
Distributed Provisioning of 5G Service Requests

Ying Rao

A Thesis

in

Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master’s of Computer Science at

Concordia University

Montréal, Québec, Canada

February 2022

© Ying Rao, 2022

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Ying Rao
Entitled: Distributed Provisioning of 5G Service Requests

and submitted in partial fulfillment of the requirements for the degree of

Master’s of Computer Science

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Dr. Tse Hsun Chen
Chair

Dr. Olga Ormandjieva
Examiner

Dr. Tse Hsun Chen
Examiner

Dr. Brigitte Jaumard
Thesis Supervisor

Dr. Kim Khoa Nguyen
Thesis Supervisor

Approved by
Dr. Leila Kosseim, Graduate Program Director

February 21, 2022
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Distributed Provisioning of 5G Service Requests

Ying Rao

Service function chain (SFC) plays a prominent role in realizing 5G Slicing and next-

generation networks. Supported by the emerging techniques such as Software-Defined Net-

working (SDN) and Network Function Virtualization (NFV), network operators can freely

define and configure a variety of complex network services or SFCs based on business

needs, policies, and quality of service (QoS) requirements.

Additionally, 5G networks are expected to be highly dynamic, constantly upgrading

and scaling, in which case a plug-and-play mechanism is needed to avoid high operational

and management costs, for which the flexible and scalable distributed system is well suited.

This thesis investigates the distributed SFC provisioning problem, and propose a fully

distributed algorithm that runs with dynamic traffic aiming to find and reserve the best

suited network and compute resources for each SFC request with manageable messaging

costs.

We implemented the resulting algorithm in the OMNET++ environment and conducted

a series of experiments with different dynamic traffic instances running on a distributed

network. We then compare its performance with a classical centralized resource constraint

shortest path (RCSP) algorithm, the results show that our 5G provisioning algorithm ob-

tains a similar performance to the centralized RCSP in terms of throughput and acceptance

rate.

iii

Acknowledgments

I would like to express my deepest gratitude to my supervisor Prof. Brigitte Jaumard

and Prof. Kim Khoa Nguyen. Their attentive guidance and unremitting support at each step

throughout my study have deeply motivated and inspired me. Their profound knowledge,

rigorous academic spirit and constructive suggestions have been and will always be of great

value to me.

In addition, I would like to express my special thanks of gratitude to Mitacs and Ciena,

for their generous financial and technical support on this work.

Also, I am very grateful to my lab colleagues for their help and support. Especially Dr.

Quang Huy Duong, he is very knowledgeable and patient.

Lastly, I would like to thank my family and my boyfriend for giving me as much moral

support and encouragement as they could.

iv

Contents

Acronyms vi

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Networking Background: 5G Slicing . 1

1.2 Our Research Project: Distributed SFC Provisioning 3

1.3 Key References . 5

1.3.1 Distributed SFC Provisioning . 5

1.3.2 Graph Theory Algorithms . 6

1.4 Our Contributions . 7

1.5 Plan of the Thesis . 8

2 Distributed Provisioning for 5G Service Requests 9

2.1 Abstract . 9

2.2 Introduction . 10

2.3 Literature Review . 13

2.3.1 Distributed Shortest Path Algorithms 13

2.3.2 Distributed Multi-Constrained Shortest Path Algorithms 14

v

2.4 Problem Statement . 15

2.5 2P-DSP Algorithm . 18

2.5.1 Distributed Bellman-Ford-based Path Exploration Method 18

2.5.2 Distributed Resource Reservation 24

2.6 Numerical Results . 26

2.6.1 Experimental Setups . 26

2.6.2 RCSP vs. 2P-DSP . 38

2.6.3 Message Exchanging . 42

2.6.4 Path Collection Strategies . 44

2.7 Conclusion . 46

3 Conclusion and Future Work 47

Bibliography 48

A Algorithm Specification 52

A.1 Notation . 52

A.2 Pseudo-code . 54

vi

Acronyms

2P-DSP 2-phase distributed SFC provisioning. 12

CAPEX capital expenditure. 2

COTS commercial off-the-shelf. 2

DAG directed acyclic graph. 48

DMR distributed multi-constrained routing. 7

E2E End-to-End. 4

IDS Intrusion Detection Systems. 2

IPS Intrusion Prevention Systems. 2

LB Load Balancing. 2

NFV Network Function Virtualization. iii, 1

OPEX operating expenditure. 2

QoS quality of service. iii, 2

RCSP resource constraint shortest path. iii

vii

SDN Software-Defined Networking. iii, 1

SFC service function chain. iii, 2, 47, 48

SSSP single-source shortest paths. 6

VNF Virtualized Network Functions. 2, 8, 47

viii

List of Figures

1 Example distributed SFC request provisioning 4

2 Example SFC request allocation. 11

3 SFC request provisioning in layered graph. 19

4 Simulation network topology(36 nodes, 120 links, built on OMNET++). . . 27

5 Original and fluctuated offered load examples 30

6 Example of throughput over time during simulation. 31

7 Traffic distribution heat map . 35

8 Resources utilization and throughput of RCSP 36

9 Delay stress level of RCSP . 37

10 Acceptance rate by time window 500 time-slots 39

11 2P-DSP vs. RCSP w.r.t throughput when choosing different path collection

strategies(Dataset-7) . 40

12 2P-DSP vs. RCSP w.r.t throughput when choosing different path collection

strategies(Dataset-8) . 40

13 2P-DSP vs. RCSP w.r.t throughput when choosing different path collection

strategies(Dataset-9) . 40

14 2P-DSP vs. RCSP w.r.t throughput when choosing different path collection

strategies(Dataset-13) . 40

ix

15 2P-DSP vs. RCSP w.r.t throughput when choosing different path collection

strategies(Dataset-15) . 41

16 2P-DSP vs. RCSP w.r.t throughput when choosing different path collection

strategies(Dataset-16) . 41

17 2P-DSP vs. RCSP w.r.t throughput when choosing different path collection

strategies(Dataset-17) . 41

18 2P-DSP vs. RCSP w.r.t throughput when choosing different path collection

strategies(Dataset-18) . 41

19 Messages generated during a simulation (Dataset-17 P1) 42

x

List of Tables

1 Notations and vocabulary . 17

2 Notations in 2P-DSP . 20

3 Characteristics of data sets . 32

4 Overall acceptance rate at stable stage (Time slot from 6000 to 20000) . . . 38

5 Avg. message exchanging per request during 2 phases with different path

collection strategies . 43

xi

Chapter 1

Introduction

1.1 Networking Background: 5G Slicing

Over the past few decades, mobile networks have evolved to provide us with voice, mes-

saging, video, data and a variety of other services that have revolutionized the way we live.

Compared to its predecessors, 5G will open up a new era of "Internet of Everything" [8],

providing ultra-fast, reliable and ubiquitous connectivity with negligible latency, and con-

necting a massive number of individuals and devices [5]. These connected devices come

from different industrial fields with different characteristics and needs, in other words, they

have different requirements for the network, such as security, reliability, latency and speed.

Therefore, 5G networks must be as flexible, convenient and versatile as possible.

In this context, network slicing is proposed as a solution. Network slicing divides the

physical network into multiple independent logical network slices, each virtual slice cor-

responding to a different type of applications [23], such that network operators can select

features required for each slice to meet different service requirements, such as less la-

tency, higher throughput, higher traffic capacity and connection density. Software-Defined

Networking (SDN) and Network Function Virtualization (NFV) are the key enabler tech-

nologies of network slicing.

1

NFV promises a flexible and cost-efficient way to deploy network services by replacing

the traditional dedicated network hardware devices with the software applications that are

running on the commercial off-the-shelf (COTS) servers. These software applications are

called Virtualized Network Functions (VNF)s, VNFs can be freely defined to implement

various network functions such as IDS /IPS, firewalls, LB, etc. By deploying these VNFs

on the industry-standard commercial servers, NFV significantly reduces capital expenditure

(CAPEX) and operating expenditure (OPEX), while increasing flexibility by removing lo-

cation constraints and allowing network functions to be deployed anywhere on demand[9].

Meanwhile, SDN architecture decouples control plane from data plane, providing central-

ized programmatic control over network functions and the traffic flow.

In more complex cases, where a data stream needs to pass through multiple network

services or VNF instances in a specific or partially specific order to finally reach its desti-

nation, a service function chain (SFC) is created. In network slicing, SFC plays a key role

in providing various types of complex services for each network slice. On the other hand,

how to effectively deploy SFCs to satisfy QoS while maximizing the revenue of virtual

operators is a complex and challenging task, and has been an active topic in 5G networks.

Given the prominent value of SFC in implementing 5G slicing and the future generation

network, there is a growing number of researches focus on the design and implementation

SFC provisioning techniques[9]. However, most of the existing study focus on centralized

provisioning of SFC with very few of them discuss this problem in distributed manner. On

the other hand, the fast-evolving 5G network is envisioned to be highly dynamic and the fu-

ture can be hard to predict [15], i.e., new components and devices are constantly introduced

to expand or upgrade current services and performance of the system. In this case, a more

flexible and efficient way of service deployment is needed to manage the high operational

costs, error-prone and time-consuming situations. From this perspective, distributed sys-

tems are better suited for this plug-and-play manner, as they exhibit higher scalability than

2

centralized systems, and are more adaptable therefore more robust in handling dynamic

changes, especially in large-scale networks.

