unsatisfied demands 

Programming-based 

algorithm 

Li et al. (2017) 
Closed queuing bike 

network 

Minimizing the number of 

problematic stations 

Product-form 

solution 

Fricker and Gast 

(2014) 

Closed queuing bike 

network 

Minimizing the 

percentage of problematic 

stations 

Mean-field 

approximation 

 

Previous studies in bicycle sharing system are mostly considered as a bike sharing network design 

or closed queuing network independently, while we have integrated these two major problems 

together and have provided a mixed integer optimization model which not only propose a 

capacitated location-allocation problem, but also consider the service level of pick up and drop 

off. To the best of our knowledge, most articles with Markovian process, have concentrated on the 

service level of pick up or have studied a single bike station satisfying both service levels, where 

we have provided a model integrating both service levels in a bike sharing network problem. 
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In the next chapter, at first the problem is defined and the mathematical model is presented, then 

the service level function is described and the solution methodology is explained in detail. 
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Chapter 3 - Problem Statement and Methodology 

In this study, we design a bike sharing network considering the service level of pick up and drop 

off bikes in all stations. Given a set of origin and destination points for travelers and the amount 

of demand in each origin point, the goal is to determine the locations and sizes of bike stations 

such that it minimizes the cost of opening stations and transportation costs. In this model it is 

crucial to know where to locate the bicycle stations, which routes should be selected considering 

the distances from demand zones to stations and the capacity level of each station to serve with a 

desired level of bike and dock availability. 

 

Figure 1. Bike Sharing Network 

Building stations’ cost is dependent on the number of stations to be opened and the level of 

capacity in each opened station, and the transportation cost consists of a walking trip from 

customer’s origin to a station to pick up a bike and another walking trip from return station to the 
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final destination. In order to fulfill these walking trips the pedestrian needs to spend some time to 

travel the distances and this time is converted to cost using the average time value of each person. 

 

Figure 2. Bike Sharing Trips 

There are two main decisions in this model. First the location decision which is affected by the 

cost of building station, demands and distances between demand zones and stations. The second 

one is the allocation decision which allocate the demand of each zone to those stations which are 

more cost efficient than others. Also, service level rates which are expressed by the availability of 

either bicycle or idle dock in each station, have important role in this model and affect the whole 

allocations in the network and the capacity and number of initial bikes in each station. 

3.1. Assumptions 

 The monthly demand follows exponential distribution and is allocated to stations without 

loss. 

 The stations can be opened at different capacity levels. 

 Each bicycle serves one person at a time, so during the travelling the bike is busy and 

would be available again, once it drops off in one station in the system. 

 Balking is considered for users to pick up or drop off the bikes in all stations in the network. 

 Fixed cost of maintaining a station depends on the location and the capacity level. 
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 The bike sharing network is closed, meaning that no bike leaves the system. 

 Drop off service level is assumed to be greater than the service level of pick up all the 

times. 

 The number of active days and hours are given as parameters to the model, so the network 

could be out of reach of users for some days or hours as the designer decides. 

3.2. Input Parameters and Decision Variables 

For the formulation of this problem, the following notation is used: 

Sets: 

𝑖. 𝑗 ∈  𝐼 Index for origin and destination 

𝑏. 𝑙 ∈ 𝐵 Index for potential bike stations 

𝑘 ∈  𝐾 Index for capacity level of a bike station 

Parameters: 

Λ𝑖𝑗  Monthly customer demand from origin point i to destination point j 

d𝑖𝑏  Distance from origin point i to pick up station b (meters) 

d𝑏𝑙  Distance from pick up station b to drop off station l (meters) 

d𝑙𝑗  Distance from drop off station l to destination point j (meters) 

𝑐 Unit walking cost ($/meter) 

f𝑏𝑘  Monthly fixed cost of operating a station at b with capacity level k ($/station) 

𝑡 Number of active days per month 

𝑛 Number of active hours per day 

𝑝 Lower bound for 𝜇𝑏/𝜆𝑏  in each station to satisfy service level rates 

𝑟 Upper bound for 𝜇𝑏/𝜆𝑏  in each station to satisfy service level rates 

𝑒 Monthly fixed cost of providing each bike in the network ($/bike) 

𝑔 Riding speed of a passenger by bike (meter/hour) 
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Decision Variables: 

X𝑏𝑘  Binary variable that equals 1 if station b is opened with capacity level k and 0 

otherwise 

Y𝑖𝑏𝑙𝑗  Binary variable that equals 1 if customers travel from point i to j using stations b and 

l, and 0 otherwise 

λ𝑏  Daily arrival rate of customers to pick up a bike from station b 

μ𝑏  Daily arrival rate of customers to drop off a bike at station b 

S𝑏  Number of initial bikes in station b 

The unit walking cost is calculated based on the average time value of users ($/hour) and the average 

walking speed of users (meter/hour). The monthly fixed cost of operating a station depends on its 

location and capacity level. The monthly fixed cost of providing each bike in the network includes the 

capital cost and the maintenance cost per month and the riding speed is also the average speed of each 

passenger in the network (meter/hour). The upper bound and lower bound for 𝜇𝑏/𝜆𝑏  in each station are 

described in detail in the section of service level function. 

3.3. Objective Function 

A bicycle sharing network can be designed to optimize the objectives of users and system 

designers. The first one is viewpoint of customers which benefits the travelers most and tries to 

satisfy their needs of resources and minimize their cost simultaneously. Walking short distances 

before pick up and after drop off a bike would be users preference and they will be satisfied when 

they find resources available in the system. The second one is system designer’s point of view, 

which imposes the highest revenue out of the system with lowest network building cost. This can be 

achieved by building the infrastructure with the lowest investment and the most possible successful 

bike renting. The following objective function combines both point of views by minimizing the 

building costs of investor and transportation costs of customers. 

𝑀𝑖𝑛 ∑ ∑ ∑ ∑ 𝑐 

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑏 𝜖 𝐵𝑖 𝜖 𝐼

d𝑖𝑏  Y𝑖𝑏𝑙𝑗  Λ𝑖𝑗 + ∑ ∑ ∑ ∑ 𝑐 

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑏 𝜖 𝐵𝑖 𝜖 𝐼

d𝑙𝑗  Y𝑖𝑏𝑙𝑗  Λ𝑖𝑗

+ ∑ ∑ f𝑏𝑘  X𝑏𝑘

𝑘 𝜖 𝐾

+

𝑏 𝜖 𝐵

∑ 𝑒 S𝑏  

𝑏 𝜖 𝐵

 
(1) 
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In the objective function (1), the first term represents walking cost from an origin point to a station to 

pick up a bike, the second term denotes walking cost from the return station to the destination, the 

third term is fixed cost of opening a station considering its location and with a specific level of 

docking capacity and the last term indicates cost of total bikes in the network. 

3.4. Network Constraints 

Based on the defined notation the network constraints are as follows: 

∑ ∑ Y𝑖𝑏𝑙𝑗

𝑙 𝜖 𝐵 ≠𝑏

= 1 .                                                                      ∀ 𝑖. 𝑗 ∈ 𝐼 ; 𝑖 ≠ 𝑗

𝑏 𝜖 𝐵

 (2) 

∑ Y𝑖𝑏𝑙𝑗  + ∑ Y𝑖𝑙𝑏𝑗

𝑙 𝜖 𝐵 ≠𝑏

≤  ∑  X𝑏𝑘  

𝑘 𝜖 𝐾

.                    ∀ 𝑖. 𝑗 ∈ 𝐼 ; 𝑖 ≠ 𝑗

𝑙 𝜖 𝐵 ≠𝑏

 . ∀ 𝑏 ∈ 𝐵 (3) 

∑  X𝑏𝑘

𝑘 𝜖 𝐾

 ≤ 1 .                                                                                                ∀ 𝑏 ∈ 𝐵 (4) 

λ𝑏 = (
1

𝑡
) ∑ ∑ ∑ Y𝑖𝑏𝑙𝑗  Λ𝑖𝑗

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑖 𝜖 𝐼

  .                                                          ∀ 𝑏 ∈ 𝐵 (5) 

μ𝑏 = (
1

𝑡
) ∑ ∑ ∑ Y𝑖𝑙𝑏𝑗  Λ𝑖𝑗

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑖 𝜖 𝐼

  .                                                          ∀ 𝑏 ∈ 𝐵 (6) 

∑ S𝑏

𝑏 𝜖 𝐵

≥ (
∑ ∑ ∑ ∑ d𝑏𝑙  Y𝑖𝑏𝑙𝑗  Λ𝑖𝑗𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑏 𝜖 𝐵𝑖 𝜖 𝐼

𝑡 𝑛 𝑔
 )                                           (7) 

S𝑏 ≥ (
∑  X𝑏𝑘𝑘 𝜖 𝐾 𝑘

2
 ) + ∑  X𝑏𝑘

𝑘 𝜖 𝐾

− 0.5.                                                 ∀ 𝑏 ∈ 𝐵 (8) 

S𝑏 ≤ (
∑  X𝑏𝑘𝑘 𝜖 𝐾 𝑘

2
 ) + ∑  X𝑏𝑘

𝑘 𝜖 𝐾

.                                                            ∀ 𝑏 ∈ 𝐵 (9) 

λ𝑏 ≤ S𝑏 + μ𝑏   .                                                                                                ∀ 𝑏 ∈ 𝐵 (10) 

μ𝑏 ≤ ∑  X𝑏𝑘

𝑘 𝜖 𝐾

𝑘 − S𝑏 + λ𝑏   .                                                                       ∀ 𝑏 ∈ 𝐵 (11) 
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 λ𝑏 ≥ ∑  X𝑏𝑘

𝑘 𝜖 𝐾

 .                                                                                                ∀ 𝑏 ∈ 𝐵 (12) 

λ𝑏 . μ𝑏 ≥ 0 . S𝑏 ≥ 0 & 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 . X𝑏𝑘 . Y𝑖𝑏𝑙𝑗  𝜖 {0.1}       ∀ 𝑖. 𝑗 ∈ 𝐼.  ∀ 𝑏. 𝑙 ∈ 𝐵.  ∀ 𝑘 ∈ 𝐾 (13) 

 

Constraint (2) denotes that any demand between each pair of origin and destination points can 

travel through just one route (one pair of pick up and drop off stations), Constraint (3) ensures that 

there could be an allocation for pick up or drop off a bike at a station, if and only if that station is 

open. Constraint (4) denotes only one capacity level can be selected for an open station. Constraint 

(5) represents the total arrival rate of customers per day to pick up a bike from each station. 

Constraint (6) is the drop off rate of bikes to each returning station per day. Constraint (7) 

calculates the minimum number of bikes in the network (fleet size) needed to satisfy demand. The 

numerator is total distances should be traveled by bikes in the network to satisfy demand and the 

denominator computes the maximum distance each bike can cover in the network. Constraints (8) and 

(9) are calculating the initial number of bikes in each open station in the system considering the 

capacity of them, and in order to maximize the utilization of each station. The same sources were 

considered in C. Fricker and N. Gast (2014), where they developed a stochastic model to decrease 

the number of problematic stations (in a problematic station users face shortage in available bike 

for pick up or empty dock for drop off) and increase the performance of system to reach a given 

quality of service. In their study, they proved that for different cases considered, the number of 

bikes per stations that corresponds to the best performance of the network is half of the number of 

docks plus a very few more. Constraints (10) and (11) are bounding the rates of pick up and drop 

off in each open station logically, considering the capacity and initial number of bikes in that 

station. Constraint (12) denotes that there must be at least one passenger to pick up a bike for each 

open station. Constraint (13) demonstrates the type of decision variables. 

3.5. Service Level Constraints 

A bike sharing system usually provides two types of service to users. First is the availability level 

to pick up a bike from a specific station and second is the availability level of docks for users 

arriving to drop off a bike in the station. The service level of both distinct flows of users’ arrival 

to the station is restricted by the capacity of the station (k) and number of bikes (h). 
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First type of users are the pickup users, who are pedestrians arrive to get a bicycle. Let’s assume 

the arrival rate of this type is Poisson distributed with mean λ. Also, some users are willing to wait 

for pickup, when there is no bike available at the station. The probability of accepting to wait for 

pick up is defined with r which is called balking for pick up. Second type of users are return ones 

who have travelled toward the station and look for an idle dock to drop off their bikes. The arrival 

rate of this group of people is Poisson distributed with mean µ. Some travelers are also willing to 

wait for return when there is no idle dock available at the station. The probability of accepting to 

wait for drop off the bike is defined with s and is called balking for drop off (F. Laurent 2012).  

Each station can be modeled with two random processes which are pedestrian arrivals and bicycle 

arrivals. All states of idle bike availability, empty dock availability, waiting of pedestrians or riders 

to pick up or drop off a bike are defined with state variable (h). For any given value of (h) the 

transition will occur to the neighboring values of (h + 1) or (h – 1) according to the following rules. 

a) From h to h + 1, because of the arrival of return users and the transition rate would be µ if 

h < k (state of dock availability) or µs if h ≥ k (state of dock shortage). 

b) From h to h -1, due to the arrival of users to pick up a bike and the transition rate is λ if h 

> 0 (state of bike availability) or λr if h ≤ 0 (state of bike shortage). 

c) Any transition between h and h + m, for m ∉  {−1.1} has null rate. 

Figure 3 shows the state transition diagram for a bi-sided waiting system; 

 

Figure 3. State Transition Diagram 
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Considering the arrival rates (λ, µ) and balking rates (r, s), the following parameters are represented 

to show the transition states and their probabilities; 

𝜌 =
𝜆𝑟

𝜇
           𝜎 =

𝜇𝑠

𝜆
             𝜙 =

𝜇

𝜆
 

Figure 4 depicts all possible states of a station and there would be three main subdomains; 

A) When there is no bike available (state of bike shortage) 

B) When both bike and dock are available (state of availability) 

C) When there is no dock available (state of dock shortage) 

 

Figure 4. Subdomains according to the number of bikes at the station 

Subdomain A; State of bike shortage  

Subdomain A illustrates a situation when there is no bike available in the station to pick up and 

the user will decide to leave the station or wait to get service (F. Laurent 2012). The total 

probability of subdomain A is: 

∑ 𝑝−𝑘

𝑘≥0

=
𝑝0

(1 − 𝜌)
 . where 𝜌 < 1 

Subdomain B; State of availability  

Subdomain B denotes a situation when there is at least one bicycle available for pickup and at least 

one empty dock to drop off a bike. The number of bicycles in the station may vary from 1 to k-1 

and this condition ensures that any type of customer will be satisfied. The total probability of 

subdomain B is: 

∑ 𝑝𝑘

𝑘−1

𝑘=1

=
𝑝0(𝜙 − 𝜙𝑘)

(1 − 𝜙)
 . where 𝜙 ≠ 1. 



