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Abstract 

 

Automatic keyword tagging with machine learning approach 

 

Xingyu Shen 

 

With the explosive growth of information in the Internet age, the use of keywords 

has become the main tool for users to search for content of interest in a large amount of 

information. Keyword tagging can be divided into in-text keyword extraction and out-

of-text keyword assignment. Keyword extraction is an important area in natural 

language processing (NLP), but the technology still has a lot of immaturity. Traditional 

keyword extraction methods are difficult to meet the commonly desired three 

characteristics simultaneously, i.e., understandability, relevance and good coverage, 

and thus even now in Web 2.0 many tags of web pages are still tagged manually.  

In this thesis, we propose a novel unsupervised keyword extraction method that 

integrates word embedding (GloVe and fastText) with clustering (Affinity Propagation, 

Mean Shift and K-means). We use semantic relevance to cluster the terms in a 

document, and extract the noun phrase nearest to the center of the cluster as the keyword. 

This method ensures that the extracted keywords satisfy the above three characteristics 

at the same time. Our computer simulation results based on Hulth-2003, Krapivin-2009 

and Nguyen-2007 datasets show that the proposed method outperforms all other 

existing methods in terms of common evaluation metrics such as Precision, Recall and 

F1-Score. 

This thesis also proposes a CNN-BiLSTM model for keyword assignment, which 

uses word embedding method and attention mechanism. This model overcomes the 

limitation of single CNN model in ignoring the semantic and syntactic information of 

the input context, and effectively avoids the problem of gradient disappearance or 

gradient diffusion in traditional RNNs. Moreover, the use of attention mechanism can 
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highlight important information and avoid the influence of invalid information on text 

sentiment and classification. Experimental results on three datasets, i.e., 20 

Newsgroups, IMDB, SemEval 2018 task-1, show that the proposed keyword 

assignment method outperforms previous methods in terms of common evaluation 

metrics such as F1-Score, Accuracy and AUC, indicating the wide applicability of our 

method to various datasets. 
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Chapter 1  

 

Introduction 
 

1.1 General information 

The keywords of a document are usually a set of words or phrases, which briefly 

describe the main topic of the document. Keywords are widely used in news stories, 

academic papers, digital media and other documents to facilitate people to efficiently 

manage and retrieve the desired information. With the explosive growth of information 

in the Internet age, the use of keywords has become a main tool for users to search for 

content of interest in a huge amount of information, and for this reason keyword-based 

search engines have been developed by many companies, such as Google and Baidu. 

Since the advent of the World Wide Web, tagging or links across the HTML texts 

has played a crucial role in the success of the Internet. In the end of 1990s, Google first 

adopted in-text content hyperlinks, namely, clicking on a word or a group of words in 

the text directly links to a web page that further explains the content behind these words. 

In this sense, these words in the hyperlink serve as the keywords of the new webpage. 

However, it should be noted that the new page in the form of HTML text may contain 

other keywords all together describing the content of this page. This paragon of cross-

linking different webpages belongs to the so-called Web 2.0 technology, which provides 

the users with not only the searched result based on the input keyword but also more 

information and material relevant to the original search in a more adaptive and 

responsive way, largely facilitating users to search and navigate on internet. Although 

Web 2.0 is better than Web 1.0 which only consists of static pages without 

crosslinking/tagging, its linking and tagging activities are still manual due to the 
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immature of technology in the field of natural language processing (NLP). For example, 

Wikipedia is considered to be among the most successful Web 2.0 services, but in the 

categories at the bottom of each Wikipedia article, the tags are added manually. Figure 

1 shows a Wikipedia website explaining "natural language processing". In the 

categories, however, natural language processing is listed together with other tags 

including Computational linguistics, Speech recognition, Computational fields of study, 

and Artificial intelligence, which are the keywords manually added by the author of the 

page. 

 

Figure 1: The tags of Nature language processing in Wikipedia. 

Fig. 2 shows another application. The abstract is for a conference paper published 

in an academic conference sponsored by the American Computer Society (ACM). At 

the end of the abstract, there are three kinds of keywords: "Categories and Subject 

Descriptions", "General Terms" and "Keywords". The first kind defines a four-level 

classification tree that is provided by the ACM to indicate the subject category of the 

paper. In H.3.3 [Information Storage and Retrieval] Information Storage and Retrieval, 

as it appears above, first the author needs to choose one topic from A. General Literature, 

B. Hardware, C. Computer Systems Organization, D. Software, E. Data, F. Theory of 

Computation, G. Mathematics of Computing, H. Information Systems, I. Computing 

Methodologies Systems Organization, J. Computer Applications and K. Computing 

Milieux that best fits the content of the paper. In the second step, after this author has 

chosen H, there are many sub-topics in Information Systems, including H.0 General, 

H.1 Models and Principles, H.2 Database Management, H.3 Information Storage and 

Retrieval, H.4 Information System Applications, H.5, Information Interfaces and 
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Presentation and H.m Miscellaneous. The author needs to select one of these subtopics 

that is most relevant to the content of the paper. The last step is author needs to 

customize a topic descriptor, usually the same as the description of the second step. 

This is how H.3.3 [Information Storage and Retrieval] Information Storage and 

Retrieval appears in the Categories and Subject Descriptors. 

The second description "General Terms", is also provided by ACM comprising a 

list of 16 words: Algorithms, Design Documentation, Economics, Experimentation, 

Human, Factors, Languages, Legal, Aspects, Management, Measurement, Performance, 

Reliability, Security, Standardization, Theory and Verification. For the "Subject 

Description" and "General Terms", the authors have to select from the provided list. For 

the third description, which is the true "Keywords" of the paper, the authors can freely 

assign it or define according to the material of the paper. As example, Figure 3 shows 

the tags on the web page of the famous Globe NEWS, which has different types of tags 

like World, Canada, Local, Politics, Money, Health, Entertainment, lifestyle, etc. For 

the first piece of news, it is assigned a tag “LIFESTYLE” because the meaning of its 

content is closer to lifestyle than others. The second piece of news belongs to 

"ECONOMY" while the third one is given in "FEATURES". 
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Figure 2: Example of keywords for an ACM conference paper [1]. 
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Figure 3: Tagging of the different pieces of news in Global NEWS website. 

With the explosive growth of information and technology resources, a large 

number of documents and related information are generated at all times. Manual 

tagging of such a huge amount of information has become unrealistic. It is necessary to 

leverage computers to automatically extract and assign keywords for input documents. 

Nowadays, automatic keyword tagging has become a hot research topic in natural 

language processing and information retrieval. At present, keyword tagging has been 

widely used in search engines, news services, electronic libraries and other fields. It 

plays an important role in tasks such as full-text retrieval, text classification, 

information filtering, and document summarization. 

Generally speaking, there are two kinds of keyword tagging approaches: in-text 

tagging and out-of-text keyword tagging. In-text keyword tagging directly marks 

keywords in the text. Just like in Figure 2, under the third description, the "keywords" 

are four phrases selected by the author from the text that can best represent the content 
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of the paper. Out-of-text tags refer to the metadata about a document that is not 

necessarily provided in the body of the text. For example, in Figure 3, any news article 

that goes through the review will be given a tag from a set of tags defined by the website, 

based on the content of the news. This is one of the applications of keyword assignment. 

This thesis investigates methods for automatic keyword tagging, both in-text and 

out-of-text, and explores some of the factors that play a crucial role in the algorithm, 

including machine learning models, deep learning models, dataset strategies, and 

evaluation metrics. The next section briefly introduces the state-of-the-art methods for 

in-text and out-of-text keyword tagging. 

 

1.2 The state-of-the-art methods for automatic keyword 

tagging 

The review of in-text keyword tagging comprises three main approaches: 

statistics-based approach, clustering-based approach and graph -based approach. As for 

the out-of-text keyword tagging, we focus on machine learning and deep learning 

methods which are most commonly used nowadays. 

1.2.1 In-text keyword tagging 

As mentioned earlier, in-text keywords are directly extracted from the text 

provided. The tagging idea is mainly based on the observations and understandings of 

some keyphrases. Statistics-based approaches use deterministic mathematical functions 

to identify the phrases that have unusual frequencies of appearing. Different algorithms 

interpret the notion of unusual frequency in different ways. For example, TF-IDF (Term 

Frequency–Inverse Document Frequency) [2] is a statistical method to assess the 

importance of a word for a document or a set of the documents in a corpus. The 

importance of a word increases positively with its number of occurrences in a document, 

but decreases inversely with its frequency in a corpus. Similarly, Paukkeri [3] assumes 

that an article is first selected in a corpus and key phrases are selected according to the 

ratio of the rank value of each phrase in a document to the corresponding value in the 
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reference corpus, where the rank value is calculated as the relative N-gram frequency 

of the phrase (N-gram frequency is defined that in a sequence of N consecutive words, 

the frequency of Nth word is predicted from the previous N-1 words). When the ratio 

of the N-gram frequency of a phrase in a document to its N-gram frequency in the whole 

corpus is larger, it means that the phrase is more likely to be considered as a keyword 

in the document. RAKE (Rapid Automatic Keyword Extraction) [4] first removes 

stopwords and punctuations in the text and assigns a score to each word. In a general 

sense, stopwords are roughly divided into two categories. One category includes 

function words contained in human language, which are extremely common and have 

no real meaning compared to other words, such as 'he', 'is', 'ours', 'what', 'in', etc. or 

compound nouns like 'The Who', 'or 'Take The'. Another category of words includes 

lexical words, such as 'like', which are too widely used to help narrow the search and 

also reduce the efficiency of the search. If the word is co-occurring (words appear in a 

matrix of a given length) with another word, the score is added by one. Finally, the 

score to frequency ratio of each word is obtained.  

A clustering-based approach groups candidate phrases by similarity, and then 

selects the noun phrase closest to the cluster center from each cluster as the keyword. 

Zhang [5] first used the Word2Vec word embedding method to cluster semantically 

related phrases by applying the results of word embedding (word embedding means 

mapping individual words to dense and continuous vectors in which the semantic 

relations between words are represented) to two clustering algorithms, namely 

hierarchical and K-Means, after calculating co-occurrence frequencies. The extracted 

key phrases are the phrases that are close to the centroid of each cluster. 

The graph-based approach rates phrases by a graph-based ranking algorithm. First 

it represents the document as a graph with each phrase in the document corresponding 

to each vertex. If a co-occurrence relationship is found between two phrases in a 

window of a set size, the two vertices corresponding to these two phrases are connected. 

The importance of these vertices is analyzed recursively by counting the number of 
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adjacent vertices connected to each vertex and by the weights of the connected line 

segments. Linking algorithms were originally used to determine the quality of a web 

page. If a web page has many in-links, which are links on many other pages sending 

traffic to this page, it means that this page is considered as a high-quality page. The 

linking algorithm applied to graph-based keyword extraction methods is to consider 

each word as a web page, and the co-occurrence relationship between words is 

considered as a connection between them. If one word has a high frequency of co-

occurrence with other words, then the it is likely to be considered a keyword. 

The most famous graph-based algorithm is TextRank introduced by Mihalcea and 

Tarau [6], which represents documents as undirected and unweighted graphs and only 

considers word occurrence and co-occurrence frequency features. Wan and Xiao [7] 

first obtained ten highest scoring feature words by using the TF-IDF method for each 

piece document in the document set, and then generated a new set of all the feature 

words. After obtaining the eigenvalue vector of each document from the new set, the 

cosine similarity between the documents is calculated and the similar documents are 

grouped to form a new small set. A global graph is created in every small set of 

documents and the candidate words in the documents are scored using the TextRank 

method, and finally, for each document, the word with the highest score is considered 

as the keyword. Wang et al [8] used Synset in WordNet [9] to obtain semantic 

relationships between words in the text. WordNet is an English dictionary containing 

semantic information built at Princeton University. WordNet groups words according 

to their meaning, and each group of words with the same meaning is called a Synset (a 

collection of synonyms) [9]. Wang et al [8] used Synset in a large document set to obtain 

the number of synonym pairs between each document. He grouped the documents with 

more synonym pairs into a small document set. Thus, a large document set is divided 

into many small document sets. Then the keywords are extracted from these smaller 

document sets using a graph-based approach. 

1.2.2 Out-of-text keyword tagging 
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Based on the learning methods employed, keyword assignment can be treated as a 

multiclass classification problem. Some common machine learning methods can be 

used to train the classifier, such as Naïve Bayes [10], Support Vector Machine (SVM) 

[11], Conditional Random Fields (CRF) [12] and neural networks. 

Jo and Lee [13] proposed a deep learning approach for keyword assignment in 

which a deep belief network (DBN), which is a neural network in which the elements 

within any layer are not connected to each other, connected to a logistic regression layer 

to learn the classifier. This method does not require any manually selected features. It 

uses a greedy hierarchical unsupervised learning method, such as adding an output layer 

after each hidden layer to automatically learn the features of a layer, so that the locally 

optimal parameters of each layer can be obtained. After training, all pre-trained layers 

are simply concatenated for fine-tuning, where the locally optimized parameters are 

used as initial values for all layers. The logistic regression layers output potential latent 

phrases. Meng et al. [14] propose a generative model for keyword prediction with an 

encoder-decoder model using Gated Recurrent Unit (GRU) neural network [15] that 

adopts a copying mechanism [16]. In the field of NLP, due to the limitation of word list 

size, some low frequency words cannot be included in the word list, which is known as 

the out-of-vocabulary (OOV) issue. These words will be displayed uniformly by “UNK” 

instead while their semantic information will be discarded. The copy mechanism 

includes Generate-Mode and Copy-Mode. Generate-Mode calculates the output 

probability of the words in the traditional word list which contains a large number of 

common words, and UNK while Copy-Mode calculates the output frequency of the 

words in the source sequence word list. Finally, the word probabilities given by the two 

modes are summed to obtain the final word probability distribution. 

1.3 Challenges faced by keyword tagging 

A document often involves multiple topics. For example, an academic paper on 

keyword extraction may involve both the topic of "keyword extraction" and the topic 

of "graph method". It may also contain some other methods for keyword extraction and 
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then those methods may carry the meaning of other topics. As a summary of the subject 

of the document, keywords should have proper coverage. Taking various aspects into 

consideration, document keywords should meet the following three characteristics at 

the same time: 

1. Understandability. The keywords should be understandable to every individual. 

This means that the extracted keywords should be grammatically correct and 

meaningful. For example, "machine learning" is a grammatical phrase, but "machine 

learned" is meaningless. So, if the extracted keywords comprise incorrect or 

meaningless phrases, it means that this keyword extraction method does not meet the 

requirement of understandable. 

2. Relevance. The keywords are semantically related to the document topic. For 

example, for a document about "machine learning", we want to extract keywords that 

are all about this topic machine learning or closely related topics, such as artificial 

intelligence, speech recognition, etc. 

3. Good coverage. The keywords should cover the whole document very well. 

Suppose we have a document that describes "Beijing" from different aspects such as 

"location", "atmosphere" and "culture". Then the extracted keywords should cover all 

three aspects and not just a part of them. For example, if a certain method extracts 

keywords that are all related to "location" and have nothing to do with "atmosphere" 

and "culture", then this method does not have good coverage. 

In view of the above three characteristics, the current keyword tagging algorithms 

face the following two important challenges: whether keywords can basically satisfy 

all the above three characteristics, and whether they can interpret true meaning of the 

text.  

1.3.1 Difficulties in meeting keyword characteristics 

The statistics-based method considers only the statistical properties of the words 

and thus it cannot guarantee all extracted keywords/keyphrases are grammatical. Also, 

this method ignores the semantic relevance among the words, making the extracted 
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keywords less likely to be relevant to the main theme of the document. Moreover, the 

statistics-based method ranks words only in terms of their frequency of occurrence in 

the document, but the top ranked keywords may not necessarily cover the entire 

document. 