However, it is not easy to realize distributed provisioning for SFC requests. In the

absence of a global view or centralized supervision, it poses several major challenges, such

as synchronization, fault handling and provisioning efficiency.

1.2 Our Research Project: Distributed SFC Provisioning

In this thesis, we investigate on the designing of a distributed SFC provisioning algorithm

that runs in real-time dynamic network. Here we give a simple example to illustrate the

problem graphically.

Inputs

The physical network is represented by Fig.1, node R1∼8 represent routers scattered in

different geographical locations, node S1∼5 represent servers or data centers (DCs), these

nodes are connected by a set of links as shown. Each DC provides certain available VNF

types and a certain amount of computing resources, including CPU, RAM, and storage.

Every link is associated with certain latency and bandwidth capacity. All the nodes within

the network only communicate with their direct neighbouring nodes.

Each VNF type has different computing resource requirements in terms of CPU, RAM

and storage, and it takes a certain amount of processing time to process a data packet on

a data center node. In the given example, for simplicity, we set the VNF requirements as

follows: VNF1 requires 2 CPUs and 1 ms processing time, VNF2 requires 50GB of storage

and 2 ms processing time, VNF3 requires 2 RAMs and 3 ms processing time.

There are incoming and departing requests in the network at any time. Each request

is defined by its characteristics, including: its source and destination, its live-time from its

3

arrival, bandwidth and E2E latency requirements, and the SFC that specifies the required

VNFs and their execution order. Take the two SFC requests in Fig.1 as examples.

Note that the E2E delay requirement includes the link delay and the VNF processing

time. For each SFC request that arrives at the system, the operator needs to make a decision

in real-time, and in order to grant a request, the operator needs to provide a routing path

and reserve network and compute resources for that request.

For each request, we intend to find a path in the given network that goes through par-

ticular nodes following the VNF sequence in SFC, while subject to the computational and

connectivity constraints. For example, for request 1, a feasible path will be: Path 1 =

(R1(SRC), R2(book VNF1), R8(book VNF3), R4, R6(DST)), similarly, for request 2, the

path can be: Path 2 = (R5(SRC, book VNF1), R3, R8, R4(book VNF2, DST)). Path 1 and

2 are highlighted purple and blue in Fig.1.

Figure 1: Example distributed SFC request provisioning

Outputs

Based on the inputs described in the previous section, our goal is to design an algorithm

that runs on each node while, through cooperation, the nodes search for resources in the

network for each request and assign those resources to that request, subject to the following

4

objectives:

• Maximizing the overall number of granted requests in the system,

• Minimizing communication complexity, i.e., the average number generated messages

to serve a request,

1.3 Key References

Our survey on existing literature mainly goes in two directions: distributed SFC provision-

ing and related graph theory algorithms.

1.3.1 Distributed SFC Provisioning

The SFC provisioning problem is gaining popularity in this area and many different ap-

proaches have been proposed, while most focus on centralized supervision, i.e., SDN con-

trollers, as listed out in [14]. Few studies have addressed distributed SFC routing and

allocation problems, this can be further confirmed in [20] and [11]. [20] systematically

reviews the progress of SFC placement in distributed scenarios over the last decade; how-

ever, the distributed scenarios presented are either SDN-enabled distributed clouds, multi-

ple domains, or geographically distributed data centers, that are essentially computing SFC

routing paths by using centralized (shortest) path algorithms. The closet effort to our prob-

lem is [11] which can be considered the most recent work, where the authors propose a

central-distributed SFC path selection mechanism that computes routing paths distributed

under the monitoring of a central controller, the central controller will re-compute a new

path for a request when the path gets too costly.

On the other hand, we have seen some worthwhile learning from some centralized

approaches. In [3] and [17], the authors proposed a solution to the management of VNF

chaining by running the shortest path algorithm on a multi-layer graph so that the SFC

5

routing path will traverse each VNF hosting node in the specified order, which also inspires

us to apply the layered-graph paradigm to the distributed SFC routing path computation

problem.

1.3.2 Graph Theory Algorithms

Next, we move on to studies of the related graph theory algorithms, including distributed

shortest path problem with and without constraint management.

Distributed Shortest Path Algorithms

The work of M.Elkin et al. [4] has been considered to be influential and a breakthrough

in solving the exact distributed single-source shortest paths (SSSP) problem, in which they

propose an algorithm that solves the exact SSSP problem in the CONGEST model in sub-

linear time, that is O((n log n)5/6) time for D = O(
√
n log n), and O(D1/3 × (n log n)2/3)

time for larger D. The main idea behind it is to first construct a hop-set G′′ of the skeleton

graph G′ constructed from the original graph G, and then perform Bellman-Ford explo-

ration in G′′⋃G′, with the difference that M. Elkin did not sample and construct G′ in

the first step, but G′ was built on the fly in the second step, such that the resulting G′ is

exact rather than approximated. M. Elkin’s work has led to a number of advances, i.e., U.

Agarwal et al.[1] presents a Õ(n4/3) round algorithm for the distributed weighted all pairs

shortest paths (APSP) problem in both un-directed and directed graphs, which improved

the previous Õ(n3/2) rounds. M. Ghaffari et al. [7] propose a new single-source short-

est path(SSSP) algorithm with complexity Õ(n3/4 D1/4) compared to M.Elkin’s Õ(n5/6)

bound, and for larger D value, the complexity is Õ(n3/4+o(1) + min(n3/4 D1/6,n6/7)+D)

compared to M.Elkin’s Õ(n5/6+n2/3 D1/3+D) bound, where D is the hop-diameter of the

graph.

However, from a technical point of view, applying M. Elkin’s algorithm and similar

6

approaches to our distributed SFC routing problem has several issues, such as difficulty in

adding constraints, the complexity gap between the synchronous model being used in M.

Elkin’s algorithm and the asynchronous model in our problem, and no existing implemen-

tation.

Distributed Multi-constrained Shortest Path Algorithm

J.J. Garcia-Lunes-Aceves et al. extensively research on the problem of distributed loop-

free routing [6], [13], [12]. In [12], they propose a distributed multi-constrained routing

(DMR) protocol that uses distance vector to construct multiple feasible paths for each des-

tination, moreover, it offers a customizable optimization function that can be defined based

on a case-by-case basis. In addition, DMR supports multi-path selection and guarantees

loop-free. DMR is a distributed Bellman-Ford (DBF) based algorithm where each node

exchanges the logical shortest path(s) with their direct peers, then computes and updates

the local shortest path(s) by applying the Bellman-Ford equation. The time and communi-

cation complexity of DMR was evaluated by comparing it with typical distance-vector and

link-state routing protocols that are widely used in Internet.

1.4 Our Contributions

Our major contributions are listed as following:

1. We propose a fully distributed SFC request allocation algorithm, including computa-

tion of routing paths and reservation of resources, that operates in real-time dynamic

networks. Each node within the network only communicates with its connected peers

and then computes and decides independently. To the best of our knowledge today,

there is very limited research discussing the distributed SFC provisioning problem.

2. For each SFC request, the path exploration algorithm computes the shortest path from

7

source to destination while satisfying all proposed constraints, including compute

resources constraints such as RAM, CPU and storage, sequence constraint of VNFs

in SFC, routing constraints such as bandwidth and E2E delay requirements.

3. We discuss in detail the candidate path selection and different influencing factors, we

present and further analyze the overall performance loss when we collect different

numbers of candidate paths for each request.

4. We conducted a series of experiments to closely simulate different network scenarios,

where the traffic are affected by a set of factors, including the population of the city

and the geographical distance between the source and destination cities, peak hours

and concurrent requests, etc. The performance evaluation of our proposed algorithm

shows that the algorithm can obtain a very close overall performance compared with

the optimal baseline, regardless of the traffic fluctuations and concurrent requests.

1.5 Plan of the Thesis

The thesis is organized as follows: Chapter 1 describes the general background, including

5G slicing, SFC paradigm and the high level description of the research project on dis-

tributed SFC provisioning. Chapter 2 details the research problem and proposed a 2-phase

scheme for SFC provisioning in form of a submitted manuscript. Chapter 3 concludes the

research and future work.

8

Chapter 2

Distributed Provisioning for 5G Service

Requests

The chapter is submitted to the IEEE Access for review, titled "Distributed Provisioning

for 5G Service Requests", written by H. Duong, B. Jaumard and Y. Rao.

2.1 Abstract

Thanks to Software-Defined Networks (SDN) and Network Function Virtualization (NFV),

5G Networks can flexibly utilize networking and computing resources. Particularly, virtu-

alized network functions (VNFs) are freely defined as long as general-purpose data centers

(DC) can host them. In consequence, NFV offers network operators with diverse service

structures, i.e., a high number of VNFs with linear or non-linear combinations to form

a service structure. To ease and automate the service provisioning in 5G Networks with

highly complex service structures, the Service Function Chaining (SFC) paradigm is in-

troduced. SFC paradigm provisions a service request in 5G Networks takes into account

bandwidth requirements and Quality of Service (QoS) constraints as in traditional request

9

network provisioning, jointly identifies nodes along the routing path with the required com-

pute resources for VNFs specified in the associated with a service request.

In addition, 5G and Beyond 5G Networks are planned to be highly dynamic, i.e., new

network components and devices are constantly introduced into the networks to expand

or upgrade the coverage and performance. Thus it required a plug-and-play mechanism

to avoid expensive management and time-consuming deployment. Distributed operating

systems are suitable for this plug-and-play perspective.