22 
 

 

∑ 𝑝𝑘

𝑘−1

𝑘=1

= (𝑘 − 1) 𝑝0 . where 𝜙 = 1 

Subdomain C; State of dock shortage  

Subdomain C states a situation when there is no empty dock available in the station to drop off a 

bike and the rider will decide to leave the station or wait to get service. The total probability of 

subdomain C is: 

∑ 𝑝𝑘+𝑚

𝑚≥0

=
𝑝0𝜙𝑘

(1 − 𝜎)
 . where 𝜎 < 1 

Overall distributions: 

The total probability function which contains all subdomains is: 

∑ 𝑝𝑘 = (∑ 𝑝−𝑘

𝑘≥0

) + (∑ 𝑝𝑘

𝑘−1

𝑘=1

)

𝑘∈𝑧

+ (∑ 𝑝𝑘+𝑚

𝑚≥0

) =
𝑝0

(1 − 𝜌)
+

𝑝0(𝜙 − 𝜙𝑘)

(1 − 𝜙)
+

𝑝0𝜙𝑘

(1 − 𝜎)
  

This function includes all possible scenarios so the total probability will be equal to 1, and the 

pivot probability 𝑝0 (under the condition that 
(𝜙−𝜙𝑘)

(1−𝜙)
= 𝑘 − 1 where 𝜙 = 1) would be: 

𝑝0 =
1

[
1

(1 − 𝜌)
+

(𝜙 − 𝜙𝑘)
(1 − 𝜙)

+
𝜙𝑘

(1 − 𝜎)
]

 

3.5.1. Service level of Pick up and drop off 

Evaluating the service level of each user is dependent on the type of resources that user is looking 

for in the bike station. A user coming to a station, will look for a bike to pick up and one’s demand 

will be satisfied if there is at least one bicycle available. By contrary the demand of a rider would 

be an empty dock to drop off the bike. Therefore, the service levels of pick up and drop off users 

are different and will be extracted from the probability functions of aforementioned subdomains.  
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Service level of pick up (𝛼) consists of subdomains B and C, where there would be at least one 

bike available for a user to pick up and it is the combination of these subdomains probabilities: 

 
𝑝0(𝜙 − 𝜙𝑘)

(1 − 𝜙)
+ 

𝑝0𝜙𝑘

(1 − 𝜎)
 ≥ 𝛼 

Or as the summation of all subdomains’ probabilities is equal to 1, so the service level of pick up 

(𝛼) can be calculated using the probability of subdomain A as follows: 

𝑝0

(1 − 𝜌)
 ≤ 1 − 𝛼 

For a given set of arrival rates (λ, µ) and balking rates (r, s) for pick up and drop off, the graph of 

service level of pick up with respect to the capacity would be as shown in figure 5. 

 

Figure 5. Graph of service level of pick up with respect to capacity 

This function was proved to be concave as its second derivative was smaller than zero (for all 

possible given sets of parameters) and it is formulated as follows: 
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𝑓(𝑘) =
𝑝0(𝜙 − 𝜙𝑘)

(1 − 𝜙)
+  

𝑝0𝜙𝑘

(1 − 𝜎)
 → 

𝑓(𝑘) =
(1 − 𝜌) (𝜙 − 𝜙𝑘) (1 − 𝜎) + (1 − 𝜌)𝜙𝑘 (1 − 𝜙)

(1 − 𝜙) (1 − 𝜎) + (𝜙 − 𝜙𝑘) (1 − 𝜌) (1 − 𝜎) + 𝜙𝑘 (1 − 𝜌) (1 − 𝜙)
 

𝑓′(𝑘) =
(−1 + 𝜌) (−1 + 𝜎)(𝜎 − 𝜙)(−1 + 𝜙) 𝜙𝑘 𝐿𝑜𝑔[𝜙]

 (−1 + 𝜎 − 𝜎𝜙𝑘  + 𝜙1+𝑘 − 𝜌 𝜙 (−1 + 𝜙𝑘) + 𝜌 𝜎 (−𝜙 + 𝜙𝑘))2
 

𝑓"(𝑘)

=
(−1 + 𝜌) (−1 + 𝜎)(𝜎 − 𝜙)(−1 + 𝜙) 𝜙𝑘 (1 + 𝜙1+𝑘 − 𝜌 𝜙 (1 + 𝜙𝑘) + 𝜎 (−1 − 𝜙𝑘 + 𝜌 (𝜙 + 𝜙𝑘)))𝐿𝑜𝑔[𝜙]2

 (−1 + 𝜎 − 𝜎𝜙𝑘  + 𝜙1+𝑘 − 𝜌 𝜙 (−1 + 𝜙𝑘) + 𝜌 𝜎 (−𝜙 + 𝜙𝑘))3
 

On the other side, the service level of drop off (𝛽) comprises subdomains A and B, where there 

would be at least one empty dock available for a user to drop a bike off and it is the combination 

of these subdomains’ probabilities: 

 
𝑝0(𝜙 − 𝜙𝑘)

(1 − 𝜙)
+  

𝑝0

(1 − 𝜌)
 ≥ 𝛽 

Or as the summation of all subdomains’ probabilities is equal to 1, so the service level of drop off 

(𝛽) can be calculated using the probability of subdomain C as follows: 

𝑝0𝜙𝑘

(1 − 𝜎)
 ≤ 1 − 𝛽 

This function was also proved to be concave as its second derivative was always smaller than zero 

and for a given set of parameters, the graph of service level of drop off with respect to the capacity 

is as follows: 
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Figure 6. Graph of service level of drop off with respect to capacity  

and it is formulated as follows: 

𝑓(𝑘) =
𝑝0(𝜙 − 𝜙𝑘)

(1 − 𝜙)
+  

𝑝0

(1 − 𝜌)
 → 

𝑓(𝑘) =
(1 − 𝜎) (𝜙 − 𝜙𝑘) (1 − 𝜌) + (1 − 𝜎) (1 − 𝜙)

(1 − 𝜎) (1 − 𝜙) + (1 − 𝜎)(𝜙 − 𝜙𝑘) (1 − 𝜌) + 𝜙𝑘 (1 − 𝜌) (1 − 𝜙)
 

𝑓′(𝑘) = −
(−1 + 𝜌) (−1 + 𝜎)(−1 + 𝜙) 𝜙𝑘(−1 + 𝜌𝜙) 𝐿𝑜𝑔[𝜙]

 (−1 + 𝜎 − 𝜎𝜙𝑘  + 𝜙1+𝑘 − 𝜌 𝜙 (−1 + 𝜙𝑘) + 𝜌 𝜎 (−𝜙 + 𝜙𝑘))2
 

𝑓"(𝑘)

=
(−1 + 𝜌) (−1 + 𝜎)(−1 + 𝜙) 𝜙𝑘(−1 + 𝜌𝜙) (1 + 𝜙1+𝑘 − 𝜌 𝜙 (1 + 𝜙𝑘) + 𝜎 (−1 − 𝜙𝑘 + 𝜌 (𝜙 + 𝜙𝑘)))𝐿𝑜𝑔[𝜙]2

 (−1 + 𝜎 − 𝜎𝜙𝑘  + 𝜙1+𝑘 − 𝜌 𝜙 (−1 + 𝜙𝑘) + 𝜌 𝜎 (−𝜙 + 𝜙𝑘))3
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3.5.2. Linearization of Service Level Expression 

Since the nonlinear service levels formula can’t be used in the optimization model, for any given 

set of parameters (𝛼. 𝛽. 𝑟. 𝑠), we approximate them based on possible ranges of phi (𝜙 =
𝜇

𝜆
) and 

capacity (k). To this end, we solve two separate optimization problems using the excel nonlinear 

programming solver to find the minimum and maximum acceptable values for phi. In addition, the 

exact value for the minimum possible capacity (k to satisfy a specified service level for pick up 

and drop off can be extracted approximately from the aforementioned graph of service levels as 

well, it should be noted that the graphs are just some examples). 

For the formulation of these two problems, the following notation is used: 

Parameters: 

𝛼 Service level of pick up (%) 

𝛽 Service level of drop off (%) 

𝑟 Probability of acceptance to wait for pick up (balking for pick up) (%) 

𝑠 Probability of acceptance to wait for drop off (balking for drop off) (%) 

𝑘 Minimum possible capacity 

 

Decision Variables: 

𝜆 Arrival rate of users to pick up a bike (daily) 

𝜇 Arrival rate of users to drop off a bike (daily) 

 

Based on the defined notation the optimization models can be formulated as follows: (as the 

constraints of both models are the same, we have merged them together) 

𝑀𝑖𝑛 
𝜇

𝜆
 (1) 

𝑀𝑎𝑥 
𝜇

𝜆
 (2) 
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Subject to:  

𝜆 ≥ 0 (3) 

𝜇 ≥ 0 (4) 

(
(

𝜇

𝜆
)−(

𝜇

𝜆
)𝑘

1−(
𝜇

𝜆
)

+
(

𝜇

𝜆
)𝑘

1−s(
𝜇

𝜆
)
)/(

1

1−
r

(
𝜇
𝜆

)

+
(

𝜇

𝜆
)−(

𝜇

𝜆
)𝑘

1−(
𝜇

𝜆
)

+
(

𝜇

𝜆
)𝑘

1−s(
𝜇

𝜆
)
) ≥ α (5) 

(
(

𝜇

𝜆
)−(

𝜇

𝜆
)𝑘

1−(
𝜇

𝜆
)

+
1

1−
r

(
𝜇
𝜆

)

)/(
1

1−
r

(
𝜇
𝜆

)

+
(

𝜇

𝜆
)−(

𝜇

𝜆
)𝑘

1−(
𝜇

𝜆
)

+
(

𝜇

𝜆
)𝑘

1−s(
𝜇

𝜆
)
) ≥ β (6) 

 

In the objective function, in the first model (1) it represents the minimization of phi and in the 

second model (2) it represents the maximization of phi. Constraints (3) and (4) denote that the rate 

of pick up and drop off in each station cannot take a negative value. Constraint (5) denotes the 

service level of pick up must be satisfied in an open station. The left side of the formula shows the 

probability of having bike available in an open station and the right side is the given service level 

of pick up to the model that must be satisfied.  Constraint (6) indicates the drop off service level 

must be satisfied in an open station. The left side of the formula illustrates the probability of having 

empty dock available in an open station and the right side is the given service level of drop off to 

the model that must be satisfied. 

So for any given set of parameters (𝛼. 𝛽. 𝑟. 𝑠), the range of phi and the minimum capacity per each 

open station (minimum k) are calculated and then are used in the main linear programming model. 

The minimum and maximum possible values for phi are named 𝑟 and 𝑝 respectively, and are given 

as parameters to the main model. Thus the minimum number of docks per each open station along 

with the following constraints are added to the main bike sharing model to satisfy the service level 

of pick up and drop off per each open station in the network. 

μ𝑏 ≥ 𝑝 λ𝑏   .                                                                                                       ∀ 𝑏 ∈ 𝐵 (14) 
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μ𝑏 ≤ 𝑟 λ𝑏   .                                                                                                       ∀ 𝑏 ∈ 𝐵 (15) 

Constraints (14) and (15) together are bounding the range of 
𝜇

𝜆⁄  for each open station in the bike 

sharing network. 

3.6. The MILP Model 

 

The proposed MILP model is represented in its finalized form as follows 

Objective Function: 
 

𝑀𝑖𝑛 ∑ ∑ ∑ ∑ 𝑐 

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑏 𝜖 𝐵𝑖 𝜖 𝐼

d𝑖𝑏  Y𝑖𝑏𝑙𝑗  Λ𝑖𝑗 + ∑ ∑ ∑ ∑ 𝑐 

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑏 𝜖 𝐵𝑖 𝜖 𝐼

d𝑙𝑗  Y𝑖𝑏𝑙𝑗  Λ𝑖𝑗

+ ∑ ∑ f𝑏𝑘  X𝑏𝑘

𝑘 𝜖 𝐾

+

𝑏 𝜖 𝐵

∑ 𝑒 S𝑏  

𝑏 𝜖 𝐵

 
(1) 

Subject to:  

∑ ∑ Y𝑖𝑏𝑙𝑗

𝑙 𝜖 𝐵 ≠𝑏

= 1 .                                                                      ∀ 𝑖. 𝑗 ∈ 𝐼 ; 𝑖 ≠ 𝑗

𝑏 𝜖 𝐵

 (2) 

∑ Y𝑖𝑏𝑙𝑗  + ∑ Y𝑖𝑙𝑏𝑗

𝑙 𝜖 𝐵 ≠𝑏

≤  ∑  X𝑏𝑘  

𝑘 𝜖 𝐾

.                    ∀ 𝑖. 𝑗 ∈ 𝐼 ; 𝑖 ≠ 𝑗

𝑙 𝜖 𝐵 ≠𝑏

 . ∀ 𝑏 ∈ 𝐵 (3) 

∑  X𝑏𝑘

𝑘 𝜖 𝐾

 ≤ 1 .                                                                                                ∀ 𝑏 ∈ 𝐵 (4) 

λ𝑏 = (
1

𝑡
) ∑ ∑ ∑ Y𝑖𝑏𝑙𝑗  Λ𝑖𝑗

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑖 𝜖 𝐼

  .                                                          ∀ 𝑏 ∈ 𝐵 (5) 

μ𝑏 = (
1

𝑡
) ∑ ∑ ∑ Y𝑖𝑙𝑏𝑗  Λ𝑖𝑗

𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑖 𝜖 𝐼

  .                                                          ∀ 𝑏 ∈ 𝐵 (6) 

