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Abstract

Fully Bayesian Learning with Markov Chain Monte Carlo Methods for Asymmetric
Generalized Gaussian Mixture and Hidden Markov Models

Ravi Teja Vemuri

A unique and efficient Bayesian learning framework is proposed for the learning of asymmet-

ric generalized Gaussian mixtures and hidden Markov models. This framework is based on Markov

chain Monte Carlo (MCMC) sampling with hybrid Metropolis-Hastings within Gibbs sampling as

the fundamental learning algorithm. The algorithm is integrated with the reversible jump MCMC

(RJMCMC) technique to achieve a fully Bayesian learning framework for proposed models. A fully

Bayesian learning framework allows self-adaptive learning where the two major challenges of mix-

ture modelling, parameter estimation and model selection, are done automatically thereby making

the learning process autonomous. Furthermore, feature selection is explored and incorporated in

the learning process to enhance the capability of the models to weight and pick relevant features

in multi-dimensional data. The proposed framework is tested through a wide range of applica-

tions: activity recognition, speaker recognition etc., and its performance is evaluated with multiple

performance metrics to display the robustness of the approach.

iii



Acknowledgments

“Guru devo bhava”

I want to offer my profound gratitude to Prof. Nizar Bouguila, my supervisor. It all began in

2019 when I was working as a full-stack developer and aiming to be a machine learning engineer.

With no prior knowledge of artificial intelligence (AI), I attempted a couple of online classes; all

I learned was how to implement a machine learning model without first understanding it. After

recognizing that I needed a master’s degree to go deeper into AI, I applied to various universities and

was refused by all of them. I was losing hope, and obtaining an AI degree from a reputable university

had become a pipe dream. Concordia University was my final attempt; I found Prof. Nizar’s study

interesting and expressed my enthusiasm in an email to him. I am here with my thesis. I also

want to express my gratitude to him for his unwavering support and guidance during my master’s

program and for providing me opportunities of all-round development by placing me on various

industrial projects. Additionally, I want to express my heartfelt appreciation to my co-supervisor,

Prof. Zachary Patterson, for believing in me and helping me with my study, and giving me a chance

by involving me in a highly innovative industrial project that provided valuable experience.

I would like to express my gratitude to Dr. Muhammad Azam, a friend, mentor, and colleague,

for supporting and motivating me throughout my research and master’s journey. I’d want to express

my gratitude to all of my lab mates for all of the knowledge sharing and fun we had. Ultimately, I

want to express my gratitude to my family for their constant support. I could not have accomplished

what I did without the help and support of everyone I’ve listed. Many thanks!

iv



Contents

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 A Bayesian Sampling Framework for Asymmetric Generalized Gaussian Mixture Mod-

els Learning 7

2.1 Finite Asymmetric Generalized Gaussian Mixture Model . . . . . . . . . . . . . . 8

2.1.1 Finite Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Bayesian Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Human Activity Recognition . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Surveillance System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Malaria Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Reversible Jump Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Split and Combine Moves . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Birth and Death Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



2.5 Validation of the RJMCMC with feature selection approach . . . . . . . . . . . . . 26

2.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Human Activity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.3 Automobile Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.4 Walker Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.5 Malaria Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Bayesian Inference of Hidden Markov Models using Dirichlet Mixtures 31

3.1 The Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 The Bayesian Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.3 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Markov Chain Monte Carlo Methodology . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Gibbs moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Split and Combine moves . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Birth and Death Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Human Activity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Speaker Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Conclusion 48

Appendix A Appendix 50

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 52

vi



List of Figures

Figure 2.1 KTH data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.2 UCF data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.4 Pedestrian data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.3 Vehicle data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.5 Malaria data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.1 Directed acyclic graph for the complete hierarchical model . . . . . . . . . 35

Figure 3.2 KTH data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.3 UCF data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.4 Speaker speech samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vii



List of Tables

Table 2.1 Indoor Activity Recognition Results . . . . . . . . . . . . . . . . . . . . . . 16

Table 2.2 Outdoor Activity Recognition Results . . . . . . . . . . . . . . . . . . . . . 17

Table 2.3 Vehicle Recognition Results . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Table 2.4 Pedestrian Recognition Results . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 2.5 Malaria Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 2.6 Human activity recognition results . . . . . . . . . . . . . . . . . . . . . . . 27

Table 2.7 Vehicle recognition results . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 2.8 Pedestrian Recognition Results . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 2.9 Malaria detection results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 3.1 Activity Recognition with KTH . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 3.2 Activity Recognition with UCF . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 3.3 Speaker Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table A.1 Table of partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



Chapter 1

Introduction

Due to the data generated as a result of numerous technological processes, Artificial Intelligence

(AI) has become a vital aspect of many technical solutions in the modern day [24]. In general, the

term “AI” is used to refer to any system or computer capable of self-optimization, learning, or in-

ference. Additionally, it can be characterised as a computer system that has been trained to execute

cognitive activities similar to those performed by humans, such as image recognition [3], natural

language processing [26], and speech processing [71]. Machine learning (ML) [4, 23] is a subset

of artificial intelligence that enables computers to perform tasks beyond their capabilities through

the use of a variety of programming approaches and algorithms. In machine learning, enormous

volumes of data are analysed to assist the machine in evolving with each iteration, which is the

learning element. As data is the core component, an orderly data flow is required for every machine

learning algorithm to perform properly. The data must be clean, varied, and machine-readable in

order for the learning process to be efficient. Data mining [45] on the other hand is used to uncover

patterns in data, enabling machines to make decisions autonomously and forecast future patterns.

Data modelling is a difficult undertaking in and of itself, and numerous statistical data mining

methodologies have been advocated for managing and extracting information [73] and discovering

patterns [41] from ever-increasing volumes of data. On the other hand, numerous generative and

discriminative approaches in machine learning have been created to enhance the effectiveness of the

learning process. These approaches can be broadly classified into two categories: supervised and
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unsupervised learning. In the former approach, prior to modelling, classes in the data are identi-

fied, and the model is trained on them in order to assign new data to one of these classes. In the

latter technique, no prior knowledge about the data is assumed, and models are expected to cluster

the data autonomously. The term ”classification” is frequently used to refer to supervised learning

activities, whereas ”clustering” is used to refer to unsupervised learning tasks. In either case, the

learning process is extremely challenging and complex [64]. Inadequate and insufficient data, over-

and under-fitting, as well as other learning biases, can all contribute to models performing badly,

resulting in erroneous predictions.

Approaches to mixture modelling [17] try to resolve the problem of learning model parameters

and calculating the number of clusters (M ) that best characterise a dataset. This thesis examines

Bayesian approaches such as Markov chain Monte Carlo (MCMC) methods that are used in the pro-

posed work in combination with mixture models and hidden Markov models. In Bayesian inference,

parameters are randomly picked from several posterior probability distributions that represent the

prior knowledge about the data and the model’s parameters. Throughout this study, a hybrid MCMC

strategy referred to as Metropolis-Hastings [46] inside Gibbs sampling [43] is employed for learn-

ing. This hybrid strategy is used due to the difficulty of implementing classic MCMC approaches

in situations when direct sampling is impractical. By employing this hybrid approach, proposal dis-

tributions for mixture parameters are formed iteratively and decisions are made after each iteration

using acceptance ratio computations. Finally, following convergence, the ideal parameter values are

determined. With the primary goal of effectively modelling data, mixtures of Gaussian distributions

have become a popular technique due to the isotropic character of the Gaussian distribution, or its

ability to represent data using a mean and covariance.

Due to its symmetric nature around the mean and fixed form, the Gaussian distribution (GD)

has its own restrictions. In reality, data may be non-Gaussian, and so a Gaussian mixture may have

downsides. To overcome the limits of Gaussian distributions, a few researchers have fitted non-

Gaussian data using the Generalized Gaussian distribution (GGD) [1,28]. In comparison to the GD,

the GGD has an additional parameter (β) that influences the distribution’s form. As the value of β

increases, the curve becomes flatter, and vice versa. While the GGD is more flexible than the GD, it
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remains a symmetric distribution around the mean and is hence ineffective at fitting non-symmetric

data. As a result, mixtures of asymmetric Gaussian distributions (AGD) [32, 33, 37–40] have been

proposed to fit non-symmetric data by dividing the variance parameter (σ) of the GD into left and

right variance. It has the same constraints on the shape of the distribution as GGD, except that GGD

tackles only the constraint of GD’s rigidity of shape, whereas AGD addresses GD’s inability to fit

asymmetric data. Finally, the research presented in [30] succeeded in proposing an asymmetric

generalised Gaussian distribution (AGGD) that overcomes both of the GDs’s limitations by adding

three additional parameters β, σl, σr to provide shape flexibility and the ability to fit asymmetric

data [13]. The parameters σl, σr define the skewed nature of the peak, while β determines its kur-

tosis and can be used to make it sharp or flat by adjusting its value. With this flexibility, proposed

model is superior for fitting asymmetric data and this Bayesian framework effectively estimates

model parameters, as demonstrated in the remainder of the thesis through demanding real-world

applications.

Later, following [16], a completely Bayesian framework for an asymmetric generalised Gaus-

sian mixture model (AGGMM) is employed in light of the Reversible Jump (RJMCMC) algorithm,

which permits changing the number of states from one iteration to the next in response to a change

in the dimension of the parameter space. Additionally, the approach enables estimation of the joint

posterior distribution for the total number of states and all parameters. Later in the study, feature

selection [62] is incorporated into the model to optimise the learning process by minimising the

time complexity by choosing relevant features from high dimensional data sets.

In the thesis, hidden Markov models (HMM) which are advanced statistical models that employ

a Markov process for system modelling are explored. These procedures make the assumption that

an observable series of data is dependent on hidden patterns and attempt to infer them from visible

observations. HMMs are effective in speech recognition applications as well as in any other type

of sequence or time series analysis. Due to the fact that HMMs are typically used to represent

dependent heterogeneous events, they are applied in a variety of fields, including econometrics [44],

biology [49], genetics [27], speech processing [53], and finance [59]. For this research, [58] and [56]

are followed to develop a Bayesian approach incorporating mixture models in learning and employ
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RJMCMC making it a fully Bayesian learning framework.

1.1 Contributions

The contributions of this thesis are as follows:

☞ A Bayesian Sampling Framework for Asymmetric Generalized Gaussian Mixture Mod-

els Learning:

In the first study in chapter 2, a novel unsupervised Bayesian framework for the learning of

a finite mixture of asymmetric generalised Gaussian distributions (AGGD) is proposed. The

parameters are computed using a hybrid Markov Chain Monte Carlo (MCMC) technique that

combines Metropolis-Hastings and Gibbs sampling. By introducing new parameters, this re-

search aims to increase the modelling flexibility of the Gaussian distribution and its capacity

to fit asymmetric and non-Gaussian data. To evaluate the suggested model’s performance,

multiple experiments are done and the model is evaluated on a variety of real-world applica-

tions. The model’s performance is evaluated using a variety of evaluation methodologies and

compared to the performance of benchmark models in order to determine its goodness of fit.

This work [68] was published in the Neural Computing and Applications: Special Issue on

Emerging trends in Artificial Intelligence and Machine Learning.