In this paper, we investigate the designing of an efficient distributed SFC request provi-

sioning algorithm. For each request, our distributed algorithm consists of two phases: i) the

exploration phase (EXPL) explores a set of candidate paths, then ii) a resource reservation

(RESV) phase confirms necessary resources for one of the candidate paths.

We use several dynamic traffic data sets to experiment and compare the proposed dis-

tributed algorithm with a well-known centralized resource-constrained shortest. The exper-

imental results show that the distributed algorithm reaches a similar acceptance rate as the

centralized algorithm, with reasonable amount of message exchanges per request.

2.2 Introduction

5G is ushering in a new era of "Internet of Everything" and will penetrate into a diverse

range of emerging industries, it is envisioned to provide ubiquitously connected, highly

reliable and ultra-low latency services for a massive number of individuals and devices.

The unprecedented increase in active users and network dynamics bring more challenges

to existing network techniques and industrial practices. Further more, the unpredictable

evolving directions of the future requires a more flexible and efficient way of service de-

ployment. From this perspective, distributed systems exhibit higher scalability, where each

member of the system computes and makes decisions independently from the changes in

other members, and thus are generally more resilient to dynamic changes than centralized

10

systems, especially in large-scale dynamic networks. On the other hand, in support of

the fast-evolving 5G network, the NFV technology has transformed the traditional deploy-

ment of network functions on dedicated hardware into a more flexible, cost-efficient way

by enabling the allocation of VNFs on commodity hardware. An SFC is created when a

network service consists of a set of VNFs connected by virtual links following a specified

execution order along with multiple requirements on computing resources, bandwidth and

delays. Determining a feasible path on a physical network to allocate an SFC while satisfy-

ing all these requirements is complex and has proved to be NP-hard [10], while a carefully

designed SFC provisioning strategy is of key importance to ensure overall network perfor-

mance, especially for large-scaled dynamic 5G networks. Fig. 2 gives a simple example

of such SFC provisioning where the candidate hosts for each type of VNF is marked in the

same color as the VNF, the red line paves a feasible path for the given SFC request.

Figure 2: Example SFC request allocation.

Centralized provisioning of SFC requests takes the entire network as input, then outputs

the globally optimal routing path for each request according to the performance metrics de-

fined by the network operator. However, centralized provisioning has several drawbacks in

certain cases, for example, the path computation can be very burdensome for the central

11

controller when the network topology is large, and synchronization can be very expensive

when the network is highly-dynamic. On the other hand, the high adaptability of dis-

tributed systems to large dynamic networks and to future changes motivates us to consider

distributed provisioning for SFC requests.

We present a 2-phase distributed SFC provisioning (2P-DSP) algorithm aiming at com-

puting and deciding the best-fit path for an SFC in a distributed network subject to its

resource, bandwidth and delay constraints. The main idea of our algorithm is to employ

the layered graph paradigm (e.g., in [3]) to convert the complex SFC allocation problem

into a simpler routing problem on a multi-layered graph, then solve the simplified routing

problem by applying a loop-free multi-constrained shortest path algorithm as of [12].

We show that layered graph can be built on-fly in a distributed algorithm where nodes

within the network do not require a centralized supervision. They only communicate

with connected peers, process and decide locally, and therefore conserving the scalabil-

ity and adaptability of a distributed plug-and-play system. The allocation of an SFC has

two phases: path exploration and resource reservation, the former one explores feasible

paths and decide the best fit candidate, then the latter reserves networking and computing

resources along the path. Simulation was conducted on OMNET++, and the results show

that the distributed algorithm reaches a similar acceptance rate and throughput as of the

centralized algorithm.

The rest of the paper is organized as follows. Section 2.3 surveys the related works

including distributed shortest path algorithms and distributed SFC provisioning studies.

Section 2.4 details the dynamic request provisioning problem. Section 2.5 demonstrates our

distributed routing algorithm for each request as well as reservations. Section 2.6 presents

the data generation process and experimental results of algorithms basing on the generated

data sets. The last section concludes the research and discusses future work.

12

2.3 Literature Review

Numerous papers have been published on the provisioning of service requests in 5G net-

works, with very few of them discussing the distributed network requirements. It adds

difficulty in terms of convergence and in terms of optimizing the number of message ex-

changes: a compromise needs to be found in terms of network resource requirements and

quality of the network provisioning.

We therefore focus below on studies including the distributed system concern.

2.3.1 Distributed Shortest Path Algorithms

Firstly, we discuss the literature of distributed routing algorithm for a connection request

with only bandwidth requirement. In other words, there are neither compute/storage re-

source constraints nor SFC specification.

M. Ghaffari et al. [7] abstracted the synchronous message-passing model to an un-

directed weighted graph where each vertical only has the information of its neighbors and

the weights of adjacent links. they discussed previous work and proposed a new single-

source shortest path(SSSP) algorithm with complexity Õ(n3/4 D1/4) compared to previ-

ously Õ(n5/6), and complexity Õ(n3/4+o(1) + min(n3/4 D1/6,n6/7)+D) compared to previ-

ous Õ(n5/6+n2/3 D1/3+D) for larger D value, where D is the hop-diameter of the graph.

M.Elkin et al. [4] extensively discussed solving exact SSSP problem in sublinear time. That

is O((n log n)5/6) time, for D = O(
√
n log n), and O(D1/3 × (n log n)2/3) time, for larger

D. U. Agarwal et al. [1] presented their algorithm for distributed weighted all pairs shortest

paths (APSP) in both un-directed and directed graphs, which runs in Õ(n4/3) rounds in the

Congest models on graphs with arbitrary edge weights, improved on the previous Õ(n3/2).

13

2.3.2 Distributed Multi-Constrained Shortest Path Algorithms

Secondly, we discuss distributed routing algorithms w.r.t. compute/storage resource con-

straints.

In [6], the author proposes a loop-free distance vector protocol to solve distributed rout-

ing problem. However, this work assumes that resources are unlimited. In [12], the authors

extended the previous work in [6] by including resource constraints of paths. The authors

present the distributed multi-constrained routing (DMR) protocol (algorithm) that finds a

set of feasible paths from a given request that satisfy a set of link and path requirements,

e.g., bandwidth, reliability, end-to-end delay. In addition, DMR protocol is able to use

a non-closed form objective function for paths, by which feasible paths are ranked. The

loop free property of the DMR protocol is guaranteed as long as the path cost function is

monotonic and isotonic. However, this work does not provide a complete time complex-

ity for DRM protocol. The performance of the DRM protocol is only evaluated by other

well-known link-state routing protocols.

[18] proposes a distributed Optimized Multi Constrained Routing (OMCR) protocol

using vector transform method and addressing effectively count-to-infinity issues. The

OMCR protocol gains slightly better performance compared to the DMR protocol.

Lastly, to the best of our knowledge, there is limited work discussing distributed SFC

provisioning problem. The algorithm in [11] can be considered as the state-of-the-art for

distributed SFC provisioning algorithm. However, in [11], the authors does not take into

account resource constraints (e.g., delay). Thus, the problem in this work is more complex

than one of [11].

14

2.4 Problem Statement

The physical network is represented as a directed graph G = (V, L) where V represents

routers and DCs within the network connected by a set of directed links L, e.g., fiber links

in an optical network. Nodes representing DCs are assigned with available VNF types such

as firewall, IDS, VPN, etc., initial capacity of compute resources including CPU, RAM

and storage as well as their current availability. Each link ` ∈ L has delay δ`, bandwidth

capacity c` and available bandwidth a` such that total bandwidth on ` being reserved by

SFC requests that passing through link ` will not exceed the physical limit c`, in other

words, a` ≥ 0 at any time t. Table 1 lists out notations being used in our problem statement

in detail.

The set F represents all available VNF types in the system, for each VNF f ∈ F , there

are resource requirement rate in terms of CPU, RAM and storage, i.e., (RAMkf , CPUkf , STOkf).

Note that the compute resource requirements and the processing time of an VNF depend on

the VNF types and on the bandwidth requirement of the request k, see, e.g., [19] for some

examples numbers. Meanwhile, in this paper, we assume that one node can host multiple

VNFs as long as it has enough resources available, while one VNF can only be hosted on

the same node.

Let K be a set of requests, indexed by k. Each request k is characterized by:

• Its source and destination nodes, SRCk and DSTk.

• Its arrival time TArr
k and its finishing time TEnd

k .

• Its bandwidth requirement BWk.

• Its E2E delay requirement δk including link delay and node delay. Link delay is

the physical latency of a link, and node delay refers to processing time on a node,

i.e., packet processing time of a VNF instance on its hosting node. In practice, node

delay is real-time and it varies by hosting nodes and VNF types. In our simulations,

15

different types of VNFs are given different processing delays. Per bandwidth unit,

all nodes share the same processing delay for the same VNF type.

• Its service chain ck: an ordered sequence of nc
k VNFs, i.e., (f1, f2, . . . , fnc

k
).

When a request arrives at the system, the operator must accept or reject the request;

in other words, requests arrive in real time rather than being pre-scheduled, and the future

requests are unknown. If the request is accepted, the operator must provide the request with

routing information consisting of links and resource reservations.