The graph-based approach yields keywords that can meet the characteristic of 

being understandable. However, it is not efficient in terms of relevance, TextRank, for 

example, uses co-occurrence windows to emphasize the semantic relationship between 

local words, but the extracted words do not show good relevance to the whole text. In 

addition, the graph-based approach tends to select words that appear more frequently 

in the document, leading to a poor coverage in general. 

The clustering-based approach groups all candidate terms in a document into 

clusters based on semantic relevance. The noun phrases closest to the cluster center of 

each cluster represent the keywords to be extracted. This approach ensures good 

coverage and has the characteristic of relevance. In addition, only noun phrases are 

selected for keyword, which also ensures the keyword has the understandability. But to 

the best of my knowledge, no one has combined the fastText and GloVe (Global Vectors 

for Word Representation) word embedding methods, which are two newer word 

embedding methods after the Word2Vec, with clustering idea except for Wan and Xiao's 

work [8], which is one of the inspirations for my research. 

1.3.2 Difficulties in interpreting true meaning of the text 

The relevance of the keyword to the document is an important indicator for 

assigning keywords. Out-of-text keyword tags often involve the problem of opinion 

mining. Determining phrases that identify the polarity in the text is generally difficult. 

Sentiment polarity analysis is the process of analyzing, processing, generalizing, and 

reasoning about subjective texts with emotional overtones. Many adjectives are 

domain-dependent (e.g., two comments about a machine: long-time battery life vs. 

taking a long time to turn on). The former is satisfaction with the machine, implying a 

positive evaluation, while the latter is dissatisfaction with the machine, i.e., a negative 
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evaluation; similarly, emotion and subjectivity are context-sensitive. For example, in 

the evaluation of a movie adapted from a book, the sentence "It was very enjoyable to 

read this book" is negative in the context of the movie review, but positive in the context 

of the review of this book. Therefore, it is not possible to make judgments about the 

polarity of textual sentiment based only on individual phrases or words such as long 

time or enjoyable, which is a difficult issue for keyword assignment. 

It is known that the attention mechanism can assign different weights to each part 

of the input, which can help the model pay more attention to important information and 

ignore irrelevant information, enabling the model to make more accurate judgments 

without increasing the computational load of the model. This may motivate us to deal 

with the problem of ambiguity in understanding the actual meaning behind the 

text/document by applying the attention mechanism to the deep learning model. 

1.4 Organization of this thesis 

The rest of the thesis is organized as follows:  

Chapter 2: This chapter first describes commonly used statistics-based keyword 

extraction methods TF-IDF, RAKE, graph-based method TextRank, and one existing 

clustering based-method that integrates Word2Vec and K-means clustering. We then 

study two word embedding methods, GloVe and fastText, in comparison with the 

previously reviewed Word2Vec on the different datasets in order to identify the most 

suitable word embedding scheme for keyword extraction. The selected word 

embedding scheme, i.e., fastText is combined with three clustering methods (Affinity 

Propagation, Mean Shift and K-means) to extract the key words. Intensive computer 

simulation of the proposed keyword extraction schemes with comparison to other 

existing methods is also presented. 

Chapter 3: This chapter first introduces the background and basic principles of 

deep learning including CNN and RNN. Then it gives a detailed description of our 

proposed CNN-BiLSTM model using word embedding and attention mechanism for 
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keyword assignment. Computer simulation of the proposed model is also conducted in 

comparison with other existing methods. 

Chapter 4: This chapter concludes the thesis and gives some directions for future 

research. 
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Chapter 2  

 

Unsupervised Keyword Extraction 

Integrating Word Embedding with 

Clustering 
 

In this chapter, we propose an unsupervised method that to extract keywords from 

texts by integrating word embedding and clustering methods. In Section 2.1, we will 

introduce the background and recent works in keyword extraction. Section 2.2 describes 

the proposed unsupervised keyword extraction model. Performances of the proposed 

method are evaluated in Section 2.3 through computer simulation based on popular 

datasets. 

2.1 Previous work 

In the previous chapter, we briefly mentioned three unsupervised methods for 

keyword extraction, i.e., statistics-based methods TF-IDF and RAKE and graph-based 

method TextRank. Here in Subsection 2.1.1, we will introduce these methods in detail. 

We will also introduce the Word2Vec word embedding and the K-Means clustering in 

Subsection 2.1.2. 

2.1.1 Statistics-based and graph-based keyword extraction methods 

TF-IDF:  

In a given document, term frequency (tf) is the frequency of a particular word in 

the document. This number is the normalized to the term count. For word 𝑠𝑠𝑖𝑖  in a 

particular document 𝑑𝑑𝑗𝑗, its importance can be expressed as: 
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𝑠𝑠𝑡𝑡𝑖𝑖,𝑗𝑗 =
𝑛𝑛𝑖𝑖,𝑗𝑗∑ 𝑛𝑛𝑘𝑘,𝑗𝑗𝑘𝑘  

where 𝑛𝑛𝑖𝑖,𝑗𝑗 is the number of times of the word 𝑠𝑠𝑖𝑖 in the file 𝑑𝑑𝑗𝑗, and the denominator 

is the total number of occurrences of all words in the file 𝑑𝑑𝑗𝑗. 
Inverse document frequency (idf) is a measure of the general importance of words. 

The 𝑖𝑖𝑑𝑑𝑡𝑡  of a particular word can be obtained by dividing the total number of 

documents containing the word, and the resulting quotient is calculated by taking the 

logarithm of the base 10: 𝑖𝑖𝑑𝑑𝑡𝑡𝑖𝑖 = 𝑙𝑙𝑙𝑙 |𝐷𝐷|

|�𝑠𝑠𝑙𝑙𝑙𝑙 𝑗𝑗: 𝑠𝑠𝑖𝑖𝜖𝜖𝑑𝑑𝑗𝑗�| 
where |𝐷𝐷|  represents the total number of files in the corpus, and |�𝑗𝑗: 𝑠𝑠𝑖𝑖 ∈ 𝑑𝑑𝑗𝑗�| 
represents the number of files that contain word 𝑠𝑠𝑖𝑖 (here, the number of files is not 

zero). 

Define the product of 𝑠𝑠𝑡𝑡𝑖𝑖,𝑗𝑗 and 𝑖𝑖𝑑𝑑𝑡𝑡𝑖𝑖 as: 𝑠𝑠𝑡𝑡𝑖𝑖𝑑𝑑𝑡𝑡𝑖𝑖,𝑗𝑗 = 𝑠𝑠𝑡𝑡𝑖𝑖,𝑗𝑗 ∙ 𝑖𝑖𝑑𝑑𝑡𝑡𝑖𝑖 
The score of 𝑠𝑠𝑡𝑡𝑖𝑖𝑑𝑑𝑡𝑡𝑖𝑖,𝑗𝑗 represents the relative importance of word 𝑠𝑠𝑖𝑖 to document 𝑑𝑑𝑗𝑗. 

After the score of 𝑠𝑠𝑡𝑡𝑖𝑖𝑑𝑑𝑡𝑡𝑖𝑖,𝑗𝑗  is calculated for all words, all scores are sorted in 

descending order and the words at the top are selected as the keywords for document 𝑑𝑑𝑗𝑗. 
TextRank: 

TextRank is a graph-based ranking algorithm that builds a graph model by dividing 

text into words or phrases, and uses a voting mechanism to rank the words or groups of 

words. The algorithm does not require prior training of multiple documents, but only 

uses the information from a single document itself to conduct keyword extraction. 

The general model of TextRank can be expressed as a directed weighted graph 𝐺𝐺 =  (𝑉𝑉,𝐸𝐸), consisting of a point set 𝑉𝑉 and an edge set 𝐸𝐸, where 𝐸𝐸 is a subset of 𝑉𝑉 × 𝑉𝑉. Each candidate phrase is a point and the line between every two phrases is called 

edge. The score of point 𝑉𝑉𝑖𝑖 is defined as follows: 
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WS(Vi) = (1 − d) + d × � 𝑤𝑤ji∑ 𝑤𝑤jkVk𝜖𝜖Out(Vj) WS(Vj)Vj𝜖𝜖In(Vi)  

The WS score indicates the weight of a word, and the summation on the right side of 

the above equation indicates the degree of contribution of each adjacent sentence to this 

sentence. The weight of the edge between any two points 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗 is denoted as 𝑤𝑤ji. 
For a given point 𝑉𝑉𝑖𝑖, In (𝑉𝑉𝑖𝑖) is the set of points pointing to 𝑉𝑉𝑖𝑖, and 𝑂𝑂𝑂𝑂𝑠𝑠(𝑉𝑉𝑖𝑖) is the set 

of points that 𝑉𝑉𝑖𝑖 points to. 

The parameter 𝑑𝑑  is a damping factor ranging from 0 to 1. It represents the 

probability that one point points to any other point in the graph, and in general 𝑑𝑑 is set 

to 0.85. 

RAKE: 

RAKE first divides a text into multiple clauses using punctuations, and then each 

clause is divided into phrases using stopwords as separators. These phrases are used as 

candidates for the finally extracted keywords. 

Next, each phrase is divided into several words by spaces. Each word is assigned 

a score and the score for each phrase is obtained by adding up the scores of each word 

in the phrase. A key point is to take into account the co-occurrence relationship of each 

word in this phrase. The score of each word is defined as: 𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤𝑖𝑖(𝑤𝑤)  =  𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑𝐷𝐷𝑖𝑖𝑙𝑙𝑤𝑤𝑖𝑖𝑖𝑖(𝑤𝑤) / 𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑𝐹𝐹𝑤𝑤𝑖𝑖𝐹𝐹𝑂𝑂𝑖𝑖𝑛𝑛𝑖𝑖𝐹𝐹(𝑤𝑤) 

That is, the score of word 𝑤𝑤  is the degree of the word (its degree increases by 1 

whenever the word appears in a window of set length with another word at the same 

time) divided by the frequency of the word (the total number of times the word appears 

in the document). Then for each candidate key phrase, the score of each word is 

accumulated and ranked. RAKE uses the first third of the total number of candidate 

phrases as the extracted keywords. 

2.1.2 Keyword extraction using word embedding and clustering 
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Here we introduce another keyword extraction method proposed in [17] that makes 

use of word embedding and K-means clustering. This method will be used as 

benchmark for performance comparison with our proposed method. 

Word2Vec 

Word co-occurrence is at the heart of several machine learning algorithms for 

natural language processing, including the Word2Vec recently introduced by Mikolov 

et al. [18]. The neural models in [18] were shallow networks with only a single linear 

hidden layer, allowing it to be trained on datasets consisting of more than a billion of 

words. In particular, the authors proposed two new architectures for Word2Vec: the 

continuous bag-of-words (CBOW) and skip-gram models in Word2Vec. They also 

publicly released a toolbox with implementations of their algorithms and models that 

were pre-trained on large datasets, making it easy to implement in other NLP tasks. The 

CBOW of Word2Vec was trained to predict a word given its context, as shown in the 

left part of Figure 4. The input consists of C one-hot [18] encoded word vectors. As the 

hidden layer is shared for all input words, the input vectors are averaged in the hidden 

layer, hence leading to so-called continuous bag-of-words. As shown in the right part 

of Figure 4, the skip-gram method is essentially a reversed CBOW architecture. Instead 

of predicting a word given its context, this model is trained to predict the words 

surrounding a given word. 
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Figure 4: TwoWord2Vec model architectures proposed by Mikolov et al. (image 

taken from [19]). 

The CBOW model in Figure 4 takes the input 𝑋𝑋1, which is a one-hot input neuron 

of 𝑉𝑉 × 1. Assume that the hidden layer has N neurons, then the hidden layer 𝐻𝐻 is a 

vector of 𝑁𝑁 × 1. The output vector and the input vector are of equal dimension 𝑉𝑉 × 1. 𝑊𝑊𝑣𝑣×𝑛𝑛 and 𝑊𝑊𝑛𝑛×𝑣𝑣 are initialized randomly and their elements are initialized to [-1,1], 

so that 𝐻𝐻 = 𝑋𝑋𝑇𝑇𝑊𝑊𝑣𝑣×𝑛𝑛, 𝑂𝑂 = 𝐻𝐻𝑇𝑇𝑊𝑊𝑛𝑛×𝑣𝑣. After the output vector is normalized, the error 

vector of the output layer is calculated by subtracting the probability vector, obtaining 

from the whole dataset, from the target vector. Once the errors are known, the weights 

of 𝑊𝑊𝑣𝑣×𝑛𝑛 and 𝑊𝑊𝑛𝑛×𝑣𝑣 can be updated iteratively using backpropagation. If the input is 

C vectors of 𝑉𝑉 × 1, the hidden layer vectors obtained by multiplying all the input layer 

vectors and 𝑊𝑊𝑣𝑣×𝑛𝑛 are averaged and the result is denoted as 𝐻𝐻. The final 𝑊𝑊𝑣𝑣×𝑛𝑛 is the 

word embedding vector. 

In an extension of their original work, Mikolov et al. later proposed modifications 

to make theWord2Vec algorithm more computationally efficient [20]. First of all, they 

found that the frequent computation of the softmax function on high dimensional 

vectors was expensive. To improve on this, they suggested that a hierarchical softmax 

function be used instead [21]. The hierarchical softmax uses a binary Huffman tree that 

can estimate the standard softmax output while being much easier to compute. As an 
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alternative to this, they also proposed to use negative sampling during the training. 

Usually, the loss is determined based on the output for the complete vocabulary, 

including all positive and negative samples. With a large vocabulary there are many 

negative samples, which is the main reason why computing the softmax function is 

expensive. By only training all positive samples and a fixed amount of random negative 

samples, we only need to compute significantly reduced outputs and update the weights 

each step, largely increasing the efficiency. As a final improvement, to balance common 

and rare words, they performed subsampling on frequent words. Some frequent words 

(such as stopwords like "a", "in", "the" or "it") provide much less information than rare 

words, and the word vectors of frequent words do not change significantly after 

hundreds of training sessions. A subsampling method is proposed: each word in the 

training set is removed with a certain probability. The more frequently the words appear, 

then the greater the probability of being removed. The method of subsampling frequent 

words accelerates parameter learning and significantly improves the accuracy of the 

word vector for rare words. 

K-means clustering 

K-means clustering, as an unsupervised learning clustering method with 

particularly low complexity, is widely used in the field of data mining. Its goal is to 

form groupings of data points based on the number of clusters represented by the 

variable 𝑘𝑘, which needs to be defined in advance before execution. K-means clustering 

uses an iterative refinement method to generate clusters based on the number of user-

defined cluster centers. First, it randomly selects 𝑘𝑘 centroids and finds the closest data 

points to each centroid to form 𝑘𝑘 clusters. Then, the algorithm recalculates the new 

centroids of each cluster by continuously iterating until the algorithm converges to an 

optimal value. The algorithm consists of the following main steps: 

1. For a set value of 𝑘𝑘, 𝑘𝑘 points are randomly initialized into k clusters. 

2. To form 𝑘𝑘 clusters, each data point of the data set is assigned to its nearest 

centroid using the Euclidean distance. 
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3. The centroids are recalculated by averaging all of the data points assigned in 

each cluster so that the total variance within clusters can be reduced. 

4. Steps 2 and 3 iterate when the centroid of each cluster no longer changes, or 

when the data points assigned to each cluster are the same as the previous assignment, 

the algorithm stops. The stopping criterion can also be maximum iteration number [22].  

2.2 Proposed unsupervised keyword extraction method 

As mentioned before, good keywords should satisfy three characteristics at the 

same time: 1. understandability, 2. relevance, and 3. good coverage. Statistics-based 

methods do not satisfy these three characteristics. Graph-based methods cannot 

guarantee that the top-ranked keywords can cover the whole document, namely they 

don’t satisfy characteristic 3. Moreover, since the graph-based methods only consider 

local relevance, they cannot fully satisfy characteristic 2. Clustering-based methods 

group terms according to semantic relevance, which ensures good coverage of the 

document and satisfies features 2 and 3. Also, clustering-based methods extract only 

the keywords in accordance with noun group, so this ensures that the extracted 

keywords satisfy characteristic 1. 

