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Abstract 

An Improved Stochastic Generation Approach for Assessing the Vulnerability of Water 

Resource Systems under Changing Streamflow Conditions 

Masoud Zaerpour, PhD  

Concordia University, 2021 

Water-related disasters such as floods and droughts highlight the urgent need for securing water 

resource systems for human and ecosystem utilizations. Increasing anthropogenic interventions 

along with climate variability and change have exacerbated the intensity and frequency of such 

water-related events, which will continue to increase in the future. Such pressures introduce 

substantial and unprecedented vulnerability to water resource management. Understanding the 

extent of potential vulnerabilities, however, is not trivial due to the uncertainty in current top-down 

impact assessments. To address current limitations, bottom-up frameworks have been proposed in 

the past decade to provide alternatives to top-down and scenario-led vulnerability assessments. 

The core idea behind bottom-up schemes is to analyze the potential impacts directly as a function 

of potential changes in streamflow conditions through a systematic stress testing scheme. To make 

such stress tests reliable, systematic methodologies are needed to synthesize streamflow, and other 

hydroclimatic variables, beyond the historical observations. Despite ongoing advances in 

stochastic streamflow generations under stationary conditions – with which the vulnerability 

assessment can be performed – little attention has been given to advancing the perturbation 

algorithms for altering the streamflow characteristics under nonstationary conditions; and in fact, 

only a few incorporate climate-related proxies into streamflow generation. This thesis aims to shed 

light on some limitations of bottom-up approaches and propose an improved stochastic streamflow 

generation framework for impact assessment in water resources systems under changing 

streamflow conditions. This takes place through: (1) Identifying uncertainties in current stochastic 

streamflow generation approaches as well as how and why these uncertainties matter to bottom-

up impact assessment; (2) providing a guideline on the choice of the optimal scheme(s) for 

stochastic generation of streamflow series in various temporal and spatial scales; (3) proposing a 

methodology to incorporate the effect of large scale climate indices in stochastic streamflow 

generation; (4) identifying the types of changes in the streamflow regime through a systematic and 

globally-relevant approach; as well as (5) proposing a generic algorithm to shift a wide range of 

streamflow characteristics in streamflow time series, and to make a transient and non-stationary 

flow generation.  This research results in an improved stochastic streamflow generation scheme 

capable of generating scenarios of change under nonstationary conditions. The skill of the 

proposed algorithm is assessed over multiple natural streams, showing good performance in 

representing the plausible changes required for the vulnerability assessment of water resource 

systems.  
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Chapter 1.  

Introduction  

1.1. Water security threats to human society  

Freshwater is one of the most vital natural resources on the Planet Earth, which accounts for only 

2% of the total stored water molecules globally (Gleick et al., 1993; Eakins et al., 2010). 

Freshwater resources are crucial to human society, not only for drinking and sanitation, but also 

for irrigation, energy production, industrial uses and other socio-economic activities. Water quality 

and quantity crises, however, occur more frequently across the world in recent years (Shakibaeinia 

et al., 2016; Duran-Encalada et al., 2017; Kashyap et al., 2017; Dibike et al., 2018). These threats 

can include various sources, such as natural hydroclimatic variability (e.g. floods and droughts), 

global population growth, continued human interventions and intensive socioeconomic 

development (Vörösmarty et al., 2000; Meybeck, 2003; De Fraiture and Dennis, 2010). For 

instance, many floods happened recently in Austraila, Asia, Europe, and North America (e.g., 2019 

Iran flood; 2019 Quebec flood; 2021 Turkey flood; 2020 China flood; 2021 India flood; 2021 

Austraila flood; 2021 Germany flood) – see Merz et al. (2021) for review. On the other hand, 

recently the occurrence of drought, water shortages, and falling riverine water level events are 

getting higher. For instance, recent water shortages occurred in India (Shah and Mishra, 2020), 

South Africa (Haile et al., 2020), or an unexpected falling water levels on the St. Lawrence River 

in June 2021 (IJC, 2021), highlight just how crucial it is to secure regional water supplies for the 

human and environment (Villarini and Wasko, 2021). Furthermore, climate change and land-use 

alteration pose additional stress to water availability, which leads to significant changes in water 

supply in many regions (Milly et al., 2005; Barnett et al., 2005; Viviroli et al., 2011). Threats to 

freshwater resources therefore can limit development and endanger societal well-beings in many 

regions globally. Protecting water resources requires the diagnosis of threats. 

It has been shown that large-scale climate variability has historically posed considerable 

impacts on water resources through changes in regional climate and hydrological cycles (Miles et 

al., 2000). Such variabilities are mainly influenced by major oceanic-atmospheric oscillations 

including, El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Atlantic 

Multidecadal Oscillation (AMO), and North Atlantic Oscillation (NAO). Large-scale climate 

patterns evolve over time spans of years (e.g., ENSO) to decades (e.g., AMO), affecting regional 

temperature and precipitation and shift central tendency of annual mean streamflow during seasons 

or over years in different regions (e.g., Lavers et al., 2010; Tamaddun et al., 2017; Nazemi et al., 

2017; Lauro et al., 2019; Nalley et al., 2019; Wu et al., 2020; Zaerpour et al., 2021). Many 

prominent examples of regional multidecadal climate variability have been related to the AMO 

(Knight et al., 2006; Loaiza Ceron et al., 2020; Wu et al., 2020). A relevant example is the 

frequency of Atlantic hurricanes (Goldenberg et al., 2001; Trenberth and Shea, 2006; Enfield and 

Cid-Serrano, 2009). The AMO has also affected North American and European summer climate 

(Sutton and Hodson, 2005) and led to the occurrence of Sahel droughts, in which Sahel region of 

West Africa experiences multi-decadal decline in annual rainfall total (e.g., Rowell, 1996; Dai et 
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al., 2004; Evadzi et al., 2019). As a result, understanding the effects of natural variability on water 

resources is of paramount importance for regional water management, hydropower production, 

agriculture and other water-related socio-economic activities. 

In addition, human interventions directly threaten freshwater resources by changing the 

dynamics of water cycle at the catchment and regional scale (Nazemi and Wheater, 2015a, b; 

Bosmans et al., 2017; Wada et al., 2017). This is manifested through operation of infrastructure 

related to water resource management (e.g. reservoirs, irrigation and other withdrawals) as well as 

changing in physical structure of the watershed (Meybeck, 2003; Vörösmarty et al., 2005; 

Haddeland et al., 2014). For instance, reservoir operation alters the timing of discharge, although 

it does not much change annual mean discharge. Due to human interventions, streamflow 

conditions can change not only over the course of annual and/or decadal, but also in a century or 

even a geological epoch (Ye et al., 2003; Huang et al., 2004; Scanlon et al., 2007; Magilligan and 

Nislow, 2005; Nazemi and Wheater, 2015a, b). A study by Fekete et al. (2010) showed that impact 

of human interventions, i.e., construction of dams and water consumptions, in some river basins is 

equal or greater than the impact of expected climate change over next 40 years. Moreover, 

population and industrialization have continued to increase over the last century, which results in 

more competition for available water resources between direct consumption (e.g., water supply for 

human and crops) and/or resource production (e.g., energy and industry). For instance, irrigation 

consumes around 70% of water withdrawals globally (Shiklomanov et al., 2004) and fuel-based 

energy production is directly dependent on regional water availability (Jones, 2008; Macknick et 

al., 2012).  

Climate change is expected to additionally affect both water supply and water demand and can 

alter the elements of hydrological cycle, due to changes in hydroclimate variables such as 

temperature and precipitation (Nijssen et al., 2001; Fu et al., 2008; Sun et al., 2018; Guermazi et 

al., 2019; Luo et al., 2019). It has been shown climate change can greatly impact natural 

streamflow regime (Vörösmarty et al. 2000; Barnett et al., 2005; Dey and Mishra, 2017; Ficklin et 

al., 2018) and introduces a new set of management challenges, particularly in water scarce regions 

(Middelkoop et al., 2001; Hagemann et al., 2013; Grafton et al., 2013; Arnell et al., 2014; 

Schiermeier, 2014; Döll et al., 2015; Didovets et al., 2017).  Schellnhuber et al. (2014) indicated 

that climate warming by just 2°C over the present level would greatly affect human and different 

sectors of water resources. Harmonized studies have shown that warming climate has triggered in 

number and strength of the extreme weather and climate events, such as heat waves, flood and 

droughts (Meehl et al., 2004; Hirabayashi et al., 2013; Kundzewicz et al., 2014; Mann et al., 2015; 

Mazdiyasni et al., 2015; Cheng et al., 2016; Arnell et al., 2016). These are potential risk events 

that entail developing and implementing long-term water management and plan practices 

(Stoutenborough et al., 2014). For instance, drought conditions are likely to become more frequent 

and severe in some parts of South America, western and central Europe, central Africa, Australia 

and East Asia (Peñuelas et al., 2001; Hisdal et al., 2001; Prudhomme et al., 2014; Yu et al., 2014). 

While, the north and northeast of Europe and some parts of U.S. are the regions prone to an 
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increase in flood frequencies (Lehner et al., 2006; Hodgkins et al., 2017; Musselman et al., 2018; 

Brunner et al., 2020). Despite all efforts, there is a growing concern about the effects of climate 

change on water resources systems and infrastructure. U.S. federal agencies are now required to 

review the potential impacts of climate change on their assets and missions. Herman et al. (2020) 

and Fletcher et al. (2019) showed that necessity of adapt infrastructure to changing climate 

conditions. This study demonstrated that how thawing permafrost, increased flooding, and coastal 

erosion can affect public infrastructure.  Similar considerations are also in place in the United 

Kingdom for key infrastructure providers (Defra, 2011). In 2009, a project arranged by UK 

Government to examine and improve the resilience of national infrastructures including water 

sectors to long-term impacts of climate change. In Canada, studies showed the necessity of 

updating the intensity-duration-frequency (IDF) curves as a result of climate change (Alam et al., 

2015; Elshorbagy et al., 2015; Simonovic et al., 2017). Another study by Kemp et al. (2018) 

indicated potential impact of sea-level rise on Canadian coast. They illustrated that global climate 

change particularly in vulnerable regions including Maritime Provinces may result in sea-level 

rise. Climate change may also affect the infrastructure in cold regions (Melvin et al., 2017; 

Streletskiy et al., 2019). In Canada, around half of ground surface is within permafrost regions. 

Performance of infrastructure, including roads, pipelines, embankments, typically relies on the 

stability of the frozen ground in these regions. However, climate change may exacerbate 

permafrost warming especially in discontinuous permafrost areas (Couture et al., 2003; O’Neill et 

al., 2020). 

1.2. Challenges for Engineering and management   

As noted above the threats to human water resources are many, which can introduce a new set of 

challenges to engineering and management practices by posing substantial stress on water resource 

systems. Considering that the processes determining water availability are massively 

interconnected and under different causes of change across a range of scales, the underlying 

dynamics and drivers of hydroclimatic variability and change are not fully known.  Filling this gap 

is critical for bringing forward new methodologies for water resources planning and management. 

In addition to stationarity, which is the concept of unchanged variability in natural systems, has 

long been compromised by human interventions, climate change and heightened climate 

variability (Milly et al., 2008; Milly et al., 2015). Conventional water resource management, 

however, is based on the stationarity assumption. As a result, there are no longer valid as they are 

unable to fully account for dynamics within water resources systems. 

Although different methodologies have been adopted to address vulnerability of water resource 

system to the effects of human interventions, climate change and variability separately (Conway, 

1996; Dessai and Mike, 2007; Sheffield et al., 2009; Seiller and Anctil, 2014; Cayan et al., 2016), 

there is no methodology that is widely accepted (Herman et al., 2015; 2020). For instance, methods 

that implement climate models, limits the risk analysis only to climate factors that is captured by 

uncertain climate models (Ahmed et al., 2013; Hagemann et al., 2013; Gosling et al., 2016). On 

the other hand, majority of alternative approaches still limit the assessment to climate (Brown et 
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al. 2012; Moody and Brown, 2013).  Hence, to craft a more workable water resources management, 

improved tools are needed to facilitate better understanding of system vulnerability to the 

combined effects of human interventions as well as climate variability and change.  

1.3. Paradigms for assessing water resource systems vulnerability to changing condition 

1.3.1. Top-down approach 

The most widely-used approach to assess climate change impacts typically relies on the use of 

Global Climate Model (GCM) projections (Pandey et al., 2019; Gebrechorkos et al., 2020) – see 

Figure 1.1a. However, raw climate variables from GCMs have biases which must be corrected 

before their use (Piani et al., 2010; Teutschbein et al., 2012; Brown et al., 2012). In addition, GCMs 

outputs are produced at coarse spatial scales while the study areas are usually small. Commonly, 

output from GCMs is downscaled prior to their use in hydrological models (Wilby et al., 1998; 

Wilby et al., 1999; Wilby et al., 2002). In this framework, Hydrological Models (HMs) are used 

to estimate streamflow, conditioned to downscaled climate projections. Water resources system 

models are then used to estimate the resultant effects of projected streamflow series on water 

resource system performance (Wiley and Palmer, 2008; Brekke et al., 2009a,b; Vano et al., 2010; 

Vicuna et al., 2010).  

Various limitations, however, are associated with this framework (Mote et al., 2011; Beven, 

2011; Pielke and Wilby, 2012; Her et al., 2019). For instance, due to climate model uncertainty 

which is widely accepted in literature (Jekins and Lowe, 2003; Wilby and Harris, 2006) and 

different assumptions of greenhouse gas emissions (New and Hulme, 2000), GCMs often have 

uncertain outputs. These uncertainty cascade into even larger uncertainties in downscaled climate 

change scenarios (Webster et al., 2002; Stainforth et al., 2005; Smith et al., 2009). This is due to 

the inability of downscaling methods to simulate second- or higher-order moments of climate 

variables on the regional and local scales (Wilby and Wigley, 1997; Wilby et al., 1998; Salathe, 

2005). In addition, natural external climate forcings, such as large volcanic eruptions or long-term 

variations in solar energy irradiance cannot be seen in the GCMs, which can be an undeniable 

source of uncertainty (e.g., Myhre and Myhre, 2003; Matsui and Pielke, 2006; Davin et al., 2007). 

Moreover, global climate model predictions are unable to skillfully simulate major atmospheric 

circulation patterns (Pielke Sr., 2010; Annamalai et al., 2007) that are the main cause of natural 

climate variability as noted above (e.g., Otterman et al., 2002; Chase et al., 2006). Another problem 

with top-down approach is the fact that understanding different responses of water resource system 

to changes in hydroclimatic variables is very limited (Stainforth et al., 2007). Even using a large 

ensemble of GCMs, a limited range of change in a climate variable can be captured (Borgomeo et 

al., 2015). In parallel, current hydrological models cannot translate the climate projections to 

streamflow without large uncertainties.  They also suffer from the assumption that the models 

developed based on the historical data can be applied for projecting future conditions (Beven, 

2011). Later, these uncertainties propagate into the impact assessment of water resource system 

(Nazemi and Wheater, 2014). Therefore, there is a need to critically think over the top-down 

approach and move toward more flexible assessments that are capable to formally test the response 
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of water resource system to much wider range for feasible climate and/or streamflow conditions 

(Steinschneider and Brown 2013, Brown and Wilby, 2012, Nazemi et al. 2013). 

 

Figure 1.1. (a) The Top-down framework showing the conventional forward propagation approach and (b) 

the bottom-up approach, which starts by defining vulnerability ranges for hydrologic indicator. 

1.3.2. Bottom-up approach 

Another approach to assess vulnerabilities of water resource systems is to analyze response of the 

system without direct use of downscaled GCMs projections (e.g., Wilby and Dessai, 2010; Bryant 

and Lempert, 2010; Prudhomme et al., 2010; Knighton et al., 2017; Broderick et al., 2019). Such 

approaches can be classified under the umbrella of “bottom-up” frameworks, in which 

vulnerabilities of water resource systems are determined without focusing only on the future states 

of the systems, captured by climate projections. As a result, bottom-up approaches differ from 

more traditional top-down framework (Christensen et al., 2004; Wiley and Palmer, 2008; 

Borgomeo et al., 2018; Conway et al., 2019; Quinn et al., 2020). In fact, bottom-up framework 

changes the purpose of vulnerability assessment from predicting the future risks to identifying 

critical conditions under which the water resource system is vulnerable (see Brown and Wilby, 

2012). The assessment starts with a set of critical climate variables to which the water resource 

system is most sensitive. Each critical variable is then associated to a feasible range, reflecting 

various possibilities for future climate change. This range can be identified whether by using a 

large sets of climate projections (Stainforth et al., 2007) or by considering stakeholders’ needs 

(Brown et al., 2011). The identified domain should be further translated to corresponding 

streamflow ensembles using hydrological models. Later, simulated streamflows can be input to 

water resource system models and quantify the system’s stress within the feasible climate change 

envelope (see Figure 1.1b).This approach results in a better understanding of possible system 

responses through generating much wider range of scenarios of changes that can test potential 

decision options and system vulnerabilities (Lempert et al., 2004; Brown and Wilby, 2012; 

Steinschneider and Brown 2013; Turner et al., 2014; Singh et al., 2014; Herman et al., 2015).  

(a)                                                          (b) 



6 

 

1.3.2.1. Decision scaling approach 

Decision scaling approach are being used increasingly for climate impact assessments. They are 

considered as bottom-up approach as they provide a basis for evaluating water resource system 

performance to changes in hydroclimatic information (Brown et al., 2012, 2019; Kim et al., 2019). 

Later, these approaches try to add values to the impact assessment using the projections of climate 

models (Brown and Wilby, 2012). These approaches focus on a system of interest (e.g., 

agriculture, an ecosystem, etc.) and systematically identify its vulnerabilities to climate through 

obtaining response of system to some scenarios of change.   

An important aspect of decision scaling approach is the generation of perturbed series of 

climate variables that form the inputs to hydrologic and water resource assessment models. These 

series collectively referred to as an ‘exposure space’, and represent the range of conditions of 

interest that a system may be exposed to under a future climate (Guo et al., 2016). The common 

steps in this method are (1) identifying the problem, defining objectives and performance 

measures; (2) using a stress test to identify the hazard and evaluate the performance of the system 

under a wide range of nonclimatic and climatic variability and change; and (3) evaluating the risk 

using climate information. A schematic diagram of decision scaling approach 

is shown in Figure 1.2. The information generated can be used to assess system vulnerability under 

alternative climate change scenarios, and to calculate climatic thresholds at which system is 

sensitive (Brown et al., 2011; Steinschneider et al., 2015; Poff et al., 2016).   

 

Figure 1.2. Decision scaling framework for climate risk assessment of water resource system. 

Decision scaling approach is based on the premise that uncertainties associated with climate 

change is inevitable, and estimating the true probabilities is not possible through climate models 

(Stainforth et al., 2007; Brown et al., 2012). However, the skill of the climate models may be 

informative for estimating the relative probabilities, whether one climate state is more likely than 

others in the future. In addition, it should be noted that the results of decision scaling do not attempt 

to provide “optimal” solutions in the traditional decision analytic sense. Instead, the approach 

identifies the best decision conditional on the weight of the evidence obtained by climate 

projection. This approach tries to find how hydroclimatic variables make the system vulnerable 

and understand the critical thresholds for which new management option should be taken. 
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However, recent studies extend decision scaling approach to include hydro-economic factors in 

vulnerability assessment of water resource system (Ghile et al., 2014; Lownsbery 2014; Ray et al., 

2019), considering the fact that demand may put great pressure on water resource system 

(Vorosmarty et al., 2000; Fekete et al. 2010).  

Despite an interest in decision-centric approaches, technical methods for vulnerability 

assessment (i.e., generating perturbed climate scenarios to test system vulnerability) are relatively 

underdeveloped. Till now, a few methods have been utilized for perturbation of climate variables. 

The most popular approach has been to apply simple change factors to the historical values of 

precipitation and temperature data, and explore system sensitivity to mean climate shifts (Johnson 

and Weaver, 2009; Gober et al., 2010; Lempert and Groves, 2010; Brown et al., 2012). Some 

studies have considered other forms of change, including shifts in intra-annual climate 

(Prudhomme et al., 2010) and high-order statistics (e.g., variance, serial correlation) of annual 

hydroclimate data (Moody and Brown, 2013). Other studies adopt a stochastic weather generator, 

which provides a long synthetic time series of weather variables (Forsythe et al., 2014; Glenis et 

al., 2015; King et al., 2015). While all of above-mentioned approaches are appropriate for their 

specific application, they exhibit limited ability to perturb the entire distribution of climate 

variables at multiple temporal scales (Steinschneider and Brown, 2013). However, different 

concurrent temporal scales changes are possible under climate change (Timmermann et al., 1999; 

Collins, 2000; IPCC, 2007). Such combined patterns of change are indeed important in climate 

sensitivity analysis. Thus, there is a need for more generalized and comprehensive tools to conduct 

climate vulnerability assessments for systems sensitive to different climate variables across 

multiple temporal scales.  

1.3.2.2. Robust decision making 

Robust Decision Making (RDM) is based on sampling multiple climate conditions 

stochastically from observed records or GCM projections, which provides a tool to assess 

vulnerability of water resource system to a wider range of climate conditions (Lempert et al., 2006; 

Groves and Lempert, 2007; Lempert and Collins, 2007; Groves et al., 2008; Bartholomew and 

Kwakkel, 2020). This approach provides decision makers with information about adverse 

thresholds in climate and land use change that may cause a system vulnerable. It differs from 

decision scaling, in which the stress reflects the overall performance of system without using 

climate projections (Brown et al., 2011) and the critical thresholds can directly be used to inform 

policy decisions. For example, if a system quickly becomes vulnerable (small changes in climate 

or land use causing vulnerability), it provides decision makers with the insight that a very robust 

policy or drastic action will be needed to avoid potentially large damages. The steps in RDM 

include (1) considering ensembles of large plausible scenarios, (2) search for robust decision 

options that do “well enough” for an extensive range of possible futures, (3) apply adaptive 

strategies to achieve robustness.   

As noted above, the primary challenge in applying decision analysis under climate change is 

the uncertainty associated with GCM projections. In order to make decisions, instead of first 
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predicting the uncertain future, using RDM a systematic understanding of long-term future can be 

obtained considering many plausible climate projections (Lempert et al., 2010). This can be 

described by some methodologies, such as the Bayesian decision model with imperfect 

information, in which the information from GCMs can be later tailored to the vulnerabilities 

identified (Richards et al., 2013; Sperotto et al., 2017; Landis et al., 2017). Although, RDM provide 

a decision support to inform decision makers about the robustness of alternative decision options, 

but it does not provide explicitly any information about ranking of alternative decisions (Hall et 

al., 2012). Despite the development in the context of RDM, there are still major challenges. Current 

RDM framework mainly accounts for climate-related risk assessment, which is obtained using 

available climate projections. However, this approach cannot consider multiple sources of risks in 

future system performance. For instance, RDM has limited skill in addressing the effect of human 

interventions or different policy options on water resource system. Also, it still requires 

hydrological models to convert the realized climate futures into estimated water availability 

conditions. 

1.4. State-of-the-Art: Fully bottom-up approach 

As previously mentioned, top-down approaches are highly uncertain. Besides, bottom-up 

approaches have several limitations including addressing only climate-related risk and using 

uncertain hydrological models to translate climate variables into hydrological indicators. Hence, 

there is a need for more reliable methods to assess the potential impact of changing conditions on 

water resource systems. More recent contributions, therefore, have moved towards fully bottom-

up approaches to generate future water availability conditions without incorporating any climate 

and/or hydrological models. Accordingly, vulnerability can be directly mapped as a function of 

feasible changes in streamflow conditions. The advancement of such fully bottom-up framework 

requires the development of methodologies to address some limitations of these approaches with 

which the vulnerability of water resources systems under changing conditions can be assessed. For 

this purpose, stochastic modeling of streamflow has a key role in hydrology. Conventional 

methods typically implement autoregressive and their variants to linearly model the streamflow 

series (Pegram, 1980; Stedinger and Taylor 1982; Salas et al., 1985). Non-parametric models have 

been proposed as an appealing alternative to linear parametric methods for stochastic simulation 

of streamflow series (Lall, 1995). However, these methodologies have some limitations, e.g., the 

limited skill in representing the nonlinear behavior of streamflow series, or the ability to go beyond 

the range of historical data.   Recently, copula-based methodologies have been extensively used 

for stochastic simulation of hydrological data (Bardossy and Pegram, 2009; Hao and Singh, 2012; 

Jeong and Lee, 2015; Lall et al., 2016; Lei et al., 2018; Pereira and Veiga, 2018). It is mainly due 

to their capability to model any sort of association between random variables. In addition, in 

copula-based simulation, marginal behavior of each random variable can be modeled independent 

from the dependence structure that governs the relationship between variables (Genest and Favre, 

2007; Nazemi and Elshorbagy 2012; Pereira et al., 2017). Furthermore, any arbitrary distribution 

can be chosen as the marginal distribution (Chen et al., 2015). Several copula-based methodologies 
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have been developed for stochastic simulation of streamflow (Lee and Salas, 2011; Hao and Singh, 

2012; Kong et al., 2015), but they have some limitations which will be discussed further in detailed.    

1.5. Gaps in Knowledge and Technics 

In response to limitations of top-down approaches, alternative approaches based on bottom-up 

impact assessments have been suggested by focusing on analyzing the vulnerability using various 

forms of stress tests (Lempert and Collins 2007; Prudhomme et al. 2010; Brown et al. 2012; 

Steinschneider and Brown 2013; Mateus and Tullos 2017; Roach et al. 2016; Whateley et al. 2016; 

Danner et al. 2017; Ray et al. 2018; Guo et al. 2018; Spence and Brown 2018; Van Tra et al. 2018). 

In such approaches, future climate projections can be incorporated as one of the potential sources 

for identifying possible changes in streamflow, but the assessment can be performed without using 

GCM-based projections (Wilby and Dessai 2010; Brown and Wilby 2012; Herman et al. 2015, 

2016; Steinschneider et al. 2015; Knighton   et al. 2017; Shortridge and Zaitchik 2018). The results 

of such stress tests provide a basis to map critical thresholds for system vulnerability under a wide 

range of feasible future climate conditions. Although the majority of bottom-up assessments avoid 

the uncertainties resulted from climate projections, there are recent examples of fully bottom-up 

approaches in which the uncertainties from hydrological models are also avoided (Nazemi and 

Wheater 2014b). In such approaches, a large ensemble of synthetically generated streamflow 

realizations is used to directly map system vulnerability as a function of changes in long-term 

streamflow characteristics (see Nazemi et al. 2013; Borgomeo et al. 2015).  

Although bottom-up frameworks can address some of the uncertainties in top-down impact 

assessments, they include other forms of uncertainty. Most importantly, despite methodological 

differences, all bottom-up assessments use systematic approaches, with which realizations of 

perturbed climate or streamflow conditions can be generated. For the case of streamflow, 

stochastic approaches have been widely used for generating synthetic series at single and multiple 

sites (Prairie et al. 2007; Hao and Singh 2011; Chen et al. 2015). However, due to various 

simplifications and/or assumptions in producing synthetic streamflow realizations, the effects of 

changing water availability conditions on system performance may be misrepresented, potentially 

further misleading the decision-making process. One important context for such uncertainties is 

when streamflow is generated at the regional scale and needs to represent spatiotemporal 

dependencies between multiple tributaries. In such cases, misrepresenting the spatial dependencies 

between tributaries may result in underestimating the concurrence of streamflow events under 

current and changing conditions, in particular, high and low extremes (e.g., AghaKouchak et al. 

2014; Leonard et al. 2014; Mazdiyasni and AghaKouchak 2015; Zscheischler and Seneviratne 

2017). 

Additionally, with respect to the representation of spatiotemporal dependencies in synthetic 

streamflow realizations, existing methodologies can be categorized under two strains of linear and 

nonlinear approaches. Applications of linear stochastic models can be traced back to more than 

half a century ago (see Salas, 1980). In particular, variations of auto-regressive-moving-average 

models fusioned with other linear and nonlinear techniques have been frequently used for 
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streamflow generation at single site (Nowak et al. 2011; Serinaldi and Kilsby 2017; Tsoukalas et 

al. 2018a; Papalexiou 2018). Having said that, water resources systems often consist of multiple 

streams that are highly dependent on one another across a range of spatiotemporal scales, requiring 

the use of multisite stochastic streamflow generation models. Such multisite streamflow generation 

schemes enable assessment of vulnerability of water resource systems to simultaneous changes in 

streamflow such as analysis of regional flood events at multiple locations (e.g., Keef et al., 2009; 

Quinn et al., 2019; Brunner et al., 2020). For this purpose, multisite linear models have been 

developed in hydrology (e.g., multisite AR/ARMA; Salas and Pegram, 1977; Salas et al., 1985; 

Bartolini et al., 1988).  

In contrast to linear models that consider representing the dependence structure using the 

Pearson correlation coefficient, nonlinear models are mainly developed based on the 

representation of rank correlation statistics (e.g., Spearman’s rho and Kendall’s tau; see Genest 

and Favre 2007). Recently, copula-based methodologies have been extensively used for stochastic 

simulation of hydrological data, including streamflow (Bardossy and Pegram, 2009; Hao and 

Singh, 2012; Madadgar and Moradkhani. 2011; Borgomeo et al., 2015; Pereira and Veiga, 2018; 

Chen et al., 2019; Nazemi et al., 2020). Copulas are favorable in hydrology for their capability in 

modeling nonlinear association between random variables using rank correlation statistics (i.e., 

Spearman’s rho, or Kendall’s tau – see Genest and Favre, 2007), as well as decomposing the 

modeling the joint relationships from marginal representations (Wang et al., 2009; Nazemi and 

Elshorbagy 2012; Pereira et al., 2017). Several copula-based methodologies have been developed 

for stochastic simulation of streamflow at a single site (Lee and Salas, 2011; Hao and Singh, 2012; 

Kong  et al., 2015). Having said that, in the context of copula-based approaches in the multisite 

setting, a variety of methods have been proposed for representation of spatial dependency in 

multisite streamflow generation schemes (Nazemi et al., 2013, 2020; Hao and Singh, 2013; Chen 

et al., 2015, 2019; Pereira et al., 2017; Serinaldi and Kilsby, 2017). 

1.6. Research Statement 

Despite the developments noted above, there is not a consensus yet on the best representation 

for spatiotemporal dependencies in single and multisite generation of streamflow series.  This is a 

major concern as capturing the sequencing of extreme events (i.e., low/high flows) as well as 

capturing their regional co-occurrence is of high interest for engineering applications (Quinn et al., 

2019; Brunner et al., 2020; Wing et al., 2020). This is because streamflow process is governed by 

various mechanisms acting on different temporal and spatial scales, affecting the dependence 

structure of streamflow (Fleming and Dahlke, 2014; Konapala and Mishra, 2016; Lee et al., 2018). 

There have been some evidences arguing more nonlinearity in streamflow dependence structure 

in smaller catchments (Pilgrim, 1976; Wang et al., 1981) and/or finer timescales (e.g., Rao and 

Yu, 1990; Chen and Rao, 2003; Wang et al., 2005), although contracting evidences are also 

available (Robinson et al., 1995; Goodrich et al., 1997). Despite the fact that such clues may be 

available in some circumstances, it is not yet clear how linear or nonlinear representations of 
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spatiotemporal dependencies in stochastic streamflow generation can lead to a better or worse 

simulations of flow characteristics in single and multiple sites.  

In addition to the choice of linear/non-linear models required for streamflow generation for 

vulnerability assessment of water resource systems, little attentions have been given on the 

inclusion of impact of climate variability on streamflow generation. Previous studies have made it 

clear that considering the effects of climate variability through Large Scale Climate Indices 

(LSCIs) directly on streamflow or indirectly through affected hydroclimate variables, e.g., 

temperature and precipitation, may improve the predictability of streamflow particularly at 

seasonal to interannual scales (e.g., Kiem et al., 2021; Kwon et al., 2008; Steinschneider et al., 

2019; Wasko and Sharma, 2017). The indirect incorporation of LSCI in the generation of 

streamflow is in fact very common in the context of process-based models, in which variables such 

as temperature and precipitation are the basis of simulating streamflow (Eisner et al., 2017; 

Shrestha et al., 2013; Su et al., 2017). Process-based models, however, are deterministically 

formulated by implementing physically-based and/or conceptual equations without explicitly 

considering the distributional and/or joint properties of observed data (Montanari and 

Koutsoyiannis 2012; Farmer and Vogel, 2016). Past studies showed that although dependence 

between precipitation and LSCIs can be low (e.g., Westra and Sharma, 2010), LSCIs have more 

consistent impacts on streamflow and/or temperature (Bonsal and Shabbar, 2011; Nalley et al., 

2016; Nazemi et al., 2017). In particular, the direct dependencies between streamflow and LSCIs 

in coarser spatial and temporal scales are rather strong. This has motivated a strain of modeling 

attempts to explicitly incorporate the effect of LSCIs in streamflow generation through stochastic 

approaches (Lee et al., 2018a; Liu et al., 2015; Wang et al., 2009).  

Furthermore, streamflow regimes, traditionally, have been considered stationary in time (Milly 

et al. 2008). However, the looming effects of climate change along with human interventions 

through land and water management have raised fundamental questions regarding stationarity of 

streamflow regime during the current “Anthropocene” (Arnell and Gosling, 2013; Nazemi and 

Wheater, 2015a, 2015b). Even in undisturbed streams, recent literature is full of evidence, 

indicating major alterations induced by heightened climate variability and change (Barnett et al., 

2005; Stahl et al., 2010; Rood et al., 2016; Hodgkins et al., 2017; Dierauer et al., 2018). As a result, 

assessing how streamflow regime is changing as a result of alterations in natural and anthropogenic 

drivers is currently one of the imminent questions in the field of hydrology. 

Despite the extensive body of knowledge already gathered around assessing the effects of 

climate change on altering streamflow regimes, there are still rooms for methodological 

developments. Most importantly, among many potential flow characteristics that can constitute 

and describe streamflow regime, often only a few are taken into account (Whitfield and Cannon, 

2000; Hall et al., 2014; Vormoor et al., 2015). This is a limitation because climate change impacts 

are often manifested in the entire streamflow hydrograph, and not only around a unique set of 

streamflow characteristics (Olden and Poff, 2003). This is particularly the case in cold regions as 

at the watershed scale, multiple processes contribute to the streamflow generation, each behaving 
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differently in response to climate variability and change (Whitfield and Pomeroy, 2016). As a 

result, alterations in streamflow regimes are not only significant (e.g., Déry and Wood, 2005; 

MacDonald et al., 2018; Islam et al., 2019; Champagne et al., 2020); but also they are complex, 

due to compound impacts of changes in temperature, shifts in forms and magnitude of 

precipitation, as well as alterations in snow/ice accumulation and melt (DeBeer et al., 2016; Hatami 

et al., 2018; Rottler et al., 2020). At this stage of development, it is not yet possible to 

systematically quantify streamflow regimes and their alterations to one another using a large set 

of simultaneously changing streamflow characteristics (Burn et al., 2016; Burn and Whitfield, 

2018).  

Regardless of methodological differences, these decision-centric frameworks are mainly 

developed based on an ensemble of synthetic streamflow series generated under current and 

changing conditions, to which the system response is assessed. For this purpose, stochastic 

modeling of streamflow has a key role in hydrology. Conventional methods typically implement 

autoregressive models and their variants to linearly model the streamflow series (Pegram, 1980; 

Stedinger and Taylor 1982; Salas et al., 1985). Such approaches, however, cannot represent the 

marginal streamflow distribution, especially in the case of asymmetric and/or multimodal 

conditions (Papalexiou, 2018; Papalexiou and Serinaldi, 2020). To address these issues, Non-

parametric approaches have been developed as an appealing alternative (Lall and Sharma, 1996); 

however, they can only generate the streamflow realizations within the range of observed data and 

are limited in extrapolation (Papacharalampous et al., 2019; Quilty and Adamowski, 2020). More 

recently, copula-based models have gained lots of attention in hydrolclimatology (Nazemi and 

Elshorbagy, 2012; Aghakouchak, 2014) and in stochastic streamflow generation in single- (Hao 

and Singh 2012; Nazemi et al., 2013) and multiple sites (Pereira and Veiga, 2018; Chen et al., 

2015, 2019; Nazemi et al., 2020). This is mainly due to the capability of copula-based approaches 

in capturing the nonlinear spatiotemporal dependence structure observed within streamflow 

(Bardossy and Pegram, 2009; Hao and Singh 2012; Worland et al., 2019; Wang et al., 2019).  

Despite ongoing advances in stochastic streamflow generations with which the vulnerability 

assessment can be performed, little attention has been given on advancing the perturbation 

algorithms for altering the streamflow characteristics (Nazemi et al., 2013; Borgomeo et al., 2015; 

Feng et al., 2017). Some studies focus on developing algorithms for perturbing only few 

streamflow characteristics such as annual volume or timing of annual peak developed by Nazemi 

et al. (2013) and later applied in Feng et al. (2017), or the work of Herman et al. (2016) for 

perturbing only the frequency of low flow. Perhaps, the most general approach for perturbing the 

streamflow characteristics is developed by Borgomeo et al. (2015) in which any desired shift in 

streamflow characteristics can be provided by rearranging of annual hydrographs to generate a set 

of desired properties while such characteristics are treated as a combinatorial optimization 

problem. Such approaches, however, is a very time-consuming task, and similar to other 

optimization techniques may converge to local optimum. Additionally, such algorithms are based 

on reshuffling the observed annual hydrograph and cannot generate the streamflow realizations 

beyond the observed data. Furthermore, for generation of streamflow realization, different 
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characteristics of flow regime have been considered in the one objective function. Nonetheless, 

these characteristics are not explicitly independent of each other. 

1.7. The Scope of this thesis 

The research presented in this thesis is focused on providing a comprehensive stochastic 

framework to generate streamflow series at single and multiple sites under changing conditions. 

This thesis tries to improve the stochastic streamflow generation scheme required for vulnerability 

assessment of water resource system by addressing limitations summarized as follows:  

(i) As mentioned earlier, with respect to the representation of spatiotemporal dependencies 

in synthetic streamflow realizations, existing methodologies can be categorized under 

two strains of linear and nonlinear approaches. There is, however, no general consensus 

on how spatiotemporal dependencies between multiple river reaches should be 

represented under changing condition. Additionally, it is not clear how and to what 

extent the results of an impact assessment depend on the scheme used for generating 

streamflow at regional scales. 

(ii) There have been some lines of evidence arguing linearity/nonlinearity in the 

streamflow dependence structures changing with the timescales, sizes of streamflow 

catchment, and types of flow regime. Despite the fact that such clues may be available 

in some circumstances, it is not yet clear how linear or nonlinear representations of 

spatiotemporal dependencies in stochastic streamflow generation can lead to a better 

or worse simulations of flow characteristics in single and multiple sites across different 

timescales, sizes of basin, and various flow regimes. 

(iii) Streamflow has been often represented as a function of other hydroclimatic processes 

such as temperature, precipitation, and evapotranspiration at the catchment scale. These 

variables are affected by large-scale climate patterns, which can consequently impact 

streamflow generation globally. Despite ongoing advances in streamflow generation 

methodologies, only a few incorporate climate-related proxies in streamflow 

generation; and none – to the best of our knowledge – explicitly incorporate the 

influence of multiple LSCIs in the procedure of stochastic streamflow generation. 

(iv) Assessing how streamflow regime is changing as a result of alterations in natural and 

anthropogenic drivers is currently one of the imminent questions in the field of 

hydrology. Identifying how streamflow regimes are changing is required for 

developing perturbation methodologies to represent the desired shift under future 

changing condition. Despite the extensive body of knowledge already gathered around 

assessing the effects of climate change on altering streamflow regimes, there are still 

rooms for methodological developments. Most importantly, among many potential 

flow characteristics that can constitute and describe streamflow regime, often only a 

few are taken into account. This is a limitation because climate change impacts are 
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often manifested in the entire streamflow hydrograph, and not only around a unique set 

of streamflow characteristics. 

(v) Regardless of methodological differences, these decision-centric frameworks are 

mainly developed based on an ensemble of synthetic streamflow series generated under 

current and changing conditions, to which the system response is assessed. For this 

purpose, stochastic modeling of streamflow has a key role in hydrology. Despite 

ongoing advances in stochastic streamflow generations with which the vulnerability 

assessment can be performed, little attention has been given on advancing the 

perturbation algorithms for altering the streamflow characteristics. Some studies focus 

only on developing algorithms for perturbing only few streamflow characteristics such 

as annual volume or timing of annual peak. Some other methods implement any desired 

shift in streamflow characteristics by rearranging of annual hydrographs to generate a 

set of desired properties while such characteristics are treated as a combinatorial 

optimization problem which is a very time-consuming task and rely only on reshuffling 

the observed annual hydrograph. 

1.8. Thesis Layout 

The thesis follows a manuscript-based format including a collection of five manuscripts that are 

published, submitted, or in preparation. This PhD thesis aims at providing an improved stochastic 

streamflow generation approach for assessing the vulnerability of the water resources system to 

changing streamflow conditions. The driving questions in each parts of our study can be 

summarized into: (1). What are the uncertainties in the status-quo methodologies? (2). How can 

we improve the preservation and perturbation of streamflow regime during stochastic generation?  

(3). How can we incorporate the effect of natural variability manifested through Large Scale 

Climate Indices (LSCIs) into vulnerability assessments?  (4). What are the emerging types of 

changes in various streamflow regimes in Canada? (5). How can we represent the various types of 

changes in the flow regime? 

The five journal papers compose Chapters 2 to 6, each aims to address one of the above 

questions. Some papers are slightly edited to unify the format of the thesis.  

(i) Chapter 2 identifies the gaps in the fully bottom-up framework and showcase the 

uncertainty in an impact assessment as a result of the ambiguity in the choice of 

streamflow generation scheme. By focusing on an important regional water resource 

system in Western Canada, this thesis examines how alternative regional generation 

schemes can result in different reproduction of the historical stream- flow regime and 

explore whether there is a particular scheme that can outperform others in terms of 

reproducing a range of observed streamflow conditions. 

(ii) Chapter 3 sheds light on the various forms for characterizing the key feature exhibited 

by the observed streamflow data, i.e., spatiotemporal dependence structure, and to 
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develop a set of guidelines for choosing the right spatiotemporal representation in the 

right circumstances. By considering a wide range of spatiotemporal representations for 

stochastic streamflow generation, this chapter investigates the performance of each 

scheme in reproducing the long-term characteristics of streamflow series and annual 

flood peak in a number of case studies and across a range of scales and flow regimes. 

(iii) Chapter 4 proposes a generic approach based on vine copula method to explicitly 

incorporate LSCIs as exogenous covariates in stochastic streamflow generation at the 

monthly scale both in prediction and projections modes and at single and multiple sites. 

We hypothesize that the explicit representation of LSCIs improves both prediction and 

projection skills, particularly in terms of representing seasonality and inter-annual 

variability. We showcase the application of the proposed scheme for the prediction and 

projection of three mountainous headwaters in southern Alberta, Canada. To 

benchmark the performance of the proposed algorithm, we compare the skills of our 

model with already existing reference algorithms. 

(iv) Chapter 5 proposes a new methodology to systematically quantify streamflow regimes 

and their alterations to one another using a large set of simultaneously changing 

streamflow characteristics. In line with some recent suggestions in the literature, this 

chapter conceptualizes streamflow regimes as continuous spectrums rather than distinct 

states. This conceptualization requires a methodology that can formally deal with 

subjectivity in the definition of streamflow regimes. This provides a methodological 

basis to classify streamflow regimes as intersecting clusters. Accordingly, the chapter 

highlights how such regime shifts are attributed to changes in streamflow 

characteristics using a formal dependence analysis. This algorithm is applied in 

Canada, where the rate of warming is twice the global average, and changes in 

streamflow characteristics are significant in time and space. 

(v) Chapter 6 proposes a general approach to synthesize a large ensemble of perturbed 

streamflow, with which the vulnerability of water resource systems to the plausible 

changes in streamflow hydrograph can be analyzed. The proposed framework first 

identifies the main types of shifts in the streamflow hydrographs happening across 

different flow regime types and then implement the shifts in the marginal distribution 

of flow at the subannual time scale as well as in the expected timing of annual peak. 

The new algorithm can systematically alter various streamflow characteristics alone or 

simultaneously, depending on the types of changes in different flow regimes. The 

practical utility of the new perturbation algorithm is demonstrated in single- and 

multisite settings using a number of natural streams with different flow regime types 

across Canada. 

(vi) Finally, Chapter 7 summarizes the main contributions of this thesis and future research 

needs.  
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Chapter 2.  

Uncertainty in Bottom-Up Vulnerability Assessments of Water Supply Systems due to 

Regional Streamflow Generation under Changing Conditions1 

The contents of this chapter have been published in “Nazemi, A., Zaerpour, M., & Hassanzadeh, 

E. (2020). Uncertainty in Bottom-Up Vulnerability Assessments of Water Supply Systems due to 

Regional Streamflow Generation under Changing Conditions.” in Journal of Water Resources 

Planning and Management.  The contents are slightly modified from the submitted article. 

 

Synopsis 

Changing natural streamflow conditions apply pressure on water supply systems globally. 

Understanding potential vulnerabilities using IPCC-endorsed top-down impact assessments, 

however, is limited due to uncertainties in climate and/or hydrological models. In recent years, 

bottom-up stress tests have been proposed to avoid some of the uncertainties in top-down 

assessments, but the uncertainty in bottom-up approaches and its impact on vulnerability 

assessments are poorly understood. Here, we aim at addressing uncertainties that originate from 

synthetic realizations of regional streamflow with which the system vulnerability is mapped and 

assessed. Four regional streamflow generation schemes are used to form alternative hypotheses for 

performing a bottom-up impact assessment in a large-scale water supply system under changing 

conditions. Our findings suggest that despite having different levels of realism, none of the 

schemes can dominate others in terms of reproducing all historical streamflow characteristics 

considered. There can also be significant differences in the results of impact assessments, 

particularly in terms of variability in long-term streamflow characteristics and system 

performance. These differences cause uncertainty in assessing risk in system performance and 

stress-response relationships under changing conditions. 

 

2.1. Introduction 

Mountainous headwaters are important sources of freshwater supply globally. As a result, it is not 

surprising that human activities, downstream of mountainous headwaters, have been formed 

around certain characteristics of incoming streamflow, collectively known as the natural 

streamflow regime. Although natural streamflow regimes have been historically considered to be 

stable over time, the effects of climate change (Barnett et al. 2005; Milly et al. 2005) and increasing 

anthropogenic interventions through land and water management (Vörösmarty et al. 2000; Nazemi 

and Wheater 2015a, b) have challenged the legitimacy of the stationarity assumption in streamflow 

characteristics (Milly et al. 2008, 2015). As such pressures on natural streamflow are increasing 

(Haddeland et al. 2014; Prudhomme et al. 2014), nonstationarity should be considered the new 

normal for natural streamflow regimes during the Anthropocene (see Mallakpour et al. 2018). 

                                                            
1 Nazemi, A., Zaerpour, M., & Hassanzadeh, E. (2020). Uncertainty in Bottom-Up Vulnerability Assessments of Water Supply 

Systems due to Regional Streamflow Generation under Changing Conditions. Journal of Water Resources Planning and 

Management, 146(2), 04019071, https://doi.org/10.1061/(ASCE)WR.1943-5452.0001149. 
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Alterations in the streamflow regime can translate into vulnerabilities in water resource 

systems. Various methodologies have been suggested to assess the impact of changing streamflow 

regimes on the planning and management of water supply systems (Salas et al. 2012; Eisner et al. 

2017; Sunde et al. 2017; Khatri    et al. 2018). These frameworks are mainly based on a top-down, 

scenario-led (in short and top-down) approach, which uses downscaled projections of global 

climate models (GCMs) as the basis for impact assessments. In the case of assessing the 

vulnerability of water resource systems to changes in streamflow regime, downscaled GCM 

projections are passed through hydrological models with which changes in streamflow conditions 

can be quantified (Wiley and Palmer 2008; Gizaw et al. 2017; de Oliveira et al. 2017; Wang et al. 

2018). The projected streamflow series are then used to identify the system response to changing 

conditions using an integrated impact assessment model. Although this approach is endorsed by 

the International Panel of Climate Change (see IPCC 2014), this approach is subject to large 

uncertainty due to the limitations in both downscaled climate projections and hydrological models 

(Wilby and Harris 2006; Stainforth et al. 2007; Beven 2011; Pielke and Wilby 2012; Wilby et al. 

2014; Pina et al. 2017; Maraun et al. 2017; Jaramillo and Nazemi 2018). In response to these 

limitations, alternative approaches based on bottom-up impact assessments have been suggested 

that focus on analyzing vulnerability using various forms of stress tests (Lempert and Collins 2007; 

Prudhomme et al. 2010; Brown et al. 2012; Mateus and Tullos 2017; Roach et al. 2016; Whateley 

et al. 2016; Danner et al. 2017; Ray et al. 2018; Guo et al. 2018; Spence and Brown 2018; Van Tra 

et al. 2018). In such approaches, future climate projections can be incorporated as one of the 

potential sources for identifying possible changes in streamflow, but the assessment can be 

performed without using GCM-based projections (Wilby and Dessai 2010; Brown and Wilby 

2012; Herman et al. 2015, 2016; Steinschneider et al. 2015; Knighton   et al. 2017; Shortridge and 

Zaitchik 2018). The results of such stress tests provide a basis to map critical thresholds for system 

vulnerability under a wide range of feasible future climate conditions. Although the majority of 

bottom-up assessments avoid the uncertainties resulted from climate projections, there are recent 

examples of fully bottom-up approaches in which the uncertainties from hydrological models are 

also avoided (Nazemi and Wheater 2014b). In such approaches, a large ensemble of synthetically 

generated streamflow realizations is used to directly map system vulnerability as a function of 

changes in long-term streamflow characteristics (see Nazemi et al. 2013; Borgomeo et al. 2015). 

Although bottom-up frameworks can address some of the uncertainties in top-down impact 

assessments, they include other forms of uncertainty. Most importantly, despite methodological 

differences, all bottom-up assessments use systematic approaches, with which realizations of 

perturbed climate or streamflow conditions can be generated. For the case of streamflow, 

stochastic approaches have been widely used for generating synthetic series at single and multiple 

sites (Prairie et al. 2007; Chen et al. 2015). However, due to various simplifications and/or 

assumptions in producing synthetic streamflow realizations, the effects of changing water 

availability conditions on system performance may be misrepresented, potentially further 

misleading the decision-making process. One important context for such uncertainties is when 

streamflow is generated at the regional scale and needs to represent spatiotemporal dependencies 
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between multiple tributaries. In such cases, misrepresenting the spatial dependencies between 

tributaries may result in underestimating the concurrence of streamflow events under current and 

changing conditions, in particular, high and low extremes (e.g., AghaKouchak et al. 2014; Leonard 

et al. 2014; Mazdiyasni and AghaKouchak 2015; Zscheischler and Seneviratne 2017). 

With respect to the representation of spatiotemporal dependencies in synthetic streamflow 

realizations, existing methodologies can be categorized under two strains of linear and nonlinear 

approaches. Applications of linear stochastic models can be traced back to more than half a century 

ago (see Salas, 1980 for review). In particular, auto-regressive-moving-average models along their 

variations and fusion with other linear and nonlinear techniques have been frequently used for 

streamflow generation at single and multiple sites (Nowak et al. 2011; Serinaldi and Kilsby 2017; 

Tsoukalas et al. 2018a; Papalexiou 2018). In contrast to linear models that consider representing 

the dependence structure using the Pearson correlation coefficient, nonlinear models are mainly 

developed based on the representation of rank correlation statistics (e.g., Spearman’s rho and 

Kendall’s tau; see Genest and Favre 2007). Copulas provide a flexible methodology to the 

nonlinear representation of joint characteristics of multiple dependent random variables (e.g., 

Genest and Favre 2007; Nazemi and Elshorbagy 2012; Sadegh et al. 2017). Using copulas, 

streamflow at every pair of time and space can be stochastically generated through conditional 

resampling (see e.g., Appendixes S1–S3). For stationary streamflow generation, copulas are 

already applied at single (Lee and Salas 2011; Hao and Singh 2012) and multiple sites (Hao and 

Singh 2013; Pereira and Veiga 2018). However, algorithms that are used to generate synthetically 

altered streamflow regimes have mostly been developed for a single site (e.g., Nazemi et al. 2013). 

To overcome this, linear spatial regressions have been proposed that transfer locally generated 

streamflow to multiple sites (e.g., Nazemi and Wheater 2014a). Such schemes, however, are 

limited due to the inability of regression models to represent all modes of association between 

multiple river reaches (e.g., Hassanzadeh et al. 2016b, 2017; Tsoukalas et al. 2018b). 