We intent to design an fully-distributed algorithm that searches for the desired resources

in the network under presented constraints to allocate requests subject to the objectives of

• Maximizing the the accepted requests and throughput overall,

• Minimizing the average message exchanging per request.

16

Table 1: Notations and vocabulary

Parameters Descriptions

Physical Network

G = (V, L) Directed graph representing original network.

VR, VDC Nodes representing routers and DCs, VR
⋃
VDC = V .

Ccpu
v , Cram

v , Csto
v Resources capacity on DC v ∈ VDC .

Acpu
v , Aram

v , Asto
v Resources availability on DC v ∈ VDC .

F Set of all possible VNFs in the system.

AV NF
v Set of available VNF types on DC v ∈ VDC .

δfv Processing delay per unit of bandwidth for VNF f on host-

ing node v.

c`, a` Bandwidth capacity and availability of link ` ∈ L, a` ≥ 0.

δ` Delay of link ` ∈ L.

SFC Requests

K, k Request set and request index, k ∈ K.

SRCk, DSTk Arriving node and exiting node of request k.

TArr
k , TEnd

k Arrival time and exiting time of k.

δk,BWk Connection (E2E delay and bandwidth) requirements of k,

E2E delay δk =
∑

link delay +
∑

node processing delay.

ck SFC of k, it specifies VNFs needed and their execution or-

der.

RAMkf , CPUkf , STOkf Compute resources required by VNF f ∈ ck

17

2.5 2P-DSP Algorithm

Distributed routing for SFC requests in 5G network can be processed in two schemes:

The 1-phase scheme reserves resources in parallel with path exploration, while the 2-phase

scheme computes candidate paths first and then decide which path to reserve. Since the

1-phase scheme will reserve resources for each candidate path, network resources can be

exhaustively reserved easily in different situations. For example, when the number of re-

quests or the number of candidates per request is large, or when the demand for connectivity

or computational resources of individual requests is relatively high. In consequence, it in-

hibits requests to be routed efficiently. On the other hand, the 2-phase scheme does not run

out of resources due to overbooking, but it may end up with no candidate paths that can be

successfully reserved. In this case, a request must restart its search.

Considering that the number of requests in 5G networks can be enormous, we propose a

2-phase scheme for the distributed SFC routing problem, also named as 2P-DSP algorithm

in this paper. The first phase explores and aims to obtain multiple feasible paths under

network and compute resources constraints, after that the second phase will select and

reserve a chosen path including link bandwidth, computing resources and VNFs.

On the other hand, given the fact that requests arrive in real time and future requests

are unknown, it is impossible to pre-schedule resources for the requests, so we adopt a

best-effort approach, i.e., we try to allocate every current request as much as possible,

meanwhile we prioritize routing paths with fewer hops to save more link bandwidth for

future requests.

2.5.1 Distributed Bellman-Ford-based Path Exploration Method

The exploration phase of the 2P-DSP algorithm is based on the idea of applying the dis-

tributed multi-constrained routing (DMR) algorithm in [12, 13] on a layered graph built

from the physical network [3]. Take Fig. 3 as an example, to build a layered graph for

18

request k, for each VNF f indexed i(0 ≤ i < nc
k) by sequence number in SFC ck, we

abstract a copy labeled Layeri from the original network, i is layer number, for each candi-

date hosting node v for f , build a virtual link (vi, vi+1) connecting Layeri to Layeri+1, vi

is the copy of v at ith layer, such that eventually, for request k, the goal becomes to compute

a shortest path from the abstract source node of 0th layer SRC0
k to the destination copy of

the last layer DSTnc
k

k in the layered graph.

Figure 3: SFC request provisioning in layered graph.

We then employ DMR to compute the shortest paths from SRC0
k to DSTnc

k
k in the lay-

ered graph described above. Similar to the Distributed Bellman-Ford (DBF) algorithm,

DMR exchanges distances only amongst directly connected peers, every node receives

updates from its neighbouring nodes, then computes the latest shortest distance to each

destination using Bellman-Ford equation and updates back to its neighbours. After certain

rounds of network state updates, the shortest distance between any node pair converges and

maintained locally. DMR converges in finite time and had been proved in [12]-Appendix

B. Additionally, DMR defines optimization functions tailored to the practical situations and

19

maintains a non-dominated path set for each destination to support multi-constrained path

selection.

In the following description of the 2P-DSP algorithm, the notations being used are listed

in Table 2.

Table 2: Notations in 2P-DSP

Parameters Descriptions

Path Exploration Phase

G′
k = (V ′

k , L
′
k) Layered graph for request k built from original network

G = (V, L).

V i, vi Copy of physical node set V at ith layer, vi ∈ V i.

Li, `i Copy of physical link set L at ith layer, `i ∈ Li, also labeled

"horizontal links" in this work.

δ`i , Abw`i
Delay and available bandwidth of link `i ∈ Li, δ`i =

δ`, Abw`i
= a`, where ` ∈ L is the original physical link.

(vi, vi+1) Virtual link that connecting vi and vi+1 vertically between

two layers, also labeled "vertical links" in this work.

δ(vi,vi+1), Abw(vi,vi+1)
Delay and available bandwidth of link {(vi, vi+1) : vi ∈

V i, vi+1 ∈ V i+1}, δ(vi,vi+1) = δfv × BWk, Abw(vi,vi+1)
=∞.

N v
IN(t), N v

OUT(t) In-coming and out-going neighbour set of node v ∈ V ′
k

Resource Reservation Phase

x A constant number that indicates up to how many paths will

be collected at path exploration phase.

Wk Waiting time budget indicating up to how long it will wait

upon the completion of first feasible path.

Qforward, Qbackward Two Queue data structures that used to record reservation

status when reserving a path.

20

Constraint Management

To manage the VNF sequence constraint, for each request k, we define the so-called layered

directed graph G′
k = (V ′

k , L
′
k) where:

V ′
k =

⋃
i=0,1,2,...,nc

k

V i

where V i is a copy of V.

L′
k =

⋃
i=0,1,2,...,nc

k

Li ∪ {(vi, vi+1) : vi ∈ V i, vi+1 ∈ V i+1,

where Li is a copy of L.

v is a candidate node that has sufficient resources to host the ith VNF

denoted by f, requesting resources (RAMkf , CPUkf , STOkf)}.

(1)

Note that vi in above formulations is the abstract node of physical node v ∈ V at i-th

layer of layered graph G′
k. In other words, the layered graph is made of nc

k + 1 copies of

the original network, and copies of the network graph are connected by directed links from

one compute node to the same compute node in the next layer, assuming node hosting the

VNF has enough compute resources.

For horizontal link `i ∈ Li, its bandwidth and latency are the current bandwidth and

latency of its original physical link ` ∈ L. While for a vertical link (vi, vi+1) in Formulation

1, its delay is the processing time of VNF f on node v, i.e., δ(vi,vi+1) = δfv ×BWk. Vertical

link (vi, vi+1) has unlimited bandwidth.

Note that, in the layered graph G′
k, the neighbor sets of a node v ∈ V ′

k include links

bridging two consecutive layers, namely the outgoing neighbor set

N v
OUT(t) = {(v, v′) : (v, v′) ∈ L′

k and δ(v,v′) <∞},

21

and the incoming neighbor set

N v
IN(t) = {(v′, v) : (v′, v) ∈ L′

k and δ(v′,v) <∞}.

δ(v,v′) < ∞ and δ(v′,v) < ∞ verify that the link exists in the layer graph and is passable.

Meanwhile, the neighbor set of an abstract node is not fixed as the physical links and nodes

can be changed over time, therefore the neighbor sets are accommodated by a time index.

Connection constraints including E2E delay and bandwidth requirements are validated

during path computation. A path p from node u to node v in layered graph G′
k is character-

ized by its total delay, total number of hops, set of link bandwidth usage, and link sequence,

namely

p = {(
∑

(u,v)∈p

δ(u,v),#ofhops), {(u, v) ∈ L′
k : (u, v) ∈ p}}. (2)

To form a new path p′ in the layered graph G′
k from path p by concatenating a new link

` ∈ L′
k to p, (e.g., operation ⊕ in Appendix A.2), the new path p′ has to satisfy a set of

constrains:

• Total delay of p′ will not exceed the E2E delay requirement of request k:

∑
(u,v)∈p′

δ(u,v) ≤ δk.

• Every link ` ∈ L′
k that p′ passes through must satisfy bandwidth requirement of

request k:

Abw`
> BWk.

• The times h that path p′ passes through the same physical link ` should satisfy that the

total bandwidth consumed on link `will not exceed its current bandwidth availability:

22

h× BWk < a`.

Path p dominates path q only when the total delay and hops of p is less than that of q.

The distance of path p is defined as:

f p = # of hops of p (3)

Stopping Conditions

If given long enough time for request k to search for feasible paths from SRC0
k to DSTnc

k
k

in layered graphG′
k described in previous paragraph using DMR, DSTnc

k
k will either collect

a set of non-dominated path(s) or none, before message exchanging over the network ends

in finite time after the last network state update, given the proof in [12] Appendix B. On top

of this, we added E2E delay and bandwidth constraints to limit timely live messages in the

network, i.e., a path exploration message will stop propagating upon detecting current path

exceeds E2E delay requirement or current stop does not provide a valid connecting link

that meets bandwidth requirement. Meanwhile, at destination DSTnc
k

k , we set a constant

number x and a time budget Wk to limit path exploration time detailed in Section 2.5.2.