To develop an unsupervised keyword extraction method, we first study three word 

embedding methods, Word2Vec, GloVe and fastText that give the word vectors of 

candidate keywords. We then evaluate the three different word embedding methods 

according to the semantic relevance of the words. That is, we calculate the cosine 

similarity of the pairs of words to determine which word embedding method is most 

suitable for the dataset. Next, we apply three clustering algorithms, namely, Affinity 

Propagation, Mean Shift and K-means to the candidate keywords given by the word 

embedding scheme in order to determine the final keywords. 

Our proposed keyword extraction method mainly includes the following steps:  
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Figure 5: Workflow of our proposed method. 

Step 1. Preprocessing and candidate keywords selection: the text is preprocessed 

and candidate keywords are selected in the form of nouns or noun phrases. 

Step 2. Vectorization: all candidate keywords are converted into word vectors 

using three word embedding methods respectively. 

Step 3. Similarity calculation: we calculate the cosine similarity between pairs of 

words to determine which word embedding is most suitable for the dataset. 

Step 4. Clustering: we group the candidate keywords resulting from word 

embedding into clusters using three clustering algorithms. 

Step 5. Keyword identification: finally, we select the candidate words closest to 

the centroids as the keywords to be extracted. 

In the following, the whole process will be described in detail. 

2.2.1 Preprocessing 

Preprocessing the text simply means bringing the text into a form that is 

predictable and analyzable for the task. Its purpose is to identify the set of terms, single 

words or compound words, which can be tagged as keywords or keyphrases in the next 

steps of the method. The preprocessing step is composed of the following operations: 

1. Tokenization: to split the entire text into individual words. 

2. Token normalization: which, depending on the task, can be as simple as case 

folding (discarding information about letter casing) or lemmatization (the process of 

grouping together the inflected forms of a word so they can be analyzed as a single item, 
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identified by the word's lemma). Hence, we take the word "multiple" as an example to 

explain lemmatization. As seen from the following graph, the word "multiple" may 

appear in many different forms such as "multiplications", "multiplicatively", 

"multipliers" and "multipliable". These different forms are converted to their most basic 

form "multiple".  

 

3. Removal of stopwords: stopwords are certain words that are automatically 

filtered out during preprocessing in order to save storage space and improve search 

efficiency in information retrieval. All forms of stopwords have already been described 

in the previous chapter. 

4. Spelling correction: deal with ambiguous spelling variations such as “Nokia N8” 

vs. “Nokia N-8” vs. “Nokia N 8”, or “Windows 2000” vs. “Windows 2k”, “don’t” vs. 

“dont” and “stateof-the-art” vs. “state of the art” etc. Depending on the application, the 

desired course of action may be to use the exact form as it appears in the text, or 

normalize the tokens to a single canonical form. 

In my thesis, the preprocessing process uses two standard tools: Stanford 

University's Core NLP Suite and Python's Natural Language Toolkit (NLTK) [23]. 

The core NLP suite from Stanford University provides a set of tools are to be used 

in accomplishing natural language tasks. It can effectively give the basic form and part 

of speech (POS) of each word and most importantly it is able to recognize noun phrases, 

since they are the basic forms of the keywords that we need to extract [25]. Natural 
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Language Toolkit NLTK provides a set of language processing libraries. This tool can 

be used for stemming, tagging, parsing, etc. during preprocessing. 

2.2.2 Word vectorization 

Word vectorization or word embedding is to transform a one-dimensional text into 

a high-dimensional word vector, and in most cases, the dimension can be as high as 300. 

Each word corresponding to a distinct word vector. The word vector of a word group is 

an average vector obtained simply by adding together the vector of each word and then 

taking the average value. A good word embedding approach should be able to represent 

the words with similar meanings as similar vectors and can effectively capture the 

semantic similarity between a word and its context in a document. In what follows, we 

introduce two word embedding methods: GloVe and fastText. 

GloVe 

Pennington, Socher, and Manning introduced Global Vectors (GloVe) in 2014 [25] 

by constructing a global word co-occurrence frequency matrix. The core idea behind 

their approach lies in the use of word co-occurrence ratios rather than pure frequencies. 

A simple example below can illustrate the word co-occurrence frequency matrix. 

Suppose a corpus has only three sentences, which are “I like studying deep learning”, 

“I like NLP” and “I like flying”. After tokenization, a text group “I like studying deep 

learning I like NLP I like fly” is obtained. Suppose we create a word frequency co-

occurrence matrix using a window of length 2. This matrix has the structure of Table 1 

below. The top row and the left-most column are from different words of the tokenized 

form by sequence. A window of length 2 is moving through the entire tokenization. The 

number of co-occurrences of the two words within this window will give the values in 

the table which constitute the co-occurrence matrix. Obviously, this matrix is symmetric. 

Table 1: A sample of word frequency co-occurrence matrix. 

 I like studying deep learning NLP fly 

I 0 3 0 0 1 0 0 

like 3 0 1 0 0 1 1 
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studying 0 1 0 1 0 0 0 

deep 0 0 1 0 1 0 0 

learning 1 0 0 1 0 0 0 

NLP 0 1 0 0 0 0 0 

fly 0 1 0 0 0 0 0 

First, let 𝑋𝑋𝑖𝑖𝑗𝑗 be the number of times a word 𝑖𝑖 occurs within the fixed window 

(usually the window size is set to 2 - 20) with a word 𝑗𝑗. Let 𝑋𝑋𝑖𝑖 be the total number of 

co-occurrences of word 𝑖𝑖 with all other words. Then, the co-occurrence probability 𝑋𝑋𝑖𝑖𝑗𝑗 of 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗 can be defined as 𝑃𝑃𝑖𝑖𝑗𝑗 and which is calculated as follows: 𝑃𝑃𝑖𝑖𝑗𝑗 = 𝑃𝑃(𝑗𝑗|𝑖𝑖) =
𝑋𝑋𝑖𝑖𝑗𝑗𝑋𝑋𝑖𝑖 =

𝑋𝑋𝑖𝑖𝑗𝑗∑ 𝑋𝑋𝑖𝑖𝑘𝑘𝑘𝑘 (1) 

Table 2 shows an example of co-occurrence probabilities of several typical words. 

Two words 𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑗𝑗 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠  are chosen as target words to illustrate their 

relationships with other four words, denoted as 𝑘𝑘 , selected from the text. The co-

occurrence probabilities of these words with are calculated from the corpus of around 

six billion words (tokens). The ratio of co-occurrence probabilities is denoted as 
𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑗𝑗𝑖𝑖. 

When word 𝑘𝑘 has similar semantics to 𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠, the ratio 
𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑗𝑗𝑖𝑖 will be large, 

which is the case of 𝑘𝑘 =  𝑤𝑤𝑠𝑠𝑠𝑠𝑖𝑖𝑤𝑤. On the other hand, when word 𝑘𝑘 is not relevant to 

both target words, this ratio is also close to 1, which is the case of 𝑘𝑘 = 𝑡𝑡𝑠𝑠𝑠𝑠ℎ𝑖𝑖𝑤𝑤𝑛𝑛. 

Table 2: Co-occurrence probabilities for target words 𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 with 

selected context words from a 6 billion token corpus [25]. 

Probability and Ratio 𝑘𝑘 = 𝑠𝑠𝑤𝑤𝑙𝑙𝑖𝑖𝑑𝑑 𝑘𝑘 = 𝑙𝑙𝑠𝑠𝑠𝑠 𝑘𝑘 = 𝑤𝑤𝑠𝑠𝑠𝑠𝑖𝑖𝑤𝑤 𝑘𝑘 = 𝑡𝑡𝑠𝑠𝑠𝑠ℎ𝑖𝑖𝑤𝑤𝑛𝑛 

P(k|ice) 1.9 × 10−4 6.6 × 10−5 3.0 × 10−4 1.7 × 10−5 

P(k|steam) 2.2 × 10−5 7.8 × 10−4 2.2 × 10−3 1.8 × 10−5 

P(k|ice)/ P(k|steam) 8.9 8.5 × 10−2 1.36 0.96 

With the above intuition, Pennington, Socher, and Manning [25] have proposed a 

method to model the ratio of the co-occurrence probabilities involving two target words 

and one context word, namely,  𝐹𝐹�𝜔𝜔𝑖𝑖,𝜔𝜔𝑗𝑗 ,𝜔𝜔𝑘𝑘�� =
𝑃𝑃𝑖𝑖𝑘𝑘𝑃𝑃𝑗𝑗𝑘𝑘 (2) 
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with 𝜔𝜔𝜖𝜖𝑅𝑅𝑑𝑑  and  𝜔𝜔�𝜖𝜖𝑅𝑅𝑑𝑑  which are the target word vectors and the text vector, 

respectively. 

Further, by defining 𝐹𝐹�𝜔𝜔𝑖𝑖,𝜔𝜔𝑗𝑗 ,𝜔𝜔𝑘𝑘�� = exp��𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑗𝑗)𝑇𝑇 ∙ 𝜔𝜔𝑘𝑘��� (3) 

We obtain  𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑗𝑗𝑖𝑖 = exp [�𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑗𝑗)𝑇𝑇 ∙ 𝜔𝜔𝑘𝑘�� = exp (𝜔𝜔𝑖𝑖𝑇𝑇 ∙ 𝜔𝜔𝑘𝑘� −𝜔𝜔𝑗𝑗𝑇𝑇 ∙ 𝜔𝜔𝑘𝑘� ) =
𝑒𝑒𝑒𝑒𝑒𝑒�𝜔𝜔𝑖𝑖𝑇𝑇∙𝜔𝜔𝑖𝑖� �𝑒𝑒𝑒𝑒𝑒𝑒�𝜔𝜔𝑗𝑗𝑇𝑇∙𝜔𝜔𝑖𝑖��      (4) 

In this sense, we can rewrite 𝑃𝑃𝑖𝑖𝑘𝑘 and 𝑃𝑃𝑗𝑗𝑘𝑘 as 𝑃𝑃𝑖𝑖𝑘𝑘 = 𝑖𝑖𝑒𝑒𝑒𝑒(𝜔𝜔𝑖𝑖𝑇𝑇 ∙ ωk� ),𝑃𝑃𝑗𝑗𝑘𝑘 = 𝑖𝑖𝑒𝑒𝑒𝑒�𝜔𝜔𝑗𝑗𝑇𝑇 ∙ ωk�� (5) 

Or in general we have 𝑃𝑃𝑖𝑖𝑗𝑗 = 𝑖𝑖𝑒𝑒𝑒𝑒�𝜔𝜔𝑖𝑖𝑇𝑇 ∙ ωȷ�� (6) 

By taking logarithm of (6), we have 

     log (𝑃𝑃𝑖𝑖𝑗𝑗) = log �𝑋𝑋𝑖𝑖𝑗𝑗𝑋𝑋𝑖𝑖 � = log�𝑋𝑋𝑖𝑖𝑗𝑗� − log(𝑋𝑋𝑖𝑖) = ω𝑖𝑖𝑇𝑇 ∙ 𝜔𝜔𝚥𝚥�              (7) 

Based on which we can write log�𝑋𝑋𝑖𝑖𝑗𝑗� as 

log�𝑋𝑋𝑖𝑖𝑗𝑗� = ω𝑖𝑖𝑇𝑇 ∙ 𝜔𝜔𝚥𝚥� + 𝑏𝑏𝑖𝑖 + 𝑏𝑏𝚥𝚥� (8) 

where 𝑏𝑏𝑖𝑖 and 𝑏𝑏𝚥𝚥�  are the bias terms introduced and log(𝑋𝑋𝑖𝑖) is contained in 𝑏𝑏𝑖𝑖. 
Using the above expressions, we define the loss function as 

� [ω𝑖𝑖𝑇𝑇 ∙ 𝜔𝜔𝚥𝚥� + 𝑏𝑏𝑖𝑖 + 𝑏𝑏𝚥𝚥� − log�𝑋𝑋𝑖𝑖𝑗𝑗�]2𝑖𝑖,𝑗𝑗=1 (9) 

In order to reduce the influence of too frequently occurring words on the model 

and to distinguish the role of words with different frequencies of occurrence, a 

weighting function 𝑡𝑡�𝑋𝑋𝑖𝑖𝑗𝑗� is introduced to the loss function by the authors. Specially, 

the following non-decreasing function and upper-bounded function is used. 

𝑡𝑡�𝑋𝑋𝑖𝑖𝑗𝑗� = �� 𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒�𝑚𝑚  𝑖𝑖𝑡𝑡 𝑒𝑒 < 𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒
1         𝑤𝑤𝑠𝑠ℎ𝑖𝑖𝑤𝑤𝑤𝑤𝑖𝑖𝑠𝑠𝑖𝑖 (10) 

where 𝑠𝑠 is an adjustable parameter which is set to 0.75 in the paper. 
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Using (10), the loss function is modified as 

𝐽𝐽 = � 𝑡𝑡�𝑋𝑋𝑖𝑖𝑗𝑗��𝜔𝜔𝑖𝑖𝑇𝑇 ∙ 𝜔𝜔𝚥𝚥� + 𝑏𝑏𝑖𝑖 + 𝑏𝑏𝚥𝚥� − log�𝑋𝑋𝑖𝑖𝑗𝑗��2𝑖𝑖,𝑗𝑗=1 (11) 

In the paper, AdaGrad algorithm for gradient descent was used to randomly sample 

all non-zero elements in matrix 𝑋𝑋. The learning rate was set to 0.05 and iterated 50 

times on vector size smaller than 300 and 100 times on other sizes of vectors until the 

loss function converged. For word 𝑖𝑖 , two vectors 𝜔𝜔𝑖𝑖   and 𝜔𝜔𝚤𝚤�  are obtained after 

completing the training. 𝑋𝑋  is symmetric, so in principle 𝜔𝜔𝑖𝑖   and 𝜔𝜔𝚤𝚤�  are also 

symmetric and their difference is that the initialized values are different, leading to 

different values after training. To improve the robustness, we finally choose the sum of 𝜔𝜔𝑖𝑖  and 𝜔𝜔𝚤𝚤� as the word vector for word 𝑖𝑖. 
fastText 

Mikolov was a former employee of Google Brain and now is with the Facebook 

AI Research team (FAIR) which contributes to the developments in NLP field, 

including machine translation, natural language understanding and generation, question 

answering, dialogue and so on. The current state-of-the-art in word embeddings is the 

fastText library which has been made available open-source by FAIR. The algorithms 

used in fastText build upon the Continuous Skip-gram model and can be trained on 

corpora with billions of words in minutes [26][27]. 

A disadvantage of the Word2Vec algorithms is that they ignore the structure of 

words by assigning different vectors to each word independently. Grammatical 

inflections are treated as completely separate words, i.e., words like ’𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑒𝑒’, ’𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑒𝑒𝑠𝑠’, 

’𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑛𝑛𝑙𝑙’ , ’𝑠𝑠𝑙𝑙𝑖𝑖𝑒𝑒𝑠𝑠’ , which are examples of verb inflections, and are modeled 

independently of each other. Given a large enough corpus, the Word2Vec model is likely 

to be able to assign the inflections of ’𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑒𝑒’ similar word vectors because they appear 

in similar contexts in the corpus. However, certain languages have much more 

complicated and rare inflections, making it possible for certain inflections to not occur 
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frequently enough even in very large corpora. English is a very easy language to model 

with word embeddings since the number of inflections is relatively low and compound 

words usually occur in open form (𝑒𝑒𝑤𝑤𝑠𝑠𝑠𝑠 𝑤𝑤𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖, rather than 𝑒𝑒𝑤𝑤𝑠𝑠𝑠𝑠𝑤𝑤𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖). On the other 

hand, the complex grammatical rules of other languages also amplify the disadvantages 

of word2Vec when applied on languages other than English, e.g., Spanish has more than 

40 different verb inflections, while Finnish has 15 noun inflections [26].  