At the current stage of development, there is no general consensus on how spatiotemporal 

dependencies between multiple river reaches should be represented under changing conditions. In 

addition, since the results of existing algorithms for spatial streamflow generation under changing 

conditions are not yet intercompared, it is currently unknown whether there is a scheme that can 

dominate other competing alternatives in terms of reproducing the observed regional streamflow 

regime. Moreover, it is not clear how and to what extent the results of an impact assessment depend 

on the scheme used for generating streamflow at regional scales. To highlight these gaps and to 

showcase the uncertainty in an impact assessment as a result of the ambiguity in the choice of 

streamflow generation scheme, we use four alternative schemes (two existing and two new) for 

multisite streamflow generation under changing conditions. These schemes differ from one 

another only in terms of how spatiotemporal dependencies between river reaches are represented 

and incorporated within the streamflow generation procedure. We examine how alternative 

regional generation schemes can result in different reproduction of the historical streamflow 

regime and explore whether there is a particular scheme that can outperform others in terms of 
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reproducing a range of observed streamflow conditions. By implementing these schemes in the 

context of a bottom-up vulnerability assessment, we then show how different schemes can result 

in different long-term characteristics under changing conditions and how the different 

characteristics can produce uncertainties in the understanding of impacts of changing streamflow 

conditions on the water resource system. 

2.2. Case Study 

The Saskatchewan River Basin in Western Canada is the most important water supply in the 

Canadian Prairies, which is home to the country’s irrigated agriculture. The part of the river basin 

in the Saskatchewan Province (hereafter Sask-SRB), exemplifies a water resource system with 

complex interactions between natural and human processes—see Fig. 2.1. The incoming 

streamflow to the province is provided by two major tributaries, i.e., the North and the South 

Saskatchewan Rivers (hereafter NSR and SSR, respectively). Having expected annual discharges 

of 213 and 215 m3/s at the Alberta/Saskatchewan border, respectively, NSR and SSR together 

account for approximately 80% of the total streamflow availability in the Saskatchewan (Pomeroy 

et al. 2005). Both rivers initiate from the Canadian Rockies, where the annual streamflow regime 

can be adequately characterized by the annual volume and timing of the annual peak (Fleming and 

Sauchyn 2013; Nazemi et al. 2017). Both tributaries, in particular, SSR, serve multiple water 

demands in Alberta before reaching the Saskatchewan border. After entering the province, SSR is 

stored in the Lake Diefenbaker, a large multipurpose reservoir. Although irrigation currently 

accounts for the majority of water withdrawal in the province, hydropower provides the highest 

net benefit of the water use (Martz et al. 2007), and the hydropower is generated at three locations, 

namely, Lake Diefenbaker’s Gardiner dam as well as the Nipawin and E.B. Campbell dams, 

downstream of Fork, where SSR and NSR join and form the Saskatchewan River. The 

Saskatchewan River then feeds the Saskatchewan River Delta (SRD), the largest inland delta in 

North America (Hassanzadeh et al. 2017). The outflow from Sask-SRB is subject to the 1969 inter-

provincial Master Agreement on Apportionment, requiring Saskatchewan to pass half of the 

natural streamflow to Manitoba annually (Pomeroy et al. 2005). The Sask-SRB is faced with major 

water security threats (Wheater and Gober 2013, 2015). Most importantly, increasing climate 

variability and change has affected the characteristics of streamflow in headwaters, where most of 

the regional streamflow originated. These changes are due to alterations in regional precipitation 

patterns and snow/melt processes (Shook and Pomeroy 2012; Chun et al.  2013; Harder et al. 2015; 

Hatami et al. 2019). In addition, in-stream human interventions, through redistribution and 

consumption of river flows, have contributed to significant changes in the key streamflow regime 

indicators in the region, namely, annual streamflow volume and timing of the annual peak (Nazemi 

et al. 2017). Meanwhile, Saskatchewan is considering a proposal for expanding its irrigation area 

4-fold. This expansion can result in an increased provincial net benefit (PNB) and increased current 

changes in streamflow regime downstream from Lake Diefenbaker. These changes, in conjunction 

with hydropower production, can significantly affect the ecological functioning of the SRD and 

accordingly limit the essential life resources for both humans and ecosystems in the delta. 
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Few impact assessments have been performed in the Sask-SRB to quantify potential system 

vulnerabilities under changing streamflow, demand, and operational policies (Hassanzadeh et al. 

2016a,b, 2017). All these assessments use a fully bottom-up approach based on an integrated 

simulation-based water resource system model named SWAMPSK (see Hassanzadeh et al., 2014 

for more details on the model). These impact assessments, however, use different schemes for 

synthetic streamflow generation at the regional scale. In Hassanzadeh et al. (2016a, b), a 

regression-based scheme was used to extend the stochastically generated streamflow at the NSR 

to SSR, using the scheme suggested in Nazemi and Wheater (2014a). Further investigations, 

however, revealed in limitations of the regression-based scheme in representing low and high flow 

quantiles at the SSR. As a result, in the later work of Hassanzadeh et al. (2017), the incoming flows 

at the NSR and SSR were generated independently using the single-site reconstruction algorithm 

of Nazemi et al. (2013) without considering the spatial dependence between reaches. This 

independent generation was to ensure that low and high inflows to the SRD could be well 

represented. Here, we revisit this case study and reassess the vulnerability of the Sask-SRB using 

the two previously developed methods, along with two new schemes for regional streamflow 

generation (in total, four schemes). The four schemes were considered different from each other 

only in the way spatiotemporal dependencies between and within the SSR and NSR are 

represented. We are particularly interested in understanding (1) how skillful these four schemes are 

in reproducing a historical streamflow regime and whether there is a scheme that can dominate 

others with respect to capturing a range of observed streamflow characteristics; (2) how different 

the generated streamflow series are under changing water availability conditions; and (3) how 

sensitive the results of an impact assessment are to the scheme used for streamflow generation. In the 

following section, we briefly introduce the applied schemes for generating the incoming regional 

streamflow to the Sask-SRB. 

2.3. Copula-Based Stochastic Streamflow Generation at Single and Multiple Sites 

The stochastic reconstruction approach (see Nazemi et al. 2013) uses copulas for streamflow 

generation under changing streamflow conditions. The algorithm was originally proposed for 

single-site streamflow generation for regions like Sask-SRB, where the annual streamflow regime 

can be sufficiently described by annual streamflow volume and timing of the annual peak. In brief, 

the algorithm is built upon the fact that empirical probability distributions of sub-annual 

streamflow can provide a theoretical basis for generating multiyear streamflow series with 

identical expected annual characteristics. The algorithm combines this theoretical basis with two 

heuristic schemes based on multiplicative and additive quantile mapping (Panofsky and Brier 

1958; Wood et al. 2002) to represent shifts in annual volume and timing of the peak—see Nazemi 

et al. (2013) for detailed formulation.  
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Figure 2.1.The extent and key components of Sask-SRB, the water resource system developed around the 

Saskatchewan River Basin in Saskatchewan, Canada. 

To generate random realizations of streamflow, the algorithm uses a conditional sampling 

strategy in which parametric copulas provide a basis for representing lag-1 temporal dependencies 

in streamflow series (i.e., the dependence between consecutive weeks at a given site)—see 

Appendix A1 for the formulation of the copula-based temporal sampling strategy. We consider 

four schemes for generating regional incoming streamflow to Sask-SRB: (1) ignoring the spatial 

dependence between the two reaches—M1, implemented before in Hassanzadeh et al. (2017); (2) 

representing the spatial dependence using a regression-based spatial extension scheme—M2, 

implemented before in Hassanzadeh et al. (2016a, b); (3) representing the spatial dependence using 

a bivariate spatial copula  models—  M3; and (4) representing the full spatiotemporal dependence 

using a system of nested bivariate copula models—M4. To generate regional streamflow using 

M1, streamflow series can be first generated independently at the two reaches using the single-site 

algorithm (see Section S1 for the sampling procedure) and then randomly mixed-and-matched with 

one another to form random realizations of regional streamflow series, in which spatial 

dependencies are not represented. M2, M3, and  M4  are based  on generating streamflow series at 

a reference or a donor tributary (hereafter primary site) and transferring the generated realizations 

to other reaches (hereafter secondary sites) using different representations. M2 uses a set of linear 

regression models to transfer the generated streamflow series from a primary to a secondary reach 

at the same time step—see Nazemi and Wheater (2014a) for methodological details. In M3, linear 

regression models are replaced by lag-0 spatial copulas (i.e., the dependence between 

corresponding weeks in the primary and secondary reaches). Both M2 and M3 focus only on 

representing the spatial dependence and ignore explicit representation of temporal dependencies 

at the secondary reach. To overcome this gap, M4 is developed based on the guidelines of Chen et 

al. (2015) for representing the full spatiotemporal dependence at the secondary reach using a 

system of three mutually independent bivariate copulas—see Appendixes A2 and A3 for the 

formulations of M3 and M4, respectively.  

2.4. Experimental Setup and Benchmarking Procedure 

Before any intercomparison among schemes, the best copula structure and parametric sets for each 

scheme need to be identified.  We considered three common parametric copula functions, namely, 

http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001149#supplMaterial
http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001149#supplMaterial
http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001149#supplMaterial
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Frank, Clayton, and Gaussian copulas for setting up the four schemes—see Nelsen (2006) for 

formulations of these copulas. We used each copula function in conjunction with empirical 

representations of marginal distributions (i.e., weekly flows in NSR and/or SSR reaches); 

therefore, any difference between various setups of one scheme can be attributed to the choice of 

copula functions. Accordingly, we identified the best parametric copulas for preserving lag-

1temporal and lag-0 spatial dependencies between the two tributaries during the baseline period 

of 1980–2010. The Kendall’s tau (Genest and Favre 2007) was used to quantify temporal and 

spatial dependencies (see Appendix A4 for observed versus simulated Kendall’s tau). The 

maximum likelihood density method was used to estimate the copula parameters (see 

Shojaeezadeh et al. 2018). The results show that Frank copula can consistently outperform Clayton 

and Gaussian copulas in reproducing the observed temporal and spatial dependencies at the NSR 

and SSR—see Appendix A4. Frank copula was therefore selected for setting up the four schemes 

and performing the other experimentations. As the copula function is common among all schemes, 

any difference between generated series can be attributed only to the procedure with which 

spatiotemporal dependencies between the two reaches were represented. Here, we attempted to 

make an intercomparison between M1 and M4 to understand the quality of generated long-term 

streamflow characteristics and to shed light on uncertainties in understanding system response due 

to uncertainties in synthetic streamflow series. We first intercompared the performance of the four 

schemes in reproducing the long-term streamflow characteristics during a common historical 

baseline. For this purpose, we implemented a resampling approach and rigorously inspected the 

expected values for performance and associated uncertainty in reproducing the long-term historical 

characteristics from 1980 to 2010.  

In brief, for each scheme, we once chose the NSR and once chose the SSR as the primary was 

reached (hereafter, NSR → SSR and SSR → NSR paths, respectively), for which 100 realizations 

of the historical streamflow series with the length of 31 years were generated with no shift in 

annual streamflow volume or timing of the peak. For each realization, we then generated the 

corresponding streamflow series at the secondary site using the four spatial extension schemes. 

For each regional realization (i.e., pairs of streamflow series at the primary and secondary reaches), 

we calculated the error in reproducing 10 key long-term streamflow characteristics. These error 

measures include mean and root mean square errors in representing long-term observed values of 

the annual volume (Vhist); annual peak (Phist); annual timing of the peak (TPhist); annual flow 

quantiles at 10%, 50%, and 90% non-exceedance percentiles (Q10hist, Q50hist, and Q90hist, 

respectively); as well as the lag-1 temporal dependence and the annual temporal dependence 

structure (i.e., lagged dependencies among 52 weekly streamflow in 1 year) at the secondary reach. 

We only focused on the secondary tributary, because the generated flows at the primary reach for 

all schemes were the same. We also considered two regional characteristics related to preserving 

the lag-0 spatial dependence and the annual spatial dependence structure (i.e., pairwise 

dependencies between all combinations of weekly flows in the two tributaries). Considering 100 

realizations in each ensemble, the expected values of the calculated errors for all realizations were 

considered as representative ensemble score in reproducing the long-term streamflow 
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characteristics using a particular scheme. We repeated the aforementioned ensemble sampling 100 

times, resulting in each scheme comprising 100 samples, with which the representative scheme 

score and the associated sampling uncertainty were empirically quantified using the sample 

estimates of the mean and standard deviation, respectively. By using this multi ensemble approach, 

it is possible to formally address the differences in the scheme scores in light of the sampling 

uncertainties. For this, we used the single-factor analysis of variance (ANOVA) with Bonferroni 

correction (Bland and Altman 1995) to perform multiple pairwise comparisons between the 

scheme scores. In brief, ANOVA used the samples of 100 representative ensemble scores for M1, 

M2, M3, and M4 and tested whether the schemes resulted in statistically different scores. This, 

however, does not provide knowledge on how the four schemes can be compared pairwise. 

Bonferroni correction adjusts the p-value of the ANOVA test to compensate for multiple pairwise 

comparisons—see Stuart and Jones (2006), Dauwalter et al. (2006), and Shoda et al. (2012) for 

the procedure and application examples. Second, to address how the four schemes can lead into 

different long-term streamflow characteristics under changing conditions, we first identified a set 

of feasible changes in annual flow volume and timing of annual peak based on previous studies in 

the region (i.e., Martz et al. 2007; Pomeroy et al. 2009; Hassanzadeh et al. 2016b). In total, we 

considered 154 scenarios of change by mixing and matching 25% to 25% shifts in annual volume 

(perturbation step: 5%) with 5 to 8 weeks for the timing of annual peak flow (perturbation step: 1 

week). Each scenario of change can be accordingly represented by a regime, for which an ensemble 

including 100 weekly realizations of regional streamflow with a length of 31 years can be 

generated using each of the four schemes. The generated streamflow realizations were then 

intercompared among the four schemes based on two differences: (1) representations of the 

expected long-term changes in streamflow characteristics; and (2) variabilities in long-term 

streamflow characteristics that were captured. We estimated the difference between the expected 

value of long-term characteristics obtained through 100 realizations and the corresponding 

observed value during the baseline period as an empirical proxy for the expected change in long-

term streamflow characteristics. We also considered the coefficient of variation in long-term 

characteristics obtained through 100 realizations as a proxy for measuring the variability in long-

term streamflow characteristics. In addition, the ANOVA test with Bonferroni correction was 

implemented to measure the significance of the pairwise differences between generated long-term 

streamflow characteristics among the four schemes. Third, it is also important to address the 

uncertainties in a bottom-up impact assessment due to the method used to generate streamflow 

series under changing conditions. As a result, we introduced the generated streamflow ensembles 

obtained by M1–M4 under 154 changing conditions to the SWAMPSK to provide the projected 

response of the Sask-SRB water system under changing conditions. We considered three 

performance measures: annual PNB (in Canadian $M); annual surface water coverage (SWC; in 

km2) area in the SRD during the ice-free season, a proxy for measuring overall ecosystem health 

in the delta (see Sagin et al., 2015 for the formulation); and the ratio of Manitoba apportionment 

to the available streamflow in Saskatchewan (hereafter, APP; dimensionless). These measures 

represent the economic, ecologic, and socio-politic responses of the Sask-SRB to changing 
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streamflow conditions, respectively. Similar to the experimentation performed for generated 

streamflow characteristics under changing conditions, we compared the results of vulnerability 

assessments obtained using M1–M4 based on two criteria: (1) how differences between the 

expected changes in the long-term system performance were captured; and (2) how variability in 

long-term system performance was represented under changing conditions. The ANOVA test with 

Bonferroni correction was also implemented to measure the significance of the pairwise 

differences between long-term system responses identified by the use of different schemes for 

regional streamflow generation.  

Table 2.1 also presents the limited performance of spatial extension schemes in reproducing 

the streamflow characteristics at the secondary site. For instance, M2, M3, and M4 did not 

reproduce the expected lag-1 temporal dependence or the expected annual temporal dependence 

structure at the secondary reach with the same skill as M1, in which the spatial dependence 

between the two reaches are ignored. Moreover, although M4 can better reproduce the temporal 

dependence at the secondary reach comparing to M3, it fails in reproducing the expected lag-0 

spatial dependence with the same performance as M3. These observations reveal the existence of 

trade-offs in the performance of spatial extension schemes and the fact that the considered spatial 

extension schemes are incomplete. Finally, by comparing the corresponding error measures 

between the two paths of spatial extension, NSR → SSR provides slightly better results compared 

to SSR → NSR, which confirms the previous findings of Hassanzadeh et al. (2016b). The NSR → 

SSR path is considered for the other c in this study—see Figs. A4–A9 in Appendix A5 for various 

comparisons between the four schemes in reproducing the historical observed characteristics. 

2.5. Results 

2.5.1. Generated Ensembles of Streamflow Characteristics under Changing Conditions 

As noted previously, the generated streamflow ensembles obtained by the four schemes provide 

significantly different long-term streamflow characteristics in more than 90% of comparison cases, 

and there is no single scheme that can dominate others with respect to all performance scores in 

reproducing observed characteristics during a common baseline period.  As a result, all schemes 

can be considered as competing alternatives with which the streamflow series under changing 

conditions can be generated for the purpose of bottom-up impact assessments. Fig. 2.2 summarizes 

the results in terms of the changes in expected long-term streamflow characteristics at the 

secondary site (i.e., SSR) in comparison with corresponding values during the baseline period. Top 

to bottom rows show the results for M1 to M4, respectively. From left to right, columns 

respectively refer to expected change in timing of the peak [ΔTp], relative changes  in  the  expected  

annual  volume  [1-(V/Vhist)],  peak  [1-(P/Phist)],  as  well  as  flow  quantiles [1-(Q10/Q10hist)] , 

[1-(Q50/Q50hist)], and [1-(Q90/Q90hist)] under 154 feasible changing conditions. According to this 

figure, changes in the expected long-term streamflow characteristics generated by the four schemes 

can diverge from one another, and the differences between the long-term changes captured depend 

on the streamflow characteristics and the scenario of change considered— see Table A2 in 
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Appendix A6 for a detailed empirical analysis of the differences between error characteristics at 

the SSR. In brief, in the case of representing the changes in the timing of the annual peak, the 

divergence between the schemes was more profound under positive shifts in the timing of the 

annual peak. In addition, M2 could not track the imposed changes, particularly near the lower and 

upper ends of the feasible range of change. Regarding the representation of the annual streamflow 

volume, the difference between the four algorithms was more highlighted under positive shifts in 

annual streamflow volume. In terms of the annual peak, the four algorithms provided significantly 

different results for the majority of flow regimes. With regard to annual Q10 and Q90, the 

divergence between the schemes was more vivid under positive shifts in annual streamflow 

volume, combined with negative shifts in the timing of the annual peak. This is rather different for 

Q50, in which the differences between the schemes were more obvious under positive shifts in the 

timing of the annual peak, combined with positive shifts in annual streamflow volume. We also 

compared the variability in generated long-term streamflow characteristics (i.e., within 100 

realizations) at each regime using the coefficient of variation. Fig. 2.3 summarizes the result for 

the six local characteristics at the secondary reach under the 154 feasible scenarios of change. 

Similar to Fig. 2.2, top to bottom rows depict the results for M1–M4, respectively, and the columns 

from left to right refer to simulated coefficients of variation in long-term annual timing of the peak, 

volume, peak, and three flow quantiles. Again, there are significant differences between the 

variability in long-term streamflow characteristics generated using the four schemes. As a general 

observation, M2 generates the least variability in the long-term characteristics compared to other 

schemes. The M4, in contrast, reproduces the corresponding variability obtained by the M1 in the 

majority of flow regimes. Note that we are not making a statement for the suitability of any method 

for vulnerability assessment; rather, we emphasize the differences between alternative streamflow 

generation schemes in representing the variability in long-term streamflow characteristics under 

changing conditions. 

 
Figure 2.2. Relative changes in expected long-term streamflow characteristics under changing 

conditions compared to the corresponding historical values. 
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Table 2.1. Estimated expected means and standard deviations of first- and second-order errors in 

reconstructing key characteristics of streamflow regime to Saskatchewan during the period of 1980–2010. 

 

 

Streamflow 

characteristics 

 

 

Scheme 

Secondary reach 

NSR SSR 

Expected 

mean 

error 

STD 

of 

mean 

errors 

 

Expected 

RMSE 

 

STD of 

RMSEs 

Expected 

mean 

error 

STD 

of 

mean 

errors 

 

Expected 

RMSE 

 

STD of 

RMSEs 

 M1 0.24 0.10 1.16 0.08 0.04 0.11 0.98 0.06 

Timing of the M2 0.60 0.09 1.14 0.06 0.32 0.05 0.55 0.04 

peak (week) M3 0.50 0.10 1.16 0.07 0.68 0.07 1.04 0.07 

 M4 0.40 0.10 1.09 0.06 0.55 0.08 1.13 0.08 

 M1 4.40 21.87 268.23 18.88 55.40 43.00 409.30 26.80 

Volume M2 26.94 16.20 164.99 11.67 -5.40 24.90 238.50 15.90 

(MCM) M3 33.48 21.88 221.93 14.46 11.60 36.00 345.50 24.60 

 M4 127.29 28.90 308.88 18.64 95.50 40.80 426.70 28.30 

 M1 -20.62 5.34 63.42 3.76 1.50 9.30 94.30 6.40 

Peak (CMS) 
M2 

M3 

-159.96 

14.48 

3.04 

5.46 

162.81 

55.47 

2.90 

3.68 

-98.90 

104.20 

6.60 

9.60 

116.50 

135.20 

5.90 

8.80 

 M4 5.12 5.95 58.61 4.00 50.00 9.80 111.10 7.70 

 M1 1.24 0.20 2.44 0.14 -2.70 0.30 3.90 0.20 

Q10 (CMS) 
M2 

M3 

9.91 

-0.27 

0.06 

0.17 

9.92 

1.49 

0.06 

0.10 

10.20 

-5.40 

0.10 

0.20 

10.30 

5.70 

0.10 

0.20 

 M4 -0.62 0.23 2.26 0.16 -6.00 0.20 6.60 0.20 

 M1 0.05 0.40 4.92 0.35 2.50 0.70 6.80 0.50 

Q50 (CMS) 
M2 

M3 

6.21 

0.19 

0.36 

0.41 

7.24 

3.99 

0.34 

0.32 

11.70 

-1.40 

0.40 

0.50 

12.50 

4.60 

0.40 

0.30 

 M4 0.76 0.62 5.93 0.41 0.00 0.50 5.40 0.30 

 M1 6.20 2.16 26.44 1.71 10.90 4.90 45.50 2.80 

Q90 (CMS) 
M2 

M3 
-1.64 

5.89 
1.68 

2.05 
17.38 

21.67 
1.09 

1.38 

-16.20 

0.60 

2.60 

4.00 

30.30 

38.60 
1.90 

2.90 

 M4 22.96 2.59 35.08 2.32 22.50 4.80 51.60 3.50 

Expected lag-1 

temporal 

dependence (-) 

M1 

M2 

M3 
M4 

0.01 

0.10 

0.35 
0.10 

0.01 

0.01 

0.02 
0.01 

0.07 

0.26 

0.39 
0.14 

0.00 

0.01 

0.01 
0.00 

0.00 

0.01 

0.31 
0.07 

0.01 

0.01 

0.02 
0.01 

0.07 

0.25 

0.36 
0.12 

0.00 

0.00 

0.01 
0.00 

Expected M1 0.07 0.03 0.18 0.01 0.03 0.03 0.17 0.00 

annual M2 0.10 0.03 0.21 0.01 0.00 0.03 0.18 0.00 

temporal M3 0.15 0.02 0.24 0.00 0.06 0.02 0.21 0.00 

dependence (-) M4 0.11 0.03 0.20 0.01 0.02 0.03 0.17 0.00 

Expected lag-0 

spatial 

dependence (-) 

M1 

M2 

M3 
M4 

0.37 

-0.60 

-0.01 
-0.24 

0.05 

0.00 

0.02 
0.02 

0.42 

0.65 

0.10 
0.22 

0.03 

0.00 

0.00 
0.01 

0.37 

-0.60 

-0.01 
-0.24 

0.05 

0.00 

0.02 
0.02 

0.42 

0.65 

0.10 
0.22 

0.04 

0.00 

0.00 
0.01 

Expected 

annual spatial 

dependence (-) 

M1 

M2 

M3 
M4 

0.13 

-0.01 

0.02 
0.01 

0.03 

0.03 

0.02 
0.03 

0.24 

0.21 

0.19 
0.20 

0.01 

0.00 

0.00 
0.00 

0.13 

-0.01 

0.02 
0.01 

0.03 

0.03 

0.02 
0.03 

0.24 

0.21 

0.19 
0.20 

0.01 

0.00 

0.00 
0.00 

Note: The streamflow series are generated through random resampling of 100 ensembles, each with 100 realizations using M1–

M4. Both NSR and SSR are considered once as a secondary reach. For each error characteristic, the statistics of the best scheme is 

bold. 
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2.5.2. Impact Assessment under Changing Streamflow Regime 

The aforementioned analyses shed light on the differences among the four schemes in terms of the 

expected values and variability in long-term streamflow characteristics generated under changing 

conditions. The next step is to analyze whether the differences in streamflow characteristics lead 

to differences in the results of the impact assessment.  

 
 Figure 2.3. Coefficient of variation in ensembles of long-term streamflow characteristics reconstructed 

under changing conditions. 

By feeding the SWAMPSK with generated streamflow ensembles obtained by M1–M4, we 

focus here on comparing the following: (1) changes in the expected long-term values of PNB, 

SWC, and APP under changing streamflow conditions with respect to the corresponding values 

during the historical period; and (2) coefficients of variations in PNB, SWC, and APP under 

changing conditions. Fig. 2.4 summarizes the findings with respect to the differences in estimated 

changes in the expected values of long-term system performances—see also Table A3 in Appendix 

A6. Top to bottom rows in Fig. 2.4 correspond to relative changes in the expected long-term values 

of PNB, SWC, and APP (i.e., 1-(PNB/PNBhist), 1-(SWC/SWChist), and 1-(APP/APPhist) under 154 

scenarios of change. The relative variations were assessed by the streamflow ensembles of M1–

M4, sorted from left to right columns, respectively. The four individual assessments show the 

sensitivity of the performance measures to changes in the annual incoming flow to Saskatchewan; 

however, each assessment can describe this sensitivity differently. Note that Table A3 reveals that 

the differences between the results of impact assessments are less noticeable compared to the 

differences revealed for streamflow characteristics reported in Table A2. Still, the differences 

between the results for PNBs were more highlighted under positive shifts in the annual streamflow 



28 

 

volume. For the SWC, divergences were more highlighted under positive shifts in annual 

streamflow volume and timing of the peak. With respect to the APP, the impact assessment 

conducted by M2 provides very different images for changes in the system performance compared 

to the other three schemes. In addition, the differences between assessments made by M1, M3, and 

M4 become more obvious under positive shifts in the annual streamflow volume; however, these 

differences are clearly less significant compared to those reported for streamflow characteristics. 

 
 
Figure 2.4. Relative changes in the expected long-term performance of the Sask-SRB with respect to the 

corresponding historical values. 

We also inspected the variability in the long-term system performances at each flow regime, 

conditioned to ensemble streamflow series obtained by the four schemes. The coefficients of 

variation were used to measure the variability in long-term performances. Fig. 2.5 summarizes the 

results, in which top to bottom rows depict the results for PNB, SWC, and APP, simulated by 

forcing the SWAMPSK model with streamflow realizations obtained by M1  to M4 (sorted from 

the left to the right, respectively). The figure reveals substantial differences between the variability 

in long-term performance measures. For the case of PNB and SWC, assessments made by M4 

show the largest variability in long-term performance under changing conditions, followed by M3. 

For the case of APP, however, the assessment made by M2 shows the largest variability with a 

significantly different pattern compared to the other three schemes. 
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Figure 2.5. Coefficient of variation in long-term performances of the Sask-SRB under changing conditions. 

2.6. Discussion 

The results provided reveal that even with the same realizations of the streamflow at the primary 

site, the corresponding spatial extensions to the secondary site, made by the four schemes, can be 

quite different under changing conditions. Further impact assessment shows that the differences in 

the long-term streamflow characteristics in some cases result in the long-term impact assessments 

diverging in terms of both the expected values and variability of the considered performance 

measures. The propagation of uncertainty from streamflow ensembles to the impact assessment, 

however, is complex and depends on the performance measures and the scenario of change 

considered. In addition, larger variability in long-term streamflow characteristics does not 

necessarily result in larger variability in the performance measures. For instance, while M1 and 

M4 produce comparable ranges of variability in the considered streamflow characteristics, the 

results of impact as assessments made by the two schemes are significantly different in terms of 

the estimated variability in long-term system performance. These findings highlight the sensitivity 

of the bottom-up assessment to the methodology used to generate regional streamflow series. In 

the following section, we explore how this sensitivity can result in uncertainty in understanding 

the risk and stress-response relationships. 

2.6.1. Uncertainty in Identifying the Risk in System Performance 

To better picture the differences between the results of impact assessments obtained by the four 

schemes, we compared the risk profiles of the performance measures under three specific 

streamflow conditions—see Fig. 2.6. In simple terms, risk profiles show the probabilistic 

characteristic of long-term system performances obtained by multiple realizations (see 

Hassanzadeh et al. 2016a). The three specific flow regimes exemplify the warm/dry condition, the 

scenario with (4, 0.25) change; historical condition, the scenario with (0, 0) change; as well as 
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cold/wet condition, the scenario with (4, 0.25) change. In each panel, the risk profiles generated 

based on M1, M2, M3, and M4 are shown by dashed dot, dashed, solid, and dotted lines, 

respectively. Red, green, and blue profiles refer to the warm/dry, historical, and cold/wet 

conditions, respectively. The solid black lines show the historical performances simulated using 

the observed data. In terms of PNB, there can be differences in the risk profiles, particularly under 

representative warm/dry (e.g., between M2 and others) and historical conditions (e.g., M1 and M2 

compared to M3 and M4).  

 
 
Figure 2.6. Probabilistic risk profiles for PNB (first row), SWC (second row), and APP (third row) obtained 

for three specific flow conditions. In all panels the risk profiles under historical, warm/dry and cold/wet 

conditions are shown in green, red, and blue colors respectively; dashed dot, dashed, solid and dotted lines 

refer to the risk profiles obtained by M1, M2, M3, and M4, respectively. The black solid line shows the 

performance under observed streamflow. 

For the SWC, the differences between the risk profiles were more highlighted under the 

historical and representative cold/wet conditions. This is similar to the case of APP; in particular, 

the range of the risk profile obtained using M2 was substantially larger than what was obtained by 

other schemes under wet/cold conditions.  Moreover, while the assessments made by the 

synthesized streamflow series can capture observed responses (solid black lines) within the range   

of risk profiles, none of the schemes can provide an unbiased estimation for all performance 

measures considered. For instance, the expected long-term performance obtained by M3 under no-

change condition can provide an unbiased estimation of the observed long-term PNB; however, it 

underestimates the observed long-term SWC and APP. Similarly, while the expected long-term 

performance obtained by M4 under the no-change condition can closely match the observed long-

term performance for SWC, it underestimates the APP. 

2.6.2. Uncertainty in Understanding the Stress-Response Relationships 

One key issue in the vulnerability assessment of water supply systems is to understand how 

variability and change in long-term streamflow characteristics translate into variability and change 

in long-term performance measures in water supply systems. To address this, we considered the 

expected changes in the timing of the peak along with relative changes in the expected annual 
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volume, peak, as well as flow quantiles under 154 feasible changing conditions and paired them 

with the corresponding values related to relative changes in expected annual performance 

measures. For each pair, we then compared the significance of dependence (characterized using 

Kendall’s tau) between flow characteristics and performance measures. Table 2.2 summarizes the 

corresponding Kendall’s tau coefficients in which significant values (p-value 0.05) are bolded (see 

also Fig. A10 in Appendix A7). By considering the dependencies between expected changes in 

streamflow characteristics and expected changes in system performance, M1, M3, and M4 provide 

comparable stress-response relationships within the pairs of streamflow characteristics and 

performance measures. M2, however, portrays different pictures on the existing dependencies 

between change in streamflow characteristics and the system response. Most importantly, while 

M1, M3, and M4 show insignificant dependence between changes in the timing of the peak and 

changes in the performance measures, M2 shows strong dependence between changes in the timing 

of the peak and changes in PNB and APP. In addition, the magnitudes of pair dependencies are 

subject to change if the method used for streamflow generation varies. For instance, while M2 

suggests that an increase in the incoming streamflow quantiles has minimal effect on increasing 

apportionment ratio to Manitoba, M1 and M3 show much stronger impacts. This variation 

introduces conflicting insights on system responses under changing conditions. 

We performed similar analyses to understand the dependence between the coefficients of 

variation of long-term streamflow characteristics and long-term system response. The results 

summarized in Table 2.3 present significant differences in the way pair dependencies are mapped 

by each scheme (see also Fig. A11 in Appendix A7). For instance, while M1, M3, and M4 portray 

significant positive dependency between the variabilities in long-term annual peak flow and long-

term PNB, M2 suggests that this dependency is insignificant and negative.  

Table 2.2. The dependencies between expected long-term changes in long-term streamflow characteristics 

and expected long-term changes in system performance characterized by the Kendall’s tau.  

Expected 

change in 

system 
performance 

 

 

 

scheme 

Expected change in streamflow characteristics 

∆𝑇𝑝 1 −
𝑉

𝑉ℎ𝑖𝑠𝑡
 1 −

𝑃

𝑃ℎ𝑖𝑠𝑡
 1 −

𝑄10

𝑄10ℎ𝑖𝑠𝑡
 1 −

𝑄50

𝑄50ℎ𝑖𝑠𝑡
 1 −

𝑄90

𝑄90ℎ𝑖𝑠𝑡
 

  
 

1 −
𝑃𝑁𝐵

𝑃𝑁𝐵ℎ𝑖𝑠𝑡
 

M1 -0.02 0.96 0.67 0.89 0.91 0.91 

M2 -0.13 0.92 0.47 0.90 0.73 0.75 

M3 -0.08 0.98 0.67 0.94 0.90 0.91 

M4 -0.07 0.98 0.66 0.93 0.90 0.90 

1 −
𝑆𝑊𝐶

𝑆𝑊𝐶ℎ𝑖𝑠𝑡
 

M1 0.10 0.85 0.60 0.78 0.90 0.92 

M2 -0.03 0.81 0.37 0.80 0.83 0.64 

M3 0.06 0.86 0.57 0.80 0.90 0.93 

M4 0.08 0.85 0.59 0.79 0.89 0.94 

 

1 −
𝑆𝑊𝐶

𝑆𝑊𝐶ℎ𝑖𝑠𝑡
 

M1 0.03 0.94 0.65 0.85 0.94 0.90 

M2 -0.14 0.69 0.43 0.70 0.59 0.63 

M3 -0.06 0.97 0.65 0.91 0.92 0.93 

M4 -0.05 0.96 0.64 0.91 0.92 0.89 

Note: The significant dependencies (p-values ≤ 0.05) are bold. 
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Table 2.3. The dependencies between expected variability in long-term streamflow characteristics and 

expected variability in long-term changes in system performance characterized by the Kendall’s tau. 

Note: The significant dependencies (p-values ≤ 0.05) are bold. 

For the case of variability in the SWC, M1, and M2 show strong dependencies between 

variabilities in long-term annual peak flow and SWC, whereas M3 and M4 do not suggest this 

strong dependence. Similarly, M1, M2, and M3 show strong dependencies between SWC and Q10 

as well as SWC and Q50, while M2 marks these pairs as independent at the considered significance 

level. This discussion can be extended to the uncertainty in understanding the causes of change in 

the variability of long-term APP: while M1, M3, and M4 suggest that the variability in long-term 

APP is dependent on the variability in long-term annual peak, peak timing, and Q50; M2 marks 

these dependencies as insignificant. 

2.7. Conclusions and Further Remarks 

Bottom-up approaches to the impact assessment under changing conditions are proposed to 

address some of the uncertainties in top-down approaches; however, they may include other 

sources of uncertainty. One important source of uncertainty in bottom-up frameworks originates 

from synthetic climate and/or streamflow realizations, with which the vulnerability in system 

performance is assessed. Mathematical schemes for generating synthetic time series, however, are 

numerous and are based on different assumptions and/or simplifications. Accordingly, the long-

term characteristics of generated realizations may be different from one another; hence, the results 

of impact assessments based upon them also may be different. Through a set of experimentations, 

our study demonstrates the existence of such uncertainties in the bottom-up impact assessment of 

large-scale water supply systems that require generating regional streamflow series at multiple 

tributaries. We use four different spatial extension schemes that differ from one another only in 

the way the spatiotemporal dependencies between regional streamflow reaches are represented. 

Through a rigorous intercomparison, it is shown that despite having different degrees of realism, 

none of the schemes can dominate others with respect to reproducing streamflow characteristics 

during a common historical period. As a result, they can be considered alternative hypotheses for 

Variability in 

system 
performance 

 

 

Scheme 

Variability in streamflow characteristics 

𝐶𝑉(𝑇𝑃) 𝐶𝑉(𝑉) 𝐶𝑉(𝑃) 𝐶𝑉(𝑄10) 𝐶𝑉(𝑄50) 𝐶𝑉(𝑄90) 

 
𝐶𝑉(𝑃𝑁𝐵) 

M1 0.33 0.64 0.40 0.37 0.01 0.66 

M2 -0.12 0.24 -0.05 0.39 0.08 0.09 

M3 0.34 0.62 0.31 0.28 -0.07 0.62 

M4 0.34 0.62 0.31 0.28 -0.07 0.62 

 
𝐶𝑉(𝑆𝑊𝐶) 

M1 0.23 0.47 0.25 0.16 0.23 0.35 

M2 -0.19 0.56 0.24 -0.01 0.04 0.43 

M3 -0.11 0.50 0.01 0.16 0.40 0.17 

M4 0.02 0.60 0.01 0.17 0.42 0.30 

 
𝐶𝑉(𝐴𝑃𝑃) 

M1 0.24 0.48 0.27 0.28 -0.13 0.64 

M2 -0.01 -0.13 -0.06 -0.18 0.09 -0.12 

M3 0.41 0.51 0.28 0.15 -0.19 0.71 

M4 0.25 0.53 0.21 0.19 -0.14 0.66 
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bottom-up impact assessment under changing conditions. The results of vulnerability assessment 

show that there can be substantial differences between the four schemes in terms of representing 

expected values and coefficients of variations in long-term streamflow characteristics, and to a 

lesser extent in system performance, under changing conditions. The range of such differences 

depends on the streamflow characteristic, performance measure, and the changing water 

availability conditions considered and is more evident in terms of the variability than the expected 

values. This issue can introduce uncertainty in understanding the risk in system performance and 

the causal relationships between changing streamflow conditions and changing system 

performance. 

Our findings demonstrate further evidence for deep uncertainty in assessing the impact of 

changing streamflow conditions on water resource systems, particularly originated from having 

multiple non-falsified hypotheses for changing regional regimes. Surprisingly, guidelines for 

representing streamflow characteristics in non-stationary conditions, while maintaining 

spatiotemporal dependencies between multiple tributaries, are largely overlooked in the literature 

and current approaches are still incomplete, as we show for the case of copula-based sampling 

schemes. We, therefore, suggest further efforts toward improved methodologies for synthetic 

regional streamflow generation under changing conditions. In addition, we believe that building 

improved algorithms would be rather impossible before making a set of comprehensive 

intercomparison studies that can address the pros and cons of multiple methodologies, including 

reshuffling strategies (e.g., Borgomeo et al. 2015), across a range of spatial and temporal scales 

that are relevant to the impact assessment. Up to the time when such improved schemes become 

available, we suggest considering multiple weather and/or streamflow generators for informing 

the impact assessment and/or weighing their results according to their performance in reproducing 

historical conditions. In addition, the results of top-down approaches can be merged with the 

findings of bottom-up assessments to associate likelihood values to vulnerabilities identified under 

changing conditions (see e.g.,  Ashraf  et  al.  2019; Mallakpour et al. 2018). Lastly, another source 

of uncertainty, apart from input to the system, is in the system models, with which the impact of 

changing conditions on the performance of water resource systems are assessed (see Brunner et 

al., 2019). Addressing/handling this source of uncertainty requires a set of standalone 

experimentations that should correspond with the efforts we suggest here. 
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Chapter 3.  

On Parametric Representations of Spatiotemporal Dependencies in Stochastic Streamflow 

Generation across Catchments, Timescales, and Flow Regimes2 

The contents of this chapter are submitted as “Zaerpour, M., Nazemi, N., (2021). On Parametric 

Representations of Spatiotemporal Dependencies in Stochastic Streamflow Generation across 

Catchments, Timescales, and Flow Regimes” in Journal of Hydrology. The contents are slightly 

modified from the submitted article. 

 

Synopsis 

Several applications in water resource planning and management require synthetic streamflow 

series that can represent modes of variability beyond historical observations. A prominent way to 

address this need is through using stochastic streamflow generators. While so far, several 

parametric approaches are introduced to represent spatiotemporal dependencies in stochastic 

streamflow generation using linear or nonlinear schemes; there is still not a consensus on how 

these dependencies can be optimally represented. This has relevance in capturing cascade, 

simultaneous and compound streamflow events across a range of spatial and temporal scales. Here, 

we perform a comprehensive benchmarking study to assess various parametric representations of 

spatiotemporal dependencies in terms of their skills and uncertainty in reconstructing long-term 

characteristics of historical streamflow across a range of time scales, catchment areas, and 

hydrologic regimes. We highlight that when reconstructing flow characteristics at a local stream 

is sought, linear and nonlinear representations of temporal dependence result in statistically 

undistinguishable reconstructions in most comparison cases. At the spatial scale, in contrast, the 

optimality of a given representation is largely dependent on the flow regime, catchment area, 

modeling timescale, and even long-term characteristics considered for reconstruction. We show 

that in nival and/or mixed streams, nonlinear representations, particularly through vine copulas, 

outperform linear schemes; while in pluvial streams, linear representations demonstrate higher 

skills compared to nonlinear schemes. Our study provides a set of guidelines for selecting 

stochastic streamflow generators, depending on the application in hand.     

 

3.1. Introduction 

The livelihood, prospect, and wellbeing of human societies are largely dependent on the 

availability of freshwater resources (Palmer et al., 2015; Villarini and Wasko, 2021; Zaerpour et 

al. 2021a). During the current “Anthropocene”, the water availability and human water need do 

not fully match (Savenije et al., 2014; Zandmoghaddam et al., 2019). On the one hand, climate 

change and human interventions through land and water management have transformed the 

                                                            
2 Zaerpour, M., & Nazemi, A. (2021). On Parametric Representations of Spatiotemporal Dependencies in Stochastic Streamflow 

Generation across Catchments, Timescales, and Flow Regimes. Journal of Hydrology, (submitted on September 28th, 2021). 
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availability of surface and groundwater reserves (see Nazemi and Wheater, 2015a, 2015b; 

Aghakouchak et al., 2021; Ashraf et al., 2021). On the other hand, both population and water 

demand per capita are increasing, putting an ever-increasing pressure on declining water resources, 

which elevates competition over remaining water resources (Nazemi and Madani, 2018). The 

inevitable result of the mismatch between water availability and water demand is water insecurity, 

revealing itself across scales. Examples can vary from drying lakes and wetlands (Aghakouchak 

et al., 2015; Alborzi et al., 2018), to the unavailability of water for irrigation and drinking (Nazemi 

et al., 2013), and to regional and political tensions over water (Wheater and Gober, 2013). These 

new conditions falsify the stationarity assumption, used traditionally for water resources planning 

and management (Milly et al., 2008, 2015; Nazemi and Wheater, 2014a; Lehner et al., 2017); and 

therefore, future decisions cannot be supported solely based on historical records (Prairie et al., 

2008; Nowak et al., 2011; Koutsouris and Lyon, 2018). One way to fill this data gap is through 

stochastic simulations of water availability and demand that can provide synthetic data support for 

long-term planning and management under changing conditions  (Rajagopalan et al., 2010; Feng 

et al., 2017; Lamontagne and Stedinger, 2018; Guo et al., 2019).  

Streamflow is arguably the most critical water resource. As rivers roll downstream, they 

become widely and freely accessible to communities that are developed around them and benefit 

human activities often in an inexpensive, durable, and reliable manner (see Amir Jabbari and 

Nazemi, 2019). Having said that, not only lack of streamflow, but also a surplus of streamflow can 

be also a source of water insecurity as it causes flooding. Due to the importance of streamflow in 

water resource planning and management and the fact that streamflow observations are sparse and 

limited in both time and space, stochastic simulation of streamflow has a long tradition in 

hydrology (Fiering, 1967; Matalas, 1967), as it provides synthetic sets of plausible, yet unobserved 

streamflow realizations (Papalexiou, 2018; Rajagopalan et al., 2019; Brunner et al., 2019). 

Stochastic streamflow generation, however, involves several complexities. Most importantly, the 

streamflow process is governed by various runoff generation mechanisms, acting on different 

temporal and spatial scales, and can affect the dependence structure of streamflow differently 

(Fleming and Dahlke, 2014; Konapala and Mishra, 2016; Lee et al., 2018; Hatami et al., 2019). In 

addition, surface water resources systems often consist of multiple streams that are highly 

dependent on time and space. As a result, representing such dependencies matters for capturing 

sequential, simultaneous, and compound events across a range of temporal and spatial scales (Keef 

et al., 2009; Quinn et al., 2019; Wing et al., 2020; Brunner et al., 2020).  

Classic stochastic streamflow models can be seen as timeseries models in various forms of 

combination between Auto-Regressive (AR) and Auto-Regressive Moving Average (ARMA) 

models, or their variants (see Pegram, 1980; Stedinger and Taylor, 1982). Such stochastic models 

were initially developed at a single site, and essentially represent the spatiotemporal dependency 

“linearly” (Lawrance and Lewis 1981; Fernandez and Salas, 1986). They have been also extended 

to multiple sites (e.g., Salas and Pegram, 1977; Salas et al., 1985; Bartolini et al., 1988); however, 

they become parametrically heavy and therefore can entail large uncertainties. To address this 
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issue, contemporaneous linear models are developed, which avoid modeling the joint 

spatiotemporal dependencies by decoupling the dependence structure. This enables separate 

modeling of spatiotemporal dependencies; and there, univariate models can be fitted to each site 

separately (Salas and Pegram, 1977; Stedinger et al., 1985).  

In parallel to linear models, Non-Parametric (NP) models have been proposed as an alternative 

to traditional timeseries models (see Lall, 1995). Generally speaking, NP models work based on 

resampling from observed streamflow; as a result, empirical characteristics of streamflow are 

persevered (Lall and Sharma, 1996; Sharma and O'Neill, 2002; Marković et al., 2015). Unlike 

linear models, NP models avoid any prior assumptions on marginal distributions and/or the 

dependence structure within observed data; and therefore, they are suitable to reproduce 

nonlinearities along with asymmetric margins that are common features in streamflow data. A 

wide variety of NP models have been developed for single site generation of streamflow, including 

moving block bootstrap (Vogel and Shallcross, 1996), k-nearest neighbor bootstrap (Rajagopalan 

and Lall, 1999; Kumar et al., 2000), as well as kernel-based methods and their variants (Tarboton 

et al., 1998; Kumar et al., 2000; Sharma and O'Neill, 2002). NP models in their original form, 

however, are often unable to extrapolate beyond observations (Srinivas and Srinivas, 2005), and 

accordingly, modified approaches have been developed (Prairie et al., 2005, 2006; Srinivas and 

Srinivas, 2001; Souza Filho and Lall, 2003) that are further extended to multisite (Prairie et al., 

2007; Sapin et al., 2017); however, they are computationally complex, particularly at regional 

scales with multiple streams (Rajagopalan et al., 2010). NP models are not discussed in this paper. 

Recently, copula-based models have been used numerously for stochastic simulation of 

hydroclimatic data, including streamflow (Bárdossy and Pegram, 2009; Madadgar and 

Moradkhani, 2011; Borgomeo et al., 2015; Pereira and Veiga, 2018). Copulas are favored for their 

ability in representing the nonlinear association between random variables using rank-based 

statistics, i.e. Spearman’s rho and Kendall’s tau (see Genest and Favre, 2007; Hatami and Nazemi, 

2021), as well as decomposing joint relationships from marginal representations (Wang et al., 

2009; Nazemi and Elshorbagy 2012; Pereira et al., 2017). Several copula-based algorithms have 

been developed for stochastic generation of streamflow at single sites based on representing the 

temporal dependence structure through conditional probability distributions, inferred from 

streamflow samples in consecutive time steps (Lee and Salas, 2011; Hao and Singh, 2012; Kong 

et al., 2015). Extending single site methods to multisite algorithms is rather trivial; and a variety 

of multisite approaches have been developed based on different assumptions (Nazemi et al., 2013, 

2020; Hao and Singh, 2013; Chen et al., 2015, 2019). 

Despite all mentioned developments, there is still a lack of consensus on how dependence 

structures in time and space should be represented within the stochastic streamflow generation. 

This is a relevant question across a range of temporal and regional scales, as well as flow regimes 

and in both single and multisite settings. There have been some evidence for inclined nonlinearity 

in dependence structures across smaller catchments (Pilgrim, 1976; Wang et al., 1981) and/or finer 
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timescales (e.g., Rao and Yu, 1990; Chen and Rao, 2003; Wang et al., 2006), although contracting 

evidences are also available (Robinson et al., 1995; Goodrich et al., 1997).  

The objective of this study is to perform a comprehensive benchmarking, in which the effects 

of different parametrizations of spatiotemporal dependencies are seen in the skills and uncertainty 

in reconstructing observed streamflow characteristics. This results into a set of guidelines for 

choosing the right representations in the right circumstances. For this purpose, we consider a wide 

range of possible representations of spatiotemporal dependencies as parallel hypotheses and 

investigate the performance of each scheme in a number of case studies and across a range of 

timescales, catchment sizes, and flow regimes. The remaining of the paper is organized as the 

following. Section 3.2 briefly outlines the methodological elements for parametric representations 

of temporal and spatial dependencies in streamflow. In Section 3.3, we present our case studies, 

specific modeling hypotheses, and the benchmarking approach. We provide our results at a 

reference timescale in Section 3.4 and then discuss the sensitivity of our findings across various 

timescales in Section 3.5. Finally, Section 3.6 concludes our study and provides some further 

remarks. 

 

3.2. Methodology 

Depending on how spatiotemporal interdependencies are represented within stochastic streamflow 

generation, different parametric representations can be positioned within a spectrum identified by 

fully linear and fully nonlinear representations. In time, linear representation of temporal 

dependence is often based on AR models. In contrast, nonlinear approaches mainly involve copula-

based models (see Section 3.2.1). In space, the decoupling hypothesis is often employed, when 

linear models are considered for temporal representations.  

This enables representing spatial and temporal dependencies separately (see Serinaldi and 

Kilsby, 2017). If linear representation for temporal dependence is considered, the spatial 

dependence between residuals of local AR models can be then represented either through linear 

(i.e. Linear Regression; LR) or nonlinear (i.e. bivariate copulas) representations. If a nonlinear 

representation is chosen for temporal dependence, then the spatial dependence is either represented 

implicitly without direct representation of temporal dependencies between two or more sites, or 

explicitly through a full representation of regional spatiotemporal dependencies (see Section 

3.2.2). In this study, we set up different modeling hypotheses on the basis of mixing-and-matching 

different linear and nonlinear representations together. Below, we briefly outline the 

methodological elements for developing such parametric representations. The specific modeling 

hypotheses and the details of benchmarking procedure used in this study are discussed in Section 

3.3 below.    
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3.2.1. Linear and nonlinear representations of temporal dependencies  

The linear representation of temporal dependence starts with standardization and deseasonalization 

of the streamflow time series. The standardized and deseasonalized streamflow data are then 

modeled using an AR(1) model. In multisite settings, the residuals of AR(1) developed at each site 

and time step are temporally independent but spatially dependent. These residuals can further be 

modeled using LR or multivariate copulas, which will be discussed in Section 3.2.2.  