Algorithm Specification

The pseudo-code of the path exploration algorithm are detailed in Appendix A.2. In our

algorithm, the layered graph is constructed on-the-fly and updated dynamically. For request

k, when it first arrives at node SRCk, SRCk will initiate a local record for abstract node of

the SRCk at the 0th layer, i.e., R1 in Fig. 3, and send UPDATE messages to all its outgoing

neighbors, these UPDATE messages will later trigger their receivers to check and initiate

an local record at the same horizontal layer for request k if there is none exists yet. The

same initialization applies to every other nodes within the layer graph. A node will add

23

a self copy of the next layer to its out-going neighbour set when it discovers itself as a

candidate node of current layer, then it will send out an UPDATE message to this copy and

trigger the construction of the next layer, and so on.

All layers are synchronized at anytime, this is easy to deliver because all the abstract

copies at different layers of the same node are technically stored at the physical node,

therefore the physical states including resources status, link delay and bandwidth are shared

real-time.

2.5.2 Distributed Resource Reservation

Path Collection Strategies

A successful path exploration for request k will end up with a set of candidate paths coming

in chronological order at destination node DSTk. In a distributed network with concurrent

requests, trying multiple candidate paths in a single reservation attempt presents a number

of challenges including synchronization and deadlock issues. To ensure the reservation

status of the same request remains consistent all the time across the network, in each reser-

vation attempt, we only proceed with one candidate path.

We keep multiple candidate paths in case the reservation of a current path fails. Mean-

while, given the fact that a best-fit path is a comprise between multiple constraints, the first

arriving path does not always produce the best overall outputs, while collecting all feasible

paths will take much longer time at the risk of losing current ones, we therefore set a con-

stant number x to decide how many candidate paths will be collected and a waiting time

budget Wk, Wk starts after DSTk receives the first feasible path pk1st, such that:

• DSTk can have enough time to collect up to x candidate paths,

• DSTk will not wait too long for perspective paths, especially when there are concur-

rent requests, e.g., in our simulation, we set Wk to be 1 time slot.

24

At DSTk, reservation phase starts either when it finishes collecting x paths or when the

waiting time exceeds the budget Wk.

Distributed Path Reservation

In this work, paths with less hops are given priority on reservation decisions, then the

total delay of the path will be used to break the tie. Reservation starts with selecting the

path with least hops among all candidate paths, if reservation is successful, request k will

be connected and remain online till TEnd
k , otherwise, current path will be removed from

candidates and the next one with least hops will be selected, and so on. Request k will be

rejected when no more candidate path available.

Technically, the distributed reservation of a path is delivered mainly by two queue data

structures, Qforward and Qbackward, that are updated and passed on through message ex-

changes at each node along the path. Starts from DSTk, each path being selected for reser-

vation will be first decoded from the virtual path in the layered graph to a hop-by-hop path

in the physical network, and then stored in queue Qforward which indicates the path ahead

to be reserved, each node receives the reservation message will reserve link bandwidth

and/or compute resources on nodes indicated in Qforward, then pop out the record of itself

from Qforward and push to Qbackward, Qbackward records current progress, i.e., bandwidth

on links and compute resources on nodes that have been reserved so far. When there is a

reservation failure at an intermediate node, this node will first abort reservation and then

initiate an cancellation procedure along Qbackward to cancel previous reservations on links

and nodes, until it travels back to DSTk and select next path to start another reservation

attempt.

25

2.6 Numerical Results

In this section, we discuss the evaluation of our algorithm in four sub-sections: Section

2.6.1 explains experimental setups including configuration of the simulation environment,

generating scheme of data sets, and design of the comparison algorithm. Section 2.6.2

compares the performance of our distributed algorithm 2P-DSP with the classical central-

ized Resource Constrained Shortest Path (RCSP) algorithm w.r.t throughput and acceptance

rate. Section 2.6.3 discusses the number of message exchanges during EXPL phase and

RESV phase. Section 2.6.4 compares different path collection strategies, we name each

path collection strategy by "P" and the x value defined in Section 2.5.2, e.g., "P3" indicates

that EXPL will collect first 3 paths before deciding which path to reserve.

2.6.1 Experimental Setups

Simulation Environment and Data Set

We implemented the 2P-DSP algorithm on OMNET++ v 5.6.2[16], a discrete-event sim-

ulator with powerful and complete GUI interfaces that has been widely used in network

simulation for both academic and industrial purposes, simulations are conducted on a com-

puter with Intel(R) Xeon(R) CPU E3-1271 v3 3.60GHz and 32 GB RAM. The network

was built based on the CORONET Continental United States (CONUS) topology[21], from

which we removed 2-degree nodes to simply the topology, meanwhile, 10 DCs were se-

lected manually so that all regions on the map are covered, as shown in Fig. 4, there are

4 types of predefined VNFs that will be randomly placed on the 10 DCs, each DC has

1 ∼ 4 available VNF types. During each simulation, initial capacity of compute resources

on each DC, bandwidth of each link are calculated corresponding with the traffic load of

each data set, detailed in the following paragraph.

26

Figure 4: Simulation network topology(36 nodes, 120 links, built on OMNET++).

To simulate the real-world network scenarios as close as possible, each data set is gen-

erated in 3 steps:

• First, we create an unbounded network using the same topology while assigning

unlimited computing and networking resources to all DCs and links, such that this

network can meet any size of demand.

• Next, we generate randomized SFC requests between all node pairs in the unbounded

network. For "Uniformed" traffic, the distribution of such node pairs, or source and

destination of the request, will be the same amongst all pairs. On the other hand, for

"Non-uniformed" traffic, the distribution will be calculated based on the population

and geometric distance of two cities, similar to [2]. That is, assuming the total traffic

27

load of the whole network is K, the traffic load from citie i to city j is

K × Rij∑
R
,

where Rij =

(
log10

(
Pi × Pj

dij
+ 10

)
− 1

)
,∑

R is the sum of the values of all node pairs by applying the formula of Rij .

(4)

where Pi and Pj are the populations of the two cities, the population data is obtained

from Wikipedia[24], taken for the year 2020. dij is the geographical distance be-

tween this two cities. The log function is used to avoid this impractical unbalanced

distribution caused by high-population cities. If we do not use the log function, then

the distribution is really unbalanced, i.e., two biggest city attract all the requests as

show in Data 8 and 9 of Fig. 7.

Let T be the duration of a simulation, represented by the number of time slots, each

time slot is equivalent to one second. At each time slot, there can be one or several

requests arrives at the start of the time slot. At this stage, the E2E delay requirements

of all requests are set to infinite, bandwidth requirements range evenly between 1

∼ 10 Gbps. SFC of each request is randomly picked from 10 pre-defined SFCs, the

pre-defined SFCs are constructed out of the 4 types of VNFs randomly. The live time

of the SFC requests is a geometric random variable with the average of 2000 time

slots. Each SFC request will be routed along a random path among a set of paths

computed by the k-shortest-path algorithm (k=10) on the layered graph w.r.t. E2E

delay. During this process, the maximum usage of compute and connect resources

on each DC and link will be recorded, denoted by C, meanwhile, the E2E delay of

the routing path for each request will be recorded and denoted by D.

• Finally, we use the resource usage and request data collected in the previous step to

28

estimate and control the resource capacity and traffic in the simulation environment.

Every SFC request generated previously will be updated with a new E2E delay re-

quirement based on its associated D, i.e.,

E2E Delay requirement of request k = Dk × d%. (5)

the updated request set will then be shuffled and prepared for the experiments. Mean-

while, the previously recorded maximum usage C on each node/link will be used to

estimate its resource capacities respectively in the experimenting network, i.e.,

Link/Node Capacity = C ×Random(a%, b%). (6)

In Table 3, we list out all the parameters of above settings, including variables a, b and d,

for each data set. Intuitively, if the request set is uniformly reordered on the network with

a = b = d = 100%, then one can expect that routing algorithms will get an acceptance rate

close to 100%.

Additionally, we introduce fluctuations to the traffic to simulate peaks and dips of the

traffic at different times. To do that, we introduce 1000-time-slot fluctuation periods. There

are two type of periods alternatively happen. The first one is "peak" period where we

randomly add more connection requests to these time slots, while during a "dip" period,

some connection requests will be selected randomly and their live times will be shortened.

In Fig. 5, it presents an example of a original offered load (’stable’) and the derived offered

load after the original one is reodered and fluctuated by the above process.

29

Figure 5: Original and fluctuated offered load examples

Note that traffic, reflected from throughput, during a simulation is divided into 3 stage

as shown in Fig. 6: the "Warming-up" stage starts with an empty network where most

new requests are embraced by sufficient resources and therefore has an acceptance rate

close to 100%, "Stable" state is when resources being reserved and released by current

requests in the network reached dynamic balance, which is of the most interest to observe

the performance of request provisioning. At "Cool-down" stage, there’s no incoming new

requests, while existing requests start to release resources and eventually exit the network.

In the results being presented, we will mainly focus on performance of the algorithms at

"Stable" stage.

30

Figure 6: Example of throughput over time during simulation.

The "Stable" state of all the data sets being experimented in following sections starts

from the 6000th time slot.

31

Ta
bl

e
3:

C
ha

ra
ct

er
is

tic
s

of
da

ta
se

ts

D
at

a-
se

t

N
o.