☞ Model Selection and Feature Selection in Asymmetric Generalized Gaussian Mixtures:

In the second part of chapter 2, an advanced unsupervised Bayesian framework for learn-

ing a finite mixture of asymmetric generalised Gaussian distributions (AGGD) using Markov

Chain Monte Carlo (MCMC) is proposed, which incorporates Metropolis-Hastings within

Gibbs sampling for estimating mixture parameters and reversible jump MCMC (RJMCMC)

to dynamically select the number of model components M . To facilitate learning, feature se-

lection methods that weight features according to their importance were devised. Numerous

experiments are conducted to assess the model’s performance in a range of real-world scenar-

ios. The performance of the proposed model is compared to that of other benchmark models

in order to assess the proposed learning approach’s importance. This work was submitted to
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IEEE IES ICIT 2022: 23rd IEEE International Conference on Industrial Technology.

☞ Bayesian Inference of Hidden Markov Models using Dirichlet Mixtures:

In this work from the chapter 3, an effective unsupervised learning strategy for Hidden

Markov Model (HMM) learning using a Bayesian framework is presented and a novel method

for parameter estimation based on Markov Chain Monte Carlo (MCMC) sampling is demon-

strated. Additionally, reversible jump MCMC (RJMCMC) is built to highlight how dynamic

model selection can be used to boost modelling capabilities. The Dirichlet mixture model

is integrated into HMM as a critical phase in the learning process in order to enhance its

modelling power. Experiments were performed with the proposed model utilising real-world

video and audio data to demonstrate its effectiveness in comparison to other benchmark mod-

els. This work is accepted as a book chapter in: Hidden Markov Models and Applications.

1.2 Thesis Overview

❏ In chapter 1, machine learning, various approaches to machine learning, existing models, and

the proposed models are briefly introduced. Then the contributions are described.

❏ In chapter 2, Bayesian learning, finite mixtures, proposed asymmetric generalized Gaussian

mixture model (AGGMM) and its MCMC based learning algorithm: Metropolis-Hastings

within Gibbs sampling are described in detail. Moreover, experiments and discussions about

the proposed model’s performance on various real world applications are mentioned. In addi-

tion to MCMC, a fully Bayesian approach to AGGMM via reversible jump MCMC is intro-

duced. Finally, feature selection employed.

❏ In chapter 3, HMMs and their learning via a Bayesian approach is introduced: RJMCMC

is proposed for parameter estimation and model selection making it a fully Bayesian learn-

ing framework. Mixture modelling approach in the proposed model is introduced by us-

ing a Dirichlet mixture model as part of the learning algorithm. As part of RJMCMC, the

split/combine and birth/death moves responsible for dynamic model selection in HMM are

explored in detail. Finally, experiments are conducted on the presented learning approach

5



with well-known image and video data sets and evaluate the results to display the robustness

of the proposed model in comparison to other benchmark models.

❏ Finally, chapter 4 outlines and summarises the thesis and suggests areas for future exploration.

6



Chapter 2

A Bayesian Sampling Framework for

Asymmetric Generalized Gaussian

Mixture Models Learning

This chapter presents a unique unsupervised Bayesian framework for recognition tasks. Here

we introduce and elaborate our proposed work on AGGMM. We explain our model and its learning

approach which is based on a hybrid MCMC: Metropolis-Hastings within Gibbs sampling. We also

showcase the performance of our model by experimenting it on various real world applications.

We evaluate and record the results and compare them with other base models. Furthermore, we

also propose a full Bayesian approach using RJMCMC for AGGMM and also incorporate feature

selection into our models learning to improve its performance. Finally, we perform experiments

using our model in this framework with similar applications as before and evaluate its performance

with benchmark models.
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2.1 Finite Asymmetric Generalized Gaussian Mixture Model

2.1.1 Finite Mixture Model

Mixture models are probabilistic models that aim to fit the data with clusters that follow different

or same probabilistic distributions and these are often represented by mixtures of M components,

where each component fits a cluster of the whole data. A d-dimensional random variable X⃗ =

[X1, ..., Xd]
T is said to be following a mixture of M components if its probability density function

takes following form:

p(X⃗|Θ) =
M∑
j=1

pjp(X⃗|ξj) (1)

where ξj is the set of parameters of mixture distributions for jth component, pj are the mixing

probabilities, which are always positive and sum to 1. Θ, the set of all parameters is represented

as Θ = {p1, ..., pM , ξ1, ..., ξM}. Here, M represents the number of components in the mixture

and is always greater or equal to 1. For our case, we assume that the data follows a mixture of

AGGD which we call AGGMM. In AGGMM, each component follows an AGGD whose density is

represented as p(X⃗|ξj) and given as follows [30] :

p(X⃗|ξj) =
d∏

k=1


βjk

[
Γ(3/βjk)

Γ(1/βjk)

]1/2
(σljk

+σrjk
)Γ(1/βjk)

exp
[
−A(βjk)

(
µjk−Xk

σljk

)βjk
]

if Xk < µjk

βjk

[
Γ(3/βjk)

Γ(1/βjk)

]1/2
(σljk

+σrjk
)Γ(1/βjk)

exp
[
−A(βjk)

(
Xk−µjk

σrjk

)βjk
]

if Xk ≥ µjk

(2)

whereA(βjk) =
[
Γ(3/βjk)
Γ(1/βjk)

]βjk/2
and Γ(.) is the Gamma function given by Γ(x) =

∫∞
0 tx−1e−t dt,

x > 0. Here ξj = (µ⃗j , β⃗j , σ⃗lj , σ⃗rj ) are the set of parameters for component j, each given as,

mean µ⃗j = (µ1j , ..., µjd), left standard deviation, σ⃗lj = (σlj1 , ..., σljd) and right standard deviation

σ⃗rj = (σrj1 , ..., σrjd) of a d-dimensional AGGD. The parameter β⃗j = (βj1, ..., βjd) controls the

shape of the probability density function (PDF) and determines whether the peak of the curve is

pointed or flat with a smaller β⃗j resulting in a sharper peak. The AGGD is chosen because of its

flexible nature to fit symmetric or asymmetric data by adjusting left and right standard deviations.

Using Eq. 2, the PDF of each observation is computed and later used to compute the posterior

probabilities of the observation to belong to the different clusters.

For the finite asymmetric generalized Gaussian mixture [13], let X = (X⃗1, ..., X⃗N ) be a set

8



of N independent vectors which are identically distributed and follow a finite AGGMM with M

components. Their likelihood can be represented as:

p(X|Θ) =

N∏
i=1

M∑
j=1

pjp(X⃗i|ξj) (3)

where the set of parameters of the mixture withM components is given by Θ = (µ⃗1, ..., µ⃗M , σ⃗l1 , ...,

σ⃗lM , σ⃗r1 , ..., σ⃗rM , β⃗1, ..., β⃗M , p1, ..., pM ).

As an important step in mixture modelling, we produce an M -dimensional membership vector

[30] Z⃗i for each data point X⃗i ∈ X , such that Z⃗i = (Zi1, ..., ZiM ) in which entries are defined

as [40]:

Zij =


1 if X⃗i belongs to jth component

0 otherwise
(4)

which means that for an observation X⃗i, Zij = 1 only for one of the M components according to

the highest assignment probability and Zij = 0 for the rest of the M − 1 components. Therefore,

the complete probability density function can be obtained by combining Eq. 3 and Eq. 4 and is

given as follows:

p(X , Z|Θ) =

N∏
i=1

M∑
j=1

(pjp(X⃗i|ξj))Zij (5)

2.1.2 Bayesian Learning

The Bayesian approach in machine learning has been a well known technique for more than

a decade [21, 22, 29]. It mainly respects Bayes’s theorem [65] in order to produce a posterior

distribution by taking into account prior information and information available from a data set. Prior

information is our belief about the unknown parameters before considering the data and the posterior

distribution summarizes our assumptions about the parameters after considering and analyzing the

data. For our case, we use the Markov Chain Monte Carlo [2] technique for generating Bayesian

estimates. Since the main goal is to find the posterior distribution π(Θ|X , Z) [28] by combining

the prior information about the unknown parameters π(Θ) with analyzed data p(Θ|X , Z) the Bayes

9



formula can be given as follows [30]:

π(Θ|X , Z) = π(Θ)p(X , Z|Θ)∫
Θ π(Θ)p(Θ|X , Z)dΘ

∝ π(Θ)p(X , Z|Θ) (6)

Here, X and Z together represent the complete data. Using a combination of Metropolis Hastings

[25] and Gibbs sampling [42, 43] techniques we can estimate the unknown parameters and thereby

find its posterior distribution.

Bayesian Learning Algorithm for AGGMM

We use MH-within-Gibbs [19] learning for AGGMM. The algorithm will be summarized at

the end of this section. First, we simulate Z with the posterior distribution π(Z|Θ,X ) from a

Multinomial distribution of order 1 as Z(t)
i ∼ M(1; Ẑ

(t−1)
i1 , ..., Ẑ

(t−1)
iM ). Following [28] this can be

represented as follows:

Z(t) ∼ π(Z|Θ(t−1),X ) (7)

Then the number of observations assigned to the jth cluster can be calculated using Z(t) as:

n
(t)
j =

N∑
i=1

Zij(j = 1, ...,M) (8)

So, the number of observations allocated to the M components can be represented by n(t) =

(n
(t)
1 , ..., n

(t)
M ). Since the mixture weights satisfy the conditions (0 < pj ≤ 1 and

∑M
j=1 pj = 1),

the natural choice for the prior distribution is the Dirichlet distribution which satisfies the same

condition:

π(p1, ..., pM ) ∼ D(δ1, ..., δM ) ∼
Γ(
∑M

k=1 δk)∏M
k=1 Γ(δk)

M∏
k=1

pδk−1
k (9)

where δj is a known hyper-parameter. The posterior distribution of the mixing weights pj is given

as follows by taking into account the number of observations per cluster, obtained from Eq. 8 and

Eq. 7. It is also sampled from a Dirichlet distribution because it is a conjugate prior:

p(p1, ..., pM |Z(t)) ∼ D(δ1 + n
(t)
1 , ..., δM + n

(t)
M ) (10)
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We use the Metropolis-Hastings [25] method to sample the other parameters from the respective

proposal distributions since direct sampling can be a very complicated process. So, we choose a

proposal distribution ξ(t) ∼ q(ξ(t)|ξ(t−1)) for each parameter µ, σl, σr and β as follows [40]:

µ
(t)
j ∼ Nd(µ

(t−1)
j ,Σ), β

(t)
j ∼ Γd(α

(t−1)
j ,∆) ∼ ∆α

Γ(α)
xα−1e−∆x (11)

σ
(t)
lj

∼ Nd(σ
(t−1)
lj

,Σ), σ(t)rj ∼ Nd(σ
(t−1)
rj ,Σ) ∼ 1

Σ
√
2π

exp

(
−1

2

(
x− σ

Σ

)2)
(12)