The lag-1 temporal dependence can be also represented using bivariate copulas that can 

characterize the joint streamflow distribution between consecutive time steps in a “nonlinear” 

(more accurately, not necessarily linear) manner. Based on Sklar’s theorem (Sklar, 1959), if 𝑢 and 

𝑣 are two continuous random variables (here streamflow at two consecutive time steps) with 

marginal Cumulative Distribution Functions (CDFs) of 𝐹(𝑢) and 𝐹(𝑣), the joint cumulative 

distribution of 𝐹𝑈,𝑉(𝑢, 𝑣) can be described as:  

 

𝐹𝑈,𝑉(𝑢, 𝑣) = 𝐶(𝑢, 𝑣)   (3.1) 

where 𝐶 denotes the copula function. 𝑢 and 𝑣 are two random variables, sampled from marginal 

streamflow distributions at two consecutive time steps at the reach p, i.e., 𝑢 = 𝐹(𝑄𝑡
𝑝
) and 𝑣 =

𝐹(𝑄𝑡+1
𝑝
). Having the 𝐶𝐷𝐹 of flow at the time step 𝑡 and the joint copula function estimating the 

dependence between flows at time steps 𝑡 and 𝑡 + 1, the probability distribution of flow at the next 

time step 𝑡 + 1 can be calculated by (Nazemi et al., 2013, 2020):  

𝐶(𝑣|𝑢 = 𝑢∗) = 𝑃{𝐹(𝑄
𝑡+1

𝑝
≤ 𝑣| 𝐹(𝑄𝑡

𝑝) = 𝑢∗)} =  
𝜕

𝜕𝑣
 𝐶𝑡,𝑡+1(𝑢, 𝑣) (3.2) 

where 𝐶𝑡,𝑡+1 is the bivariate copula function between consecutive 𝐶𝐷𝐹𝑠 at time steps 𝑡 and 𝑡 + 1, 

𝑄𝑡
𝑝  is the sampled flow at time step 𝑡 in the reach 𝑝, 𝑄𝑡+1

𝑝
 is the sampled flow at time step 𝑡 + 1, 

𝑃 is the conditional 𝐶𝐷𝐹 and 𝐶(𝑣|𝑢 = 𝑢∗) is the conditional copula. Having the conditional 

bivariate copula, the flow at the time step 𝑡 + 1 can be calculated as:  

𝑄𝑡+1
𝑝 = 𝐹−1 {𝐶−1(𝑣|𝑢 = 𝑢∗)}   (3.3) 

Despite the variety of parametric copula functions (see Plackett, 1965; Clayton, 1978; Genest 

1987; Joe, 1997; Nelsen, 2007; Renard and Lang, 2007), the procedure described above provides 

a generic scheme for single-site streamflow stochastic streamflow generation. Note that for each 

consecutive sub-annual time step, a specific bivariate copula should be identified to represent intra-

annual variability in the temporal dependence structure.  
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3.2.2. Linear and nonlinear representations of spatial dependencies  

Representing spatial dependence particularly matters for multisite stochastic streamflow 

generation. Spatial dependence between two streams can be represented either through the 

dependence between the residuals of AR models developed at each stream, or through a direct 

transformation of streamflow from a donor stream (hereafter a primary) to a receiver reach 

(hereafter a secondary). Both conceptualizations can be represented using linear and non-linear 

parametric models. In linear representation, the residual of AR models in the primary site is used 

to estimate the residual of the AR model at a secondary site using a LR scheme. If the direct 

transformation is sought, then the streamflow generated at a primary site is directly transferred to 

the secondary site using a set of LR models identified at each sub-annual time step – see Nazemi 

and Wheater (2014b) for details. 

Similar to representing temporal dependence using copula, the spatial dependence can be 

reconstructed based on conditional resampling from the joint distribution of streamflow at primary 

and secondary sites. Two assumptions can be made for building up the joint distributions. First, it 

can be assumed that the flow at the secondary site and at each time step can be adequately 

simulated using the joint distribution of flow at primary and secondary sites and the flow in the 

primary site. This requires implementing bivariate copulas without direct representation of lag-1 

temporal dependencies at the secondary site. Here we term this representation as the implicit 

approach as the temporal dependence in the secondary site is not directly represented. 

Implementing bivariate copulas for representing spatial dependence is very similar to the lag-1 

temporal dependence outlined above. In this case, bivariate copulas can describe the joint spatial 

dependence as:  

𝐹𝑈,𝑊(𝑢,𝑤) = 𝐶
′(𝑢,𝑤)  (3.4) 

where 𝑢 = 𝐹(𝑄
𝑡
𝑝) and 𝑤 = 𝐹(𝑄

𝑡
𝑠) are the corresponding 𝐶𝐷𝐹𝑠 at the primary and secondary 

reaches at time step 𝑡, respectively. Knowing the marginal 𝐶𝐷𝐹 of the flow at the primary site and 

the copula function 𝐶′(𝑢,𝑤), the flow quantile at secondary site can be sampled as: 

𝐶′(𝑤|𝑢 = 𝑢∗) = 𝑃{(𝐹(𝑄
𝑡
𝑠 ≤ 𝑤|(𝐹(𝑄

𝑡
𝑝) = 𝑢∗)} =

𝜕

𝜕𝑢
𝐶𝑡,𝑡
′ (𝑤, 𝑢) (3.5) 

where 𝐶𝑡,𝑡
′  is the bivariate copula function between flow 𝐶𝐷𝐹𝑠 at the identical time step 𝑡, 𝑄𝑡

𝑝
 is 

the sampled flow at time step 𝑡 in the primary site 𝑝, 𝑄𝑡
𝑠 is the sampled flow at time step 𝑡 in the 

secondary site 𝑠, 𝑃 is the conditional 𝐶𝐷𝐹 and 𝐶′(𝑤|𝑢 = 𝑢∗) is the conditional copula. 

Accordingly, flow at time step 𝑡 can be calculated from inverse function as follows: 
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𝑄𝑡
𝑠 = 𝐹𝑠,𝑡

−1{𝐶′
−1
(𝑤|𝑢 = 𝑢∗)} (3.6) 

which means that by having the marginal flow 𝐶𝐷𝐹 𝑢 at each time step 𝑡 in the primary site, the 

flow at the identical time step 𝑡 at the secondary sites can be calculated using the conditional 

probability distribution, inferred from the bivariate copula function. 

More appealing representation can be based on the joint distribution of flows at the primary 

and secondary site at the same time step and streamflow at the secondary site at the previous time 

step using trivariate copulas. We call this representation the explicit approach as the temporal 

dependence in the secondary site is directly represented. In order to establish trivariate joint 

distributions, two distinct methodologies can be used. The first approach is based on Vine copulas, 

which is a generic approach to construct high-dimensional joint distribution by using a cascade of 

parametric bivariate copulas as building blocks (see Bedford and Cooke, 2001; Joe, 1997; Aas et 

al., 2009). This approach is further used by Chen et al. (2015; 2019) for streamflow reconstruction. 

In this case, a trivariate copula is decomposed into a product of three bivariate copulas, in which 

parameters of each bivariate copula structure can be estimated separately. Having flow 

distributions at the primary site at time 𝑡 + 1, 𝑣 = 𝐹(𝑄𝑡+1
𝑝
), and the flow at time step 𝑡 + 1, 𝑤 =

𝐹(𝑄𝑡
𝑠), and flow at a secondary site at time 𝑡 + 1, 𝑧 = 𝐹(𝑄𝑡+1

𝑠 ) then the joint distribution between 

𝑣, 𝑤, and 𝑧 can be described as: 

𝑓(𝑣, 𝑤, 𝑧) = 𝑓1(𝑣)𝑓2|1(𝑤|𝑣)𝑓3|1,2(𝑧|𝑣, 𝑤) (3.7) 

where the subscripts 1, 2, and 3 correspond to 𝑄𝑡+1
𝑝

, 𝑄𝑡
𝑠, and 𝑄𝑡+1

𝑠 , respectively. Based on the 

Sklar’s theorem and applying the joint distribution for C-vine copula as described in Bedford and 

Cooke (2001), we can express the conditional distributions in Eq. (7) as:  

𝑓2|1(𝑤|𝑣) =
𝑓(𝑤, 𝑣)

𝑓(𝑣)
=
𝑐1,2(𝐹1(𝑣), 𝐹2(𝑤))𝑓1(𝑣)𝑓2(𝑤)

𝑓1(𝑣)
= 𝑐1,2(𝐹1(𝑣), 𝐹2(𝑤))𝑓2(𝑤) 

 

(3.8) 

and 

𝑓3|1,2(𝑧|𝑣, 𝑤) =
𝑓(𝑤, 𝑧|𝑣)

𝑓(𝑤|𝑣)
=
𝑐2,3|1(𝐹(𝑤|𝑣), 𝐹(𝑧|𝑣))𝑓(𝑤|𝑣)𝑓(𝑧|𝑣)

𝑓(𝑤|𝑣)
 

       = 𝑐2,3|1(𝐹(𝑤|𝑣), 𝐹(𝑧|𝑣))𝑐1,3(𝐹1(𝑣), 𝐹3(𝑧))𝑓3(𝑧) 

 

(3.9) 

Consequently, the three dimensional joint density in Eq. (7) can be represented in terms of three 

bivariate copulas 𝐶1,2, 𝐶1,3, and 𝐶2,3|1 with densities 𝑐1,2, 𝑐1,3, and 𝑐2,3|1 as below: 
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𝑓(𝑣, 𝑤, 𝑧) = 𝑓1(𝑣)𝑓2(𝑤)𝑓3(𝑄𝑡
𝐴)𝑐1,2(𝐹1(𝑣), 𝐹2(𝑤))𝑐1,3(𝐹1(𝑣), 𝐹3(𝑧)) 

              𝑐2,3|1(𝐹(𝑤|𝑣), 𝐹(𝑧|𝑣))  
(3.10) 

Having the joint distribution from Eq. (10), the conditional distribution function of (𝑧|𝑣, 𝑤) 

can be obtained by applying the ℎ-function recursively (Aas et al., 2009; Czado et al., 2012) as:  

ℎ = 𝐹(𝑧|𝑣, 𝑤) =
𝜕𝐶2,3|1(𝐹(𝑧|𝑣), 𝐹(𝑤|𝑣))

𝜕𝐹(𝑤|𝑣)
 

 

(3.11) 

In which 𝐹(𝑧|𝑣) = ℎ(𝑧|𝑣) =
𝜕𝑐3,1(𝐹(𝑧),𝐹(𝑣))

𝜕𝐹(𝑣)
 and 𝐹(𝑤|𝑣) = ℎ(𝑤|𝑣) =

𝜕𝐶2,1(𝐹(𝑤),𝐹(𝑣))

𝜕𝐹(𝑣)
. 

Consequently, the Eq. (11) can be rewritten as:  

ℎ = 𝐹(𝑧|𝑣, 𝑤) = ℎ[ℎ(𝑧|𝑣)|ℎ(𝑤|𝑣)] (3.12) 

Accordingly, knowing the states of 𝑣 = 𝐹(𝑄𝑡+1
𝑝
), and 𝑤 = 𝐹(𝑄𝑡

𝑠),  flow at secondary site 𝑠 

at time step 𝑡 + 1 can be calculated. This can be achieved by estimating the inverse of ℎ-function, 

given uniform random numbers of 𝜀 as follows: 

𝑄𝑡+1
𝑠 = 𝐹−1 {ℎ−1 [(ℎ−1(𝜀|ℎ(𝑤|𝑣))) |𝑣]} (3.13) 

Another way to represent the dependence in higher dimensions is using multivariate 

Archimedean copulas, most notably the Exchangeable Archimedean Copula (EAC; Nelsen, 1999; 

Joe, 1997), for which the copula function has the form:  

𝐶"(𝑣, 𝑤, 𝑧) = 𝜙{𝜙−1(𝑣) + 𝜙−1(𝑤) + 𝜙−1(𝑧)},       

𝜙: [0,∞] → [0, 1]  𝑎𝑛𝑑    𝑣, 𝑤, 𝑧 ∈ [0, 1]3 
 

(3.14) 

where the 𝜙(. ) is a generating function of copula defined in the range of zero to one, is 

monotonically decreasing and 𝜙(1) = 0. 𝜙(. ) is a copula generator of a copula function in a 

particular dimension 𝑑 (here 𝑑 = 3) if any only if (−1)𝑘𝜙𝑘(𝑡) ≥ 0 for all 𝑘 ∈ {0, … , 𝑑 − 2}, 𝑡 ∈

(0,∞), and (−1)𝑑−2𝜙𝑑−2(𝑡) is decreasing and convex on (0,∞) – see McNeil and Nešlehová 

(2009) for more details. Similar to Eq. (7), the joint distribution between 𝐶𝐷𝐹 of flows, 𝑣,  𝑤, and 𝑧 

can be expressed by 𝐶" in Eq. (14) and the flow each time step 𝑡 + 1, 𝑄𝑡+1
𝑠  can be sampled from 

the copula space by getting the inverse function in Eq. (14) – see Whelan (2004) for the sampling 

procedure over the copula space.  

Besides many useful properties such as an explicit functional form and different types of tail 

dependence, one main drawback of EACs is their symmetry. To overcome this shortcoming, 

Nested Archimedean Copulas (NACs; a.k.a. Hierarchical Archimedean Copulas) are suggested, 

allowing for asymmetry in the dependence structure. Introduced by Joe (1997), NACs are 
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favourable as they are structurally simple and are easy to interpret (see Embrechts et al., 2001; 

Savu and Trede, 2006). Having the marginal 𝐶𝐷𝐹 of flows, 𝑣, 𝑤, and 𝑧, NAC can be defined as:  

where 𝜓0 and 𝜓1 are the generators of copulas with two levels of hierarchies. 𝑤 and 𝑧 are first 

coupled through 𝜓1, and then 𝑤 and 𝑧 with 𝑣 through 𝜓0. Having the joint distribution described 

by copula function 𝐶 in Eq. (15) the flow at time step 𝑡 + 1 can be obtained from the inverse 

function as explained in Eq. (10) – see Whelan (2004) and Berg and Aas (2007) for further details 

on sampling procedure using EACs and NACs.    

3.3. Experimental setup and case study 

To generate different hypotheses for representing dependencies, we mix-and-match different linear 

and nonlinear models. In total, seven schemes are considered, ranging from a fully linear to a fully 

nonlinear representation. Table 1 introduces these schemes, labeled from M1 (the fully linear 

scheme) to M7 (the fully nonlinear scheme). In M1 and M2, an AR(1) model is employed to 

represent the temporal dependence. For the spatial dependence, M1 uses an LR to model the 

residual, whereas M2 implements a bivariate copula on the residuals of the AR(1) model. Both 

M1 and M2 have been widely used for stochastic generation of hydroclimatic variables (see e.g., 

Salas and Pegram, 1977; Salas et al., 1985; Bárdossy and Pegram, 2009; Serinaldi and Kilsby, 

2017). M3 is the combination of a bivariate copula for representation of temporal dependency and 

a series of LR for spatial extension scheme, developed by Nazemi et al. (2013) and implemented 

in Hassanzadeh et al. (2015, 2017). Similarly in M4 to M7, bivariate copulas are used for modeling 

the temporal dependency at a primary site, and their differences are in the ways that the spatial 

extension to a secondary site takes place. M4 is after the scheme developed in Nazemi et al. (2020), 

in which a bivariate copula transfers the flow from each time step of a given primary stream to a 

secondary reach. Both M3 and M4 focus on representing spatial dependence and ignore the explicit 

representation of temporal dependence in secondary sites. In M5 to M7, representations of 

temporal and spatial dependencies in secondary sites are coupled. M5 uses vine copulas after the 

scheme suggested by Chen et al., (2015, 2019). M6 and M7 employ EAC and NAC, respectively. 

To benchmark the skills of the considered representations, we focus on 12 natural streams, 

located in six catchments across southern Canada – see Figure 3.1. Each catchment includes two 

natural streams, for which the daily flow data from 1981 to 2010 are obtained from Water Survey 

of Canada’s Canadian Reference Hydrometric Basin Network (RHBN; Brimley et al., 1999). 

These streams are characterized by relatively pristine and stable land use conditions, and therefore, 

can provide ideal testbeds for assessing how different representations can portray the “hydrologic 

reality” in the absence of major anthropogenic interventions. Each catchment is chosen in a way 

𝐶′′′(𝑣, 𝑤, 𝑧) = 𝜓0 (𝜓0
−1(𝑣) + 𝜓0

−1 (𝜓1(𝜓1
−1(𝑤) + 𝜓1

−1(𝑧)))) =

𝐶′′′(𝑣, 𝐶(𝑤, 𝑧; 𝜓1); 𝜓0)  

(3.15) 
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that represents a particular flow regime (nival, mixed, and pluvial) and catchment size (large and 

small) in Canada – see Zaerpour et al. (2021a) for a comprehensive reflection on Canadian natural 

streamflow regimes and their recent changes.  

Table 3.1.The seven parametric hypotheses considered for modeling spatiotemporal dependencies in 

streamflow series along with their notation and source M1 to M7. 

Single site  Multisite (Secondary site) 

Notation Reference 
Temporal 

dependence 

Temporal 

dependence 
Spatial dependence 

Autoregressive 

(lag-1) 

Autoregressive Linear Regression M1 Salas and Pegram (1977) 

Autoregressive Bivariate copula M2 Serinaldi and Kilsby (2017) 

Bivariate copula 

Implicit  

(not represented 

parametrically) 

Linear Regression M3 Nazemi et al. (2013) 

Bivariate copula M4 Nazemi et al. (2020) 

Explicit 

(coupled with 

spatial 

dependence) 

Vine copula M5 Chen et al. (2019) 

Exchangeable 

Archimedean copula 
M6 Aas and Berg (2013) 

Nested Archimedean 

copula 
M7 

Grimaldi and Serinaldi 

(2006) 

Wang et al. (2018) 

Table 2 introduces these stations based on their location, size, and regime types according to 

the classification of Burn and Whitfield (2017). Each station is identified by a pair number Cxy, in 

which x represents the catchment type (i.e. 1 to 6; see Table 2) and y whether the stream is primary 

or secondary (i.e. 1 or 2). Temporal dependencies in primary streams are stronger and explicit 

representations in these streams are essential. Our benchmarking exercise attempts to address (1) 

how the skills of different representations vary across flow regimes, i.e. nival, mixed and pluvial; 

(2) how the skills of different representations vary across catchment sizes, i.e. large vs. small; and 

(3) how the skills of different representations vary across time scales, i.e. daily, weekly and 

monthly. The performance of different parametric representations across each condition are 

assessed in terms of reconstructing long-term streamflow characteristics, including annual volume, 

annual peak volume and timing, low-, mid-, and high-flow quantiles, proxied by Q10, Q50, and 

Q90, along with the short-term temporal (lag-1) and instantaneous spatial (lag-0) dependencies. 
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Figure 3.1. The locations of the six Canadian catchments and the two streams considered in each catchment. 

Catchments are picked according to flow regimes (three types of nival, mixed, and pluvial)) and catchment 

sizes (two types of small and large); see Table 2 below for the information related to the considered streams. 

Table 3.2. Hydrometric stations considered, along with their formal identifiers and notations in this study.   

Catchment type Station 

ID 

RHBN 

ID 
Station Name (and province) 

Area 

(km2) 

Lat 

(N) 

Long 

(W) 
Regime Size 

Nival 

Large 
C11 08LD001 Adams River near Squilax (BC) 3,210 50.9 119.7 

C12 08LA001 Clearwater River near Clearwater (BC)  10,300 51.7 120.1 

Small 
C21 08NE077 Barnes Creek near Needles (BC) 204 49.9 118.1 

C22 08NE006 Kuskanax Creek near Nakusp (BC) 330 50.3 117.7 

Mixed Large 

C31 01BP001 
Little Southwest Miramichi River at 

Lyttleton (NB) 
1,340 46.9 65.9 

C32 01BO001 
Southwest Miramichi River at Blackville 

(NB) 
5,050 46.7 65.8 

Mixed Small 

C41 01AP002 Canaan River at East Canaan (NB) 668 46.1 65.4 

C42 01AK001 
Shogomoc Stream near Trans Canada 

Highway (NB) 
234 45.9 67.3 

Pluvial Large 
C51 02ZF001 Bay Du Nord River at Big Falls (NS) 1,170 47.8 55.4 

C52 02ZH001 Pipers Hole River at Mothers Brook (NS) 764 48.0 54.3 

Pluvial Small 

C61 01FB003 
Southwest Maragaree River near Upper 

Maragaree (NL) 
357 46.2 61.1 

C62 01FB001 
Northeast Maragaree River at Margaree 

Valley (NL) 
368 46.4 61.0 

We consider three commonly used copulas, namely Frank, Clayton, and Gaussian copulas for 

setting up different schemes presented in Table 1 – see Nelsen (2007) for more information on 

these copula functions. These three parametric copulas are chosen as they can represent a wide 
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range of statistical dependencies (Genest and Favre, 2007). We use empirical distributions for 

marginal representations for both primary and secondary sites; therefore, any difference between 

various schemes can be attributed to the choice of copula function. All copula functions are 

parameterized using the maximum pseudo-likelihood (e.g. Dupuis 2007; Wang et al., 2009). We 

also perform some initial experiments to choose the best copula structure at the weekly time scale. 

In this particular timescale, it is found out that Frank copula is the best copula among the three 

considered copulas in capturing the observed temporal and spatial dependencies. We, therefore, 

implement Frank for setting up all schemes and across all timescales; so that any potential due to 

changing the copula function is canceled. Considering each scheme, we generate 100 ensembles 

each include 100 realizations to account for uncertainty in both skills and sampling according to 

the procedure presented in Nazemi et al. (2020). The expected value of each ensemble is the 

representative scheme skill, and the range of 100 expected values produced by 100 ensembles is 

the representative uncertainty related to each scheme. The differences in the skills of different 

schemes can be formally assessed using the Analysis of Variance (ANOVA) with Bonferroni 

correction test (Bland and Altman, 1995).  

3.4. Results  

We first assess the effect of different representations of temporal dependence on the skill in 

reconstructing flow characteristics at primary sites. Table 3 summarizes the results in which the 

expected mean errors in reconstructing different flow characteristics by AR(1) and Frank copula 

models in the primary stream across the six catchments and the three timescales considered. 

Significant differences between the skills of AR and copula models are formally addressed using 

the ANOVA test with Bonferroni correction. Note that significant pairwise differences at p-

value=0.05 are bolded in Table 3. The result shows that in ≈92% of comparison cases, linear and 

nonlinear representations of temporal dependencies result in similar skills in reconstructing long-

term streamflow characteristics. No significant difference between linear and nonlinear 

representations is seen in the monthly timescale across all catchments. In the finer weekly and 

daily scales, there is also no significant difference in terms of reconstructing temporal 

dependencies as well as flow quantiles in all streams. Considering annual flow volume, few 

differences can be seen at weekly and daily timescales, in which AR(1) model consistently 

outperforms the skill of bivariate Frank copula. Considering the timing of the annual peak, 

differences are seen at the daily scale across two catchment types, in which copula-based 

representations consistently provide a better skill. Similar conclusions can be made for the skill in 

representing the annual peak, in which Frank copula consistently provides better performance than 

the AR model.  
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Table 3.3. Comparison between the skills of linear and nonlinear representations of temporal dependencies, delivered by AR(1) and Frank copula 

models, in terms of the expected mean errors in reconstructing key characteristics of primary streams during the period of 1981 to 2010. For each 

error characteristic, the significant differences between AR(1) and copula models are bolded.  

Expected 

mean 

error in 

Timescale 

C11  

(Nival/Large) 

C21  

(Nival/Small) 

C31  

(Mixed/Large) 

C41  

(Mixed/Small) 

C51  

(Pluvial/Large) 

C61  

(Pluvial/Small) 

AR Copula AR Copula AR Copula AR Copula AR Copula AR Copula 

Volume 

(MCM) 

monthly 0.11 1.28 0.00 0.11 0.00 0.56 0.00 -0.09 0.00 1.42 0.00 0.10 

weekly 0.12 6.42 0.00 -0.82 0.00 9.03 0.00 0.55 0.81 1.48 0.00 -0.68 

daily 1.78 9.42 0.14 2.00 1.16 3.68 0.13 8.90 -0.16 5.56 0.12 1.79 

Timing 

of Peak 

(Timescale) 

monthly 0.05 0.06 -0.10 -0.05 -0.07 -0.04 0.11 0.14 -0.25 -0.12 -0.12 0.12 

weekly -0.02 0.03 0.25 0.10 0.45 0.72 -0.92 -0.30 -2.26 -2.40 0.53 0.92 

daily -0.44 0.41 4.28 5.15 -2.27 0.45 -7.15 -8.87 -10.25 -10.67 1.93 -2.44 

Peak 

(CMS) 

monthly 0.48 1.24 -0.45 0.02 -3.69 2.63 -0.22 -0.16 -3.33 -1.57 -1.06 -0.73 

weekly -4.16 4.04 -3.30 -1.79 -11.28 -2.05 -2.32 -1.13 -11.59 -4.35 -1.75 -1.04 

daily -3.48 3.45 -4.84 -2.04 -8.15 0.56 -4.74 -3.17 8.54 9.04 -1.67 0.05 

Q90 

(CMS) 

monthly -1.79 -0.47 0.13 0.06 2.45 1.25 0.00 -0.09 -0.21 0.12 -0.56 -0.51 

weekly 0.62 1.07 0.69 0.27 4.00 2.87 0.41 0.14 1.85 1.68 -0.30 -0.45 

daily 0.33 0.52 0.72 0.54 2.73 4.07 0.59 0.63 1.42 1.72 -0.02 -0.18 

Q50 

(CMS) 

monthly 0.18 -0.41 0.05 0.04 -0.91 -0.73 0.05 0.05 0.16 0.27 0.09 0.18 

weekly -0.40 -0.76 0.06 0.04 -0.64 -0.28 0.06 0.09 0.56 0.59 0.24 0.28 

daily -0.30 -0.50 0.04 0.04 -0.44 -0.45 0.09 0.17 0.26 0.94 0.10 0.32 

Q10 

(CMS) 

monthly -0.44 0.19 -0.04 -0.01 -0.25 -0.08 -0.05 -0.05 0.29 0.89 0.07 0.04 

weekly -0.29 0.54 -0.06 -0.02 -0.29 -0.04 -0.07 -0.04 0.05 0.43 0.12 0.16 

daily -0.24 0.33 -0.08 -0.05 -0.35 -0.02 -0.06 -0.01 -0.22 0.12 0.04 0.09 

Lag-1 

temporal 

dependence 

(-) 

monthly -0.05 -0.01 -0.02 0.00 -0.01 0.01 0.01 0.01 -0.02 0.00 -0.03 0.00 

weekly -0.04 -0.02 -0.04 -0.02 -0.03 -0.01 -0.03 -0.01 -0.03 -0.01 -0.03 -0.02 

daily -0.02 -0.02 -0.03 -0.02 -0.04 -0.02 -0.04 -0.02 -0.04 -0.03 -0.03 -0.03 
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As the results of the linear and nonlinear representations of temporal dependencies at the primary 

sites are quite comparable, from now on we only focus on the intercomparison of skills in different 

schemes at secondary sites. Below, we only intercompare the results in a weekly timescale. We then 

address the deviations in our findings in case the timescale becomes finer (i.e. daily) or coarser (i.e. 

monthly) in the Discussion section.  

Figure 3.2 summarizes the results for reconstructing the annual volume across the six catchments 

considered. From the left to the right, columns are related to nival, mixed and pluvial regimes, 

respectively. The top and bottom rows correspond to the large and small basins, respectively. In each 

panel, relative deviations from the expected annual volume are shown for the considered seven 

schemes, ordered counterclockwise. Perfect, underestimated, and overestimated fits are identified by 

relative deviation of 1, <1 and >1, respectively. Blue boxes show the interquartile ranges obtained 

from 100 ensembles, each with 100 realizations. The interquartile range is a robust measure of 

sampling uncertainty (Lee and Salas, 2011). Dark blue lines are the expected skill calculated by the 

mean of the boxplots. 

In the Nival/Large (N/L) stream, all seven models can capture the expected relative volume 

within the interquartile range with less than 1% mean expected Relative Error (RE). Having said that, 

M1 and M2 can reconstruct the observed expected annual volume with much less uncertainty. A 

similar conclusion can be considered in the Nival/Small (N/S) reach, although the mean expected 

REs can be slightly higher than the N/L stream.  In streams with a mixed regime, i.e., Mixed/Large 

(M/L) and Mixed/Small (M/S), M1 to M5 can capture the expected annual volume with REs less than 

2%. M6 and M7 however consistently underestimate the expected annual volume and the rate of bias 

is more in the M/S stream.  A similar conclusion can be made for pluvial streams, i.e. Pluvial/Large 

(P/L) and Pluvial/Small (P/S). Again, M1 to M5 can capture the observed long-term annual volume 

with REs less than 2% in both large and small basins. M6 and M7 are not able to provide unbiased 

estimates of the long-term annual volume, and the rate of bias is slightly more in the small compared 

to the large basin.  

We also investigate the performance of the seven considered schemes in reconstructing the 

expected peak characteristics, i.e., the expected timing and magnitude of the annual peak. Figure 3.3 

summarizes the results at the secondary reaches across the considered six basins. Green and grey lines 

show the interquartile ranges of expected errors for magnitude and timing of the peak, respectively 

and black dots depict mean expected errors. The red dots are the centers of the origin, showing the 

location of an ideal model with zero errors. The closer the black dots are to the red dots, the better 

the skill is in capturing the expected peak characteristics. The results in general show the relative 

dominance of M5. In the N/L reach, the absolute error in capturing the expected timing of peak using 

all schemes are less than 0.5 week. Associated REs in capturing the expected magnitude of the annual 

peak is also low, i.e. less than 5%, with M5 showing a better skill, i.e. 𝑅𝐸 ≈ 0.5%. The same 

conclusion can be made in the considered N/S reach, and M5 shows better skills in reconstructing the 

expected timing and magnitude of the annual peak flow. In the considered M/L reach, M1 to M5 can 
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represent the timing of peak with less than 0.5 week error, but M5 outperforms others both in terms 

of reconstructing the timing and magnitude of the annual peak. In the considered M/S reach, M5 is 

the only scheme that can represent the peak characteristics within it interquartile range, with less than 

0.5 week expected error in representing the timing and RE of 1.2% in representing the magnitude of 

the expected annual peak. In the P/L reach, only M1, M2, M6, and M7 can capture the expected 

timing of peak within their interquartile range; however, when looking at the magnitude of the peak, 

M5 shows a better skill with RE of 5.7%. In the P/S reach, again M5 outperforms other schemes and 

can capture both peak timing and magnitude within its interquartile range, with an expected error less 

than 0.5 week in the timing of the peak and REs of 6.7% in representing the magnitude of the expected 

annual peak.  

 
Figure 3.2. The expected deviations from reconstructing the observed long-term annual volume using the 

seven schemes (M1 to M7) and across secondary sites of the six catchments types considered. The streamflow 

series generated through random resampling of 100 ensembles, each with 100 realizations Each box represents 

the interquartile range of expected error obtained from 100 ensembles. The mean expected error is shown in 

dark blue line. The closer the box to 1, the better performance in capturing the expected volume.  

In parallel, we assess the skill of each scheme in capturing the expected annual low (Q10), mid 

(Q50), and high (Q90) flow quantiles. Figure 3.4 summarizes the findings with respect to the 

differences in the three expected quantiles using seven models across the secondary sites in the six 

catchment types considered. The solid lines are the non-exceedance probability of the observed flow. 
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In each panel, the left, the middle, and the right boxplots refer to the expected reconstructed values 

of Q90, Q50, and Q10 respectively obtained through 100 ensembles. The corresponding observed 

values are shown with black dots.  

 
Figure 3.3. The error in representing expected annual peak flow characteristic, i.e., timing and magnitude of 

peak. The streamflow series generated through random resampling of 100 ensembles, each with 100 

realizations using M1 to M7 schemes. Each pairs of grey and green lines represent interquartile ranges for 

expected errors in capturing timing and magnitude of the peak, respectively; and the black dots show the mean 

of expected errors. The closer the mean expected errors are to centers of origin identified by red dots, the better 

the skills of models are in capturing expected peak characteristics. 

In the N/L stream, all settings can capture the observed long-term Q50 within their interquartile 

range. Having said that, only M5 captures the long-term Q10 with 𝑅𝐸 ≤ 5%. In terms of Q90, M5 

dominates other copula-based representations with 𝑅𝐸 ≈ 1%. In the N/S stream and for Q50, again 

copula-based schemes are able to represent the observed value in the interquartile range, but M6 and 

M7 dominate other models due to lower REs. For high and low flow quantiles, M4 (with REs of 2% 

and 0.4% respectively). In the considered M/L reach, only M6 and M7 are able to reconstruct the 

long-term quantiles with REs of 3% and 1% for Q50, as well as 2% and 1% for Q90, respectively. 

Having said that, none of the considered schemes are able to capture the observed Q10 within their 

interquartile range. In the M/S stream, M4 and M5 can represent the observed Q90 value in the 

interquartile range with REs of ≈1.3% and ≈2.4%; however, for Q50 and Q10, none of the schemes 

are able to capture the observed value within their interquartile ranges, although M5 still provides a 

relatively higher skills compares to others, particularly with regard to Q50. In the P/L stream, M1 and 

M2 show better skills in capturing the flow quantiles with REs being 1% and 3%, and 6% for Q90, 

Q50, and Q10, respectively. This is the case in the P/S stream, where M1 and M2 outperform other 

schemes with REs of around 1%, 2.5%, and 4.6% regarding high, mid, and low flow quantiles.   
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Figure 3.4. Errors in representing low, mid and high flow quantiles (i.e. Q10, Q50 and Q90 at the secondary 

streams across the six catchment types considered. Boxplot show the expected flow quantiles reconstructed by 

resampling of 100 ensembles, each with 100 realizations using M1 to M7 schemes. The historical values are 

shown in black dots. 

In order to evaluate the skills in preserving the dependence structure, the performance in 

capturing the lag-1 temporal dependence in the secondary sites as well as the lag-0 spatial dependence 

between primary and secondary sites are evaluated. Figure 3.5 summarizes these analyses by 

measuring Kendall’s tau, shown by red and blue boxplots, respectively. In the N/L reach, M1 

outperforms other schemes in terms of temporal dependence. In terms of spatial dependence, copula-

based schemes show better skills in capturing the observed dependence. In the N/S reach, only M5 

can capture the observed lag-1 dependence within the interquartile range. Another copula-based 

model, i.e. M4, shows better skills in representing the spatial dependence. In the considered M/L 

stream, only M3 and M4 can respectively capture observed temporal and spatial dependencies within 

their interquartile range. In the M/S basin, M1 and M4 can capture the lag-1 and lag-0 dependencies 

within their interquartile range. In the P/L and P/S stream, M1 again outperforms other models in 

terms of lag-1 temporal dependence. Regarding lag-0, only M2 and M4 are capable to capture 

observed values in their interquartile range.  
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Figure 3.5. The error in representation of lag-1 temporal and lag-0 spatial dependencies, shown by red and 

blue boxplots respectively. The streamflow series, from which the temporal and spatial dependencies retrieved, 

are generated through random resampling of 100 ensembles, each with 100 realizations using M1 to M7 

schemes across six catchment types.  

3.5. Discussion 

The results provided in Section 3.4 are only relevant at the weekly scale and therefore it is necessary 

to investigate the sensitivity of our findings in other temporal scales. Here we repeat the above 

experimentations in coarser (monthly) and finer (daily) scales and explore the expected accuracy and 

uncertainty in reconstructing the streamflow characteristics across the six catchments types 

considered. The findings of these analyses are summarized in Figs. B1 and B2 in the Appendix B. 

Similar to the experimentation made at the weekly scale, we generate 100 ensembles, each including 

100 realizations using all seven schemes at the daily and monthly scales. We estimate the skill and 

uncertainty using the mean and standard deviation of the expected error obtained from the expected 

error estimates of 100 ensembles. In both figures, the green, red and blue lines represent the monthly, 

weekly, and daily statistics, respectively. In terms of expected annual volume, M1 to M5 schemes 

can capture the expected annual volume with RE of less than 3% in all timescales considered, while 

M6 and M7 are only skillful at the monthly scale. Looking at the standard deviation, however, M1 

and M2 show significantly lower uncertainty than other schemes. In terms of the expected timing of 

the peak, M5 shows a better skill in capturing the observed value with less than 2 days absolute error 
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in N/L and N/S reaches regardless of the timescale considered. In the mixed and pluvial reaches, 

however, the skill of M1 and M2 outperforms other schemes, except in the considered P/S basin in 

which M6 and M7 show better skills. Uncertainty in estimating the timing of the peak increases, as 

the timescale gets finer. In terms of the magnitude of the peak, M5 shows the best skill on the monthly 

and weekly scales with the average RE of respectively 1% and 3.4% across the six catchments 

considered. M6, however, shows better skill in N/L in the daily scale with a RE of 3.1%. In N/S, 

mixed, and pluvial reaches, M4 outperforms other models with a RE of 4%. Similar to the expected 

timing of the peak, the uncertainty bounds expand at finer timescales.  

Regarding flow quantiles, the skills of considered schemes are variant in different timescales, 

flow quantiles, and catchment types. In terms of expected Q90, M5 outperforms other schemes at the 

monthly scale and across all catchments. At the weekly and daily timescales, M5 shows better skill 

in the N/L reach with RE ≤ 2.1%. In N/S, M4 outperforms other schemes at the weekly and daily 

timescale with an average RE of 3.1%. In the M/S and pluvial reaches, M1, M2, and M4 show better 

performance with average RE of less than 2.4%, 2.1%, and 2.0%, respectively. The uncertainty 

bounds in representing expected Q90 expand at the finer timescales.  For Q50 again M5 outperforms 

other models at monthly, weekly, and daily scales with expected REs of 1.6%, 1.9%, and 2.1% across 

the considered scales, respectively. For the Q90 and in the N/L reach, the uncertainty bounds expand 

as the timescale gets finer. In other reaches, a mixed pattern can be observed with the least uncertainty 

in the monthly scale across different reaches. For Q50 and in the N/L, the least uncertainty is observed 

at the monthly scale. In other reaches, however, a mixed pattern is observed.  For Q10 as well, M5 

outperforms other schemes with average REs of less than 2%, across daily, weekly and monthly 

scales. The largest uncertainty bounds in estimating low flow quantiles are in contrast observed at the 

monthly scale except in the considered N/L reach. The least uncertainty bounds are related to the M1 

and M2 across different reaches.  In terms of lag-1 temporal dependence and at monthly scale, M1, 

M2, and M5 outperform other schemes with less than 0.05 absolute errors across all timescales. In 

terms of lag-0 spatial dependence and in the monthly scale, M4, and M5 can well capture the observed 

value with less than 0.01 absolute error. The uncertainty bounds for the lag-1 temporal and lag-0 

spatial dependencies mostly increase at coarser timescales. M3 and M5 exhibit the lowest uncertainty 

for lag-1 temporal dependence. M3 also has the lowest uncertainty for the lag-0 spatial dependence.  

The divergent results seen across different timescales and catchment types are mainly due to 

various mechanisms that dominate streamflow generation across timescales, catchment sizes, and 

regime types; and hence, the suitability of different schemes changes. As a result, the choice of the 

appropriate scheme becomes somehow case dependent. However, to provide a general guideline on 

the choice of model in each specific condition, we rank the models based on their expected skills 

using the results provided in Fig. B1 in the Appendix B. Fig. 3.6 displays the ranking of the seven 

considered schemes in capturing the eight long-term characteristics of streamflow series across the 

six different catchment types and the three timescales considered. Long-term streamflow 

characteristics are placed counterclockwise, and schemes are identified with colored dots. Linear-

based schemes (i.e., M1 and M2) are shown with shades of red; nonlinear schemes with the implicit 
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representation are depicted with shades of green (i.e., M3 and M4); and the nonlinear models with 

explicit representations are displayed in shades of blue (i.e., M5, M6, and M7). The scheme with the 

best skill in reconstructing each specific error measure stands in the outermost circle with rank 1, and 

the worst locates in the innermost circle with rank 7.  

 

Figure 3.6. The ranking of the seven considered schemes based on their skills in reconstructing the eight 

streamflow characteristics. The schemes are ranked from 1 to 7 based on their performance in capturing each 

long-term streamflow characteristics. In each circle, the characteristics are ordered counterclockwise. The 

model with the highest skill is shown with the biggest dot size and located in the outermost circle.  

In general, at the monthly timescale, M2 and M5 are ranked among the top two schemes in 50% 

and 48% of comparison cases. In the nival regime, M5 is the best choice as outperforms other schemes 

in 62.5% of comparison cases. In the mixed regime, however, M2 is the rank 1 in around 69% of the 

comparison cases. At the weekly timescale, M5 with 50% and M1 with 46% chance of being rank 1 

dominate other schemes in capturing various streamflow characteristics across different flow regimes. 

In nival and mixed regimes, M5 outperforms other schemes in 56.3% of comparison cases at the 

weekly timescale. In the pluvial regime, however, M1 with a 50% chance of being rank 1 shows a 

more reliable scheme. At the daily timescale, M1 with 54.2% and M5 with 43.8% of cases surpass 

the skill of other schemes. Similarly, the performances vary across flow regimes. In the nival and 

mixed regimes, M5 in 50% and 56.3% of chance for being rank 1 dominates other schemes; whereas, 

in the pluvial regime, M1 with a 62.5% chance of becoming rank 1 outperforms other modeling 

schemes.  
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3.6. Summary and concluding remarks  

Accurate representations of spatial and temporal dependencies in streamflow data matter to various 

applications within the territory of water resource planning and management, from assessing regional 

extremes to quantifying the risk of cascade, simultaneous and/or compound events. While various 

parametric schemes, extending from fully linear to fully nonlinear stochastic models are available, a 

consensus on how the spatial and temporal dependencies should be best represented is currently 

lacking.  After a brief overview of theoretical aspects of the parametric representation of dependence, 

we design a comprehensive experiment to benchmark the skill and uncertainty of various 

representations across a range of timescales, catchments, and streamflow regimes. We have taken a 

pragmatic approach to benchmark the performance of various representations and assess their ability 

in reconstructing long-term streamflow characteristics that matter most to planning and management. 

For this purpose, we select six catchments across southern Canada, portraying three regime types 

(i.e., nival, mixed, and pluvial) in catchments with large and small contributing areas, and consider 

representing temporal and spatial dependence at daily, weekly and monthly timescales. We then 

observe the skills and uncertainty in reconstructing eight long-term streamflow characteristics. 

As far as temporal representation of dependence at a local stream is concerned, our study reveals 

that in most comparison cases, differences between linear and nonlinear representations are rather 

statistically indistinguishable. Having said that, when representing the spatial dependence structure 

among multiple sites is sought, then the skills and uncertainty of various representations depend on 

the catchment size, timescale, regime type, and even the streamflow characteristics considered. In 

terms of annual volume, linear schemes show better skills and less uncertainty across all streams and 

timescale considered. In contrast, when representing timing and magnitude of annual peak flow 

matters, coupled representations of spatiotemporal dependence through vine copulas dominate other 

schemes in nival and mixed regimes.  In pluvial catchments though, linear approaches outperform 

nonlinear copula-based schemes. Regardless of regime type, the timing of the peak is better 

reconstructed in streams with smaller contributing areas. In terms of flow quantiles, nonlinear 

approaches can represent extreme high and low quantiles better than the linear approaches in nival 

and mixed catchments, whereas, the linear approaches dominate others in pluvial streams. In terms 

of lag-1 temporal dependence, linear representations and the scheme based on vine copulas 

outperform others. In terms of spatial dependence, vine copula representation dominates other 

schemes. When moving toward coarser time scales, differences in the skills and uncertainty of 

different schemes become less significant.    

Our study provides a practical guideline for choosing an optimal representation depending on the 

context of application considered. Few points, however, are remained and should be put in 

perspective. First, as it was shown in Nazemi et al. (2020), even when the skills in reconstructing 

long-term streamflow characteristics are similar, it does not necessarily mean that the results of stress 

tests made with the generated synthetic streamflow series would be similar too. This delineates a 

problem, which is more relevant to water resource planning and management than stochastic 
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hydrology; yet it must be addressed. Second, in some of the comparison cases, none of the schemes 

are able to capture certain flow quantiles. The recent study of Zaerpour et al. (2021b) provides the 

hope that with consideration of large-scale climate indices, the skills in representing high and low 

quantiles can be improved. Last but not the least, streamflow regime is evolving rapidly due to 

climatic changes and/or anthropogenic interventions. At this juncture, effective approaches for 

stochastic streamflow generation under multiple changes in streamflow characteristics are deemed 

necessary. We hope to soon present a generalized algorithm for representing gradual and/or abrupt 

regime shifts within stochastic streamflow generation.     
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Chapter 4.  

Informing Stochastic Streamflow Generation by Large-Scale Climate Indices at Single and 

Multiple Sites3 

The contents of this chapter have been published as “Zaerpour, M., Papalexiou, S. M., & Nazemi, A. 

(2021). Informing Stochastic Streamflow Generation by Large-Scale Climate Indices at Single and 

Multiple Sites.” in Advances in Water Resources.  The contents are slightly modified from the 

submitted article. 

 

Synopsis 

Despite the existence of several stochastic streamflow generators, not much attention has been given 

to representing the impacts of large-scale climate indices on seasonal to interannual streamflow 

variability. By merging a formal predictor selection scheme with vine copulas, we propose a generic 

approach to explicitly incorporate large-scale climate indices in ensemble streamflow generation at 

single and multiple sites and in both short-term prediction and long-term projection modes. The 

proposed framework is applied at three headwater streams in the Oldman River Basin in southern 

Alberta, Canada. The results demonstrate higher skills than existing models both in terms of 

representing intra- and inter-annual variability, as well as accuracy and predictability of streamflow, 

particularly during high flow seasons. The proposed algorithm presents a globally relevant scheme 

for the stochastic streamflow generation, where the impacts of large-scale climate indices on 

streamflow variability across time and space are significant.    

 

4.1. Introduction 

Streamflow has been often represented as a function of other hydroclimatic processes such as 

temperature, precipitation, and evapotranspiration at the catchment scale (Blöschl et al., 2007). These 

variables are affected by large-scale climate patterns (Merz et al., 2014; Steirou et al., 2017; Tan and 

Gan, 2017), which can consequently impact streamflow generation globally (Kisi et al., 2019; 

Konapala et al., 2018; Ward et al., 2014). For instance, various evidences show that Large-scale 

Climate Indices (LSCIs), most notably El Niño–Southern Oscillation (ENSO), Interdecadal Pacific 

Oscillation (IPO), and Pacific Decadal Oscillation (PDO) influence the streamflow in Australia 

(McGowan et al., 2009; Murphy and Timbal, 2008; Pui and Sharma, 2011; Pui et al., 2012). ENSO, 

North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO) affect European 

streamflow (Giuntoli et al., 2013; Steirou et al., 2017). Similarly, ENSO, PDO, AMO, and NAO 

impact streamflow in North America (Asong et al., 2018; Nazemi et al., 2017; Rajagopalan et al., 

2000; Tamaddun et al., 2017, 2019; Wu et al., 2020).  

                                                            
3 Zaerpour, M., Papalexiou, S. M., & Nazemi, A. (2021). Informing Stochastic Streamflow Generation by Large-Scale Climate Indices 

at Single and Multiple Sites. Advances in Water Resources, 104037, https://doi.org/10.1016/j.advwatres.2021.104037. 
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Previous studies have made it clear that taking into account the effects of LSCIs directly on 

streamflow or indirectly through affected hydroclimate variables, e.g., temperature and precipitation, 

may improve the predictability of streamflow particularly at seasonal to interannual scales (e.g., Kiem 

et al., 2021; Kwon et al., 2008; Steinschneider et al., 2019; Wasko and Sharma, 2017). The indirect 

incorporation of LSCI in the generation of streamflow is in fact very common in the context of 

process-based models, in which variables such as temperature and precipitation are the basis of 

simulating streamflow (Eisner et al., 2017; Shrestha et al., 2013; Su et al., 2017). Process-based 

models, however, are deterministically formulated by implementing physically-based and/or 

conceptual equations without explicitly considering the distributional and/or joint properties of 

observed data (Montanari and Koutsoyiannis 2012; Farmer and Vogel, 2016). Past studies showed 

that although dependence between precipitation and LSCIs can be low (e.g., Westra and Sharma, 

2010), LSCIs have more consistent impacts on streamflow and/or temperature (Bonsal and Shabbar, 

2011; Nalley et al., 2016; Nazemi et al., 2017). In particular, the direct dependencies between 

streamflow and LSCIs in coarser spatial and temporal scales are rather strong. This has motivated a 

strain of modeling attempts to explicitly incorporate the effect of LSCIs in streamflow generation 

through stochastic approaches (Lee et al., 2018a; Liu et al., 2015; Wang et al., 2009).  

One way to represent the impact of LSCIs on stochastic streamflow generation is to transform 

the original data into a Gaussian process that can be then described using multivariate joint 

distributions (Bennett et al., 2014; Papalexiou, 2018; Wang and Robertson, 2011). The simplest 

representation of such kind can be formed by assuming a symmetric and linear teleconnection 

between streamflow and LSCIs. Linear models such as autoregressive (AR) and its variants have 

been widely used for streamflow simulation (Matalas 1967; Salas et al., 1985; Lee et al., 2010; Prairie 

et al., 2008), however, they are unable to adequately represent marginal streamflow distributions, 

especially in the case of asymmetric, nonlinear and multimodal conditions (Papalexiou, 2018; 

Papalexiou and Serinaldi, 2020; Rajogopalan et al., 2019), which is the case in many regions and/or 

finer timescales (Fleming and Dahlke, 2014; Hlinka et al., 2014; Khan et al., 2006; Konapala and 

Mishra, 2016; Lee et al., 2018b). Nonparametric resampling schemes can address some of the issues 

in linear models (Lall and Sharma, 1996; Sharma and O'Neill, 2002); however, the generated flows 

may end up being too close to the reshuffling of historical sequences (e.g., Grantz et al., 2005; Lee et 

al., 2010).  

Over the last two decades, copula-based models (see Genest and Favre, 2007; Nelsen, 2007) have 

gained popularity in hydroclimatology (Aghakouchak, 2014; Nazemi and Elshorbagy, 2012) and 

have been applied in various contexts, including stochastic streamflow generation (Salvadori and De 

Michele, 2004; Worland et al., 2019; Zhang and Singh, 2019). Copulas offer a generic solution to 

multivariate probabilistic sampling, particularly with respect to quantifying the risk (Chen et al., 

2015; Hao and Singh 2013; Serinaldi and Kilsby, 2017). Application of copulas in streamflow 

generation can provide an opportunity for preserving dependence structures in time and space and/or 

between streamflow and other relevant variables. Copula-based stochastic streamflow generations 

have been used at the single site quite extensively and are able to capture nonlinear responses 
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observed in streamflow time series (Bardossy and Pegram, 2009; Hao and Singh 2012; Nazemi et al., 

2013; Wang et al., 2019). More recently methods based on multidimensional copulas, in particular 

Vine copulas, have been used for multisite streamflow generation (Chen et al., 2019; Nazemi et al., 

2020; Pereira et al., 2017; Pereira and Veiga, 2018). Despite ongoing advances in copula-based 

streamflow generations, only a few incorporate climate-related proxies in streamflow generation 

(Slater and Villarini, 2018; Wang et al., 2019); and none – to the best of our knowledge – explicitly 

incorporate the influence of multiple LSCIs in the procedure of stochastic streamflow generation. 

Here, we propose a generic approach based on vine copulas to explicitly incorporate LSCIs as 

exogenous covariates in stochastic streamflow generation at the monthly scale both in prediction and 

projections modes and at single and multiple sites. We hypothesize that the explicit representation of 

LSCIs improves both prediction and projection skills, particularly in terms of representing seasonality 

and inter-annual variability. We recognize that this is a challenging problem. First, the proposed 

model should be able to capture both symmetric and asymmetric relationships between LSCIs and 

streamflow in time and space (see Hoerling et al., 1997). In addition, as the statistical dependence 

between streamflow and LSCIs can change in both time and space, the proposed model should have 

a dynamic structure (Wang et al., 2019; Nguyen-Huy et al., 2020). For this purpose, we use vine 

copulas in conjunction with a formal predictor selection algorithm to identify the best common set of 

LSCIs for streamflow generation at a monthly scale.  

We showcase the application of the proposed scheme for the prediction and projection of three 

mountainous headwaters in southern Alberta, Canada. To benchmark the performance of the 

proposed algorithm, we compare the skills of our model with already existing reference algorithms. 

At the single site, we compare the performance of our proposed algorithm with the copula model, 

proposed by Lee and Salas (2011), which has been used frequently in the literature (e.g., Chen et al., 

2015; Nazemi et al., 2013) and extended into multisite mode using regression models (Nazemi and 

Wheater, 2014). Both single and multisite versions of this existing copula-based algorithm were 

previously implemented in the same case study (see Nazemi et al., 2013; Nazemi and Wheater, 2014). 

Vine copulas were also used to represent asymmetric and nonlinear spatial relationships among 

multiple streams (Chen et al. 2015, 2019; Nazemi et al., 2020).  