The fastText algorithm known as Subword Information Skip-gram (SISG) solves 

the problem of modeling languages with rare word inflections by using character 𝑛𝑛-

grams. A character 𝑛𝑛-gram is a sequence of 𝑛𝑛 letters contained within a word. The 

SISG algorithm first adds an empty character before and after each word, then each 

word is decomposed into all of its character 𝑛𝑛-grams where 𝑛𝑛 =  3, 4, 5. For example, 

<sleep> would be represented by the 3-grams < 𝑠𝑠𝑙𝑙, 𝑠𝑠𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖𝑒𝑒, 𝑖𝑖𝑒𝑒 >, 4-grams <𝑠𝑠𝑙𝑙𝑖𝑖, 𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖, 𝑙𝑙𝑖𝑖𝑖𝑖𝑒𝑒, 𝑖𝑖𝑖𝑖𝑒𝑒 >  and 5 -grams < 𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖, 𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑒𝑒, 𝑙𝑙𝑖𝑖𝑖𝑖𝑒𝑒 > . Then, a word vector is 

trained for each of the n-grams of < 𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑒𝑒 >. Finally, the original word < 𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑒𝑒 > 

is assigned the word vector equal to the sum of the word vectors of its n-grams. 

Following this rule, the words ’𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑒𝑒’ , ’𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑒𝑒𝑠𝑠’ , ’𝑠𝑠𝑙𝑙𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑛𝑛𝑙𝑙’ ,’𝑠𝑠𝑙𝑙𝑖𝑖𝑒𝑒𝑠𝑠’  share many n-

grams and so their word embeddings will be correlated. 

Furthermore, SISG remarkably allows for creating word embeddings for words 

which were not at all present in the training corpus. These are referred to as out-of-

vocabulary words (OOV). Given an OOV word, as long as sufficiently many of its n-

grams are present in the corpus, it can be modeled as the sum of the word vectors of 

those n-grams. This is a truly astonishing result as it gives the model a much deeper 

knowledge of the language and allows for almost any sequence of characters to be 

systematically assigned a word embedding. 

In order to evaluate the applicability of different word embedding methods to a 

dataset, there are two different similarity calculation methods to evaluate the semantic 

relatedness for the generated word embedding vectors: the Euclidean distance and the 

cosine similarity. 
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The Euclidean distance is defined as the shortest straight-line distance between 

two points, namely, 

𝑖𝑖𝑑𝑑(𝑠𝑠, 𝑏𝑏) = �� (𝑠𝑠𝑖𝑖 − 𝑏𝑏𝑖𝑖)2𝑛𝑛1 (12) 

where 𝑠𝑠 and 𝑏𝑏 are two different vectors obtained by the word embedding method and 𝑛𝑛 represents the length of the vector. 

Suppose there are two words represented by a high-dimensional word embedding 

vector and the cosine similarity represents the cosine of the angle between them in the 

inner product space, provided that they are both non-zero vectors. If the cosine 

similarity is closer to 0, the two words vectors tend to be orthogonal, indicating that 

the two words are semantically unrelated. If the cosine similarity of two words is close 

to ±1, the two words are in the same or opposite direction, indicating that they are 

semantically the same or opposite terms. 

cos 𝜃𝜃 = 𝑚𝑚→ 𝑏𝑏→�� 𝑚𝑚→�� �� 𝑏𝑏→�� =
∑ 𝑠𝑠𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖=𝑁𝑁𝑖𝑖=1�∑ 𝑠𝑠𝑖𝑖2𝑖𝑖=𝑁𝑁𝑖𝑖=1 �∑ 𝑏𝑏𝑖𝑖2𝑖𝑖=𝑁𝑁𝑖𝑖=1 (13)

 

2.2.3 Clustering 

The purpose of clustering is to assign target word vectors to groups so that word 

vectors in the same group are semantically more similar than word vectors in other 

groups. After we select the most suitable word embedding method, the word vectors of 

all candidate words will be clustered using Affinity Propagation, Mean Shift and K-

means clustering, and the centroids are extracted as final keywords. The K-means 

clustering algorithm has already been explained in section 2.1.2. Here we introduce 

affinity propagation and mean shift algorithms below. 

Affinity Propagation Clustering 

Traditional clustering methods usually first select 𝐾𝐾  initial data as clustering 

centers and assign other data points according to the Euclidean distance from the initial 

clustering centers, and then iterate to determine the final clustering centers. The basic 
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idea of AP algorithm is to treat all samples as points of a network, and then calculate 

the clustering center of each sample by the message transmission of each edge in the 

network. During the clustering process, two types of messages are passed among the 

points, namely attractiveness and availability which will be explained below in detail, 

and the AP algorithm continuously updates the attractiveness and availability of each 

point through an iterative process until high quality cluster centers are generated, and 

the remaining data points are assigned to the corresponding clusters [28]. 

The similarity between data point 𝑖𝑖 and its respective cluster center at point 𝑗𝑗 is 

denoted as 𝑠𝑠(𝑖𝑖, 𝑗𝑗). Generally, the Euclidean distance is used to calculate the similarity 

between these points, and all the similarity values are taken as negative values. 

Therefore, the larger the similarity value is, the closer the points are to each other, which 

is convenient for the later comparison calculation. The reason for taking negative values 

is to facilitate the later calculation. Suppose 𝑤𝑤  is a matrix composed of all 𝑠𝑠(𝑖𝑖, 𝑗𝑗) . 

Since 𝑖𝑖 and 𝑗𝑗 traverse every data point, the 𝑤𝑤 matrix is a symmetric square matrix. 

The diagonal element 𝑠𝑠(𝑖𝑖, 𝑖𝑖) or 𝑒𝑒(𝑖𝑖) refers to the preference degree of point 𝑖𝑖 
as the exemplar, which is used to indicate whether point 𝑖𝑖 can become the exemplar. 

The larger the value of 𝑒𝑒(𝑖𝑖) , the greater the possibility of this point becomes the 

exemplar. Also, 𝑠𝑠(𝑖𝑖, 𝑖𝑖)  is usually taken as the median value of 𝑤𝑤 . The number of 

clusters is influenced by the reference degree 𝑒𝑒. If each data point is considered as a 

possible exemplar, then 𝑒𝑒 should be taken as the same value, the median value of 𝑤𝑤. 

The value 𝑤𝑤(𝑖𝑖,𝑘𝑘) is called "responsibility", which is used to describe the extent 

that point 𝑘𝑘  is suitable as an exemplar for data point 𝑖𝑖  and 𝑠𝑠(𝑖𝑖,𝑘𝑘)  is called 

"availability", which is used to describe the suitability of point 𝑖𝑖 to select point 𝑘𝑘 as 

its exemplar. The "responsibility" 𝑤𝑤(𝑖𝑖,𝑘𝑘) is updated as follows: 𝑤𝑤𝑡𝑡+1(𝑖𝑖,𝑘𝑘) ← 𝑠𝑠(𝑖𝑖, 𝑘𝑘) −𝑠𝑠𝑠𝑠𝑒𝑒𝑗𝑗≠𝑘𝑘 {𝑠𝑠𝑡𝑡(𝑖𝑖, 𝑗𝑗) + 𝑤𝑤𝑡𝑡(𝑖𝑖, 𝑗𝑗)} , 𝑖𝑖 ≠ 𝑘𝑘
                                      𝑤𝑤𝑡𝑡+1(𝑖𝑖,𝑘𝑘) ← 𝑠𝑠(𝑖𝑖, 𝑘𝑘) −𝑠𝑠𝑠𝑠𝑒𝑒𝑗𝑗≠𝑘𝑘 {𝑤𝑤(𝑖𝑖, 𝑗𝑗)} , 𝑖𝑖 = 𝑘𝑘                                 (14)

 

And the "availability" 𝑠𝑠(𝑖𝑖, 𝑘𝑘) is updated as follows: 
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𝑠𝑠𝑡𝑡+1(𝑖𝑖,𝑘𝑘) ← 𝑠𝑠𝑖𝑖𝑛𝑛 �0, 𝑤𝑤𝑡𝑡+1(𝑘𝑘,𝑘𝑘) + � 𝑠𝑠𝑠𝑠𝑒𝑒{0, 𝑤𝑤𝑡𝑡+1(𝑗𝑗,𝑘𝑘)}𝑗𝑗≠𝑖𝑖,𝑘𝑘 � , 𝑖𝑖 ≠ 𝑘𝑘  

𝑠𝑠𝑡𝑡+1(𝑖𝑖,𝑘𝑘) ←�𝑠𝑠𝑠𝑠𝑒𝑒{0, 𝑤𝑤𝑡𝑡+1(𝑗𝑗,𝑘𝑘)}𝑗𝑗≠𝑘𝑘 , 𝑖𝑖 = 𝑘𝑘 (15) 

After several iterations, exemplars can be determined by calculating maximum of 𝑠𝑠(𝑖𝑖,𝑘𝑘) + 𝑤𝑤(𝑖𝑖,𝑘𝑘) for point 𝑖𝑖. 
Furthermore, in order to avoid numerical oscillations in some circumstances when 

updating the messages, the damping factor 𝜆𝜆 is introduced to the iteration process: 𝑤𝑤𝑡𝑡+1(𝑖𝑖,𝑘𝑘) = 𝜆𝜆 ∙ 𝑤𝑤𝑡𝑡(𝑖𝑖,𝑘𝑘) + (1 − 𝜆𝜆) ∙ 𝑤𝑤𝑡𝑡+1(𝑖𝑖,𝑘𝑘) (16) 𝑠𝑠𝑡𝑡+1(𝑖𝑖, 𝑘𝑘) = 𝜆𝜆 ∙ 𝑠𝑠𝑡𝑡(𝑖𝑖, 𝑘𝑘) + (1 − 𝜆𝜆) ∙ 𝑠𝑠𝑡𝑡+1(𝑖𝑖, 𝑘𝑘) (17) 

where 𝑠𝑠 denotes the iteration index. 

The advantage of the AP algorithm is that it does not require a prior setting of the 

number of clusters, which is different from K-means clustering that requires a prior 

setting of 𝐾𝐾. And the results obtained from multiple executions of the AP clustering 

algorithm are identical, so there is no need to perform random selection of initial values. 

The widespread use of AP [28] demonstrates its ability in dealing with large datasets 

fast and efficiently. 

Mean Shift Clustering 

The Mean Shift algorithm estimates the density of a sample using a kernel function. 

It sets a kernel function at each sample point on the dataset and then sums all the kernel 

functions to get the kernel density estimation of the dataset. Suppose we have a 𝑑𝑑-

dimensional dataset of size 𝑛𝑛  and the bandwidth of the kernel function 𝐾𝐾  is the 

parameter ℎ. The kernel density estimation function for the dataset is defined as 

𝑡𝑡(𝑒𝑒) =
1𝑛𝑛ℎ𝑑𝑑 �𝐾𝐾�𝑒𝑒 − 𝑒𝑒𝑖𝑖ℎ �𝑛𝑛

𝑖𝑖=1 (18) 
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where 𝐾𝐾(𝑒𝑒) is a radially symmetric kernel, and 𝐾𝐾(𝑒𝑒) satisfying the kernel function 

condition denoted by 𝐾𝐾(𝑒𝑒) = 𝑖𝑖𝑘𝑘,𝑑𝑑𝑘𝑘 ��|𝑒𝑒|�2� (19) 

where 𝑖𝑖𝑘𝑘,𝑑𝑑 is a normalization constant such that the integral of 𝐾𝐾(𝑒𝑒) is equal to 1. The 

basic goal of the Mean Shift algorithm is to shift the sample points in the direction of 

increasing local density and the direction of the gradient in the density of the dataset is 

the direction of the fastest increase in density.  

The gradient of the density estimator (18) is given by 

𝛻𝛻𝑡𝑡(𝑒𝑒) =
2𝑖𝑖𝑘𝑘,𝑑𝑑𝑛𝑛ℎ𝑑𝑑+2

�(𝑒𝑒𝑖𝑖 − 𝑒𝑒)𝑙𝑙 ���𝑒𝑒 − 𝑒𝑒𝑖𝑖ℎ ��2�𝑛𝑛
𝑖𝑖=1

                                                      =
2𝑖𝑖𝑘𝑘,𝑑𝑑𝑛𝑛ℎ𝑑𝑑+2

��𝑙𝑙���𝑒𝑒 − 𝑒𝑒𝑖𝑖ℎ ��2�𝑛𝑛
𝑖𝑖=1 � ⎣⎢⎢

⎢⎡∑ 𝑒𝑒𝑖𝑖𝑙𝑙(��𝑒𝑒 − 𝑒𝑒𝑖𝑖ℎ ��2)𝑛𝑛𝑖𝑖=1∑ 𝑙𝑙���𝑒𝑒 − 𝑒𝑒𝑖𝑖ℎ ��2�𝑛𝑛𝑖𝑖=1 − 𝑒𝑒⎦⎥⎥
⎥⎤

(20)

 

where 𝑙𝑙(𝑠𝑠)  =  −𝑘𝑘′(𝑠𝑠). The first sum term is proportional to the density estimate at 𝑒𝑒 

computed with kernel 𝐺𝐺(𝑒𝑒) = 𝑖𝑖𝑔𝑔,𝑑𝑑𝑙𝑙(||𝑒𝑒||2) and the second term 

𝑠𝑠ℎ(𝑒𝑒) =

∑ 𝑒𝑒𝑖𝑖𝑙𝑙���𝑒𝑒− 𝑒𝑒𝑖𝑖ℎ ��2�𝑛𝑛𝑖𝑖=1
∑ 𝑙𝑙���𝑒𝑒− 𝑒𝑒𝑖𝑖ℎ ��2�𝑛𝑛𝑖𝑖=1

− 𝑒𝑒 (21) 

is the mean shift [29]. The mean shift procedure is obtained by successive computation 

of the mean shift vector 𝑠𝑠ℎ(𝑒𝑒𝑡𝑡)  and translation of the window 𝑒𝑒𝑡𝑡+1  =  𝑒𝑒𝑡𝑡  +

 𝑠𝑠ℎ(𝑒𝑒𝑡𝑡 ). Finally, the mean shift is able to find the point that makes the gradient of the 

density function converge to zero. The mean shift mode finding process is illustrated in 

Figure 6.  
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Figure 6: Mean Shift Mode Finding. 

2.3 Experimental Results 

This section presents our experimental results to demonstrate the performances of 

word embedding and clustering algorithms, based on which we compare the proposed 

keyword tagging methods with several existing techniques. To this end, we first briefly 

introduce the datasets and evaluation metrics. 

2.3.1 Datasets and evaluation metrics for in-text keyword tagging 

Datasets: 

Hulth-2003: The first dataset was developed by A. Hulth in 2003 [30]. It consists 

of 2000 scientific abstracts, which are divided into training set (1000 abstracts), test 

(500 abstracts), and validation (500 abstracts). Each abstract is accompanied by a list 

of keywords that Hulth, together with other authors, manually labeled based on 

semantics. We combine the training and test collections from Hulth-2003 (a total of 

1500 abstracts) to form the training set for our experiments, and use the manually 

annotated keywords as the gold standard. 

Krapivin-2009: The second dataset is another well-recognized dataset designed by 

by Krapivinet al. in 2009 [31]. It consists of 2304 scientific papers from computer 
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science domain published by ACM during 2003-2005. Different parts of the papers, 

such as title and abstract, are separated, and contained in the dataset, enabling extraction 

of keywords based on a part of the article text. Formulae, tables, figures and LaTeX 

markups were removed automatically. Each paper has its key phrases assigned by the 

authors and verified by the reviewers. 

Nguyen-2007. The third dataset, proposed by Nguyen in 2007 [32], is composed 

of 211 scientific conference papers. The gold keywords were manually assigned by 

volunteers’ students, each given three papers to read. 

Table 3 shows the details and statistics of the aforementioned three datasets. In this 

table, |𝐷𝐷| is the number of documents, 𝐿𝐿𝑚𝑚𝑣𝑣𝑔𝑔 is the average document length in words, 𝑁𝑁𝑚𝑚𝑣𝑣𝑔𝑔  is the average gold-standard keywords (i.e., unigrams, or single words) per 

document, 𝐾𝐾𝑚𝑚𝑣𝑣𝑔𝑔  is the average gold-standard keyphrases (n-grams, or phrases of 

length greater than or equal to 2) assigned per document, and 𝐾𝐾𝑃𝑃𝑚𝑚𝑣𝑣𝑔𝑔 is the average 

percentage of keyphrases present in the text. 