For the parameters µ, σl, σr, the proposal distributions are d-dimensional Gaussian distributions

with Σ as d×d identity matrix. For β the proposal distribution is given by a d-dimensional Gamma

distribution with ∆ as a d × d identity matrix and follows the PDF in Eq. 12. As a key feature

of the MH, for every iteration, the parameters set π(Θ) needs to be updated with a new set of

parameters based on an acceptance ratio r. It is the value of r that decides whether to accept and

update the parameters or reject and discard them. So, r needs to be computed after every iteration

and expressed as:

r =
p(X|Θ(t))π(Θ(t))q(Θ(t−1)|Θ(t))

p(X|Θ(t−1))π(Θ(t−1))q(Θ(t)|Θ(t−1))
(13)

Here, p(X|Θ(t)) is the PDF of AGGM model at iteration t and π(Θ) is the prior distribution of

the parameters that can be represented as d-dimensional Gaussian distributions for the parame-

ters µ, σl, σr as µ ∼ Nd(η,Σ) and σl, σr ∼ Nd(τ,Σ) with known hyper-parameters η, τ and

d-dimensional Gamma distribution for β as β ∼ Γd(γ,∆). With the assumption that mixture

parameters are independent of each other the derivation of π(Θ) is simplified as follows:

π(Θ) = π(p, ξ) = π(ξ) =

M∏
j=1

π(µj)π(σlj )π(σrj )π(βj) (14)

=
M∏
j=1

Nd(µj |η,Σ)Nd(σlj |τ,Σ)Nd(σrj |τ,Σ)Γd(αj |γ,∆)

Mixture weight p in Eq. 14 is avoided because it is generated from a Gibbs sampling method with
an acceptance probability always equal to 1 with the same rule applied to the proposal distribution
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as follows:

q(Θ(t)|Θ(t−1)) = q(ξ(t)|ξ(t−1)) (15)

=

M∏
j=1

Nd(µ
(t)
j |µ(t−1)

j ,Σ)Nd(σ
(t)
lj

|σ(t−1)
lj

,Σ)Nd(σ
(t)
lj

|σ(t−1)
lj

,Σ)Γd(α
(t)
j |α(t−1)

j ,∆)

Eq. 13 can be expanded as follows:

r =
p(X|Θ(t))π(Θ(t))q(Θ(t−1)|Θ(t))

p(X|Θ(t−1))π(Θ(t−1))q(Θ(t)|Θ(t−1))
(16)

=

N∏
i=1

M∏
j=1

(
p(Xi|µ(t)j , σ

(t)
lj
, σ

(t)
rj , β

(t)
j )

p(Xi|µ(t−1)
j , σ

(t−1)
lj

, σ
(t−1)
rj , β

(t−1)
j )

)

×
Nd(µ

(t)
j |η,Σ)Nd(σ

(t)
lj
|τ,Σ)Nd(σ

(t)
rj |τ,Σ)Γd(α

(t)
j |γ,∆)

Nd(µ
(t−1)
j |η,Σ)Nd(σ

(t−1)
lj

|τ,Σ)Nd(σ
(t−1)
rj |τ,Σ)Γd(α

(t−1)
j |γ,∆)

×
Nd(µ

(t−1)
j |µ(t)j ,Σ)Nd(σ

(t−1)
lj

|σ(t)lj
,Σ)Nd(σ

(t−1)
lj

|σ(t)lj
,Σ)Γd(α

(t−1)
j |α(t)

j ,∆)

Nd(µ
(t)
j |µ(t−1)

j ,Σ)Nd(σ
(t)
lj
|σ(t−1)

lj
,Σ)Nd(σ

(t)
lj
|σ(t−1)

lj
,Σ)Γd(α

(t)
j |α(t−1)

j ,∆)

Once we compute the acceptance ratio r from Eq. 16, we can calculate the acceptance probability

with α = min[1, r]. Then, we randomly sample u ∼ U[0,1], if α < u, the proposed move is

accepted and the parameters are updated to p(t) and ξ(t). Otherwise we discard the parameters p(t)

and ξ(t), and retain the parameters of the previous iteration p(t) = p(t−1), ξ(t) = ξ(t−1). The entire

MH-within-Gibbs learning for AGGMM can be summarized as follows:

Input: Observations X witn M number of components

Output: AGGMM parameter set

(1) Initialization

(2) Step at time t: For t=1......n

Gibbs sampling part

• Generate Z(t) from Eq. 7

• Generate n(t)j from Eq. 8

• Generate p(t)j from Eq. 9
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Metropolis-Hastings part

• Sample ξ(t)j (µ
(t)
j , σ

(t)
lj
, σ

(t)
rj , β

(t)
j ) from Eqs. 11, 12

• Compute acceptance ratio r from Eq. 16

• Generate α = min[1, r] and u ∼ U[0,1]

• if u ≥ α then ξ(t) = ξ(t−1)

2.2 Experimental Results

In this section, the Bayesian AGGMM is applied on real data sets corresponding to various ap-

plications in human activity recognition, vehicle recognition, pedestrian detection and malaria de-

tection. In order to compare the performance of our model, other relevant Bayesian mixture models

like the Gaussian Mixture Model (BGMM) and Asymmetric Gaussian Mixture Model (BAGMM),

with the same number of components, are considered. Then, clustering is performed and the results

are evaluated and compared using multiple performance measures.

2.2.1 Experimental Setup

All the applications chosen to evaluate the performance of our model involve data in the form of

images and videos, so it is necessary to have relevant computer vision setup to translate an image or

a video into a model-understandable format using feature extraction and representation techniques.

In our applications, we have two types of setups, one for the videos and the other for the images.

The video and image setups differ in one additional step, namely converting the video data to

images by extracting frames out of it. The remaining setup is as follows: first, each image is loaded

and converted to grey scale to reduce the complexity of the image. This is done when the colors

in the image are not relevant in our task and then a feature extraction technique is selected, which

in our case is SIFT (Scale Invariant Feature Transform) [50] to extract required features from the

image followed by the construction of Bags Of Visual Words (BoVW) [70]. The implementation of

BoVW is an extension of Bag Of Words (BoW) as in [72] for images where each column represents

an extracted feature similar to a word in BoW.
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Generally, a BoVW is constructed by applying clustering algorithms with K known clusters,

where each cluster represents a common feature in the set of images considered. K-Means with 9

clusters, is the clustering algorithm in our case. Finally, the generated vectors of features are given

as an input to the clustering framework developed with proposed model. The model parameters are

initialized using Gaussian mixtures [55] and are iterated for specific numbers of iterations chosen

for the application. For each iteration, our learning algorithm is applied and some parameters are

accepted while others are rejected according to the computed acceptance ratios.

We have selected 12 performance measures [66] to benchmark the performance of Bayesian AG-

GMM (BAGGMM) with other relevant Bayesian models like the Bayesian Asymmetric Gaussian

Mixture Model (BAGMM) and the Bayesian Gaussian Mixture Model (BGMM). The performance

measures include, accuracy: the proportion of all correctly predicted labels, precision: proportion

of positive predictions that are actually correct, recall: the probability of actual positives that were

identified, the F1 score: the harmonic mean of precision and recall, balanced accuracy: the arith-

metic mean of the true positive and negative rates, log loss: cross-entropy loss and the Jaccard score:

a similarity indicator that measures the closeness of the predicted and actual labels, the G-mean 1:

the geometric mean of sensitivity and precision, the G-mean 2: the geometric mean of sensitiv-

ity and specificity, the false positive rate: the probability of falsely rejecting the null hypothesis,

specificity: a measure of the ability of the model to recognize negative examples, the Matthews

correlation coefficient (MCC): the correlation coefficient used to measure the quality of the binary

classification. Here, balanced accuracy is also used along with accuracy measure because balanced

accuracy works well in the case of imbalanced data and for binary classification. For the conver-

gence of our learning algorithm, since it is a sampling technique, we consider the last 30% of the

accepted moves and the average of the estimated parameters and compute the performance measures

with the averaged parameters after the model fitting.

2.2.2 Human Activity Recognition

Human activity recognition is an important application, for getting machines to identify human

activities and utilize this knowledge in many other applications across many domains. Here, our

goal is to cluster human activities using the experimental framework mentioned in the previous
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Figure 2.1: KTH data set

section. The data for this application are videos. We use two well-known data sets, KTH [60]

and UCF 101 [63]. Each contains different kinds of human activities. In our experiment, we have

considered two groups of activities from each data set: indoor and outdoor activities.

Indoor activity recognition

As of today, we find almost every home, school or office equipped with a camera in order to

ensure safety and well-being. Our motivation for working on detecting indoor activities was to

explore this possibility in using such footage to detect human activities which could further be used

for various applications such as smart homes and living, indoor behaviour analysis etc.

This experiment was aimed to cluster indoor activities of various types observed in common

households and other enclosed places. The UCF101 [63] from Fig. 2.2, as the name suggests

contain 101 human actions divided into 25 categories and each category has 4-7 videos of each

action and the action categories can be divided as follows: Human-Object Interaction, Body-Motion

Only, Human-Human Interaction, Playing Musical Instruments, Sports.

Here we have considered two indoor activities: baby crawling and cutting in kitchen, which are

from the UCF101 data set [63]. In order to recognise the activities we selected 700 images for each

class and extracted features from the videos of selected activities. The goal of this experiment was

to know the capability of our model in understanding two different indoor activities and compare

15



Figure 2.2: UCF data set

Table 2.1: Indoor Activity Recognition Results
Metric Acc Pre Recall F1 B.Acc L.Los Jaccard FPR G.M1 G.M2 MCC Spec.

BAGGMM 84.00 87.03 83.71 86.20 83.71 5.52 75.75 30.61 85.35 76.21 70.66 69.38

BAGMM 76.66 76.61 76.61 75.52 76.61 8.05 66.67 22.29 76.61 77.15 53.23 77.79

BGMM 63.40 64.34 63.62 66.78 63.62 12.64 50.13 47.84 63.98 57.60 27.96 52.15

the clustering efficiency with other relevant models like BAGMM and BGMM. As part of the ex-

periment the learning algorithm was applied to the extracted features for specific number for 1500

iterations and performance metrics mentioned in the previous sections were computed. The results

of our model along with other models are listed in Table 2.1. Now, if we observe the scores for

accuracy (84%), precision (87.03%) and recall (83.71%) in specific, we can understand the signif-

icance of the model and its effectiveness in correctly classifying the activities. Our proposed model

performs better compared to BAGMM and BGMM for most of the performance measures and suc-

cessfully clusters the data into relevant classes. Better performance in a clustering task through our

proposed algorithm can help create more robust recognition applications in real-world scenarios.

Outdoor activity recognition

Clustering human activities out of doors can be of great importance in several ways and our

interest is to know how recognizing human activities can benefit the current way of handling situa-

tions. The main requirement of any object-recognizing problem is to have well captured images or

video feed.

For outdoor activities two actions namely, boxing and hand waving with 700 images in each
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Table 2.2: Outdoor Activity Recognition Results
Metric Acc Pre Recall F1 B.Acc L.Los Jaccard FPR G.M1 G.M2 MCC Spec.

BAGGMM 92.50 92.86 92.92 92.46 92.92 2.59 85.98 13.08 92.89 89.86 85.78 86.91

BAGMM 82.33 85.47 83.02 84.08 83.02 6.10 72.53 37.84 84.34 84.24 75.22 68.35

BGMM 79.00 81.02 79.25 81.08 79.25 7.25 68.18 33.31 80.13 72.68 60.25 66.66

class were selected from the well known KTH data set. The KTH data set [60] in Fig. 2.1 contains

6 types of human activities: walking, jogging, running, boxing, hand waving and hand clapping.