These models provide a benchmark to discuss the added value of incorporating LSCIs in the 

process of streamflow generation. The remainder of this paper is organized as the following: Section 

4.2 presents the methodological basis of the proposed algorithm. Section 4.3 briefly introduces our 

case study. Section 4.4 discusses the model development, experimental setup, and benchmarking 

procedures. Section 4.5 presents the results, compares the proposed model with existing reference 

models, and discusses the added value of incorporating LSCIs in stochastic streamflow generation. 

Finally, Section 4.6 concludes the study.  

4.2. Methodology 

The core of our proposed algorithm is a vine copula, linked to a formal input selection scheme for 

selecting a set of LSCIs as exogenous covariates that influence the streamflow at the considered 
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timescale – monthly throughout this paper. We show below that the proposed algorithm is generic 

and can be applied in both single and multisite settings and in both prediction and projection modes. 

By prediction, we refer to short-term (precisely one-step-ahead) probabilistic estimates of streamflow 

conditioned to a known initial state. Prediction mode has relevance to real-time applications such as 

flood forecasting or operational planning of water resource systems. By projection, in contrast, we 

refer to long-term estimates of streamflow conditioned to a range of possible initial states. Projection 

mode is relevant to long-term planning and management of water resource systems as well as scenario 

analysis particularly under changing climate and land-use conditions. Below we illustrate the 

elements of the proposed algorithm and its procedure.   

4.2.1. Vine copulas  

Consider a 𝑑-dimensional copula function 𝐶: [0, 1]𝑑 → [0, 1], in which 𝐶 is a multivariate Cumulative 

Distribution Function (CDF) of a random vector (𝑈1, 𝑈2, . . , 𝑈𝑑), defined on the unit hypercube 

 [0, 1]𝑑, where 𝑈𝑖 denotes uniform marginal distributions 𝑈(0,1) – see Joe (1997). The fundamental 

work of Sklar (1959) shows that for any multivariate CDF, such as 𝐹(𝑥1, 𝑥2, … , 𝑥𝑑) of d random 

variables (𝑋1, 𝑋2, … , 𝑋𝑑), there is a copula function C, that can describe 𝐹(𝑥1, 𝑥2, … , 𝑥𝑑) using 

marginal CDFs 𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑑(𝑥𝑑) as the following:  

  

𝐹(𝑥1, 𝑥2, … , 𝑥𝑑) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑑(𝑥𝑑)) (4.1) 

 

denoting that the original 𝑑-dimensional CDF is decomposed into (1) a dependence structure between 

uniform random variables, and (2) marginal CDFs that are defined independently from the 

dependence structure. If the marginal distribution functions are continuous, then the copula function 

C is unique, and the joint Probability Density Function (PDF) can be calculated as (Joe, 1997): 

𝑓(𝑥1, … , 𝑥𝑑) = 𝑐(𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑))∏𝑓𝑗(𝑥𝑗)

𝑑

𝑗=1

 

 

(4.2) 

where 𝑐(∙) is the 𝑑-dimensional copula PDF and 𝑓𝑗(𝑥𝑗) is the marginal PDFs of the 𝑋𝑗; 𝑗 =  1,2, … , 𝑑. 

Vine copulas provide a generic approach to construct high-dimensional joint distributions by using 

bivariate copulas as building blocks as any high-dimensional copula can be decomposed into a 

product of 𝑑(𝑑 − 1)/2 bivariate copulas ordered as a sequence of (𝑑 − 1) nested trees with nodes 

joined by edges (see Bedford and Cooke, 2001; Joe, 1997; Aas et al., 2009; Czado, 2010). Here we 

focus on a particular form of vine copulas, i.e. canonical vines (hereafter C-vines), which are based 

on ordering the variables by importance. Considering a multivariate density function as a product of 

conditional densities, a C-vine can be constructed by:  
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𝑓(𝑥1, … , 𝑥𝑑) = 𝑓1(𝑥1)∏𝑓𝑗|1:𝑗−1(𝑥𝑗|𝑥1, … , 𝑥𝑗−1)

𝑑

𝑗=2

 (4.3) 

where 1: 𝑗 − 1 = 1,2, … , 𝑗 − 1. Based on the Sklar’s theorem and Eq. (2), we have: 

 

𝑓𝑗|1:𝑗−1(𝑥𝑗|𝑥1:𝑗−1) = 𝑐𝑗−1,𝑗|1:𝑗−2 (𝐹(𝑥𝑗−1|𝑥1:𝑗−2), 𝐹(𝑥𝑗|𝑥1:𝑗−2)) 𝑓(𝑥𝑗|𝑥1:𝑗−2) (4.4) 

where 𝐹(∙ | ∙) and 𝑓(∙ | ∙) denote conditional CDFs and PDFs, respectively. By applying Eq. (4.4) 

recursively, the joint density in Eq. (4.3) can be expressed as (Bedford and Cooke, 2001): 

𝑓(𝑥1, … , 𝑥𝑑) =∏𝑓𝑘(𝑥𝑘)∏∏𝑐𝑖,𝑗+𝑖|1:𝑖−1 (𝐹(𝑥𝑖|𝑥1:𝑖−1), 𝐹(𝑥𝑗+𝑖|𝑥1:𝑖−1))

𝑑−𝑖

𝑗=1

𝑑−1

𝑖=1

𝑑

𝑘=1

 

 

(4.5) 

The C-vine copula construction in Eq. (4.5) involves marginal conditional distributions in the 

form 𝐹(𝑥|𝒗), which can be obtained recursively using the ℎ-function derivative (Joe, 1997, 2014): 

  

ℎ = 𝐹(𝑥|𝒗) =
𝜕𝐶𝑥,𝑣𝑗|𝑣−𝑗(𝐹(𝑥|𝒗−𝑗), 𝐹(𝑣𝑗|𝒗−𝑗))

𝜕𝐹(𝑣𝑗|𝒗−𝑗)
 (4.6) 

where 𝒗 is a 𝑑-dimensional multivariate space with 𝑣𝑗, is one arbitrary component chosen from 𝒗, 

and 𝒗−𝒋 denotes the vector 𝒗 excluding 𝑣𝑗 and 𝐶𝑥,𝑣𝑗|𝑣−𝑗  is the bivariate copula.  

4.2.2. Selecting large-scale climate indices to inform streamflow generation 

While C-vine copulas provide a theoretical framework for conditioning streamflow generation to 

LSCIs, several LSCIs may influence streamflow at a given lead time and the relevant LSCIs in one 

time step may be irrelevant in others. As a result, there is a need for a systematic and rather dynamic 

identification of appropriate LSCIs at a given lead time (Quilty et al., 2016, 2019; Robertson and 

Wang, 2012). Statistical methods such as Principal Component Analysis (Barnston and Ropelewski, 

1992), Independent Component Analysis (Aires et al., 2000), Partial Mutual Information Selection 

(PMI; Sharma, 2000; Sharma and Mehrotra, 2014; Sharma et al., 2016), and Partial Correlation Input 

Selection (PCIS, May et al., 2008, 2011) have been developed and already used in the literature for 

predictor selection. Here, we use PCIS, an iterative forward-looking input selection algorithm, which 

chooses one LSCI at a particular lag during each iteration (Brown et al., 2012; Quilty et al., 2016, 

2019; Tran et al., 2016). The selected LSCI is the one that has the largest dependence score with the 

streamflow at a given monthly time step. Similar to Amir Jabbari and Nazemi (2019), we apply 

Kendall’s tau (Kendall, 1976) to measure the dependence between lagged monthly LSCIs and 

monthly streamflow. The Kendall’s tau is more compatible for selecting LSCIs, as there can be strong 

nonlinear dependence between LSCIs and the monthly streamflow (Hlinka et al., 2014; Konapala et 

al., 2018). The algorithm terminates when adding new predictors causes no improvement in the 

Bayesian Information Criterion (BIC), estimated from the predictand residuals. As we apply the PCIS 
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for each month separately, the selected monthly LSCIs can change. For more details on PCIS see 

May et al., (2008, 2011) and Hatami et al. (2019).   

4.2.3. Proposed streamflow generation scheme 

By choosing the relevant LSCIs, C-vine copulas can be used to allow conditioning streamflow at each 

time step to previous values of streamflow as well relevant LSCIs as exogenous covariates. Previous 

studies showed that at coarser time scales (e.g. weekly, monthly), the lag-1 dependence is sufficient 

for streamflow generation (Chen et al., 2015; Nazemi and Wheater, 2014; Wang et al., 2019). Fig. 

4.1 summarizes the proposed streamflow generation scheme at single site considering the lag-1 

temporal dependence. No need to mention that this framework can be extended to consider more lags 

and/or to cover finer timescales. For the sake of simplicity, we only consider one LSCI in the 

schematic and formulations are given below. In the case of more LSCI, this formulation can be 

extended to higher dimensions following the procedure explained in section 2.1.  

In single site setting, the task is to generate streamflow at any site A (Fig. 4.1a), where C-vines 

are used to decompose the dependence structure between monthly flows at time 𝑡 (i.e. 𝑄𝑡
𝐴), 𝑡 − 1 

(i.e. 𝑄𝑡−1
𝐴 ) , as well as a relevant LSCI at time 𝑡 − 𝜏 (i.e. 𝐿𝑡−𝜏), where 𝜏 is the lag between the monthly 

flow at time 𝑡 and the selected LSCI. Following the Eqs. (3) and (4) the joint distribution 

between 𝑄𝑡−1
𝐴 , 𝑄𝑡

𝐴 and 𝐿𝑡−𝜏 can be established as:  

 

𝑓(𝑄𝑡−1
𝐴 , 𝐿𝑡−𝜏, 𝑄𝑡

𝐴) = 𝑓1(𝑄𝑡−1
𝐴 )𝑓2|1(𝐿𝑡−𝜏|𝑄𝑡−1

𝐴 )𝑓3|1,2(𝑄𝑡
𝐴|𝑄𝑡−1

𝐴 , 𝐿𝑡−𝜏) (4.7) 

 

where the subscripts 1, 2, and 3 correspond to 𝑄𝑡−1
𝐴 , 𝐿𝑡−𝜏 and 𝑄𝑡

𝐴, respectively. Using Eq. (4), the 

conditional distributions in Eq. (7) can be estimated as:  

𝑓2|1(𝐿𝑡−𝜏|𝑄𝑡−1
𝐴 ) =

𝑓(𝐿𝑡−𝜏, 𝑄𝑡−1
𝐴 )

𝑓(𝑄𝑡−1
𝐴 )

=
𝑐1,2(𝐹1(𝑄𝑡−1

𝐴 ), 𝐹2(𝐿𝑡−𝜏))𝑓1(𝑄𝑡−1
𝐴 )𝑓2(𝐿𝑡−𝜏)

𝑓1(𝑄𝑡−1
𝐴 )

= 𝑐1,2(𝐹1(𝑄𝑡−1
𝐴 ), 𝐹2(𝐿𝑡−𝜏))𝑓2(𝐿𝑡−𝜏) 

 

(4.8) 

and 

𝑓3|1,2(𝑄𝑡
𝐴|𝑄𝑡−1

𝐴 , 𝐿𝑡−𝜏) =
𝑓(𝐿𝑡−𝜏, 𝑄𝑡

𝐴|𝑄𝑡−1
𝐴 )

𝑓(𝐿𝑡−𝜏|𝑄𝑡−1
𝐴 )

=
𝑐2,3|1(𝐹(𝐿𝑡−𝜏|𝑄𝑡−1

𝐴 ), 𝐹(𝑄𝑡
𝐴|𝑄𝑡−1

𝐴 ))𝑓(𝐿𝑡−𝜏|𝑄𝑡−1
𝐴 )𝑓(𝑄𝑡

𝐴|𝑄𝑡−1
𝐴 )

𝑓(𝐿𝑡−𝜏|𝑄𝑡−1
𝐴 )

 

       = 𝑐2,3|1(𝐹(𝐿𝑡−𝜏|𝑄𝑡−1
𝐴 ), 𝐹(𝑄𝑡

𝐴|𝑄𝑡−1
𝐴 ))𝑐1,3(𝐹1(𝑄𝑡−1

𝐴 ), 𝐹3(𝑄𝑡
𝐴))𝑓3(𝑄𝑡

𝐴) 

(4.9) 

As a result, the three dimensional joint density in Eq. (7) can be represented in terms of bivariate 

copulas 𝐶1,2, 𝐶1,3, and 𝐶2,3|1 with densities 𝑐1,2, 𝑐1,3, and 𝑐2,3|1 as the following:  

𝑓(𝑄𝑡−1
𝐴 , 𝐿𝑡−𝜏, 𝑄𝑡

𝐴)

= 𝑓1(𝑄𝑡−1
𝐴 )𝑓2(𝐿𝑡−𝜏)𝑓3(𝑄𝑡

𝐴)𝑐1,2(𝐹1(𝑄𝑡−1
𝐴 ), 𝐹2(𝐿𝑡−𝜏))𝑐1,3(𝐹1(𝑄𝑡−1

𝐴 ), 𝐹3(𝑄𝑡
𝐴)) 

              𝑐2,3|1(𝐹(𝐿𝑡−𝜏|𝑄𝑡−1
𝐴 ), 𝐹(𝑄𝑡

𝐴|𝑄𝑡−1
𝐴 ))  

(4.10) 
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The graphical representation of the proposed three-dimensional C-vine copula is depicted in Fig. 

4.1b and includes two trees. In the first tree 𝑇1, the circled nodes 1 to 3 represent respectively the 

three PDFs of flows at time step 𝑡 − 1, LSCI signal with lag 𝜏, i.e. 𝐿𝑡−𝜏, and the flow at time step 𝑡. 

The dependencies between nodes (i.e., edges) are modeled using bivariate copulas formed for each 

pair. The edges in the first tree become nodes for the second level. Accordingly, the conditional 

distribution function of 𝐹(𝑄𝑡
𝐴|𝑄𝑡−1

𝐴 , 𝐿𝑡−𝜏) can be obtained by recursive use of Eq. (6) as (Aas et al., 

2009; Czado et al., 2012): 

ℎ = 𝐹(𝑄𝑡
𝐴|𝑄𝑡−1

𝐴 , 𝐿𝑡−𝜏) =
𝜕𝐶2,3|1(𝐹(𝑄𝑡

𝐴|𝑄𝑡−1
𝐴 ), 𝐹(𝐿𝑡−𝜏|𝑄𝑡−1

𝐴 ))

𝜕𝐹(𝐿𝑡−𝜏|𝑄𝑡−1
𝐴 )

 (4.11) 

Note that 𝐹(𝑄𝑡
𝐴|𝑄𝑡−1

𝐴 ) = ℎ(𝑄𝑡
𝐴|𝑄𝑡−1

𝐴 ) =
𝜕𝑐3,1(𝐹(𝑄𝑡

𝐴),𝐹(𝑄𝑡−1
𝐴 ))

𝜕𝐹(𝑄𝑡−1
𝐴 )

 and 𝐹(𝐿𝑡−𝜏|𝑄𝑡−1
𝐴 ) =

ℎ(𝐿𝑡−𝜏|𝑄𝑡−1
𝐴 ) =

𝜕𝐶2,1(𝐹(𝐿𝑡−𝜏),𝐹(𝑄𝑡−1
𝐴 ))

𝜕𝐹(𝑄𝑡−1
𝐴 )

.  As a result, Eq. (11) can be rewritten as: 

 

ℎ = 𝐹(𝑄𝑡
𝐴|𝑄𝑡−1

𝐴 , 𝐿𝑡−𝜏) = ℎ[ℎ(𝑄𝑡
𝐴|𝑄𝑡−1

𝐴 )|ℎ(𝐿𝑡−𝜏|𝑄𝑡−1
𝐴 )] (4.12) 

 

 

Figure 4.1.The schematic pathway for single site generation of streamflow with consideration of large-scale 

climate indices (panel a) along with the corresponding C-vine copula representation proposed (panel b). 𝑄1
𝐴,…, 

𝑄𝑡−1
𝐴 , 𝑄𝑡

𝐴 denote the monthly flows at a given site A. In panel b, the variables 1 to 3 indicate 𝑄𝑡−1
𝐴 , 𝐿𝑡−𝜏 and 

𝑄𝑡
𝐴 shown in nodes of the Tree 1.  

In the multisite setting, the streamflow generation is based on selecting a primary site, which is 

used as a reference to realize streamflow in other reaches (hereafter secondary sites) using the 

temporal and spatial dependencies within and between streamflow series (see Nazemi et al., 2013, 

2020; Nazemi and Wheater, 2014). These dependencies are usually not the same and require 

asymmetric copulas to be handled (e.g., Chen et al., 2015; Grimaldi and Serinaldi, 2006). Fig. 4.2a 

shows the multisite streamflow generation schematically. Let 𝑄𝑡
𝐵 and 𝑄𝑡−1

𝐵  be the monthly flows at 
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time step 𝑡 and 𝑡 − 1 at the secondary site B. Note that we consider a unique LSCI at time 𝑡 − 𝜏, i.e., 

𝐿𝑡−𝜏, relevant to both stations. This has a physical relevance as the effect of LSCIs on streamflow 

regime is manifested regionally (Bonsal and Shabbar, 2008; Nalley et al., 2016; Nazemi et al., 2017). 

The extension of the proposed vine copula to a multisite setting is shown schematically in Fig. 4.2b. 

Based on Eqs. (4.4) and (4.5), the joint dependence can be constructed as:  

𝑓(𝑄𝑡−1
𝐵 , 𝑄𝑡−1

𝐴 , 𝐿𝑡−𝜏, 𝑄𝑡
𝐵) = 𝑓1. 𝑓2. 𝑓3. 𝑓4. 𝑐1,2. 𝑐1,3. 𝑐1,4. 𝑐2,3|1. 𝑐2,4|1. 𝑐34|21 (4.13) 

where 𝑐1,2 is 𝑐1,2(𝐹1(𝑄𝑡−1
𝐵 ), 𝐹2(𝑄𝑡−1

𝐴 )) and 𝑐1,3 and 𝑐1,4 being defined similarly; 𝑐34|21 is 

𝑐34|21(𝐹(𝐿𝑡−𝜏|𝑄𝑡−1
𝐴 , 𝑄𝑡−1

𝐵 ), 𝐹(QB𝑡|𝑄𝑡−1
𝐴 , 𝑄𝑡−1

𝐵 ) – see also Eqs. (4.5) and (4.10). Having the joint 

distribution function from Eq. (4.13), the conditional CDF, 𝐹(𝑄𝑡
𝐵|𝑄𝑡−1

𝐵 , 𝑄𝑡−1
𝐴 , 𝐿𝑡−𝜏), can be obtained 

recursively by applying the appropriate ℎ-function from Eq. (4.6):  

ℎ = 𝐹(𝑄𝑡
𝐵|𝑄𝑡−1

𝐵 , 𝑄𝑡−1
𝐴 , 𝐿𝑡−𝜏)

= ℎ{ℎ[ℎ(𝐿𝑡−𝜏|𝑄𝑡−1
𝐵 )|ℎ(𝑄𝑡−1

𝐴 |𝑄𝑡−1
𝐵 )]|ℎ[ℎ(𝑄𝑡

𝐵|𝑄𝑡−1
𝐵 )|ℎ(𝑄𝑡−1

𝐴 |𝑄𝑡−1
𝐵 )]} (4.14) 

 

Figure 4.2. The schematic pathway for multisite generation of streamflow with consideration of large-scale 

climate indices (panel a) along with the corresponding C-vine copula representation proposed for multisite 

streamflow generation (panel b). 𝑄1
𝐴,…, 𝑄𝑡−1

𝐴 , 𝑄𝑡
𝐴 denote the monthly flows at the primary site A. 𝑄1

𝐵,…, 𝑄𝑡−1
𝐵 , 

𝑄𝑡
𝐵 denote the monthly flows at the secondary site. In panel b, the variables 1 to 4 indicate 𝑄𝑡−1

𝐵 , 𝑄𝑡−1
𝐴 , 𝐿𝑡−𝜏 

and 𝑄𝑡
𝐵, respectively. 
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We apply the inverse forms of ℎ-functions given in Eqs. (12) and (14) for streamflow generation 

at single and multiple sites, respectively. In the prediction mode and single-site setting, the aim is to 

obtain 𝐹(𝑄𝑡
𝐴) based on the known states of 𝐹(𝑄𝑡−1

𝐴 ) and 𝐹(𝐿𝑡−𝜏). This is achieved by estimating the 

inverse of ℎ-function, given uniform random numbers of 𝜀:  

𝑄𝑡
𝐴 = 𝐹−1 {ℎ−1 [(ℎ−1(𝜀|ℎ(𝐿𝑡−𝜏|𝑄𝑡−1

𝐴 ))) |𝑄𝑡−1
𝐴 ]} (4.15) 

 

The ensemble generation is obtained by synthesizing a large number of uniformly distributed 

random numbers (10,000 throughout this paper) to realize corresponding scenarios of 𝑄𝑡
𝐴. This large 

number of realizations is needed to account for sampling uncertainty and to come up with confidence 

bounds (Roy and Gupta, 2020). The mean value of these realizations is considered as the best 

prediction at each time step. Similarly in the multisite mode, the procedure of streamflow generation 

is also based on Monte Carlo simulations using the information available for 𝑄𝑡−1
𝐵 , 𝑄𝑡−1

𝐴 ,  and 𝐿𝑡−𝜏 

using the inverse h-functions: 

 

𝑄𝑡
𝐵 = 𝐹−1 {ℎ−1 [ℎ−1 (ℎ−1 (𝜀|ℎ(ℎ(𝐿𝑡−𝜏|𝑄𝑡−1

𝐵 )|ℎ(𝑄𝑡−1
𝐴 |𝑄𝑡−1

𝐵 ))) |ℎ(𝑄𝑡−1
𝐴 |𝑄𝑡−1

𝐵 ))𝑄𝑡−1
𝐵 ]}  

 
(4.16) 

The process of ensemble generation in the projection mode is very similar to the prediction mode, 

with the exception that the conditioning is not based on known antecedent quantities of streamflow. 

For this purpose, having the appropriate predictors (i.e., LSCIs) at each month, flows can be generated 

at the following month conditioned to the given LSCIs. 

4.3. Case study and Data 

The Oldman River and its tributaries form a large basin (27600 km2) and provide around 40% of the 

total annual streamflow in southern Alberta, Canada (Alberta Environment, 2010). The Oldman River 

originates from mountainous headwaters in the eastern slopes of the Rocky Mountains and joins the 

Bow River before rolling downstream toward the province of Saskatchewan. The basin is located in 

a semi-arid cold region, where snowmelt from the Rocky Mountains headwaters is the main source 

of the annual water supply, providing between 70% to 90% of the total annual flow volume (Nazemi 

et al., 2017). The water resource system in this basin is complex, including several sectors of water 

demand, some with competing interests (e.g., environmental vs. irrigation water demands). Irrigation 

is the largest water consumption in the basin and includes 88% of the total water demand 

(Zandmoghaddam et al., 2019). The basin is currently under pressure due to rapid socio-

environmental changes that intensify water demand and/or loss (e.g., inclined evapotranspiration due 

to warming). This has created a regional water security concern, where natural streamflow cannot 

meet additional water demand (Gober and Wheater, 2014; Martz et al., 2007). This concern will be 

even more in the future and under heightened climate variability and change as the natural streamflow 
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is also under rapid changes (Zaerpour et al., 2020), mainly due to the decline in the winter snowpack 

in the Rocky Mountains (Prowse et al., 2006).  

We have chosen three headwater rivers, upstream of the Oldman Reservoir namely the Oldman 

River near Waldron’s Corner, Crowsnest River near Lundbreck, and Castle River near Beaver Mine. 

Together, they provide 95% of the natural inflow to the Oldman River (Nazemi et al., 2017). Fig. 4.3 

shows the map of the Oldman River, in which the three considered headwater streams are identified. 

Table 4.1 shows the key information about these streams. For each stream, we extract the monthly 

streamflow values for the period of 1967 to 2008 from the Water Survey of Canada's Hydrometric 

Database (HYDAT; Water Survey of Canada, 2017, http://www.wsc.ec.gc.ca/).  

We consider six large-scale climate indices including PDO, ENSO, NAO, AMO, Arctic 

Oscillation (AO), and Pacific North American (PNA) as potential LSCIs for streamflow generation. 

These LSCIs are the main ocean-atmospheric patterns that affect hydroclimatological variables in 

Canada (Bonsal et al., 2006; Coulibaly and Burn, 2004; Nalley et al., 2019; Rasouli et al., 2020; 

Whitfield et al., 2010). In brief, the PDO is a large-scale climate pattern of sea-surface temperature 

fluctuations in the Pacific with the periodicity of inter-decadal to multi-decadal scales (Mantua et al., 

1997). PDO data for the considered period is obtained from the Joint Institute for the Study of the 

Atmosphere and Ocean, University of Washington (http://jiasao.washington.edu/pdo/ PDO.latest). 

The NAO is represented by the atmospheric pressure at sea level between the Icelandic Low and the 

Azores High with a periodicity of around 3-6 years and is pronounced during the cold season. The 

AO is characterized by atmospheric circulation patterns over the extra-tropical Northern Hemisphere 

where sea-level pressures over the polar vary in opposition to middle latitudes at around 45°𝑁 

(Thompson and Wallace, 1998). NAO and AO data are obtained from National Center for 

Environmental Information (http://www.ngdc.noaa.gov/). The AMO is an atmospheric-oceanic 

phenomenon with a periodicity of 50-70 years that arises from the variations in sea-surface 

temperature in the Atlantic Ocean (Enfield et al., 2001). AMO data are obtained from Earth System 

Research Laboratories center (http://www .esrl.noaa.gov/psd/data/correlation/amon.us.long.data). 

The PNA pattern features a sequence of high and low-pressure anomalies stretching from the 

subtropical West Pacific to the east coast of North America. PNA data are extracted from Physical 

Sciences Laboratory (https://www.psl.noaa.gov/data /correlation/pna.data). ENSO represents large-

scale ocean-atmosphere oscillations in the tropical Pacific influencing climatic conditions around the 

globe including Canada. (Trenberth, 1997). ENSO data is obtained from the Climate Prediction 

Center (http://www.cgd.ucar.edu/cas/catalog/climind/). Regarding ENSO, we consider four indices 

including NINO3, NINO3.4, NINO4, and NINO1+2 anomalies, selected using the predictor selection 

method based on the level of dependence to monthly flows.  

http://www.wsc.ec.gc.ca/
http://jiasao.washington.edu/pdo/PDO.latest
http://www.ngdc.noaa.gov/
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Figure 4.3. The Oldman River Basin along with its three main headwater streams, namely Oldman River near 

Waldron’s Corner (Site A), Crowsnest River near Lundbreck (Site B), and Castle River near Beaver Mine 

(Site C).  

Table 4.1. The three rivers used in this study along with their names, coordinates, drainage areas, and gauging 

IDs.  

Name Description Lat. Long. 
Drainage area 

(𝒌𝒎𝟐) 

HYDAT 

ID 

Inflow 1 (site A) 
Oldman River near 

Waldron’s Corner 
49.813 −114.183 1446.1 05AA023 

Inflow 2 (site B) 
Crowsnest River near 

Lundbreck 
49.594 −114.171 658 05AA002 

Inflow 3 (site C) 
Castle River near 

Beaver Mines 
49.488 −114.144 820.7 05AA022 

 

4.4. Experimental setup and benchmarking approach 

We apply the proposed algorithm in the three considered streams in single and multisite settings and 

in both prediction and projection modes. In the single site setting, streamflow is generated at each site 

independently. In the multisite setting, however, one stream should be chosen as the primary site, 

from which streamflow is realized regionally in other locations. Here we follow the generation 

pathway used by Nazemi and Wheater (2014). They performed a rigorous experiment to choose the 

best pathway for streamflow generation and concluded that the Oldman River near Waldron’s Corner 

(Site A) can be considered as the primary reach for the other two reaches. Most essentially, the 

performance of our proposed algorithm is benchmarked with observed streamflow characteristics. 

We also compare the performance of our proposed scheme at the single site with an existing reference 

model proposed by Lee and Salas (2011) and applied in the Oldman River Basin by Nazemi and 

Wheater (2014). The basic idea in such a model is to conditionally resample flow at the lead time of 

one month from the antecedent streamflow conditions without considering the effect of LSCIs. 
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Similarly in the multisite setting, we compare the performance of our proposed algorithm with the 

multisite algorithm based on vine copula developed by Chen et al. (2015, 2019) and used in Nazemi 

et al. (2020). Table 4.2 shows the notation used for proposed and reference algorithms in prediction 

and projection modes.  

 
Table 4.2. Notations for the proposed and reference models in single and multiple site settings and in prediction 

and projection modes. 

Experimental setup 

Proposed 

algorithm 

(LSCI 

considered) 

Reference algorithms  

(no LSCI considered) 

Algorithm 

setting 

Simulation 

mode 
Notation Notation Reference 

Single site 

Short-term 

(Prediction) 
PS1 RS1 

Nazemi and 

Wheater (2014) Long-term 

(Projection) 
PS2 RS2 

Multisite 

Short-term 

(Prediction) 
PM1 RM1 

Nazemi et al. 

(2020) Long-term 

(Projection) 
PM2 RM2 

  

The first step in our proposed algorithm is to select a set of relevant LSCIs at each monthly 

timestep. The pool of LSCIs, from which relevant indices at each timestep are selected, consists of 

the six named LSCIs up to 24 months lags. We initially considered more lag times up to 48 months 

(see Nalley et al., 2016); however, inline with several other studies in western Canada (e.g., Shabbar 

et al., 1997) or globally (Chiew and McMahon, 2002), the analysis of Kendall’s tau rank dependence 

showed that the memory of LSCIs on streamflow in the three considered streams does not go beyond 

24 months. We then use the PCIS algorithm to select the best set of LSCIs predictors at each month 

from a pool of options. As the three streams are located in close proximity and are under the influence 

of similar LSCIs, we aim at finding a common set of predictors at the three sites – see Hatami et al. 

(2019) for the details of using the PCIS algorithm for global input selection in multiple locations. We 

also compare the results with PMI to ensure that a robust set of LSCI is selected. Finally, we select 

the structure of vine copulas by the Maximal Spanning Tree algorithm as described by Czado et al. 

(2013) and considering empirical distributions in margins for both monthly streamflow and the 

selected LSCIs. In this context, a fast sequential estimation procedure for parameter estimation is 

suggested (Dissmann et al., 2013). In brief, the first bivariate copula families and parameters for the 

first tree are identified before calculating the weights for the second tree and so on. We consider a set 

of well-known parametric copula functions, including Gaussian, Student t, Clayton, Gumbel, Frank, 

Joe, and their rotated forms for setting up the vine copulas – see Nelsen (2006) and Pereira and Veiga 

(2018) for the formulation of these copulas. The copula identification and parameterization are 
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performed by applying the Maximum log-Likelihood Method and considering the Bayesian 

Information Criteria (BIC; Akaike, 1979) as the Goodness of Fit (see also Sadegh et al., 2017). The 

modeling is implemented in the R platform by utilizing the VineCopula (Nagler et al., 2019; 

Schepsmeier et al., 2016), CDVine (Brechmann and Schepsmeier, 2013), copula (Hofert et al., 2014), 

CDVineCopulaConditional (Bevacqua, 2017), and NPRED packages (Sharma and Mehrotra, 2014; 

Sharma et al., 2016).  

The performance of the proposed algorithm is evaluated in the prediction and projection modes 

and compared with reference models using a set of metrics. In the projection mode, we generate 

10,000 synthetic historical streamflow realizations with the same length as the observed data. To 

demonstrate the performance of projected streamflow ensembles, basic statistics including long-term 

monthly mean value, standard deviation, skewness, as well as the lag-1 temporal and lag-0 spatial 

dependencies are calculated. To measure the relative improvement in the performance of the proposed 

method in representing persistence in the historical streamflow, we adopt the interannual variability 

metric (Johnson and Sharma, 2011; Taylor, 2001): 

 

𝑆 =
4(1 + 𝑟)4

(𝜎̂𝑓 + 1 𝜎̂𝑓⁄ )2(1 + 𝑟0)
4
  (4.17) 

 

where 𝑟 is the correlation coefficient between observed and simulated streamflow, 𝜎̂𝑓 is the ratio of 

the expected standard deviation of ensemble projections to the standard deviation of the observed 

streamflow, and 𝑟0 is the maximum theoretical correlation which is taken as 1. The range of 𝑆 varies 

between 0 and 1. The score of 1 happens when both 𝜎̂𝑓 and 𝑟 are equal to one and there is no error in 

capturing the interannual variability. The relative improvement in the performance of the proposed 

model in capturing the interannual variability over the reference model is given by the interannual 

variability skill score as (Wang and Robertson, 2011):  

 

SSProj. =
𝑆 − 𝑆ref
1 − 𝑆ref

× 100% (4.18) 

 

where 𝑆 and 𝑆ref represent the interannual variability metric values for the proposed and the reference 

model, respectively.  

In the prediction mode, we similarly generate 10,000 realizations of streamflow series with the 

same length as observed data in both single and multisite settings. We calibrate and validate the 

predictions using the buffered-leave-one-out cross-validation method (Le Rest et al., 2014; Roberts 

et al., 2017). For prediction in each year, the corresponding year and the two years ahead are excluded, 

while the remaining years are used for predictor selection and model building procedures. The 

predicted monthly flow is then compared with the observed data. We present the overall skill of 

predictions as a skill score, which is the relative improvement in Error Scores (ESs) of the prediction 

over a set of reference predictions (Wang et al., 2009): 
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SSpred. =
ESref − ES

ESref
× 100% (4.19) 

where ES and ESref  represent the five considered error metrics calculated for the proposed and the 

reference model, respectively. Each skill measure assesses different aspects of the forecast 

distribution. A higher SS value indicates better performance in the proposed model, with a score of 0 

representing the same performance as the reference model.  

The first skill score used is SSMAE, which is based on expected Mean Absolute Error (MAE) of 

the predicted mean. MAE measures the expected mean absolute error of predicted monthly 

streamflow ensemble and is defined as:  

 

MAE =
∑ |𝑥̅sim−𝑥obs|
𝑇
𝑡=1

𝑇
 (4.20) 

where 𝑇 is the total number of years. The second score, SSRMSE, is based on expected Root Mean 

Squared Error (RMSE) of the predicted mean. RMSE assesses the standard deviation of predicted 

error applied to the ensemble mean:  

RMSE = √
∑ (𝑥sim−𝑥obs)

2𝑇
𝑡=1

𝑇
 

(4.21) 

The third skill score, SSRMSEP, is based on the expected Root Mean Squared error in Probability 

(RMSEP; Bennett et al., 2014; Wang and Robertson, 2011) of the predicted mean. The RMSEP 

measures predicted error on a probability scale, giving the predicted events similar opportunity to 

contribute to the overall assessment of predicted skill: 

  

RMSEP =  √
1

𝑇
∑[𝐹sim(𝑥𝑡) − 𝐹obs(𝑥𝑡)]

2

𝑇

𝑡=1

 (4.22) 

where 𝐹obs(𝑥𝑡) is the 𝐶𝐷𝐹 of the historical streamflow data, 𝐹sim(𝑥̅𝑡) is the 𝐶𝐷𝐹 of the expected 

predicted streamflow. RMSEP is less sensitive to events with large errors (Wang and Robertson, 

2011). The fourth score, 𝑆𝑆𝐶𝑅𝑃𝑆, is based on the expected Continuous Ranked Probability Score 

(CRPS; Harrigan et al., 2018; Kaune et al., 2020; Wang and Robertson, 2011) of the predicted mean. 

Unlike RMSEP, CRPS metric measures the error of the whole predicted probability distribution, and 

can be sensitive to just a few (usually very high flow) events with large prediction errors: 

  

CRPS =
1

𝑇
∑∫[𝐹sim(𝑥𝑡) − 𝐻(𝑥𝑡 − 𝑥obs)]

2 𝑑𝑥

𝑇

𝑡=1

 (4.23) 
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where 𝐹sim(𝑥𝑡) is the predicted CDF and 𝐻(𝑥𝑡 − 𝑥obs) is the Heaviside step function defined as 

(Wang and Robertson, 2011):  

 

𝐻(𝑥𝑡 − 𝑥obs) = {
0,   𝑥𝑡 < 𝑥obs
1,   𝑥𝑡 ≥ 𝑥obs

 (4.24) 

 

Finally, the fifth score (SSKGE) is based on the expected Kling-Gupta efficiency (KGE; Gupta et 

al., 2009). The KGE focuses on three criteria including correlation between observations and 

simulations, the bias, and the relative variability in the simulated and observed values expressed as:  

 

KGE = 1 − √(𝑟 − 1)2 + (
𝜎sim
𝜎obs

− 1)
2

+ (
𝜇sim
𝜇obs

− 1)
2

 (4.25) 

where 𝑟 is the correlation between observations and simulations, 𝜎obs and 𝜎sim are the standard 

deviations of observed and simulated values, 𝜇obs and 𝜇𝑠𝑖𝑚 are the means of observed and simulated 

values. KGE values close to 1 represent perfect model performance. Note that unlike the previous 

four scores where zero indicates the best performance, KGE = 1 indicates the perfect agreement 

between simulations and observations. To allow homogeneous comparison between all score, we 

scale the KGE to skill score as (Knoben et al., 2019): 

 

SSKGE =
KGE − KGEref
1 − KGEref

× 100% (4.26) 

Apart from accuracy, we also measure the reliability of predicted ensembles, by assessing the 

statistical consistency of the predicted probability distributions and the associated observed events 

(Jolliffe and Stephenson, 2011; Toth et al., 2003). In this study, we use histograms of Probability 

Integral Transforms (PIT; Dawid, 1984; Gneiting et al., 2007) to assess the average reliability of the 

prediction distributions. The PIT of the observed value is given as: 

 

PIT = 𝐹sim(𝑥obs) (4.27) 

where 𝐹sim denotes the CDF of simulated flow, and 𝐹sim(𝑥obs), therefore, is the non-exceedance 

probability of the observed streamflow based on the CDF of the simulated streamflow. The PIT values 

are then assigned to different histogram bins and the frequency of each bin is calculated. The 

predictive distribution is said to be reliable if the PIT values are distributed uniformly.  U-shaped 

histograms usually indicate that the probabilistic predictions have under-dispersion. On the contrary, 

if the PIT histogram is hump-shaped, then the probabilistic predictions indicate over-dispersion. The 

deviation metric 𝐷 quantifies the deviation from uniformity in PIT. This measure, which is introduced 

by Nipen and Stull (2011) and later used in Bourdin et al. (2014), can be defined as: 
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𝐷 = √
1

𝐵
∑(

𝑏𝑖
‖𝑇‖

−
1

𝐵
)
2𝐵

𝑖=1

 (4.28) 

 

where B is the number of bins, 𝑏𝑖 is the number of observations in bin 𝑖, and ‖𝑇‖ is the size of the 

dataset. Lower variability in bin frequency is indicative of a flatter PIT. Sampling limitations, 

however, can cause a reliable prediction not generate a perfectly flat PIT histogram, leading to an 

expected value of the deviation 𝐸(𝐷𝑝) for perfect prediction (Brocker and Smith, 2007; Pinson et al., 

2010) given by:  

 

𝐸(𝐷𝑝) = √
1 − 𝐵−1

‖𝑇‖ 𝐵
 (4.29) 

 

Note that apart from the given metrics, we also look at the 95% Confidence Interval (CI) of 

generated ensembles both in terms of probabilistic characteristics as well projected/predicted 

timeseries. 

4.5. Results and discussions 

4.5.1. Influential Large Scale Climate Indices in upper Oldman 

We initially analyze the dependence between lagged LSCIs and monthly streamflow in the three 

considered headwaters. Considering 1 to 24 months lags for six considered LSCIs, a pool of 144 

LSCIs is formed for each month, from which the relevant LSCIs for a given month are chosen using 

the global version of PCIS presented in Hatami et al. (2019). Results are summarized in Fig. 4.4. 

Each panel includes the results at one site, in which rows are months ordered from October to 

September from the top to the bottom. Columns show the six considered LSCIs. In each month, the 

relevant LSCIs that are selected through the PCIS algorithm are numbered and shaded. Numbers 

identify relevant lags and colors indicate values of Kendall’s tau dependencies between selected 

LSCIs and the corresponding monthly flows. As it can be observed, the dependencies between LSCI 

and monthly streamflow are dynamic within a year and there can be months in which more than one 

LSCIs to which streamflow is significantly dependent. This is particularly the case in high flow 

months (e.g. April’s flow), in which the fully extended version of C-vine mentioned in Section 2.1 

should be implemented. Among the considered LSCIs, PDO is the most frequent LSCI selected across 

different months and demonstrates the strongest dependence with spring and summer flows. This 

empirical evidence is in line with previous findings, showing that the PDO is the dominant LSCIs in 

this region (e.g., Fleming et al., 2007; Nazemi et al., 2017). NAO and ENSO are the other two key 

LSCIs, which is in line with findings of Gobena and Gan (2006) for streamflow in southwestern 

Canada. Additionally, AO and PNA are among LSCIs selected more than once. These results are 

inline with previous findings over western Canada (e.g., Bonsal and Shabbar, 2008; Gobena and Gan, 

2006).  
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Figure 4.4. Influential LSCIs with their respective monthly lags, chosen collectively at sites A, B, and C using 

PCIS algorithm. Shades of blue and red in the first row show positive and negative dependencies between 

lagged LSCIs and streamflow at the monthly scale, which are significant at 𝑝-value< 0.05. Numbers inside 

significant cells identify relevant lags in month between LSCIs and monthly flows.  

To address the uncertainty in the selected predictors, we repeat the input selection using the PMI 

algorithm. PMI uses mutual information as oppose to the Kendall’s tau used in the modified PCIS, 

used in this study. Results are presented in Fig. C1 in the Appendix C, showing a considerable match 

between the results of PCIS and PMI. In 7 out of 12 months, including all wet months, the results of 

PMI and PCIS are fully identical. In months January, April, and August, PMI chooses some LSCI 

that PCIS does not identify. Similarly in May, PCIS can identify a LSCI that PMI has missed. Only 

in February, which is a dry month, PMI and PCIS result into fully divergent sets of relevant LSCIs. 

This intercomparison certifies the selection of relevant LSCIs.  

4.5.2. Benchmarking the skill of the proposed model in the projection mode 

By identifying the influential LSCI, the proposed model can be setup and evaluated using the 

procedure explained in Section 4. We first evaluate the results in the projection mode. Fig. 4.5 shows 

the long-term expected statistics of the first three moments of the monthly streamflow, i.e., mean, 

standard deviation, and skewness, obtained from 10,000 realizations with the same length as the 

historical data. In each panel, pink and gray lines depict the results obtained by the reference and 

proposed models, respectively. Black lines indicate the observed values. In general, both the reference 

and proposed algorithms are able to preserve the observed statistics very well. Considering the single 

site generation and in site A, Relative Errors (REs) in projecting the expected long-term monthly flow 

for both models is less than 5% across all months. Although reconstructing observed values of 

monthly standard deviation and skewness entails more error, the REs remain less than 10% for both 

the reference and proposed models, except for the skewness of monthly flow in February 

reconstructed by the proposed model (RE = 21%). In site B, both the reference and proposed models 

can represent the long-term expected statistics of the three moments in all months with REs less than 

10% in both single and multisite settings, except for the single site generation in months of August 

and September in which REs in the representation of standard deviation and skewness obtained by 

the reference model is higher than 20%. In site C, the REs in the representation of long-term expected 
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statistics of monthly flows by the reference and proposed models are less than 5% in the single site 

setting. While in the multisite reconstruction of site B, both proposed and reference models show 

similar performance, the REs in the representation of the long-term expected mean and standard 

deviation of monthly flows are marginally higher for the reference model in site C, yet remain below 

10%. The REs in the multisite generation of long-term expected skewness of monthly flows in site C 

is lower for the proposed model, particularly in the low flow season.  

We also assess the performance of our proposed algorithm in preserving the lag-1 temporal 

dependencies within each site as well as lag-0 spatial dependence between primary (here site A) and 

secondary sites (here sites B and C). Fig. 4.6 summarizes findings in the representation of (a) lag-1 

temporal, and (b) lag-0 spatial dependencies, respectively. Black lines show the observed lag-1 and 

lag-0 dependencies. Pink and gray colors illustrate the results obtained by the reference and proposed 

models in single and multisite settings, respectively.  

 
Figure 4.5. Performance of the reference and proposed algorithms in capturing long-term statistics of three 

first moments of monthly streamflow, i.e. mean (left panels), standard deviation (middle panels), and skewness 

(right panels) at the three sites in (a) single site and (b) multisite settings. Black lines show is observed statistics. 

Pink and gray lines show the simulated results obtained by the reference and proposed algorithms. 
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In summary, both reference and proposed algorithms are able to preserve temporal and spatial 

dependencies quite well. In the single-site setting, the reference and proposed algorithms are able to 

preserve the lag-1 temporal dependencies with an absolute error of less than 0.1. In the multisite 

setting, the proposed model can preserve lag-1 temporal dependence with absolute error values of 

less than 0.1, except few cases during the low flow season in site C. The reference model, however, 

show better performance in capturing the temporal dependence in those months. The interesting point 

is that the lag-1 dependence in site B is preserved better in multisite setting, when streamflow in site 

B is conditioned based on the generated flow in site A. This, however, is not the case in site C. 

Regarding the spatial dependencies, both the reference and proposed models can capture the spatial 

dependencies with less than 0.1 absolute error in multisite scheme.  

 
Figure 4.6. Performance of the reference and proposed algorithms in capturing (a) the observed lag-1 monthly 

temporal dependence and, (b) monthly lag-0 spatial dependencies between primary and secondary sites. 

Observed dependencies are shown in black lines. Results related to the reference and proposed models are 

shown in pink and gray colors, respectively. 

We assess the performance of the reference and proposed models in capturing the 

interdependencies between lagged LSCIs and the flows at a monthly scale. Fig. 4.7 depicts the 

expected MAE in representing observed interdependencies between influential LSCIs and monthly 

flows, demonstrated in Fig. 4.4. Panel (a) is related to the reference algorithm and panels (b) and (c) 

are related to the performance of the proposed algorithm in single and multisite settings, respectively.  

In general, the expected MAE in the representation of interdependencies for the reference model 

is high (MAE > 0.25). This is due to the fact that the reference model does not explicitly represent 
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the interdependencies between lagged LSCI and monthly streamflow. The performance of the 

proposed model in contrast is significantly better, showing an expected MAE of below 0.1 for high 

flow season and below 0.15 for low flow season in single site setting. The expected MAE in multisite 

setting is below 0.15 for both low and high flows.  

 

Figure 4.7. The expected Mean Absolute Error in representing the interdependencies between influential 

LSCIs and streamflow at monthly scale. The result related to the reference model is shown in the top row. The 
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results related to the proposed model are shown in the middle and bottom rows for the single and multisite 

settings, respectively. 

The projected streamflow ensembles generated by proposed and reference models in both single 

and multisite settings are investigated in the form of hydrographs for the driest year (1977-78), a 

normal year (i.e. near long-term average; 2008-2009), and the wettest year (1995-96), as illustrated 

in Fig. 4.8. For simulations during the entire data period see Figs. C2 to C6 in the Appendix C. The 

pink and gray ensembles are the 95% CI obtained by the reference and proposed models, respectively. 

The black lines show the observed time series. This figure clearly shows that proposed and reference 

models can capture the observed time series within the 95% CIs. Having said that, the seasonality can 

be much better represented by the proposed model than the reference model. This can be supported 

by significantly narrower CI is in the case of the proposed model. Considering single site generation 

and in the dry year, the expected reduction in the CI across the three sites is 45% and 54.9% during 

low and high flow seasons, respectively. 

 

Figure 4.8. Streamflow ensembles generated through (a) single site and (b) multisite setting of the reference 

and proposed models for the driest (1977-78), a near average (2008-2009) and the wettest year (1995-96) at 

the three headwaters. Pink and gray ensembles show the 95% confidence intervals of the reference and the 

proposed models, respectively, obtained by 10,000 realizations. The black lines are the observed streamflow 

at the three sites. 

The expected reduction in projected CI in the multisite setting is slightly lower and marks 40.6% 

and 51.3% in low and high flow seasons, respectively. In the normal year, the expected reduction in 

the CI across the three sites in the single site setting are 30.6% and 22% during low and high flow 

seasons, respectively. In contrast to dry year, the expected reduction in multisite setting is more than 

single site and marks 38.8% and 23.3% during low and high flow seasons, respectively. In the wet 

year and through single site generation, the average reduction in the proposed model is 26.8% and 
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35% during low and high flow seasons, respectively. Similar to the dry year the improvements in 

predictive uncertainty are slightly less in multisite setting, and marks 21.3% and 28.8% reduction 

compared to the reference model during low and high flow seasons, respectively.   

We also analyze the performance of the proposed model in representing the extremes. For this 

purpose, we fit a Generalized Extreme Value (GEV) distribution to the annual low and high flows, 

enabling the extrapolation beyond the range of observed data. Figure 9 shows the uncertainty bounds 

of ensembles of 10,000 GEVs fitted to simulated annual low and high flows in single (Fig. 4.9a) and 

multisite settings (Fig. 4.9b). Fig. 4.9 includes two rows, showing the ensembles of fitted GEVs for 

the simulated annual low (top rows) and high flows (bottom rows). The dots are the observed 

extremes, and the black lines are the fitted GEV distribution to the observed extremes. The skill is 

assessed by the percentage of reduction in CI of generated streamflow (10,000 realizations) as the 

Percentage of Coverage (POC), which is the percentage of observed data falling within the CI of 

generated streamflow. In general, both reference and the proposed model demonstrate high skills in 

capturing the observed extremes within the CI. In the single site setting and for the low flows, the 

proposed and reference models are expected to capture 88.9% and 92.9% of extremes within their CI, 

respectively. Regarding the high flows, proposed and reference models show POCs of 95.2% and 

96.0%, respectively. Similar skills can be seen in the multisite setting, where both POCs are 90.5% 

and 91.7% for proposed and reference models in representing the annual low flows, respectively. 

These POCs changes in the case of high flows to 94.0% and 96.4%, respectively.  

While the POC statistics are slightly better in the case of the reference models, CIs are 

substantially reduced, providing less uncertainty in the projected flow. In single site setting and for 

low flows, the average range of CI of the proposed model is reduced by 11.7% compared to the 

reference model; whereas, this value is 3.1% in the multisite setting. Regarding the high flows, the 

range of CI of the proposed model is much reduced compared to the reference model, reaching to 

average of 15.5% and 31.1% reduction in single and multisite settings, respectively.   

Finally, we investigate the performance of the proposed model in representing of interannual 

variability. Fig. 4.10 represents percentages of improvement in interannual skill scores at single 

(panel a) and multiple sites (panel b).  The average improvement in this skill score in the single site 

setting is 10.2% across the three considered sites. The lowest and highest improvements occur in site 

A and site B with average improvements of 3.6% and 14.1%, respectively. The proposed model 

demonstrates improvements in capturing interannual variability during high flow season with an 

average improvement of 16.0% in single site generation and across the three sites. In the multisite 

setting, the average improvement in the interannual variability skill score is slightly lower, with 

expected improvements of 13.5% and 10.1% in sites B and C, respectively. Having said that during 

the high flow season, considering relevant LSCI in the multisite generation results in more 

improvements compared with the single site generation. The expected improvement in capturing the 

interannual variability during the high flow season is 23.5% in sites B and C. 
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Figure 4.9. Reduction in the uncertainty bounds of projected extremes obtained by the proposed model at (a) 

single site and (b) multiple sites, in comparison with the reference models. In each panel, the top and bottom 

rows are related to the fitted GEV distribution fitted to the annual low and high flow values. The darker and 

lighter pink envelopes are related to the proposed and the reference models, respectively. The dots are the 

observed annual low and high flows. The solid black lines are the fitted GEV distribution.  

 

Figure 4.10. Improvements in capturing interannual variability obtained by the proposed model in single-site 

(panel a) and multisite settings (panel b) compared with the corresponding reference models.  
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4.5.3. Benchmarking the skill of the proposed model in the prediction mode 

In the prediction mode, five skill scores including SSMAE, SSRMSE, SSRMSEP, SSCRPS, and SSKGE are 

reported for single (Fig. 4.11a) and multisite (Fig. 4.11b) settings at the three considered sites. 