Table 3: Detailed description of three common datasets for keyword extraction. 

Collection |𝐷𝐷| 𝐿𝐿𝑚𝑚𝑣𝑣𝑔𝑔 𝑁𝑁𝑚𝑚𝑣𝑣𝑔𝑔 𝐾𝐾𝑚𝑚𝑣𝑣𝑔𝑔 𝐾𝐾𝑃𝑃𝑚𝑚𝑣𝑣𝑔𝑔 

Hulth-2003 1500 129 23 10 90.07 

Krapivin-2009 2304 7961 11 5 96.91 

Nguyen-2007 211 164 23 11 95.89 

Evaluation Metrics: 

To evaluate the performance of keyword extraction, we used three most commonly 

used evaluation metrics in the field of information retrieval:  𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑤𝑤𝑛𝑛 (𝑃𝑃) , 𝑅𝑅𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑙𝑙 (𝑅𝑅) and 𝐹𝐹1 − 𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤𝑖𝑖.  

Precision refers to the ratio of the number of keywords correctly identified by an 

extraction algorithm to the total number of keywords extracted by the algorithm. This 

ratio indicates the ability of the algorithm to accurately extract keywords: 𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑤𝑤𝑛𝑛 =
𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝐹𝐹 𝑖𝑖𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑 𝑘𝑘𝑖𝑖𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑𝑠𝑠𝐴𝐴𝑙𝑙𝑙𝑙 𝑖𝑖𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑 𝑘𝑘𝑖𝑖𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑𝑠𝑠 (22) 
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Recall refers to the ratio of the number of keywords correctly selected by the 

extraction algorithm to the total number of labelled keywords (grand truth). The recall 

rate reflects the overall ability of the algorithm to capture true keywords: 𝑅𝑅𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑙𝑙 =
𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝐹𝐹 𝑖𝑖𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑 𝑘𝑘𝑖𝑖𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑𝑠𝑠𝐴𝐴𝑙𝑙𝑙𝑙 𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑠𝑠 𝑘𝑘𝑖𝑖𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑𝑠𝑠 (23) 𝐹𝐹1 − 𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖 is a comprehensive assessment of 𝑃𝑃 and 𝑅𝑅, which is defined as 

the harmonic mean of precision and recall, 𝐹𝐹1 − 𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖 = 2 ×
𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑤𝑤𝑛𝑛 × 𝑅𝑅𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑙𝑙𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑤𝑤𝑛𝑛 + 𝑅𝑅𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑙𝑙 (24) 

2.3.2 Performances of word embedding methods 

First of all, we evaluate the performance of three pre-trained word embedding 

methods, i.e., Word2Vec, fastText and GloVe. 

Word2Vec was trained on the April 2018 version of Wikipedia. Its parameters are 

set as follows. The dimensionality of the vector is 300, the maximum distance between 

the target item (word or entity) and the contextual word to be predicted is 5, the number 

of iterations of the Wikipedia page is 10, and the number of negative samples is 15 [9].  

The GloVe vectors were trained on Wikipedia 2014+Gigaword 5 with a total of 6 

billion tokens and 400K words [25].  

The fastText vectors were trained on Wikipedia 2017, the UMBC web corpus and 

the statmt.org news dataset (16B tokens) with a 1-million-word vectors [33]. 

For all required word embedding methods, the vector length is 300 features. The 

preprocessed data is put into each of the three trained word embedding models 

respectively and each model obtains a 300-dimensional vector for each candidate word. 

Since it isn’t possible to graphically show a high-dimensional vector, we apply Principal 

Component Analysis (PCA) to reduce the dimension of word vectors to 2-D data by 

selecting feature vectors with larger feature values to base transform the original data. 

The dimension-reduced word vectors obtained by the three word embedding methods 

are intuitively shown in Figure 7-9. 
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Figure 7: Two-dimensional word vectors obtained by Word2Vec word 

embedding method. 
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Figure 8: Two-dimensional word vectors obtained by GloVe word embedding 

method. 
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Figure 9: Two-dimensional word vectors obtained by fastText word embedding 

method. 

It should be mentioned that in the original 300-dimensional space, the words 

having similar semantics should have close word vectors. However, this semantic 

similarity could not be illustrated in the 2-D space due to the dimension reduction. 

Usually, we calculate the cosine similarity between two word vectors. To assess 

effectiveness of word embedding methods, we calculate the cosine similarity between 

multiple pairs of words and analyze thesis scores versus semantic similarity between 

the corresponding word pairs. To explain this idea, we take six pairs of words as 

example. These six pairs of words are shown in table 4 along with their similarity scores 

computed by the three embedding methods. 
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Table 4: Scores of the cosine similarity of six pair of words after using three 

different word embedding methods. 

Method GloVe fastText Word2Vec 

dialogue, dialogues 0.450 0.856 0.717 

structure, 

structures 

0.653 0.833 0.544 

type, classification 0.323 0.372 0.714 

model, sequence 0.177 0.218 0.863 

scan, relations 0.027 0.054 0.087 

understanding, 

encoder 

0.004 0.056 0.770 

The four pairs of words in the first four rows of Table 4 are all very close 

semantically. Dialogue and dialogues, as well as structure and structures, are only 

different in singular and plural, so the similarity between the two pairs of words should 

be very high and close to 1, from our semantic understanding. Type and classification 

are both related to categories and in the area of data science, and sequence is a branch 

of the model, so they both have some relevance and the third score should be lower 

than the first two and higher than the fourth one. From the results in the table, fastText 

has the highest score in the first two pairs. Word2Vec achieves the highest score for the 

third and fourth pairs, but the value is too large, while fastText and GloVe are within 

our expectation. GloVe achieved the lowest score in the last two pairs and the score of 

fastText also shows that there is almost no semantic relationship in last two pairs of 

words. 

Thus, fastText appears to be a more reliable word vector model. Considering our 

test results, even if "self-attention" is not used in the pre-training vocabulary, fastText 

can still create a vector representation for it while GloVe and Word2Vec cannot. This 

shows that fastText has better coverage than two others. As a consequence, we choose 

fastText word embedding method. 
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2.3.3 Performances of clustering methods 

We apply Affinity Propagation, Mean Shift and K-means to the fastText word 

embedding results for each document separately. K-means requires the number of 

clusters (𝑛𝑛_𝑖𝑖𝑙𝑙𝑂𝑂𝑠𝑠𝑠𝑠𝑖𝑖𝑤𝑤𝑠𝑠) as its input, while Affinity Propagation and Mean Shift do not. 

For each dataset, we take the number of cluster centers automatically obtained by 

applying the AP algorithm and tuning the bandwidth parameter of Mean Shift so that 

the number of cluster centers obtained by the two clustering methods is close. We 

therefore applied K-Means twice to ensure fairness in the evaluation process, once to 

set 𝑛𝑛_𝑖𝑖𝑙𝑙𝑂𝑂𝑠𝑠𝑠𝑠𝑖𝑖𝑤𝑤𝑠𝑠 based on the results returned by Affinity Propagation and another time 

to set 𝑛𝑛_𝑖𝑖𝑙𝑙𝑂𝑂𝑠𝑠𝑠𝑠𝑖𝑖𝑤𝑤𝑠𝑠 based on the results returned by Mean Shift, and the obtained results 

were all averaged. 

For Hulth-2003 dataset, I discovered that a bandwidth of 2.20 of Mean Shift would 

result in similar average 𝑛𝑛_clusters for the two algorithms. For Nguyen-2007 dataset, 

a bandwidth of 8.07 of Mean Shift leads to the similar average 𝑛𝑛_clusters for the two 

algorithms. For Krapivin-2009 dataset, we set the bandwidth of Mean Shift as 2.15. 

Table 5 show the average number of clusters obtained by AP clustering and mean shift 

clustering for three datasets. 

Table 5: The average number of clusters obtained by AP and MS clustering based 

on three datasets. 

Method Average number of clusters 

 Hulth-2003 dataset Nguyen-2007 

dataset 

Krapivin-2009 

dataset 

Affinity Propagation 14.623 4.145 14.844 

Mean Shift 14.311 3.936 14.675 

As discussed above, Affinity Propagation and Mean Shift generated their own 𝑛𝑛_clusters, which would lead to keyword lists of different lengths. Thus, we sliced the 

lists returned by RAKE and TextRank differently on 𝑛𝑛 for each respective algorithm. 

We will compare our methods with RAKE and TextRank. The reason why we do not 
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use TF-IDF is because it requires a larger corpus of documents to be more effective in 

our experiments. 

Tables 6-8 list experimental results obtained using our methods and some other 

existing methods on the three datasets. For each method, in addition to accuracy, recall, 

and F1-Score, the tables give the total number of extracted keywords, the average 

number of keywords extracted per document, as well as the total number of accurately 

extracted keywords and the average number of correct keywords for each article. 

Affinity Propagation, Mean Shift and K-means are represented by AP, MS and KM, 

respectively. 

Table 6: Results and comparison of keyword extraction on Hulth-2003 dataset. 

 Extracted keywords Correct keywords Evaluation Metrics 

Method Total 

number 

Average Total 

number 

Average Precision Recall F1-Score 

Hulth’s[30] 7815 15.6 1973 3.9 0.252 0.517 0.339 

TextRank 6784 13.7 2116 4.3 0.312 0.431 0.362 

RAKE 6552 13.1 2207 4.3 0.337 0.415 0.372 

AP based on 

fastText 

7303 14.6 2417 4.8 0.342 0.697 0.459 

MS based 

on fastText 

7158 14.3 2397 4.8 0.313 0.586 0.408 

KM based 

on fastText 

8013 13.0 2484 4.0 0.350 0.660 0.457 

In table 6 shows that the AP combined with fastText gives the highest Recall 0.697 

and F1-Score 0.459. The fastText-based KM gets the highest accuracy 0.350. 

It indicates that for dataset Hulth-2003, our method is better than the existing three 

methods. For the fastText-based AP, F1-Score even exceeds the result of TextRank, 

RAKE and Hulth’s by about 23%. 
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Table 7: Results and comparison of keyword extraction on Nguyen-2007 dataset. 

 Extracted keywords Correct keywords Evaluation Metrics 

Method Total 

number 

Average Total 

number 

Average Precision Recall F1-Score 

TextRank 955 4.8 132 0.67 0.139 0.134 0.193 

RAKE 922 3.1 273 0.80 0.259 0.266 0.262 

AP based on 

fastText 

1028 4.1 305 1.21 0.297 0.331 0.313 

MS based 

on fastText 

1008 3.9 234 0.91 0.233 0.304 0.263 

KM based 

on fastText 

1128 4.2 311 1.16 0.276 0.333 0.301 

In table 7, the fastText-based AP achieves the highest Precision 0.297 and F1-

Score 0.313, and KM clustering based on fastText word embedding gets the highest 

Recall 0.333. This comparison shows that for dataset Nguyen-2007, our method is 

better than TextRank and RAKE. For the AP clustering based on fastText, F1-Score 

exceeds the results of TextRank and RAKE by about 4%. 

Table 8: Results and comparison of keyword extraction on Krapivin-2009 dataset. 

 Extracted keywords Correct keywords Evaluation Metrics 

Method Total 

number 

Average Total 

number 

Average Precision Recall F1-Score 

TextRank 6784 13.7 950 1.9 0.140 0.187 0.160 

RAKE 6552 13.1 1107 2.2 0.169 0.410 0.239 

AP based on 

fastText 

7158 14.8 1868 3.8 0.261 0.441 0.328 

MS based 

on fastText 

6799 14.6 1339 2.9 0.197 0.375 0.289 
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KM based 

on fastText 

7743 13.4 1850 3.2 0.239 0.423 0.299 

In table 8, the fastText-based AP again achieves the highest Precision 0.261, Recall 

0.441 and F1-Score 0.328. Obviously, our method is better than TextRank and RAKE. 

For the AP based on fastText, F1-Score exceeds the results of TextRank and RAKE by 

about 37.24%.  

The above simulation results show that for each dataset, the method integrating 

the fastText word embedding and the AP clustering algorithm achieve high accuracy, 

recall and F1-score. This can also demonstrate the stability of the algorithms in different 

datasets. However, Mean Shift performed much worse than K-means and Affinity 

Propagation. Upon further investigation, we discovered that this is probably because 

the embedding dimension of 300 is too high for Mean Shift to work effectively. 

According to a review of mean-shift algorithms for clustering [34][35], the kernel 

density estimator applied by the Mean Shift algorithm would break down in high 

dimensions. 

2.4 Summary 

This chapter first described three commonly used statistics-based keyword 

extraction methods TextRank and RAKE, and one existing clustering based-method 

that integrates Word2Vec and K-means clustering. We then studied two word 

embedding methods, GloVe and fastText, in comparison with the previously reviewed 

Word2Vec on different datasets in order to identify the most suitable word embedding 

scheme for keyword extraction. The selected word embedding scheme, i.e., fastText is 

combined with three clustering algorithms (Affinity Propagation, Mean Shift and K-

means) to extract the keywords. 

Our experimental results showed that the keywords extracted by fastText word 

embedding integrated with Affinity Propagation clustering can greatly improve the 

accuracy, recall and F1-Score compared with existing methods, on all the three 

commonly-used datasets.  
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Chapter 3  

 

Keyword Assignment Based on CNN-

BiLSTM Model Using Word 

Embedding and Attention 

Mechanism 
 

In this chapter, we propose a new CNN-BiLSTM model using word embedding 

and self-attention that can improve the accuracy of keyword assignment. In Section 3.1, 

we will introduce the background of deep learning and the basic principles of CNN and 

RNN. Section 3.2 describes the proposed supervised keyword assignment model. 

Computer simulation of the proposed model is conducted in comparison with other 

existing methods in Section 3.3. 

3.1 Deep learning background 

Deep learning is essentially implemented with the help of on multilayer perceptron 

(MLPs) or deep neural networks (DNNs). By far, the most used as well as the most 

effective multilayer neural networks are convolutional neural networks (CNN) and 

recurrent neural networks (RNN). Currently, CNN and RNN have very good results in 

processing one-dimensional to multidimensional signals such as text, image, audio and 

video. Statistically speaking, deep learning is able to make predictions on a given 

sample and can give the most appropriate class label based on the prediction result. 

Given a training set, a DNN can be well trained so that the new and similar data and 

samples in the test set will get the same labels as the training set. 
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Compared to traditional machine learning methods, deep learning methods have 

three great advantages. First, deep learning algorithms do not need to manually extract 

features when training data with different labels through datasets. Second, deep learning 

methods have strong generalization, and the same deep learning methods can be used 

for different applications and different data types. Thus, they can be effectively applied 

to real-life classification problems. In addition, deep learning can make use of multiple 

GPUs to perform huge parallel computations. When the amount of data is large, it 

produces better output compared to traditional machine learning methods. In the 

following, we will introduce the basic principles of CNN and RNN in deep learning. 