Each of these activities are performed several times by 25 people in different scenarios having

similar backgrounds with a static camera with 25 frames per second (fps). Each sequence has a

spatial resolution of 160× 120 pixels and is 4 seconds long on an average.

In the same way as the previous section, the extracted data from each class are passed through

the proposed model. In order to know the efficiency of our model as well as the BAGMM and

BGMM in distinguishing outdoor human activities, the learning algorithm was applied for 2000

iterations . The performance measures were computed with estimated parameters and listed in

Table 2.2. As we can see from the results in Table 2, our model performed exceptionally well

in recognizing different activities compared to the benchmark models. Specific measures like log

loss (2.59) and FPR (13.08) from Table 2.2 indicate low error rates and therefore demonstrate our

model’s high performance compared to BAGMM and BGMM in a similar experimental setting. The

proposed model has thereby successfully demonstrated its effectiveness in clustering the video data

into particular activities, which opens the door to further apply this approach in real-world scenarios

for recognition and AI-assisted surveillance in an unsupervised manner.

2.2.3 Surveillance System

Surveillance systems have been an interesting topic ever since the development of surveillance

video cameras. Mainly capturing traffic and street footage for security, safety and maintenance rea-

sons have been a key focus of interest. Due to the growing surveillance applications in many areas

around the globe, there has been a drastic reduction in criminal activities [69] such as theft, vandal-

ism etc. It also created a scope for the development of remote monitoring, alerting and immediate

responding solutions. With the development of computer vision and learning technologies, object
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Figure 2.4: Pedestrian data set

detection and tracking have also been key focus areas in all surveillance related applications.

In many recent developments relating to road transportation, footage from surveillance cameras

can be used to identify, track and count vehicles used in traffic analysis. Many malls and public

places are using surveillance footage to detect, track and count people to know the number of visitors

and visiting times used in shopping analysis. Here, we choose to validate our model with vehicle and

pedestrian recognition tasks that play an important role in object tracking and related applications.

Figure 2.3: Vehicle data set

Vehicle Recognition

In this section, our aim is to test our model’s ability to identify different types of vehicles on

the road. For this task we have considered images of different types of vehicles from the TAU

vehicle type recognition competition [47]. The data set contains vehicles of 17 categories, and for

our experiment 700 images of taxis and busses displayed in Fig. 2.3 were selected. Features were
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Table 2.3: Vehicle Recognition Results
Metric Acc Pre Recall F1 B.Acc L.Los Jaccard FPR G.M1 G.M2 MCC Spec.

BAGGMM 79.20 73.15 79.01 79.20 79.01 7.25 65.57 20.40 79.00 79.30 58.01 79.59

BAGMM 76.45 76.68 75.83 78.18 75.83 7.25 64.18 32.65 76.25 71.42 52.50 67.34

BGMM 71.51 72.02 70.46 74.33 70.76 10.01 59.15 40.81 71.39 64.17 42.77 59.18

extracted using the previously described experimental setup and the BoVW was generated for each

selected vehicle. The importance of this task can be observed in extended applications such as

vehicle tracking, traffic analysis and vehicle categorization that might be done in smart surveillance

systems.

The learning algorithm is applied with 2,500 iterations on the BoVW. Upon convergence, the

estimated parameters are used to analyse the efficiency of the clustering compared to benchmark

models. The performance measures were computed for each model and are listed in Table 2.3.

From the results in Table 2.3, it can be observed that our model is better at recognizing vehicles

compared to BAGMM and BGMM. Observing the closeness of balance accuracy (79.01%) and

Accuracy (79.20%), the classes are well balanced. The F1 score (79.01%) summarizes the effec-

tiveness of the classification. From all the performance measures, it is observed that BAGGMM has

demonstrated its efficacy in clustering the vehicle images as compared to BAGMM and BGMM.

The proposed approach has a potentially significant impact on real-world recognition applications

in transportation. The success of the proposed approach in this unsupervised learning application

can be applied to improve the performance of existing recognition systems further.

Pedestrian Recognition

Pedestrian recognition is a very important application, which can improve the performance of

many surveillance and monitoring systems. Here, we tried to validate using pedestrian data, with

the aim of identifying pedestrians and distinguishing between their presence and absence.

The pedestrian data set mentioned in Fig. 2.4 [52] contains a collection of 4,000 pedestrian

and 5,000 non-pedestrian, cut out from videos and scaled to a size of 18 × 36 pixels. For this data

set, as the images were very small to extract features, we scaled the image 2 times and applied a

sharpen and blur filter to improve the feature extraction. 700 images from each class were selected
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Table 2.4: Pedestrian Recognition Results
Metric Acc Pre Recall F1 B.Acc L.Los Jaccard FPR G.M1 G.M2 MCC Spec.

BAGGMM 73.00 75.26 72.68 76.92 72.68 9.32 62.50 42.81 73.96 64.44 47.88 57.14

BAGMM 69.00 64.20 69.04 69.30 69.04 10.70 53.03 33.33 69.05 67.05 38.18 66.66

BGMM 64.00 63.98 63.98 64.70 63.98 12.43 47.82 36.73 63.90 63.62 27.97 63.26

and fed to the model after feature extraction. The proposed learning algorithm is then applied for

2500 iterations and the best parameters selected after convergence.

In order to understand the capability and evaluate the effectiveness of our model, 12 perfor-

mance measures were computed. They are listed in Table 2.4. From the results in Table 2.4, it

can be observed that the Jaccard score (62.50%), the G-mean 1 (73.96%), and all other measures

indicate that our model recognized pedestrians better than BAGMM and BGMM. The effectiveness

of our proposed model in pedestrian recognition highlights the fact that a surveillance and monitor-

ing system can improve its recognition ability by adopting BAGGMM. The results also showcase

acceptable levels of confidence in clustering. Hence, this application can be further extended to

address other use cases.

2.2.4 Malaria Detection

Medical diagnosis using machine learning has been a very useful contribution in the medical

domain. Our motivation in conducting this experiment was to test the validity of our model in

correctly diagnosing malaria infection from medical imagery. Here we choose a malaria data set

to categorize a blood cell as malaria-parasitized or uninfected based on the images of thin blood

slide images. The data set [54] mentioned in Fig. 2.5 contains a total of 27,558 cell images equally

labelled as parasitized or uninfected. A sample of the data set is considered with 5,000 images in

each class and fed to the model after feature extraction and the learning algorithm is applied 2500

iterations and the best parameters are selected after convergence.

In order to benchmark our model, we run the same setup for BAGMM and BGMM. After

convergence, we computed the performance measures to evaluate the efficiency of our model with

estimated parameters of our model and the benchmark models. The results are listed in Table 2.5.

Here the goal of our model is to identify infected cells from normal cells. The scores of G-mean
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Figure 2.5: Malaria data set

Table 2.5: Malaria Detection Results
Metric Acc Pre Recall F1 B.Acc L.Los Jaccard FPR G.M1 G.M2 MCC Spec.

BAGGMM 84.125 85.93 83.58 86.24 83.58 5.48 75.80 27.82 84.75 77.67 69.48 72.17

BAGMM 78.24 83.97 77.51 82.39 77.51 7.51 70.06 43.38 8.67 66.24 61.14 56.61

BGMM 72.25 72.14 72.18 73.75 72.18 9.58 58.42 28.27 72.16 71.65 44.32 71.1

2 (77.67%) and Specificity (72.17%) indicate the preciseness in classifying negative and positive

examples. The experimental results presented in Table 2.5 demonstrate a clear picture of the success

of BAGGMM in clustering the normal and infected cells as compared to BAGMM and BGMM in

a similar set of experiments. As such, it could be applied in assisting medical practitioners in the

diagnosis process. It must be noted that this framework is developed in an unsupervised manner, and

it does not require any label during the learning process, which is a great success in this experimental

setting and application.

Based on the model’s results and analysis and flexibility to fit data of different kinds, the pro-

posed model can also be considered for other applications where the distribution of data follows

Gaussian or is close to Gaussian. Therefore, we can clearly state that AGGMM can fit the data in

a better way. Hence we can consider applying the model to a wide range of data and expect good

results.
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2.3 Reversible Jump Markov Chain Monte Carlo

The standard MH-within-Gibbs approach implies that the number of components M is fixed

and constant during the learning process, which limits the AGGM model’s ability to adapt to new

situations. However, because of poor initialization or leaking of information, M may be wrong or

unknown. The RJMCMC algorithm has its advantages in this situation since it provides an addi-

tional four independent phases (birth/death steps and combine/split steps) into the learning process,

which could modify component number M , and thus, adds more generalities into the learning pro-

cess.

2.3.1 Split and Combine Moves

In RJMCMC a state at a given point of time is choosing to split or combine with probabilities

bm and dm = 1 − bm respectively. As d1 = bmMax = 0. We use bm = dm = 1
2 for M =

2, 3, ...,Mmax − 1. Since we consider M as one of the parameters of the model we choose uniform

distribution as its prior: p(κ) ∼ U . For our case we initially assume κ = 4.

In combine move we suppose the current state of MCMC algorithm is x̃ with σl, σr and β etc.,

as parameters with a total of m+ 1 states. Then we randomly choose a pair (j1, j2) which are two

adjacent states, and combine them to a single new state j′ resulting in an MCMC with x states and

m components. For the combine move, the parameters are updated according to Eqs. 17, 18, 19,

20.

pj′ = pj1 + pj2 (17)

pj′µj′ = pj1µj1 + pj2µj2 (18)

pj′(µ2j′ + σ2j′l) = pj1(µ
2
j1 + σ2j1l) + pj2(µ

2
j2 + σ2j2l) (19)

pj′(µ2j′ + σ2j′r) = pj1(µ
2
j1 + σ2j1r) + pj2(µ

2
j2 + σ2j2r) (20)

In split move, with three degrees of freedom (u1 ∼ Beta(2, 2), u2 ∼ Beta(2, 2),
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u3 ∼ Beta(1, 1)), we split state j′ into two (j1 and j2), and so increase m to m+ 1 in the reversal

of the combining step. As a result, Eq. 21 can be used to calculate the mixture parameters for split

components:

pj1 = pj′u1, pj2 = pj′u2

µj1 = µj′ −
u2(σj′l+σj′r)

2

√
pj2
pj1

µj2 = µj′ +
u2(σj′l+σj′r)

2

√
pj1
pj2

σ2j1l = u3
(
1− u22

)
σ2j′l

pj′

pj1

σ2j1r = u3
(
1− u22

)
σ2j′r

pj′

pj1

σ2j2l = (1− u3)
(
1− u22

)
σ2j′l

pj′

pj2

σ2j2r = (1− u3)
(
1− u22

)
σ2j′r

pj′

pj2

(21)

The acceptance probability [56,58] decides whether or not to accept the combine or split move.