∑ S𝑏

𝑏 𝜖 𝐵

≥ (
∑ ∑ ∑ ∑ d𝑏𝑙  Y𝑖𝑏𝑙𝑗  Λ𝑖𝑗𝑗 𝜖 𝐼≠𝑖𝑙 𝜖 𝐵≠𝑏𝑏 𝜖 𝐵𝑖 𝜖 𝐼

𝑡 𝑛 𝑔
 )                                           (7) 
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S𝑏 ≥ (
∑  X𝑏𝑘𝑘 𝜖 𝐾 𝑘

2
 ) + ∑  X𝑏𝑘

𝑘 𝜖 𝐾

− 0.5.                                                 ∀ 𝑏 ∈ 𝐵 (8) 

S𝑏 ≤ (
∑  X𝑏𝑘𝑘 𝜖 𝐾 𝑘

2
 ) + ∑  X𝑏𝑘

𝑘 𝜖 𝐾

.                                                            ∀ 𝑏 ∈ 𝐵 (9) 

λ𝑏 ≤ S𝑏 + μ𝑏   .                                                                                                ∀ 𝑏 ∈ 𝐵 (10) 

μ𝑏 ≤ ∑  X𝑏𝑘

𝑘 𝜖 𝐾

𝑘 − S𝑏 + λ𝑏   .                                                                       ∀ 𝑏 ∈ 𝐵 (11) 

 λ𝑏 ≥ ∑  X𝑏𝑘

𝑘 𝜖 𝐾

 .                                                                                                ∀ 𝑏 ∈ 𝐵 (12) 

μ𝑏 ≥ 𝑝 λ𝑏   .                                                                                                       ∀ 𝑏 ∈ 𝐵 (13) 

μ𝑏 ≤ 𝑟 λ𝑏   .                                                                                                       ∀ 𝑏 ∈ 𝐵 (14) 

λ𝑏 . μ𝑏 ≥ 0 . S𝑏 ≥ 0 & 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 . X𝑏𝑘 . Y𝑖𝑏𝑙𝑗  𝜖 {0.1}       ∀ 𝑖. 𝑗 ∈ 𝐼.  ∀ 𝑏. 𝑙 ∈ 𝐵.  ∀ 𝑘 ∈ 𝐾 (15) 

 

3.7. Proposed Genetic Algorithm (Solution Method) 

According to the mentioned contents in the second chapter and the researches done by the 

researchers, the degree of difficulty of such facility location problems, especially when the number 

of demand zones and potential stations increases, is NP hard and the accuracy of this theory is 

verified by (R. J. Fowler et al. 1981, N. Megiddo et al. 1982 and T. Gonzalez et al. 1985) who 

have proved that the different scenarios of facility location problem are NP hard. Thus, we resort 

to meta-heuristic methods in order to achieve an acceptable solution in a reasonable time for larger 

size instances of the problem. 

According to our studies on meta-heuristic algorithms and among several methods that were tried 

to be applied on the model under this study, the genetic algorithm was selected and used to solve 

our model in this research. Its acceptable results and compliance with our model ensured us that 

this method is appropriate to be applied for large scale instances as well. Defining the chromosome 



30 
 

in a way to apply the steps of genetic algorithm practically and search the solution area properly, 

was the most difficult part of our job. So in order to encode the problem, matrix string was selected 

and designed in such a way that using the crossover and mutation operators, it be possible to search 

the solution area appropriately (M. Zandieh and N. Karimi 2010). 

The steps of this algorithm are as follows: 

3.7.1. Step 1: Coding and defining the chromosome 

Firstly, in order to make a chromosome, two matrices presenting the pick-up and drop off stations 

are defined. In both matrices the rows are representing the origin zones and columns the destination 

ones. Then in the pick-up matrix each cell shows the selected station to pick up the bike and ride 

among each pair of origin and destination zones. Similarly, in the drop off matrix each cell depicts 

the opted station to drop off the bike after riding among each pair of origin and destination zones. 

An example of coding and defining a chromosome for a problem with 4 demand zones and 3 

possible stations are as follows: 

Pick up 1 2 3 4 

1 0 3 3 2 

2 1 0 2 1 

3 2 2 0 2 

4 1 1 3 0 

     

Drop off 1 2 3 4 

1 0 1 2 1 

2 3 0 1 3 

3 3 1 0 1 

4 3 2 2 0 
 

Figure 7. Coding a problem with 4 demand zones and 3 possible stations 

In this example in order to satisfy the demand among 4 zones and using 3 possible stations there 

are 12 routes as follows: 
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Origin zone Pick up station Drop off station Destination zone 

1 3 1 2 

1 3 2 3 

1 2 1 4 

2 1 3 1 

2 2 1 3 

2 1 3 4 

3 2 3 1 

3 2 1 2 

3 2 1 4 

4 1 3 1 

4 1 2 2 

4 3 2 3 

 

3.7.2. Step 2: Creating the initial population 

In order to create the initial population, different scenarios are used in this algorithm. A part of 

initial solutions is made randomly using all possible stations to be allocated to demand zones. 

Another part of initial solutions is made using the Roulette Wheel strategy which gives a direction 

to make the initial population. To this end, by knowing the distances of all possible stations to each 

demand zone in the network, we give more chance to some closest stations to be selected to satisfy 

the demand. In order to calculate the probability of stations’ selection for each demand zone, we 

define a table where each cell shows the distance of a demand zone to a station. We first take the 

inverse of the value of cells (distances) followed by computing the probability of selecting each 

station which is equal to the ratio of its inversed value over the summation of inversed values of 

all stations to a specific demand zone. To clarify the mentioned calculation, an example with a 

table of distances, inversed values and probabilities are presented in the following. 

Distances (D) 

(meters) 
Stations (B,L)  

Zones (I,J) 1 2 3  

1 905.873 2609.643 2787.243  
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2 57.692 1769.180 1960.178  

3 797.601 917.009 1124.910  

4 1656.541 190.604 453.186  

5 2535.227 886.679 856.133  
     

Inversed values 

(1/D) 
Stations (B,L) 

Sum 

Zones (I,J) 1 2 3 

1 0.00110 0.00038 0.00036 0.00185 

2 0.01733 0.00057 0.00051 0.01841 

3 0.00125 0.00109 0.00089 0.00323 

4 0.00060 0.00525 0.00221 0.00806 

5 0.00039 0.00113 0.00117 0.00269 
     

Probabilities 

(1/D/Sum) 
Stations (B,L) 

Sum 

Zones (I,J) 1 2 3 

1 0.598039 0.207594 0.194367 1 

2 0.941583 0.030704 0.027713 1 

3 0.387774 0.33728 0.274946 1 

4 0.074927 0.651191 0.273882 1 

5 0.146617 0.419213 0.43417 1 

Figure 8. An example of roulette wheel selection method 

The selection probability distribution can be generated using the following equation: 

𝑃(𝑏) =
𝑅(𝑏)

∑ 𝑅𝑖
𝑛
𝑖=1

 

In this equation the 𝑃(𝑏) is the probability of selecting station b for a specific zone to satisfy its 

demand, 𝑅(𝑏)  is the inversed distance of station b to that demand zone and  ∑ 𝑅𝑖
𝑛
𝑖=1  is the 

summation of inversed distances of all possible stations to the demand zone. 

In fact, in this method, the stations are placed on the roulette wheel and each station occupies a 

part of the wheel according to its probability. Then the wheel is rotated and after stopping, the 

station indicated by the indicator is selected. The selection process turns the roulette wheel enough 

times, and it is logical that each time a station with more space on the wheel has more chance of 

being selected (S. N. Sivanandam and S. N. Deepa 2008). 
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Figure 9. Roulette Wheel Selection Method 

In order to help the algorithm to find the best solutions as fast as possible, an engineered solution 

can be added to other solutions initially, which specify the closest station to each demand zone at 

first and then provide us with a solution using the closest station to each zone for pick up and drop 

off. This solution can be infeasible but going through the crossover and mutation operators in the 

next steps and by the help of other solutions produces better offspring in next generations. It can 

be noted that, the number of initial solutions is given to the algorithm as a parameter, so it is 

obvious that whatever this value (the number of initial solutions) decreases, the effect of 

engineered solution increases. 

3.7.3. Step 3: Crossover 

The crossover operator combines the characteristics of parents to make offspring and to create 

better chromosomes. There are a variety of ways to do this step and in this study, according to the 

specific form of coding and the formation of the chromosomes, three methods are used. Which 

among all parents, one third of them are combined using the first method, one third using the 

second one and the rest of parents follow the third way to be mixed. 

The first method of crossover is done in such a way that after selecting one third of chromosomes 

as parents, one demand zone of each chromosome is randomly selected, and a single point 
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crossover operation is performed on this zone. This is done by selecting a point on the bits of this 

zone and then the genes before this point on the first chromosome and the genes after this point on 

the second chromosome are used to form the first child. To form the second child, this operation 

is done inversely (B. Zarei, M. R. Meybodi and M. Abbaszadeh 2007). 

An example of a single-point crossover and the formation of offspring chromosomes for a problem 

with 4 demand zones and 3 possible stations is as follows. 

 

Figure 10. Sample of a single-point crossover 

In figure 10, the first demand zone was randomly selected and according to the identified 

breakpoint, the combination of these two chromosomes was performed. 

The second method of crossover is done in such a way that after selecting the second part of 

chromosomes as parents (one third of total), one demand zone of each chromosome is randomly 

selected, and a two-point crossover operation is implemented on this zone. This is done by 
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selecting two points on the bits of this demand zone and then the genes between these points are 

exchanged with each other. (B. Zarei, M. R. Meybodi and M. Abbaszadeh 2007). 

An example of a two-point crossover and the formation of offspring chromosomes for a problem 

with 4 demand zones and 3 possible stations is as follows. 

 

Figure 11. Sample of a two-point crossover 

In figure 11, the third demand zone was randomly selected and according to the identified 

breakpoints, the combination of these two chromosomes was performed. 

The third method of crossover is done in such a way that after selecting the last part of the 

chromosomes as parents, a demand zone is randomly selected. Then some random numbers are 

generated between 0 and 1 (corresponding to the bits of this demand zone), and the crossover 

operation is performed on the selected zone using the random values. In this way that, in order to 

form the first child, if the random value is less than a specific amount like 0.6, the corresponding 



36 
 

gene from the first chromosome will be transferred to the child chromosome, otherwise the gene 

from the second chromosome is selected to form the child chromosome. In order to make the 

second child, an inverse operation will be done (number 0.6 has been selected experimentally) (J. 

C. Bean 1994). 

An example of a random number crossover and the formation of offspring chromosomes for a 

problem with 4 demand zones and 3 possible stations is as follows: 

 

Figure 12. Sample of a random number crossover 

In figure 12, the fourth demand zone was randomly selected and according to the generated random 

numbers, the combination of these two chromosomes was performed. 
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3.7.4. Step 4: Mutation 

3.7.4.1.  Light Mutation 

At this stage, a certain number of new generation chromosomes are selected not on the basis of 

their fitness value, but randomly and with the same chance of mutation which is given as a 

parameter. Then, on each selected chromosome, one bit (gene) of a demand zone is randomly 

selected and its value is replaced by another possible value (among all possible stations). The light 

mutation operation is more random than the crossover operation and causes a change in the new 

generation at a lower rate. However, it can improve the optimization process by providing essential 

features that are not available in the current generation (S. Olariu and A. Y. Zomaya 2005). 

An example of a light mutation and the formation of offspring chromosomes for a problem with 4 

demand zones and 3 possible stations is as follows. 

 

Figure 13. Sample of a light mutation 

In figure 13, the third genes of pick up and drop off from the second demand zone were randomly 

selected and replaced by another possible values (among all possible stations). 
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3.7.4.2.  Heavy Mutation 

In this algorithm an offspring can only be selected to transfer to the next generation if it is at least 

better than one of its parents. So after light mutation, the fitness value of the solutions is calculated 

according to the objective function of the mathematical model, and a process called heavy mutation 

takes place in the case that during one reproduction no child is nominated to go to the next 

generation (in other words, no child is found to be better than at least one of its parents and the 

population remains unchanged). Under such condition, which happens rarely and indicate that the 

chromosomes converge to a specific part of the solution area, all chromosomes except the best 

chromosome are replaced with completely random solutions (among possible solutions) by 

performing a heavy mutation, so that the algorithm retaining the best chromosome found so far, 

move randomly to another part of the solution area and continue searching to find better solutions. 

3.7.5. Step 5: Evaluation and Selection 

At this stage, after the completion of a new generation, the fitness value of new solutions is 

calculated, and the selection process takes place among the chromosomes of the previous 

generation and the new generation. In this method, any solution with higher fitness value has more 

chance of being selected and the best solutions are selected to be transferred to the next generation 

proportional to the population size. For example, if we start with 100 initial solutions and set the 

rate of crossover 1.5, for the next generation the algorithm reproduces 150 (100*1.5) offspring and 

calculates the fitness value of whole solutions after mutation operation. Then during the selection 

process the algorithm chooses the best 100 solutions (population size) out of the 250 solutions 

(100 parents + 150 offspring) to make the next generation. 

It should be noted that, during the evaluation process and in order to avoid using a same station 

for both pick up and drop off bike among two specific origin and destination zones, and totally in 

order to find good feasible solutions, a penalty is added to the objective function of infeasible 

solutions. In this way, as time goes on, using the crossover and mutation operations and during the 

evolution process to make new generations, infeasible solutions get replaced by feasible ones with 

appropriate fitness values. 

3.7.6. Step 6: Termination Condition 

In order to stop the algorithm, a criterion is considered as the termination condition. This criterion 

can be a certain number of iterations (generations) in general or a certain number of constant 
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consecutive iterations (consecutive iterations without improvement). In the proposed algorithm in 

this research, the criterion for termination is determined by a certain number of consecutive 

iterations without improving the objective function. 