Generally speaking, predictions made by the proposed algorithm exhibit better skills than reference 

models. The average improvement in single site predictions is SS̅̅ ̅MAE = 5.3%, SS̅̅ ̅RMSE = 4.5%, 

SS̅̅ ̅RMSEP = 5.8% , SS̅̅ ̅CRPS = 6.2%, and SS̅̅ ̅KGE = 14.3%. The range of changes in skill scores varies 

largely across different months and extends from −15% to +35%. The greatest improvement in skill 

scores in the single site generation occurs in high flow season with average increases of SS̅̅ ̅MAE =

15.3%, SS̅̅ ̅RMSE = 12.8%, SS̅̅ ̅RMSEP = 13.4% , SS̅̅ ̅CRPS = 14.1%, and SS̅̅ ̅KGE = 27.1%. In the 

multisite prediction of streamflow in secondary sites B and C, a similar pattern can be seen except 

few discrepancies in low flow season. In general, simulation made by the proposed model exhibits 

improvement in almost all months with average improvements of SS̅̅ ̅MAE = 5.4%, SS̅̅ ̅RMSE = 3.1%, 

SS̅̅ ̅RMSEP = 6.4% , SS̅̅ ̅CRPS = 4.9%, and SS̅̅ ̅KGE = 15.4%. The most encouraging result is the 

improvement in the skill scores during the high flow season reaching to SS̅̅ ̅MAE = 16.4%, SS̅̅ ̅RMSE =

14.9%, SS̅̅ ̅RMSEP = 14.1% , SS̅̅ ̅CRPS = 15.8%, and SS̅̅ ̅KGE = 28.3%. These skills vividly show the 

value gained by incorporating LSCIs into streamflow prediction, particularly in high flow seasons. 

In addition to the improvement in the prediction errors, we assess the reliability of streamflow 

predictions. Figure 12 presents histograms of the PITs related to the prediction using the proposed 

scheme against its reference counterparts in single (Fig. 4.12a) and multisite settings (Fig. 4.12b). 

Each panel includes two rows, showing the PIT histograms for the low and high flow seasons (winter 

and spring; top and bottom rows, respectively). The gray and pink envelopes show the PIT histograms 

obtained by 10,000 realizations generated by the proposed and reference schemes, respectively. The 

deviations from uniformity in 𝑃𝐼𝑇 histograms can be quantified using the measure of degree of 

uniformity, 𝐷, with lower values indicating better reliability. Perfectly reliable predictions produce a 

PIT histogram with a uniform distribution. The expected value of perfect prediction, 𝐷𝑝, is 0.0267. 

Regarding the low flow season, although the predictions made by both the reference and proposed 

schemes exhibit slight overdispersion, but in general both models show average deviation from PIT 

uniformity close to the perfect prediction. In low flow season and in single site, the proposed model 

shows slightly better reliability in prediction of observed values with average 𝐷 = 0.0251 compared 

to 𝐷 = 0.0267 for the benchmark scheme. Similarly, in multisite setting the average deviation related 

to 𝑃𝐼𝑇 of the proposed scheme is 0.0242 compared to 0.0262 for the benchmark scheme, indicating 

slightly better reliability of the proposed scheme. Regarding the high flow season, similar to low flow, 

both models exhibit slight overdispersion. In single site setting, the average deviation of PIT related 

to the proposed model is 0.0214 compared to 0.0262 for the benchmark model, demonstrating slightly 

better reliability of the proposed model. In multisite setting, these values are 0.0163 and 0.0211 for 

the proposed and benchmark models, respectively.  

Additionally, to further assess the reliability of predictions in single and multisite settings 

particularly in terms of the extremes, we evaluate the improvement in the 95% CIs of the proposed 

scheme against its reference counterparts in single (Fig. 4.13a) and multisite settings (Fig. 4.13b). 
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Each panel includes two rows, showing the CIs in the low and high flow seasons (i.e., winter and 

spring; top and bottom rows, respectively). The gray and pink envelopes show the 95% CI obtained 

by 10,000 realizations generated by the proposed and reference algorithms, respectively. Black dots 

are the observed flow qsuantiles and the solid lines are the best predictions (mean ensembles) obtained 

either in single site (panel a) or multisite (panel b) settings. For each flow season, the uncertainty 

intervals during dry (flows with percentile level of 0.1 or lower) and wet conditions (flows with 

percentile level of 0.9 or higher) are separated from the rest of the flow conditions by the dashed red 

lines.  

 

 

Figure 4.11. Improvements in the five considered predictive skill scores by informing the stochastic 

streamflow generation with LSCIs at single (panel a) and multiple sites (panel b)  
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Figure 4.12. Probability Integral Transform histograms obtained by the proposed model at (a) single site and 

(b) multiple site settings, compared to the corresponding reference models. In each panel, the top and bottom 

rows are related to the low and high flow seasons, respectively. The gray and pink bars show PIT histograms 

of the proposed and the reference models, respectively. 

 
Figure 4.13. Improvements in the uncertainty bounds of the predictions obtained by the proposed model at (a) 

single site and (b) multiple sites compared with the corresponding reference models. In each panel, the top and 

bottom rows are related to the low and high flow seasons, respectively. The gray and pink envelopes show the 

95% CIs related to the proposed and the reference models, respectively. The solid lines are the mean of 

predicted ensembles, taken as the best prediction. The black dots are the observed flows. Dashed lines separate 

the dry, normal, and wet flow conditions in each season.   

Based on Fig. 4.13, empirical distributions of the observed high and low flows fall within 95% 

CI of both the reference and proposed models in all sites and through single and multisite settings. 

Having said that, the proposed model can estimate the flow with much less uncertainty. The average 

reduction in CI during the low flow season is 18.3% and 21.1% in single and multisite settings. 

Reductions in the uncertainty bounds during the high flow season, however, are much larger with 

expected reductions of 41.3% and 45.1% through the single and multisite settings, respectively. In 

the low flow season, the highest reductions in the uncertainty bounds occur in the normal flow 

conditions (between 0.1 to 0.9 percentile) with expected reductions of 26.3% and 31.4% in CI through 

single and multisite settings, respectively. In the high flow season, the largest improvements in the 
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uncertainty bounds happen during dry conditions with average reductions of 68.3% and 64.5% in CI 

through single and multisite settings, respectively.  

4.6. Summary and conclusion 

Skillful and reliable streamflow prediction and projection capabilities are of urgent needs for water 

resource planning and management. Here we aim at improving the skills of stochastic streamflow 

generation at single and multiple sites by explicit incorporation of LSCIs through a stochastic 

generator. In particular, we suggest a sampling scheme based on using C-vine copulas, in which the 

structure and parameters of the model change at each time step. This is due to the variation of the 

influential LSCIs and the type of dependencies, which can change across different timesteps, here 

monthly. To accommodate this, we use a global input selection algorithm to pick the most significant 

LSCIs from a pool of potential predictors at each month and consider the selected LSCIs as influential 

predictors, to which the streamflow is conditioned. 

To showcase the application of this model in practice, we demonstrate the use of the proposed 

algorithm at single and multiple sites, and in both prediction and projection modes in three headwaters 

of the Oldman River Basin, Alberta, Canada. The performance of the proposed algorithm is rigorously 

compared with the observed data as well as reference models that are essentially identical to proposed 

models, yet do not use any information about LSCIs within stochastic streamflow generation. The 

results of our study show that while simulation performances of the reference and proposed models 

are very similar in representing the first three moments of monthly streamflow as well as lag-1 

temporal and lag-0 spatial dependencies within and between streamflow reaches, the explicit 

consideration of LSCIs can significantly reduce simulation uncertainty and improve simulation skills 

in projection and predictive modes and in both single and multisite settings, particularly in high flow 

seasons.  In projection mode and considering the single site setting, the expected reductions in CI in 

the three sites are 34.1% and 37.1% in low and high flow seasons, respectively. In multisite setting, 

these values are 33.6% and 34.5% in low and high flow seasons, respectively. The average 

improvement in the interannual variability skill score in single and multisite settings is over 10% 

across the three considered sites. Having said that during the high flow season, considering relevant 

LSCI in the multisite streamflow generation results in expected improvement in capturing the 

interannual variability by more than 23%. In terms of observed annual extremes, both reference and 

proposed models can capture the observed values within the range of CI with high POC values of 

greater than 90% in most cases. The proposed model, however, demonstrates less uncertainty in 

capturing the observed extremes, particularly regarding high flows for which the ranges of CI are 

decreased by 15.5% and 31.1% in single and multisite settings, respectively.  

In prediction mode, both reference and proposed models show slight overdisperision in PIT 

histograms in single and multisite settings, but with expected deviation from uniformity close to 

perfect reliability value 𝐷𝑝 = 0.0267. The expected deviations from the uniformity of PIT histograms 

of the proposed model are 0.0233 and 0.0203 in single and multisite settings; whereas, these values 

are 0.0265 and 0.0237 for the benchmark model, indicating slightly better reliability of the proposed 

model. In terms of CI, the average reduction during the low flow season is 18.3% and 21.1% in single 
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and multisite settings. Reductions in the uncertainty bounds during the high flow season, however, 

are much larger with expected reductions of 41.3% and 45.1% through the single and multisite 

settings, respectively. Within the high flow season, the largest improvements in the uncertainty 

bounds happen during dry conditions with average reductions of 68.3% and 64.5% in CI through 

single and multisite settings, respectively.  

Although the method is developed for lead time of one month the proposed algorithm is generic 

and can be applied in other basin. Our proposed method can be also extended by including more 

conditioning variables such as precipitation and/or temperature, whether observed or simulated. This 

can provide a versatile and comprehensive model to inform water management models for better 

planning under current and future conditions. We hope that our contribution here can inspire more 

efforts toward improved stochastic generation of streamflow in prediction and projection modes.  
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Chapter 5.  

A Global Algorithm for Identifying Changing Streamflow Regimes: Application to Canadian 

Natural Streams (1966-2010)4 

The contents of this chapter are published as “Zaerpour, M., Hatami S., Sadri J., & Nazemi, A. (2021). 

A global algorithm for identifying changing streamflow regimes: Application to Canadian natural 

streams (1966-2010).” in Hydrology and Earth System Sciences. The contents are slightly modified 

from the submitted article. 

 

Synopsis 

Climate change affects natural streamflow regimes globally. To assess alterations in streamflow 

regimes, typically temporal variations in one or few streamflow characteristics are taken into account. 

This approach, however, cannot see simultaneous changes in multiple streamflow characteristics, 

does not utilize all the available information contained in a streamflow hydrograph, and cannot 

describe how and to what extent streamflow regimes evolves to one another. To address these gaps, 

we conceptualize streamflow regimes as intersecting spectrums that are formed by multiple 

streamflow characteristics. Accordingly, the changes in a streamflow regime should be diagnosed 

through gradual, yet continuous changes in an ensemble of streamflow characteristics. To incorporate 

these key considerations, we propose a generic algorithm to first classify streams into a finite set of 

intersecting fuzzy clusters. Accordingly, by analyzing how the degrees of membership to each cluster 

change in a given stream, we quantify shifts from one regime to another. We apply this approach to 

the data, obtained from 105 natural Canadian streams, during the period of 1966 to 2010. We show 

that natural streamflow in Canada can be categorized into six regime types, with clear hydrological 

and geographical distinctions. Analyses of trends in membership values show that alterations in 

natural streamflow regime vary among different regions. Having said that, we show that in more than 

80% of considered streams, there is a dominant regime shift that can be attributed to simultaneous 

changes in streamflow characteristics, some of which have remained previously unknown. Our study 

not only introduces a new globally relevant algorithm for identifying changing streamflow regimes, 

but also provides a fresh look at streamflow alterations in Canada, highlighting complex and 

multifaceted impacts of climate change on streamflow regimes in cold regions. 

5.1. Introduction 

Natural characteristics of streamflow are critical to ecosystem livelihood and human settlements 

around river systems (Poff et al., 2010; Nazemi and Wheater, 2014; Hassanzadeh et al., 2017). 

Historically, humans have considered seasonality, variability, and magnitude of natural streamflow 

as key factors for determining potentials for socio-economic developments (Knouft and Ficklin, 

2017). Streamflow characteristics are diverse and can contain different information. While some 

                                                            
4 Zaerpour, M., Hatami, S., Sadri, J., & Nazemi, A. (2021). A global algorithm for identifying changing streamflow regimes: application 

to Canadian natural streams (1966–2010). Hydrology and Earth System Sciences, 25(9), 5193-5217, https://doi.org/10.5194/hess-25-

5193-2021. 
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streamflow characteristics determine potentials for agriculture and energy production (Hamududu 

and Killingtveit, 2012; Amir Jabbari and Nazemi, 2019; Nazemi et al., 2020), some others proxy the 

consequences of devastating disasters such as floods or droughts (Arheimer and Lindström, 2015; 

Burn and Whitfield, 2016; Zandmoghaddam et al., 2019).  

A set of streamflow characteristics, collectively defining the overall flow behavior in a river reach, 

is called the streamflow regime (Poff et al., 1997). Traditionally, streamflow regimes have been 

considered stationary in time (Milly et al. 2008). However, the looming effects of climate change 

along with human interventions through land and water management have raised fundamental 

questions regarding stationarity of streamflow regime during the current “Anthropocene” (Arnell and 

Gosling, 2013; Nazemi and Wheater, 2015a, 2015b). Even in undisturbed streams, recent literature 

is full of evidence, indicating major alterations induced by heightened climate variability and change 

(Barnett et al., 2005; Stahl et al., 2010; Rood et al., 2016; Hodgkins et al., 2017; Dierauer et al., 2018). 

As a result, assessing how streamflow regime is changing as a result of alterations in natural and 

anthropogenic drivers is currently one of the imminent questions in the field of hydrology. 

Despite the extensive body of knowledge already gathered around assessing the effects of climate 

change on altering streamflow regimes, there are still rooms for methodological developments. Most 

importantly, among many potential flow characteristics that can constitute and describe streamflow 

regime, often only a few are taken into account (Whitfield and Cannon, 2000; Hall et al., 2014; 

Vormoor et al., 2015). This is a limitation because climate change impacts are often manifested in 

the entire streamflow hydrograph, and not only around a unique set of streamflow characteristics 

(Olden and Poff, 2003). This is particularly the case in cold regions as at the watershed scale, multiple 

processes contribute to the streamflow generation, each behaving differently in response to climate 

variability and change (Whitfield and Pomeroy, 2016; Zaerpour et al., 2019). As a result, alterations 

in streamflow regimes are not only significant (e.g., Déry and Wood, 2005; MacDonald et al., 2018; 

Islam et al., 2019; Champagne et al., 2020); but also they are complex, due to compound impacts of 

changes in temperature, shifts in forms and magnitude of precipitation, as well as alterations in 

snow/ice accumulation and melt (DeBeer et al., 2016; Hatami et al., 2018; Rottler et al., 2020; Hatami 

and Nazemi, 2021). At this stage of development, it is not yet possible to systematically quantify 

streamflow regimes and their alterations to one another using a large set of simultaneously changing 

streamflow characteristics (Burn et al., 2016; Burn and Whitfield, 2018).  

Here, we propose a new methodology to address this challenge. First, by considering more 

streamflow characteristics, the distinctions between regime types and their alterations become more 

fuzzy and relative. Accordingly, in line with some recent suggestions in the literature (see e.g., 

Ternynck et al., 2016; Burn and Whitfield, 2017; Knoben et al., 2018; Brunner et al., 2018, 2019; 

Aksamit and Whitfield, 2019; Jehn et al., 2020), we conceptualize streamflow regimes as continuous 

spectrums rather than distinct states. This conceptualization requires a methodology that can formally 

deal with subjectivity in the definition of streamflow regimes. For this purpose, we use elements of 

fuzzy set theory (see Zadeh, 1965; Nazemi et al., 2002) to provide a methodological basis to classify 

streamflow regimes as intersecting clusters. We then measure the gradual departure from one fuzzy 
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cluster to others using significant monotonic trends in membership degrees and use this information 

as an indicator for a regime shift in a given stream.  Accordingly, we highlight how such regime shifts 

are attributed to changes in streamflow characteristics using a formal dependence analysis.  

We apply this algorithm in Canada, where the rate of warming is twice the global average (Bush 

and Lemmen, 2019), and changes in streamflow characteristics are significant in time and space (e.g., 

Buttle et al., 2016; O'Neil et al., 2017; Dierauer et al., 2020). By considering more than 100 natural 

streams, we provide – for the first time – a homogeneous, pan-Canadian view on recent alterations in 

natural streamflow regimes. The remainder of this paper is as the following: Section 5.2 describes 

our three-step methodology related to (i) clustering regime types, (ii) detecting regime changes, and 

(iii) attributing regime changes to alterations in streamflow characteristics. Section 5.3 introduces our 

case study and the data. The results and discussions are presented in Sects 5.4 and 5.5. Finally, Sect. 

5.6 concludes our work and provides some further remarks. 

5.2. Methodology  

5.2.1. Rationale and proposed algorithm 

From both conceptual and computational perspectives, quantifying changes in streamflow regimes is 

not a trivial task due to the relativity in the definition of streamflow regime and how a change can be 

identified. On the one hand, the flow regime at a given stream is defined by a large number of 

streamflow characteristics, some of which have conflicting trends in time and space. On the other 

hand, the flow regime is often identified based on similarity/dissimilarity of characteristics in a set of 

benchmarking streams with known regimes. Accordingly, regime shifts are not only defined based 

on alterations in streamflow characteristics relative to the past, but also with respect to relative 

changes with respect to other streams with known regime types. This creates a complex mathematical 

problem due to the “curse of dimensionality” (see e.g., Trunk 1979), meaning that the complexity of 

the problem increases exponentially by increasing the number of streams and/or streamflow 

characteristics, with which the streamflow regime is defined.  To solve this problem, the general 

tendency in the literature is to reduce the dimensionality of the problem through the use of 

methodologies, such as Multi-Dimensional Scaling, Empirical Orthogonal Functions, and Principal 

Component Analysis (e.g., Maurer et al., 2004; Johnston and Shmagin, 2008). Despite 

methodological differences, all these approaches try to provide a parsimonious representation of a 

hyperdimensional space by creating a much simpler space that can preserve the sample variability in 

the original domain (Guetter and Georgakakos, 1993). Although these methodologies are able to 

substantially reduce the dimensionality and give valuable insights into changes in hyperdimensional 

data sets, the results are hard to interpret, particularly when attribution to some physical 

characteristics are concerned (Matalas and Reiher, 1967; Overland and Preisendorfer, 1982; 

Hannachi et al., 2009 and references therein). In the case of quantifying changes in streamflow 

regimes, this limitation translates into an inability to attribute the formation and transition in regime 

types directly to a set of specific streamflow characteristics.  
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Here, we aim at addressing this problem through a new methodology that does not rely on 

dimension reduction; rather, it tries to embrace the inherent high dimensionality of the problem. 

Below we suggest an integrated approach to (1) classify natural streamflow regimes into a set of 

interpolating regime types, (2) diagnose the gradual evolution in regime types and their shifts in time, 

and (3) attribute changes in streamflow regimes to alterations in streamflow characteristics. Fig. 5.1 

shows the proposed procedure. We use MATLAB® Programming platform for the implementation 

of this procedure.  

 

Figure 5.1. The workflow of the proposed three-step algorithm for classifying streamflow regime, diagnosing 

shift in streamflow regime, and attributing the regime shift to the changes in streamflow characteristics. 

Our approach is built upon two fundamental considerations. First, we acknowledge that 

streamflow regimes are constituted by several streamflow characteristics, and therefore changes in 

streamflow regimes are manifested through changes in a large ensemble of streamflow 

characteristics. Second, we recognize that there are soft as oppose to hard distinctions between 

streamflow regimes; and, regime shifts occur gradually rather than abruptly. We select a large set of 

streamflow characteristics – or features – to collectively characterize the streamflow regime. We then 

use the Fuzzy C-Means algorithm (FCM) to classify streams into a set of overlapping regime types 

during a common initial data period. We accordingly quantify changes in degrees of association to 

each regime type during the entire data period using a moving trend analysis. By monitoring the co-

occurrence of divergent trends in membership values, the transitions of regime types to one another 

can be identified. Finally, we monitor the co-evolution of regime shifts with the alterations in 

streamflow characteristics through a formal dependency analysis.  
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5.2.2. Feature selection  

Indicators of Hydrologic Alterations (IHAs; Richter et al., 1996) are commonly applied as features 

to characterize changes in natural streamflow regimes (e.g., Wang et al., 2018). Different sets of IHAs 

can be considered to constitute streamflow regimes. Here we consider 15 IHAs, including annual 

mean flow, monthly mean flows as well as timings of the annual low and high flows that together can 

represent the shape of the annual hydrograph. At each stream, we use the mean (first moment) and 

variance (second moment) of these 15 indicators during a multi-year timeframe to come up with 30 

features that together can capture the shape of the expected annual hydrograph and the variability 

around it. Table 5.1 shows the name and notation of the features used, where 𝑥𝑗=1:15 and 𝑦𝑗=1:15 

denote the mean and the variance of the 15 considered IHAs.  

Table 5.1. The thirty streamflow features used for clustering natural streamflow regime in Canada. 

Feature Notation Feature Notation Feature Notation Feature Notation Feature Notation 

October 

mean flow 

mean:     𝑥1 November 

mean flow 

mean:      𝑥2 December 

mean flow 

mean:    𝑥3 January 

mean flow 

mean:      𝑥4 February 

mean flow 

mean:      𝑥5 

variance:𝑦1 variance: 𝑦2 variance: 𝑦3 variance: 𝑦4 variance: 𝑦5 

March 

mean flow 

mean:    𝑥6 April 

mean flow 

mean:        𝑥7 May  

mean flow 

mean:     𝑥8 June  

mean flow 

mean:      𝑥9 July  

mean flow 

mean:     𝑥10 

variance: 𝑦6 variance:  𝑦7 variance: 𝑦8 variance:   𝑦9 variance:  𝑦10 

August 

mean flow 

mean:      𝑥11 
September 

mean flow 

mean:      𝑥12 
Annual  

flow 

mean:    𝑥13 Timing of 

the annual 

low flow 

mean:      𝑥14 Timing of 

the annual 

high flow 

mean:      𝑥15 

variance: 𝑦11 variance: 𝑦12 variance: 𝑦13 variance: 𝑦14 variance: 𝑦15 

5.2.3. Fuzzy C-means clustering 

Clustering is the process of arranging data into a finite set of classes, so that members in the same 

class have similar characteristics. Various statistical methodologies are used for clustering in 

hydrology (see Tarasova et al., 2019; Brunner et al., 2020), often to non-overlapping (i.e. hard) classes 

(Olden et al., 2012). Recent theoretical developments have alternatively considered a set of 

overlapping (i.e. soft) classes, in particular in the form of fuzzy clusters (e.g., Knoben et al., 2018; 

Wolfe et al., 2019). The association to each fuzzy cluster can be quantified using a degree of 

membership (see Bezdek, 1981; Sikorska et al., 2015). The process of clustering streamflow regime 

using FCM can be summarized as the following: Assume that streamflow data from 𝑁 hydrometric 

gauges during a common timeframe 𝑤 with the length of 𝑙 years are available. For each stream, the 

first and second moments of n IHAs (here 𝑛 = 15), i.e. 𝐗 = [𝑥𝑖𝑗], 𝐘 = [𝑦𝑖𝑗];  𝑖 ∈ {1, … ,𝑁}, 𝑗 ∈

{1, … , 𝑛}, can be extracted during the initial timeframe w. Before going forward, extracted features 

are normalized to avoid scale mismatches: 

𝑥̅𝑖,𝑗 =
𝑥𝑖,𝑗 −𝐦𝐢𝐧 {𝑥𝑖=1:𝑁,𝑗}

𝐦𝐚𝐱 {𝑥𝑖=1:𝑁,𝑗} − 𝐦𝐢𝐧 {𝑥𝑖=1:𝑁,𝑗}
    ∀ 𝑗 ∈ {1, . . . , 𝑛} (5.1a) 

𝑦̅𝑖,𝑗 =
𝑦𝑖,𝑗 −𝐦𝐢𝐧 {𝑦𝑖=1:𝑁,𝑗}

𝐦𝐚𝐱 {𝑦𝑖=1:𝑁,𝑗} − 𝐦𝐢𝐧 {𝑦𝑖=1:𝑁,𝑗}
    ∀ 𝑗 ∈ {1, . . . , 𝑛} (5.1b) 
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where 𝐗̅ = [𝑥̅𝑖𝑗] and 𝐘̅ = [𝑦̅𝑖𝑗] are the matrices of Normalized Streamflow Features (NSFs). FCM 

partitions the 𝑁 streams into 𝐶 fuzzy clusters, such that the sum of distances for all streams 𝑖 ∈

{1, … , 𝑁} between NSFs and cluster centroids is minimized. This is often formulated through an 

iterative optimization procedure, aiming at finding the cluster centroid by minimizing the generalized 

least-squared error function as the objective of optimization (Bezdek, 1981):  

𝑱(𝐔, 𝐕 |𝐗̅, 𝐘̅) =∑.

𝐶

𝑐=1

∑(𝑢𝑖,𝑐)
2
𝒅2([𝑥̅𝑖,𝑗=1:𝑛𝑦̅𝑖,𝑗=1:𝑛] , 𝑣𝑐,𝑚=1:2𝑛)

𝑁

𝑖=1

 (5.2a) 

This objective function is subject to the following two constraints: 

∑𝑢𝑖,𝑐 = 1   

𝐶

𝑐=1

∀ 𝑖 ∈ {1, . . . , 𝑁} (5.2b) 

0 <∑𝑢𝑖,𝑐

𝑁

𝑖=1

< 𝑁    ∀ 𝑐 ∈ {1, . . . , 𝐶} (5.2c) 

where 𝐕 = 𝑣𝑐=1:𝐶,𝑚=1:2𝑛 = [𝑥
∗̅̅ ̅
𝑐,𝑗=1:𝑛, 𝑦

∗̅̅ ̅
𝑐,𝑗=1:𝑛

] = [𝑥∗̅̅ ̅𝑐,1, . . . , 𝑥
∗̅̅ ̅
𝑐,𝑛, 𝑦

∗̅̅ ̅
𝑐,1
, . . . , 𝑦∗̅̅ ̅

𝑐,𝑛
] ∈ ℝ2𝑛 is the 

matrix of cluster centroids (i.e., regime types); the matrix of 𝐔 = [𝑢𝑖,𝑐]; 𝑖 ∈ {1, … ,𝑁}, 𝑐 ∈ {1,… , 𝐶} 

is the matrix of memberships; and 𝒅2([𝑥̅𝑖,𝑗=1:𝑛, 𝑦̅𝑖,𝑗=1:𝑛], 𝑣𝑐,𝑚=1:2𝑛) is the matrix of squared Euclidian 

distances between NSFs of stream 𝑖 and clusters’ centroid 𝑐. The fuzzy membership matrix can be 

accordingly calculated as: 

𝑢𝑖,𝑐 =

(
1

𝒅2([𝑥̅𝑖,𝑗=1:𝑛𝑦̅𝑖,𝑗=1:𝑛], 𝑣𝑐,𝑚=1:2𝑛)
)

∑ (
1

𝒅2([𝑥̅𝑖,𝑗=1:𝑛𝑦̅𝑖,𝑗=1:𝑛], 𝑣𝑐,𝑚=1:2𝑛)
)

𝐶

𝑐=1

;   𝑖 ∈ {1, … ,𝑁}, 𝑐 ∈ {1, … , 𝐶}     

(5.3) 

The number of clusters 𝐶 (here regime types) can be chosen as a priori, or empirically using validity 

indices (Srinivas et al., 2008). Here, we implement three validity indices of Xie-Beni index (𝑉𝑋𝐵; Xie 

and Beni, 1991), partition index (𝑉𝑆𝐶; Bensaid et al., 1996), and separation index (𝑉𝑆; Fukuyama and 

Sugeno, 1989). These indices are based on two criteria, namely compactness and separation. The 

compactness characterizes how close members to each cluster are; whereas, the separation measures 

how distinct two clusters are. A good clustering result should have both small intra-cluster 

compactness and large inter-cluster separation. The Xie-Beni validity index is the ratio of 

compactness to the separation, quantified by the average of fuzzy variation of NSFs from clusters’ 

centroids to the minimum squared distance between cluster centroids. Note that 

( ) ( )
2 2

, , 1: , 1: , 1:21
,  ,

N

i c i j n i j n c m ni
u x y v= = ==

   d  is the compactness of fuzzy cluster c and separation of fuzzy 

clusters is quantified by the minimum squared Euclidean distance between cluster centroids:  
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 (5.4) 

Partition index is quantified by the sum of individual fuzzy cluster variations (i.e., the compactness 

of fuzzy clusters) to the sum of the distances from cluster centroids (i.e., the separation of fuzzy 

clusters). This ratio is further normalized by fuzzy cardinality weight 𝛾𝑐, defined by 𝛾𝑐 = ∑ 𝑢𝑖,𝑐
𝑁
𝑖=1 , 

to avoid the bias made by cluster sizes.  
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 (5.5) 

The separation index, also known as Fukuyama and Sugeno index, is defined based on the difference 

between the compactness and the separation of fuzzy clusters:  

𝑉𝑆 = {∑ ∑ 𝑢𝑖,𝑐
2

𝑁

𝑖=1

𝐶

𝑐=1
. 𝒅2([𝑥̅𝑖,𝑗=1:𝑛, 𝑦̅𝑖,𝑗=1:𝑛] , 𝑣𝑐,𝑚=1:2𝑛)}

− {∑ ∑ 𝑢𝑖,𝑐
2

𝑁

𝑖=1

𝐶

𝑐=1
. 𝒅2([𝑣𝑐,𝑚=1:2𝑛, 𝑣̅)} 

(5.6) 

 

in which 𝑣̅ = ∑ 𝑣𝑖 𝑐⁄
𝐶
𝑐=1 .  We identify the optimal number of clusters using the elbow method (see 

Satopaa et al., 2011; Kuentz et al., 2017), which involves finding the maximum number of clusters, 

beyond which slopes of improvement in validity indices flatten significantly; and adding a new cluster 

does not justify the increased complexity.   

5.2.4. Detection of change in streamflow regimes 

Clustering natural streams into c regime types takes place during a baseline timeframe (i.e., the first 

initial years with the length of l years), in which the optimal number of clusters, cluster centroids, and 

initial membership degrees to each regime type are identified. For each stream, the timeframe can be 

moved year-by-year and the membership values can be recalculated for the new window using Eq. 

(3). Fig. 5.2 exemplifies this process in a hypothetical case. This results into C time series of 

membership degrees at each stream, showing how the association to each regime type evolves in time 

– see Jaramillo and Nazemi (2018). In order to quantify the gradual change in membership degrees, 

the Mann-Kendall trend test with the Sen’s Slope is applied (Mann, 1945; Sen, 1968; Kendall, 1975). 

As the sum of memberships in each timeframe is 1 (see Eq. 2b), a positive trend in memberships to 

one cluster should coincide with a negative trend in the membership of at least one other cluster. At 

each stream, this transition can be identified by significant negative dependencies between 

membership degrees.  



91 

 

 
Figure 5.2. A schematic view to the procedure of identifying the evolution in membership values using a 

moving window; (a) a decadal timeframe slides over the streamflow time series year-by-year; (b) membership 

degrees are recalculated at each decadal timeframe to systematically determine the changes in association to 

each regime type determined in the beginning of the data period. 

Given the pair of clusters 𝑝 and 𝑞 in the stream i, the rate of shift from 𝑝 to 𝑞 can be quantified 

using Eq. 7, where 𝑢𝑖,𝑝(𝑤) and 𝑢𝑖,𝑞(𝑤) are membership degrees to clusters 𝑝 and 𝑞 in stream 𝑖 during 

the timeframe 𝑤;  𝑤 ∈ {1, … , 𝑟}; 𝑟 is the number of moving timeframes needed to cover the whole 

data period year-by-year; 𝐄(𝑢𝑖,𝑝) and 𝐄(𝑢𝑖,𝑞) are the expected memberships; and 𝑆𝑖,(𝑝,𝑞) is the slope 

of the best-fitted line. 

 

𝑆𝑖,(𝑝,𝑞) = ||
∑ (𝑢𝑖,𝑞(𝑤) − 𝐄(𝑢𝑖,𝑞)) (𝑢𝑖,𝑝(𝑤) − 𝐄(𝑢𝑖,𝑝))

𝑚

𝑤=1

∑ (𝑢𝑖,𝑞(𝑤) − 𝐄(𝑢𝑖,𝑞))
2𝑚

𝑤=1

|| (5.7) 

5.2.5. Attribution of change in streamflow regime to alterations in streamflow characteristics 

Here, the existence of significant dependence between membership values and streamflow features 

is taken as the basis for attribution. Accordingly, we use Kendall’s tau (Genest and Favre, 2007; 
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Nazemi and Elshorbagy, 2012) to detect the co-occurrence between changes in memberships and 

changes in NSFs. Fig. 5.3 shows the procedure of attribution. Left panels show the changes in 

membership degrees of two hypothetical clusters (purple lines), along with the corresponding changes 

in two NSFs (grey lines). Right panels show the scatter plots of membership degrees vs. the NSFs. 

We identify the significance and the direction of dependence using the Kendall’s tau coefficient. To 

measure the linear association between changes in streamflow features 𝑥𝑖,𝑗  and membership 

values 𝑢𝑖,𝑐, the coefficient of determination (𝑅2; see Legates and McCabe Jr., 1999) is used. 𝑅2 varies 

between [0, 1] and determines how much of the variability in the degrees of membership can be 

described by the variability in a given streamflow characteristic. The greater the 𝑅2 is, the stronger 

the association between changes in degrees of membership and the streamflow characteristics is. The 

coefficient of determination can be calculated as: 

𝑅2(𝑢𝑖,𝑐 , 𝑥𝑖,𝑗) =

{∑ (𝑢𝑖,𝑐 − 𝐄(𝑢𝑖,𝑐)) (𝑥𝑖,𝑗 − 𝐄(𝑥𝑖,𝑗))
𝑟

𝑤=1
}
2

∑ (𝑢𝑖,𝑐 − 𝐄(𝑢𝑖,𝑐))
2𝑟

𝑤=1
∑ (𝑥𝑖,𝑗 − 𝐄(𝑥𝑖,𝑗))

2𝑟

𝑤=1

  ∀ 𝑖 ∈ {1, . . . , 𝑁} (5.8) 

By the simultaneous use of Kendall’s tau and R2, we try to facilitate quantitative communication 

of the impact of changes in a specific streamflow characteristic on the transition from one regime 

type to another. By using the Kendall’s tau, we identify the sign and significance of dependencies 

between changes in membership degrees and streamflow characteristics using a non-parametric 

approach that can handle non-linearity in the form of association. Using R2, we quantify how much 

of the variability in the membership degrees can be described by the variability in the changes in 

streamflow characteristics. This is to provide a comprehendible measure of association between the 

two quantities.  

As R2 is a linear-based measure, we repeat the experiment by replacing the R2 with squared 

Kendall’s tau and discuss the uncertainty in our attribution. The key advantage of our proposed 

algorithm is in providing a workflow in which the detection of a change in streamflow regime is 

directly attributed to changes in streamflow characteristics. Fig. 5.4 shows this integration using a 

hypothetical example. The left panel demonstrates a multifaceted change in the shape of the annual 

hydrograph in a given stream during two separate periods, shown with grey and pink envelopes. The 

black and red lines are expected annual hydrographs for each envelope (i.e., the mean of annual 

streamflow hydrographs over the timeframe), respectively. Any shift between flow regimes is 

described by at least a pair of membership time series with opposite trends. The strength of the link 

is measured using R2. The right panel shows the rates of shifts and the attribution to changes in 

streamflow characteristics. The thickness of links is proportional to rates of shift and/or R2 values.  
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Figure 5.3. The procedure of attributing changes in membership degrees to changes in streamflow 

characteristics. The left column shows the co-evolution of membership degrees and Normalized Streamflow 

Features (i.e., 𝑁𝑆𝐹1and 𝑁𝑆𝐹2). The right column measures the correspondence between changes in 

membership degrees and normalized streamflow features through percentage of described variance quantified 

using 𝑅2. Red or blue dots show the positive or negative dependencies, respectively. 

 
Figure 5.4. An example for transitions between regime types along with attribution of change to streamflow 

characteristics. The left panel shows annual hydrographs in two separate periods using grey and pink 

envelopes. The panel in the right shows the dominant shift in the flow regime by maximum rate of shift, and 

attributes this shift to changes in significantly dependent streamflow characteristics. The dominant shift is 

visualized by the thickest grey envelope. The strength of the association between regime shift and significantly 

dependent streamflow characteristics are measured and communicated by R2. 

5.3. Case study and data 

With a total drainage area equivalent to 6% of the global land area, Canadian rivers support important 

socio-economic activities such as agriculture and hydropower production. River systems in Canada 
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can be divided into four major ocean-drained basins, namely Pacific, Atlantic, Arctic, and Hudson 

Bay that can be further divided into a number of sub-basins (Pearse et al., 1985; Natural Resources 

Canada, 2007). The Pacific basin, the smallest among all, spreads on the west coast from the US 

border to Yukon and drains around 1 million km2. The main sub-basins in the Pacific include Fraser, 

Yukon, Columbia, and the Seaboard. In the east coast, the Atlantic basin drains a total area of 1.6 

million km2, and includes important water bodies such as the Great Lakes. The basin includes three 

sub-basins, namely the St. Lawrence River, Seaboard, and the Saint John-St. Croix. Towards the 

north, the Arctic basin drains over 3.5 million km2 of northern lands and includes some of Canada’s 

largest lakes other than the Great Lakes such as the Slave, Athabasca, and Great Bear lakes. The 

Mackenzie, Peace-Athabasca, and Seaboard are the main sub-basins in the Arctic basin. With an area 

of 3.8 million km2, the Hudson Bay is the largest drainage basin in Canada, covering five provinces 

from Alberta in the west to Québec in the east. The basin includes four major sub-basins, namely 

Western & Northern Hudson Bay, Nelson, Northern Ontario, and Northern Québec. Nelson, 

Saskatchewan, and Churchill rivers are the major river systems in the Hudson Bay.  

Natural streamflow regimes in Canada have undergone drastic changes in recent years, which are 

expected to increase under future climate change conditions (Woo et al., 2008). Observed and 

projected changes in streamflow regimes are not only between different regions (Kang et al., 2016; 

Islam et al., 2019); but also occur within the same ecological and/or hydrological regions (Whitfield, 

2001, 2020). For instance, there are significant differences between forms of change in streamflow 

regimes between the northern and southern Pacific (Kang et al., 2016; Brahney et al., 2017). 

Similarly, glacier-fed rivers in northern Canada show increases in summer runoff (Fleming and 

Clarke, 2003); whereas other rivers show a tendency toward decreasing summer runoff (Fleming and 

Clarke 2003; Janowicz, 2008, 2011). To diagnose simultaneous changes in natural streamflow 

regimes across Canada, we use the data from Reference Hydrometric Basin Network (RHBN; Water 

Survey of Canada, 2017, http://www.wsc.ec.gc.ca/). RHBN includes 782 Canadian hydrometric 

stations that measures streamflow at unregulated tributaries and are particularly suitable to address 

climate change impacts on natural streamflow regimes (Brimley et al., 1999; Harvey et al., 1999). In 

the period of 1903 to 2015, we search for the largest subset of hydrologically unconnected stations 

with the longest continuous daily record during a common period and less than a month worth of 

missing data in a typical year. This results into selecting 105 streamflow stations during the water 

years of 1966 to 2010 (1 October 1965 to 30 September 2010). 

Although drainage basins are often used as the spatial unit in which alteration in streamflow regime 

is investigated, there are substantial differences within a drainage basin in terms of climate, 

topography, vegetation, geology, and land use. This results into multiple forms of hydrological 

response within one drainage basin. In contrast to drainage basins, terrestrial ecozones are identified 

based on similarity in climate and land characteristics; and therefore, they can be more representative 

of different hydrological responses (Whitfield 2000). In brief, an ecozone is a patch of land with 

distinct climatic, ecologic, and aquatic characteristics (see Wiken 1986; Marshall et al., 1999; Wong 

et al., 2017). Canada includes 15 ecozones. Starting from the north, the Arctic Cordillera (EZ1), 

http://www.wsc.ec.gc.ca/


95 

 

covering 2% of Canada’s landmass, contains the only major mountainous region in Canada other than 

the Rockies. The Northern Arctic (EZ2) is equivalent to 14% of Canada’s landmass and covers Arctic 

Islands (Coops et al., 2008). The Southern Arctic (EZ3) includes the northern mainland, covering 8% 

of Canada. The Taiga Plains (EZ4) extends mainly on the western side of the Northwest Territories, 

covers 6% of Canada’s landmass, and includes a large number of wetlands. Taiga Shield (EZ5) with 

large number of lakes, covers 13% of Canada’s landmass in the south of the Southern Arctic (Marshall 

et al., 1999). The Boreal Shield (EZ6) is Canada’s largest ecozone covering 18% of the country’s 

landmass, extends from northern Saskatchewan toward the south into the Ontario and Québec and 

then northward toward eastern Newfoundland (Rowe and Sheard, 1981). The Atlantic Maritime 

(EZ7) includes the Appalachian mountain region, covering 2% of Canada, extends from the mouth 

of the St. Lawrence River and Bay of Fundy into coastlines of New Brunswick, Nova Scotia, and 

Prince Edward Island. The Mixedwood Plains (EZ8) is the most southerly ecozone, covering 2% of 

Canada, but includes the country’s most populated regions in Ontario and Québec. The Boreal Plains 

(EZ9), covering 7% of Canada’s landmass in western Canada, from British Columbia to the 

southeastern corner of Manitoba in the south of Boreal Shield (Ireson et al., 2015). The Prairies 

(EZ10) extends from south-central Alberta to southeastern Manitoba, covering 5% of Canada’s 

landmass and the majority of Canada’s agricultural lands (Nazemi et al., 2017). The Taiga Cordillera 

(EZ11) includes 3% of Canada with the least amount of Canada’s forest and lies along the northern 

portion of the Rocky Mountains (Power and Gillis, 2006). The Boreal Cordillera (EZ12) covers 5% 

of Canada from northern British Columbia to the southern Yukon, with mountainous uplands and 

forested lowlands. The Pacific Maritime (EZ13) mainly includes the coastal mountains of British 

Columbia and lands adjacent to the Pacific Coast, having the warmest and wettest climate in the 

country, in an area around 2% of Canada (Wiken 1986). The Montane Cordillera (EZ14), with the 

most diverse climate in Canada, includes 5% of Canada in mountainous areas of southern British 

Columbia and southwestern Alberta and provides headwater flow to some important river systems 

such as Fraser, Saskatchewan, and Athabasca (Marshall et al., 1999). Finally, Hudson Plains (EZ15) 

includes 4% of Canada in the southern part of Hudson Bay with a large number of wetlands. Table 

5.2 summarizes the selected stations within each ecozone.  

Table 5.2. List of Canadian ecozones with at least one RHBN station in this study, along with their 

abbreviations and the number of RHBN stations considered within each ecozone.  

Abbreviation Ecozones # of stations Abbreviation Ecozones # of stations 

EZ2 Northern Arctic 1 EZ8 Mixedwood Plains 5 

EZ3 Southern Arctic 1 EZ9 Boreal Plains 6 

EZ4 Taiga Plains 1 EZ10 Prairies 2 

EZ5 Taiga Shield 4 EZ12 Boreal Cordillera 7 

EZ6 Boreal Shield 25 EZ13 Pacific Maritime 9 

EZ7 Atlantic Maritime 25 EZ14 Montane Cordillera 19 
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Figure 5.5. The distribution of the selected 105 RHBN streamflow stations within the Canadian ecozones. 

Table D1 to D4 in the Appendix D introduce these stations across the four drainage basins in 

Canada. Figure 5 shows the distribution of the selected stations across the 15 ecozones. As it is clear, 

the density of selected stations varies greatly among ecozones. The highest numbers of stations are 

within Atlantic Maritime, Boreal Shield, and Montane Cordillera; while Southern and Northern 

Arctic as well as Taiga Plains, include only one; and there is no station in the Arctic Cordillera, Taiga 

Cordillera, and Hudson Plains. At the basin/sub-basin scale, the selected stations cover all 14 main 

Canadian sub-basins – see Table D5 and Fig. D1 in the Appendix D. 

 

5.4. Results 

We apply the framework proposed in Sect. 2 to the selected RHBN streams. At each stream, we first 

convert the daily discharge data into runoff depth in millimeters per week and calculate the thirty 

streamflow features introduced in Table 5.1. We then consider a multi-year timeframe for clustering 

and assigning initial membership values. The length of this timeframe should be chosen in a way that 

(1) provide a notion for streamflow regime, and (2) provide enough timeframes to assess evolution 

in membership values. As the aim is to address temporal changes in the streamflow regime, the 

baseline timeframe is considered at the beginning of the streamflow time series. Here, we present our 

result based on considering decadal timeframes and the period of 1966-1975 as the baseline. We 

address and discuss the sensitivity of our results to these assumptions in Sect. 5.  

5.3.1. Identifying natural streamflow regimes in Canada  

We attempt to find the optimal number of clusters empirically from the pool of 𝑐 = {2, 3, …, 10}, 

using the three validity indices introduced in Section 2.3. Fig. D2 in the Appendix D shows the result 
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of this investigation, indicating the optimal number of clusters as 𝑐 = 6, where decreasing slopes of 

the three validity indices flatten. To provide a sense of these streamflow regimes and their changes 

in time, we visualize the shapes of annual streamflow hydrographs in the archetype streams during 

the baseline and the last decadal timeframe (i.e., 1966 to 1975 vs. 2001 to 2010) in Fig. 5.3 in the 

Appendix D. Archetype streams are those streams that have the highest association to the identified 

regime types and can represent the characteristics of a given regime better than other members of the 

cluster. Table 5.3 introduces these six regimes along with their notation and archetype streams. We 

name clusters based on two key characteristics, i.e. the form of hydrologic response (i.e. fast- vs. 

slow-response) as well as the timing of the annual peak flow (i.e., cold-season, freshet, and warm-

season peak). The form of hydrologic response can be proxied by variability in the annual streamflow 

hydrograph. The greater the variability in the annual streamflow hydrograph is, the faster the 

hydrologic response is.   

Table 5.3. Six identified regime clusters along with their labelled regime type and archetype stream.  

Cluster Regime type Archetype (representative) stream 

C1 
slow-response/warm-season 

peak 
Kazan River above Kazan Falls (HYDAT ID: 06LC001) 

C2 
fast-response/ warm-season 

peak 

Clearwater River near Clearwater Station (HYDAT ID: 

08LA001) 

C3 slow-response/freshet peak 
Matawin River at Saint-Michel-des-Saints (HYDAT ID: 

02NF003) 

C4 fast-response/freshet peak Gander River at Big Chute (HYDAT ID: 02YQ001) 

C5 slow-response/cold-season peak Beaver Bank River near Kinsac (HYDAT ID: 01DG003) 

C6 fast-response/cold-season peak Sproat River near Alberni (HYDAT ID: 08HB008) 

 

Fig. 5.6 shows a synoptic look at the distribution of streams belonging to each flow regime during 

the initial baseline timeframe. In each panel, the red star represents the archetype stream and streams 

with membership values of 0.1 and larger are shown with circles. The larger the size of a circle is, 

the greater the degree of membership to each cluster is. As Fig. 5.5 shows, the six clusters are 

geographically identifiable and resemble some of the already-known regime types across the country 

(see Whitfield, 2001; Bawden et al., 2015; Burn and Whitfield, 2016; Bush and Lemmen, 2019).  

The “slow-response/warm-season peak” regime, i.e. cluster C1, includes streams with strong 

seasonality, high discharge in summer, and smaller variability in annual streamflow hydrograph 

compared to cluster C2, i.e. “fast-response/warm-season peak” regime. Cluster C1 is characterized 

by a gradual rise after spring snowmelt, prolonged peak discharge throughout summer, gradual 

recession during fall, and low runoff in winter (Déry et al., 2009). Streams belonging to C1 spread 

mostly in northwestern Canada and are either glacial-fed or lake-dominated streams, in which the 

hydrologic responses are delayed due to slow rate of glacial retreats and/or storage effects of large 

in-stream lakes. The Kazan River releasing into the Baker Lake in Nunavut is the archetype stream 
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for this regime type. C2 is very similar to C1, however with greater variability in annual streamflow 

hydrographs. The stream belonging to this stream are mainly concentrated in western Canada, 

particularly in Montane Cordillera (46% of streams), and include streams that are fed mainly through 

snow and glacial melts (Eaton and Moore, 2010; Moore et al., 2012; Schnorbus et al., 2014). There 

are, however, streams belonging to C2 that are located in Boreal Shield (23% of streams), where the 

streamflow generation is governed by other processes such as fill-and-spill in which segments of a 

basin have to be filled above their capacity before spillage (Spence and Phillips, 2015). The 

Clearwater River near Clearwater in southern Alberta is the representative stream for this regime 

type.  

 

Figure 5.6. The distribution of the identified regime types across Canadian ecozones during the baseline l 

timeframe of 1966 to 1975. Each stream is represented by a circle with a radius proportional to a membership 

degree quantifying the association to a given regime type. Only RHBN stations with degrees of membership 

of 0.1 or larger are shown in each panel. The red stars are the archetype stations related to each regime type.  
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The cluster C3, i.e. the “slow-response/freshet peak” regime, includes streams in which the annual 

streamflow volume is mainly contributed by a short high flow period during spring snowmelt, sharp 

recession in summer, yet relatively smaller variations in the shape of hydrograph compared to the 

cluster C4, i.e. “fast-response/freshet peak” regime. Nearly 45% of the streams with this regime type 

are located in Atlantic Maritime. The rest are distributed in Boreal Shield (28%), Mixedwood Plains 

(15%), and Montane Cordillera (12%). The Matawin River originated from the lake Matawin in 

Québec is the archetype for the C3 regime. The streams belonging to C4 are also dominated by spring 

snowmelt but showing more variation in the shape of annual hydrographs compared to the C3 regime. 

Streams belonging to the C4 regime often have two distinct peaks, one in spring induced by snowmelt 

and one in fall due to high precipitation; and from that sense, they largely resemble nivo-pluvial 

streams (Hock et al., 2005). Almost all streams belonging to the C4 regime are located in eastern 

Canada (50% in Atlantic Maritime, 26% in Boreal Shield, 16% in Mixedwood Plains). Gander River 

at Partridgeberry Hill in Newfoundland is the archetype for this regime. 

The cluster C5, i.e. “slow-response/cold-season peak” regime, comprises streams with weak 

seasonality and slightly more discharge in fall and winter. The annual flow for streams belonging to 

this regime is more influenced by rainfall around later fall, followed by a slight increase in discharge 

due to snowmelt; and therefore, they resemble a hybrid pluvio-nival regime (Kang et al., 2016). The 

concentration of streams belonging to this regime is again in the eastern Canada (48% in Atlantic 

Maritime; 33% in Boreal Shield), with few streams being in the Pacific Maritime. Beaver Bank River 

in Nova Scotia is the representative stream for this regime type. Finally, the cluster C6, i.e. “fast-

response/cold season peak regime, is similar to the C5 regime and exhibits a weak seasonality, but 

with a greater variation in shapes of annual hydrographs. The runoff in streams belonging to this 

regime is dominated by heavy precipitation, especially during winter, and lower runoff during 

summer, resembling the pluvial regime (Wade et al., 2001; Whitfield, 2001). Streams belonging to 

this regime are only concentrated in the Pacific. The Sproat River near Alberni is the archetype stream 

of the C6 cluster. 

5.3.2. Detection of changing streamflow regimes 

To understand temporal shifts in streamflow regimes throughout selected RHBN streams, we 

calculate the decadal membership values as shown in Fig. 5.2. We accordingly apply the Mann-

Kendall trend test with the Sen’s Slope on the time series of decadal memberships. The detailed 

results including the membership time series for all streams and corresponding trend analyses are 

shown in Figs. D4 and D5 in the Appendix D over major drainage basins/sub-basins as well as the 

terrestrial ecozones in Canada, respectively. Fig. 5.7 summarizes our findings over the 15 Canadian 

ecozones. The color (blue vs. red) and the size (large vs. small) of triangles show decreasing vs. 

increasing trends as well as significant vs. insignificant trends at p-value ≤ 0.05. Although 

inconsistent patterns of change are observed in Boreal and Montane Cordillera, particularly between 

the southern and northern regions, there are clear downward trends in the member of regime C1 in 

Taiga Shield and Boreal Shield. Upward trends are observed in membership values of C2 in Boreal 

Cordillera and Taiga Shield, while downward trends are seen in the member of C2 in southern and 
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eastern parts of Montane Cordillera and Boreal Shield. The C3 regime shows intensification in 

Montane Cordillera and Boreal Shield. It also intensifies in southern parts of Atlantic Maritime but 

weakens in northern regions. The pattern of change in C4 is very similar to C3, but with fewer 

significant downward trends in northern parts of Atlantic Maritime. Considering the C5 regime, 

streams mainly show decreasing trends in the Appalachian region including eastern Boreal Shield, 

and southern parts of Atlantic Maritime. Mixed patterns of change in membership degree are observed 

in the Pacific Maritime for both C5 and C6 regimes.   