3.1.1 CNN 

CNNs consist of three main layers, namely, convolutional layer, pooling layer and 

fully connected layer, denoted by CONV, POOL and FC, respectively. These three 

layers form a convolutional neural network that generally obeys the following pattern: 𝐼𝐼𝑁𝑁𝑃𝑃𝐼𝐼𝐼𝐼 → [𝐶𝐶𝑂𝑂𝑁𝑁𝑉𝑉 ∗ 𝐵𝐵 → 𝑃𝑃𝑂𝑂𝑂𝑂𝐿𝐿? ] ∗ 𝐶𝐶 → 𝐹𝐹𝐶𝐶 ∗ 𝐷𝐷 → 𝐹𝐹𝐶𝐶, 

where 𝐼𝐼𝑁𝑁𝑃𝑃𝐼𝐼𝐼𝐼 denotes the input layer, the 𝐹𝐹𝐶𝐶 represents the output layer, and the 

remaining are all hidden layers. In the above pattern, symbol “∗” denotes a repeat while 

the symbol “?” stands for whether an additional optional layer will be added before this 

symbol, and “→ ” indicates edge between layers. 𝐵𝐵,𝐶𝐶,𝐷𝐷  denote the number of 

repetitions, and 𝐵𝐵,𝐶𝐶,𝐷𝐷 ≥  0 are hyperparameters which can be adjusted. In the CNN 

model in Figure 10, the hyperparameters are set to 𝐵𝐵 = 2, 𝐶𝐶 = 2, and 𝐷𝐷 = 1 for the 

above pattern. The green part of the figure is the input layer, the red part is the output 

layer, and the blue parts are the hidden layers. Hidden layers consist of four 
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convolutional layers, two pooling layers and one fully connected layer. In the following 

we will explain the three different types of hidden layers in detail. 

Convolutional layers  

The convolutional layer is composed of filters, where the role of the filter is to 

extract the basic features from the input vector. As a neuron that can be connected to 

part of the input, the number of filters is also a tunable hyperparameter. The filters in a 

convolutional layer (marked in blue in the figure and labeled with f) are depicted in 

Figure 11. The four green nodes are input vectors of size 4. The left figure shows three 

input nodes 𝑒𝑒1, 𝑒𝑒2, and 𝑒𝑒3 to be processed with 𝑤𝑤1 as output while the right figure 

shows input nodes 𝑒𝑒2, 𝑒𝑒3, and 𝑒𝑒4 to be processed with 𝑤𝑤2 as output. In both figures, 𝜔𝜔1, 𝜔𝜔2, and 𝜔𝜔3 are the weights of the filter, and both the weights and bias 𝑏𝑏 are kept 

constant. 

The convolution layer contains three hyperparameters, which are the sizes of the 

filter, span and zero padding. The first hyperparameter is the size of the filter, which 

defines the size of the region composed of the left and right parts as in Figure 11. The 

second hyperparameter is the span size, which determines the number of different nodes 

in the two regions. The third hyperparameter is the size of zero padding, which 

represents the number of zero nodes to be added to the edges of the input vector. The 

effect of zero nodes is to make the input vector’s edges be processed for the same 

Figure 10: Scheme of a CNN with 𝐵𝐵 =  2,𝐶𝐶 =  2 and 𝐷𝐷 =  1. Figure 1: Scheme of a convolutional neural network with  
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number of times as the rest of the input. For both figures in Fig.11, the three 

hyperparameters are set to 3, 1 and 0 respectively. 

 

Figure 11: Two regions processed by a filter of size 3, zero-padding and stride of 

one. 

Pooling layer  

The pooling layer is usually behind the convolution layer, and its role is to reduce 

the dimensionality of the feature map formed by the output of the filter, which in turn 

prevents the network from overfitting and also significantly decreases the complexity 

of the computation in the network. Two hyperparameters control the pooling layer, 

namely, the size and the stride or the down sampling factor. There are usually two types 

of pooling layers, the average pooling layer and the maximum pooling layer. The max 

pooling layer outputs the maximum value of the input, while the average pooling layer 

applies a nonlinear function to get the average value of the input. In general, the max 

pooling layer gives significantly better results than the average pooling layer [36]. 

Fully-connected layer  

The extracted and down-sampled features are forwarded to one or more fully-

connected layers. In a CNN structure, one or more fully connected layers are connected 

after multiple convolutional and pooling layers. Each neuron in a fully connected layer 

is fully connected to all neurons in the layer before it. The fully connected layers can 



 

47 

 

integrate the local information of the convolutional or pooling layers with category 

differentiation. In order to improve the performance of CNN networks, the excitation 

function of each neuron in the fully connected layer is usually a ReLU function. The 

output value of the last fully connected layer is passed to an output that can be classified 

using softmax function. 

3.1.2 RNN 

Structure of RNN 

Figure 12 depicts the entire process of RNN using a simple neural network 

containing a hidden neuron and a one-dimensional output. In Figure 12, 𝑒𝑒 is an input 

neuron, 𝑤𝑤 is the output, and 𝑠𝑠 is the hidden state. 𝑠𝑠 loops through the information 

once and still returns to the hidden state. The weights 𝑂𝑂 , 𝑣𝑣 , 𝑤𝑤  and bias 𝑏𝑏  are 

parameters that need to be constantly adjusted during the learning process. 

 

Figure 12: A simple RNN with the unfolded sequential output. 

The right part of Figure 12 shows the input, output and hidden states of three 

different times for evaluating the network. For the step of time 𝑠𝑠, the hidden state 𝑠𝑠𝑡𝑡 
is calculated using the input 𝑒𝑒𝑡𝑡 and the previous one hidden state 𝑠𝑠𝑡𝑡−1 as 𝑠𝑠𝑡𝑡 = 𝑡𝑡(𝑂𝑂 ∙ 𝑒𝑒𝑡𝑡 + 𝑤𝑤 ∙ 𝑠𝑠𝑡𝑡−1 + 𝑏𝑏), 
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where 𝑡𝑡 is the activation function. The output of 𝑠𝑠𝑡𝑡 is forwarded and used as the input 

of 𝑠𝑠𝑡𝑡+1 . This process ensures that the RNN can always remember and process the 

previous information. 

 

Figure 13: A simple RNN with the unfolded non-sequential output. 

The RNN in Figure 12 uses sequential input and output, which is suitable for tasks 

like machine translation, but not good for tasks like time series classification that 

requires non-sequential output. Figure 13 shows a variation of the RNN with non-

sequential outputs. The hidden state 𝑠𝑠𝑡𝑡+1 produces an output only with the last input, 

while 𝑠𝑠𝑡𝑡−1 and 𝑠𝑠𝑡𝑡 don’t produce any output. 

Long Short-Term Memory Neural Networks (LSTM) 

The difference between LSTM and the general form of RNN is in the hidden unit. 

Figure 14 depicts a hidden unit of the LSTM. It is composed of four parts: cell state 𝐶𝐶𝑡𝑡, 
forget gate 𝑡𝑡𝑡𝑡 , input gate 𝑖𝑖𝑡𝑡  and output gate ℎ𝑡𝑡 . The unit state contains crucial 

information in the sequential input which is controlled by these three gates and each 

gate has different weights and bias. The weights of the forget gate are 𝑂𝑂𝑓𝑓 and 𝑤𝑤𝑓𝑓, and 

the bias of the forget gate is 𝑏𝑏𝑓𝑓. The weight of the input gate is 𝑂𝑂𝑖𝑖, 𝑤𝑤𝑖𝑖 , 𝑂𝑂𝑏𝑏 and 𝑤𝑤𝑏𝑏 

and the bias of the output gate 𝑏𝑏𝑖𝑖 and 𝑏𝑏𝑏𝑏. The weight of the output gate is 𝑂𝑂ℎ and 𝑤𝑤ℎ, and the bias of the output gate is 𝑏𝑏ℎ. Compared with a common RNN, LSTM has 
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more weights and biases to transmit and iterate during the learning process, which 

increases the computational complexity of the LSTM. But the advantage of LSTM is 

its ability to learn input data’s long-term dependencies. 

 

Figure 14: LSTM’s hidden unit. 

The function of the forget gate is to remove the previously saved information from 

the state of the unit, and the forget gate is defined as 𝑡𝑡𝑡𝑡 = 𝜎𝜎(𝑂𝑂𝑓𝑓 ∙ 𝑒𝑒𝑡𝑡 + 𝑤𝑤𝑓𝑓 ∙ 𝑤𝑤𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) 

where 𝑒𝑒𝑡𝑡 is the input and 𝑤𝑤𝑡𝑡−1 is the output of the previous hidden cell. The value of 

output of 𝜎𝜎 function is between 0 and 1. If 𝜎𝜎 is equal to 0, then all information in 

that cell state will be removed. If 𝜎𝜎 equals 1, all the information about the unit state 

will be retained.  

The function of the input gate is to store the new information into the cell state. 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑂𝑂𝑖𝑖 ∙ 𝑒𝑒𝑡𝑡 + 𝑤𝑤𝑖𝑖 ∙ 𝑤𝑤𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) 𝐵𝐵𝑡𝑡 = tanh(𝑂𝑂𝑏𝑏 ∙ 𝑒𝑒𝑡𝑡 + 𝑤𝑤𝑏𝑏 ∙ 𝑤𝑤𝑡𝑡−1 + 𝑏𝑏𝑏𝑏) 

Hence the 𝜎𝜎 function in the input gate 𝑖𝑖𝑡𝑡 is able to select the part of the cell state that 

needs to be updated, while tanh in 𝐵𝐵𝑡𝑡 determines what value will be stored and then 

the cell state will be updated as follows: 𝐶𝐶𝑡𝑡 = 𝑖𝑖𝑡𝑡 ∙ 𝐵𝐵𝑡𝑡 + 𝑡𝑡𝑡𝑡 ∙ 𝐶𝐶𝑡𝑡−1 

The role of the output gate ℎ𝑡𝑡  is to select the partial cell state that needs to be 

transferred to the next hidden cell, which is expressed as ℎ𝑡𝑡 = 𝜎𝜎(𝑂𝑂ℎ ∙ 𝑒𝑒𝑡𝑡 + 𝑤𝑤ℎ ∙ 𝑤𝑤𝑡𝑡−1 + 𝑏𝑏ℎ) 
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The actual information will be transmitted to the next hidden cell by multiplying the 

output gate ℎ𝑡𝑡 with the cell state, i.e., 𝑤𝑤𝑡𝑡 = 𝜎𝜎(ℎ𝑡𝑡 ∙ tanh(𝐶𝐶𝑡𝑡)) 

In a sequential output, the same information is used as the output of the unit 𝑤𝑤𝑡𝑡. In this 

output approach, all weights and biases are shared for the entire input sequence and can 

be learned all the way through the learning process. When the weights and biases are 

tuned, the LSTM can learn the information that is contained in the input vectors and the 

information is used to generate an appropriate output. 

Peephole Connections 

Figure 15 shows a way to modify the LSTM structure by adding peephole 

connections [37], where the red part is the connection line. The effect of this method is 

to enable these three gates to make use of the information in the input state directly, 

without passing through layers. The gates in this method are defined as follows: 𝑡𝑡𝑡𝑡 = 𝜎𝜎(𝑂𝑂𝑓𝑓 ∙ 𝑒𝑒𝑡𝑡 + 𝑤𝑤𝑓𝑓 ∙ 𝑤𝑤𝑡𝑡−1 + 𝑒𝑒𝑓𝑓 ∙ 𝐶𝐶𝑡𝑡 + 𝑏𝑏𝑓𝑓) 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑂𝑂𝑖𝑖 ∙ 𝑒𝑒𝑡𝑡 + 𝑤𝑤𝑖𝑖 ∙ 𝑤𝑤𝑡𝑡−1 + 𝑒𝑒𝑖𝑖 ∙ 𝐶𝐶𝑡𝑡 + 𝑏𝑏𝑖𝑖) ℎ𝑡𝑡 = 𝜎𝜎(𝑂𝑂ℎ ∙ 𝑒𝑒𝑡𝑡 + 𝑤𝑤ℎ ∙ 𝑤𝑤𝑡𝑡−1 + 𝑒𝑒ℎ ∙ 𝐶𝐶𝑡𝑡 + 𝑏𝑏ℎ) 

where 𝑒𝑒𝑓𝑓, 𝑒𝑒𝑖𝑖 and 𝑒𝑒ℎ are the weights of all connected line segments of the peephole. 
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Figure 15: Adding peephole connections to the hidden units of LSTM. 

3.2 Proposed keyword assignment method 

3.2.1 A CNN-BiLSTM framework for keyword assignment  

The general framework of the proposed keyword assignment model is shown in 

Figure 16. The model is mainly composed of the following parts: embedding layer, 

BiLSTM layer, self-attention layer, CNN layer, maximum pooling layer and output 

layer.  

In the embedding layer, the text is output to the BiLSTM layer after being 

converted into word vectors by a word embedding method. In the BiLSTM layer, the 

features are extracted by the forward and backward sequences of each sentence 

separately and then concatenates the first and the last to obtain a new vector for each 

sentence. In the self-attention layer, different weights are assigned to each hidden vector 

by computing the dot product attention. In the CNN layer, the features of the matrix are 

extracted using convolution with proper size of the convolution kernel. Important 
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features in the document are activated in the max pooling layer, and finally the sentence 

is classified using softmax function. 

 

Figure 16: The proposed CNN-BiLSTM framework for keyword assignment. 

The advantages of our proposed CNN-BiLSTM model are as follows: CNN is used 

to extract local features of text vectors, while BiLSTM is used to extract global features 

related to the text context. In particular, the use of CNN together with BiLSTM can 

overcome the problem of a single CNN model that ignores the semantic and syntactic 

information of the context. It can also effectively solve the problem of gradient 

disappearance or gradient diffusion in traditional RNNs. Furthermore, attention 

mechanism is introduced to highlight the important information and avoid the effect of 

invalid information on sentiment and text classification. 

3.2.2 Detailed structure of the CNN-BiLSTM model 

Embedding layer  
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Figure 17: General architecture of Embedding layer. 

The embedding layer of the model aims to transform the input text into a high-

dimensional vector representation using word embedding, which is easier to compute 

in a neural network. If the embedding layer is not applied, each word is input as one hot 

form, which will increase the computational burden to a great extent. Since the length 

of each input sentence is different, we need to define a 𝑠𝑠𝑠𝑠𝑒𝑒_𝑠𝑠𝑖𝑖𝑤𝑤𝑠𝑠𝑠𝑠 value. If the length 

of the sentence exceeds the 𝑠𝑠𝑠𝑠𝑒𝑒_𝑠𝑠𝑖𝑖𝑤𝑤𝑠𝑠𝑠𝑠 value, we only consider the part within the 𝑠𝑠𝑠𝑠𝑒𝑒_𝑠𝑠𝑖𝑖𝑤𝑤𝑠𝑠𝑠𝑠 value. If the length of the sentence is less than the 𝑠𝑠𝑠𝑠𝑒𝑒_𝑠𝑠𝑖𝑖𝑤𝑤𝑠𝑠𝑠𝑠 value, 

then we add 0 to the end of the sentence. We set the value of 𝑠𝑠𝑠𝑠𝑒𝑒_𝑠𝑠𝑖𝑖𝑤𝑤𝑠𝑠𝑠𝑠 to 80 words 

and use GloVe and fastText respectively for word embedding. 

Bi-LSTM layer 

Figure 18: The structure of BiLSTM layer. 
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The RNN is able to take into account the sequential relationships between 

sentences and phrases, which means that the context of the previous phrase determines 

the next one. The hidden states in the LSTM update the weights of the internal loops, 

through the weights learned by the network from the previously input words. This step 

enables the layer to remember and exploit the relationship with the previous input. The 

BiLSTM is able to concatenate the relationships between the input elements from both 

directions at the same time. The BiLSTM is formulated as follows. ℎ𝑖𝑖 = ℎ𝚤𝚤�⃖��||ℎ𝚤𝚤���⃗   ℎ𝑖𝑖 ∈ 𝑅𝑅2𝑑𝑑  

where || represents the concatenation and 𝑑𝑑 is the dimension of the hidden layers ℎ 

of LSTM. 

In our experiments, we set the hyperparameters of the LSTM layer as follows: the 

hidden unit value is set to 200 and the dropout value is set to 0.3. The reason for the 

value of hidden unit setting is to reduce the dimension of the output. The dropout value 

is used to reduce the overfitting during training. 

In the LSTM layer, the activation function we chose is 𝑠𝑠𝑠𝑠𝑛𝑛ℎ. Figure 20 shows 𝑠𝑠𝑠𝑠𝑛𝑛ℎ allows the output of the layer to be closer to 0 and its gradient determines a faster 

convergence compared to the 𝑠𝑠𝑖𝑖𝑙𝑙𝑠𝑠𝑤𝑤𝑖𝑖𝑑𝑑 activation function. 