An overview of the solution methodology is as follows.  
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Figure 14. Genetic Algorithm Flow Diagram 
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In this chapter, at first the problem and its features were defined. Then by describing the 

assumptions, parameters and decision variables of the problem, a mathematical model was 

presented, and the objective function and constraints of the model were explained. Then, the 

service level function was described in detail. Finally, after implying the difficulty degree of the 

problem, the genetic algorithm was examined and all its steps were explained. 
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Chapter 4 - Numerical Experiments 

In this chapter, we first describe the way our data have been gathered and analyze the sensitivity 

of the main parameters in detail. We then validate the design solutions with simulation and study 

the performance of the proposed genetic algorithm by presenting the computational results in small 

to large scale instances. The mathematical model has been coded using OPL and solved by IBM 

ILOG CPLEX Optimization Studio Version 12.8.0.0. Also, the genetic algorithm has been 

encoded using C++ in Microsoft Visual Studio Professional 2013 Version 12.0.21005.1 REL and 

ran on a computer with a Core i5 – 6500 CPU 3.2 GHz Processor and 16 GB of RAM. 

4.1. Input Data 

Since the city of Montreal was considered as the case study, the input data had to be consistent 

with the population, area and geography of the city. The raw information of Bixi company was 

accessed through their open-source data in their website (https://www.bixi.com/en/open-data). 

Using the statistics from the previous years, the following information was extracted: The number 

of daily and monthly trips between all stations, Stations of origin and destination of each trip, 

Time spent for each trip to be completed and also the number, address and location of stations 

(latitude and longitude of each station). 

To structure the data, the city of Montreal was divided into different zones and the amount of 

monthly travel demands between the identified zones were extracted from the bixi open data 

(according to the number and location of stations in different zones). All required distances from 

origin zone (i) to pick up station (b), from pick up station (b) to drop off station (l), and from drop 

off station (l) to destination zone (j) were extracted and calculated in meters. The average time 

value of users was assumed to be $25 per hour and the average walking speed of users 4700 meters 

per hour, so the unit walking cost was calculated as 25/4700=$0.00532 per meter. The monthly 

fixed cost of opening a station was considered based on its capacity level starting $125 per month 

for each dock, where the maximum capacity level was set as 30 docks. The monthly fixed cost of 

providing bikes in the network, including the capital cost and maintenance cost was measured 

$128 per month for each bike. The average riding speed of each passenger by bike in the network 

was considered to be 16000 meters per hour. The minimum and maximum possible values for 

𝜇𝑏/𝜆𝑏 in each station were calculated based on the different set of given parameters (α, β, r, s) for 

service levels (as described in the service level section in chapter 3). For example for a set of 
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α=0.7, β=0.8, r=0.1, s=0.2, the minimum possible value for 𝜇𝑏/𝜆𝑏 in each station were calculated 

as 0.76938 and the maximum as 1.0551. Also the number of operational days per month was set 

as 30 days and the number of active hours per day as 12 hours. 

4.2. Sensitivity analysis of the main parameters 

In this section, we study the effects of the main parameters (α, β, r, s) on the different components of 

the proposed bike sharing network. We observe the changes in the value of objective function and 

decision variables of the model, by changing the value of main parameters. To this end, four different 

sets of α, β, r, s are considered and in each instance the couple (α, β) (or (r, s)) has been kept constant 

while changing the values of (r, s) (or (α, β)). The different sets of parameters are as follows: 

Table 3. Different sets of parameters 

Four different sets of parameters First term: Couple (α, β)  Second term: Couple (r, s) 

(LO,LO) α=0.7, β=0.8 r=0.1, s=0.2 

(LO,HI) α=0.7, β=0.8 r=0.2, s=0.35 

(HI,LO) α=0.8, β=0.9 r=0.1, s=0.2 

(HI,HI) α=0.8, β=0.9 r=0.2, s=0.35 

 

Then the model is solved in different sizes from small to large scales and the results are analyzed in 

detail. In what follows, we examine the effects of these parameters on each component of the designed 

network. 
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Figure 15a and 15b. Change in the number of open stations and total capacity 
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The very first thing to be studied in a designed bike sharing network is the number of open stations and 

their total capacities by having different sets of parameters and for different sizes. Obviously as the size 

of problem increases, the number of opened stations and total docks grows regardless of the parameter 

settings. what stands out in this figure is that, for the same sizes of the problem, having higher service 

level rates and balking for pick up and drop off results in fewer open stations and higher capacities and 

the effect of these parameters on capacities are more than their effect on the number of open stations. 

Also the trends (especially in figure 15b) show that the effect of service level rates (α, β) is more than 

the effect of balking rates (r, s) on both the number of open stations and total docks. 

 

Figure 16. Change in the number of total bikes 

The graph of total bikes is almost similar to the graph of total capacity as the fleet size is proportional 

to the number of docks. The fleet size in all instances has increased considerably as the size of problem 

has enlarged, and this increase rate is faster when it comes to the trend with highest service level and 

balking rates (the blue line). Also for the same sizes instances, as the service level and balking rates 

increases, the fleet size increases as well. The other important takeaway from this graph is that the effect 

of service level rates (α, β) is more than the effect of balking rates (r, s) on the number of total bikes. It 

is because the amount of increase in fleet size of gray line (with higher service level rates) compared to 
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the red line, is more than the increase in fleet size of orange line (with higher balking rates) compared 

to the red line for all examined sizes. 

With regard to the fixed cost of designing the bike sharing network, as it consists of the cost of open 

stations, capacities and fleet size, the changes of the fixed cost are proportional to the changes of total 

capacities and fleet size. Thus, the main takeaways from the graph of change in total capacity and total 

bikes are applied for fixed cost as well. 

 

Figure 17. Change in transportation cost 

Transportation cost is dependent on the way customers have been allocated to the open stations in the 

network, and the routes which have been used to satisfy the demand. It is notable that the changes of 

transportation cost for all different sets of given parameters have almost a same shape with different 

values. It is because the model has tried to minimize the walking distances all the time and the closest 

stations to each demand zone have been used to satisfy the demand of that zone for all examined sizes 

of the problem, and this fact is not a matter of service level or balking rates. 

It is also notable that although all trends have had an increasing orientation (as the size of problem has 

increased), they have fluctuated considerably when the number of demand zones are the same and the 
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number of potential stations have increased. Actually by having more potential stations for the same 

number of demand zones, the transportation costs have decreased as the model has opened more stations 

enabling shorter routing allocations. Also for the same sizes of the problem, having higher service level 

and balking rates have resulted in higher transportation costs which is due to an increase in the number 

of satisfied customers and the effect of service level rates has been more than the effect of balking rates 

on transportation costs as well. It is because the amount of increase in transportation cost of gray line 

(with higher service level rates) compared to the red line, is more than the increase in transportation 

cost of orange line (with higher balking rates) compared to the red line for all instances. 

 

Figure 18. Change in total cost 

As total cost is the value of objective function of the model, the results of five larger instances have 

been added to figure 18. It should be noted that for these larger instances the CPLEX was able to provide 

us just with the value of objective function and not the rest of results in detail (all decision variables), 

so the results of these five largest instances have been obtained by genetic algorithm and just added to 

this graph. It is notable that for the large size instances, the variance of changes in total costs increases 

significantly. Also as the amount of transportation costs are more than the fixed costs for all examined 
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instances, the graph of total cost is more similar to the graph of transportation cost and the main 

takeaways of figure 17 are applied here as well. 

In addition, in order to visualize the bike sharing network, an instance with 20 demand zones and 10 

potential stations are followed. The average monthly demand of these 20 zones (out of 100 zones) are 

as follows: 

 

Figure 19. Average monthly demand of 20 zones (zone 65 to 84) 

Out of the results of CPLEX for different given sets of parameters, the map of Montreal with the 

location of 20 demand zones and 10 potential stations are followed. It should be noted that the numbers 

in the icon of demand zones show the zone number based on our data set, and the numbers in the 

parenthesis next to the icon of stations show the amount of capacity and initial bikes of each open 

station, respectively. 
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Figure 20. Bike sharing network with α=0.7, β=0.8, r=0.1, s=0.2 (LO,LO) 

 

 

Figure 21. Bike sharing network with α=0.7, β=0.8, r=0.25, s=0.35 (LO,HI) 
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Figure 22. Bike sharing network with α=0.8, β=0.9, r=0.1, s=0.2 (HI,LO) 

 

 

Figure 23. Bike sharing network with α=0.8, β=0.9, r=0.25, s=0.35 (HI,HI) 
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The main observations from figures 20 to 23 are summarized as follows: 

 The number of open stations has decreased marginally as the service level and balking rates 

have increased. In figures 20 and 21 with α=0.7, β=0.8 (lower service level rates), 9 stations 

out of 10 potential stations have been opened while in figure 22 (HI,LO), the number of open 

stations has decreased to 8 out of 10. In figure 23 (HI,HI), we have another decrease and 7 

stations out of 10 potential stations have been opened. 

 The number of total docks and bikes have increased as the service level and balking rates have 

increased. It is notable that in figure 20, the minimum capacity and initial bikes per each open 

station are 6 and 4 respectively, while they have a marginal increase to 8 docks and 5 bikes, by 

having the same service level rates and increasing the balking rates in figure 21. They have 

increased to 13 docks and 7 bikes by increasing the service level rates in figure 22 and by 

increasing the balking rates in figure 23, they have surged to 18 and 10 respectively. 

4.3. Validation of design solutions with simulation 

In order to validate the network design solutions and by the help of ARENA Simulation Software 

Version 15.00, we have simulated the result of some experiments in small to medium sizes out of 

CPLEX. To this end, we have first set the ARENA run setup as following: Number of replications: 

300, Time unit: minute, Replication length: 21600 minutes (30 days per month and 12 hours per 

each day). 

Next by having the number of total pick up of bikes per each station per day (𝜆𝑏) (the result of 

CPLEX), and in order to set the arrival distributions in ARENA, we have converted the arrival 

rates to calculate them per minute (𝜆𝑏/(12 ∗ 60)). It should be noted that the number of passengers 

arriving at a fixed interval of time (minute) follows the Poisson distribution. Then as these events 

(arrival of passengers) occur independently but continuously at a constant average rate, and as the 

time between events in a Poisson process follows Exponential distribution, we have set the 

distribution of arrivals to be Exponential with mean 
1

𝜆𝑏/(12∗60)
 (Haight, Frank A. 1967, Johnson, 

Kotz and Balakrishnan, 1994). 

A simulated bike sharing network in ARENA is as following. 
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Figure 24. A simulated bike sharing network 

 

In this simulated bike sharing network, a user arrives to station 1 and looks for a bike to pick it up. 

If there are any bikes available, the user picks a bike up and is counted as successful pick up, 

otherwise the user either waits for a bike availability by a chance (which is given as balking rate 

for pick up) or leaves the system and is considered as unsatisfied user in pick up side. 
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A satisfied user in pick up side, rides the bike towards station 2. If there are any empty docks there, 

the user drops the bike off and is counted as successful drop off, otherwise the user either waits 

for an empty dock to become available by a chance (which is given as balking rate for drop off) 

or rides towards the next close station which is station 3 and is considered as unsatisfied user in 

drop off side. 

Using the decisions obtained from the proposed mixed integer programming model we have 

simulated the bike sharing network and compared the statistic of simulated problems with the 

results of CPLEX. The output statistic of all simulated samples verifies the solution of 

implemented experiments. The results of CPLEX and ARENA for a simulated problem with 10 

demand zones and 3 possible stations and with α=0.7, β=0.8, r=0.1, s=0.2 (LO,LO) are as follows. 

Output of CPLEX 

 (LO,LO) 
Number of 

docks 

Number of 

bikes 

Total allocation 

for pick up 

(monthly) 

Route allocation (out of total pick up) 

Total allocation 

for drop off 

(monthly) 

Station 1 22 12 34607 
station 1 to 2 24432 

34782 
station 1 to 3 10175 

Station 2 10 6 31128 
station 2 to 1 23792 

31000 
station 2 to 3 7336 

Station 3 6 4 17558 
station 3 to 1 10990 

17511 
station 3 to 2 6568 

 

Output of ARENA (pick up) 

 (LO,LO) 

Total pick 

up 

(monthly) 

Successful 

pick up 

(monthly) 

Successful 

rate for pick 

up 

Average 

waiting time 

for pick up 

(min) 

Half Width of 

waiting time for 

pick up 

Average 

number of 

users waiting 

for pick up 

Half Width of 

number of users 

waiting for pick 

up 

Station 1 34601 25317 0.732 0.86 < 0.00 0.04 < 0.00 

Station 2 31102 22858 0.735 0.95 < 0.00 0.04 < 0.00 

Station 3 17562 12516 0.713 1.76 < 0.01 0.05 < 0.00 
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Output of ARENA (drop off) 

 (LO,LO) 

Total drop 

off 

(monthly) 

Successful 

drop off 

(monthly) 

Successful 

rate for drop 

off 

Average 

waiting time 

for drop off 

(min) 

Half Width of 

waiting time for 

drop off 

Average 

number of 

users waiting 

for drop off 

Half Width of 

number of users 

waiting for drop 

off 

Station 1 25307 25307 1.000 0 < 0.00 0.00 < 0.00 

Station 2 22540 22492 0.998 0.68 < 0.05 0.0002 < 0.00 

Station 3 12828 12466 0.972 1.31 < 0.025 0.0028 < 0.00 

Figure 25. Result of a simulated problem 

In this example, the successful rates for pick up and drop off in all stations show that the service 

levels have been satisfied. Also, the average waiting times of passengers in queues and the number 

of users waiting in the network in queues shows the consistency of the designed network of bike 

sharing. The average waiting times to pick up or drop off a bike are less than 2 minutes in all 

stations. Also the average number of people waiting in queues is very small, and the half width of 

both waiting time and number of customers in queues (for pick up and drop off), proves the 

confidence level of the designed network and this fact that the number of replications is big enough 

to trust the statistic of the simulated network. The result of ARENA (in detail) for this instance 

(with 10 demand zones and 3 potential stations) has been added to the appendix as well. 

4.4. Computational Results 

In this section, by presenting numerical experiments, we evaluate the performance of the proposed 

genetic algorithm. The criterion used to measure the performance of the proposed meta-heuristic 

algorithm is the GAP factor, which is calculated using the following equation. In this regard, OMH 

means the value of the objective function of the metaheuristic method and Oopt means the optimal 

value of the exact method. 