The following formula can be used to calculate the acceptance probability:

A =
p (X , Z | Θ′)

p(X , Z | Θ)

m′P (m′ | κ)
P(m | κ)

pδ−1+n1
j1

pδ−1+n2
j2

pδ−1+n1+n2
j′ Beta(δ,mδ)

× dm′

bmPalloc
[Beta (u1 | 2, 2)Beta (u2 | 2, 2)Beta (u3 | 1, 1)]−1

×
pj′ |µj1 − µj2 |σ2j1lσ

2
j1r
σ2j2lσ

2
j2r

u2
(
1− u22

)
u3 (1− u3)σ2j′lσ

2
j′r

(22)

where Θ and m′ = m + 1 signify the mixture parameters set and the component number prior

to or following split steps, respectively. Additionally, Palloc is the likelihood that this particular

allocation will occur. As a result, the acceptance probability for the combine step is min(1, A),

while the acceptance probability for the split step is min(1, A−1).

2.3.2 Birth and Death Moves

In comparison to combine and split moves, birth and death steps are very simple because the

newborn and dead components are empty, eliminating the requirement for parameter recalculation.

The weight of the mixture pnew in the birth step may be determined by sampling from the Beta

23



distribution pnew ∼ Beta(1,m), and the mixture parameters can be computed as follows [56]:

µ ∼ Nd(η,Σ) σl, σr ∼ Nd(τ,Σ) β ∼ Γd(γ,∆) (23)

For the death step, a random empty component should be chosen and deleted from among the

existing components, if any. If there are no empty components, this step will be skipped. Following

the birth and death steps, the mixture weights pj should be rescaled so that they add to 1. Acceptance

probability is also necessary for birth and death phases, as well as combine and split steps, which

are defined as follows:

A′ =
P (m′ | κ)
P(m | κ)

1

Beta(mδ, δ)
pδ−1
j′ ×

(
1− pj′

)N+mδ−m

×m′ dm′

(m0 + 1) bm

1

Beta
(
pj′ | 1,m

) × (1− pj′
)m (24)

where m0 is the number of unused components. Thus, the odds of birth and death are min(1, A′)

and min(1, A′−1) respectively.

2.4 Feature Selection

The AGGM model stated in Eq. 2 implies that all of an observation’s d features have the same

weight of relevance and include essential information, which is not necessarily the case, and many

of those features may be irrelevant for clustering purposes. To address this issue and establish the

relevance and significance of characteristics, feature selection strategies [12, 20, 31, 51] should be

considered. By indicating background Gaussian distributions for every d features with parameter

Ψ = {µ′1, . . . , µ′d, σ′1, . . . , σ′d}, where µ′ and σ′ denote the mean and standard deviation of the

distribution, respectively. Then, Eq. 1 can be reformulated with the feature relevancy approach

suggested in [15, 31, 36, 38] as follows:

p(X | Θ,Ψ,Φ) =
N∏
i=1

M∑
j=1

pj

d∏
k=1

p (Xik | ξjk)ϕk N (Xik | ψk)
1−ϕk (25)
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where N (Xik | ψk) is the background distribution, and ψk = (µ′k, σ
′
k) are the background distribu-

tion’s parameters Φ = (ϕ1, . . . , ϕd) is a binary relevance vector in which ϕk equals to 1 if the kth

characteristic is significant and ϕk = 0, otherwise. If we take the relevancy vector Φ to be a latent

variable, the following is the whole likelihood function of the AGGM model with the full parameter

set:

p
(
X | Θ′) = N∏

i=1

M∑
j=1

pj

d∏
k=1

[ωkp (Xik | ξjk) + (1− ωk)N (Xik | ψk)] (26)

where Θ′ = (Θ,Ψ,Ω) and Ω = (ω1, ..., ωd) is the relevancy weight with value range of 0 ≤ ωd ≤ 1

which denotes the probability that kth feature is important. Finally, relevancy weight [14] ωk is

given as follows

ωk =

∏N
i=1

∑M
j=1 pjp (Xik | ξjk)∏N

i=1

∑M
j=1 pjp (Xik | ξjk) +

∏N
i=1N (Xik | ψk)

(27)

As a result, irrelevant features contribute minimally to the clustering process, extending the AGGM

model’s applicability to more common and challenging instances such as high-dimensional noisy

applications.

The full Bayesian learning approach with feature selection can be summarized as follows:

Input: Observations X witn M number of components

Output: AGGMM parameter set

(1) Initialization

(2) Step at time t: For t=1......n

Gibbs sampling part

• Generate Z(t) from Eq. 7

• Generate n(t)j from Eq. 8

• Generate p(t)j from Eq. 9

Metropolis-Hastings part

• Sample ξ(t)j (µ
(t)
j , σ

(t)
lj
, σ

(t)
rj , β

(t)
j ) from Eqs. 11, 12
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• Calculate relevancy weight ω(t)
k from Eq. 27

• Generate background Gaussian parameters Ψ(t)
k by random walk

• Compute acceptance ratio r from Eq. 16

• Generate α = min[1, r] and u ∼ U[0,1]

• if u ≥ α then ξ(t) = ξ(t−1)

RJMCMC part

• Generate u′ ∼ U[0,1]. If bm >= u′, perform split or birth step, then calculate acceptance

probability A. If the step is accepted, set m = m+ 1.

• Generate u′ ∼ U[0,1]. If dm >= u′, perform combine or death step, then calculate

acceptance probability A′. If the step is accepted, set m = m− 1.

2.5 Validation of the RJMCMC with feature selection approach

This section applies Bayesian AGGMM to real data sets for human activity recognition, vehicle

recognition, pedestrian detection, and malaria detection. Other relevant Bayesian mixture models

initially with the same number of components are explored to compare our model’s performance.

The outcomes of clustering are then compared using several performance measures.

2.5.1 Setup

All the applications are chosen to evaluate our model’s performance using images and videos;

therefore, a computer vision setup is required to convert an image or video into a vector of features

using feature extraction and representation approaches. In this case, we use SIFT (Scale Invariant

Feature Transform) ( [50]) to extract the required features from the image, then we build Bags Of

Visual Words (BoVW) [70] by applying clustering methods to K known clusters of images. Our

clustering approach is K-Means with 9 clusters. Finally, the resulting feature vectors are fed into

the proposed model’s clustering architecture.
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2.5.2 Human Activity Recognition

Human activity identification is a critical application because it enables machines to recognize

human behaviors and use this information to a variety of other applications across a variety of areas.

The purpose of this section is to cluster human activities using the proposed framework discussed

previously. A video data set KTH [60] is used for this experiment. It contains a variety of human

activities.

Two actions were chosen from the KTH data set: boxing and hand waving, each with 700

photos. We employed the setup mentioned previously and feed the resultant BoVW to our model.

Then the model is run for a fixed number of iterations to complete learning. The performance of

our model, BAGMM and BGMM, in identifying human activities are listed Table 2.6.

From the results in Table 2.6, by noticing the values of evaluated performance metrics, it can be

observed that asM value drops, the model’s accuracy drastically improves from 61.72% to 83.22%.

The same can be observed in the case of all other performance metrics. This indicates that: as the

model approaches the convergence point, it can predict the optimal number of clusters/components

in the data. The high accuracy of the model indicates that the best parameters were estimated.

The results also showcase the performance of model selection and parameter estimation of the

proposed model in comparison with the benchmark models: BAGM and BGMM.

Table 2.6: Human activity recognition results
States BAGGMM BAGMM BGMM

M Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

4 61.72 62.96 61.72 54.70 57.77 58.93 57.77 64.21 52.05 52.19 52.05 57.46
3 75.33 75.55 75.33 74.12 66.77 68.81 66.77 60.23 59.83 65.20 59.83 42.84
2 83.22 85.72 83.22 85.18 74.83 82.13 74.83 79.67 67.05 68.86 67.05 61.01

2.5.3 Automobile Recognition

The purpose of this section is to evaluate our model’s capacity to recognize various types of

automobiles on the road. We used photos of automobiles like buses and taxis from the TAU vehicle

type recognition competition [47] for this challenge.

The previously mentioned experimental setup was used to extract features, and the BoVW was
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constructed for each selected car.

The BoVW, in this case, contains 800 images of each of both automobiles. The learning al-

gorithm is applied to the BoVW for a fixed number of iterations. The performance of the model

learning is evaluated using four metrics: accuracy, precision, recall, F1. The values of which for the

proposed model and other models are recorded in Table 2.7.

Observing the values of evaluated performance measures in Table 2.7, it can be seen that when

the M value decreases, the model accuracy improves dramatically, from 49.07% to 82.92%. The

same may be said for all other performance indicators. This means that when the model gets closer

to convergence, it can estimate the best number of components in the data. And the model’s excel-

lent accuracy indicates that the best parameters were estimated.

Compared to the benchmark models BAGM and BGMM, the results reveal that the suggested

model is more efficient in model selection and parameter estimation.

Table 2.7: Vehicle recognition results
States BAGGMM BAGMM BGMM

M Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

4 49.07 49.07 49.87 49.32 47.28 47.21 47.28 42.79 43.52 28.12 43.92 43.34
3 72.35 72.38 72.35 71.89 64.74 66.65 64.14 69.97 61.71 65.92 61.71 69.54
2 82.92 83.97 82.92 81.28 72.35 72.38 72.35 71.89 66.42 74.16 66.42 53.18

2.5.4 Walker Recognition

Pedestrian recognition is a critical application that has the potential to significantly improve the

performance of numerous surveillance and monitoring systems.

The pedestrian data set [52] contains 4,000 pedestrian and 5,000 non-pedestrian images ex-

tracted from movies and scaled to an 18x36 pixel resolution. After feature extraction, 700 images

from each class were chosen and fed into the model. The proposed learning algorithm is run for a

fixed number of iterations to determine optimal parameters.

In order to understand the capability and evaluate the effectiveness of our model, four perfor-

mance measures were computed. They are listed in Table 2.8.

By examining the values of evaluated performance metrics in Table 2.8, it is clear that when the

28



M value decreases, the model’s accuracy improves dramatically, increasing from 63.2%to 78.7%.

The same is true for all other performance metrics. This indicates that the model is capable of

predicting the ideal number of clusters in the data as it approaches the convergence point. The

model’s excellent accuracy indicates that the optimal parameters were estimated.

Additionally, the results demonstrate the proposed model’s efficiency in model selection and

parameter estimation compared to two benchmark models: BAGM and BGMM.

Table 2.8: Pedestrian Recognition Results
States BAGGMM BAGMM BGMM

M Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

4 63.2 79.01 63.22 70.83 56.81 55.29 56.81 39.21 47.53 47.22 47.51 39.74
3 72.64 72.72 72.64 66.83 68.85 72.97 68.88 53.04 61.71 65.92 61.71 69.54
2 78.79 80.95 78.76 79.13 74.66 79.63 74.66 62.77 66.63 74.19 66.62 44.17

2.5.5 Malaria Detection

Machine learning-based medical diagnosis has made a significant contribution to the medical

realm. The purpose of this experiment was to determine the validity of our model’s ability to

correctly diagnose malaria infection using medical images.

In this section, we use a malaria data set to classify blood cells as malaria-parasitized or unin-

fected based on images of thin blood slide images. The data set [54] described comprises a total of

27,558 images of parasitized and uninfected cells. After feature extraction, a sample of the data set

is evaluated with 5,000 images in each class.