 

Figure 19: Sigmoid activation function and tanh activation function. 

Self-attention layer 
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Since each word has a different level of importance to its context, we use the self-

attention mechanism to assign different weights to each word so that we can better 

estimate the different levels of importance of each word. We add a weight 𝑖𝑖 to the 

attention layer to represent the weight of the "context vector". The context vector c is 

treated as the average of ℎ𝑖𝑖. 𝑖𝑖 =
1𝑁𝑁� ℎ𝑖𝑖𝑁𝑁1  

The annotations 𝑂𝑂𝑖𝑖 is represented by concatenation of 𝑖𝑖 and ℎ𝑖𝑖 : 𝑂𝑂𝑖𝑖 = ℎ𝑖𝑖||𝑖𝑖 𝑖𝑖𝑖𝑖 is obtained by using the tanh activation function on 𝑂𝑂𝑖𝑖, yielding 𝑖𝑖𝑖𝑖 = tanh(𝑊𝑊𝑂𝑂𝑖𝑖 + 𝑏𝑏) 

where 𝑊𝑊 and 𝑏𝑏 denote the weights and biases. And attention weight 𝑠𝑠𝑖𝑖 is calculated 

by using a softmax function as follows: 𝑠𝑠𝑖𝑖 =
exp (𝑖𝑖𝑖𝑖)∑ exp (𝑖𝑖𝑡𝑡)𝑁𝑁𝑡𝑡=1  

The final representation 𝑤𝑤 can be calculated as the weighted sum of attention weight 

and annotation, 

𝑤𝑤 = �𝑠𝑠𝑖𝑖ℎ𝑖𝑖𝑁𝑁
𝑖𝑖=1 , 𝑤𝑤 ∈ 𝑅𝑅2𝐿𝐿 

CNN layer  

 

Figure 20: The structure of CNN layer. 
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CNN is very adaptable for processing data with grid shapes [38], where a local 

convolution operation is performed for adjacent cells, resulting in a denser but smaller 

vector, which the CNN uses to capture the hidden relationships between adjacent cells. 

In our experiments, the input of the CNN layer is the output vector of the attention layer, 

whose size of the vector is 80x400 and we apply a 1D convolutional network with 400 

filters and 5x5 kernels for convolution. ReLu is used as the activation function, as 

shown in Figure 21, instead of tanh to speed up the computation. 

 

Figure 21: ReLU activation function. 

In the last part of the CNN layer, a max pooling function with a 2x2 kernel is added 

in order to subsample the values and reduce the parameters of the model. 

Classification 

We use a dropout function for the output of the max pooling layer. Dropout 

function achieves regularization by ignoring some of the feature detectors in each 

training batch. After that, we use the global max pooling layer to reduce the model 

parameters, which is able to greatly reduce overfitting of the model. After the 

subsequent dense layer and the following dropout function to reduce the dimensionality 

of the data, the probability distribution of each category in the dataset is estimated by 

the softmax activation function. We trained the model 100 times using the categorical 

cross-entropy loss function [39] and the Adam optimizer. The best model was used for 

classification. 
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Figure 22 shows the full architecture of the CNN-BiLSTM model with self-

attention. The detailed configurations of each layer in the proposed keyword 

assignment model based on the 20 Newsgroups dataset are listed in Table 9 as an 

example. 

 

 

Figure 22: The architecture of the CNN-BiLSTM model with self-attention. 

 

Table 9: Shapes of the proposed model after training on 20 Newsgroups dataset. 

Layer (type) Output Shape Param # 

Input_1 (InputLayer) (None, 80, 300) 0 
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Bidirectional_1(Bidirectional) (None, 80, 400) 801600 

Seq_self_attention_1(SeqSelAttention) (None, 80, 400) 25665 

Conv1d(Conv1D) (None, 76, 400) 800400 

Max_pooling1d_1(MaxPooling1D) (None, 38, 400) 0 

Dropout_1(Dropout) (None, 38, 400) 0 

Concatenate_1(Concatenate) (None, 118, 400) 0 

Global_max_pooling1d_1 

(GlobalMaxPooing1D) 

(None, 400) 0 

Dense_1(Dense) (None, 100) 40100 

Dropout_2(Dropout) (None, 100) 0 

Dense_2(Dense) (None,9) 909 

Total params: 1667976 

Trainable params: 1667976 

Non-trainable params: 0 

 

3.3 Experimental Results 

3.3.1 Datasets and evaluation metrics for out-of-text keyword tagging 

Datasets 

We have used 3 following popular datasets for evaluating the performance of the 

proposed out-of-text keyword tagging method. 

20 Newsgroups. The first dataset is the 20 Newsgroups dataset. It has 20 topics 

each of which has approximately 1,000 documents. We divided the 20 types of news 

into nine categories according to the semantics as shown in Table 10 where 70% of the 

documents in each class were randomly selected for training, and the remaining 30% 

were used as a testing set. For this dataset, the keyword is the category of each piece of 

news inputted [40].  

IMDB. The IMDB dataset contains 50K movie reviews for natural language 

processing. It is divided into 3 categories, positive, negative and neutral. Among them 
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25K movie reviews are provided for training and the rest are for testing. For this dataset, 

the keyword is “positive”, “negative” or “neutral” only [41].  

SemEval 2018 task-1. The training set for SemEval 2018 Task-1 consists of a 

dataset of 2761 different sentiment records, where these sentiments is composed of four 

emotions anger, fear, happiness, and sadness, with a number share of 34%, 16%, 26%, 

and 14%, respectively. And the test set consists of 1580 records representing these four 

emotions, with a number share of 25%, 15%, 36%, and 24%, respectively. Thus, the 

keyword is one of the four emotions, in this case anger, fear, joy or sadness [42]. 

Table 10: New categories and number of pieces of news in each category. 

New categories All original categories Number of pieces of news 

computer comp.windows.x 

comp.sys.ibm.pc.hardware 

comp.os.ms-windows.misc 

comp.graphics 

comp.sys.mac.hardware 

2936 

science sci.crypt 

sci.electronics 

sci.space 

1779 

politics talk.politics.misc, 

talk.politics.guns, 

talk.politics.mideast 

1575 

sport rec.sport.hockey 

rec.sport.baseball 

1197 

automobile rec.autos 

rec.motorcycles 

1192 

religion soc.religion.christian 

talk.religion.misc 

976 

medicine sci.med 594 
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sales misc.forsale 585 

atheism alt.atheism 480 

Evaluation metrics 

In many practical classification problems, error or accuracy are not the best 

evaluation metrics [43]. If the number of each classification sample is unequal, many 

machine learning techniques tend to ignore classes with small numbers. Therefore, we 

introduced confusion matrix that can effectively judge the classification results on 

unbalanced datasets. It summarizes the accuracy of the hypothesis with four 

performance metrics as follow: 

• True positive (TP): The positive label correctly predicted as positive. 

• True negative (TN): The negative label correctly predicted as negative. 

• False positive (FP): The negative label incorrectly predicted as positive. 

• False negative (FN): The positive label incorrectly predicted as negative. 

These figures are demonstrated in table 11: 

Table 11: Confusion Matrix of four performance metrics. 

 Predicted- Predicted+ 

Actual- TN FP 

Actual+ FN TP 

In general, the performance of the model is directly proportional to the pair TN and 

TP and inversely proportional to FP and FN. higher values of FN indicate higher error 

rates for detection of positive categories, and higher values of FP indicate higher error 

rates for negative categories. 

• Classification Accuracy: 

Accuracy =
TP + TN

TP + TN + FP + FN
 

• Precision – Positive Predicted Value: 

Precision =
TP

TP + FP
 

• Recall - True Positive Rate: 

Recall =
TP

TP + FN
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• F1-Score: 

F1 − Score =
2TP

2TP + FP + FN
 

Sensitivity is defined as the rate of true positives for all categorical thresholds and 

specificity is defined as the rate of false positives, and the horizontal and vertical 

coordinates of the graph of AUC are the sensitivity and specificity. And AUC is the area 

under the curve on the graph. Figure 23 shows the AUC at different threshold values. 

The effectiveness of the classifier is proportional to the value of AUC, and if the value 

of AUC is higher, it means that the classifier is more effective [44]. 

 

Figure 23: Higher value of AUC represents better performance of the classifier. 

We used metrics Precision, Recall and F1-score along with Accuracy and AUC as 

evaluation metrics for each category based on the IMDB and SemEval 2018 task-1 

dataset. We run the proposed model for each dataset using two word embedding 

methods, GloVe, and fastText, respectively. As a baseline for performance comparison, 

we used two methods of machine learning with SVM and random forest, where SVM 

uses the "rbf" kernel, the values of C and Gamma are adjusted according to the dataset, 

and the number of trees in the random forest is also tuned for different datasets. Also, 

we use CNN and LSTM based Word2Vec word embedding methods as comparison. 

The experimental results are provided in the next subsection. 

3.3.2 Performance of the proposed model 

In Table 12, we randomly select four paragraphs in the test set of 20 Newsgroups 

dataset, and each paragraph represents one piece of news. The list of keywords contains 

“computer”, “science”, “politics”, “sport”, “automobile”, “religion”, “medicine”, “sales” 



 

62 

 

and “atheism” shown in Table 10 and for each paragraph, one of these keywords is 

assigned. The correct class in Table 12 represents the correct label for each paragraph 

provided in the dataset, while the predicted class represents the label predicted by our 

model. Three of them were correctly assigned keywords while one was assigned 

incorrectly. 

Table 12: Four paragraphs with correct and predicted classes in the 20 

Newsgroups dataset. 

Four paragraphs in the test set Correct class Predicted 

class 

DEC LK250-AA PC keyboard for sale: 

   - automatically senses machine type and switches between 

AT/XT modes 

   - same exact key layout as DEC's VT2xx, VT3xx, etc., with 

DEC names on keys as well as PC names 

- standard AT/XT cable included 

sales sales 

First, a longer game in no way suggests "more baseball to watch," 

unless you include watching the grass grow as baseball. The 

lengthier games are so because of batters stepping out of the box, 

pitchers taking longer between pitches and excessive trips to the 

mound by managers and pitching coaches. 

sport sport 

I'm considering switching to Geico insurance, but have heard that 

they do not assign a specific agent for each policy or claim. I was 

worried that this might be a real pain when you make a claim. I 

have also heard that they try to get rid of you if you have an 

accident. 

I've read in this group that Geico has funded the purchasing of radar 

guns by police depts (I'm not sure where). 

automobile politics 



 

63 

 

"... Do not be deceived; neither fornicators, nor idolators, nor 

adulterers, nor effeminate, nor homosexuals, nor thieves, nor the 

covetous, nor drunkards, nor revilers, nor swindlers, shall inherit 

the kingdom of God. And such were some of you..." I Cor. 6:9-11. 

Religion Religion 

 

Table 13: Classification results obtained from different methods based on the 20 

Newsgroups dataset. 

 20 Newsgroups dataset 

 Precision Recall F1-Score  

SVM 0.63 0.65 0.64 

Random Forest 0.79 0.81 0.80 

CNN with Word2Vec 0.76 0.80 0.78 

LSTM with Word2Vec 0.71 0.68 0.69 

CNN-BiLSTM using GloVe 

and self-attention 

0.89 0.93 0.91 

CNN-BiLSTM using fastText 

and self-attention 

0.92 0.95 0.94 

 

 

Figure 24: Classification score obtained from different methods based on the 20 

Newsgroups dataset. 
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We will describe how precision, recall and F1-Score are calculated in this dataset 

and take the class “computer” as an example. 𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑤𝑤𝑛𝑛𝐶𝐶𝐶𝐶𝑚𝑚𝑒𝑒𝐶𝐶𝑡𝑡𝑒𝑒𝐶𝐶
=
𝐼𝐼ℎ𝑖𝑖 𝑛𝑛𝑂𝑂𝑠𝑠𝑏𝑏𝑖𝑖𝑤𝑤 𝑤𝑤𝑡𝑡 𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠𝑙𝑙𝑤𝑤𝑠𝑠𝑒𝑒ℎ𝑠𝑠 𝑒𝑒𝑤𝑤𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑 𝑠𝑠𝑤𝑤 𝑏𝑏𝑖𝑖 𝑖𝑖𝑤𝑤𝑠𝑠𝑒𝑒𝑂𝑂𝑠𝑠𝑖𝑖𝑤𝑤 𝑤𝑤𝑖𝑖𝑠𝑠ℎ 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑤𝑤 𝑠𝑠𝑖𝑖𝑠𝑠𝑂𝑂𝑠𝑠𝑙𝑙 𝑘𝑘𝑖𝑖𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑 𝑖𝑖𝑠𝑠 𝑖𝑖𝑤𝑤𝑠𝑠𝑒𝑒𝑂𝑂𝑠𝑠𝑖𝑖𝑤𝑤𝐼𝐼ℎ𝑖𝑖 𝑛𝑛𝑂𝑂𝑠𝑠𝑏𝑏𝑖𝑖𝑤𝑤 𝑤𝑤𝑡𝑡 𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠𝑙𝑙𝑤𝑤𝑠𝑠𝑒𝑒ℎ𝑠𝑠 𝑒𝑒𝑤𝑤𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑 𝑠𝑠𝑤𝑤 𝑏𝑏𝑖𝑖 𝑖𝑖𝑤𝑤𝑠𝑠𝑒𝑒𝑂𝑂𝑠𝑠𝑖𝑖𝑤𝑤 

 

𝑅𝑅𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝑚𝑚𝑒𝑒𝐶𝐶𝑡𝑡𝑒𝑒𝐶𝐶
=
𝐼𝐼ℎ𝑖𝑖 𝑛𝑛𝑂𝑂𝑠𝑠𝑏𝑏𝑖𝑖𝑤𝑤 𝑤𝑤𝑡𝑡 𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠𝑙𝑙𝑤𝑤𝑠𝑠𝑒𝑒ℎ𝑠𝑠 𝑒𝑒𝑤𝑤𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑 𝑠𝑠𝑤𝑤 𝑏𝑏𝑖𝑖 𝑖𝑖𝑤𝑤𝑠𝑠𝑒𝑒𝑂𝑂𝑠𝑠𝑖𝑖𝑤𝑤 𝑤𝑤𝑖𝑖𝑠𝑠ℎ 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑤𝑤 𝑠𝑠𝑖𝑖𝑠𝑠𝑂𝑂𝑠𝑠𝑙𝑙 𝑘𝑘𝑖𝑖𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑 𝑖𝑖𝑠𝑠 𝑖𝑖𝑤𝑤𝑠𝑠𝑒𝑒𝑂𝑂𝑠𝑠𝑖𝑖𝑤𝑤𝐼𝐼ℎ𝑖𝑖 𝑛𝑛𝑂𝑂𝑠𝑠𝑏𝑏𝑖𝑖𝑤𝑤 𝑤𝑤𝑡𝑡 𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠𝑙𝑙𝑤𝑤𝑠𝑠𝑒𝑒ℎ𝑠𝑠 𝑤𝑤𝑖𝑖𝑠𝑠ℎ 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑤𝑤 𝑠𝑠𝑖𝑖𝑠𝑠𝑂𝑂𝑠𝑠𝑙𝑙 𝑘𝑘𝑖𝑖𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑 𝑖𝑖𝑠𝑠 𝑖𝑖𝑤𝑤𝑠𝑠𝑒𝑒𝑂𝑂𝑠𝑠𝑖𝑖𝑤𝑤 

 

𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝐶𝐶𝐶𝐶𝑚𝑚𝑒𝑒𝐶𝐶𝑡𝑡𝑒𝑒𝐶𝐶 =
𝐼𝐼ℎ𝑖𝑖 𝑛𝑛𝑂𝑂𝑠𝑠𝑏𝑏𝑖𝑖𝑤𝑤 𝑤𝑤𝑡𝑡 𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠𝑙𝑙𝑤𝑤𝑠𝑠𝑒𝑒ℎ𝑠𝑠  𝑤𝑤𝑖𝑖𝑠𝑠ℎ 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑤𝑤 𝑠𝑠𝑖𝑖𝑠𝑠𝑂𝑂𝑠𝑠𝑙𝑙 𝑘𝑘𝑖𝑖𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑 𝑖𝑖𝑠𝑠 𝑖𝑖𝑤𝑤𝑠𝑠𝑒𝑒𝑂𝑂𝑠𝑠𝑖𝑖𝑤𝑤𝐼𝐼ℎ𝑖𝑖 𝑛𝑛𝑂𝑂𝑠𝑠𝑏𝑏𝑖𝑖𝑤𝑤 𝑤𝑤𝑡𝑡 𝑠𝑠𝑙𝑙𝑙𝑙 𝑠𝑠ℎ𝑖𝑖 𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠𝑙𝑙𝑤𝑤𝑠𝑠𝑒𝑒ℎ𝑠𝑠  

 

 𝑃𝑃 = 𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑤𝑤𝑛𝑛𝐶𝐶𝐶𝐶𝑚𝑚𝑒𝑒𝐶𝐶𝑡𝑡𝑒𝑒𝐶𝐶 ∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝐶𝐶𝐶𝐶𝑚𝑚𝑒𝑒𝐶𝐶𝑡𝑡𝑒𝑒𝐶𝐶 + 𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑤𝑤𝑛𝑛𝑠𝑠𝑠𝑠𝑖𝑖𝑒𝑒𝑛𝑛𝑠𝑠𝑒𝑒 ∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑒𝑒𝑛𝑛𝑠𝑠𝑒𝑒 + 𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑤𝑤𝑛𝑛𝑒𝑒𝐶𝐶𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑒𝑒𝐶𝐶𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠 + 𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑤𝑤𝑛𝑛𝑠𝑠𝑒𝑒𝐶𝐶𝐶𝐶𝑡𝑡 ∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑠𝑠𝑒𝑒𝐶𝐶𝐶𝐶𝑡𝑡 + 𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑤𝑤𝑛𝑛𝑚𝑚𝐶𝐶𝑡𝑡𝐶𝐶𝑚𝑚𝐶𝐶𝑏𝑏𝑖𝑖𝑝𝑝𝑒𝑒∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑚𝑚𝐶𝐶𝑡𝑡𝐶𝐶𝑚𝑚𝐶𝐶𝑏𝑏𝑖𝑖𝑝𝑝𝑒𝑒 + 𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑤𝑤𝑛𝑛𝐶𝐶𝑒𝑒𝑝𝑝𝑖𝑖𝑔𝑔𝑖𝑖𝐶𝐶𝑛𝑛 ∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝐶𝐶𝑒𝑒𝑝𝑝𝑖𝑖𝑔𝑔𝑖𝑖𝐶𝐶𝑛𝑛 + 𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑤𝑤𝑛𝑛𝑚𝑚𝑒𝑒𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖𝑛𝑛𝑒𝑒∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑚𝑚𝑒𝑒𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖𝑛𝑛𝑒𝑒 + 𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑤𝑤𝑛𝑛𝑠𝑠𝑚𝑚𝑝𝑝𝑒𝑒𝑠𝑠 ∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑠𝑠𝑚𝑚𝑝𝑝𝑒𝑒𝑠𝑠 + 𝑃𝑃𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑤𝑤𝑛𝑛𝑚𝑚𝑡𝑡ℎ𝑒𝑒𝑖𝑖𝑠𝑠𝑚𝑚∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑚𝑚𝑡𝑡ℎ𝑒𝑒𝑖𝑖𝑠𝑠𝑚𝑚  𝑅𝑅 = 𝑅𝑅𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝑚𝑚𝑒𝑒𝐶𝐶𝑡𝑡𝑒𝑒𝐶𝐶 ∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝐶𝐶𝐶𝐶𝑚𝑚𝑒𝑒𝐶𝐶𝑡𝑡𝑒𝑒𝐶𝐶 + 𝑅𝑅𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑖𝑖𝑒𝑒𝑛𝑛𝑠𝑠𝑒𝑒 ∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑒𝑒𝑛𝑛𝑠𝑠𝑒𝑒 + 𝑅𝑅𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑙𝑙𝑒𝑒𝐶𝐶𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑒𝑒𝐶𝐶𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠 + 𝑅𝑅𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑙𝑙𝑠𝑠𝑒𝑒𝐶𝐶𝐶𝐶𝑡𝑡 ∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑠𝑠𝑒𝑒𝐶𝐶𝐶𝐶𝑡𝑡 + 𝑅𝑅𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑙𝑙𝑚𝑚𝐶𝐶𝑡𝑡𝐶𝐶𝑚𝑚𝐶𝐶𝑏𝑏𝑖𝑖𝑝𝑝𝑒𝑒 ∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑚𝑚𝐶𝐶𝑡𝑡𝐶𝐶𝑚𝑚𝐶𝐶𝑏𝑏𝑖𝑖𝑝𝑝𝑒𝑒
+ 𝑅𝑅𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑙𝑙𝐶𝐶𝑒𝑒𝑝𝑝𝑖𝑖𝑔𝑔𝑖𝑖𝐶𝐶𝑛𝑛 ∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝐶𝐶𝑒𝑒𝑝𝑝𝑖𝑖𝑔𝑔𝑖𝑖𝐶𝐶𝑛𝑛 + 𝑅𝑅𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑙𝑙𝑚𝑚𝑒𝑒𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖𝑛𝑛𝑒𝑒 ∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑚𝑚𝑒𝑒𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖𝑛𝑛𝑒𝑒 + 𝑅𝑅𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑙𝑙𝑠𝑠𝑚𝑚𝑝𝑝𝑒𝑒𝑠𝑠∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑠𝑠𝑚𝑚𝑝𝑝𝑒𝑒𝑠𝑠 + 𝑅𝑅𝑖𝑖𝑖𝑖𝑠𝑠𝑙𝑙𝑙𝑙𝑚𝑚𝑡𝑡ℎ𝑒𝑒𝑖𝑖𝑠𝑠𝑚𝑚 ∙ 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑚𝑚𝑡𝑡ℎ𝑒𝑒𝑖𝑖𝑠𝑠𝑚𝑚 

𝐹𝐹1 =
2 ∙ 𝑃𝑃 ∙ 𝑅𝑅𝑃𝑃 + 𝑅𝑅  

In Table 13 and Figure 24, we have given classification scores obtained from 

different methods including our proposed CNN-BiLSTM with self-attention model 

using the fastText word embedding. Clearly, our method achieves the maximum value 

in both the precision (0.92), recall (0.95) and F1-Score (0.94), and therefore is more 

effective for keyword assignment compared with traditional machine learning methods 

and neural networks proposed by others. 

Table 14: Classification results obtained from different methods based on the 

IMDB dataset. 

 Positive Negative Neutral 
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 P R F1 P R F1 P R F1 

SVM 0.87 0.93 0.90 0.81 0.88 0.84 0.73 0.75 0.74 

Random Forest 0.85 0.88 0.87 0.77 0.82 0.80 0.64 0.77 0.71 

CNN with 

Word2Vec 

0.80 0.81 0.81 0.76 0.72 0.74 0.77 0.78 0.78 

LSTM with 

Word2Vec 

0.68 0.75 0.71 0.68 0.61 0.65 0.61 0.69 0.65 

CNN-BiLSTM 

using GloVe and 

self-attention 

0.91 0.96 0.93 0.87 0.87 0.87 0.82 0.82 0.82 

CNN-BiLSTM 

using fastText 

and self-attention 

0.93 0.96 0.95 0.83 0.88 0.86 0.84 0.84 0.84 

 

 F1 Accuracy AUC 

SVM 0.83 0.803 0.940 

Random Forest 0.80 0.753 0.844 

CNN with Word2Vec 0.78 0.777 0.835 

LSTM with Word2Vec 0.67 0.657 0.750 

CNN-BiLSTM using 

GloVe and self-attention 

0.87 0.867 0.949 

CNN-BiLSTM using 

fastText and self-

attention 

0.88 0.867 0.964 
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Figure 25: Classification score obtained from different methods based on the 

IMDB dataset. 

Table 14 shows the classification results of our proposed CNN-BiLSTM model 

with self-attention along with those from previous machine learning methods. Those 

scores are also plotted in Fig. 25. It is seen that our method using the fastText word 

embedding method achieves maximum values for all the precision, recall and F1-Score 

in each class, except for recall of “Negative” using GloVe word embedding method. 

For the total dataset, the F1-Score of our proposed model is 0.88 while the baseline of 

SVM is 0.83. Our proposed method also exceeds the SVM baseline in Accuracy and 

AUC. It is also clear that our method is more effective for keyword assignment 

compared to traditional machine learning and neural networks methods. 

Table 15: Classification results obtained from different methods based on the 

SemEval 2018 task-1 dataset. 

 anger fear joy sadness 

 P R F1 P R F1 P R F1 P R F1 

SVM 0.79 0.68 0.73 0.59 0.71 0.64 0.91 0.97 0.94 0.68 0.66 0.67 

Random Forest 0.54 0.67 0.59 0.62 0.41 0.50 0.74 0.88 0.80 0.58 0.51 0.54 

CNN with Word2Vec 0.70 0.68 0.69 0.68 0.64 0.66 0.88 0.91 0.89 0.63 0.58 0.60 

LSTM with 

Word2Vec 

0.65 0.70 0.68 0.58 0.63 0.60 0.84 0.83 0.83 0.61 0.58 0.59 
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CNN-BiLSTM using 

GloVe and self-

attention 

0.77 0.80 0.78 0.75 0.69 0.72 0.97 0.94 0.96 0.68 0.72 0.70 

CNN-BiLSTM using 

fastText and self-

attention 

0.77 0.83 0.80 0.77 0.70 0.73 0.97 0.97 0.97 0.74 0.74 0.74 

 

 F1 Accuracy AUC 

SVM 0.78 0.778 0.835 

Random Forest 0.71 0.710 0.773 

CNN with Word2Vec 0.77 0.762 0.819 

LSTM with Word2Vec 0.75 0.739 0.796 

CNN-BiLSTM using 

GloVe and self-attention 

0.82 0.818 0.940 

CNN-BiLSTM using 

fastText and self-

attention 

0.84 0.836 0.946 
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Figure 26: Classification score obtained from different methods based on the 

SemEval 2018-task 1 dataset. 

Table 15 shows the classification results of our proposed CNN-BiLSTM model 

with self-attention along with those from previous machine learning methods. Those 

scores are also plotted in Fig. 26. It is seen that our method using the fastText word 

embedding method achieves maximum values for all the precision, recall and F1-score 

in each class, except for precision of “Anger” and recall of “Fear”. For the total dataset, 

the F1-Score of our proposed model is 0.84 while the baseline of SVM is 0.78. Our 

proposed method also exceeds the SVM baseline in Accuracy and AUC.  

Our proposed method achieves leading results in all three datasets, indicating the 

wide applicability of our method to various datasets. 

3.4 Summary 

In this chapter, we have first introduced the background of deep learning including 

the basic principles of CNN and RNN. Based on some existing methods for keyword 

assignment, we proposed a CNN-BiLSTM model using fastText word embedding and 

self-attention mechanism. This model solves the problem of a single CNN model that 

ignores the semantic and syntactic information of the context, and effectively 

overcomes the problem of gradient disappearance or gradient diffusion in traditional 

RNNs. A self-attention mechanism is also introduced to highlight the important 



 

69 

 

information and avoid the influence of invalid information on the text sentiment and 

classification. 

Our experimental results based on 20 Newsgroups, IMDB, SemEval 2018 task-1 

datasets show that the results obtained by our proposed method are better than those 

obtained by previous machine learning and deep neural network methods in terms of 

F1-Score, Accuracy and AUC, indicating the wide applicability of our model to various 

datasets. 
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Chapter 4  

 

Conclusion and Future Work 
 

4.1 Summary of the work 

In this thesis, automatic keyword tagging has been thoroughly studied along its 

two main branches: keyword extraction for in-text tagging and keyword assignment for 

out-of-text tagging. An unsupervised learning method integrating fastText word 

embedding method and Affinity Propagation clustering is shown to provide a superior 

performance for keyword extraction while a CNN-BiLSTM deep learning model with 

word embedding and attention mechanism is verified to have better accuracy, recall, 

F1-Score and AUC than some other state-of-the-art machine learning and deep learning 

methods. 

Chapter 2 presents an unsupervised automatic keyword extraction method 

integrating word embedding method and clustering. We have investigated two word 

embedding methods, GloVe and fastText, in comparison with the previously reviewed 

Word2Vec on different datasets in order to identify the most suitable word embedding 

scheme for keyword extraction. The word embedding scheme, fastText is then selected 

to combine with three clustering methods (Affinity Propagation, Mean Shift and K-

means) to extract the keywords, where the cluster centers are the keywords to be 

extracted. The obtained results are compared with the gold standard in terms of the 

accuracy, recall and F1-score, indicating that our method has a better performance 

compared to several widely used methods. We have shown that in the whole process, 

the word embedding method can obtain the semantics of the context while the clustering 
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algorithm can identify the essence of the term, and then select the important ones that 

can better represent the text content. 

In Chapter 3, in order to improve the accuracy of keyword assignment, we have 

proposed a CNN-BiLSTM model using word embedding and attention mechanism. In 

the word embedding layer, we investigated the two word embedding methods GloVe 

and fastText respectively. In the self-attention layer, different weights are assigned to 

each hidden vector to highlight the important information and ignore the invalid 

information. In the CNN layer, the features of the matrix are extracted using 

convolutions with appropriate the size of the convolution kernel. The most important 

features of the document are activated at the max pooling layer and finally the text is 

classified by the softmax output layer. 

4.2 Suggestions for future work 

For the keyword extraction using word embedding in conjunction with clustering 

methods, further work could be done in the following directions: 

Dataset: Scale up by using a larger corpus of documents, for example, a genre different 

from scholarly writing. This may cause the clustering algorithms to behave differently 

from what was seen in this thesis. Therefore, further research should be conducted with 

large and different datasets for different applications. It could be interesting to train a 

model for GloVe that predicts embeddings for OOV words and compare the results to 

fastText embeddings. This would require experimental work with different sets of 

training data and hyperparameters to find the optimal combination. 

Clustering algorithms: It is of interest to investigate if there is a way to extract 

centroids from results returned by hierarchical clustering. Applying clustering 

algorithms to similarity matrices with comparison to their direct application to word 

embeddings is also interesting since in scikit-learn clustering, only Affinity Propagation, 

Spectral Clustering, and DBSCAN may accept similarity matrices as input. 
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Evaluation metric: It is valuable to develop a more robust metric for evaluating the 

similarity between two lists of strings or for comparing more keyword extraction 

methods in literature.  

Language expansion: The keyword extraction considered in this thesis is limited to 

English. As such, the performance and conclusion obtained may not be applicable to 

other languages. Therefore, studying the proposed keyword extraction methods for 

other languages is another option. 

With respect to the keyword assignment using deep neural network model with 

word embedding and attention mechanism, the following work could be considered. 

Model optimization: Since the transformer model has led to a huge improvement in 

the results of many natural language processing tasks, the self-attention can be replaced 

with multi-headed attention in the encoder-based attention layer to compare the 

performance results of our proposed model. As the latest bi-directional transformer-

based BERT word embedding uses positional encoding in pre-training, we will also 

investigate the possibility of replacing BiLSTM with BERT in order to reduce the 

number of model parameters and the complexity. 

Computing resources: Since deep learning is a relatively young field, most 

frameworks do not support mixed use of CPU and GPU for training. Due to this 

resource-limitation in nature, we ran into problems when we had deepened our model 

to a certain extent. One of the models we tried was actually fully trained on the CPU 

which took a long time. We hope to explore the full capacity of deep neural networks 

when powerful computing machines are available. 

Vocabulary expansion: It is worth expanding the vocabulary to include all the words 

in the word embedding vector instead of the words that appear in the training set. This 

will allow us to detect the type of any text corpus by dividing it into logical parts and 

evaluating each part and use the normalized classification as the final genre. 
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