(
(OMH − Oopt)

Oopt
) × 100 
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Numerical results for different sizes of the problem are presented in the following tables. It should 

be noted that for each of these dimensions, four problems (with different values of genetic 

algorithm parameters) have been evaluated and solved. 
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Table 4. Comparison of the performance of optimum method and genetic 

algorithm; (LO,LO) 

α = 0.7 , β = 0.8 

r = 0.1 , s = 0.2 

Visual Studio, C++ 

(Genetic Algorithm) 
CPLEX 

(Optimum Method) 

Number 

of Zones 

Number 

of 

Stations 

Minimum 

Gap (%) 

Maximum 

Gap (%) 

Average 

Gap (%) 

Minimum 

Time 

(Sec) 

Maximum 

Time (Sec) 

Average 

Time 

(Sec) 

Minimum 

Time 

(Sec) 

Maximum 

Time 

(Sec) 

Average 

Time 

(Sec) 

5 3 0.4 0.98 0.7 1.00 2.12 1.6 2.16 4.73 3.4 

10 3 0.48 1.7 1.1 1.83 3.74 2.8 2.31 5.02 3.7 

10 5 0.9 2.2 1.6 5.92 8.32 7.1 2.61 5.16 3.9 

20 10 1.9 2.7 2.3 11.38 37.93 24.7 17.95 22.38 20.2 

20 15 2.1 3.5 2.8 33.01 39.57 36.3 30.53 36.82 33.7 

30 15 2.9 4.3 3.6 24.67 61.80 43.2 116.66 124.72 120.7 

30 20 4.0 4.3 4.2 39.81 66.78 53.3 593.09 619.76 606.4 

30 25 3.2 3.6 3.4 40.34 64.62 52.5 727.36 781.49 754.4 

45 25 3.8 4.2 4.0 68.05 86.44 77.2 3512.77 3755.46 3634.1 

45 30 4.9 5.2 5.1 125.8 153.69 139.7 14212 14862 14537 

45 35 5.0 5.9 5.5 142.37 176.62 159.5 30157 36125 33141 

60 30 5.9 6.1 6.0 801 1274 1037.5 43834 45218 44526 

60 35 4.9 5.3 5.1 560 1740 1150.0 59696 61521 60608 

60 40 6.0 6.3 6.2 674 2129 1401.5 100315 108413 104364 

Average 3.7 % 310 Secs 18740 Secs 
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Table 5. Comparison of the performance of optimum method and genetic 

algorithm; (HI,LO) 

α = 0.8 , β = 0.9 

r = 0.1 , s = 0.2 

Visual Studio, C++ 

(Genetic Algorithm) 

CPLEX 

(Optimum Method) 

Number 

of Zones 

Number 

of 

Stations 

Minimum 

Gap (%) 

Maximum 

Gap (%) 

Average 

Gap 

(%) 

Minimum 

Time 

(Sec) 

Maximum 

Time 

(Sec) 

Average 

Time 

(Sec) 

Minimum 

Time 

(Sec) 

Maximum 

Time 

(Sec) 

Average 

Time 

(Sec) 

5 3 0.7 1.0 0.9 1.21 2.57 1.9 2.04 4.2 3.1 

10 3 0.9 1.2 1.1 2.98 4.13 3.6 2.24 5.22 3.7 

10 5 1.7 1.9 1.8 4.39 8.63 6.5 2.35 5.31 3.8 

20 10 2.3 3.5 2.9 12.47 55.38 33.9 7.05 11.42 9.2 

20 15 2.9 3.2 3.1 59.74 71.13 65.4 19.54 25.73 22.6 

30 15 3.9 4.2 4.1 34.00 73.67 53.8 67.11 75.48 71.3 

30 20 4.3 4.6 4.5 51.91 101.15 76.5 373.52 381.88 377.7 

30 25 2.9 3.1 3.0 47.02 72.19 59.6 2688.26 2716.55 2702.4 

45 25 4.3 4.4 4.4 60.07 87.62 73.8 2868.87 2912.46 2890.7 

45 30 4.9 5.1 5.0 160.09 192.55 176.3 35080 39178 37129 

45 35 4.5 4.8 4.7 423.92 520.44 472.2 48538 52955 50746 

60 30 5.7 6.0 5.9 391.43 895.54 643.5 75960 83670 79815 

60 35 5.7 6.2 6.0 725.77 1563.22 1144.5 93960 97388 95674 

60 40 5.7 6.4 6.1 1327.45 1713.32 1520.4 118419 125099 121759 

Average 3.8 % 309 Secs 27943 Secs 
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Table 6. Comparison of the performance of optimum method and genetic 

algorithm; (LO, HI) 

α = 0.7 , β = 0.8 

r = 0.25 , s = 0.35 

Visual Studio, C++ 

(Genetic Algorithm) 

CPLEX 

(Optimum Method) 

Number 

of Zones 

Number 

of 

Stations 

Minimum 

Gap (%) 

Maximum 

Gap (%) 

Average 

Gap 

(%) 

Minimum 

Time 

(Sec) 

Maximum 

Time 

(Sec) 

Average 

Time 

(Sec) 

Minimum 

Time 

(Sec) 

Maximum 

Time 

(Sec) 

Average 

Time 

(Sec) 

5 3 0.3 0.6 0.5 2.63 3.31 3.0 2.16 3.92 3.0 

10 3 0.9 1.2 1.1 3.92 5.11 4.5 2.27 5.01 3.6 

10 5 1.0 1.4 1.2 9.26 13.11 11.2 2.81 5.84 4.3 

20 10 3.1 3.3 3.2 32.36 64.61 48.5 18.44 23.61 21.0 

20 15 3.7 4.1 3.9 50.16 102.48 76.3 29.03 34.83 31.9 

30 15 2.6 2.9 2.8 61.39 82.12 71.8 110.31 120.79 115.6 

30 20 4.2 4.4 4.3 78.44 121.78 100.1 572.71 580.12 576.4 

30 25 3.3 3.7 3.5 49.87 125.22 87.5 964.95 972.74 968.8 

45 25 3.8 4.4 4.1 105.66 246.33 176.0 6071.42 6202.76 6137.1 

45 30 5.1 5.3 5.2 193.89 278.67 236.3 25657 28031 26844 

45 35 5.4 5.8 5.6 258.54 304.56 281.6 52101 54878 53489 

60 30 6.0 6.3 6.2 487.31 499.56 493.4 67575 70230 68902 

60 35 5.3 6.1 5.7 983.35 1380.49 1181.9 83389 89951 86670 

60 40 6.4 6.7 6.6 453.31 605.31 529.3 107930 114866 111398 

Average 3.8 % 236 Secs 25369 Secs 
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Table 7. Comparison of the performance of optimum method and genetic 

algorithm; (HI,HI) 

α = 0.8 , β = 0.9 

r = 0.25 , s = 0.35 

Visual Studio, C++ 

(Genetic Algorithm) 

CPLEX 

(Optimum Method) 

Number 

of Zones 

Number 

of 

Stations 

Minimum 

Gap (%) 

Maximum 

Gap (%) 

Average 

Gap 

(%) 

Minimum 

Time 

(Sec) 

Maximum 

Time 

(Sec) 

Average 

Time 

(Sec) 

Minimum 

Time 

(Sec) 

Maximum 

Time 

(Sec) 

Average 

Time 

(Sec) 

5 3 0.6 0.7 0.7 1.75 2.43 2.1 2.19 4.08 3.1 

10 3 0.9 1.1 1.0 3.91 6.22 5.1 2.4 5.16 3.8 

10 5 1.6 1.7 1.7 4.51 7.48 6.0 2.52 5.28 3.9 

20 10 3.2 3.4 3.3 33.77 45.10 39.4 6.99 10.43 8.7 

20 15 3.5 3.9 3.7 50.67 76.49 63.6 31.31 36.57 33.9 

30 15 2.2 2.6 2.4 61.33 82.62 72.0 68.86 76.94 72.9 

30 20 3.4 3.6 3.5 80.02 101.12 90.6 430.17 437.56 433.9 

30 25 4.4 5.0 4.7 110.47 225.96 168.2 721.8 735.91 728.9 

45 25 4.9 5.2 5.1 187.77 309.77 248.8 2309.88 2412.63 2361.3 

45 30 5.1 5.3 5.2 253.24 326.21 289.7 27268 29813 28540 

45 35 5.4 5.6 5.5 438.68 1024.54 731.6 39133 44541 41837 

60 30 6.4 6.8 6.6 791.99 1080.12 936.1 58466 66112 62289 

60 35 6.0 6.2 6.1 372.13 1009.06 690.6 74820 77131 75975 

60 40 5.8 6.4 6.1 667.95 1041.43 854.7 96887 102233 99560 

Average 4.0 % 300 Secs 22275 Secs 
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The results of all instances show that the time required to solve the problem and obtain an optimal 

solution by CPLEX increases dramatically as the size of problem increases. However, the time 

needed to solve the problem using the genetic algorithm does not change significantly with the 

higher dimensions of the problem. A comparison of the average time needed to solve the problem 

using both methods is presented in the following graph (out of tables 4-7). 

 

Figure 26. The average CPU time for solving the problem 

The results indicate the proposed genetic algorithm finds appropriate feasible solutions in a 

reasonable amount of time. It is notable that, for small to medium sizes of the problem the average 

CPU time of both methods are almost the same, however with larger dimensions of the problem 

(starting 45 demand zones and 25 potential stations), the time needed to solve the problem by 

CPLEX has increased remarkably. The average time needed to solve any instance with genetic 

algorithm is 289 seconds while the average time that CPLEX required to find the optimal solution 

is 23582 seconds. So, the proposed genetic algorithm is about 82 times faster than the optimum 

method (CPLEX) on average for all reported instances. It should be noted that even for very large 

instances that CPLEX is not able to build the problem or reach any result, the proposed genetic 

algorithm provides us with feasible solutions in a reasonable time. 
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The following graph shows the average gap between the genetic algorithm solutions and optimal 

solutions (out of tables 4-7). 

 

Figure 27. Gap analysis of genetic algorithm solutions 

It is notable that, the average gap between the genetic algorithm solutions and optimal solutions 

has increased slightly as the dimension of the problem has increased. The average gap is about 

3.8% for all reported instances and it has started from 0.66% for the smallest size with 5 demand 

zones and 3 potential stations and has ended to 6.21% for the largest size with 60 demand zones 

and 40 potential stations. 

In summary, the proposed genetic algorithm performs very well for all given sets of parameters 

and is able to gain suitable solutions in a reasonable amount of time. Its performance is remarkable 

specially when the size of problem increases and it is about 82 times faster than the optimum 

method (CPLEX). We also show that our method provides solutions with acceptable gaps even for 

the large size instances of problem. 
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Chapter 5 - Conclusion and Future Research Directions 

The objective of this study was to design a bike sharing network considering the service level of 

pick up and drop off bikes in all stations, which had not been simultaneously studied in previous 

works. For a given set of origin and destination points for travelers and the amount of demand in 

each origin point, a mixed integer programming model was developed in order to determine the 

location of bike stations and their capacities so as to minimize the total cost of opening stations 

and passengers’ transportation. In this model it was crucial to know which routes should be 

selected considering the distances from demand zones to stations and the capacity level of each 

station to serve with a desired level of bike and dock availability. We also considered balking 

(probability of waiting) of users for an available bike or an empty dock in all stations, and 

investigated their impact on the capacity and number of bicycles in the opened stations and selected 

routes in the network. 

To overcome the computational complexity of the problem, we developed a genetic algorithm 

method to solve the problem in large size instances and provided illustrative examples to examine 

the performance of our proposed solution method. By presenting the numerical results for different 

sizes of the problem with various instance sets of parameters, we compared the performance of 

our meta-heuristic method and the one resulted by CPLEX, in terms of the computation time and 

optimality gap. 

In order to validate the network design solutions, we simulated the network design obtained in 

small to medium sizes using Arena simulation software. All simulated instances provided 

equivalent performance levels compared to the conditions stated in the optimization model, 

achieving acceptable pick up and drop off service levels. In addition, the average waiting times of 

passengers in queues and the number of users waiting in the network in queues indicated the 

consistency of the designed network of bike sharing. 

We considered the city of Montreal as our case study and in order to conduct our numerical 

experiments, we obtained needed data from Bixi’s website (current bike sharing network of 

Montreal). In our experiments, the optimal solutions indicated that, as the size of problem 

increases, the number of opened stations, capacities, fleet size and fixed costs increases as well. 

However, although transportation costs trends had an increasing orientation (as the size of problem 

increased), by having more potential stations for the same number of demand zones, the 

transportation costs decreased as the model opened more stations with better routing allocations. 
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We also studied the effects of the main parameters on the model and the main insights from the 

experiments are summarized below: 

(i) For the same sizes of the problem, having higher service level and balking rates resulted 

in fewer open stations. 

(ii) For the same sizes of the problem, having higher service level and balking resulted in 

higher capacities, fleet sizes and costs. 

(iii) The effect of service level rates was more than the effect of balking rates. 

The results of all instances showed that the time required to obtain an optimal solution by CPLEX 

increased dramatically as the size of problem increased, however, the needed time to solve the 

problem using the genetic algorithm did not change significantly with increasing the dimensions 

of the problem. The proposed genetic algorithm was about 82 times faster than the optimum 

method (CPLEX) on average for all reported instances. It was also notable that for very large 

instances, which CPLEX was not able to reach any result within the 30 hours’ time limit, the 

proposed genetic algorithm provided us with feasible solutions in less than half an hour. Regarding 

the gap between the genetic algorithm solutions and optimal solutions, it increased marginally with 

increasing the dimensions of the problem and the average optimality gap was about 3.8% for all 

instances. 