 

Figure 5.7. Trends in decadal memberships, quantifying the change in association of the 105 selected RHBN 

streams to the six regime types during 1966 to 2010.  

The nature of regime shifts at each stream can be investigated by quantifying the rate of relative 

shift between opposing significant trends. Fig. D6 in the Appendix D summarizes the results. Overall, 
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the dominant modes of transition at the ecozone scale are from C1 to C2 in the northern ecozones 

(EZ5 and EZ12), from C2 to C1 and from C2 to C3 in the western ecozones (EZ9 and EZ14), from 

C2 to C3 in the two stations located in the Prairies, from C1 to C3 in the eastern ecozones (EZ6, EZ8, 

and EZ15), and from C5 to C4 in the Appalachian region (EZ7 and eastern part of EZ6). The 

variability between the regime shifts inside each ecozone can be described by elevation. To better 

synthesize our findings in Canada and highlight dominant regime shifts and their geographic extent 

across the country, Fig. 5.8 shows sankey diagrams, demonstrating how initial regime types in the 

considered streams. Streams are grouped by the ecozones in the left side of each panel, and transform 

to one particular target regime type (right side in each panel). The six natural regime types are 

distinguished by color codes and stations within each ecozone are sorted from the lowest to the 

highest elevation from top to the bottom. The width of each arrow is proportional to the rates of shift, 

calculated using Eq. 7. The highest rate of a shift in each stream and/or ecozone can be considered as 

the dominant regime shift.  

 

Figure 5.8. Sankey diagrams showing transitions in Canadian natural streamflow regimes described across 

ecozones from 1966 to 2010. Each panel presents transformation from five potential regime types to one 

particular target regime. Streams in the left side are grouped according to ecozones and are sorted from the 

lowest to highest elevations from the top to the bottom. Colors show the six regime types. The widths of arrows 

are proportional to the rate of shift. 
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Some important findings can be made from Fig. 5.8. While regime shifts are varied, there are some 

dominant regime shifts that are frequently observed across different ecozones. For example, frequent 

shifts are observed from C2 to C1 as well as C1 to C2 that are quite strong across Montane Cordillera 

and Taiga Shield, respectively. Second, it is possible that the streamflow regime in a given ecozone 

shifts from one regime to two or more regime types. For instance, streamflow in Atlantic Maritime 

shifts from C5 to C3 and C4. Also, it is possible to have opposing regime shifts in a given ecozone. 

As an example, the flow regime varies from C5 to C6 and vice versa across Pacific Maritime. Such 

variabilities in regime shift can be partially explained by latitude. More generally, it is possible to 

shift from two or more regime types into one or more regime types across a particular ecozone. For 

example, streams with C1 and C5 regimes are shifting to C3 and C4 across Boreal Shield. Such 

variabilities within an ecozone can be described in many cases by elevation. In Boreal Shield, for 

example, elevation controls the constitution of the initial streamflow regime from C5 in lowlands to 

C1 in highlands. Finally, the most frequent regime shifts are not necessarily the strongest ones. For 

instance, the streamflow regime shifts across 6 ecozones toward C3 and C4 but the rates of the shift 

are not strong when compared with the shift between C6 to C5 that happens in limited streams in 

Pacific Maritime, but quite strongly.    

5.3.3. Identifying forms of transformation in streamflow regimes  

The procedure presented in Sect. 2.5 attributes regime shifts to changes in streamflow characteristics 

using dependence analysis. Figure 5.9 summarizes the results of attribution in the 105 RHBN stations. 

Streams are shown in rows, grouped in each ecozone, and ordered from low to high elevations from 

the top to the bottom. For each stream, there are three groups of cells, with 15, 15, and 2 cells from 

left to right respectively. The first two groups of cells are related to the values of mean (i.e., 𝑥1 to 

𝑥15) and variance (i.e., 𝑦1 to 𝑦15) of the 15 considered IHAs, respectively. In these two groups of 

cells, shades of blue and red show negative and positive dependencies between a given pair of 

streamflow characteristic and membership degree, respectively. Note that we only identify those 

streamflow characteristics that have significant dependencies with variations in membership degrees 

based on Kendall's tau (p-value ≤ 0.05) Color saturations show the values for the coefficient of 

determination, quantifying the fraction of variability in membership degrees that are described by the 

variability in streamflow characteristics. The last two cells are related to the dominant regime shift in 

each stream from one initial regime (left hand cell) to an altered regime (right hand cell). The color 

scheme, defining the regime types, is shown in the legend. The analyses over basin and sub-basin 

scales are presented in Figs. D7 and D8 in the Appendix D.  

The most important observation is the fact that in more than 80% the considered natural streams, 

there are some identifiable regime shifts that are significantly dependent on the changes in the 

streamflow characteristics. Some dominant regime shifts are frequent within an ecozone, while some 

are less frequent and may depend on latitude and/or elevation.  In the only considered stream in the 

Northern Arctic, the shift from the C2 to the C1 regime is attributed to the earlier and more variable 

timing of the annual low flow, and the increasing June flow. An opposing shift is observed in Taiga 

Shield, i.e. from C1 to C2, which can be attributed to the earlier and more variable timing of annual 
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high flow, and the increasing seasonal flow in fall. The regime shift from C5 to C4 in the lowlands 

of Boreal Shield is attributed to the decreasing mean and variance of annual flow particularly in 

August. In the highland of this ecozone, however, the dominant regime shift is from C1 to C3 and 

can be attributed to the decreasing monthly flow in August and September, and more variability in 

the timing of the annual low flow. In Atlantic Maritime, particularly across lowlands, decreasing 

mean and variation of the flow in August along with decreasing monthly flow in June and July, and 

decreasing mean annual and seasonal flow in the fall lead to a shift from C5 to the C4.  

 
Figure 5.9. Dominant regime shifts across 105 RHBN streams in Canada attributed to the first and second 

moments of the 15 IHAs considered. Shades of red and blue show the positive and negative dependencies 

between changes in streamflow features and degrees of membership. Color saturations are proportional to the 

values of coefficient of determination. The dominant regime shift at each stream is identified by the color 

scheme described in the legend. Streams are grouped in ecozones and ordered from low (top) to the high 

(bottom) elevations  

In Mixedwood Plains, the shift from C1 to C3 is attributed mainly to earlier and more variable 

timing of annual low flow. In the lowlands of Boreal Plains, the increasing variation in April’s flow, 
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and decreasing annual and summer flows contribute to the shift from C2 to C1. Streams in the 

highlands of Boreal Plains, however, shift from C1 to C2 due to the increasing annual and summer 

flows, along with later and more variable timing of low flows. In Prairies, in the two considered 

streams, the shift from C2 to C3 is attributed to delayed and more variable timing of low flows and 

decreasing summer flows. In Boreal Cordillera, more variable annual flow and increasing mean and 

variation in May flow correspond to the shift from C1 to C2. Opposing shifts from C2 to C1, however, 

are mainly attributed to the increasing monthly flows in February, March, April, and May. The most 

pronounced shift in Pacific Maritime is from the C5 to C6, which mainly corresponds to increasing 

mean and variation of October flow, and increasing annual flows. The most pronounced shift in 

Montane Cordillera is from C2 to C1 for the streams in the northern part, attributed to decreasing 

mean and variability in July flow and increasing monthly flow in April and May. Streams in southern 

parts, however, shift from C2 to C3, attributed mainly to increasing monthly flow in February, March, 

and April, more variability in the timing of the low flow as well as decreasing September flow.  

5.5. Discussion  

The application of the proposed methodology in Canada identifies six distinct natural regimes across 

the country, address their change in time and space, attribute dominant regime shifts to changes in a 

range of streamflow characteristics at each stream and accordingly upscale the findings from 

individual streams to ecozones. Having said that, still there are some unanswered questions. First, it 

is still unclear how robust our proposed algorithm is particularly in light of the assumptions made 

with respect to the length of the timeframes and/or selecting the baseline period. Second, it is obvious 

that our selected streams are only a sample of available RHBN stations across Canada and it is still 

unclear how our findings can be extended to out-of-sample streams. Finally, there is a large body of 

literature, reporting shifts in streamflow regimes across different regions in Canada due to changes 

in temperature patterns, magnitude and form of precipitation, snowmelt and snow accumulation as 

well as glacier retreat and permafrost degradation. Accordingly, it is crucial to frame and position our 

findings with respect to earlier studies. These three tasks are pursued in this section.   

5.5.1. Addressing uncertainty 

The results presented in Sect. 4 are based on considering decadal timeframes and selecting the first 

decadal timeframe as the baseline period. Here we relax these two assumptions and monitor 

alterations in our findings. First, we repeat the clustering algorithm over all possible decadal 

timeframes throughout the study period and recalculate the cluster centers. This experiment addresses 

the sensitivity of our clustering algorithms to the choice of baseline period. Second, we repeat the 

approach implemented in Sect. 4 again with considering 15- and 20-year timeframes and address how 

cluster centers, as well as our specific findings would alter by increasing the length of timeframe. We 

do not consider timeframes less than decadal length due to the insufficiency of numbers of data points 

for trend analysis. We also do not consider timeframes larger than 20 year to allow at least two fully 

independent timeframes during the study period with a few years gap.  
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Figure 5.10 summarizes our findings in terms of the sensitivity of our clustering results with 

respect to the two assumptions made. Panel (a) shows the cluster centers when different decadal 

baselines are considered. Colored dots show the centers of clusters related to all possible decadal 

timeframes except the period of 1966-1975. The centers of clusters are scaled into two dimensions 

using the Multidimensional Scaling (MDS; Cox and Cox, 2008), in which the distance between the 

dots represents the approximate dissimilarity of centers of clusters. Dimensions 1 and 2 delineate the 

space, in which the original data are mapped. Black crosses show the centers of the first decadal 

timeframe mapped using the MDS. Colors identify regime types. The result clearly shows that despite 

changing the baseline timeframe, the distinction between cluster centers are maintained and the 

position of centers does not substantially change by changing the baseline period. Panel (b) shows 

the results of our sensitivity analysis with respect to changing the length of timeframe. Again, there 

are not notable changes in the cluster centers. These two findings highlight the robustness of our 

clustering analysis.   

 

Figure 5.10. The sensitivity of the cluster centers to (a) the choice of decadal timeframe for clustering, and (b) 

the length of the timeframe used for analysis. In panel (a) dots show the two dimensional scaling of the cluster 

centers in which distances between dots represent dissimilarities between cluster centers. Black crosses show 

the centers identified by choosing the first decadal timeframe. Panel (b) shows the two dimensional scaling of 

the cluster centers considering 10-, 15- and 20-year timeframes. 

We also look at possible differences in the direction of trends in membership degrees, dominant 

regime shifts, as well as the attribution to streamflow features at the basin scale, if the length of 

timeframes are changed. Fig. 5.11 (left column) intercompares the results obtained by 10-, 15- and 

20-year timeframes in terms of percentages of similarities in the direction of trends during 1966 to 

2010 at each basin. In brief, there are at least 80% agreements between the results obtained in the 

Pacific and the Arctic basins. There are more discrepancies in the direction of trends in the Atlantic 

and Hudson Bay basins. This is particularly the case for the C1 regime in the Hudson Bay and for the 
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C3 and C4 regimes in the Atlantic, for which the results are less consistent among different 

timeframes; yet, in the worst-case scenario (i.e., the C4 regime in Atlantic), there is still more than 

60% agreement between the results of trend analysis obtained by 10-, 15- and 20-year timeframes. 

Dominant regime shifts are also performed with 15- and 20-year timeframes and are intercompared 

with corresponding results obtained by decadal timeframes. Our analysis shows that results obtained 

by 15- and 20-year timeframes are in large agreements with the results obtained using decadal 

timeframes. Even for the case with the largest discrepancy (i.e., C4 regime in the Atlantic), there is 

86% agreement in terms of the direction of shift in streamflow regimes, obtained by 10- and 20-year 

timeframes. In terms of attribution of regime shifts to changes in streamflow characteristics, again 

the results obtained by different lengths are in large agreement in at least 80% of streams. Finally 

to investigate the sensitivity of attribution to the choice of measure, we substitute R2 with squared 

Kendall’s tau and repeat the experiment. The result of this experiment is summarized in Fig. D9 in 

the Appendix D. Comparing Fig. D9 with Fig. 5.9 shows that in general, the selected streamflow 

characteristics are similar with no remarkable changes in the degrees of attribution that influence our 

general findings. The most sensitive ecozones to the choice of measure of association are EZ5 and 

EZ14, demonstrating the greater values of association measured by the squared Kendall’s tau. This 

is due to higher degree of nonlinearity between regime shifts and alterations in streamflow 

characteristics in these ecozones. 

 
Figure 5.11. Similarities (in percentage) between the results obtained by 10-, 15- and 20-year timeframes 

related to trends in membership values, direction of shift in streamflow regimes, and attribution to streamflow 

characteristics in the four major Canadian basins.   
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5.5.2. Validation in out-of-sample streams 

One important question remained unanswered is how the six regime types identified can be extended 

into out-of-sample streams. Here we investigate this in the Prairies ecozone, a region with importance 

for global food security. Natural streams in Prairies have been relatively overlooked in the literature 

(Whitfield et al., 2020), because often the streams do not have continuous streamflow records, 

partially due to the fact that many streams are seasonal. In addition, the majority of annual streamflow 

volume is contributed from mountainous headwaters outside of Prairies and the fact that at many 

basins large proportion of the land does not normally contribute into the streamflow (Spence et al., 

2010; Shook et al., 2015; Mekonnen et al., 2015). In addition, only two stations in Prairies meet our 

data criteria in Sect. 3. Here, we reduce the length of data and investigate for new streams that satisfy 

our data criteria during 1976 to 2010. This has resulted into selection of nine new stations – see Fig. 

5.12 for the location of these stations (P1 to P9).  

 
Figure 5.12. Validation of the proposed algorithm in nine out-of-sample streams during 1976 to 2010 in the 

Canadian Prairies. The color bars in the left map show the degrees of membership to each cluster. The right 

panel shows the trends in the degree of membership in the six clusters in the considered 11 stations. Positive 

and negative trends are shown with red and blue colors, respectively. Sharp colors show significant cases. The 

out-of-sample stations S1 to S9 are sorted from east to west from the top to the bottom. 

The detailed information about these stations are provided in Table D6 in the Appendix D. Here 

we investigate how these new stations fit in previously identified regime types, check the trends in 

the membership degrees, and identify dominant regime shifts in these streams. We compare our 

findings in the nine new stations with the two previously selected stations in the Prairie region, 

namely, Waterton River near Waterton Park (S69; 05AD003) and Belly River near Mountain View 

(S70; 05AD005) during the common period of 1976-2010 for which the nine new stations are 

selected. The right panel shows the analysis of trends in anomalies of decadal memberships, in which 

stations are ordered from the east to west from the top to the bottom.  
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The analysis of trends in membership degrees shows mainly decreasing trends for C1 and C2 

regimes and increasing trends for C5 and C6 regimes. Regarding C3 and C4 regimes, mainly upward 

trends are observed in the east; whereas, downward trends are observed in the west. These findings 

are in line with our results in S69 and S70. The two columns at the right side of right panel are related 

to the dominant regime shift in each stream. The legend demonstrates the six identified regime types. 

Although the regime shifts are vibrant, the dominant regime shift observed is from C2 to C5, which 

is the same in S69 and S70 during the period of 1976-2010.  

We also perform an analysis of trends with focus on Quebec – see Appendix D8. We diagnose 

some significant changes in mean and variability of annual hydrograph in Quebec, which provides a 

holistic understanding of recent changes in natural streamflow regime throughout the province. 

5.5.3. Summary of findings and positioning against earlier studies  

Although to the best of our knowledge, our work is the first study in which a systematic algorithm is 

used to provide a temporally homogeneous view on recent changes in pan-Canadian streamflow 

regime; the literature of Canadian hydrology is rich in terms of documenting changes in streamflow 

characteristics across the country. Thanks to pioneering works of so many hydrologists before us, 

including the late iconic northern hydrologist, Richard Janowicz, to whom this paper is dedicated. 

Here we attempt to position our results with respect to earlier studies. Table 5.4 summarizes our 

findings in terms of dominant regime shifts and associated changes in streamflow characteristics at 

the sub-basin scale. Table 5.4 makes a clear distinction between the earlier findings, and those 

exclusively found in our study. Even though earlier studies have different data periods, and may 

include streams that are not within the RHBN streams, our study reconfirms previous findings and 

also discovers new changes in streamflow characteristics that have remained previously overlooked. 

Our study clearly shows that changes in variability of monthly, seasonal, and annual flows can be 

important drivers of shift in streamflow regime across the majority of sub-basins in Canada. This is 

another line of evidence for the complex and multifaceted nature of change in streamflow regime, 

and the need for a simultaneous look at alterations in both expected values and variability of 

streamflow characteristics to diagnose changes in natural streamflow regime.  

5.6. Concluding remarks and outlook 

This study presents an attempt toward providing a globally relevant algorithm for identifying 

changing streamflow regimes. The proposed approach is based on two fundamental considerations. 

First, streamflow regime is collectively formed by a large number of streamflow characteristics. 

Second, streamflow types are rather in the form of spectrums, not clear-cut states; and if regime shifts 

are caused by climate change, the transition from one regime type to another should be gradual rather 

than abrupt. To accommodate these two considerations, we suggest representing streamflow regime 

types as intersecting fuzzy sets, in a way that the belongingness of each stream to each regime type 

can be quantified by a membership function.  
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Table 5.4. Positioning our finding with respect to earlier studies across major Canadian basins and sub-basins  

Basin 

Sub-basin 

(stream 

location) 

Dominant 

regime 

shifts 

Earlier findings on changes in 

streamflow characteristics 

(reconfirmed in this study) 

New findings on changes in streamflow characteristics 

(discovered exclusively in this study) 

P
ac

if
ic

 

Yukon C3 to C1 

Earlier timing of low and high flows; 

greater variability in timing of high flows 

(Burn 2008; Brabets and Walvoord, 2009; 

St. Jacques and Sauchyn, 2009) 

Increasing flow in September; increasing flow variability in April and May 

Seaboard 

(north) 
C1 to C2 Increasing winter flows (Déry et al., 2009) 

Increasing monthly flow in May; earlier timing of low flow; increasing 

variability in March, May and annual flows 

Seaboard 

(south) 
C1 to C3 

Decreasing annual and monthly flow from 

April to June; decreasing flow in fall 

(Déry et al., 2009; Pike et al., 2010) 

Delayed and more variable timing of annual low flow; increasing variability 

in February’s monthly flow 

Fraser (north) 

Case 1: C1 

to C2 

 

Case 2: C2 

to C1 

No earlier study in this region was found.  

Case 1: Increasing mean and variance in annual and summer flows; 

increasing monthly flows in May and June; increasing variation in timing of 

low flow and the quantity of spring flows. Case 2: Decreasing mean and 

variance of annual flow; decreasing monthly flows in July and October; 

earlier timing of high flow; decreasing variability of monthly flows in May, 

August, September 

Fraser (south) C2 to C5 

Decreasing summer flows (Stahl and 

Moore, 2006); Increasing  variability in 

monthly flows in November and April 

(Déry et al., 2012; Thorne and Woo, 

2011) 

Earlier timing of high flows; increasing mean monthly flows in November 

and April 

Columbia 

(north) 
C2 to C1 

Decreasing annual and summer flows 

(Stahl and Moore, 2006; Fleming and 

Weber, 2012; Forbes et al., 2019) 

Decreasing variability in annual flow, and monthly flows of August and 

September 

Columbia 

(south) 
C1 to C3 

Increasing flow in April and decreasing 

flow in September (Whitfield and 

Cannon; 2000; Whitfield, 2001); Earlier 

timing of high flow (Burn and Whitfield, 

2016; Burn et al., 2016) 

Delayed timing and greater variability of the annual low flow; increasing 

mean and variance of flow in November's flow 

A
tl

an
ti

c 

Seaboard 

(north) 
C5 to C3 

increasing spring flows, corresponding to 

increased snow precipitation (Thistle and 

Caissie, 2013) 

Increasing monthly flow in April; decreasing monthly flow in June; delayed 

and less variable timing of low flows; less variation in annual timing of 

high flows; decreasing mean and variation of monthly flow in August 

Seaboard 

(south) 

Case 1: C5 

to C4 

 

Case 2: C3 

to C5 

Case 1: decline in the annual flow 

(Whitfield and Cannon, 2000; Yue et al., 

2003; Thistle and Caissie (2013) 

Case 2: decline in winter flows, probably 

due to positive AMO (Whitfield and 

Cannon, 2000; Assani et al., 2012) 

Case 1: Decreasing monthly flow in May, June and August; increasing 

monhly flow in March; Decreasing variability in February’s monthly flow 

Case 2: Decreasing monthly flow in May and June; later timing of low 

flows 

St. Lawrence 

(north) 
C3 to C1 

smaller variations in timing of low flow 

(Thistle and Caissie, 2013) 

Decreasing annual flow as well as seasonal flows in summer and winter; 

decreasing monthly flows in June, less variation in monthly flows of 

February, May, June 

St. Lawrence 

(south) 
C1 to C3 No earlier study in this region was found. 

Increasing mean and variation in monthly May flows; decreasing mean and 

variation in September flows; decreasing flow in October, increasing flow 

in February; increasing variance in timing of low flows; increasing 

variability in January’s monthly flows 

Saint John- St. 

Croix 
C5 to C4 

Decreasing monthly flow in May 

(Kingston et al., 2011) 

Decreasing annual flow; deceasing monthly flows in February and June; 

decreasing mean and variability of monthly flows in October and August 

A
rc

ti
c 

Seaboard C1 to C2 

Earlier and more variable timing of high 

flows; increasing winter flows (Burn, 

2008; Déry et al. 2016); earlier timing of 

high flows (Yang et al.; 2015) 

increasing mean and variability of seasonal flow in fall, heightened 

variability in monthly flow in June 

Lower 

Mackenzie 
C1 to C2 

Increasing annual and winter flows (Smith 

et al., 2007; 

Walvoord and Striegl, 2007; St. Jacques 

and Sauchyn, 2009; Rood et al., 2016) 

Increasing annual and seasonal flows during fall; increasing June’s monthly 

flow; heightening variability in the timing of high flows 

Peace 

Athabasca 
C2 to C1 

Decreasing monthly flow in July (Yang et 

al., 2015) 
earlier and less variable timing of low flows 

H
u
d
so

n
 B

ay
 

Western & 

Northern 

Hudson Bay 

C1 to C3 

Increasing winter flows; decreasing 

summer flows; increasing variability in 

winter flows (Déry et al., 2011, 2018) 

Delayed and more variable timing of low flows; increasing variability in 

February’s monthly flow 

Northern 

Quebec  & 

Ontario 

C1 to C2 

Increasing annual and winter flows, 

increasing variability in timing of high 

flows 

Increasing annual and seasonal fall and summer flows; decreasing and less 

variable monthly flows in May; decreasing monthly flow in June 

Nelson C1 to C3 

Decreasing summer and fall flows Rood 

et al. (2008);  Decreasing summer flows; 

increasing variability fall and spring flows 

(Déry et al., 2011) 

Decreasing monthly flow in May and June; increasing variability of timing 

of low and high flows; increasing annual flow and seasonal flows in 

summer and winter 

 

Accordingly, monitoring the trends in membership values in time and space can provide a basis to 

identify the regime shift from one type to another. We consider the existence of a significant trend in 
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membership values as an evidence for the regime shift. In addition, analyzing the covariance of 

membership values with streamflow characteristics can provide a basis to attribute regime shifts to 

alterations in certain streamflow characteristics in time and/or space. A significant dependence 

between a given regime shift and simultaneous alterations in streamflow characteristics highlights 

attribution, which can be communicated by R2. 

To apply this algorithm, we consider 45-year of daily data from 105 RHBN streamflow gauges 

across Canada, to provide a comprehensive and temporally homogeneous look at forms and extents 

of change in natural streamflow regime in Canada, coast to coast to coast. Our results show that 

streamflow regime in Canada can be categorized into six distinct regime types with clear physical 

and geographical interpretations. Analyses of trends in membership values show that alterations in 

natural streamflow regime are vibrant and can be different across different regions. Overall, in more 

than 80% of the considered stream there is a dominant regime shift that can be attributed to changes 

in streamflow characteristics. At the ecozone scale, the dominant regime shifts are from C1 to C2 in 

the northern ecozones (EZ5 and EZ12), from C2 to C1 and from C2 to C3 in the western ecozones 

(EZ9 and EZ14), from C2 to C3 in the two stations located in the Prairies, from C1 to C3 in the 

eastern ecozones (EZ6, EZ8, and EZ15), and from C5 to C4 in the Appalachian region (EZ7 and 

eastern part of EZ6). The variability between the regime shifts inside each ecozone can be described 

by elevation and/or latitude. At the basin scale, dominant modes of transition are from C3 to C1 in 

the northern Pacific and from C1 to C3 in the southern Pacific, between the C4 and C5 regime as well 

as the C3 and C5 in the Atlantic, between the C1 and C2 in the Arctic, and between C1 and C3 as 

well as the C2 and C3 regimes in Hudson Bay. The details of change in streamflow regime, however, 

are subject to a spatial variability within each drainage basin. In Atlantic and Pacific regions, there 

are clear divides between dominant regime shifts in northern and southern regions. For instance, In 

the Pacific, the association to C1 is increasing in Yukon and northern parts of Columbia and Fraser 

sub-basins; but it is significantly decreasing in the southern regions. This can be due to different 

manifestations of climate change, which are more appeared as temperature increases in the north, and 

growing ratios of rain over precipitation in south, shifting the streamflow more toward rain-dominated 

regimes (Fleming and Clarke, 2003). This reconfirms the important role of latitude in driving the 

streamflow response to climate change.  

The proposed framework provides an opportunity to identify the changing streamflow regimes and 

attributes such changes to a large set of streamflow characteristics. This approach, however, do not 

explore the attribution of the shifts in streamflow regimes to the changes in temperature pattern, form 

and magnitude of precipitation, snowmelt, glacial retreat and permafrost degradation. These can be 

potential areas for future research. We hope our study triggers more attention to multifaceted nature 

of change in streamflow regime in Canada and the rest of the world during the current 

“Anthropocene”.  
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Chapter 6.  

A Generalized Approach for Synthetic Streamflow Generation under Changing Conditions5 

The contents of this chapter are in preparation as “A Generalized Approach for Synthetic Streamflow 

Generation under Changing Conditions” for submission to Water Resource Research. 

 

Synopsis 

Climate change and anthropogenic interventions have drastically perturbed streamflow 

characteristics globally. Such changes can cause vulnerabilities in water resource systems, developed 

around certain characteristics of streamflow regime. Understanding the potential vulnerabilities are 

generally through top-down approaches, advised based on a cascade use of climate and hydrological 

models, and include large uncertainty. To address limitations in top-down approaches, the so-called 

bottom-up frameworks have been proposed. In such approaches, the response of water systems is 

analyzed directly as a function of potential changes in flow characteristics, requiring stochastic 

streamflow generation schemes. These methodologies are often developed to generate streamflow 

ensemble under stationarity, assuming that the characteristics of flow hydrograph will not change 

over time. It is, however, argued that the fundamental assumption of stationarity has been influenced 

by climate change and human activities, and therefore it is not applicable for synthetic generation of 

streamflow under changing conditions. This requires methodologies to represent changes in the 

streamflow hydrograph under changing conditions. Here, we propose a parsimonious framework to 

systematically represent shifts in the expected streamflow hydrographs and variability around it. For 

this purpose, we use a series of orthogonal gamma distributions, for which the properties of 

distributions can be perturbed, reconstructed and reproduced under changing conditions. The 

proposed framework is applied to a number of streams across Canada to generate large ensembles of 

perturbed streamflow. The results demonstrate that the proposed algorithm can implement the desired 

shifts quite well with relative error of less than 5% in representing the seasonal volumes in single and 

multisite settings. The proposed model performs well in representing the expected timing of peak, 

showing an absolute error of less than 0.5 week in most of cases. The best performance, however, is 

observed in representing the expected timing of peak and seasonal volumes of glacial regimes. The 

proposed algorithm is generic, providing a global scheme to analytically generate scenarios of change 

required for vulnerability assessment under nonstationary condition.  

6.1. Introduction 

Ongoing alteration of flow regime due to climate change, climate variability, and anthropogenic 

interventions have been witnessed in many parts of the world, affecting the freshwater availability, 

and subsequently both ecosystem, and socio-economic activities (Tonkin et al., 2018; Amir Jabbari 

and Nazemi, 2019; Ferrazzi  et al., 2019; Padrón et al., 2020). Such changes have drastically perturbed 

streamflow characteristics throughout the world (Ma et al., 2016). In Australia, for instance, due to 

climate change annual streamflow in catchments on the northeast coast and east coast could change 

by −5 to +15% and ±15% respectively by the year 2030, while in southeast Australia the annual 

                                                            
5 Zaerpour, M., & Nazemi, A. (2021). A Generalized Approach for Synthetic Streamflow Generation under Changing Conditions, 

under preparation for Journal of Water Resources Research.  
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streamflow could decrease by up to 20% (Chiew and McMahon, 2002; Liu et al., 2019). In Europe, 

several studies have projected an increase in discharge in the high-latitudes and decrease in the 

Mediterranean and Southern Europe (Arnell and Gosling, 2013; Hagemann et al., 2013; Lobanova et 

al., 2018). Climate change have also led to the earlier spring timing of peak in northeastern Europe; 

later winter floods around the North Sea and parts of the Mediterranean coast, and earlier winter 

floods in Western Europe (Blöschl et al., 2017; Donnelly et al., 2017; Hall and Blöschl, 2018). In 

southern and western portions of United States and Canada, climate change and human interventions 

result in generally observed and projected decreased streamflow (Tan and Gan, 2015; Ficklin et al., 

2018). Such patterns of changes in flow regimes are observed not only in the spatial scale but also 

across various flow regimes through a wide range of streamflow characteristics, depending on the 

type and the relative dominance of streamflow‐generating processes (Matti et al., 2017; Curran and 

Biles, 2020; Zaerpour et al., 2021a). In streamflow with glacial regime, for instance, increasing annual 

volume is more severe, caused by glacial retreat (Stahl et al., 2008; Clarke et al., 2015; Chesnokova 

et al., 2020. In streams with nival regime decreasing annual volume is often accompanied by an earlier 

occurrence of the timing of peak caused by decrease in snow cover during winter and higher winter 

temperature (Vormoor et al., 2016; Matti et al., 2017; Zaerpour et al., 2021a). Flow seasonality which 

is another important feature of the annual hydrograph, characterizing the distribution of streamflow 

throughout the year is also expected to change (Matti et al., 2017; Eisner et al., 2017). The changes 

in flow seasonality are more likely to happen in nivo-pluvial regime caused by increase in fall flow 

due to rainfall, indicating a shift from snowmelt-dominated to rainfall-dominated regime (Arheimer 

and Lindström, 2015; Rottler et al., 2021).  

Such changes in the streamflow regimes highlight just how crucial it is to secure regional water 

supplies for the human and environment (Villarini and Wasko, 2021).  The changes in the streamflow 

regimes can indeed lead to significant challenges for water resource planning and management in the 

21st century in coping with uncertainty from climate change, human developments, and financial 

factors, among others (Haddeland et al., 2014; Herman et al., 2016; Knighton et al., 2017; Borgomeo 

et al., 2018; Taner et al., 2019). This requires better understanding the main vulnerabilities in water 

resource systems under future conditions which is the key to mitigating negative impacts and 

exploring adaptation strategies such as expanding reservoir capacity and building desalination plant 

(Bhave et al., 2014; Conway et al., 2019; Fletcher et al., 2019; Herman et al., 2020; Quinn et al., 

2020). The conventional approach for vulnerability assessment of water resource systems is generally 

through a top-down (a.k.a. scenario-led) impact assessment paradigm that uses downscaled 

projections of Global Climate Models (GCMs) to provide the inputs for hydrological models, with 

which the changes in streamflow conditions can be quantified (e.g., Gizaw et al., 2017; Krysanova et 

al., 2017; de Oliveira et al., 2017; Broderick et al., 2019). Although recommended by the International 

Panel of Climate Change (IPCC, 2014), these approaches are subject to a cascade of uncertainty 

(Brown and Wilby, 2012; Pielke et al., 2012; Prudhomme et al., 2014; Clark et al., 2016). For instance, 

the uncertainty propagates through the chain of greenhouse gas emissions, climate models and the 

initial conditions, making them unable to adequately reproduce major atmospheric circulation 

patterns (Pielke Sr., 2010; Annamalai et al., 2007), which are the main drivers of natural climate 

variability in many regions (e.g., Dieppois et al., 2016; Cioffi et al. 2017). These limitations and the 
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fact that generated scenarios are only limited to climatic conditions confine the wide applications of 

top-down approaches for decision-making under deep uncertainty (Herman et al., 2020; Quinn et al., 

2020).  

Recent work on decision making under deep uncertainty seeks to find vulnerability of water 

resource systems to changes in the streamflow conditions that are not only robust to scenarios of 

change due to climatic conditions but to possible human interventions and future socioeconomic 

conditions as well. These so-called bottom-up (a.k.a., scenario-neutral) approaches provide a basis to 

expose water resource systems to a wide range of plausible scenarios for which management options 

should be assessed (e.g., Prudhomme et al., 2010; Ray et al., 2019; Sauquet et al., 2019; Taner et al., 

2019). Early bottom-up assessment approaches such as Robust Decision Making (Bryant and 

Lempert, 2010; Wilby and Dessai, 2010; Weaver et al., 2013), Info-Gap (Haim, 2006; Hall et al., 

2012; Matrosov et al., 2013), and Decision Scaling (Brown et al., 2012; Poff et al., 2016), however, 

mainly focus on avoiding uncertainties resulted from climate projections and still implement 

hydrological models to translate the feasible climate envelope to projected water availability (Nazemi 

et al., 2020). As a result, uncertainties from hydrological models can still propagate into vulnerability 

assessment of water resources systems (Nazemi and Wheater, 2014a). More recent contributions, 

therefore, have moved towards fully bottom-up approaches to generate future water availability 

conditions without incorporating any climate and/or hydrological models. Accordingly, vulnerability 

can be directly mapped as a function of feasible changes in streamflow conditions (Nazemi et al., 

2013; Borgomeo et al., 2015; Nazemi et al., 2020).  

Regardless of methodological differences, these decision-centric frameworks are mainly 

developed to generate ensemble of synthetic streamflow series under stationarity, assuming that the 

characteristics of flow hydrograph will not change over time. For this purpose, stochastic modeling 

of streamflow has a key role in hydrology. Conventional methods typically implement autoregressive 

and their variants to linearly model the streamflow series (Pegram, 1980; Stedinger and Taylor 1982; 

Salas et al., 1985). Such approaches, however, cannot represent the marginal streamflow distribution, 

especially in the case of asymmetric and/or multimodal conditions (Papalexiou, 2018; Papalexiou 

and Serinaldi, 2020). To address these issues, non-parametric approaches have been developed as an 

appealing alternative (Lall and Sharma, 1996); however, they can only generate the streamflow 

realizations within the range of observed data and are limited in extrapolation (Papacharalampous et 

al., 2019; Quilty and Adamowski, 2020). More recently, copula-based models have gained lots of 

attention in hydrolclimatology (Nazemi and Elshorbagy, 2012; Aghakouchak, 2014) and in stochastic 

streamflow generation in single (Hao and Singh, 2012) and multiple sites (Pereira and Veiga, 2018; 

Chen et al., 2019; Nazemi et al., 2020; Zaerpour et al., 2021b). This is mainly due to flexibility of 

copulas in representing the nonlinear spatiotemporal dependence structures observed within 

streamflow (Bárdossy and Pegram, 2009; Worland et al., 2019; Wang et al., 2019).  

It is, however, argued that the fundamental assumption of stationarity has been influenced by 

climate change and human activities (Milly et al., 2005, 2008), and therefore it is not applicable for 

synthetic generation of streamflow under changing conditions (Li et al., 2015; Shrestha et al., 2017; 
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Yang et al., 2021a, b). This requires methodologies to represent changes in the streamflow 

hydrograph under changing conditions capable of generating scenarios of change beyond observed 

data. Little attention, however, has been given on advancing the perturbation algorithms required for 

altering the streamflow characteristics and generate a wide range of scenarios of change (Nazemi et 

al., 2013; Borgomeo et al., 2015; Feng et al., 2017; Herman et al., 2020). Some studies focus on 

developing algorithms for perturbing only few streamflow characteristics such as annual volume or 

timing of annual peak (Nazemi et al. 2013; Feng et al. (2017), or the work of Herman et al. (2016) 

for perturbing only the frequency of low flow. The general approach for perturbing the streamflow 

characteristics developed by Borgomeo et al. (2015) can provide any desired shift in streamflow 

characteristics by rearranging the annual hydrographs to generate a set of desired properties while 

such characteristics are treated as a combinatorial optimization problem. Such approaches, however, 

are very time-consuming, and similar to other optimization techniques may converge to local 

optimum. Additionally, this algorithm is based on reshuffling the observed annual hydrograph, 

leading to the disturbance of the temporal dependence structure of streamflow series and generating 

the streamflow realizations limited to the observed historical hydrographs. Furthermore, for 

generation of streamflow realization, different characteristics of flow regime have been considered 

in the one objective function. Nonetheless, these characteristics are not explicitly independent of each 

other. The work of Nazemi et al. (2013; 2020), on the other hand, is able to generate the scenarios of 

change beyond the observed hydrograph by combining the conventional resampling and the simple 

delta-methods. This approach, however, is limited to generating scenarios of change in two main 

characteristics of flow regime, i.e. the expected timing of peak and annual volume. Despite some 

advances in such perturbation algorithms for generating scenarios of change under nonstationary 

conditions, none – to the best of our knowledge – are able to represent the gradual shift in the 

streamflow regime but they generate abrupt changes only in a few streamflow characteristics. 

Additionally, these approaches generally propose an ad-hoc solution by implementing a heuristic 

method to generate scenarios of change rather than an exact analytical solution.     

Here, we propose a general approach to synthesize any plausible scenario of change by providing 

a large ensemble of perturbed streamflow, with which the vulnerability of water resource systems to 

the changes in streamflow hydrograph can be analyzed. The idea is to develop a generic stochastic 

algorithm to systematically generate any potential changes in the streamflow hydrographs under 

nonstationary conditions. The algorithm proposes an analytical solution to represent transient shifts 

in the streamflow hydrograph. For this purpose, we initially identify the gradual changes in the 

streamflow hydrographs over the historical period using a moving trend analysis, giving the 

opportunity to project such changes to future conditions.  The proposed algorithm first decomposes 

the streamflow regime into an expected streamflow hydrograph and the variability around it. We then 

conceptualize the streamflow hydrograph as a time distribution function, mimicking all probabilistic 

properties of cumulative distribution function. Later, to implement the desired shifts analytically, we 

use a series of orthogonal generalized gamma distributions, for which the properties of distributions 

can be perturbed, reconstructed and reproduced under changing conditions. The algorithm is then 

accommodated into a copula-based stochastic streamflow generation scheme to projects the desired 
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shift in single- and multisite generation of streamflow at short- and long-range futures. We 

demonstrate the practical utility of the new perturbation algorithm in single- and multisite settings 

using a number of natural streams with different flow regime types across Canada. The remainder of 

the paper is organized as the following. Section 6.2 presents the methodologies for identifying the 

dominant shifts in the streamflow hydrographs and the implementation of potential shifts. Section 6.3 

briefly introduces our case studies. Section 6.4 discusses the model development and experimental 

setup. Section 6.5 presents the results and discusses the application of the proposed algorithm. Finally, 

Section 6.6 concludes the study.  

6.2. Methodology 

6.2.1. Rationale 

The streamflow regime can be defined by the shape of expected annual hydrograph and the variability 

around it (Zaerpour et al., 2021a). Under stationarity, it is often assumed that the probabilistic 

characteristics of flow regime will not change over time. Milly et al. (2005, 2008), however, argued 

that the fundamental assumption of stationarity has been influenced by climate change and human 

activities, and therefore it is not applicable for synthetic generation of streamflow under changing 

conditions (Chang et al., 2016). This requires methodologies to represent changes in the streamflow 

characteristics under changing conditions. Although some methodologies are developed to represent 

changes in one or few characteristics of streamflow regimes, they cannot analytically represent forms 

of change in different streamflow characteristics.  

The responses of streamflow hydrograph to climate change and/or human intervention, however, 

can be observed in the form of simultaneous shifts in multiple streamflow characteristics. Here, we 

propose a framework, comprising a stochastic scheme to represent, perturb, and generate the 

streamflow hydrograph under changing condition. For this purpose, first we need to identify the 

changes in the main characteristics of streamflow hydrograph, i.e., the expected annual hydrograph 

and the first three moments of flows at the subannual timescale describing the probability 

distributions at each time step. We employ the concept of moving timeframe and slide it year-by-year 

(see Zaerpour et al., 2021a for further information on moving trend analysis). Within each timeframe 

we calculate the expected timing of annual peak and the values of three moments at each subannual 

timescale. The length of moving timeframe should be long enough to accommodate enough number 

of data for fitting a parametric marginal distribution (here we consider a timeframe with a length of 

30-year). This leads to 52 × 3 + 1 time series in the case of weekly timestep. Having these timeseries, 

the Mann-Kendall trend test with Sen’s Slope (Mann, 1945; Kendall, 1975) are applied to (1) to 

identify the dominant forms of change in each characteristic, (2) quantify the observed changes in 

these characteristics within the historical period (3) project the changes in the historical period to 

implement the desired shifts under future conditions. Later in section 6.4, we discuss how to obtain 

the desired shift under future condition.  

Having the desired shifts, we first assume that the streamflow hydrograph can be described by the 

expected annual hydrograph and the variability around it at the subannual time steps (e.g., weekly, 
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monthly, or seasonal) as illustrated in Fig. 6.1a in black and gray colors, respectively. We then 

propose two algorithms to implement such changes to the streamflow hydrograph. First, to perturb 

the expected annual hydrograph, we conceptualize the annual hydrograph as a time distribution 

function mimicking the properties of probabilistic cumulative distribution function (CDF) – see Fig. 

6.1b.  

 

Figure 6.1. The proposed framework for shifting the streamflow annual hydrograph. The panel (a) shows the 

streamflow hydrograph defined by the expected annual hydrograph (black line) and the variability around it at 

the subannual timescale (gray boxes). The gray distributions show the seasonality defined by the changes in 

the seasonal volume distributions. The panels (b) and (c) illustrate the schematic procedures for perturbing the 

expected annual hydrograph and the variation at the subannual timescales, respectively. The panel (c) displays 

the shifted streamflow hydrograph composed of updated expected annual hydrograph (red line) along with 

updated distributions in subannual timescale (pink boxes).  

We then use quantile mapping (e.g., Li et al., 2010) to systematically shift the expected annual 

hydrograph by assuming that the shift in the flow quantiles can be mapped by the desired shift in 

quantiles of a Generalized Gamma distribution (GG) with the same mode as the expected annual 

hydrograph (see Fig. 6.1b and section 6.2.2 for further explanation). The changes in the variability 

around the expected annual hydrograph can be expressed by perturbing the three moments of GG 

probability distributions fitted to the flows at each subannual timestep – see Fig. 6.1c and section 

6.2.3 for further discussion. The changes in the expected annual hydrograph and the variability can 

collectively combined to represent any form of change in the streamflow regime – see the updated 

streamflow hydrograph in Fig. 6.1d. 

6.2.2. Representing and Perturbing the Expected Annual Hydrograph  

6.2.2.1. Generalized Gamma Distribution 

The Generalized Gamma Distribution (GG) is one of the most common distributions. It is mainly due 

to its extreme flexibility and adaptability to different shape distributions, such as Levy distribution, 
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Rayleigh distribution, Weibull distribution, exponential distribution, and 2-parameter gamma 

distribution. Thus, it has been applied in various fields of science such as healthcare (Hill and Miller, 

2010; Abadi et al., 2012; Pal et al., 2020), economics (Kleiber and Kotz, 2003; Zamani et al., 2020), 

and hydrology (Ashkar and Ouarda, 1998; Papalexiou and Koutsoyiannis, 2012; Chen et al., 2017; 

Chen and Singh, 2018).  

The Generalized Gamma Distribution (GG) is one of the most common distributions. It is mainly 

due to its extreme flexibility and adaptability to different shape distributions, such as Levy 

distribution, Rayleigh distribution, Weibull distribution, exponential distribution, and 2-parameter 

gamma distribution. Thus, it has been applied in various fields of science such as healthcare (Hill and 

Miller, 2010; Abadi et al., 2012; Pal et al., 2020), economics (Kleiber and Kotz, 2003; Zamani et al., 

2020), and hydrology (Ashkar and Ouarda, 1998; Papalexiou and Koutsoyiannis, 2012; Chen et al., 

2017; Chen and Singh, 2018).  

Historically, the generalized gamma distribution is a younger distribution than normal distribution, 

first introduced by Stacy (1962). The origins of the generalized gamma distribution, however, can be 

viewed as a special case of the Amoroso distribution which be traced back to the work of Amoroso 

(1925). The probability distribution function (PDF) of the 3-parameter GG distribution is given by:  

 

𝑓(𝑥;  𝛽, 𝜆, 𝑠) =

{
 
 

 
 |𝑠|𝑥𝑠𝜆−1𝑒

−(
𝑥
𝛽
)

𝛽𝑠𝜆Γ(𝜆)

𝑠

  𝑖𝑓 𝑥 > 0 

𝑁𝐴
       0                   𝑖𝑓 𝑥 ≤ 0

   (6.1) 

where 𝛽 is a scale parameter and both 𝜆 and 𝑠 are shape parameters. The 𝛽 and 𝜆 must be positive 

and 𝑠 can be either positive or negative. Γ(. ) denotes the gamma function defined by Γ(𝑧) =

∫ 𝑥𝑧−1𝑒−𝑥𝑑𝑥
∞

0
. The cumulative distribution function (CDF) of generalized gamma distribution is 

given by:  

 

𝐹(𝑥;  𝛽, 𝜆, 𝑠) =

{
 
 

 
 𝛾 (𝜆, (𝑥 𝛽⁄ )

𝑠
)

Γ(𝜆)
  𝑖𝑓 𝑥 > 0 

𝑁𝐴
       0                   𝑖𝑓 𝑥 ≤ 0

   (6.2) 

 

where 𝛾(. ) is the lower incomplete gamma function defined as 𝛾(𝑠, 𝑥) = ∫ 𝑡𝑠−1
𝑥

0
𝑒−𝑡𝑑𝑡.  

The non-central moments of the generalized gamma distribution are defined by (Stacy, 1962):  

𝜇𝑟
′ (𝑥) =

𝛽𝑟Γ(𝜆 + 𝑟 𝑠⁄ )

Γ(𝜆)
 (6.3) 
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The moments are defined only if (𝜆 +
𝑟

𝑠
) > 0. If we adopt the notation, as previously employed by 

Cohen and Whitten (2020), then we have 𝐺𝑟(𝜆, 𝑠) as: 

𝐺𝑟(𝜆, 𝑠) =
Γ(𝜆 + 𝑟 𝑠⁄ )

Γ(𝜆)
 (6.4) 

 

6.2.2.2. Representing and Perturbing the Time Distributio Function 

Here, we employ GG distribution along with a quantile mapping to shift the expected annual 

hydrograph. For this purpose, considering 𝑛 years of annual streamflow data with an expected annual 

hydrograph, 𝑄𝐴,  at any site A, first the expected annual hydrograph needs to be translated into a 

cumulative time distribution (𝑇𝐷𝐹) as previously discussed in Nazemi et al. (2013) and later used in 

many applications (e.g., Hassanzadeh et al. 2016, Feng et al., 2017; Nazemi et al., 2020). 𝑇𝐷𝐹 works 

similar to 𝐶𝐷𝐹 and can be interpreted as the ratio of the total annual volume, passed prior to or at 

each subannual timestep. Assuming flows at the subannual timestep 𝑡: 𝑡 = 1, 2, … ,𝑚 and a uniform 

timestep with duration of 𝛿, the 𝑇𝐷𝐹 can be defined at the timestep 𝑡 as:  

𝑇𝐷𝐹(𝑡) =
∑ 𝑄𝑖

𝐴𝑡
𝑖=1

∑ 𝑄𝑗
𝐴𝑚

𝑗=1

 (6.5) 

where 𝑄𝑖
𝐴 is the flow at the timestep 𝑖. The 𝑇𝐷𝐹𝑠 have similar properties as 𝐶𝐷𝐹; and therefore 

having the total annual volume and the 𝑇𝐷𝐹𝑠, the flow at each timestep can be estimated by:  

𝑄𝑡
𝐴 = (𝑇𝐷𝐹(𝑡) − 𝑇𝐷𝐹(𝑡 − 1)) ×∑𝑄𝑗

𝐴

𝑚

𝑗=1

 (6.6) 

Having the 𝑇𝐷𝐹 of flows at each timestep 𝑡, to shift the timing of the annual peak, we assume that 

the instantaneous displacement of a 𝐺𝐺 distribution can be implemented to the expected annual 

hydrograph using quantile mapping. For this purpose, the 𝑇𝐷𝐹 should have the maximum shift at the 

timing of the peak. This can be conceptualized using the displacement of a 𝐺𝐺 distribution for which 

the mode of distribution coincides with the peak of annual flow before and after desired shift. Fig. 

6.1b illustrates the proposed conceptualization. The left panel of Fig. 6.1b exemplifies the concept, 

demonstrating a 𝐺𝐺 distribution fitted to the expected annual hydrograph shown in blue line for which 

the mode of distribution matches the timing of annual peak. To implement any desired shift, ∆, first 

we have to obtain the three parameters of the 𝐺𝐺 distribution fitted to the original annual hydrograph 

(the blue lines in the Fig. 6.1b) using the generalized method of moments as described by the 

following system of equations:  

𝜇1
′ (𝑄𝐴) = 𝐸(𝑄𝐴) = 𝛽𝐺1 (6.7) 

𝜇2
′ (𝑄𝐴) = 𝑉(𝑄𝐴) = 𝛽2(𝐺2 − 𝐺1

2) (6.8) 

𝑀𝑜(𝑄𝐴) = 𝛽(𝜆 − 1 𝑠⁄ )
1 𝑠⁄
 ,    ∀ 𝜆𝑠 > 1 (6.9) 
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where 𝐺𝑘(𝜆, 𝑠) abbreviated to 𝐺𝑘; the left-hand side of Eqs. 6-8 are the mean, variance, and mode of 

original annual hydrograph. By solving this system of equations, we obtain the parameters of 

𝐺𝐺𝑜distribution fitted to the TDF of original annual hydrograph as shown in blue line in Fig. 6.1b. 

The next step is to implement the desired shift, Δ, to the timing of peak and obtain the new 𝐺𝐺Δ 

distribution containing the desired shift as shown in green line in Fig. 6.1b. For this purpose, we have 

to solve the above system of equations as described in Eqs. 7-9 with the same mean and variance but 

with a new mode of distribution shifted by ±Δ. To impose the desired shift in the timing of peak to 

the annual hydrograph, here we use quantile mapping to update the annual hydrograph as the 

following:  

𝑄𝐴 = 𝐹−1(𝐺𝐺𝑜(𝛽𝑜, 𝜆𝑜, 𝑠𝑜){𝐺𝐺Δ
−1(𝛽Δ, 𝜆Δ, 𝑠Δ)(𝑢)}) (6.10) 

 

where 𝐹−1 is the inverse 𝑇𝐷𝐹 of annual hydrograph. 𝐺𝐺𝑜 is the generalized gamma distribution fitted 

to the historical hydrograph. 𝐺𝐺Δ
−1 is the inverse of updated generalized gamma distribution with 

desired shift Δ. The 𝑄𝐴 is the shifted annual flow hydrograph with updated flow quantiles at the 

nonexceedance probability 𝑢 as shown in Fig. 6.1c with gray line.  