The learning technique is applied for a fixed number of iterations, and the best parameters are

to be selected after convergence. Four performance indicators were computed to have a better

understanding of our model’s capabilities and efficacy. They are described in detail in Table 2.9.

By studying the results of the analyzed performance metrics in Table 2.9, it is evident that

when the M value falls, the model’s accuracy increases significantly, increasing from 63.11% to

82.11%. Similarly, this is true for all other performance indicators. This demonstrates that the

model is capable of predicting the optimal number of clusters in the data as it nears convergence.

Additionally, the model’s great accuracy implies that the model’s parameters were approximated to
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their ideal values.

In addition, the results illustrate the proposed model’s efficiency compared to two benchmark

models: BAGM and BGMM in terms of model selection and parameter estimation.

Table 2.9: Malaria detection results
States BAGGMM BAGMM BGMM

M Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

4 62.11 64.44 62.11 68.45 56.55 59.91 56.55 38.71 50.88 68.40 50.88 66.99
3 74.83 82.13 74.83 79.67 67.55 68.86 67.05 61.02 62.83 70.61 62.83 71.56
2 82.11 82.14 82.11 82.40 74.83 82.13 74.83 79.67 75.33 75.55 75.33 74.12
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Chapter 3

Bayesian Inference of Hidden Markov

Models using Dirichlet Mixtures

Here, we present HMMs and their learning using a Bayesian approach: RJMCMC is presented

for parameter estimation and model selection, making it a fully Bayesian learning framework. We

use the Dirichlet mixture model as part of the learning process to incorporate the mixture modelling

approach in our proposed model. We investigate in depth the split/combine and birth/death moves

that are responsible for dynamic model selection in HMM [34, 35] . Finally, we run experiments

using well-known image and video data sets using the provided learning approach and assess the

results to demonstrate the robustness of our model in contrast to existing benchmark models.

3.1 The Learning Model

In this section, we present the proposed model, which is a combination of various components,

and we elaborate on each component and its contribution to the parameter estimation and model

selection processes. As we proceed, the following sections and subsections will give more details

about our modeling approach.
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3.1.1 The Bayesian Model

As previously mentioned in chapter 2, we choose to implement a Bayesian approach [57] in our

modeling, in which θ represents a vector of parameters describing the model. For a given data set

y, Bayes’ theorem is:

p(θ|y) ∝ p(y|θ)p(θ) (28)

where p(y|θ) is the likelihood and p(θ) is the prior distribution of the parameter set. Later on,

in this section, we discuss in detail the prior distributions of our parameter set and the complete

hierarchical model, which is the heart of the proposed modeling approach where the joint probability

is computed.

3.1.2 Mixture Model

Mixture model, presented in chapter 2, Eq. 1 can be represented by a d-dimensional random

variable y⃗ = [y1, ..., yd]
T with k components as follows:

ϕ(y⃗; Θ) =
k∑

j=1

πiϕ(y⃗t; ξi) (29)

where ξi = {µi, αi} is the set of parameters for the ith component, πi are the mixing probabilities,

which are always positive and sum to 1. µi = (µ)ki=1 is the mean and αi = (α)ki=1 is the sharpness

parameter. Θ, the set of all parameters is represented as Θ = {π1, ..., πk, ξ1, ..., ξk}. Here, k

represents the number of components in the mixture and is always greater or equal to 1.

Using this approach the prior distributions for µi and αi are defined in the next sections.

ϕ(yt;µi, αi) in Eq. 29 is the density of the Dirichlet distribution:

ϕ(yt; |α |, µ) = Γ(|α|)∏k
i=1 Γ (µi|α|)

k∏
i=1

y
µi|α|−1
i (30)

Where
∑d

i=1 yi = 1 and |α| =
∑k

i=1 αi, αi > 0 ∀i = 1, . . . , k. Given α the mean and variance of
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the Dirichlet distribution can be given as follows:

µi = E(yi) =
αi

|α|
(31)

σ2i = V ar(yi) =
αi(|α| − αi)

|α|2(|α|+ 1)
(32)

3.1.3 Hidden Markov Model

Given, y = (yt)
T
t=1 which are the vectors of observations with respect to time T , HMMs assume

that the distribution of each data point yt depends on hidden states, which are unobserved and are

denoted by st and can take values from 1 to k. The hidden variable s = (st)
T
t=1 is often called a

“regime” or “state” - we adopt the former word throughout the rest of the chapter. In HMMs that

follow the Markov chain property, it is assumed that the hidden state variable st always depends on

past realizations of y and s as shown in Eq.33:

p(st = j|st−1 = i) = aij (33)

where aij is the element of a transition probability matrix denoted by A = (aij). A transition

probability matrix A, where each row is a vector of stationary probabilities given by π and satisfies

π
′
A = π

′
, and stationary probabilities decide the initial state of the model from which, with time,

the state transition takes place. As it is assumed in HMMs that, for every state change st an obser-

vation yt is noticed, which follows a marginal probability distribution given in Eq. 29. The same

equation can also be represented as :

yt|π, µ, α ∼ Σk
i=1πiϕ(yt;µi, αi) (34)

Eq. 34 can also be expressed as follows involving st:

yt|s, π, µ, α ∼ Σk
i=1πiϕ(yt;µst , αst) (35)
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Here, we assume that the number of components k (i.e., the number of states) is unknown and

subject to inference and we can observe that for k = 1 the model in Eq. 34 reduces to a simple

random walk with drift.

Prior distributions

In any Bayesian modeling approach [16, 57, 58], prior information is one’s belief about an un-

known quantity before considering any evidence about it. Usually, prior information would be a

probability distribution describing the unknown parameters in a model. Since the prior information

is a probability distribution describing a parameter, the parameters of such a prior distribution are

called hyper-parameters. In our case, we have three prior distributions for three unknown parameters

(µi, αi, aij) of the model, found in Eqs. 36, 37 and 38 as follows:

µi ∼ D(δ1, ..., δk) ∼
Γ(
∑k

j=1 δj)∏k
j=1 Γ(δj)

k∏
j=1

µ
δj−1
ij (36)

aij ∼ D(η1, ..., ηk) (37)

where the mean µi and each row of the transition probability matrix aij has a Dirichlet distribution as

prior with δ = {δ1, ..., δk} and η = {η1, ..., ηk} as the hyper-parameters. The sharpness parameter

α = {α1, ..., αk} has an inverse Gamma as a prior as follows:

αi ∼ |αi|−3/2 exp (−1/(2|αi|)) (38)

Complete hierarchical model

The joint probability distribution like in [58] for all the variables including their hyper-parameters

can be represented according to Eq. 39 as follows:

p(k,A, µ, α, s, y) = p(k)p(A|k, η)p(µ|δ, k)p(α)p(s|A)p(y|µ, α, s) (39)

where p(s|A) = p(s1|A)
T∏
t=2

p(st|st−1, A) (40)
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Figure 3.1: Directed acyclic graph for the complete hierarchical model

The term p(st|st−1, A) from Eq. 40 is given by Eq. 33 and p(s1 = i|A) = πi, and from Eq. 39.

p(y|s, µ, α) =
T∏
t=1

ϕ(yt;µst , αst) (41)

Fig. 3.1 is a directed acyclic graph (DAG) representing the complete hierarchical model in which

the usual convention is followed where the square boxes represent fixed or observed quantities and

the circles represent the unknowns.

3.2 Markov Chain Monte Carlo Methodology

The mixture model [17] approach taken in this chapter is a fairly complex one and requires

MCMC techniques to approximate the posterior distribution. A detailed description of these com-

putational techniques can be found in [18, 58]. To get the realizations from the posterior joint

distribution with all the parameters, we use the following moves at each sweep of the MCMC algo-

rithm:

1. update the transition probability matrix A
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2. update the allocations s

3. update the mean µ

4. update the sharpness parameter α

5. update standard deviation σ

6. consider split or combine moves

7. consider birth or death moves

3.2.1 Gibbs moves

Moves from (1 - 5) presented in the algorithm are called Gibbs moves and follow [58]. In move

1, the ith row of A is sampled from a Dirichlet distribution D(η + ni1, ..., η + nik) where:

nij =
T−1∑
t=1

I{st = i, st+1 = j} (42)

is the number of jumps from state i to state j. In move 2, the state allocations s1, ...sT are sampled

one at a time from t = 1, .., T by drawing new values from the fully conditional distribution in

Eq. 43. For t = 1, the first factor is replaced by the stationary probability πi, and for t = T , the

rightmost factor is replaced by 1. Here ϕ(yt;µi, αi) is the density of a Dirichlet random variable

with mean µi and sharpness parameter αi.

p(st = i|S) ∼ ast−1iϕ(yt;µi, αi)aist+1 (43)

where S = {s1, ..., sT }. In move 3, the mean µi is updated by sampling from a log normal distri-

bution whose mean is the natural log of the mean from the previous iteration with a transformation

µ∗il = log( µil
(1−µil)

) and with Σ2 as co-variance matrix where Σ2 = diag[0.01, ..., 0.01]. The whole
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equation is represented in Eq. 44.

µ∗i ∼ LN (log(µ
∗(t−1)
i ),Σ2) (44)

In move 4, αi is updated in a similar fashion like µi with the only difference being where the

parameters of the log-normal distribution are changed, and Σ2 is replaced by σ2 whose value is

0.01, the equation is given as Eq. 45. As αi is updated, in move 5, σ is updated using the new

values of α according to Eq. 32.

|αi| ∼ LN (log(|αi|t−1)), σ2) (45)

3.2.2 Split and Combine moves

In the above mentioned moves, 6 and 7 are considered as reversible jump MCMC moves which

allow the number of components to increase or decrease by 1. In move 6, a state at a given point

of time is chosen to split or combine with probabilities bk and dk = 1 − bk, respectively. As

d1 = bkmax = 0. We use bk = dk = 1
2 for k = 2, 3, ..., kmax − 1.

In the combine move we suppose the current state of the MCMC algorithm is x̃ with ãij etc.,

as parameters with a total of k + 1 states. Then, we randomly choose a pair (j1, j2) which are two

adjacent states, and combine them to a single new state j∗ resulting in an MCMC with x states and

k components.

For the combined move, the parameters are updated as follows Eqs. 46, 47, and 48:

µj∗ =
π̃j1µj1 + π̃j2µj2

π̃j1 + π̃j2
(46)

µ2j∗ + σ2j∗ =
π̃j1(µ

2
j1
+ σ2j1) + π̃j2(µ

2
j2
+ σ2j2)

π̃j1 + π̃j2
(47)

aj∗j =
π̃j1

π̃j1 + π̃j2
ãj1j +

π̃j2
π̃j2 + π̃j2

ãj2j for j ̸= j∗, (48)

aij∗ = ãij1 + ãij2 for i ̸= j∗,
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and for any twith s̃t equal to j1orj2, st is set to j∗ and the remaining s̃t are simply copied. Similarly,

a state j∗ is selected at random in the split move and split into two new components j1 and j2.