This research can be expanded in many ways and future studies may consider different goals, 

limitations or scenarios to apply service levels. Bicycle path construction and its cost would be a 

suggestion to be added to the model in the future. Considering CO2 emission savings as a key 

factor which can be studied in bike sharing network design and may be added to the proposed 

model as a component in the objective function or as a constraint. Taking the operational functions 

like relocation of bikes between opened stations in the network and its cost, into account and 

combining them with the proposed model under this study can be another interesting aspect in the 

future works. In terms of solution methodology, using other solution methodologies like 

considering other heuristic or meta-heuristic methods to solve the problem and comparing the 

performance of them with the genetic algorithm used in this study deserves for further 

investigation. 
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Appendices 

CPLEX Code: 

.mod 

/* Sets */ 

int i = ...;     /*number of rider zones*/ 

range I = 1..i;  /*origin of rider*/ 

int j = ...;     /*number of rider zones*/ 

range J = 1..j;  /*destination of rider*/ 

int b = ...;     /*number of potential bike stations*/ 

range B = 1..b;  /*pick up station*/ 

int l = ...;     /*number of potential bike stations*/ 

range L = 1..l;  /*drop off station*/ 

int k = ...;     /*maximum possibility of capacity level*/ 

range K = 6..k;  /*capacity level of a specific bike station*/ 

 

/* Parameters */ 

int capital_lamda[I][J] = ...;      /*monthly customer demand from origin point i to destination 

point j*/ 

float d[I][B] = ...;                /*distance from origin point i to pick up station b*/ 

float d_prime[B][L] = ...;          /*distance from pick up station b to drop off station l*/ 

float d_double_prime[L][J] = ...;   /*distance from drop off station l to destination point j*/ 

float c = ...;                      /*unit walking cost from each zone (i or j) to each station (b or l) (per 

meter per trip)*/ 

int f[B][K] = ...;                  /*monthly fixed cost of locating any station at b with capacity level 

k*/ 
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int t = ...;                        /*number of days per month*/ 

int n = ...;                        /*number of active hours per day*/ 

float p = ...;                      /*minimum possible value for Mu[b]/Lamda[b] in each station to 

satisfy service level constraints*/ 

float r = ...;                      /*maximum possible value for Mu[b]/Lamda[b] in each station to 

satisfy service level constraints*/ 

int e = ...;                        /*monthly fixed cost of providing each bike in the network*/ 

int g = ...;                        /*riding speed of a passenger by bike (meters per hour)*/ 

 

/* Decision Variables */ 

dvar boolean X[B][K];               /*equals 1 if station b is opened with capacity level k and 0 

otherwise*/ 

dvar boolean Y[I][B][L][J];         /*equals 1 if customers travel from point i to j using stations b 

and l, and 0 otherwise*/ 

dvar float+ Lamda[B];               /*daily arrival rate of customers to pick up bike from station b*/ 

dvar float+ Mu[B];                  /*daily arrival rate of customers to drop off bike at station b*/ 

dvar int S[B];                      /*number of initial bikes in each station*/ 

 

 

/* Mathematical Model */ 

minimize sum(i in I, b in B, l in L, j in J) c*d[i][b]*Y[i][b][l][j]*capital_lamda[i][j] + sum(i in I, 

b in B, l in L, j in J) c*d_double_prime[l][j]*Y[i][b][l][j]*capital_lamda[i][j] + sum(b in B, k in 

K) f[b][k]*X[b][k] + sum(b in B) e*S[b]; 

 

subject to { 

 

 forall(i in I, j in J : i!=j) 
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  Const2: sum(b in B, l in L : b!=l) Y[i][b][l][j] == 1;   

 forall(i in I, j in J : i!=j, b in B)  

  Const3: sum(l in L : b!=l) Y[i][b][l][j] + sum(l in L : b!=l) Y[i][l][b][j] <= sum(k 

in K) X[b][k]; 

   

 forall(b in B) 

    Const4: sum(k in K) X[b][k] <= 1; 

 

 forall(b in B) 

     Const5: Lamda[b] == (1/t)*sum(i in I, j in J : i!=j, l in L : b!=l) 

Y[i][b][l][j]*capital_lamda[i][j]; 

      

 forall(b in B) 

     Const6: Mu[b] == (1/t)*sum(i in I, j in J : i!=j, l in L : b!=l) 

Y[i][l][b][j]*capital_lamda[i][j]; 

       

     Const7: sum(b in B) S[b] >= sum(i in I, b in B, l in L, j in J) 

(d_prime[b][l]*Y[i][b][l][j]*capital_lamda[i][j]) / (t*n*g); 

         

 forall(b in B)     

     Const8: S[b] >= ((sum(k in K) (X[b][k]*k))/2 + sum(k in K) X[b][k] - 0.5); 

      

 forall(b in B)     

     Const9: S[b] <= ((sum(k in K) (X[b][k]*k))/2 + sum(k in K) X[b][k]);       

    

 forall(b in B)            

     Const10: Lamda[b] <= S[b] + Mu[b]; 



71 
 

  

 forall(b in B)            

     Const11: Mu[b] <= sum(k in K) (X[b][k]*k) - S[b] + Lamda[b];    

    

 forall(b in B)            

     Const12: Lamda[b] >= sum(k in K) X[b][k];                     

  

            forall(b in B)  

     Const14: Mu[b] >= p * Lamda[b]; 

      

 forall(b in B)         

     Const15: Mu[b] <= r * Lamda[b]; 

 

    

  } 

 

 

.dat 

i=30; 

j=30; 

b=15; 

l=15; 

k=30; 

SheetConnection sheet("Data_Set.xlsx"); 

capital_lamda from SheetRead(sheet,"Demand!BN365:EY454"); 
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d from SheetRead(sheet,"Distance!HW1319:KI1408"); 

d_prime from SheetRead(sheet,"Distance!HW1413:KI1477"); 

d_double_prime from SheetRead(sheet,"Distance!HW1483:LH1547"); 

c = 0.00532; /*Assumptions: Walking speed 4700 meters per hour, Time value of users $25 per 

hour, So 25/4700=0.00532 (dollars/meter)*/ 

f from SheetRead(sheet,"Fixed_Cost!H3:AF67"); 

t=30; 

n=12; 

p=0.76938; 

r=1.0551; 

e=128; 

g=16000;  /*Assumption: riding speed of a passenger by bike is 16000 meters per hour*/  
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C++ Code (Genetic Algorithm): 

#include <iostream> 

using std::cout; 

using std::cin; 

using std::endl; 

using std::fixed; 

using std::ios; 

using std::cerr; 

#include <deque> 

using namespace std; 

#include <vector> 

using namespace std; 

#include <cmath> 

#include <cstdlib>  // Contains function prototype for rand 

using std::rand; 

 

#include <time.h> 

#include <iomanip> 

using std::setprecision; 

using std::setw; 

 

#include <string> 

using std::string;                                          

using std::getline; 
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#include <fstream>  // file stream         

using std::ifstream; // input file stream 

using std::ofstream;  // output file stream 

 

 

#define RC_EPS 1.0e-6 

#define BIG 1.0e7 

 

ifstream DATA("DATA.txt", ios::in); 

ofstream RESULT("RESULT.txt", ios::out); 

 

//Global Variables 

bool *Open_Station; 

int NO_Zone, NO_Station, Min_Cap, Max_Cap, NO_Day, NO_Hour, Sum_Open_Station; 

int **Demand, *Cap; 

int *Init_Bicycle, *Near1, *Near2, *Near3, *Near4, *Near5; 

double **SS_Dis, **ZS_Dis, UWC, *FC, Min_p, Max_r, FCB, Speed, Sum_Initial_Bike, 

*Lambda, *Mu, **Pr_Dis; 

 

template< typename T > 

T Max (T x,T y) { 

 T maximum = x; 

 if (y > maximum) 

  maximum = y; 

 return maximum; 

} 



75 
 

 

void DefineVariables(); 

void FinalFree(); 

double Genetic(); 

double Fitness(int ** , int **); 

int main() { 

  

 cout.precision(6); 

 double Total_Cost; 

 //time_t start, end; 

 //time (&start); 

 

 try { 

  cout << "Please Enter the Value of the Following Parameters:\nNumber of 

Excecution: "; 

  int NoE = 1; cin >> NoE; 

  for (int problem = 1; problem <= NoE; problem++) { 

   //RESULT << "Problem " << problem  << " : "; 

   DefineVariables(); 

   Total_Cost = Genetic(); 

   FinalFree(); 

   //time (&end); 

   //RESULT << "time = " << difftime(end, start) << endl; 

   RESULT << "Total Cost = " << fixed << Total_Cost << endl; 

   RESULT << "---------------------------------" << endl; 

   DATA.clear(); 
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   DATA.seekg(0); 

  } 

 } 

 

 catch (...) { 

  cerr << "Error" << endl; 

 } 

 

 cout << "\n\t\t\"Please See the RESULT File.\"\n\n"; 

 return 0; 

} 

 

 

void DefineVariables() { 

 

 register int i, j; 

 DATA >> NO_Zone >> NO_Station >> Min_Cap >> Max_Cap; 

 

 Demand = new int*[NO_Zone + 1]; 

 for(i = 1; i <= NO_Zone; i++){ 

  Demand[i] = new int[NO_Zone + 1]; 

  for(j = 1; j <= NO_Zone; j++) 

   DATA >> Demand[i][j]; 

 } 
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 ZS_Dis = new double*[NO_Zone + 1]; 

 for(i = 1; i <= NO_Zone; i++){ 

  ZS_Dis[i] = new double[NO_Station + 1]; 

  for(j = 1; j <= NO_Station; j++) 

   DATA >> ZS_Dis[i][j]; 

 } 

 

 SS_Dis = new double*[NO_Station + 1]; 

 for(i = 1; i <= NO_Station; i++){ 

  SS_Dis[i] = new double[NO_Station + 1]; 

  for(j = 1; j <= NO_Station; j++) 

   DATA >> SS_Dis[i][j]; 

 } 

 

 DATA >> UWC; 

 FC = new double[Max_Cap + 1]; 

 FC[0] = 0; 

 for(i = Min_Cap; i <= Max_Cap; i++) 

  DATA >> FC[i]; 

 

 DATA >> NO_Day >> NO_Hour >> Min_p >> Max_r >> FCB >> Speed; 

 

 Near1 = new int[NO_Zone + 1]; 

 Near2 = new int[NO_Zone + 1]; 

 Near3 = new int[NO_Zone + 1]; 
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 Near4 = new int[NO_Zone + 1]; 

 Near5 = new int[NO_Zone + 1]; 

 Cap = new int[NO_Station + 1]; 

 Open_Station = new bool[NO_Station + 1]; 

 Init_Bicycle = new int[NO_Station + 1]; 

 Lambda = new double[NO_Station + 1]; 

 Mu = new double[NO_Station + 1]; 

 

 

 

 for(i = 1; i <= NO_Zone; i++){ 

  Near1[i] = Near2[i] = 1; 

  for(j = 2; j <= NO_Station; j++){ 

   if(ZS_Dis[i][j] < ZS_Dis[i][Near1[i]]){ 

    Near2[i] = Near1[i]; 

    Near1[i] = j; 

   } 

  } 

  if(Near1[i] != 1){ 

  for(j = Near1[i] + 1; j <= NO_Station; j++) 

   if(ZS_Dis[i][j] < ZS_Dis[i][Near2[i]]) 

    Near2[i] = j; 

  } 

  else{ 

   Near2[i] = 2; 
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   for(j = 3; j <= NO_Station; j++) 

    if(ZS_Dis[i][j] < ZS_Dis[i][Near2[i]]) 

     Near2[i] = j; 

  } 

 } 

 

 for(i = 1; i <= NO_Zone; i++){ 

  Near3[i] = 0; 

  for(j = 1; j <= NO_Station; j++){ 

   if (ZS_Dis[i][j] > ZS_Dis[i][Near2[i]] && (Near3[i] == 0 || ZS_Dis[i][j] < 

ZS_Dis[i][Near3[i]])) 

    Near3[i] = j; 

  } 

  if (Near3[i] == 0){ 

   for(j = 1; j <= NO_Station; j++){ 

    if (ZS_Dis[i][j] == ZS_Dis[i][Near2[i]] && j != Near2[i] && j != 

Near1[i]){ 

     Near3[i] = j; 

     break; 

    } 

   } 

  } 

 } 

 for(i = 1; i <= NO_Zone; i++){ 

  Near4[i] = 0; 

  for(j = 1; j <= NO_Station; j++){ 
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   if (ZS_Dis[i][j] > ZS_Dis[i][Near3[i]] && (Near4[i] == 0 || ZS_Dis[i][j] < 

ZS_Dis[i][Near4[i]])) 

    Near4[i] = j; 

  } 

  if (Near4[i] == 0){ 

   for(j = 1; j <= NO_Station; j++){ 

    if (ZS_Dis[i][j] == ZS_Dis[i][Near3[i]] && j != Near3[i] && j != 

Near2[i] && j != Near1[i]){ 

     Near4[i] = j; 

     break; 

    } 

   } 

  } 

 } 

 for(i = 1; i <= NO_Zone; i++){ 

  Near5[i] = 0; 

  for(j = 1; j <= NO_Station; j++){ 

   if (ZS_Dis[i][j] > ZS_Dis[i][Near4[i]] && (Near5[i] == 0 || ZS_Dis[i][j] < 

ZS_Dis[i][Near5[i]])) 

    Near5[i] = j; 

  } 

  if (Near5[i] == 0){ 

   for(j = 1; j <= NO_Station; j++){ 

    if (ZS_Dis[i][j] == ZS_Dis[i][Near4[i]] && j != Near4[i] && j != 

Near3[i] && j != Near2[i] && j != Near1[i]){ 

     Near5[i] = j; 

     break; 
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    } 

   } 

  } 

 } 

 

 Pr_Dis = new double*[NO_Zone + 1]; 

 for(i = 1; i <= NO_Zone; i++) 

  Pr_Dis[i] = new double[6]; 

 

 for(i = 1; i <= NO_Zone; i++){ 

  Pr_Dis[i][0] = 1 / ZS_Dis[i][Near1[i]] + 1 / ZS_Dis[i][Near2[i]] + 1 / 

ZS_Dis[i][Near3[i]] + 1 / ZS_Dis[i][Near4[i]] + 1 / ZS_Dis[i][Near5[i]]; 

  Pr_Dis[i][1] = (1 / ZS_Dis[i][Near1[i]]) / Pr_Dis[i][0]; Pr_Dis[i][2] = (1 / 

ZS_Dis[i][Near2[i]]) / Pr_Dis[i][0]; 