6.2.3. Representing and Perturbing the Variability around Expected Hydrograph 

Using the procedure explained in section 6.2.2 and illustrated in Fig. 6.1b, we are able to shift the 

expected annual hydrograph. The streamflow hydrograph, however, comprises the expected annual 

hydrograph and the variability around it at the subannual timescale (see Fig. 6.1a). This requires 

another algorithm to represent and perturb the variability of flows at the subannual timescale.  Here, 

we propose an algorithm to shift the flow distributions at the subannual timestep as demonstrated in 

Fig. 6.1c. For this purpose, (1) we obtain the first three moments of flows at the subannual timescale 

𝑡: 𝑡 = 1, 2, … ,𝑚 including mean, variance, and skewness of original flows (see the black line in 

bottom row of Fig. 6.1c) ; (2) we analyze the changes in the three moments using the moving 

timeframe and analysis of trend as demonstrated in the top row of Fig. 6.1c; (3) we impose any desired 

shifts, 𝜑𝑡, 𝜙𝑡 , and 𝜔𝑡 to the three moments at the subannual timescale obtained using the concept of 

moving timeframes and trend analysis as explained in section 6.2.1 (see Zaerpour et al., (2021) for 

further discussion); (4) the method of moments are applied to the 𝐺𝐺 distributions at each timestep 𝑡 

to extract the updated parameters of 𝐺𝐺𝑡 distributions (see pink line in the bottom row of Fig. 6.1c) 

which can be described by solving the system of equations as follows: 

𝜇1
′ (𝑄𝑡

𝐴) ± 𝜑𝑡 = 𝛽𝐺1 (6.11) 

𝜇2
′ (𝑄𝑡

𝐴) ± 𝜙𝑡 = 𝛽
2(𝐺2 − 𝐺1

2) (6.12) 

𝜇3
′ (𝑄𝑡

𝐴) ± 𝜔𝑡 =
𝐺3 − 3𝐺2𝐺1 + 2𝐺1

3

(𝐺2 − 𝐺1
2)
3
2⁄

     (6.13) 

 

where the 𝜇1
′ , 𝜇2

′ , and 𝜇3
′  in the left side of Eqs. 11-13 are the first three moments of the original flows 

at the subannual timestep t; the 𝜑𝑡, 𝜙𝑡, and 𝜔𝑡 are the desired shifts in the moments of 
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𝐺𝐺𝑡 distribution at the subannual timestep. By solving this system of equations, we are able to impose 

the desired shifts and update the distributions at the subannual timestep.  

6.2.4. Copula-based generation of streamflow series 

6.2.4.1. Single-site Generation of Streamflow  

In single site generation of streamflow, the temporal dependence structure within flows at the 

subannual timescale should be maintained. Here, we use bivariate copula methodology to represent 

the temporal dependence structure. In summary, if 𝑢 and 𝑣 are two continuous random – here are the 

flows at the two consecutive time steps 𝑡 − 1 and 𝑡 with the marginal distributions of 𝑢 = 𝐹𝑡−1(𝑄𝑡−1
𝐴 ) 

and 𝑣 = 𝐹𝑡(𝑄𝑡
𝐴), the joint cumulative distribution 𝐹𝑈,𝑉(𝑢, 𝑣) can be described using copula function 

defined by (Sklar, 1959):  

𝐹𝑈,𝑉(𝑢, 𝑣) = 𝐶(𝑢
∗, 𝑣∗)  (6.14) 

 

where 𝐶 denotes the copula function. Having the joint distribution between flows at the two 

consecutive time steps, the nonexceedance probability of flow at the time step 𝑡 can be estimated 

conditionally as the following (see Salvadori and De Michele, 2007):  

𝐶𝑢∗(𝑣
∗) = 𝑃{𝐹𝑡(𝑄𝑡

𝐴) ≤ 𝑣|𝐹𝑡−1(𝑄𝑡−1
𝐴 ) = 𝑢∗} =

𝜕

𝜕𝑢
(𝐶𝑡,𝑡−1(𝑢

∗, 𝑣∗)) (6.15a) 

𝑄𝑡
𝐴 = 𝐹𝑡

−1{𝐶𝑢∗
−1(𝑣∗)} 

 

(6.15b) 

 

 

where 𝑄𝑡
𝐴 is the flow at the time step 𝑡, 𝑄𝑡

𝐴 is the flow at time step 𝑡 − 1, 𝐹𝑡 and 𝐹𝑡−1 are the marginal 

𝐶𝐷𝐹𝑠 of flow at time steps 𝑡 and 𝑡 − 1, 𝐶𝑡,𝑡−1 is the parametric copula structure describing the joint 

distribution between flow 𝐶𝐷𝐹𝑠 at time steps 𝑡 and 𝑡 − 1, and 𝑃 is the conditional 𝐶𝐷𝐹.  

6.2.4.2. Multisite Generation of Streamflow 

In multisite generation of streamflow, the temporal and spatial dependence structures should be 

preserved. Here, we use C-vine copulas to represent the dependence structure within and between 

streamflow series. Let 𝑄𝑡
𝐵 and 𝑄𝑡−1

𝐵  be the flows at the two consecutive time steps 𝑡 and 𝑡 − 1 at the 

secondary site B. Considering a 3-dimensional C-vine copula function, the joint distribution between 

𝑄𝑡
𝐴, 𝑄𝑡

𝐵, and 𝑄𝑡−1
𝐵  can be established as (Joe, 1997):  

 

𝑓(𝑄𝑡
𝐴, 𝑄𝑡−1

𝐵 , 𝑄𝑡
𝐵) = 𝑓1(𝑄𝑡−1

𝐵 )𝑓2|1(𝑄𝑡
𝐴|𝑄𝑡−1

𝐵 )𝑓3|1,2(𝑄𝑡
𝐵|𝑄𝑡−1

𝐵 , 𝑄𝑡
𝐴) (6.16) 

 

where the subscripts 1, 2, and 3 correspond to 𝑄𝑡−1
𝐵 , 𝑄𝑡

𝐴, and 𝑄𝑡
𝐵, respectively. 𝑐(. ) is the 3-

dimensional copula 𝑃𝐷𝐹. Based on Joe (1997) and Bedford and Cooke (2001) the joint density in 

Eq. (13) can be expressed as:  
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𝑓(𝑄𝑡
𝐴, 𝑄𝑡−1

𝐵 , 𝑄𝑡
𝐵)

= 𝑓1(𝑄𝑡−1
𝐵 )𝑓2(𝑄𝑡

𝐴)𝑓3(𝑄𝑡
𝐵)𝑐1,2(𝐹1(𝑄𝑡−1

𝐵 ), 𝐹2(𝑄𝑡
𝐴))𝑐1,3(𝐹1(𝑄𝑡−1

𝐵 ), 𝐹3(𝑄𝑡
𝐵)) 

        𝑐2,3|1(𝐹(𝑄𝑡
𝐴|𝑄𝑡−1

𝐵 ), 𝐹(𝑄𝑡
𝐵|𝑄𝑡−1

𝐵 ))  

(6.17) 

 

 Having the joint distribution function, the conditional distribution function of 𝐹(𝑄𝑡
𝐵|𝑄𝑡−1

𝐵 , 𝑄𝑡
𝐴) can 

be obtained as (Aas et al., 2009; Czado et al., 2012):  

 

ℎ = 𝐹(𝑄𝑡
𝐵|𝑄𝑡−1

𝐵 , 𝑄𝑡
𝐴) =

𝜕𝐶2,3|1(𝐹(𝑄𝑡
𝐵|𝑄𝑡−1

𝐵 ), 𝐹(𝑄𝑡
𝐴|𝑄𝑡−1

𝐵 ))

𝜕𝐹(𝑄𝑡
𝐴|𝑄𝑡−1

𝐵 )
 (6.18) 

   

Note that 𝐹(𝑄𝑡
𝐵|𝑄𝑡−1

𝐵 ) = ℎ(𝑄𝑡
𝐵|𝐵) =

𝜕𝑐3,1(𝐹(𝑄𝑡
𝐵),𝐹(𝑄𝑡−1

𝐵 ))

𝜕𝐹(𝑄𝑡−1
𝐵 )

 and 𝐹(𝑄𝑡
𝐴|𝑄𝑡−1

𝐵 ) = ℎ(𝑄𝑡
𝐴|𝑄𝑡−1

𝐵 ) =

𝜕𝐶2,1(𝐹(𝑄𝑡
𝐴),𝐹(𝑄𝑡−1

𝐵 ))

𝜕𝐹(𝑄𝑡−1
𝐵 )

. As a result, Eq. (17) can be rewritten as: 

 

ℎ = 𝐹(𝑄𝑡
𝐵|𝑄𝑡−1

𝐵 , 𝑄𝑡
𝐴) = ℎ[ℎ(𝑄𝑡

𝐵|𝑄𝑡−1
𝐵 )|ℎ(𝑄𝑡

𝐴|𝑄𝑡−1
𝐵 )] (6.19) 

 

We then apply the inverse forms of ℎ-functions given in Eq. (19) for streamflow generation at single 

site setting given by:  

𝑄𝑡
𝐵 = 𝐹−1 {ℎ−1 [(ℎ−1(𝜀|ℎ(𝑄𝑡

𝐴|𝑄𝑡−1
𝐵 ))) |𝑄𝑡−1

𝐵 ]} (6.20) 

 

The proposed streamflow generation scheme is developed to preserve the lag-1 temporal and lag-

0 spatial dependencies, however, it can be extended using multidimensional C-vines to consider more 

than lag-1 temporal dependence in finder timescales (i.e. daily). 

6.3. Case Study and Data 

To showcase the performance of the proposed model in representing various forms of shift, we select 

six streams. These streams are derived from Canadian Reference Hydrometric Basin Network 

(RHBN; Brimley et al., 1999). The dataset is provided by the Water Survey of Canada (Environment 

Canada, HYDAT Database). RHBN stations are natural streams with relatively pristine and stable 

land use condition developed to identify the impact of climate change. Fig. 6.2 shows the locations 

of these six RHBN streams, spreading over different parts of Canada including British Columbia, 

Quebec, Nova Scotia, and Yukon. Table 6.1 depicts the list of six stations with their description, 

coordinates, and sizes of basins. The first catchment includes two streams sites G1 and G2 located in 

the northern part of Canada with glacial-dominated regimes and relatively large sizes of 6860 and 
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7050 𝑘𝑚2, respectively. The second catchment includes sites NG1 and NG2 located in eastern 

Canada with nival-glacial regimes and very large sizes of 19000 and 13000 𝑘𝑚2, respectively. The 

third catchment comprises of site N1 situated in eastern Canada with nival regime and relatively small 

size of 1610 𝑘𝑚2 compared to the two other sites. Finally, the fourth catchment includes site P1 

located in southeastern part of Canada with pluvial regime and relatively small sizes of 368 𝑘𝑚2. All 

six streams are used for generation of streamflow in single site setting. The first two catchments are 

also used in multisite setting, since these two catchments include more than one stream. To detect the 

forms of changes in the six streams and making scenarios of changes in future, we extract the weekly 

data for the period of 1966 to 2010.  

Table 6.1. Summary information of selected stations from the Canadian Hydrometric Database (Water Survey 

of Canada).  

Name 
Regime 

type 
Description Province Lat. Long. 

Drainage 

area (Km2) 

RHBN 

ID 

G1 Glacial Atlin River Near Atlin BC 59.60 -133.8 6860 09AA006 

G2 Glacial Takhini River Near Whitehorse YT 60.85 -135.7 7050 09AC001 

NG1 
Nival-

Glacial 

Moisie (Riviere) A 51 Km En 

Amont Du Pont Du Q.N.S.L.R. 
QC 50.35 -66.2 19000 02UC002 

NG2 
Nival-

Glacial 

Romaine (Riviere) Au Pont De 

La Q.I.T. 
QC 50.31 -63.6 13000 02VC001 

N1 Nival 
Rimouski (Riviere) A 3 7 Km 

En Amont Du Pont-Route 132 
QC 48.41 -68.6 1610 02QA002 

P1 Pluvial 
Northeast Margaree River At 

Margaree Valley 
NS 46.37 -61.0 368 01FB001 

 

 
Figure 6.2. The six natural streams used as the case studies selected from canadian RHBN network.  
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As discussed earlier in section 6.2.1, to project the changes observed in the streamflow data and 

generate the plausible scenarios of changes in future, first we have to identify the dominant forms of 

changes under historical condition. Such changes are obtained by implementing the concept of 

moving timeframe and Mann-Kendall trend test. Fig. 6.3 summarizes how the streamflow 

hydrographs at the six streams evolve from the first timeframe (i.e., baseline period of 1966-1995; 

gray color) to the last timeframe (1981-2010; pink color). The black and red lines are the expected 

annual hydrographs at the first and last timeframes, respectively. Although, here we look at the forms 

of changes in the first three moments at the seasonal scale, the proposed model can easily be extended 

to represent the changes at the finer scale (e.g., weekly scale). In general, in the first catchment 

including sites G1 and G2, the dominant form of change is less variation in the spring flow. In site 

G2, the earlier timing of peak is also another dominant form of shift. In the second catchment which 

includes sites NG1 and NG2, less mean and variation in spring flows as well as earlier timing of 

annual peak are the most dominant forms of change observed. In site N1, the earlier timing of peak 

is the only dominant form of change. In site P1, a combination of various forms of change can be 

observed.  

 
Figure 6.3. The evolution of streamflow regimes through time. The envelopes of annual hydrographs for the 

earliest (1966 to 1995) and the latest (1981 to 2010) episodes are shown with grey and pink colors, respectively. 

The expected annual hydrographs during the earliest and the latest periods are shown in solid black and red 

lines, respectively. 

6.4. Experimental setup  

To implement the desired changes, we incorporate the proposed perturbing algorithms into a copula-

based stochastic streamflow generation scheme in single and multiple sites. All of six streams are 

considered for the single site generation of streamflow under changing condition. The first two 

catchments which include the two streams are additionally considered for generation of streamflow 
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at multisite setting. We consider a set of common parametric copula functions including Gaussian, 

Student t, Clayton, Gumbel, Frank, Joe, and their rotated forms for setting up bivariate and vine 

copulas – see Nelsen (2006) for the formulation of these copulas. The selection of copulas and 

parameterization are performed by applying Maximum log-Likelihood method and considering the 

Bayesian Information Criteria (BIC; Akaike, 1979) as the Goodness of Fit (Sadegh et al., 2017). As 

explained in section 6.2, the generalized gamma distribution which has been recommended for 

streamflow margins (e.g., Papalexiou et al., 2020) is used to establish the marginal distributions. The 

modelling is implemented in R platform by using the VineCopula (Schepsmeier et al., 2016; Nagler 

et al., 2019) and gamlss (Rigby and Stasinopoulos, 2005; Stasinopoulos et al., 2007) packages.  

To showcase the application of proposed algorithms for shifting the streamflow hydrographs, we 

project observed changes to short-range (2025) and long-range (2055) futures. For this purpose, we 

calculate the Sen’s slopes of the significant changes for the baseline timeframe of 1966-1995 to the 

last timeframe (1981-2010). This results into the 3×52+1 time series of expected weekly mean, 

standard deviation, skewness and the expected timing of annual peak for each considered stream. In 

order to quantify the gradual changes in such properties, the Mann-Kendall trend test with Sen’s 

Slope is applied (Mann, 1945; Kendall, 1975). We then multiply the Sen’s slopes by the 30 and 60 

years to obtain the projected changes in short- and long-range futures, respectively. This leads to 

identification of the dominant forms of changes in the streamflow characteristics.  

Table 6.2 summarizes the dominant forms of changes in expected timing of annual peak as well 

as changes in the three moments of seasonal flows. In site G1, the dominant forms of change are -5% 

(-10%) decrease in the standard deviations of fall and winter seasonal flows, 5% (10%) increase in 

mean seasonal flows of spring and summer under short- (long-) range futures. In site NG1, the 

dominant forms of change are -5% (-10%) decrease in mean seasonal flows in fall and winter, -10% 

(-20%) decrease in spring flow, as well as -15% (-30%) decrease in standard deviation and -5% (-

10%) decrease in mean summer flow along with -1(-2) weeks earlier timing of peak in short- (long-) 

range futures. In site N1, -1(-2) weeks earlier timing of annual peak is the only main form of shift 

expected in short- (long-) range futures. In site P1, 15% (30%) increase in mean fall flow, 10% (20%) 

increase in winter flow, -15% (-30%) decrease in mean and -20% (-40%) decrease in standard 

deviation of spring flow and -2(-4) weeks earlier timing of annual peak are the main forms of change. 

In site G2, the standard deviation of winter flow is expected to decrease by -5%, (-10%), summer 

flow decreased by -10% (-20%) in short- (long-) range futures. The timing of annual peak in site G2 

is expected to occur -1(-2) weeks earlier. In site NG2, the dominant modes of shift are -15% (-30%) 

decrease in mean and -10% (-20%) decrease in standard deviation of summer flow in short- (long-) 

range futures.  

Having the dominant changes in the futures, we employ the proposed algorithms to implement the 

desired changes to the streamflow hydrographs and make various scenarios of change in futures. First, 

we use the algorithm developed in section 6.2.3 to implement the desired shift in expected timing of 

annual peak. Later, we implement the desired shift in the three moments of seasonal flows 

summarized in Table 6.2 using the algorithm developed in section 6.2.4. Having the perturbed 
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marginal distributions, we use the copula-based methodology in single and multisite settings to 

generate an ensemble of 1000 realizations under changing condition.  

Table 6.2. The expected changes in the main streamflow characteristics including the three moments of flows 

at the weekly timescale as well as the expected timing of annual peak under short- (long-) range futures. 

Streamflow characteristics Site G1 Site G2 Site NG1 Site NG2 Site N1 Site P1 

C
h
an

g
es

 i
n
 s

ea
so

n
al

it
y
 

OND 

Mean - - -5% (-10%) - - +15% (+30%) 

Standard 

deviation 
-5% (-10%) -5% (-10%) - - - - 

Skewness - - - - - - 

JFM 

Mean - - -5% (-10%) - - +10% (+20%) 

Standard 

deviation 
-5% (-10%) - - - - - 

Skewness - - - - - - 

AMJ 

Mean +5% (+10%) - -10% (-20%) - - -15% (-30%) 

Standard 

deviation 
- -  - - -20% (-40%) 

Skewness - -  - - - 

JAS 

Mean +5% (+10%) -10% (-20%) -15% (-30%) -15% (-30%) - - 

Standard 

deviation 
- - -5% (-10%) -10% (-20%) - - 

Skewness - - - - - - 

E
x
p
ec

te
d
 

  
ti

m
in

g
 o

f 
p
ea

k
 

Annual week - -1 (-2) week -1 (-2) week -1 (-2) week -1 (-2) week -2 (-4) week 

 

6.5. Results 

6.5.1. Performance of proposed model under historical condition 

We initially analyze the performance of the proposed model in single-site setting in terms of capturing 

the expected annual hydrograph under historical condition. Fig. 6.4 shows the ensembles of 1000 

realizations of streamflow hydrographs simulated under historical condition at the six studied sites A 

to F. The blue boxes are the ensemble of simulated streamflow hydrographs; and the red lines are the 

expected simulated streamflow hydrographs; The black lines indicate the observed values. In general, 

the expected simulated values often match the observed values, demonstrating that the proposed 

framework is able to capture the observed streamflow hydrographs very well. In sites A and E which 

are the glacial-dominated regime, the Relative Error (𝑅𝐸) in capturing the observed streamflow 

hydrographs is less than 1%. In sites B, C, and F which are the snow-dominated regime, the 𝑅𝐸s in 

capturing the observed flows are less than 2.1%. In site P1 which is rain-dominated regime, the 𝑅𝐸 

in preserving the observed values are higher and reaches to 𝑅𝐸 = 3.3%.  

In addition to analyses of expected annual hydrographs, we assess the performance of our proposed 

model in representing the seasonal volumes in each site. Fig. 6.5 summarizes the findings in 

representing the mean and variation of seasonal volumes shown in boxplots. The gray boxes are the 

relative changes in the range of observed seasonal volumes with respect to the expected observed 

value. The blue boxes are the relative changes in the range of simulated ensemble of seasonal 
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volumes. The red dots are the expected values and the pink lines indicate no-change in the expected 

seasonal volumes. In general, the proposed model can represent the observed mean and variation of 

seasonal volumes quite well, demonstrating average REs of 2.9% and 8.3%, respectively. In sites A 

and E with glacial-dominated regime, the average REs in representing the mean and variation of 

seasonal volumes are 2.5% (7.4%) and 2.2% (5.4%), respectively. In sites B, C, and F, the average 

REs in capturing the observed mean and variation of seasonal volumes are 2.6%, 3.4%, and 1.3%, 

respectively. In site P1 with rain-dominated regime, however, the REs in representing the mean and 

variation of seasonal volumes are higher and reach to average REs of 5.4% and 11.8%, respectively. 

The highest RE occurs in representing mean and variation of winter seasonal volumes with average 

REs of 4.1% and 8.3%, respectively.  

 
Figure 6.4. The ensemble of 1000 realizations generated by the proposed model at the six sites in single-site 

setting shown in blue boxplots; The red and black lines are the expected simulated and observed annual 

hydrographs.  

We also assess the performance of the proposed model in preserving the lag-1 temporal 

dependencies in single-site generation of streamflow. Fig. 6.6 summarizes findings in the 

representation of lag-1 temporal dependencies in terms of Kendall tau. The black lines show the 

observed lag-1 temporal dependencies. The blue colored boxes illustrate the results of 1000 

realizations obtained by the proposed model in single-site setting. In summary, the proposed model 

performs quite well, demonstrating a Mean Absolute Error (𝑀𝐴𝐸) of less than 0.03. The best 

performance in capturing the observed lag-1 temporal dependence can be observed in sites A and E 

with glacial-dominated regime, demonstrating average 𝑀𝐴𝐸 of 0.01. The strongest temporal 

dependencies can be observed in winter season, in which the proposed model performs well in 

representing the lag-1 temporal dependencies with average 𝑀𝐴𝐸 of 0.02. The proposed model, 

however, shows slightly lower performance in site NG1 in preserving the lag-1 temporal 

dependencies, demonstrating average 𝑀𝐴𝐸 of 0.03.  
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Figure 6.5. The performance of proposed model in capturing the seasonal flow volume (i.e., seasonality). The 

gray boxplots are the relative changes in the observed seasonal volumes with respect to the expected values. 

The blue boxplots show the relative changes in the simulated seasonal volumes with respect to the expected 

observed seasonal volume data. 

 
Figure 6.6. The performance of the proposed model in single-site generation of streamflow at the six sites in 

terms of the lag-1 temporal dependence. The black line indicate the observed lag-1 temporal dependence. The 

blue boxes are the ensemble of simulated values. The red line indicates the expected simulated value.  

6.5.2. Scenario generation under changing conditions 

The results obtained, however, are only limited to the single-site generation of streamflow under 

historical condition without any shift. Another experiment, therefore, is performed to investigate how 

the proposed model can apply the desired shifts in the expected timing of peak, update the flow 
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distributions at the subannual timescale, and consequently shift the entire streamflow hydrograph. 

Having the proposed model, various scenarios of change in the flow characteristics can be generated 

using the observed flow data, providing the opportunity to assess the vulnerability of any water 

resource system to different scenarios of change in the annual streamflow hydrograph. Fig. 6.7 

exemplifies how the proposed algorithms can apply the desired shifts identified using the concept of 

moving timeframe (see Table 6.2) to the streamflow hydrographs of six studied sites.  

 
Figure 6.7. The ensemble of 1000 realizations of perturbed streamflow hydrographs generated by the proposed 

model at the six sites in single-site setting shown in blue boxplots; The panels (a) and (b) are related to short- 

and long-range futures. The red and black lines are the expected simulated and observed annual hydrographs.  

The black lines show the expected observed annual hydrographs. The boxplots are the updated 

flow distributions at the weekly timestep and the red lines indicate the expected perturbed annual 

hydrographs. The panels (a) and (b) correspond to the desired shifts for the short- and long-range 

futures as explained in Table 6.2. Comparing the historical with the perturbed flow distributions under 

short and long-range futures demonstrates how the proposed algorithms can impose various forms of 

shifts to the weekly distributions to represent the desired shifts in the expected annual hydrographs. 
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The scenarios characterize various forms of changes ranging from the changes in the expected timing 

of peak to the changes in the seasonality or the combination of both. For each scenario, 1000 

realizations are generated, each includes 45 years of weekly simulation. In site G1, for instance, the 

variations in low-flow seasons are decreasing while in high-flow seasons the seasonal flows are 

increasing without any changes in the expected timing of peak. In site NG1, however, the dominant 

mode of shift is related to the expected timing of peak accompanied by changes in the seasonality. In 

site N1, the earlier timing of peak is the dominant form of shift. In sites D, E, and F the various 

combination of forms of shifts in the expected timing of peak and seasonality can be observed.  

To evaluate the performance of the proposed model under changing conditions, we first analyze 

how the desired shifts in the expected timing of peak can be represented in single-site generation of 

streamflow hydrographs under changing condition. For this purpose, we compare the ensemble of 

1000 realizations of perturbed streamflow hydrographs with the target desired shifts as explained in 

Table 6.2 served as the reference points. Here, we measure the timing of annual peak using a circular 

statistics (Pewsey et al., 2013). The time of occurrence of annual timing of peak is defined by 

converting the Julian time of occurrence of annual high flow to an angular value (Burn et al., 2010). 

Fig. 6.8 and E1 in the Appendix E summarize the results in the short and long-range futures, 

respectively. The polar histogram shows the distribution of annual timing of peak happening across 

different time of the year. Here, the timing of annual peak is represented as an angle measured 

counterclockwise relative to October 1st (i.e., start date of water year). The black and blue histograms 

are related to the observed and simulated values, respectively. The more scattered histogram indicates 

the greater spread in the timing of occurrence of the annual high flows. In sites A and E with glacial-

dominated regime, the timing of annual peak generally displays more regularity with the majority of 

annual high flows. The annual high flows often occur in summer ranging from early July to September 

shown in black color. As can be seen the proposed model can represent the historical values very 

well. As expected, there is no changes in the timing of high flows of the simulated streamflow 

hydrographs can be observed for in site G1 in short/long-range futures.(see Table 6.2). In sites E, 

however, the average 𝑀𝐴𝐸 in representing the desired timing of peak in short and long-range futures 

are 0.1 and 0.3 weeks, respectively. In sites B, C, and F with snow-dominated regime, the timing of 

annual high flow often occur in the spring season, ranging from late April to early June. The average 

𝑀𝐴𝐸 in representing the desired shift in the timing of annual peak of sites B, C, and F in short-range 

future are 0.3, 0.1, and 0.2 of week, respectively. These values are 0.4, 0.2, and 0.4 of week for long-

range future, respectively. In site P1 with rain-dominated regime, the more scattered observed 

histogram can be observed, indicating less regularity in the occurrence of timing of annual peak. As 

can be seen the proposed model performs well in representing the desired shift in the timing of annual 

peak, demonstrating MAE of 0.3 and 0.4 of week. Another high flow is expected to emerge which 

might be due to increasing rainfall in fall season in long-range future.  
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Figure 6.8. Representation of the desired shift in the expected timing of the annual peak in short range future 

across the six sites using the proposed approach in single-site setting. The black and blue histograms are related 

to the observed and generated timing of annual peak, respectively. 

In addition to analyses of annual timing of peak, we assess the performance of the proposed model 

in representing the desired shifts in the seasonality measured by changes in the marginal distributions 

of seasonal volumes. Fig. 6.9 summarizes the results in representing the desired shift in distribution 

of seasonal volumes for short-range future in six sites sorted in rows. The columns are related to the 

results of four seasons. The gray distributions are related to the observed seasonal volumes; whereas, 

the blue ones are the simulated distributions of perturbed seasonal volumes. Fig.E2 in the Appendix 

E illustrate similar analysis for long-range future. In summary, the proposed model can implement 

the desired shifts obtained in the Table 6.2 quite well. In site G1, as explained in Table 6.2, the target 

desired shifts include a 5% decrease in variations of seasonal volumes in fall and winter for which 

the 𝑀𝐴𝐸𝑠 are 1.3% in fall and 0.3% in winter for short-range future. These values are 3.4% and 4.1% 

for long-range future. In spring and summer, the 𝑀𝐴𝐸𝑠 in representing the desired shift (5% increase 

in the seasonal volume) are 1.2% and 1.4%, respectively. Regarding the long-range future, these 

values are 1.2% and 2.8% in representing spring and summer volumes. In site NG1, the 𝑀𝐴𝐸𝑠 in 

representing the target shifts in fall and winter seasons are 0.4% (1.1%) and 1.8% (3.1%) in short- 

(long-) range futures, respectively. In spring, the proposed model can represent the desired shift in 

seasonal volume with 𝑀𝐴𝐸𝑠 of 3.9% and 2.5% in short- and long-range futures, respectively. In 

summer, the desired shifts are 15% (30%) and -5% (-10%) in the mean and variation of summer 

volumes for short- (long) range futures, respectively.  
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Figure 6.9. Representation of desired forms of shifts in terms of changes in the seasonal volume in six sites 

using the proposed approach in single-site generation of streamflow. The gray and blue colored distribution 

are the observed and simulated seasonal volumes. The results are related to the short-range future.   

The 𝑀𝐴𝐸𝑠 in capturing the target mean and variation are 4.3% and 1.5% in short-range future; 

whereas, these values are 3.7% and 1.2% in long-range future. In site N1, no-significant changes in 

seasonal volume is expected for which the proposed model perform well in preserving the observed 

values with 𝑀𝐴𝐸𝑠 of less than 1.5%. In site P1, the proposed model can represent the desired shifts 

in seasonal volumes in fall and winter with 𝑀𝐴𝐸𝑠 of 2.3% (0.5%) and 4.3% (1.6%) in short- (long-) 

range futures, respectively. In spring, the 𝑀𝐴𝐸𝑠 in representing the desired shift in mean and variation 

of seasonal volume are 3.4% (2.3%) and 2.1% (3.6%) for short- (long-) range futures, respectively. 

In site G2, the proposed model performs well in representing the desired shift with 𝑀𝐴𝐸𝑠 of 2.1% 
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(1.3%) for short- (long-) range futures. In site NG2, the 𝑀𝐴𝐸𝑠 in representing the desired shifts in 

mean and variation of seasonal volume are 1.6% (3.8%) and 1.5% (4.1%) for short- (long-) range 

futures, respectively.  

We further analyze the generalization capability of the proposed model in representing the desired 

shift in multisite settings. This experiment gives an insight into the performance of the proposed 

model in representing the desired shifts in catchments with more than one streamflow. For this 

purpose, we implement the desired shifts in sites E and F in both single and multisite settings and 

compare the results. Fig. 6.10 summarizes the results for short- and long-range futures shown in 

panels (a) and (b). The first and second rows in each panel are related to single and multisite settings, 

respectively. Similar to Fig. 6.7, the blue boxes are the simulated ensemble of perturbed streamflow 

hydrographs; the black and red lines are the expected observed and simulated values. In short-range 

future, the proposed model can represent the desired shift in the expected annual hydrographs in site 

G2 and F with REs of 2.8% and 3.7% in single-site setting. These values are 1.7% and 6.3% in 

multisite settings. Regarding the long-range future, the REs in representing the desired shift in single-

site generation of sites E and F are 3.8% and 7.4%, respectively; whereas in multisite settings, these 

values are 3.1% and 5.6%.  

 

Figure 6.10. The comparison of the ensemble of 1000 realizations of perturbed streamflow hydrographs 

generated by the proposed model at single- and multisite settings shown in the first and second rows, 

respectively. The blue boxplots are the ensembles of 1000 realizations at sites E and F; The black and red lines 

are the expected observed and simulated annual hydrographs. The panels (a) and (b) are related to short- and 

long-range futures. 

We further compare the performance of the proposed model in implementing the desired shift in 

timing of annual peak in single and multisite settings. Fig. 6.11 illustrates the results of this 

experiment. Similar to Fig. 6.10, the first and second rows are related to the single and multisite 

settings, respectively. The panels (a) and (b) correspond to the results of short and long-range futures. 

The black and blue polar histograms indicate the distributions of observed and simulated values, 

respectively. Regarding the short-range future, the proposed model can represent the desired shift in 

timing of peak with less than average error of 0.3 week in both single and multisite settings in site 
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G2. Regarding site NG2, the average errors in representing the desired shift in timing of peak are less 

than 0.2 of week. In long-range future, regarding site G2, the proposed model performs well in both 

single and multisite settings with less than average error of 0.4 of week. In site NG2, however the 

proposed model can better represent the desired shift in single-site setting, demonstrating average 

error of 0.3; whereas, this is 1.1 of week for multisite setting.  

In addition to the timing of annual peak, we further compare the performance of the proposed 

model in single and multisite representation of the desired shift in sites E and F in terms of seasonal 

volume distributions. Figs. 6.12 and E3 in the Appendix E depict the results of this experiment in 

short and long-range futures, respectively. The lighter and darker colors are related to the single and 

multisite settings, respectively. Regarding the short-range future in site G2, the expected 𝑀𝐴𝐸𝑠 in 

representing the desired shift in fall (i.e., -5% decrease in the standard deviation of seasonal volume) 

are 1.1% and 1.3% for single and multisite settings, respectively. In winter, the expected 𝑀𝐴𝐸𝑠 in 

representing the observed seasonal volume are 1.3% (1.4%) for single (multisite) setting, 

respectively. In spring, multisite setting, however, represents less error (𝑀𝐴𝐸 = 0.5%) in capturing 

the observed value compared to the single site setting with 𝑀𝐴𝐸 = 1.1%.   

In summer, the proposed model can represent the desired shift with an expected 𝑀𝐴𝐸 of less than 

1.1% in both single and multisite settings. In site NG2, both single and multisite settings show similar 

performance in capturing the observed values in fall, winter, and spring with expected 𝑀𝐴𝐸𝑠 of less 

than 1.6%, 0.5%, and 1.7%, respectively. In summer, both single and multisite settings show an 

expected 𝑀𝐴𝐸𝑠 of less than 1.3% in capturing the desired shift in the mean seasonal volume; whereas, 

the 𝑀𝐴𝐸𝑠 in representing the desired shift in standard deviation of seasonal volume is less than 1.5% 

for both single and multisite settings. Regarding the long-range future in site G2, both single and 

multisite settings show expected 𝑀𝐴𝐸𝑠 of less than 1.3% in representing the desired shift in the 

standard deviation of seasonal volume.  

In winter, the expected 𝑀𝐴𝐸 in representing the observed mean value for both single and multisite 

settings are less than 1.1%. In terms of standard deviation of seasonal volume, however, single site 

setting show better performance with an expected 𝑀𝐴𝐸 of 1.3% compared to an expected 𝑀𝐴𝐸 of 

3.4% for multisite setting. In spring, both settings show similar performance with 𝑀𝐴𝐸𝑠 of less than 

0.8. In summer, the expected 𝑀𝐴𝐸 in representing the desired shift for both single and multisite 

settings are higher than the other seasons, reaching to an expected 𝑀𝐴𝐸𝑠 of 3.4%. In site NG2, 

multisite setting with an expected 𝑀𝐴𝐸 of 0.8% show better performance in capturing the observed 

seasonal volume in fall compared to single site setting with an expected 𝑀𝐴𝐸 of 2.1%. In winter, 

both single and multisite settings show an expected 𝑀𝐴𝐸 of less than 1% in capturing the observed 

value. In spring, similar performance for both settings can be observed. In summer, the single site 

setting with an expected 𝑀𝐴𝐸𝑠 of 0.8% (1.1%) show better performance in representing the desired 

shifts in mean and standard deviation of seasonal volume compared to the multisite setting with 

expected 𝑀𝐴𝐸𝑠 of 1.1% (2.4%).  
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Figure 6.11. Representation of desired forms of shifts in terms of expected timing of the annual peak across 

the six sites using the proposed approach in single- and multisite settings shown in first and second rows, 

respectively. The black and blue histograms are related to the observed and generated timing of annual peak, 

respectively. Panels (a) and (b) are related to short- and long-range future, respectively.  

In previous section it is demonstrated that the proposed model can well capture the basic statistics 

of streamflow hydrographs. However, the performance of the proposed model in capturing the 

extremes is unknown. For this purpose, we fit a Generalized Extreme Value (GEV) distribution to 

the annual low and high flows. Fig. 6.13 shows the uncertainty bounds of ensembles of 1000 GEV 

fitted to the simulated annual low and high flows in single (Fig. 6.13a) and multisite settings (Fig. 

6.13b). Each panel includes two columns, showing the ensembles of fitted GEVs for the simulated 

annual low flows (first columns) and high flows (second columns). The dots are the observed values; 

the black lines are the fitted GEVs to the observed extremes. The uncertainty of the models is assessed 

using the indices called average width (AW) of the uncertainty bounds and percentage of coverage 

(POC), which is the percentage of observed data points fall within the range of uncertainty bounds. 

The greater the POCs indicate the better performance of the model in capturing the extremes. In 

general, both single and multisite settings show good performance in capturing the observed extremes 

in the range of uncertainty bounds. Regarding the low flows, the single-site setting can capture the 

observed values with POC of 100%. The AW of multisite setting in representing the low flows in 

sites E and F, however, 11.3% and 6.1% lower than the single-site setting. Regarding the high flows, 

in site G2, the POC of multisite setting in representing the observed values is 2.2% is greater than the 

single-site setting; whereas in terms of AW, the single-site setting performs better, demonstrating the 

14.1% less AW than multisite setting. In site NG2, both single and multisite settings show similar 

POCs; whereas in terms of AW, the multisite setting show 5.3% less AW than single-site setting.  
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Figure 6.12. The comparison of the proposed approach in short-range generations of seasonal volumes in sites 

E and F. The light and dark colored distributions are the generated seasonal volume distributions generated by 

single and multisite settings, respectively.  

 

Figure 6.13. The comparison of the proposed model in single-site (panel a) and multisite (panel b) generation 

of streamflow in terms of capturing the annual extremes. The results of low and high flows are demonstrated 

in odd and even columns, respectively. The blue colors are the uncertainty bounds. The dots are the observed 

annual low and high flows. The solid black lines are the fitted GEV to the observed data. 

6.6. Summary and Conclusion  

Despite ongoing advancements in stochastic streamflow generations, little attention has been given 

on advancing perturbing algorithms for altering the streamflow characteristics. Such algorithms 

provide a generic methodology with which scenarios of changes under nonstationarity can be 

represented and reproduced. Here, we propose a generic and parsimonious framework, 

accommodating perturbing algorithms to systematically represent shifts in the characteristics of 

annual streamflow hydrographs and the variability around it. For this purpose, we represent the 
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streamflow hydrographs using a series of orthogonal generalized gamma distributions for which the 

distributional statistics can be analytically perturbed and further reproduced using a generic copula-

based streamflow generator.  

To showcase the application of the proposed framework, we use this model in single and multisite 

generations of scenarios of change in short- and long-range futures in six sites with different flow 

regime types. First, the performance of the proposed framework is rigorously evaluated under 

historical condition in terms of representing expected annual hydrograph, seasonal volumes and lag-

1 temporal dependence. Regarding the expected annual hydrograph, the 𝑅𝐸𝑠 in capturing the 

observed values are less than 3.3% with the greatest errors occurring in site P1 with rain-dominated 

regime. In terms of seasonal volume, the proposed model performs well in capturing the observed 

values with expected 𝑅𝐸𝑠 of 2.9% and 8.3% in representing mean and variation of seasonal volumes. 

Regarding the temporal dependence, the proposed model performs quite well in capturing the 

observed values with expected 𝑀𝐴𝐸 of less than 0.03 across different sites. The best performance 

can be observed in sites A and E with glacial-dominated regime, demonstrating average 𝑀𝐴𝐸𝑠 of 

0.01.  

We also assess the performance of the proposed model in representing different scenarios of 

change. For this purpose, first we identify the dominant forms of change over the observed period of 

1966-2010 using the concept of moving timeframe and analyses of trend. Later we project the 

observed trend into the short and long-range futures and make desired and plausible scenarios of 

change in future. Then, using the proposed framework we generate 1000 realizations of scenarios of 

change and assess how the model performs in representing the desired shifts in seasonal volumes and 

the expected timing of annual peak in single and multisite settings. In general, the more regularity in 

the timing of annual peak is observed in site G2 with glacial-dominated regime with the majority of 

annual high flows occurring in summer. The average MAEs in representing the desired shift in the 

timing of peak in site G2 are 0.1 and 0.3 in short and long-range futures, respectively. In site P1 with 

rain-dominated regime less regularity in the occurrence of timing of peak can be observed. The MAEs 

in representing the desired shift in timing of peak are 0.3 and 0.4 of week in short and long-range 

futures, respectively. Additional in terms of seasonal volume, the proposed model performs quite 

well, demonstrating expected MAEs of 1.5% (2%), 1.8% (2.2%), 2.2% (1.7%) and 2% (2.1%) in 

representing the desired shifts in seasonal volumes of fall, winter, spring, and summer in short- (long) 

range futures, respectively. We also compare the performance of the proposed model in single and 

multisite generation of desired shifts in terms of seasonal volumes and timing of peak. Regarding the 

timing of peak, both single and multisite settings perform well in site G2; whereas in site NG2, the 

single site setting shows slightly better performance with average error of 0.3 compared to 1.1 for 

multisite setting in long-range future. Regarding seasonal volume in site G2, the MAE in representing 

the desired shift in fall are 1.1% and 1.3% for single and multisite settings. These values are less than 

1.3% for both settings in long-range future. The MAEs in representing seasonal volume in spring 

with an expected desired shift of 10% (20%) decrease in seasonal volume in short- (long-) range 

future are 1.1% and 0.5% for single and multisite settings, respectively. In long-range future, these 
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values are less than 0.8% for both settings. In site NG2 both single and multisite settings perform 

well in capturing the desired shift in mean and variation of seasonal volume in summer with MAEs 

of less than 1.5% in short-range future. Regarding the long-range, single site setting with expected 

MAEs of 0.8% (1.1%), however, shows better performance in representing the desired shift in mean 

and variation of summer seasonal volume compared to multisite setting with MAEs of 1.1% (2.4%). 

We also evaluate performance of the proposed model in capturing the extreme low and high flows. 

In general, both single and multisite settings show good performance in capturing the observed values 

in the range of uncertainty bounds. In terms of low flows, the multisite setting can capture the 

observed values in sites E and F with 11.3% and 6.1% less uncertainty bounds compared to single 

site setting. Regarding the high flows, multisite setting shows slightly better POC (i.e., 2.2% greater) 

than single site setting. The range of uncertainty bound for single site setting, however, is 14.1% 

better than multisite setting. In site NG2, both settings show similar POC; whereas, the multisite 

setting shows 5.3% less uncertainty bound compared to single site setting.  

Although the model is applied to represent the desired and plausible changes in the Canadian 

streamflow hydrographs, the model is generic and can be applied to other basins to represent any 

desired shift in the streamflow hydrographs. The proposed model can be applied for vulnerability 

assessment of any water systems under changing condition. We hope our contribution here can inspire 

more efforts toward developing perturbation algorithms required for vulnerability assessment of 

water resource systems under nonstationary conditions.  
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Chapter 7.  

Summary, Conclusions, Limitations, and Future Research Needs 

7.1. Summary of the thesis 

This thesis can be summarized into 5 main steps. First, the gaps and uncertainties in the status-quo 

methodologies are highlighted. For this purpose, four schemes for regional generation of streamflow 

are considered. These schemes are only different in representing the spatiotemporal dependence 

structure between streamflow series. It is shown that none of the schemes can dominate the others in 

representing various streamflow characteristics. The result of vulnerability assessment, however, can 

be substantially different between the four schemes in terms of representing expected values and 

coefficients of variations in long-term streamflow characteristics (and to a lesser extent in system 

performance) under changing conditions. The extent of such differences is more evident in terms of 

variability rather than the expected values of the response of the system which is dependent on the 

streamflow characteristic, performance measure, and the changing water availability conditions.  

Second, the ability of various schemes is benchmarked in reconstructing the main long-term 

characteristics of streamflow (i.e., annual volume, timing, and magnitude of peak flow, 10%, 50%, 

and 90% quantiles). For this purpose, six catchments across southern Canada are selected with three 

regime types (i.e., nival, mixed, and pluvial) in catchments with large and small contributing areas 

and considering representing temporal and spatial dependence at daily, weekly and monthly 

timescales. It is shown that in the local generation of streamflow series, linear and nonlinear schemes 

result in a statistically similar performance in representing the majority of streamflow characteristics. 

At the regional scale, the linear and nonlinear schemes, however, show different performances 

depending on the flow regime, catchment area, as well as the modeling timescale and the long-term 

statistics. In nival and mixed streams, nonlinear schemes and in particular the scheme employing vine 

copulas outperform linear schemes. In pluvial streams, however, the linear schemes show better 

performance and less uncertainty in representing the main characteristics of streamflow. Regardless 

of regime type, the skill of various schemes in representing the expected timing of the peak is highly 

dependent on the size of the basin, demonstrating better performance in the catchment with smaller 

contributing areas. In terms of flow quantiles, nonlinear approaches dominate linear schemes in 

representing the extreme low and high quantiles in nival and mixed catchments, whereas, the linear 

scheme performs better in pluvial streams. In terms of lag-1 temporal dependence, linear schemes, as 

well as vine-based schemes outperform others. In terms of lag-0 spatial dependence, the vine-based 

scheme performs better than other schemes. When moving toward coarser time scales, differences in 

the skills and uncertainty of different schemes become less significant.  These findings provide a 

practical guideline for selecting the best stochastic schemes in the right circumstance, depending on 

the application in hand. 

Here we. 

Third, the skills of stochastic streamflow generation at single and multiple sites is improved by 

explicit incorporation of LSCIs through a stochastic generator. The results of the study show that 

while simulation performances of the reference and proposed models are very similar in representing 
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the first three moments of monthly streamflow as well as lag-1 temporal and lag-0 spatial 

dependencies within and between streamflow reaches, the explicit consideration of LSCIs can 

significantly reduce simulation uncertainty and improve simulation skills in projection and prediction 

modes and in both single and multisite settings, particularly in high flow seasons. In projection mode 

and considering the single site setting, the expected reductions in CI in the three sites are 34.1% and 

37.1% in low and high flow seasons, respectively. In multisite setting, these values are 33.6% and 

34.5% in low and high flow seasons, respectively. The average improvement in the interannual 

variability skill score in single and multisite settings is over 10% across the three considered sites. 

Having said that during the high flow season, considering relevant LSCI in the multisite streamflow 

generation results in expected improvement in capturing the interannual variability by more than 

23%. In terms of observed annual extremes, both reference and proposed models can capture the 

observed values within the range of CI with high POC values of greater than 90% in most cases. The 

proposed model, however, demonstrates less uncertainty in capturing the observed extremes, 

particularly regarding high flows for which the ranges of CI are decreased by 15.5% and 31.1% in 

single and multisite settings, respectively. In prediction mode, both reference and proposed models 

show slight overdispersion in PIT histograms in single and multisite settings, but with expected 

deviation from uniformity close to perfect reliability value 𝐷𝑝 = 0.0267. The expected deviations 

from the uniformity of PIT histograms of the proposed model are 0.0233 and 0.0203 in single and 

multisite settings; whereas, these values are 0.0265 and 0.0237 for the benchmark model, indicating 

slightly better reliability of the proposed model. In terms of CI, the average reduction during the low 

flow season is 18.3% and 21.1% in single and multisite settings. Reductions in the uncertainty bounds 

during the high flow season, however, are much larger with expected reductions of 41.3% and 45.1% 

through the single and multisite settings, respectively. Within the high flow season, the largest 

improvements in the uncertainty bounds happen during dry conditions with average reductions of 

68.3% and 64.5% in CI through single and multisite settings, respectively.  

Fourth, a new methodology is developed to systematically quantify streamflow regimes and their 

alteration to one another using a large set of simultaneously changing streamflow characteristics. The 

results show that the streamflow regime in Canada can be categorized into six distinct regime types 

with clear physical and geographical interpretations. Analyses of trends in membership values show 

that alterations in the natural streamflow regime are vibrant and can be different across different 

regions. Overall, in more than 80% of the considered stream, there is a dominant regime shift that can 

be attributed to changes in streamflow characteristics. At the ecozone scale, the dominant regime 

shifts are from slow-response/warm-season peak to fast-response/warm-season peak regime in the 

northern ecozones (EZ5 and EZ12), from fast-response/warm-season peak to slow-response/warm-

season peak regime, and from fast-response/warm-season peak to slow-response/freshet peak regime 

in the western ecozones (EZ9 and EZ14), from fast-response/warm-season peak to slow-

response/freshet peak regime at the two stations located in the Prairies, from slow-response/warm-

season peak to slow-response/freshet peak regime in the eastern ecozones (EZ6, EZ8, and EZ15), and 

from slow-response/cold-season peak to fast-response/freshet peak regime in the Appalachian region 

(EZ7 and eastern part of EZ6). The variability between the regime shifts inside each ecozone can be 

described by elevation and/or latitude. At the basin scale, dominant modes of transition are from 

slow-response/freshet peak regime to slow-response/warm-season peak in the northern Pacific and 
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from slow-response/warm-season peak regime to slow-response/freshet peak regime in the southern 

Pacific, between the fast-response/freshet peak regime and slow-response/cold-season peak regimes, 

as well as slow-response/freshet peak regime and slow-response/cold-season peak regime, in the 

Atlantic, between slow-response/warm-season peak and fast-response/warm-season peak in the 

Arctic, and between the slow-response/warm-season peak regime and slow-response/freshet peak 

regime, as well as fast-response/warm-season peak and slow-response/freshet peak regime, regimes 

in Hudson Bay. The details of the change in streamflow regime, however, are subject to spatial 

variability within each drainage basin. In the Atlantic and Pacific regions, there are clear divides 

between dominant regime shifts in northern and southern regions. For instance, In the Pacific, the 

association to slow-response/warm-season peak regime is increasing in Yukon and northern parts of 

the Columbia and Fraser subbasins, but it is significantly decreasing in the southern regions. This can 

be due to different manifestations of climate change, which are more apparent as temperature 

increases in the north and growing ratios of rain over precipitation in the south, shifting the 

streamflow more toward rain-dominated regimes (Fleming and Clarke, 2003). This reconfirms the 

important role of latitude in driving the streamflow response to climate change.  

Finally, a generalized approach is proposed to systematically synthesize a large ensemble of 

perturbed streamflow with which the vulnerability of water resource systems to the plausible changes 

in the streamflow hydrograph can be analyzed. To showcase the application of the proposed 

framework, we use this model in single and multisite generations of scenarios of change in short- and 

long-range futures in six sites with different flow regime types. First, the performance of the proposed 

framework is rigorously evaluated under historical condition in terms of representing expected annual 

hydrograph, seasonal volumes and lag-1 temporal dependence. Regarding the expected annual 

hydrograph, the 𝑅𝐸𝑠 in capturing the observed values are less than 3.3% with the greatest errors 

occurring in site P1 with rain-dominated regime. In terms of seasonal volume, the proposed model 

performs well in capturing the observed values with expected 𝑅𝐸𝑠 of 2.9% and 8.3% in representing 

mean and variation of seasonal volumes. Regarding the temporal dependence, the proposed model 

performs quite well in capturing the observed values with expected 𝑀𝐴𝐸 of less than 0.03 across 

different sites. The best performance can be observed in sites A and E with glacial-dominated regime, 

demonstrating average 𝑀𝐴𝐸𝑠 of 0.01. We also assess the performance of the proposed model in 

representing different scenarios of change. For this purpose, we first identify the dominant forms of 

change over the observed period of 1966-2010 using the concept of moving timeframe and analyses 

of trends. Later we project the observed trend into the short and long-range futures and make desired 

and plausible scenarios of change in the future. Then, using the proposed framework we generate 

1000 realizations of scenarios of change and assess how the model performs in representing the 

desired shifts in seasonal volumes and the expected timing of the annual peak in single and multisite 

settings. In general, more regularity in the timing of the annual peak is observed in site G2 with the 

glacial-dominated regime. The average 𝑀𝐴𝐸s in representing the desired shift in the timing of the 

peak in site G2 are 0.1 and 0.3 in short and long-range futures, respectively. In site P1 with a rain-

dominated regime, less regularity in the occurrence of the timing of the peak can be observed. The 

𝑀𝐴𝐸s in representing the desired shift in the timing of peak are 0.3 and 0.4 of the week in short and 

long-range futures, respectively. Additional in terms of seasonal volume, the proposed model 

performs quite well, demonstrating expected 𝑀𝐴𝐸s of 1.5% (2%), 1.8% (2.2%), 2.2% (1.7%), and 
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2% (2.1%) in representing the desired shifts in seasonal volumes of fall, winter, spring, and summer 

in short- (long) range futures, respectively.  

7.2. Conclusion 

This study sets an improved stochastic generation approach for vulnerability assessment of water 

resource systems under changing conditions. First, it is shown that the differences in representing the 

streamflow characteristics using different methodologies can introduce uncertainty in understanding 

the stress-response relationship under changing streamflow conditions and changing system 

performance.  Then, various linear and nonlinear methodologies for representing spatiotemporal 

dependencies are considered. The performance of various schemes in representing key characteristics 

of streamflow regime is investigated. This leads to a set of guidelines for choosing the right 

spatiotemporal representation across different flow regimes, sizes of catchment, and timescales.  