U
ni

fo
rm

ed

(Y
/N

)

Fl
uc

tu
at

ed

(Y
/N

)

T o
ta

l
R

eq
.

/

Ti
m

e
Sl

ot
s

M
ax

.
R

eq
.

pe
r

Ti
m

e
Sl

ot

C
om

pu
tin

g
Sc

al
in

g
B

an
dw

id
th

Sc
al

in
g

D
el

ay
Sc

al
in

g

7
Y

N
15

00
0/

15
00

0
1

[-
10

%
, +

20
%

]
[-

10
%

, +
20

%
]

20
%

8
N

N
15

00
0/

15
00

0
1

[-
10

%
, +

20
%

]
[-

10
%

, +
20

%
]

20
%

9
N

Y
22

09
5/

20
00

0
2

[-
10

%
,+

20
%

]
[-

10
%

,+
20

%
]

20
%

13
N

Y
22

10
0/

20
00

0
2

R
A

M
:

[-
10

%
,+

10
%

]

C
PU

,S
TO

:[
-1

0%
,+

20
%

]

[-
10

%
,+

20
%

]
20

%
if

ho
ps

>
4,

[2
0%

,3
0%

]
ot

he
r-

w
is

e.

15
N

Y
22

10
0/

20
00

0
2

R
A

M
:[

-1
0%

,+
10

%
]

C
PU

,S
TO

:[
-1

0%
,+

20
%

]

[-
10

%
,+

20
%

]
20

%
if

ho
ps

>
4,

[2
0%

,3
0%

]
ot

he
r-

w
is

e.

16
N

Y
33

05
4/

20
00

0
2

[3
0%

]
R

A
M

:
[-

10
%

,
+1

0%
]

C
PU

,S
TO

:[
-1

0%
,+

20
%

]

[-
10

%
, +

20
%

]
20

%
if

ho
ps

>
4,

[2
0%

,3
0%

]
ot

he
r-

w
is

e.

17
N

Y
33

02
5/

20
00

0
2

[3
0%

]
R

A
M

:
[-

10
%

,
0%

]

C
PU

,S
TO

:[
-1

0%
,+

5%
]

[-
20

%
, 0

%
]

20
%

if
ho

ps
>

4,
[2

0%
,3

0%
]

ot
he

r-

w
is

e.

18
N

Y
34

06
1/

20
00

0
2

[4
0%

]
R

A
M

:
[-

10
%

,
0%

]

C
PU

,S
TO

:[
-1

0%
,+

5%
]

[-
20

%
, 0

%
]

20
%

if
ho

ps
>

4,
[2

0%
,3

0%
]

ot
he

r-

w
is

e.

E
qu

at
io

n
6

is
ap

pl
ie

d
to

C
om

pu
tin

g
Sc

al
in

g
an

d
B

an
dw

id
th

Sc
al

in
g,

E
qu

at
io

n
5

is
ap

pl
ie

d
to

D
el

ay
Sc

al
in

g.

32

Baseline Algorithm

For comparison, we use a centralized resource-constrained shortest path algorithm, i.e.,

algorithm RCSP in [22]. RCSP assumes that communication between the centralized con-

troller and nodes within the network is instantaneous without cost or delay. Similar to

2P-DSP, RCSP defines the length of a path by hop count and uses E2E latency to break

the tie. The difference is that for each request, RCSP instantly obtains the globally shortest

feasible path and immediately reserves the path. For 2P-DSP, on the other hand, message

exchanging obeys link delay, every node asynchronously communicates with its peers and

calculates the current shortest path based on locally available information. For a single

request, if the 2P-DSP is given a long enough time to collect all feasible paths, the 2P-

DSP will theoretically end up with the same shortest path as the RCSP, but this becomes

uncertain in dynamic networks where there may be more requests competing for the same

resources and time becomes critical. Therefore, in our simulations, the RCSP is primarily

designed to provide an baseline to evaluate 2P-DSP for real-time dynamic network scenar-

ios.

Data Analysis

On the other hand, the behavior of the RCSP can provide deeper insights into the charac-

teristics of each data set. First Fig. 7 illustrates the total number of requests (also called

traffic load) between node pairs within the network in the whole process. As mentioned

earlier in Equation 4, in data set 8 and 9, two cities attract all the traffic when we do not

apply the log function, while the other data sets are more reasonable, which also shows the

validity of our distribution function.

Second, Fig. 8 summarizes resources usage during a simulation as well as the through-

put rate. We can see that, in these data sets, the usage of computing resources is higher than

the usage of bandwidth, which coincides with the real-life situation that network computing

33

resources are generally more scarce than bandwidth.

Last, in Fig. 9, we define "Delay Stress Level" to be the percentage of the latency of the

RCSP chosen path for a request divided by the allowable latency or E2E delay requirement

of that request, such that, from the "Delay Stress Level" histogram, we can roughly estimate

the latency budget for each request and the ease to collect multiple feasible paths, i.e., as

shown in the histogram, the majority of the requests in each data set generally use up

80 ∼ 90% of the given delay budget, indicating that the given allowed latency settings are

not easy for path exploration and, at the same time, they are reasonable.

34

(a
)D

at
as

et
-7

(b
)D

at
as

et
-8

(c
)D

at
as

et
-9

(d
)D

at
as

et
-1

3

(e
)D

at
as

et
-1

5
(f

)D
at

as
et

-1
6

(g
)D

at
as

et
-1

7
(h

)D
at

as
et

-1
8

Fi
gu

re
7:

Tr
af

fic
di

st
ri

bu
tio

n
he

at
m

ap

35

(a
)D

at
as

et
-7

(b
)D

at
as

et
-8

(c
)D

at
as

et
-9

(d
)D

at
as

et
-1

3

(e
)D

at
as

et
-1

5
(f

)D
at

as
et

-1
6

(g
)D

at
as

et
-1

7
(h

)D
at

as
et

-1
8

Fi
gu

re
8:

R
es

ou
rc

es
ut

ili
za

tio
n

an
d

th
ro

ug
hp

ut
of

R
C

SP

36

(a
)D

at
as

et
-7

(b
)D

at
as

et
-8

(c
)D

at
as

et
-9

(d
)D

at
as

et
-1

3

(e
)D

at
as

et
-1

5
(f

)D
at

as
et

-1
6

(g
)D

at
as

et
-1

7
(h

)D
at

as
et

-1
8

Fi
gu

re
9:

D
el

ay
st

re
ss

le
ve

lo
fR

C
SP

37

2.6.2 RCSP vs. 2P-DSP

In Table 4 and Fig. 10, we evaluation RCSP and 2P-DSP w.r.t acceptance rate, in Fig. 11

∼ 18, we compare the performance of the two algorithms w.r.t throughput.

Table 4 presents the overall acceptance rate of the two algorithm at stable state, we can

see that, with appropriate path collection strategy which are highlighted in gray color, 2P-

DSP obtains an overall acceptance rate that is very close to that of RCSP in all data sets,

with the difference of 0.59% ∼ 4.34%.

Table 4: Overall acceptance rate at stable stage (Time slot from 6000 to 20000)

Dataset
No.

RCSP 2P-DSP

P1 P3 P5 P7 P9
7 98.10% 94.03% 95.34% 95.59% 95.36% 95.33%
8 98.28% 91.71% 95.04% 94.31% 94.17% 94.15%
9 97.7% 94.91% 96.22% 95.99% 96.09% 95.97%
13 97.91% 95.18% 95.78% 95.47% 95.39% 95.20%
15 97.68% 96.73% 96.14% 96.09% 96.02% 96.07%
16 97.20% 96.61% 96.05% 95.45% 95.19% 95.06%
17 94.84% 89.15% 90.50% 90.42% 90.46% 90.30%
18 93.37% 91.78% 92.77% 92.30% 92.09% 92.21%

In Fig. 10, we plot acceptance rate by time window of 500 time-slots, consistent with

Table 4, we observe that the plots of 2P-DSP are very close to RCSP in Dataset-15 and

Dataset-16, and the two almost overlap in Dataset-18. In Dataset-7,8,9 and 13, the accep-

tance rate of 2P-DSP stayed within 5% of that of RCSP in the best case. In Dataset-17,

the gap between 2P-DSP and RCSP gets relatively bigger, reaching a maximum of around

10% at best level for 2P-DSP.