  Pr_Dis[i][3] = (1 / ZS_Dis[i][Near3[i]]) / Pr_Dis[i][0]; Pr_Dis[i][4] = (1 / 

ZS_Dis[i][Near4[i]]) / Pr_Dis[i][0]; 

  Pr_Dis[i][5] = (1 / ZS_Dis[i][Near5[i]]) / Pr_Dis[i][0]; 

  for(j = 2; j <= 5; j++) 

   Pr_Dis[i][j] = Pr_Dis[i][j - 1] + Pr_Dis[i][j]; 

 } 

} 

 

double Genetic() { 

 register int counter, g, h, j, i; 

 

 /*const*/ int Population_Size = 30; cout << "Population Size: "; cin >> Population_Size; 
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 /*const*/ double Crossover_Rate = 1.5; cout << "Crossover Rate: "; cin >> 

Crossover_Rate; 

 /*const*/ double Mutation_Rate = 0.1; cout << "Mutation Rate (between 0 and 1): "; cin 

>> Mutation_Rate; 

 int NO_Offspring = (int) floor(Population_Size * Crossover_Rate); 

  

 time_t T; 

 int TEMP, THE_BEST, Generation = 1, start, end, parent1, parent2, candid, 

Generation_Without_Improvement = 0; 

 double THE_BEST_Fitness, Before, After, TEMPD; 

 bool Heavy_Mutation_flag; 

 

 int ***P_Chromosome = new int**[Population_Size + 1]; 

 for(counter = 1; counter <= Population_Size; counter++){ 

  P_Chromosome[counter] = new int*[NO_Zone + 1]; 

  for(g = 1; g <= NO_Zone; g++) 

   P_Chromosome[counter][g] = new int[NO_Zone + 1]; 

 } 

 int ***D_Chromosome = new int**[Population_Size + 1]; 

 for(counter = 1; counter <= Population_Size; counter++){ 

  D_Chromosome[counter] = new int*[NO_Zone + 1]; 

  for(g = 1; g <= NO_Zone; g++) 

   D_Chromosome[counter][g] = new int[NO_Zone + 1]; 

 } 

 

 int ***New_P_Chromosome = new int**[NO_Offspring + 1]; 
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 for(counter = 1; counter <= NO_Offspring; counter++){ 

  New_P_Chromosome[counter] = new int*[NO_Zone + 1]; 

  for(g = 1; g <= NO_Zone; g++) 

   New_P_Chromosome[counter][g] = new int[NO_Zone + 1]; 

 } 

 int ***New_D_Chromosome = new int**[NO_Offspring + 1]; 

 for(counter = 1; counter <= NO_Offspring; counter++){ 

  New_D_Chromosome[counter] = new int*[NO_Zone + 1]; 

  for(g = 1; g <= NO_Zone; g++) 

   New_D_Chromosome[counter][g] = new int[NO_Zone + 1]; 

 } 

 

 double *Chromosome_Fitness = new double[Population_Size + 1]; 

  

 int **P_Offspring = new int*[NO_Zone + 1]; 

 for(g = 1; g <= NO_Zone; g++) 

  P_Offspring[g] = new int[NO_Zone + 1]; 

 

 int **D_Offspring = new int*[NO_Zone + 1]; 

 for(g = 1; g <= NO_Zone; g++) 

  D_Offspring[g] = new int[NO_Zone + 1]; 

 

 double *Candid_Fitness = new double[NO_Offspring + 1]; 

 int *Candid_List = new int[NO_Offspring + 1]; 
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 T = time(0); 

 srand( (unsigned int) T );   

 

 /************************************************************ 

 *            

   * 

 *      Initial Population    

 * 

 *            

   * 

 *************************************************************/ 

 

 for(i = 1; i <= NO_Zone; i++){ 

  for(j = 1; j < i; j++){ 

   if(Near1[i] != Near1[j]){ 

    P_Chromosome[1][i][j] = Near1[i]; 

    D_Chromosome[1][i][j] = Near1[j]; 

   } 

   else if (ZS_Dis[i][Near1[i]] + ZS_Dis[j][Near2[j]] < ZS_Dis[i][Near2[i]] 

+ ZS_Dis[j][Near1[j]]){ 

    P_Chromosome[1][i][j] = Near1[i]; 

    D_Chromosome[1][i][j] = Near2[j]; 

   } 

   else{ 

    P_Chromosome[1][i][j] = Near2[i]; 

    D_Chromosome[1][i][j] = Near1[j]; 

   } 
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  } 

  for(j = i + 1; j <= NO_Zone; j++){ 

   if(Near1[i] != Near1[j]){ 

    P_Chromosome[1][i][j] = Near1[i]; 

    D_Chromosome[1][i][j] = Near1[j]; 

   } 

   else if (ZS_Dis[i][Near1[i]] + ZS_Dis[j][Near2[j]] < ZS_Dis[i][Near2[i]] 

+ ZS_Dis[j][Near1[j]]){ 

    P_Chromosome[1][i][j] = Near1[i]; 

    D_Chromosome[1][i][j] = Near2[j]; 

   } 

   else{ 

    P_Chromosome[1][i][j] = Near2[i]; 

    D_Chromosome[1][i][j] = Near1[j]; 

   } 

  } 

 } 

 

 /*****************************************************/ 

 

 for (counter = 2; counter <= Population_Size; counter++){ 

  for (i = 1; i <= NO_Zone; i++){ 

   for (j = 1; j <= NO_Zone; j++){ 

    if (i == j) continue; 

    TEMPD = (double)rand()/(double)(RAND_MAX) - RC_EPS; 

    g = 1; 
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    while(Pr_Dis[i][g] < TEMPD) g++; 

    switch(g){ 

     case 1: P_Chromosome[counter][i][j] = Near1[i]; break; 

     case 2: P_Chromosome[counter][i][j] = Near2[i]; break; 

     case 3: P_Chromosome[counter][i][j] = Near3[i]; break; 

     case 4: P_Chromosome[counter][i][j] = Near4[i]; break; 

     case 5: P_Chromosome[counter][i][j] = Near5[i]; break; 

    } 

    do { 

     TEMPD = (double)rand()/(double)(RAND_MAX) - 

RC_EPS; 

     g = 1; 

     while(Pr_Dis[j][g] < TEMPD) g++; 

     switch(g){ 

      case 1: D_Chromosome[counter][i][j] = Near1[j]; 

break; 

      case 2: D_Chromosome[counter][i][j] = Near2[j]; 

break; 

      case 3: D_Chromosome[counter][i][j] = Near3[j]; 

break; 

      case 4: D_Chromosome[counter][i][j] = Near4[j]; 

break; 

      case 5: D_Chromosome[counter][i][j] = Near5[j]; 

break; 

     } 

    } 

    while (D_Chromosome[counter][i][j] == 

P_Chromosome[counter][i][j]); 
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   } 

  } 

 } 

 

 

 for(counter = 1; counter <= Population_Size; counter++){ 

  Chromosome_Fitness[counter] = Fitness(P_Chromosome[counter], 

D_Chromosome[counter]); 

 } 

 

 THE_BEST = 1; 

 THE_BEST_Fitness = Chromosome_Fitness[1]; 

 for (counter = 2; counter <= Population_Size; counter++) { 

  if (Chromosome_Fitness[counter] < THE_BEST_Fitness) { 

   THE_BEST = counter; 

   THE_BEST_Fitness = Chromosome_Fitness[counter]; 

  } 

 } 

 

  

 /************************************************************ 

   *          

     * 

   *     start of MA algorithm   

  * 

   *          

     * 
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 *************************************************************/ 

 

 int Stopping_Criteria = 100; 

 cout << "Stopping Criteria (Number of Generations without Improvement): "; cin >> 

Stopping_Criteria; 

 while /*stopping criteria not satisfied*//* (time(0) - T <= 

60*/(Generation_Without_Improvement <= Stopping_Criteria/*&&(THE_BEST_Fitness < 0)*/) 

{ 

  Heavy_Mutation_flag = true; 

  candid = 0; 

  Before = THE_BEST_Fitness; 

  for (counter = 1; counter <= Population_Size * Crossover_Rate; counter++) { 

 

  

 /************************************************************ 

   *          

     * 

   *      Selection   

    * 

   *          

     * 

  

 *************************************************************/ 

 

   parent1 = rand() %(Population_Size) + 1; 

   parent2 = rand() %(Population_Size) + 1; 

   if (parent2 == parent1) parent2 = Population_Size + 1 - parent1; 
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   if (Chromosome_Fitness[parent2] < Chromosome_Fitness[parent1]) { 

    TEMP = parent1; parent1 = parent2; parent2 = TEMP; 

   } 

 

  

 /************************************************************ 

   *          

     * 

   *      Cross over   

    * 

   *          

     * 

  

 *************************************************************/ 

 

   if(counter < NO_Offspring / 3){ 

    start = rand() %NO_Zone + 1; 

    end = rand() %NO_Zone + 1; 

    if (start > end) { 

     TEMP = start; start = end; end = TEMP; 

    } 

 

    for (g = 1; g < start; g++){ 

     for(i = 1; i <= NO_Zone; i++){ 

      P_Offspring[i][g] = P_Chromosome[parent2][i][g]; 

      D_Offspring[g][i] = D_Chromosome[parent2][g][i]; 

     } 
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    } 

 

    for (g = start; g <= end; g++){ 

     for(i = 1; i <= NO_Zone; i++){ 

      P_Offspring[i][g] = P_Chromosome[parent1][i][g]; 

      D_Offspring[g][i] = D_Chromosome[parent1][g][i]; 

     } 

    } 

 

    for (g = end + 1; g <= NO_Zone; g++){ 

     for(i = 1; i <= NO_Zone; i++){ 

      P_Offspring[i][g] = P_Chromosome[parent2][i][g]; 

      D_Offspring[g][i] = D_Chromosome[parent2][g][i]; 

     } 

    } 

   } 

   else if(counter < 2 * NO_Offspring / 3){ 

    start = rand() %NO_Zone + 1; 

    for (g = 1; g < start; g++) 

     for(i = 1; i <= NO_Zone; i++) 

      P_Offspring[i][g] = P_Chromosome[parent1][i][g]; 

     

    for (g = start; g <= NO_Zone; g++) 

     for(i = 1; i <= NO_Zone; i++) 

      P_Offspring[i][g] = P_Chromosome[parent2][i][g]; 
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    start = rand() %NO_Zone + 1; 

    for (g = 1; g < start; g++) 

     for(i = 1; i <= NO_Zone; i++) 

      D_Offspring[g][i] = D_Chromosome[parent1][g][i]; 

      

    for (g = start; g <= NO_Zone; g++) 

     for(i = 1; i <= NO_Zone; i++) 

      D_Offspring[g][i] = D_Chromosome[parent2][g][i]; 

   } 

   else{ 

    for (g = 1; g <= NO_Zone; g++){ 

     for(i = 1; i <= NO_Zone; i++){ 

      TEMPD = (double)rand()/(double)(RAND_MAX); 

      if (TEMPD <= 0.5){ 

       P_Offspring[i][g] = 

P_Chromosome[parent1][i][g]; 

      } 

      else{ 

       P_Offspring[i][g] = 

P_Chromosome[parent2][i][g]; 

      } 

      TEMPD = (double)rand()/(double)(RAND_MAX); 

      if (TEMPD <= 0.5){ 

       D_Offspring[g][i] = 

D_Chromosome[parent1][g][i]; 
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      } 

      else{ 

       D_Offspring[g][i] = 

D_Chromosome[parent2][g][i]; 

      } 

     } 

    } 

   }    

  

  

 /************************************************************ 

   *          

     * 

   *      Light Mutation  

    * 

   *          

     * 

  

 *************************************************************/ 

 

   if ((double)rand()/(double)(RAND_MAX) <= Mutation_Rate) { 

    g = rand() %(NO_Zone) + 1; 

    h = rand() %(NO_Zone) + 1; 

    if (g == h) h = NO_Zone + 1 - g; 

    i = rand() %(5) + 1; 

    switch(i){ 

     case 1: P_Offspring[g][h] = Near1[g]; break; 
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     case 2: P_Offspring[g][h] = Near2[g]; break; 

     case 3: P_Offspring[g][h] = Near3[g]; break; 

     case 4: P_Offspring[g][h] = Near4[g]; break; 

     case 5: P_Offspring[g][h] = Near5[g]; break; 

    } 

    i = rand() %(5) + 1; 

    switch(i){ 

     case 1: D_Offspring[g][h] = Near1[h]; break; 

     case 2: D_Offspring[g][h] = Near2[h]; break; 

     case 3: D_Offspring[g][h] = Near3[h]; break; 

     case 4: D_Offspring[g][h] = Near4[h]; break; 

     case 5: D_Offspring[g][h] = Near5[h]; break; 

    } 

   } 

 

   Candid_Fitness[candid + 1] = Fitness(P_Offspring, D_Offspring); 

    

  

 /************************************************************ 

   *          

     * 

   *    Insertion new individuals policy  

 * 

   *          

     * 

  

 *************************************************************/ 
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   if (Candid_Fitness[candid + 1] < Chromosome_Fitness[parent2]) { 

    candid++; 

    Heavy_Mutation_flag = false; 

    for (i = 1; i <= NO_Zone; i++){ 

     for (j = 1; j <= NO_Zone; j++){ 

      New_P_Chromosome[candid][i][j] = 

P_Offspring[i][j]; 

      New_D_Chromosome[candid][i][j] = 

D_Offspring[i][j]; 

     } 

    } 

    Candid_List[candid] = parent2; 

   }  

  }//End of Crossover counter 

   

   

  /************************************************************ 

  *           

    * 

  *      Heavy Mutation   

   * 

  *           

    * 

  *************************************************************/ 

 

  if (Heavy_Mutation_flag == true) { 
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   for (counter = 1; counter < THE_BEST; counter++) { 

    for (i = 1; i <= NO_Zone; i++){ 

     for (j = 1; j <= NO_Zone; j++){ 

      if (i == j) continue; 