Later, to improve stochastic generation methods a generic approach based on vine copulas is 

proposed to explicitly incorporate LSCIs as exogenous covariates in stochastic streamflow generation 

at single and multiple sites. In particular, a sampling scheme based on using C-vine copulas is 

suggested, in which the structure and parameters of the model change at each time step. This is due 

to the variation of the influential LSCIs and the type of dependencies, which can change across 

different timesteps. To accommodate this, a global input selection algorithm is used to pick the most 

significant LSCIs from a pool of potential predictors at each month and consider the selected LSCIs 

as influential predictors, to which the streamflow is conditioned.  

An attempt is then made toward providing a globally relevant algorithm for identifying changing 

streamflow regimes. The proposed approach is based on two fundamental considerations. First, a 

streamflow regime is collectively formed by a large number of streamflow characteristics. Second, 

streamflow types are rather in the form of spectrums, not clear-cut states; if regime shifts are caused 

by climate change, the transition from one regime type to another should be gradual rather than 

abrupt. To accommodate these two considerations, streamflow regime types are represented as 

intersecting fuzzy sets in such a way that the belongingness of each stream to each regime type can 

be quantified by a membership function. Accordingly, monitoring the trends in membership values 

in time and space can provide a basis to identify the regime shift from one type to another. 

As a final step toward improving stochastic streamflow generator under changing conditions, a 

generic and parsimonious framework is proposed, accommodating perturbing algorithms to 

systematically represent shifts in the characteristics of annual streamflow hydrographs and the 

variability around it. For this purpose, the streamflow hydrographs isd represented using a series of 

orthogonal generalized gamma distributions for which the distributional statistics can be analytically 

perturbed and further reproduced using a generic copula-based streamflow generator. This framework 

provides the opportunity to generate any plausibile scenario of change under changing streamflow 

conditions required for vulnerability assessment of water resource systems.  

7.3. Contributions of the thesis 

This thesis is written in a manuscript-based format, aiming at providing an improved stochastic 

streamflow generation approach for bottom-up impact assessment of the water resources system to 

changing streamflow conditions. Chapters 2 to 6 contribute to first identifying the uncertainties in 
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bottom-up impact assessment of water resources systems and then improving different aspects of the 

stochastic streamflow generation approach. First, in chapter two through a set of experimentations, 

the existence of uncertainties in the bottom-up impact assessment of water resources systems using 

various schemes for representing the spatiotemporal dependence structure is demonstrated. Four 

different spatial extension schemes are used that differ from one another only in the way the 

spatiotemporal dependencies between regional streamflow reaches are represented. Through a 

rigorous intercomparison, it is shown that despite having different degrees of realism, none of the 

schemes can dominate others with respect to reproducing streamflow characteristics during a 

common historical period. As a result, they can be considered alternative hypotheses for bottom-up 

impact assessment under changing conditions. 

The findings of analyses of the stress-response relationship in chapter two necessitate providing a 

set of guidelines to use the right scheme for representing the spatiotemporal dependence structure in 

the right circumstance. For this purpose, in chapter three various parametric schemes for representing 

the spatiotemporal dependence structures, ranging from the fully linear to fully nonlinear stochastic 

models are considered. After a brief overview of theoretical aspects of the parametric representation 

of dependence, a comprehensive experiment is designed to benchmark the skill and uncertainty of 

various representations in a range of timescales, catchments, and streamflow regimes. The proposed 

guideline here provides a set of recommendations on the use of the best scheme in the representation 

of spatiotemporal dependence structure across different circumstances without considering the effect 

of large-scale climate indices in the streamflow generation process.  

As a further step toward improving the stochastic streamflow generation scheme, in chapter four 

a generic approach based on vine copulas is proposed to explicitly incorporate the LSCIs into 

nonlinear stochastic streamflow generation schemes. The skill of the proposed framework informed 

by LSCIs is then assessed for the prediction and projection of three mountainous headwaters in 

southern Alberta, Canada. To benchmark the performance of the proposed algorithm, the model is 

compared with already existing reference algorithms. At the single site, the performance of the 

proposed algorithm is compared with a baseline copula model, developed by (Nazemi et al., 2013) 

and extended into multisite mode using regression models (Nazemi and Wheater, 2014a). Both single 

and multisite versions of this existing copula-based algorithm were previously implemented in the 

same case study. These models provide a benchmark to discuss the added value of incorporating 

LSCIs in the process of streamflow generation.  

As another step toward developing an improved stochastic model capable of generating 

streamflow under nonstationary conditions, in chapter five a global algorithm is proposed to detect 

the forms of changes in the streamflow regimes. The algorithm is based on fuzzy set theory in which 

the streams classify into a finite set of intersecting fuzzy clusters. Accordingly, by analyzing the 

changes in the degrees of membership to each cluster, the shifts from one regime to another are 

quantified. Such changes in the degrees of membership are then attributed to the changes in the 

collective changes in the streamflow characteristics by using R2. To apply the proposed algorithm for 

identifying the flow regime changes, 45-year of daily data from 105 RHBN streamflow gauges are 

considered across Canada, to provide a comprehensive and temporally homogeneous look at forms 

and extents of change in natural streamflow regime in Canada, coast to coast to coast.  



143 

 

As the final step toward improving the stochastic streamflow generation scheme under 

nonstationary conditions, in chapter six an algorithm is developed to make scenarios of change under 

nonstationary conditions. The proposed algorithm can represent the shifts in the expected streamflow 

hydrograph and variability around it. This approach proposes an analytical solution to represent 

transient shifts in the streamflow hydrograph. For this purpose, we initially identify the gradual 

changes in the streamflow hydrographs over the historical period using moving trend analysis, giving 

the opportunity to project such changes to future conditions.  For this purpose, we first decompose 

the streamflow regime into an expected streamflow hydrograph and the variability around it. We then 

conceptualize the streamflow hydrograph as a time distribution function, mimicking all probabilistic 

properties of the cumulative distribution function. Later, to implement the desired shifts analytically, 

we use a series of orthogonal generalized gamma distributions, for which the properties of 

distributions can be perturbed, reconstructed, and reproduced under changing conditions. To 

showcase the applicability of the proposed algorithm, it is then applied to a number of streams across 

Canada to generate large ensembles of perturbed streamflow.  

The proposed approach provides a tool to assess the vulnerability assessment of water resources 

systems under changing streamflow conditions. The proposed approach can benefit a variety of 

engineering applications from operations of water resource systems to long-term planning and 

management of water-related infrastructures such as reservoirs. For instance, the proposed approach 

improves the streamflow predictions at a monthly scale, particularly at the high flow seasons required 

for flood management practices. The proposed approach can also benefit the long-term planning of 

water-related systems by providing a tool to assess the impact of a wide range of plausible scenarios 

of streamflow change on water resources systems.  

7.3. Limitations of the proposed framework 

Despite advancements in the stochastic streamflow generation under nonstationary conditions made 

by the proposed framework, a few points are remained and should be put in perspective. First, as it 

was shown in Nazemi et al. (2020), even when the skills in reconstructing long-term streamflow 

characteristics are similar, it does not necessarily mean that the results of stress tests made with the 

generated synthetic streamflow series would be similar too. This can lead to an even larger uncertainty 

in the stress-response under changing conditions which is more relevant to water resource planning 

and management. Additionally, none of the streamflow generation schemes are able to capture modes 

of variability inherited in streamflow series. The inclusion of LSCIs into the nonlinear copula-based 

approaches proposed here is a step forward to better representing interannual variability, and the low 

and high flow quantiles but it cannot lead to capturing all modes of variability. Moreover, the 

proposed algorithm is only limited to the effect of LSCIs, but it can be extended to incorporate 

climatic variables such as temperature and precipitation as exogenous covariates in stochastic 

streamflow generation, leading to more realistic scenarios of change under nonstationary conditions.     

Additionally, the proposed framework provides an opportunity to identify the changing 

streamflow regimes and attributes such changes to a large set of streamflow characteristics. This 

approach, however, does not explore the attribution of the shifts in streamflow regimes to the changes 

in temperature pattern, form and magnitude of precipitation, snowmelt, glacial retreat, and permafrost 

degradation. This could help in better understanding the casual relationship required for water 
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resource decision-making. Moreover, the types of changes identified here in the streamflow regime 

are only limited to the analysis of trends in various streamflow characteristics, and other forms of 

changes (e.g., changes in the temporal dependence structure) were not considered. 

The improved bottom-up assessment framework presented here is ideally suitable for addressing 

challenges in making decisions and adaptation policies under changing conditions. In fact, an 

evaluation of decision alternatives under a wide range of scenarios of change, rather than a priori 

restriction of space of uncertain factors – for instance only considering the effect of climate factors- 

may reveal the true vulnerabilities in the water resource system. Additionally, this approach can give 

more insight into the vulnerability of the system and can be useful in risk assessment, but further 

research is needed to link it to top-down projections to better constrain the range of possible future 

states. For instance, in risk quantification, although the response of the system to changes in 

streamflow conditions has been defined as risk, but the probability of occurrence of any plausible 

change is unknown. There remains the potential to better integrate the result of vulnerability mapping 

with scenario-led simulations to provide an informative notion of risk and understand which scenario 

of change is more probable than the others. This can provide more informative tools for improving 

the vulnerability assessment of water resource systems to changing streamflow conditions under 

nonstationary conditions.   

7.4. Outlook and future remarks  

While this thesis contributes to the methodological advancements of the bottom-up frameworks 

required for vulnerability assessment of water resource systems, further research can be performed to 

address other limitations of this framework:  

First, although some aspects of uncertainties in the bottom-up framework including the 

uncertainties in the representation of spatiotemporal dependencies are highlighted and addressed 

considering four schemes, a set of comprehensive intercomparison studies can be implemented to 

address the pros and cons of multiple methodologies including the nonparametric streamflow 

generation schemes (e.g., Lall and Sharma, 1996; Sharma and O'Neill, 2002). This analysis can be 

performed to generate several streamflow series with various flow regimes across different timescales 

and sizes of basins.  

Second, although the method is developed for a lead time of one month and applied in a few 

catchments, the proposed algorithm is generic and can be applied in other basins considering more 

than the lag-1 temporal dependence structure. The proposed method can be also extended by 

including more conditioning variables such as precipitation and/or temperature, whether observed or 

simulated. This can provide a versatile and comprehensive model to inform water management 

models for better planning under current and future conditions. I hope that the contribution here can 

inspire more efforts toward an improved stochastic generation of streamflow in prediction and 

projection modes. Moreover, the model is applied and assessed to represent the desired and plausible 

changes in the Canadian streamflow hydrographs, but the model is generic and can be applied to other 

basins to represent any desired shift in the streamflow hydrographs. The proposed model can be 

applied for vulnerability assessment of any water system under changing conditions. I hope this 
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contribution here can inspire more efforts toward developing perturbation algorithms required for 

vulnerability assessment of water resource systems under nonstationary conditions.  

Additionally, the bottom-up framework presented here should be linked with the scenario-led 

approach to have a more comprehensive risk assessment through constraining the range of plausible 

future states of the system and obtaining the posterior likelihood of occurrence of each event 

(realization). This framework can play a prominent role in mapping the vulnerability of the system to 

climatic and/or anthropogenic changes in the face of recognized uncertainties in GCMs and HMs. It 

is specifically designed to facilitate vulnerability assessment of water resource systems to changes in 

streamflow characteristics and measure the risk of failure of the system to these changes. In fact, in 

risk quantification, although in a bottom-up framework, the response of the system to changes in 

streamflow conditions has been defined as risk, the probability of occurrence of any plausible change 

is unknown. There remains the potential to better integrate the result of vulnerability mapping with 

scenario-led simulations to provide an informative notion of risk and understand which scenario of 

change is more probable than the others. This can provide more informative tools for improving the 

vulnerability assessment of water resource systems to changing streamflow conditions under 

nonstationary conditions.   

Moreover, the proposed framework is designed to evaluate the impact of changes in streamflow 

conditions on the vulnerability of water resource systems. The implication of climate change on the 

environment and society and in particular in making decision and policy is, however, not only depend 

on how the system response to streamflow changes but also on how the system will respond to 

changes in technology, economy, and lifestyle. Extensive uncertainties exist both in top-down 

approaches as the result of uncertainties in socio-economic assumptions, emission scenarios, climate, 

and hydrological models and in the bottom-up approaches as the result of high uncertainty inherited 

in hydrological models. This necessitates the use of a new bottom-up framework to explore directly 

the impacts of plausible changes in streamflow conditions on water resource systems. Although the 

proposed framework helps in better understanding of the vulnerability of water resources system to 

changing streamflow conditions, more efforts are needed to combine such changes with the changes 

in other effective factors that make the water system vulnerable including the various scenarios of 

human intervention (e.g., population growth, irrigation development, different policy options, etc.).  

Finally, although the proposed framework helps in better assessing the vulnerability of water 

resource systems to changing streamflow conditions, it cannot tell us about the causes of such changes 

in the streamflow conditions which is an important factor in decision making under uncertainties. 

Further research is required to combine such framework with the process-based modeling of 

streamflow series, helping in making an informative decision making.  
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Appendix A.  

Additional materials for “Uncertainty in Bottom-Up Vulnerability Assessments of Water 

Supply Systems due to Regional Streamflow Generation under Changing Conditions” 

Appendix A1. Single-site streamflow generation using temporal copulas  

The sampling strategy in single-site streamflow reconstruction is based on the use of lag-1 

temporal copula functions. The temporal lag-1 copula function can be defined as: 

 

𝐹𝑈,𝑉(𝑢, 𝑣) = 𝐶(𝑢
∗, 𝑣∗)  𝑊ℎ𝑒𝑟𝑒 𝑢, 𝑤 ∈  𝑅 𝑎𝑛𝑑 𝑢∗ = 𝐹𝑈(𝑢),  𝑤

∗ = 𝐹𝑉(𝑣) (A.1) 

 

where C is the copula function, u and v are two random variables – here consecutive streamflow 

values at a sub-annual time scale; and 𝐹𝑋 and 𝐹𝑌 are the corresponding empirical Cumulative 

Distribution Functions (𝐶𝐷𝐹𝑠).  Knowing the empirical 𝐶𝐷𝐹 of the streamflow value at the 

previous timestep 𝑗 − 1 and the joint copula function representing the dependence between 

timestep j and j – 1, the non-exceedance probability of the streamflow at the timestep j can be 

estimated conditionally as the following (see Salvadori and De Michele 2007): 

 

𝐶𝑢∗(𝑣
∗) = 𝑃{𝐹𝑝,𝑗(𝐹𝑙𝑜𝑤𝑝,𝑗 ≤ 𝑣| 𝐹𝑝,𝑗−1(𝐹𝑙𝑜𝑤𝑝,𝑗−1

∗ ) = 𝑢∗)} =  
𝜕

𝜕𝑢
 𝐶𝑗,𝑗−1(𝑢

∗, 𝑣∗) (A.2) 

and accordingly: 

𝐹𝑙𝑜𝑤𝑃,𝑗
∗ = 𝐹𝑃,𝑗

−1{𝐶𝑢∗
−1(𝑣∗)}   (A.3) 

 

where 𝐹𝑙𝑜𝑤𝑝,𝑗
∗   is the sampled flow at timestep 𝑗 in the streamflow reach 𝑝; 𝐹𝑙𝑜𝑤𝑝,𝑗−1

∗  is the 

sampled flow at timestep 𝑗 − 1; 𝐶𝑗,𝑗−1 is the parametric bivariate copula function between 

consecutive 𝐶𝐷𝐹𝑠 at timesteps 𝑗 and 𝑗 − 1; and 𝑃 is the conditional 𝐶𝐷𝐹.  

Appendix A2. Multi-site streamflow extension using spatial copula functions  

Copulas can also provide an alternative approach to spatial extension. Similar to temporal 

resampling, this is done by bivariate parametric copulas that represent the spatial dependencies 

between primary and secondary reaches at the same timestep. Considering observed streamflow 

values at primary and secondary tributaries in an identical sub-annual timestep, the spatial copula 

function can be defined as:  

 

𝐹𝑈,𝑊(𝑢, 𝑤) = 𝐶
′(𝑢∗, 𝑤∗)  𝑊ℎ𝑒𝑟𝑒 𝑢, 𝑤 ∈  𝑅 𝑎𝑛𝑑 𝑢∗ = 𝐹𝑈(𝑢),  𝑤

∗ = 𝐹𝑊(𝑤) (A.4) 

where 𝑢 and 𝑤 are two random variables (here corresponding streamflow quantiles in primary and 

secondary streamflow reaches), and 𝐹𝑈 and 𝐹𝑊 are the corresponding 𝐶𝐷𝐹𝑠, respectively. 

Knowing the marginal 𝐶𝐷𝐹 of the streamflow at the primary site and the spatial copula function 

𝐶′(𝑢∗, 𝑤∗), the flow quantile at secondary site can be sampled conditionally as: 

𝐶𝑢∗
′ (𝑤∗) = 𝑃{𝐹𝑠,𝑗(𝐹𝑙𝑜𝑤𝑠,𝑗 ≤ 𝑤| 𝐹𝑝,𝑗(𝐹𝑙𝑜𝑤𝑝,𝑗

∗ ) = 𝑢∗)} =  
𝜕

𝜕𝑢
 𝐶𝑗,𝑗
′ (𝑢∗, 𝑤∗) (A.5) 

and accordingly:  
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𝐹𝑙𝑜𝑤𝑠,𝑗
∗ = 𝐹𝑠,𝑗

−1{𝐶′𝑢∗
−1(𝑤∗)} (A.6) 

where 𝐹𝑙𝑜𝑤𝑠,𝑗
∗  is the sampled flow at timestep 𝑗 in the secondary stream; 𝐹𝑙𝑜𝑤𝑝,𝑗

∗  is the sampled 

flow at timestep 𝑗 in the primary reach; 𝐶𝑗,𝑗
′  is the parametric bivariate copula function between 

corresponding flow 𝐶𝐷𝐹𝑠 at the primary and secondary reaches during the timestep j; and 𝑃 is the 

conditional 𝐶𝐷𝐹.  

Appendix A3. Multi-site streamflow extension using spatiotemporal copula functions   

Although spatial copulas are able to represent the dependence between two streamflow reaches at 

unique time steps, they do not explicitly represent the temporal dependence at the secondary site. 

To tackle this problem, a trivariate copula is required to fully represent the spatiotemporal 

dependence by linking the lag-0 spatial dependence at primary and secondary sites with the lag-1 

temporal dependence at the secondary site. Chen et al. (2015) showed that using conditional copula 

functions, such trivariate copulas can be decomposed into three bivariate copulas, in which 

parameters of each bivariate model can be estimated independently. In the context of streamflow 

generation, having the flow u at the primary site and time 𝑡 as well as the flow v and w at the 

secondary site during time 𝑡 − 1 and t respectively, the trivariate copula 𝐹(𝑢, 𝑣, 𝑤) can be 

described as: 

𝐹𝑈,𝑉,𝑊(𝑢, 𝑣, 𝑤) = ∫ 𝐹𝑈,𝑉(𝑢, 𝑣|𝑤)𝑑𝐹𝑊(𝑤)

𝑤

−∞

 (A.7) 

According to Sklar’s theorem, 𝐹𝑈,𝑉(𝑢, 𝑣|𝑤) can be described as: 

𝐹𝑈,𝑉(𝑢, 𝑣|𝑤) = 𝐶𝑈,𝑉 ((𝐹𝑈|𝑊(𝑢|𝑤), 𝐹𝑉|𝑊(𝑣|𝑤)) (A.8) 

and accordingly Equation 7 can be decomposed into 3 bivariate copulas as the following:  

𝐹𝑈,𝑉,𝑊(𝑢, 𝑣, 𝑤) = ∫ 𝐶𝑈,𝑉 ((𝐹𝑈|𝑊(𝑢|𝑤), 𝐹𝑉|𝑊(𝑣|𝑤)) 𝑑𝐹𝑊(𝑤)

𝑤

−∞

 (A.9) 

In addition, 𝐹𝑈|𝑊(𝑢|𝑤) and 𝐹𝑉|𝑊(𝑣|𝑤) can be described as: 

𝐹𝑈|𝑊(𝑢|𝑤) =
𝜕(𝐶𝑈,𝑊(𝑢, 𝑤))

𝜕𝑤
; 𝐹𝑈|𝑊(𝑢|𝑤) =

𝜕(𝐶𝑉,𝑊(𝑣, 𝑤))

𝜕𝑤
 (A.10) 

Equations 9 and 10 together provide a theoretical basis for sampling the streamflow at the 

secondary stream by representing short-term spatiotemporal dependence between the reaches 

using three mutually independent copula functions. Refer to original article of Chen et al. (2015) 

for the step-by-step simulation procedure. 
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Appendix A4. The choice of parametric copula functions 

Temporal copula functions should maintain the lag-1 dependence structure at each tributary. Fig. 

A.1 compares the observed lag-1 Kendall’s taus with the corresponding expected values, obtained 

using the three copulas at the NSR (top row) and the SSR (bottom row). Observed dependencies 

between consecutive weekly timesteps are shown in solid black lines whereas expected values 

obtained by copula functions are displayed using dashed, dotted and dash-dotted lines for Frank, 

Clayton and Gaussian copulas, respectively. In general, the SSR shows stronger lag-1 temporal 

dependence compared to the NSR, particularly during the cold periods of January and February. 

This is due to intensive regulation in southern Alberta that amplifies the temporal dependencies in 

the weekly flow. For both tributaries, the Frank copula outperforms the other copulas. The RMSE 

measures for the Frank, Clayton and Gaussian copulas for the NSR are 0.019, 0.087, 0.039, 

respectively. These measures for SSR are 0.019, 0.099, 0.047, respectively.  

 

 
Figure A1. Representation of the lag-1 temporal dependency within synthesized weekly flows at NSR (first 

row) and SSR (second row) using Gaussian, Clayton and Frank copulas. 

 

     Similarly, we compare the performance of the three copula functions in preserving the lag-0 

dependence structure between the two tributaries – see Fig. A2 below. In general, lag-0 spatial 

dependencies between NSR and SSR are stronger during the warm seasons, which can be better 

captured by the Frank copula. The RMSE for Frank copula is 0.02 whereas it is 0.03 and 0.07 for 

Gaussian and Clayton copulas, respectively. Accordingly, we build up the M3 and M4 using Frank 

copulas for representing both lag-1 dependencies at the primary reach and lag-0 spatial 

dependencies between primary and secondary tributaries. 



184 

 

 
Figure A2. Representation of lag-0 spatial dependencies between synthesized weekly SSR and NSR flows 

using Gaussian, Clayton and Frank copulas 

 

Appendix A5. Supporting materials for skills in reconstructing historical streamflow 

characteristics 

Table A1. Differences among representative ensemble skills of the four spatial extension schemes in terms 

of reconstructing ten long-term streamflow characteristics at the NSR and SSR during the baseline period 

of 1980 to 2010. The differences are characterized by p-values of single‐factor ANOVA with Bonferroni 

correction for multiple pairwise comparisons. 

Timing of 

the annual 

peak 

NSR 

 

Annual 

volume 

NSR 

M1 M2 M3 M4 M1 M2 M3 M4 

SSR 

M1 - 0.00 0.00 0.00 

SSR 

M1 - 0.68 0.00 0.00 

M2 0.00 - 0.00 0.00 M2 0.00 - 0.00 0.00 

M3 0.00 0.00 - 0.00 M3 0.00 0.01 - 0.00 

M4 0.00 0.00 0.00 - M4 0.00 0.00 0.00 - 

Annual 

peak 

NSR 

 

Q10 
NSR 

M1 M2 M3 M4 M1 M2 M3 M4 

SSR 

M1 - 0.00 0.00 0.00 

SSR 

M1 - 0.00 0.00 0.00 

M2 0.00 - 0.00 0.00 M2 0.00 - 0.00 0.00 

M3 0.00 0.00 - 0.00 M3 0.00 0.00 - 0.00 

M4 0.00 0.00 0.00 - M4 0.00 0.00 0.00 - 
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Table A1. Continued 

Q50 
NSR 

 

Q90 
NSR 

M1 M2 M3 M4 M1 M2 M3 M4 

SSR 

M1 - 0.00 1.00 1.00 

SSR 

M1 - 0.00 0.00 0.00 

M2 0.00 - 0.00 0.00 M2 0.00 - 0.00 0.00 

M3 0.00 0.00 - 1.00 M3 0.00 0.00 - 0.00 

M4 0.00 0.00 0.00 - M4 0.00 0.00 0.00 - 

Expected 

lag-1 

temporal 

dependence 

NSR 

 

Expected 

annual 

temporal 

dependence 

NSR 

M1 M2 M3 M4 M1 M2 M3 M4 

SSR 

M1 - 0.63 0.00 0.00 

SSR 

M1 - 0.00 0.00 0.00 

M2 0.00 - 0.00 0.00 M2 0.00 - 0.00 0.00 

M3 0.00 0.00 - 0.00 M3 0.00 0.00 - 0.00 

M4 0.00 0.00 0.00 - M4 1.00 0.00 0.00 - 

Expected 

lag-0 

spatial 

dependence 

NSR 

 

Expected 

annual 

spatial 

dependence 

NSR 

M1 M2 M3 M4 M1 M2 M3 M4 

SSR 

M1 - 0.00 0.00 0.00 

SSR 

M1 - 0.00 0.00 0.00 

M2 0.00 - 0.00 0.00 M2 0.00 - 0.00 0.00 

M3 0.00 0.00 - 0.00 M3 0.00 0.00 - 0.00 

M4 0.00 0.00 0.00 - M4 0.00 0.00 0.00 - 

 

 
Figure A3. Relative expected errors for four streamflow generation schemes in reproducing values for 

annual volume, annual peak as well as annual Q10, Q50, Q90, respectively shown from left to right. Top 

and bottom rows are related to NSR→SSR and SSR→NSR generation paths. 
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Figure A4. Representative ensemble errors in representing the expected long-term streamflow 

characteristics at the secondary reach under no-change condition compared between the four regional 

streamflow extension schemes; panels in upper and lower triangles relates to NSR and SSR as the secondary 

reach, respectively  

 
Figure A5. Observed vs. expected coefficients of variation for timing of the annual peak as well as the 

annual volume, peak, Q10, Q50 and Q90, reproduced by the four schemes at the primary (NSR; top row) 

and secondary (SSR; bottom row) reaches. 
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Figure A6. Expected annual temporal dependence matrices, characterized by Kendall’s tau, at the NSR 

through four regional streamflow schemes compared with the corresponding observed matrix.  

 

Figure A7. Expected annual temporal dependence matrices, characterized by Kendall’s tau, at the SSR 

through four regional streamflow schemes compared with the corresponding observed matrix. 
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Figure A8. Expected annual spatial dependence matrices, characterized by Kendall’s tau, obtained through 

four regional streamflow schemes compared with the historical matrix 

 

 
Figure A9. Coefficients of variations in representing the temporal and spatial dependence structures. Top 

and middle rows are related to temporal dependence matrices at primary and secondary reaches and the 

bottom row is related to the spatial dependence matrix  
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Appendix A6. Supporting materials for differences among generated streamflow ensembles 

and corresponding impact assessment under changing conditions  

 

Table A2. Frequencies of having significantly different ensemble mean for local streamflow characteristic 

under 154 changing condition (in percentages) generated using the four spatial extension schemes at the 

SSR. The differences among corresponding streamflow ensembles under a unique scenario of change are 

characterized by p-values of single‐factor ANOVA with Bonferroni correction for multiple pairwise 

comparisons (corrected p-value ≤ 0.0083 shows significant difference). 

  

  

Annual streamflow 

volume 

 

  
Q10 

M1 M2 M3 M4 M1 M2 M3 M4 

Timing 

of the 

annual 

peak 

M1 - 27.9 46.1 47.4 
Annual 

peak 

flow 

M1 - 98.7 99.4 53.9 

M2 91.6 - 44.2 42.2 M2 29.2 - 100.0 99.4 

M3 57.8 90.3 - 0.0 M3 21.4 57.8 - 100.0 

M4 61.7 90.3 69.5 - M4 1.3 22.7 30.5 - 

 

 

Table A3. Frequencies of having significantly different ensemble mean for system performance (in 

percentages) obtained by regional streamflow realizations of M1, M2, M3 and M4 under 154 changing 

condition. The differences among corresponding system performances under a unique scenario of change 

are characterized by p-values of single‐factor ANOVA with Bonferroni correction for multiple pairwise 

comparisons (corrected p-value ≤ 0.0083 shows significant difference).   

  
SWC 

 

  
 

M1 M2 M3 M4 M1 M2 M3 M4 

PNB 

M1 - 85.1 82.5 60.4 

APP 

M1 -    

M2 33.1 - 59.1 46.1 M2 69.5 -   

M3 51.3 69.5 - 42.2 M3 99.4 61.7 -  

M4 56.5 78.6 1.3 - M4 73.4 85.7 21.4 - 
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Appendix A7. Supporting materials for ambiguity in understanding stress-response 

relationship  

 
Figure A10. The relationship between changes in the expected long-term streamflow characteristics (x-

axis) and changes in the expected long-term performance (y-axis) in the Sask-SRB under 154 feasible 

scenarios of change. 

 

Figure A11. The relationship between the variability in long-term streamflow characteristics (x-axis) and 

variability in long-term performance measures (y-axis) in the Sask-SRB under 154 feasible scenarios of 

change.
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Appendix B.  

Additional materials for “On Parametric Representations of Spatiotemporal Dependencies in Stochastic Streamflow 

Generation across Catchments, Timescales, and Flow Regimes” 

Appendix B1. The performance of the seven considered schemes in reconstructing the long-term streamflow characteristics in 

coarser (monthly) and finer (daily) scales 

 
Figure B1. The estimated mean expected errors in reconstructing the key characteristics of secondary site across the six catchments considered. The 

statistics are derived from 100 ensembles, each with 100 realizations using M1 to M7. The green, red and blue lines show the error statistics at the 

monthly, weekly and daily timescales, respectively 
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Figure B2. The estimated standard deviation of expected errors in reconstructing the key characteristics of secondary site across the six catchments 

considered. The statistics are derived from 100 ensembles, each with 100 realizations using M1 to M7. The green, red and blue lines show the error 

statistics at the monthly, weekly and daily timescales, respectivel
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Appendix C.  

Additional materials for “Informing Stochastic Streamflow Generation by Large-Scale 

Climate Indices at Single and Multiple Sites” 

Appendix C1. Selecting large-scale climate indices to inform streamflow generation using 

PMI algorithm 

 

 Figure C1. Influential LSCIs with their respective monthly lags, chosen collectively at sites A, B, and C 

using PMI algorithm. Shades of blue and red in the first row show positive and negative dependencies 

between lagged LSCIs and streamflow at the monthly scale, which are significant at 𝑝-value< 0.05. 

Numbers inside significant cells identify relevant lags in month between LSCIs and monthly flows.  

 

Appendix C2. Streamflow projection at single and multisite  

 
Figure C2. Streamflow ensembles generated by the reference (top row) and proposed (bottom row) 

algorithms at the site A in single-site setting. The pink and gray colors are the 95% confidence interval 

obtained by 10,000 realizations of the reference and proposed schemes, respectively. The black lines are 

the observed streamflow.  
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Figure C3. Streamflow ensembles generated by the reference (top row) and proposed (bottom row) 

algorithms at the site B in single-site setting. The pink and gray colors are the 95% confidence interval 

obtained by 10,000 realizations of the reference and proposed schemes, respectively. The black lines are 

the observed streamflow.  

 

Figure C4. Streamflow ensembles generated by the reference (top row) and proposed (bottom row) 

algorithms at the site C in single-site setting. The pink and gray colors are the 95% confidence interval 

obtained by 10,000 realizations of the reference and proposed schemes, respectively. The black lines are 

the observed streamflow.  
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Figure C5. Streamflow ensembles generated by the reference (top row) and proposed (bottom row) 

algorithms at the site B in multisite setting. The pink and gray colors are the 95% confidence interval 

obtained by 10,000 realizations of the reference and proposed schemes, respectively. The black lines are 

the observed streamflow.  

 

Figure C6. Streamflow ensembles generated by the reference (top row) and proposed (bottom row) 

algorithms at the site B in multisite setting. The pink and gray colors are the 95% confidence interval 

obtained by 10,000 realizations of the reference and proposed schemes, respectively. The black lines are 

the observed streamflow.  
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Appendix D.  

Additional materials for “A Global Algorithm for Identifying Changing Streamflow 

Regimes: Application to Canadian Natural Streams (1966-2010)” 

Appendix D1. The detailed description of selected RHBN stations used in this study 

Table D1. Summary information for the selected RHBN stations in the Pacific Basin. 

RHBN ID 
Station 

ID 
Station Name Province Lat. Long. 

Basin 

area 

(km2) 

Sub-basin Basin 

09BC001 S72 Pelly River at Pelly Crossing YT 62.8 -136.6 48900 Yukon Pacific Ocean 

09AC001 S74 Takhini River Near Whitehorse YT 60.9 -135.7 7050 Yukon Pacific Ocean 

09AE003 S77  Swift River Near Swift River BC 59.9 -131.8 3390 Yukon Pacific Ocean 

09AA006 S75 Atlin River Near Atlin BC 59.6 -133.8 6860 Yukon Pacific Ocean 

08CD001 S71 Tuya River Near Telegraph Creek BC 58.1 -130.8 3550 Seaboard Pacific Ocean 

08CG001 S82 Iskut River Below Johnson River BC 56.7 -131.7 9500 Seaboard Pacific Ocean 

08FB006 S87 Atnarko River Near The Mouth BC 52.4 -126.0 2550 Seaboard Pacific Ocean 

08OA002 S78 Yakoun River Near Port Clements BC 53.6 -132.2 480 Seaboard Pacific Ocean 

08HB008 S83 Sproat River Near Alberni BC 49.3 -124.9 351 Seaboard Pacific Ocean 

08GA010 S84 Capilano River Above Intake BC 49.4 -123.1 173 Seaboard Pacific Ocean 

08HA001 S81 Chemainus River Near Westholme BC 48.9 -123.7 355 Seaboard Pacific Ocean 

08HA003 S79 Koksilah River at Cowichan Station BC 48.7 -123.7 209 Seaboard Pacific Ocean 

08JE001 S95 Stuart River Near Fort St. James BC 54.4 -124.3 14200 Fraser Pacific Ocean 

08JB002 S96 Stellako River At Glenannan BC 54.0 -125.0 3600 Fraser Pacific Ocean 

08LA001 S89 Clearwater River Near Clearwater Station BC 51.6 -120.1 10300 Fraser Pacific Ocean 

08LD001 S88 Adams River Near Squilax BC 50.9 -119.7 3210 Fraser Pacific Ocean 

08MA002   S102 Chilko River At Outlet Of Chilko Lake BC 51.6 -124.1 2130 Fraser Pacific Ocean 

08MG005 S85 Lillooet River Near Pemberton BC 50.3 -122.8 2100 Fraser Pacific Ocean 

08MH006 S80 North Alouette River 232nd Street Maple Ridge BC 49.2 -122.6 37.3 Fraser Pacific Ocean 

08MH016 S86 Chilliwack River At Outlet Of Chilliwack Lake BC 49.1 -121.5 335 Fraser Pacific Ocean 

08NB005 S99 Columbia River At Donald BC 51.5 -117.2 9700 Columbia Pacific Ocean 

08NF001   S101 Kootenay River At Kootenay Crossing BC 50.9 -116.0 416 Columbia Pacific Ocean 

08ND013 S90 Illecillewaet River At Greeley BC 51.0 -118.1 1150 Columbia Pacific Ocean 

08NE006 S93 Kuskanax Creek Near Nakusp BC 50.3 -117.7 330 Columbia Pacific Ocean 
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Table D1. Continued. 

RHBN ID 
Station 

ID 
Station Name 

Provinc

e 
Lat. Long. 

Basin 

area 

(km2) 

Sub-basin Basin 

08NE077 S91 Barnes Creek Near Needles BC 49.9 -118.1 204 Columbia 
Pacific 

Ocean 

08NH005 S94 Kaslo River Below Kemp Creek BC 49.9 -117.0 442 Columbia 
Pacific 

Ocean 

08NH084 S98 Arrow Creek Near Erickson BC 49.2 -116.5 78.3 Columbia 
Pacific 

Ocean 

08NJ130 S97 Anderson Creek Near Nelson BC 49.5 -117.3 9.07 Columbia 
Pacific 

Ocean 

08NN015   S100 West Kettle River Near Mcculloch BC 49.7 -119.1 233 Columbia 
Pacific 

Ocean 

08NL007 S92 Similkameen River At Princeton BC 49.5 -120.5 1810 Columbia 
Pacific 

Ocean 

Table D2. Summary information for the selected RHBN stations in the Atlantic Basin. 

RHBN ID 
Station 

ID 
Station Name Province Lat. Long 

Basin area 

(km2) 
Sub-basin Basin 

02YC001 S11 Torrent River At Bristols Pool NL 50.6 -57.2 624 Seaboard 
Atlantic 

Ocean 

02YL001 S13 Upper Humber River Near Reidville NL 49.2 -57.4 2110 Seaboard 
Atlantic 

Ocean 

02YQ001 S17 Gander River At Big Chute NL 49.0 -54.9 4450 Seaboard 
Atlantic 

Ocean 

02YR001 S15 Middle Brook Near Gambo NL 48.8 -54.2 275 Seaboard 
Atlantic 

Ocean 

02ZB001 S14 
Isle Aux Morts River Below Highway 

Bridge 
NL 47.6 -59.0 205 Seaboard 

Atlantic 

Ocean 

02ZF001       S8 Bay Du Nord River At Big Falls NL 47.7 -55.4 1170 Seaboard 
Atlantic 

Ocean 

02ZG001 S10 Garnish River Near Garnish NL 47.2 -55.3 205 Seaboard 
Atlantic 

Ocean 

02ZH001 S18 Pipers Hole River At Mothers Brook NL 47.9 -54.3 764 Seaboard 
Atlantic 

Ocean 

02ZK001       S9 Rocky River Near Colinet NL 47.2 -53.6 301 Seaboard 
Atlantic 

Ocean 

02ZM006 S20 
Northeast Pond River At Northeast 

Pond 
NL 47.6 -52.8 3.63 Seaboard 

Atlantic 

Ocean 
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Table D2. Continued. 

RHBN ID 
Station 

ID 
Station Name Province Lat. Long 

Basin area 

(km2) 
Sub-basin Basin 

01FB001 S53 

Northeast Margaree 

River At Margaree 

Valley 

NS 46.4 -61.0 368 Seaboard Atlantic Ocean 

01FB003 S50 

Southwest Margaree 

River Near Upper 

Margaree 

NS 46.2 -61.1 357 Seaboard Atlantic Ocean 

01FA001 S33 
River Inhabitants At 

Glenora 
NS 45.7 -61.3 193 Seaboard Atlantic Ocean 

01EO001 S45 
St. Marys River At 

Stillwater 
NS 45.2 -62.0 1350 Seaboard Atlantic Ocean 

01DP004 S52 
Middle River Of Pictou 

At Rocklin 
NS 45.5 -62.8 92.2 Seaboard Atlantic Ocean 

01DG003 S51 
Beaverbank River Near 

Kinsac 
NS 44.9 -63.7 96.9 Seaboard Atlantic Ocean 

01EF001 S47 
Lahave River At West 

Northfield 
NS 44.4 -64.6 1250 Seaboard Atlantic Ocean 

01EC001 S49 
Roseway River At Lower 

Ohio 
NS 43.8 -65.4 495 Seaboard Atlantic Ocean 

01BV006 S44 
Point Wolfe River At 

Fundy National Park 
NB 45.6 -65.0 130 Seaboard Atlantic Ocean 

01BU002 S46 
Petitcodiac River Near 

Petitcodiac 
NB 45.9 -65.2 391 Seaboard Atlantic Ocean 

01BS001 S40 
Coal Branch River At 

Beersville 
NB 46.4 -65.1 166 Seaboard Atlantic Ocean 

01CA003 S35 
Carruthers Brook Near 

St. Anthony 
PE 46.7 -64.2 46.8 Seaboard Atlantic Ocean 

02NF003 S32 
Matawin (Riviere) A 

Saint-Michel-Des-Saints 
QC 46.7 -73.9 1390 St. Lawrence Atlantic Ocean 

02LB007 S58 
South Nation River At 

Spencerville 
ON 44.8 -75.5 246 St. Lawrence Atlantic Ocean 

02KB001 S21 
Petawawa River Near 

Petawawa 
ON 45.9 -77.3 4122.32 St. Lawrence Atlantic Ocean 

02HL004 S22 
Skootamatta River Near 

Actinolite 
ON 44.5 -77.3 677.65 St. Lawrence Atlantic Ocean 

02EA005 S29 
North Magnetawan River 

Near Burks Falls 
ON 45.7 -79.4 328.84 St. Lawrence Atlantic Ocean 
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Table D2. Continued. 

RHBN ID 
Station 

ID 
Station Name Province Lat. Long 

Basin 

area 

(km2) 

Sub-basin Basin 

02EC002 S60 Black River Near Washago ON 44.7 -79.3 1510.27 St. Lawrence Atlantic Ocean 

02FB007 S62 Sydenham River Near Owen Sound ON 44.5 -80.9 182.97 St. Lawrence Atlantic Ocean 

02FC001 S59 Saugeen River Near Port Elgin ON 44.5 -81.3 3953.52 St. Lawrence Atlantic Ocean 

02GA010 S61 Nith River Near Canning ON 43.2 -80.5 1034.28 St. Lawrence Atlantic Ocean 

02AB008 S24 Neebing River Near Thunder Bay ON 48.4 -89.3 187 St. Lawrence Atlantic Ocean 

01AQ001 S41 Lepreau River At Lepre NB 45.2 -66.5 239 Saint John- St. Croix Atlantic Ocean 

01AP004 S34 Kennebecasis River At Apohaqui NB 45.7 -65.6 1100 Saint John- St. Croix Atlantic Ocean 

01AP002 S42 Canaan River At East Canaan NB 46.1 -65.4 668 Saint John- St. Croix Atlantic Ocean 

01AK001 S54 
Shogomoc Stream Near Trans-Canada 

Highway 
NB 45.9 -67.3 234 Saint John- St. Croix Atlantic Ocean 

01AD002 S56 Saint John River At Fort Kent NB 47.3 -68.6 14700 Saint John- St. Croix Atlantic Ocean 

 

Table D3. Summary information for the selected RHBN stations in the Arctic Basin. 

RHBN ID 
Station 

ID 
Station Name Province Lat. Long. 

Basin area 

(km2) 
Sub-basin Basin 

10PB001 S7 Coppermine River At Outlet Of Point Lake NT 65.4 -114.0 19200 Seaboard Arctic Ocean 

10RC001 S1 Back River Above Hermann River NU 66.1 -96.5 93900 Seaboard Arctic Ocean 

10CB001   S68 Sikanni Chief River Near Fort Nelson BC 57.2 -122.7 2180 Lower Mackenzie Arctic Ocean 

10BE004   S76 Toad River Above Nonda Creek BC 58.9 -125.4 2540 Lower Mackenzie Arctic Ocean 

10CD001   S65 Muskwa River Near Fort Nelson BC 58.8 -122.7 20300 Lower Mackenzie Arctic Ocean 

07LE002 S5 Fond Du Lac River At Outlet Of Black Lake SK 59.2 -105.5 50700 Lower Mackenzie Arctic Ocean 

07OB001 S3 Hay River Near Hay River NT 60.7 -115.9 51700 Lower Mackenzie Arctic Ocean 

10EB001   S73 South Nahanni River Above Virginia Falls NT 61.6 -125.8 14500 Lower Mackenzie Arctic Ocean 

07RD001 S6 Lockhart River At Outlet Of Artillery Lake NT 62.9 -108.5 26600 Lower Mackenzie Arctic Ocean 

07FB001   S66 Pine River At East Pine BC 55.7 -121.2 12100 Peace Athabasca Arctic Ocean 

07CD001   S64 Clearwater River At Draper AB 56.7 -111.3 30799.4 Peace Athabasca Arctic Ocean 

07FC003   S67 Blueberry River Below Aitken Creek BC 56.7 -121.2 1770 Peace Athabasca Arctic Ocean 
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Table D4. Summary information for the selected RHBN stations in the Hudson Bay Basin. 

RHBN ID 
Station 

ID 
Station Name Province Lat. Long. 

Basin area 

(km2) 
Sub-basin Basin 

04NA001 S28 
Harricana (Riviere) 3 1 Km En Aval 

Du Pont-Route 111 A Amos 
QC 48.6 -78.1 3680 Western & Northern HB Hudson Bay 

04LJ001 S27 Missinaibi River At Mattice ON 49.6 -83.3 8574.38 Western & Northern HB Hudson Bay 

04JC002 S26 Nagagami River At Highway No. 11 ON 49.8 -84.5 2178.36 Western & Northern HB Hudson Bay 

06CD002 S31 Churchill River Above Otter Rapids SK 55.6 -104.7 119000 Northern Quebec  & Ontario Hudson Bay 

06GD001      S4 Seal River Below Great Island MB 58.9 -96.3 48100 Northern Quebec  & Ontario Hudson Bay 

06LC001      S2 Kazan River Above Kazan Falls NU 63.7 -95.9 70000 Northern Quebec  & Ontario Hudson Bay 

05PB014      S30 Turtle River Near Mine Centre ON 48.9 -92.7 4767.74 Nelson Hudson Bay 

05TD001 S23 
Grass River Above Standing Stone 

Falls 
MB 55.7 -97.0 15400 Nelson Hudson Bay 

05LH005 S63 Waterhen River Near Waterhen MB 51.8 -99.5 55100 Nelson Hudson Bay 

05AD005 S70 Belly River Near Mountain View AB 49.1 -113.7 319.2 Nelson Hudson Bay 

05AD003 S69 Waterton River Near Waterton Park AB 49.1 -113.8 612.7 Nelson Hudson Bay 

05AA008   S103 Crowsnest River At Frank AB 49.6 -114.4 402.7 Nelson Hudson Bay 

05BB001   S104 Bow River At Banff AB 51.2 -115.6 2209.6 Nelson Hudson Bay 

05DA007   S105 
Mistaya River Near Saskatchewan 

Crossing 
AB 51.9 -116.7 248 Nelson Hudson Bay 

 

Appendix D2. The distribution of selected RHBN stations in major Canadian drainage 

basins and sub-basins  

 

Table D5. Main sub-basins of the four Canadian major drainage basins along with their drainage areas, 

abbreviations and the number of RHBN stations within  their territory used in this study. 

Major Basin Sub-basin Area (1000 km2) # of stations Abbreviation 

Pacific 

Yukon 330.4 4 P1 

Seaboard 334.2 8 P2 

Fraser 232.5 8 P3 

Columbia 102.8 10 P4 

Atlantic 

Seaboard 499.7 28 At1 

St. Lawrence   860.1 16 At2 

Saint John- St. Croix 41.9 5 At3 

Arctic 

Seaboard  1,739.3 2 Ar1 

Lower Mackenzie 1,321.1 7 Ar2 

Peace Athabasca 482.7 3 Ar3 

Hudson Bay 

Western & Northern HB 1,243.9 3 H1 

Northern Quebec & Ontario 1,889.2  3 H2 

Nelson   1,138.5 8 H3 
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Figure D1. The distribution of the selected 105 RHBN streamflow stations across the major Canadian 

drainage basins and sub-basins. 

Appendix D3. Assigning the optimal number of streamflow regimes in Canada and their 

archetype streams  

 

Figure D2. Variation in the Xie and Beni, Partition, and Separation indices by altering the numbers of 

clusters.  
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Figure D3. Alterations in the decadal streamflow regimes at the archetype streams through time. The 

envelopes of annual hydrographs for the earliest (1966 to 1975) and the latest (2001 to 2010) decadal 

episodes in archetype streams are shown with grey and pink colors, respectively. The expected annual 

hydrographs during the earliest and the latest decadal periods are shown in solid black and solid red lines. 

The change in the membership degree of each archetype stream is shown within parentheses. 
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Appendix D4. The detailed analysis of trend and evolution of decadal memberships 

 

Figure D4. Evolutions in the degrees of membership to each regime type in 105 considered RHBN streams 

grouped in major basins/sub-basins, along with the corresponding Sen’s slope. For each stream, the shades 

of grey show decadal memberships over the period of 1966 to 2010. The color bar shows the direction and 

significance of the Sen’s slope of the trend in the anomalies of memberships. Positive and negative trends 

are shown with red and blue colors, respectively. Sharper colors show significant cases. In each sub-basin, 

stations are sorted from north to south from the top to the bottom. 
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Figure D5. Evolution in degrees of membership to each regime type in the 105 considered RHBN streams 

grouped according to ecozones, along with the corresponding Sen’s slopes. For each stream, shades of grey 

show decadal memberships over the period of 1966 to 2010. The color bar shows the direction and 

significance of the Sen’s slope of the trend in the anomalies of memberships. Positive and negative trends 

are shown with red and blue colors, respectively. Sharper colors show significant trends. The RHBN 

stations at each ecozone are sorted from the lowest to the highest elevations from the top to the bottom.  
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Appendix D5. Mapping the dominant shifts in natural streamflow regime in Canada  

 
Figure D6. Mapping shifts in natural streamflow regime throughout Canada from 1966 to 2010. In each 

panel, circles identify the streams in which the regime is shifted. Colors show the initial regime type from 

which the streamflow is departed toward the reference cluster, which is given in each panel. Rates of the 

shifts between regime types in each stream are proportional to the size of each circle. 
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Appendix D6. Attribution of regime shift to changes in streamflow characteristics over 

basin/sub-basin scale 

 

Figure D7. The alterations in regime types for 105 RHBN streams attributed to the first moments of the 15 

IHA considered. Shades of red and blue show the positive and negative dependencies between changes in 

streamflow features and the degrees of membership, respectively. Color saturation shows the coefficient of 

determination between changes in the streamflow features and the degrees of membership representing the 

percentage of described variance in changes of streamflow regime by changes in streamflow features.  
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Figure D8. The alterations in regime types for 105 RHBN streams attributed to the second moments of the 

15 IHA considered. Shades of red and blue show the positive and negative dependencies between changes 

in streamflow features and the degrees of membership, respectively. Color saturation shows the coefficient 

of determination between changes in the streamflow features and the degrees of membership representing 

the percentage of described variance in changes of streamflow regime by changes in streamflow features.  
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Figure D9. Dominant regime shifts across 105 RHBN streams in Canada attributed to the first and second 

moments of the 15 IHAs considered. Shades of red and blue show the values of squared of Kendall’s tau 

between changes in streamflow features and degrees of membership. The dominant regime shift at each 

stream is identified by the color scheme described in the legend. Streams are grouped in ecozones and 

ordered from low (top) to the high (bottom) elevations. 
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Appendix D7. Additional streams in the Prairies 

Table D6. Summary information for the nine unseen stations in the Prairies ecozone.  

Station  
Station 

ID 
Station Name Province Lat. Long. 

Basin area 

(km2) 
Sub-basin Basin 

05OB021 P1 Mowbray Creek Near Mowbray MB 49.0 -98.4 263 Nelson Hudson Bay 

05OB016 P2 Snowflake Creek Near Snowflake MB 49.0 -98.6 975 Nelson Hudson Bay 

05LL014 P3 Pine Creek Near Melbourne MB 49.9 -99.2 225 Nelson Hudson Bay 

05MF001 P4 
Little Saskatchewan River Near 

Minnedosa 
MB 50.4 -99.9 2610 Nelson Hudson Bay 

05MD005 P5 Shell River Near Inglis MB 51.0 -101.3 1970 Nelson Hudson Bay 

05HD036 P6 
Swift Current Creek Below Rock 

Creek 
SK 49.8 -108.5 1430 Nelson Hudson Bay 

05EA005 P7 Sturgeon River Near Villeneuve AB 53.6 -113.7 1890 Nelson Hudson Bay 

05CB001 P8 
Little Red Deer River Near The 

Mouth 
AB 52. -114.1 2580 Nelson Hudson Bay 

05BL014 P9 Sheep River At Black Diamond AB 50.7 -114.2 592 Nelson Hudson Bay 
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Appendix E.  

Additional materials for “A Generalized Approach for Synthetic Streamflow Generation 

under Changing Conditions” 

 

 
Figure E1. Representation of the desired shift in the expected timing of the annual peak in long-range 

future across the six sites using the proposed approach in single-site setting. The black and blue histograms 

are related to the observed and generated timing of annual peak, respectively. 
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Figure E2. Representation of desired forms of shifts in terms of changes in the seasonal volume in six sites 

using the proposed approach in single-site generation of streamflow. The gray and blue colored distribution 

are the observed and simulated seasonal volumes. The results are related to the long-range future.   
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Figure E3. The comparison of the proposed approach in long-range generations of seasonal volumes in 

sites G2 and NG2. The light and dark colored distributions are the generated seasonal volume distributions 

generated by single and multisite settings, respectively.  

 

 

 

 