38

(a
)D

at
as

et
-7

(b
)D

at
as

et
-8

(c
)D

at
as

et
-9

(d
)D

at
as

et
-1

3
(e

)D
at

as
et

-1
5

(f
)D

at
as

et
-1

6

(g
)D

at
as

et
-1

7
(h

)D
at

as
et

-1
8

Fi
gu

re
10

:A
cc

ep
ta

nc
e

ra
te

by
tim

e
w

in
do

w
50

0
tim

e-
sl

ot
s

39

(a
)P

1
(b

)P
3

(c
)P

5
(d

)P
7

(e
)P

9

Fi
gu

re
11

:2
P-

D
SP

vs
.R

C
SP

w
.r.

tt
hr

ou
gh

pu
tw

he
n

ch
oo

si
ng

di
ff

er
en

tp
at

h
co

lle
ct

io
n

st
ra

te
gi

es
(D

at
as

et
-7

)

(a
)P

1
(b

)P
3

(c
)P

5
(d

)P
7

(e
)P

9

Fi
gu

re
12

:2
P-

D
SP

vs
.R

C
SP

w
.r.

tt
hr

ou
gh

pu
tw

he
n

ch
oo

si
ng

di
ff

er
en

tp
at

h
co

lle
ct

io
n

st
ra

te
gi

es
(D

at
as

et
-8

)

(a
)P

1
(b

)P
3

(c
)P

5
(d

)P
7

(e
)P

9

Fi
gu

re
13

:2
P-

D
SP

vs
.R

C
SP

w
.r.

tt
hr

ou
gh

pu
tw

he
n

ch
oo

si
ng

di
ff

er
en

tp
at

h
co

lle
ct

io
n

st
ra

te
gi

es
(D

at
as

et
-9

)

(a
)P

1
(b

)P
3

(c
)P

5
(d

)P
7

(e
)P

9

Fi
gu

re
14

:2
P-

D
SP

vs
.R

C
SP

w
.r.

tt
hr

ou
gh

pu
tw

he
n

ch
oo

si
ng

di
ff

er
en

tp
at

h
co

lle
ct

io
n

st
ra

te
gi

es
(D

at
as

et
-1

3)

40

(a
)P

1
(b

)P
3

(c
)P

5
(d

)P
7

(e
)P

9

Fi
gu

re
15

:2
P-

D
SP

vs
.R

C
SP

w
.r.

tt
hr

ou
gh

pu
tw

he
n

ch
oo

si
ng

di
ff

er
en

tp
at

h
co

lle
ct

io
n

st
ra

te
gi

es
(D

at
as

et
-1

5)

(a
)P

1
(b

)P
3

(c
)P

5
(d

)P
7

(e
)P

9

Fi
gu

re
16

:2
P-

D
SP

vs
.R

C
SP

w
.r.

tt
hr

ou
gh

pu
tw

he
n

ch
oo

si
ng

di
ff

er
en

tp
at

h
co

lle
ct

io
n

st
ra

te
gi

es
(D

at
as

et
-1

6)

(a
)P

1
(b

)P
3

(c
)P

5
(d

)P
7

(e
)P

9

Fi
gu

re
17

:2
P-

D
SP

vs
.R

C
SP

w
.r.

tt
hr

ou
gh

pu
tw

he
n

ch
oo

si
ng

di
ff

er
en

tp
at

h
co

lle
ct

io
n

st
ra

te
gi

es
(D

at
as

et
-1

7)

(a
)P

1
(b

)P
3

(c
)P

5
(d

)P
7

(e
)P

9

Fi
gu

re
18

:2
P-

D
SP

vs
.R

C
SP

w
.r.

tt
hr

ou
gh

pu
tw

he
n

ch
oo

si
ng

di
ff

er
en

tp
at

h
co

lle
ct

io
n

st
ra

te
gi

es
(D

at
as

et
-1

8)

41

Fig. 11 ∼ 18 compares 2P-DSP with RCSP in terms of throughput. In accordance

with their performance as of acceptance rate, at the best level of performance, 2P-DSP

still approaches RCSP closely regardless of the peaks in traffic in all the data sets except

Dataset-17. On the other hand, in Dataset-16,17 and 18, we introduced more concurrent

requests at stable state, from where we can see that 2P-DSP is handling well without any

observable loss in performance.

2.6.3 Message Exchanging

We evaluate the complexity of 2P-DSP in terms of the amount of messages exchanged, i.e.,

the average number of messages generated to serve a request.

Our simulations on OMNET++ show that, in all the data sets, the number of messages

generated grows almost linearly with time, take Fig. 19 as an example.

(a) EXPL Message Growth

(b) RESV Message Growth

Figure 19: Messages generated during a simulation (Dataset-17 P1)

Table 5 lists out average message volume per request for each data set.

42

Ta
bl

e
5:

A
vg

.m
es

sa
ge

ex
ch

an
gi

ng
pe

rr
eq

ue
st

du
ri

ng
2

ph
as

es
w

ith
di

ff
er

en
tp

at
h

co
lle

ct
io

n
st

ra
te

gi
es

D
at

a-
se

tN
o.

P1
P3

P5
P7

P9

E
X

PL
R

E
SV

E
X

PL
R

E
SV

E
X

PL
R

E
SV

E
X

PL
R

E
SV

E
X

PL
R

E
SV

7
74

2.
24

12
.9

4
68

5.
56

14
.5

2
67

3.
46

14
.2

5
67

1.
94

14
.2

0
67

2.
29

14
.1

4

8
68

0.
23

10
.6

3
60

3.
83

12
.6

2
59

3.
99

12
.2

6
59

3.
26

12
.1

4
59

4.
03

12
.2

8

9
69

0.
25

10
.7

3
60

9.
77

12
.4

4
60

0.
24

12
.0

2
59

7.
16

11
.8

9
59

7.
48

11
.8

7

13
70

1.
59

12
.7

5
65

0.
38

14
.2

9
63

9.
85

13
.9

7
63

7.
22

13
.8

1
63

8.
02

13
.8

2

15
67

7.
65

13
.4

5
64

6.
83

14
.7

4
64

0.
57

14
.3

6
63

8.
42

14
.2

2
63

8.
01

14
.2

6

16
70

5.
73

12
.9

2
64

0.
02

14
.2

6
62

4.
55

13
.8

5
62

2.
53

13
.7

8
62

3.
29

13
.7

7

17
69

2.
97

12
.7

3
62

3.
72

14
.9

0
60

8.
18

14
.6

5
60

6.
68

14
.5

5
60

5.
49

14
.5

2

18
69

0.
07

12
.5

3
61

6.
14

14
.1

2
59

9.
92

13
.7

0
59

9.
52

13
.6

2
60

0.
21

13
.5

9

43

We observe that:

• Under the current environment settings, the average number of EXPL messages gen-

erated to serve a request in "Uniformed" traffic is 671 ∼ 742 as shown in Dataset-7,

for "Non-uniformed" traffic is 593 ∼ 706. This is because, after applying the traffic

equation, two nodes that are geometrically closer have higher probability to receive

more connection requests, in other words, "Uniformed" traffic receives more requests

between two long-distant cities.

• This EXPL message amount is in the same order of magnitude of the number of links

in the network. Thus, it shows that the distributed algorithm only requires reasonable

number of messages for routing algorithm.

• The average number of RESV messages is 10 ∼ 15 per request. It is in the same

order with the width of the network, it implies that the majority of the requests are

granted within 1 ∼ 2 reservation attempts.

2.6.4 Path Collection Strategies

To compare different path collection strategies, we do a cross-sectional analysis in terms of

acceptance rate, throughput and message exchanging from the previous tables and graphs.

In Table 4, 2P-DSP performed at the best level w.r.t overall acceptance rate when P3

is selected as the path collection strategy, followed by P5 and P7. P1 yields the lowest

acceptance rate in all data sets except Dataset-15 and Dataset-16, mainly because there is no

chance of trial and error in selecting P1, and once the current path fails, the request will be

rejected. While in Dataset-15 and 16, not only P1, we can see that all other path collection

strategies obtained very similar and high acceptance rate, which indicates that most requests

obtained the optimal path from the first few candidate paths collected, meanwhile, with

44

sufficient resources, most requests are able to be granted, in this case, choosing P1 saves

time instead of waiting to collect multiple paths.

The performance of different path collection strategies varies depending on the network

and traffic settings, however, the best path collection strategy is a compromise between

multiple factors, including the quality of candidate paths and the time to collect these paths.

In our simulations, the main reason why P3 outperforms other path collection strategies is

that, for most requests in these data sets, they can get the shortest path from the first few

candidate paths, i.e., 3 to 5. Compared with P5, P7, and P9, P3 saves more waiting time at

the expense of choosing longer paths for a small number of requests, which we can roughly

infer from the acceptance rates in Table 4 and the average number of reservation messages

in Table 5. To this end, We see that these path collection strategies are very close to each

other except for P1.

In terms of message exchanging, given the nature of distributed system and DBF al-

gorithm, message exchanging during the path exploration phase will not vary much using

different path collection strategies, because for other nodes than the DST, they won’t be no-

tified if DST has collected enough paths, they will only follow their routine of processing

and updating to peers whenever receives a message.

In our implementation, the propagation of EXPL messages is limited by two con-

straints: the bandwidth requirement of the request and its E2E delay requirement. From

this perspective, bandwidth availability of the links within the network can have a impact

on message propagation during path exploration. For example, 2P-DSP generates more

EXPL messages when choosing P1, mainly because P1 maintains lower acceptance rate

overall, intuitively, with less requests being granted, there are more bandwidth available

during a simulation, EXPL messages can propagate further.

The number of generated RESV messages is mainly affected by the hop count of the

chosen path and number of reservation attempts. We can see that P1 has the least RESV

45

message exchanges overall, mainly because P1 only has one booking attempt, without

cancelling or re-booking processes, while on the other hand, it can also explain why the

other path collection strategies takes relatively more RESV messages. From P3 to P9, we

observe a slight decrease in RESV message, this is because, while getting more candidate

paths, 2P-DSP gets higher probability to find path with less hops.