      TEMPD = (double)rand()/(double)(RAND_MAX) - 

RC_EPS; 

      g = 1; 

      while(Pr_Dis[i][g] < TEMPD) g++; 

      switch(g){ 

       case 1: P_Chromosome[counter][i][j] = 

Near1[i]; break; 

       case 2: P_Chromosome[counter][i][j] = 

Near2[i]; break; 

       case 3: P_Chromosome[counter][i][j] = 

Near3[i]; break; 

       case 4: P_Chromosome[counter][i][j] = 

Near4[i]; break; 

       case 5: P_Chromosome[counter][i][j] = 

Near5[i]; break; 

      } 

      do { 

       TEMPD = 

(double)rand()/(double)(RAND_MAX) - RC_EPS; 

       g = 1; 

       while(Pr_Dis[j][g] < TEMPD) g++; 

       switch(g){ 

        case 1: 

D_Chromosome[counter][i][j] = Near1[j]; break; 
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        case 2: 

D_Chromosome[counter][i][j] = Near2[j]; break; 

        case 3: 

D_Chromosome[counter][i][j] = Near3[j]; break; 

        case 4: 

D_Chromosome[counter][i][j] = Near4[j]; break; 

        case 5: 

D_Chromosome[counter][i][j] = Near5[j]; break; 

       } 

      } 

      while (D_Chromosome[counter][i][j] == 

P_Chromosome[counter][i][j]); 

     } 

    } 

    Chromosome_Fitness[counter] = Fitness(P_Chromosome[counter], 

D_Chromosome[counter]); 

    if (Chromosome_Fitness[counter] < THE_BEST_Fitness) { 

     THE_BEST = counter; 

     THE_BEST_Fitness = Chromosome_Fitness[counter]; 

    } 

   }   

   for (counter = THE_BEST + 1; counter <= Population_Size; counter++) { 

    for (i = 1; i <= NO_Zone; i++){ 

     for (j = 1; j <= NO_Zone; j++){ 

      TEMPD = (double)rand()/(double)(RAND_MAX) - 

RC_EPS; 

      g = 1; 

      while(Pr_Dis[i][g] < TEMPD) g++; 
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      switch(g){ 

       case 1: P_Chromosome[counter][i][j] = 

Near1[i]; break; 

       case 2: P_Chromosome[counter][i][j] = 

Near2[i]; break; 

       case 3: P_Chromosome[counter][i][j] = 

Near3[i]; break; 

       case 4: P_Chromosome[counter][i][j] = 

Near4[i]; break; 

       case 5: P_Chromosome[counter][i][j] = 

Near5[i]; break; 

      } 

      do { 

       TEMPD = 

(double)rand()/(double)(RAND_MAX) - RC_EPS; 

       g = 1; 

       while(Pr_Dis[j][g] < TEMPD) g++; 

       switch(g){ 

        case 1: 

D_Chromosome[counter][i][j] = Near1[j]; break; 

        case 2: 

D_Chromosome[counter][i][j] = Near2[j]; break; 

        case 3: 

D_Chromosome[counter][i][j] = Near3[j]; break; 

        case 4: 

D_Chromosome[counter][i][j] = Near4[j]; break; 

        case 5: 

D_Chromosome[counter][i][j] = Near5[j]; break; 

       } 
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      } 

      while (D_Chromosome[counter][i][j] == 

P_Chromosome[counter][i][j]); 

     } 

    } 

    Chromosome_Fitness[counter] = Fitness(P_Chromosome[counter], 

D_Chromosome[counter]); 

    if (Chromosome_Fitness[counter] < THE_BEST_Fitness) { 

     THE_BEST = counter; 

     THE_BEST_Fitness = Chromosome_Fitness[counter]; 

    } 

   } 

  } 

 

 

  /************************************************************ 

  *           

    * 

  *     Updating Population    

  * 

  *           

    * 

  *************************************************************/ 

 

  for (counter = 1; counter <= candid; counter++) { 

   if (Chromosome_Fitness[Candid_List[counter]] > 

Candid_Fitness[counter]) { 
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    Chromosome_Fitness[Candid_List[counter]] = 

Candid_Fitness[counter]; 

    if (Candid_Fitness[counter] < THE_BEST_Fitness) { 

     THE_BEST = Candid_List[counter]; 

     THE_BEST_Fitness = Candid_Fitness[counter]; 

    } 

    for (g = 1; g <= NO_Zone; g++){ 

     for (j = 1; j <= NO_Zone; j++){ 

      P_Chromosome[Candid_List[counter]][g][j] = 

New_P_Chromosome[counter][g][j]; 

      D_Chromosome[Candid_List[counter]][g][j] = 

New_D_Chromosome[counter][g][j]; 

     } 

    } 

   } 

  } 

   

  After = THE_BEST_Fitness; 

  if ((After - Before) >= -RC_EPS){ 

   Generation_Without_Improvement += 1;   

  } 

  else { 

   Generation_Without_Improvement = 0; 

  } 

 

  //cout << Generation <<"\t"<< THE_BEST_Fitness <<"\t"<< time(0) - T <<"\n"; 
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  //RESULT << Generation <<"\t"<< THE_BEST_Fitness <<"\t"<< time(0) - T 

<<"\n"; 

   

  Generation++; 

 }//End Of While 

 

 TEMPD = Fitness(P_Chromosome[THE_BEST], D_Chromosome[THE_BEST]); 

 

 RESULT << "Zone" <<"\t"<< "Pickup" <<"\t"<< "Drop" << "\t" << "Zone" << "\n"; 

 for(i = 1; i <= NO_Zone; i++){ 

  for(j = 1; j < i; j++) 

   RESULT << i <<"\t\t"<< P_Chromosome[THE_BEST][i][j] <<"\t\t"<< 

D_Chromosome[THE_BEST][i][j] << "\t\t" << j << "\n"; 

  for(j = i + 1; j <= NO_Zone; j++) 

   RESULT << i <<"\t\t"<< P_Chromosome[THE_BEST][i][j] <<"\t\t"<< 

D_Chromosome[THE_BEST][i][j] << "\t\t" << j << "\n"; 

 } 

 RESULT << "Lambda" << "\n"; 

 for(i = 1; i <= NO_Station; i++) 

  RESULT << Lambda[i] <<"\t"; 

 RESULT << "\n" << "Mu" << "\n"; 

 for(i = 1; i <= NO_Station; i++) 

  RESULT << Mu[i] <<"\t"; 

 RESULT << "\n" << "Capacity" << "\n"; 

 for(i = 1; i <= NO_Station; i++) 

  RESULT << Cap[i] <<"\t"; 
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 RESULT << "\n" << "Initial Bicycle" << "\n"; 

 for(i = 1; i <= NO_Station; i++) 

  RESULT << Init_Bicycle[i] <<"\t"; 

 RESULT << "\n"; 

 

 for(counter = 1; counter <= Population_Size; counter++){ 

  for(g = 1; g <= NO_Station; g++){ 

   delete [] P_Chromosome[counter][g]; 

   delete [] D_Chromosome[counter][g]; 

  } 

  delete [] P_Chromosome[counter]; 

  delete [] D_Chromosome[counter]; 

 } 

 delete [] P_Chromosome; delete [] D_Chromosome; 

  

 for(counter = 1; counter <= NO_Offspring; counter++){ 

  for(g = 1; g <= NO_Zone; g++){ 

   delete [] New_P_Chromosome[counter][g]; 

   delete [] New_D_Chromosome[counter][g]; 

  } 

  delete [] New_P_Chromosome[counter]; 

  delete [] New_D_Chromosome[counter]; 

 } 

 delete [] New_P_Chromosome; 

 delete [] New_D_Chromosome; 
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 delete [] Chromosome_Fitness; 

  

 for(g = 1; g <= NO_Zone; g++){ 

  delete [] P_Offspring[g]; 

  delete [] D_Offspring[g]; 

 } 

 delete [] P_Offspring; 

 delete [] D_Offspring; 

 

 delete [] Candid_Fitness; 

 delete [] Candid_List; 

 

 return THE_BEST_Fitness; 

} 

double Fitness(int **Pickup , int **Drop){ 

 

 register int i, j; 

 double FitValue = 0; 

 

 for(i = 1; i <= NO_Station; i++){ 

  Lambda[i] = 0; 

  Mu[i] = 0; 

 } 
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 for(i = 1; i <= NO_Zone; i++){ 

  for(j = 1; j < i; j++){ 

   Lambda[Pickup[i][j]] = Lambda[Pickup[i][j]] + Demand[i][j]; 

   Mu[Drop[i][j]] = Mu[Drop[i][j]] + Demand[i][j]; 

  } 

  for(j = i + 1; j <= NO_Zone; j++){ 

   Lambda[Pickup[i][j]] = Lambda[Pickup[i][j]] + Demand[i][j]; 

   Mu[Drop[i][j]] = Mu[Drop[i][j]] + Demand[i][j]; 

  } 

 } 

 for(i = 1; i <= NO_Station; i++){ 

  Lambda[i] = Lambda[i]/NO_Day; 

  Mu[i] = Mu[i]/NO_Day; 

 } 

 

 for(i = 1; i <= NO_Station; i++) 

  Open_Station[i] = 0; 

 

 Sum_Initial_Bike = 0; 

 Sum_Open_Station = 0; 

 for(i = 1; i <= NO_Zone; i++) { 

  for(j = 1; j < i; j++) { 

   Sum_Initial_Bike = Sum_Initial_Bike + Demand[i][j] * 

SS_Dis[Pickup[i][j]][Drop[i][j]]; 

   Open_Station[Pickup[i][j]] = 1; 

   Open_Station[Drop[i][j]] = 1; 
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  } 

  for(j = i + 1; j <= NO_Zone; j++) { 

   Sum_Initial_Bike = Sum_Initial_Bike + Demand[i][j] * 

SS_Dis[Pickup[i][j]][Drop[i][j]]; 

   Open_Station[Pickup[i][j]] = 1; 

   Open_Station[Drop[i][j]] = 1; 

  } 

 } 

 for(i = 1; i <= NO_Station; i++) 

  if(Lambda[i] == 0 && Mu[i] == 0) Open_Station[i] = 0; 

  

 for(i = 1; i <= NO_Station; i++) 

  Sum_Open_Station = Sum_Open_Station + Open_Station[i]; 

 Sum_Initial_Bike = Sum_Initial_Bike/(NO_Day * NO_Hour * Speed); 

 

 Cap[0] = Max(Min_Cap, (int) ceil(Sum_Initial_Bike/Sum_Open_Station)); 

 

 for(i = 1; i <= NO_Station; i++){ 

  if (Open_Station[i] && (Lambda[i] - Mu[i]) > 0){ 

   Init_Bicycle[i] = (int) ceil(Lambda[i] - Mu[i]); 

   Cap[i] = 2 * Init_Bicycle[i] - 1; 

   if (Cap[i] < Cap[0]){ 

    Cap[i] = Cap[0]; 

    Init_Bicycle[i] = (int) ceil((double) (Cap[i] + 1)/2); 

   } 

  } 
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  else if (Open_Station[i] && (Lambda[i] - Mu[i]) <= 0){ 

   Init_Bicycle[i] = (int) ceil(Mu[i] - Lambda[i] + 1); 

   Cap[i] = 2 * Init_Bicycle[i] - 1; 

   if (Cap[i] < Cap[0]){ 

    Cap[i] = Cap[0]; 

    Init_Bicycle[i] = (int) ceil((double) (Cap[i] + 1)/2); 

   } 

  } 

  else{ 

   Cap[i] = 0; 

   Init_Bicycle[i] = 0;   

  } 

 } 

 

 for(i = 1; i <= NO_Zone; i++){ 

  for(j = 1; j < i; j++) 

   FitValue = FitValue + UWC * Demand[i][j] * (ZS_Dis[i][Pickup[i][j]] + 

ZS_Dis[j][Drop[i][j]]); 

  for(j = i + 1; j <= NO_Zone; j++) 

   FitValue = FitValue + UWC * Demand[i][j] * (ZS_Dis[i][Pickup[i][j]] + 

ZS_Dis[j][Drop[i][j]]); 

 } 

 

 

 for(i = 1; i <= NO_Station; i++) 

  if(Cap[i] <= Max_Cap) 
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   FitValue = FitValue + FC[Cap[i]] + FCB * Init_Bicycle[i]; 

  else 

   FitValue = FitValue + (Cap[i] - Max_Cap) * FC[Max_Cap] + FCB * 

Init_Bicycle[i]; 

 

 

 

 for(i = 1; i <= NO_Station; i++){ 

  if(Open_Station[i]){ 

   if(Mu[i]/Lambda[i] < Min_p) 

    FitValue = FitValue + BIG * (Min_p - Mu[i]/Lambda[i]) * (Min_p 

- Mu[i]/Lambda[i]); 

   else if(Mu[i]/Lambda[i] > Max_r) 

    FitValue = FitValue + BIG * (Max_r - Mu[i]/Lambda[i]) * (Max_r 

- Mu[i]/Lambda[i]); 

  } 

 } 

 

 for(i = 1; i <= NO_Zone; i++){ 

  for(j = 1; j < i; j++) 

   if(Pickup[i][j] == Drop[i][j]) 

    FitValue = FitValue + BIG; 

  for(j = i + 1; j <= NO_Zone; j++) 

   if(Pickup[i][j] == Drop[i][j]) 

    FitValue = FitValue + BIG; 

 } 
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 return FitValue; 

} 

 

void FinalFree(void) { 

 register int i; 

 

 for(i = 1; i <= NO_Zone; i++){ 

  delete Demand[i]; 

  delete ZS_Dis[i]; 

  delete Pr_Dis[i]; 

 } 

 delete [] Demand; 

 delete [] ZS_Dis; 

 delete [] Pr_Dis; 

 

 for(i = 1; i <= NO_Station; i++) 

  delete SS_Dis[i]; 

 delete [] SS_Dis; 

 

 delete [] FC; 

 delete [] Init_Bicycle; 

 delete [] Cap; 

 delete [] Near1; 

 delete [] Near2; 
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 delete [] Near3; 

 delete [] Near4; 

 delete [] Near5; 

 delete [] Open_Station; 

} 
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The result of Arena for a bike sharing network with 10 demand zones and 3 possible stations:
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