In the split move, a state j∗ is randomly selected and split into two new states j1 and j2. In the

old representation, we assume that x is the current state with a total of k states and after the move is

executed the system is represented with x̃ with a total of k+1 states. The goal of the split move is to

split j∗ in a way that the stationary probabilities for the chain of hidden states satisfy the following:

π̃j = πj for j ̸= j1, j2, π̃j1 = u0πj∗ and π̃j2 = (1− u0)πj∗ . This can be achieved by sampling

u0 ∼ Be(2, 2), uj ∼ Be(r, s) for each j ̸= j1, j2 and vi ∼ Be(r, s) for each i ̸= j1, j2. The

parameters of the Beta distribution r and s are given from Eq. 50. The transition probabilities Ã

after the split are updated according to the Eq. 49 where Ki =
πi
πj∗

:

ãj1j =
uj
u0
aj∗j , ãj2j =

1− uj
1− u0

aj∗j for j ̸= j1, j2, (49)

ãij1 = viaij∗, ãij2 = (1− vi)aij∗ for i ̸= j1, j2,

ãj1j2 = u1

(
1−

∑
i̸=j∗

uj
u0
aj∗j

)
,

ãj2j1 =

{
(1− u1)

∑
j ̸=j∗

ujaj∗j + u0u1 −
∑
i̸=j∗

Kiviaij∗

}/
(1− u0)

r =
1− u0(1 + c2)

c2
, s = r

1− u0
u0

if u0 ≤
1

2
(50)

s =
1− (1− u0)(1 + c2)

c2
, r = s

u0
1− u0

if u0 >
1

2

Here c2 is known as the squared coefficient of variation of the Beta distribution, and for the reasons

mentioned in [58] we assume it to be c2 = 0.5 for numerical result stability. We discuss u1, which

is the range for Ã : [uL1 , u
U
1 ] and is given as follows:

uL1 = max

(
1−

1−
∑

i̸=j1,j2
Ki/u0 × ãij1

1−
∑

j ̸=j1,j2
ãj1,j

, 0

)
, (51)

uU1 = min

{
1−

1−
∑

i̸=j1,j2
K − i/u0 × ãij1 − (1− u0)/u0 × (1−

∑
j ̸=j1,j2

ãj2j)

1−
∑

j ̸=j1,j2
ãj1,j

, 1

}
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During the split move if uL1 > uU1 , it means that there is no valid range for Ã and the move is

rejected. If uL1 < uU1 , the move is not rejected and we can get the u1 by u1 ∼ uL1 + (uU1 −

uL1 )Be(1, 1).

In the split move after splitting new parameters µj∗ , σj∗ are computed as follows:

µ̃j1 = µj∗ − z1σj∗

√
π̃j2
π̃j1

, µ̃j2 = µj∗ − z1σj∗

√
π̃j1
π̃j2

(52)

σ̃2j1 = z2(1− z21)σ
2
j∗

πj∗
π̃j1

, σ̃2j2 = (1− z2)(1− z21)σ
2
j∗

πj∗
π̃j2

In this process of splitting, we make use of a two-dimensional random vector z which is sampled

from a Beta distribution as z1 ∼ zU1 Be(1, 1) and z2 ∼ Be(1, 1) and zU1 is given in Eq. 53, which is

the upper bound for z1 and in which µ′is are properly sorted.

zU1 = min

{
µj∗ − µj∗−1

σj∗

√
π̃j1
π̃j2

,
µj∗+1 − µj∗

σj∗

√
π̃j2
π̃j1

, 1

}
(53)

At last, we choose to reallocate the observation that belongs to st = j∗ before splitting to j1 and

j2. We achieve this by using a restricted backward algorithm. Let us assume that st = j∗ for

t1 ≤ t ≤ t2 with st1−1 ̸= j∗ and st2+1 ̸= j∗. Then we sample s̃t1 , ..., s̃t2 one at a time from t = t1

to t = t2 with conditional probabilities given as follows:

p(s̃t = j|∆) ∼ ãs̃t−1,jϕ(yt; µ̃j , σ̃
2
j )bt(i) for j = j1, j2 (54)

where ∆ = {y, s̃t1−1, s̃t1 , ..., s̃t1+1 ∈ [j1, j2], ..., s̃t1 ∈ [j1, j2], s̃t2+1, Ã, µ̃, σ̃} and

bt(i) = p(yt+1, ..., yt2 , s̃t1+1 ∈ [j1, j2], ..., s̃t1 ∈ [j1, j2], s̃t2+1|s̃t = j, Ã, µ̃, σ̃) and for j = j1, j2

bt2(i) = ãi,s̃t2+1 (55)

For t = t2 − 1, ..., t1, bt(i) is given as follows:

bt(i) =
∑

j=i1,i2

bt+1(j)ãijϕ(yt+1; µ̃j , σ̃
2
j ) (56)
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when t1 = 1, the as̃t−1,j from Eq. 54 is replaced by π̃j which is the stationary probability and when

t2 = T , ãi,s̃t2+1 from Eq. 55 is replaced by 1.

As per the reverse jump algorithm, the acceptance probability of a split move is given as

min(1, R), and it is min(1, R−1) for the combined move.

R =
p(y|s̃, µ̃, α̃)
p(y|s, µ, α)

× p(k + 1)

p(k)
× p(Ã|k + 1, η)

p(A|k, η)
× p(s̃|Ã)
p(s|A)

× dk+1

bkPalloc
× J (57)

×
[ 1

zU1
g1,1

( z1
zU1

)
g1,1(z2)g2,2(u0)

1

uU1 − uL1
g1,1

( u1 − uL1
uU1 − uL1

)∏
j

gr,s(uj)
∏
i

gr,s(vi)
]−1

where gr,s is the Be(r, s) density, Palloc is the probability of allocation for s̃t and J is the Jacobian

determinant (explained in the Appendix).

3.2.3 Birth and Death Moves

Now we talk about birth and death moves as our final step in the RJMCMC algorithm. In this

move, we randomly choose between birth and death with probabilities bk and dk, respectively. An

empty state is selected at random in the death move among all the empty states and deleted. Then

the remaining rows A are normalized, and the st is not changed.

In birth move the aim is to create a new state j∗. To do this we sample j∗ row which will be a new

row of A from a Dirichlet prior D(δ, ..., δ). Then we draw vi i ̸= j∗ from Be(1, k) and set:

ãij = (1− vi)aij forj ̸= j∗, (58)

aij∗ = vi

The new parameters for this state are generated in the same way as previously mentioned, and the

st remains untouched as the new state is empty. Similar to split and combine move the acceptance

probability is computed to satisfy the rule of reversible jump where at any time t, the number of

states can be increased or reduced. So, the acceptance probability for these moves is: min(1, R)
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for birth and min(1, R−1) for death.

R =
p(k + 1)

p(k)
× kk × p(s̃|Ã)

p(s|A)
× (k + 1)× dk+1

bk(k0 + 1)

{∏
i

g1,k(vi)
}−1

× J (59)

where k0 is the number of states before birth and J is the Jacobian determinant given by:

J =
∑
i̸=j∗

(1− vi)
k−1 (60)

The entire MH-within-Gibbs learning for HMM-DMM can be summarized as follows:

Input: Observations X with k number of components

Output: HMM-DMM parameter set, k components

(1) Initialization

(2) Step at time t: For t = {1, ..., n}

Gibbs sampling part

• Generate s from Eq. (43)

• Generate nij from Eq. (42)

• Generate aij from Eq. (37)

Metropolis-Hastings & RJMCMC

• Sample µi, αi from Eq. (44), (45)

• compute σi from Eq. (32)

• compute acceptance ratio (R) for split and combine move from Eq. (57)

• compute acceptance ratio (R) for birth and death move from Eq. (59)

3.3 Experiments

In this section, we provide experiments to validate the proposed model with real-world ap-

plications. According to the literature [53], in many cases, HMMs are known to work well with
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sequential or time series data. In this chapter, we conducted experiments using our model with

video and speech data sets which are both time-series in nature.

3.3.1 Human Activity Recognition

The outcome of this experiment is to recognize various human activities, cluster the appropriate

activities, and check the appropriateness of the clustering process with various available metrics.

The motivation behind choosing this application as our clustering task is to highlight the impor-

tance of recognizing human activities in daily life and its applications in various real-life scenarios.

Much learning and knowledge can be derived from this task. Its application can be further ex-

tended to trending research areas such as human behavior analysis, criminal activity recognition,

gait recognition, etc.

We choose two well-known activity recognition data sets, namely: KTH [60] (See Fig. 3.2)

and UCF101 [63] (See Fig. 3.3). Both data-sets contain human activities of different kinds. KTH

contains actors performing six types of outdoor activities. Each of these activities is performed by

25 people in a similar background setup captured with a static camera with 25 frames per second

(fps). Each image video sequence has a resolution of 160 x 120 pixels with an average length of 4

seconds. In UCF101, we have 101 human actions of 25 categories. Each action category has around

4-7 videos.

For our model to effectively cluster the human activities, we process the video data according to

the following experimental setup: First, we extract the frames from the video using video prepos-

sessing techniques, then a feature extraction technique called SIFT [50] is applied to the extracted

frames which are images to generate BoVW (Bag of Visual Words).

For this experiment, we consider four actions from the KTH data-set: walking, jogging, running,

and boxing. From UCF data set, we consider pull-ups, push-ups, swing, and haircut. To begin, a

BoVW [70,72] is generated for each of these actions and fed to the model by combining BoVW for

all the actions belonging to one data-set without disturbing the sequence, i.e., avoiding the shuffle.

The model is then left to iterate until it converges, that is, until the average value of the latest

batch of iterations for the parameters is approximately equal to zero or remains constant. Each

iteration computes all seven stages of the MCMC algorithm, including the reversible jump, and the
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Figure 3.2: KTH data set

Figure 3.3: UCF data set
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parameters are used to evaluate the model’s performance using the four performance metrics listed

in Table 3.1 [5, 10]. Then for the same BoVW, we use HMM with GMM [55] and standard normal

distributions as base models to compare our results.

In Tables 3.1 & 3.2, we have displayed the relevant results of our model for the learning task of

activity recognition. As can be observed, we started the model with two states and left the learning

model to figure out the right number of states. After many iterations, it is clearly visible that our

model could arrive at the correct number of states with the best parameters and produce better results

than the other benchmark models. From Tables 3.1 & 3.2, it can be seen that our model score for a

number of states gradually increases from a non-optimal number of states to the optimal number of

states, with the following accuracies: 49.07% and: 72.94%, 82.92% and 54.94%, 67.27%, 83.22%

respectively for KTH and UCF activities. It can also be observed that our model outperforms the

benchmark models in both cases.

Table 3.1: Activity Recognition with KTH
States HMM-DMM HMM-GMM HMM-Std.Norm

K Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

2 49.07 49.07 49.87 49.32 47.28 47.21 47.28 42.79 43.52 28.12 43.92 43.34
3 72.35 72.38 72.35 71.89 64.74 66.65 64.14 69.97 61.71 65.92 61.71 69.54
4 82.92 83.97 82.92 81.28 72.35 72.38 72.35 71.89 66.42 74.16 66.42 53.18

Table 3.2: Activity Recognition with UCF
States HMM-DMM HMM-GMM HMM-Std.Norm

K Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

2 54.94 61.30 54.94 67.23 52.55 74.61 52.55 67.79 49.55 47.44 49.55 65.31
3 67.27 79.47 67.27 75.24 62.72 76.15 62.72 72.55 59.27 59.34 59.27 57.40
4 83.22 85.72 83.22 85.18 75.88 78.93 75.88 79.25 68.94 72.62 68.94 61.09

3.3.2 Speaker Recognition

Speaker recognition is the task of automatically detecting the speaker by exploiting the speaker-

specific information included in speech waves to validate the identities claimed by persons accessing

systems; in other words, it enables voice access control of various services. Voice dialing, banking

over a telephone network, telephone shopping, database access services, information and reservation
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services, voice mail, security control for private information, and remote computer access are all

applicable services. Another key use for speech recognition technology is as a forensic tool. Speaker

recognition also has several significant advantages over other types of identity identification, such as

iris scans, facial recognition, and fingerprint scans. To begin, because all phones have microphones,

it is commonly utilized for verification on mobile phones. Second, it is inexpensive to incorporate

into other devices like home appliances and automobiles; third, because of the rapid proliferation

of IoT devices, it is convenient and familiar to most users. Finally, it has been demonstrated to be

extremely accurate in some conditions.

The goal of this experiment is to cluster and identify various voices in a speech sample. In this

process, we take several steps to make the speech into a machine-understandable format to be fed

to the model.

According to the literature, HMMs have proved their prominence in efficiently processing and

clustering speech data on multiple occasions. This is our main motivation to experiment with speech

data. Another reason to work with speech data is to showcase the learning efficiency of the model

and thereby establish a scope for the model to extend applications to advanced research domains

such as emotion detection, speech verification [5, 8, 11] and speech classification [?], automatic

speech recognition (ASR) [6, 7, 9], and automatic audio transcription [71], etc.

In order to facilitate our experimentation, we have selected a prominent leaders speech data

set [48] which contains speeches prominent leaders like Benjamin Netanyahu, Jens Stoltenberg,

Julia Gillard, Margaret Thatcher, and Nelson Mandela as folder names. Each audio sample is of

one-second 16,000 sample rate PCM encoded.

For this experiment, we have selected four speakers as mentioned in Fig. 3.4 as part of audio

prepossessing for each speaker sample; we employ Mel-frequency cepstral coefficients (MFCCs)

[67] for feature extraction and perform voice activity detection (VAD) [61] to eliminate pauses in

the speech sample prior to the feature extraction step.

As a result of audio processing for each speaker sample, a feature matrix is obtained and is

given as input to our model after excluding the labels for the clustering process without disturbing

the sequence of the feature vectors.

The model is then left to iterate until it converges, that is, until the average value of the latest
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Figure 3.4: Speaker speech samples
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batch of iterations for the parameters is approximately equal to zero or remains constant. Each

iteration computes all seven stages of the MCMC algorithm, including the reversible jump, and the

parameters are used to evaluate the model’s performance using the four performance metrics listed

in Table 3.1. Then for the same feature vector of speech samples, we use HMM with GMM [55]

and standard normal distributions as base models to compare our results.

The model is then run for a set number of iterations until it converges, that is, until the average

value of the latest batch of iterations for the parameters is about equal or does not change: all seven

stages of the MCMC, including the reverse jump component, are computed in each iteration, and

the parameters are utilized to verify the model for performance using the four performance metrics

shown in Table 3.3. Then, using the same feature vector of voice samples, we compare our findings

using HMM with GMM [55] and HMM with standard normal distributions as base models.

In Table 3.3, in this speaker recognition learning problem, we have shown the appropriate findings

of our model. As can be seen, we started the model with two states and left the learning model to

determine the optimal number of states. After many iterations, it is evident that our model could

reach the proper number of states with the appropriate parameters and produce better outcomes than

other benchmark models.

From Table 3.3, it can be observed that our model performed poorly for non optimal number of

states with low accuracy: 55.07%, precision: 57.28% and we can also notice that the performance

of the model gradually improved while approaching the optimal number of states and finally reach-

ing a maximum accuracy and precision of 79.46% and 79.47%, respectively, outperforming the

benchmark models.

Table 3.3: Speaker Recognition
States HMM-DMM HMM-GMM HMM-Std.Norm

K Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

2 55.07 57.28 55.07 0.08 52.50 53.00 52.50 49.96 51.12 51.29 51.12 46.22
3 64.73 64.61 64.73 55.78 61.91 65.48 61.91 37.13 58.80 58.25 58.80 40.56
4 79.46 79.47 79.46 75.17 71.45 71.38 71.45 67.72 63.93 63.81 63.93 54.19
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Chapter 4

Conclusion

In this thesis, main contributions were in three important learning tasks: parameter estimation,

model selection and feature selection, for two models: AGGMM and HMM with Dirichlet mixture

model.

In chapter 2, by combining Gibbs sampling and Metropolis-Hastings approaches, a Bayesian

learning framework for learning asymmetric generalised Gaussian mixture model parameters was

proposed. Several recognition and learning applications, including human activity, vehicle, pedes-

trian, and infected malaria cell recognition, are used to validate the proposed system. Furthermore,

a novel Reversible Jump MCMC technique was investigated for accurately computing the num-

ber of components in an AGGMM, as well as a feature selection approach was explored to further

improve the learning. In chapter 3, a Bayesian learning framework was proposed for HMMs to

learn model parameters effectively. Furthermore, a new RJMCMC technique was investigated for

determining the number of components in HMMs. By introducing Dirichlet mixtures, a mixture

modelling method was applied to improve the model’s learning capacity.

In both chapters 2, 3, experiments were conducted on well-known data sets from the video and

audio domains to demonstrate the model’s utility in a variety of tasks. Throughout this experiment,

a variety of pre-processing and domain-specific feature extraction strategies were explored to aid

the learning process of the model. Moreover, the models’ learning efficiency was evaluated by

comparing their outcomes and performance using well-known performance metrics, which revealed

that the proposed models outperformed current benchmark models.
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As part of the future work, for chapter 2, a more advanced mixture modelling technique could

be employed to help the parameter estimation, model selection and feature selection. For chapter 3,

feature selection techniques could be integrated within the HMM model to improve its generalisa-

tion capabilities.
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Appendix A

Appendix

In this section, we explain the computation of Jacobian determinant which is a part of the ac-

ceptance ratio of split and combine move:

Table A.1 presents a Jacobian matrix which has partly block diagonal structure, and our goal is to

find out its determinant. For that, first, we identify sub determinants across the diagonal and evaluate

the sub determinants individually and finally multiply the resultant to obtain the determinant of the

whole matrix, and the same is shown below:

J1 =

∣∣∣∣∣∣∣
diag (vi) diag (1− vi)

diag (ãij∗) −diag (ãij∗)

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
I diag (1− vi)

0 −diag (ãij∗)

∣∣∣∣∣∣∣ =
∏

i̸=j∗
ãij∗

J2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

diag
(
uj

u0

)
diag

(
1−uj

1−u0

)
− col

(
u1uj

u0

)
col

(
(1−u1)uj−

∑
i̸=j∗viãii⋆∂γi/∂ãj∗j
1−u0

)
diag

(
ãj∗j
u0

)
−diag

(
ãj∗j
1−u0

)
− col

(
u1ãj∗j
u0

)
col
(
(1−u1)ãj∗

1−u0

)
− row

(
uj ãj∗j
u2
0

)
row

(
(1−uj)ãj∗j
(1−u0)

2

)
u1(1−˜̃ai1i1−˜̃ai1i2)

u0

u1+˜̃ai2i1
1−u0

0 0 ˜̃ai1i1 + ˜̃ai1i2
u0(˜̃ai1i1+˜̃ai1i2)

1−u0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0

−σj∗
√

1−u0
u0

σj∗

√
u0

1−u0

2z1u0

σ2
j∗z2(1−z21)

2
2z1(1−u0)

σ2
j∗ (1−z2)(1−z21)

2

z1σ3
j∗

2

√
1−u0
u0

− z1σ3
j∗

2

√
u0

1−u0

u0
z
2(1−z21)

(1−u0)
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0 0 u0

σ2
j∗(1−z21)

1−u0

σ2
j∗ (1−z2)
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√
u0(1−u0)

σ
j∗z22(1−z2)

2(1−z21)
3

J2 here is evaluated in the same way as shown in [58].
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Table A.1: Table of partial derivatives

ãjj1 ãjj2 ãj1j ãj2j ãij2 ãj2j1 µ̃j1 µ̃j2 σ̃j1 σ̃j2

ãij∗ x x 0 0 0 x 0 0 0 0

vi x x 0 0 0 x 0 0 0 0

ãj∗j 0 0 x x x x 0 0 0 0

uj 0 0 x x x x 0 0 0 0

u0 0 0 x x x x x x x x

u1 0 0 0 0 x x 0 0 0 0

µ̃j∗ 0 0 0 0 0 0 x x 0 0

z1 0 0 0 0 0 0 x x x x

σ̃j∗ 0 0 0 0 0 0 x x x x

z2 0 0 0 0 0 0 0 0 x x
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Figure 2.5: Malaria data set

Table 2.5: Malaria Detection Results
Metric Acc Pre Recall F1 B.Acc L.Los Jaccard FPR G.M1 G.M2 MCC Spec.

BAGGMM 84.125 85.93 83.58 86.24 83.58 5.48 75.80 27.82 84.75 77.67 69.48 72.17

BAGMM 78.24 83.97 77.51 82.39 77.51 7.51 70.06 43.38 8.67 66.24 61.14 56.61

BGMM 72.25 72.14 72.18 73.75 72.18 9.58 58.42 28.27 72.16 71.65 44.32 71.1

2 (77.67%) and Specificity (72.17%) indicate the preciseness in classifying negative and positive

examples. The experimental results presented in Table 2.5 demonstrate a clear picture of the success

of BAGGMM in clustering the normal and infected cells as compared to BAGMM and BGMM in

a similar set of experiments. As such, it could be applied in assisting medical practitioners in the

diagnosis process. It must be noted that this framework is developed in an unsupervised manner, and

it does not require any label during the learning process, which is a great success in this experimental

setting and application.

Based on the model’s results and analysis and flexibility to fit data of different kinds, the pro-

posed model can also be considered for other applications where the distribution of data follows

Gaussian or is close to Gaussian. Therefore, we can clearly state that AGGMM can fit the data in

a better way. Hence we can consider applying the model to a wide range of data and expect good

results.
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Figure 3.1: Directed acyclic graph for the complete hierarchical model

The term p(st|st−1, A) from Eq. 40 is given by Eq. 33 and p(s1 = i|A) = πi, and from Eq. 39.

p(y|s, µ, α) =
T∏
t=1

φ(yt;µst , αst) (41)

Fig. 3.1 is a directed acyclic graph (DAG) representing the complete hierarchical model in which

the usual convention is followed where the square boxes represent fixed or observed quantities and

the circles represent the unknowns.

3.2 Markov Chain Monte Carlo Methodology

The mixture model [17] approach taken in this chapter is a fairly complex one and requires

MCMC techniques to approximate the posterior distribution. A detailed description of these com-

putational techniques can be found in [18, 58]. To get the realizations from the posterior joint

distribution with all the parameters, we use the following moves at each sweep of the MCMC algo-

rithm:

1. update the transition probability matrix A
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Figure 3.4: Speaker speech samples
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