2.7 Conclusion

In this work, we study the distributed SFC provisioning problem in the context of 5G net-

works, and then propose a novel fully distributed 2-phase SFC request allocation scheme,

aiming at maximizing the total number of granted requests while minimizing the commu-

nication cost. For routing path computation, we transform the original complex routing

problem by running a DBF-based shortest path algorithm on a layered graph. For path

reservation, we discuss the selection of candidate paths and compare different path collec-

tion strategies. From our simulations, we observe that in most of the cases, our 2P-DSP

algorithm obtains very close performance in terms of both acceptance rate and through-

put compared to the optimal baseline RCSP, and that 2P-DSP still performs well during

traffic peaks and when concurrent requests are introduced. In addition, the message load

generated during the simulation is within the reasonable range.

Acknowledgment

This work is supported by a joint Mitacs-Ciena (SOF project) grant.

46

Chapter 3

Conclusion and Future Work

In this thesis, we investigate the problem of SFC provisioning in distributed 5G networks,

the proposed solution and the results are detailed in Chapter 2.

We demonstrate that the layered graph can be constructed on-the-fly in a distributed dy-

namic system, and the integration of the layered graph paradigm and the multi-constraint

DBF-based shortest path algorithm can well manage the provisioning constraints of the

SFC requests. The layered graph ensures that the routing paths follow the compute re-

sources constraint and the sequence constraint of VNFs in SFC. Meanwhile, routing con-

straints, including bandwidth and E2E delay requirements, are checked during path forma-

tion processes. Additionally, we show that the message exchanging ends in finite time.

For resource reservation, we discuss the selection of candidate paths and compare dif-

ferent path collection strategies, i.e., in a dynamic network with limited resources, time

is critical and the optimal path collection strategy is a compromise under the combination

of various factors, including the time budget for collecting multiple paths and the quality

of these paths. For example, we see an obvious performance degradation when we only

collect the first complete path as the candidate, because there is no chance for trial and

error. While on the other hand, collecting too many candidate paths, say 9, can also lead to

an overall performance loss, as the collected paths could have their resources taken up by

47

other requests due to long waiting time.

Future research can extend the current work in several directions, including, e.g.,:

• introducing larger network topology and more concurrent requests. In all our simula-

tions in Chapter 2, we used the same network topology with 36 nodes and 120 links,

and the maximum number concurrent requests per time slot is 2. It would be inter-

esting to test with a larger topology, say 75 nodes, and a larger number of concurrent

requests, say at least 10 ∼ 20.

• investigating more complex path definitions, i.e., take resource defragmentation into

account so that those paths with lower degree of resource fragmentation are priori-

tized, thus allowing the system to save resources to fit in more requests with smaller

resource requirements and ultimately maximize the number of granted requests.

• extending current 5G SFC provisioning problem to partial-order SFC provisioning,

i.e., SFC structures are DAGs defining precedence constraints.

48

Bibliography

[1] U. Agarwal and V. Ramachandran. Faster deterministic all pairs shortest paths in con-
gest model. In 32nd ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 11 – 21, 2020.

[2] A. Betker, C. Gerlach, R. Hülsermann, M. Jäger, M. Barry, S. Bodamer, J. Späth,
C. Gauger, and M. Köhn. Reference transport network scenarios. MultiTeraNet Re-
port, 2003.

[3] A. Dwaraki and T. Wolf. Adaptive service-chain routing for virtual network func-
tions in software-defined networks. In Workshop on Hot topics in Middleboxes and
Network Function Virtualization (HotMIddlebox), pages 32–37, 2016.

[4] M. Elkin. Distributed exact shortest paths in sublinear time. J. ACM, 67(3), May
2020.

[5] Ericsson. This is 5G. https://www.ericsson.com/49f1c9/assets/
local/5g/documents/07052021-ericsson-this-is-5g.pdf, 2021.
(accessed: 2021-12-17).

[6] J. J. Garcia-Lunes-Aceves. Loop-free routing using diffusing computations.
IEEE/ACM transactions on networking, 1(1):130–141, 1993.

[7] M. Ghaffari and J. Li. Improved distributed algorithms for exact shortest paths. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, page 431–444, New York, NY, USA, 2018. Association for Computing
Machinery.

[8] GSA. 5G network slicing for vertical industries. https://
www-file.huawei.com/-/media/corporate/pdf/news/
gsa-5g-network-slicing-for-vertical-industries.pdf?la=
zh, 2017. (accessed: 2021-12-17).

[9] K. Kaur, V. Mangat, and K. Kumar. A comprehensive survey of service function
chain provisioning approaches in sdn and nfv architecture. Computer Science Review,
38:100298, 2020.

49

https://www.ericsson.com/49f1c9/assets/local/5g/documents/07052021-ericsson-this-is-5g.pdf
https://www.ericsson.com/49f1c9/assets/local/5g/documents/07052021-ericsson-this-is-5g.pdf
https://www-file.huawei.com/-/media/corporate/pdf/news/gsa-5g-network-slicing-for-vertical-industries.pdf?la=zh
https://www-file.huawei.com/-/media/corporate/pdf/news/gsa-5g-network-slicing-for-vertical-industries.pdf?la=zh
https://www-file.huawei.com/-/media/corporate/pdf/news/gsa-5g-network-slicing-for-vertical-industries.pdf?la=zh
https://www-file.huawei.com/-/media/corporate/pdf/news/gsa-5g-network-slicing-for-vertical-industries.pdf?la=zh

[10] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai. Deploying chains of virtual
network functions: On the relation between link and server usage. IEEE/ACM Trans-
actions on Networking, 26(4):1562–1576, 2018.

[11] D. Li, J. Lan, and Y. Hu. Central control over distributed service function path. KSII
Transactions on Internet and Information Systems (TIIS), 14(2):577–594, 2020.

[12] Z. Li and J. Garcia-Luna-Aceves. Loop-free constrained path computation for hop-
by-hop qos routing. In Computer Networks, volume 51, pages 3278–3293, 2007.

[13] Z. Li and J. J. Garcia-Luna-Aceves. A distributed approach for multi-constrained path
selection and routing optimization. In Proceedings of the 3rd International Confer-
ence on Quality of Service in Heterogeneous Wired/Wireless Networks, QShine ’06,
page 36–es, New York, NY, USA, 2006. Association for Computing Machinery.

[14] L. Liu, S. Guo, G. Liu, and Y. Yang. Joint dynamical vnf placement and sfc rout-
ing in nfv-enabled sdns. IEEE Transactions on Network and Service Management,
18(4):4263–4276, 2021.

[15] K. Mahdi. A self-optimizing fabric for the 5G era. https://media.ciena.
com/documents/A_Self-Optimizing_Fabric_for_the_5G_Era_
WP.pdf, 2020. (accessed: 2020-11-11).

[16] OMNeT++. OMNeT++ discrete event simulator. https://omnetpp.org/. (ac-
cessed: 12.03.2021).

[17] J. Pei, P. Hong, K. Xue, and D. Li. Efficiently embedding service function chains with
dynamic virtual network function placement in geo-distributed cloud system. IEEE
Transactions on Parallel and Distributed Systems, 30(10):2179–2192, 2019.

[18] P. S. Prakash and S. Selvan. Optimized multi constrained path quality of service
routing protocol. WSEAS Trans. Info. Sci. and App., 8(2):80–95, Feb. 2011.

[19] S. V. Rossem, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester. Profile-based
resource allocation for virtualized network functions. IEEE Transactions on Network
and Service Management, 16:1374 – 1388, Dec. 2019.

[20] G. L. Santos, D. d. F. Bezerra, É. d. S. Rocha, L. Ferreira, A. L. C. Moreira, G. E.
Gonçalves, M. V. Marquezini, Á. Recse, A. Mehta, J. Kelner, et al. Service function
chain placement in distributed scenarios: A systematic review. Journal of Network
and Systems Management, 30(1):1–39, 2022.

[21] J. Simmons. CORONET continental united states (CONUS) topology. http://
www.monarchna.com/topology.html. (accessed: 20.04.2021).

[22] T. D. Tran, B. Jaumard, H. Duong, and K.-K. Nguyen. Joint service function chain
embedding and routing in cloud-based nfv: A deep q-learning based approach. In
2021 IEEE 4th 5G World Forum (5GWF), pages 171–175, 2021.

50

https://media.ciena.com/documents/A_Self-Optimizing_Fabric_for_the_5G_Era_WP.pdf
https://media.ciena.com/documents/A_Self-Optimizing_Fabric_for_the_5G_Era_WP.pdf
https://media.ciena.com/documents/A_Self-Optimizing_Fabric_for_the_5G_Era_WP.pdf
https://omnetpp.org/
http://www.monarchna.com/topology.html
http://www.monarchna.com/topology.html

[23] S. Wijethilaka and M. Liyanage. Survey on network slicing for internet of things
realization in 5g networks. IEEE Communications Surveys Tutorials, 23(2):957–994,
2021.

[24] Wikipedia. List of United States cities by population. https://en.wikipedia.
org/wiki/List_of_United_States_cities_by_population. (ac-
cessed: 04.10.2021).

51

https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population
https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population

Appendix A

Algorithm Specification

The pseudo code is mainly taken from [12] with some further refinements. For the ease of

reading, the major function in [12] has been divided into several sub-functions.

A.1 Notation

Note that, in the notation list, s refers to the source node in the layered graph of request k,

i.e., SRC0
k at 0-th layer.

For each abstract node v ∈ V ′
k in the layered graph, it maintains the following informa-

tion:

• Ss,k
v (t): the successor set chosen by node v for s according to the loop-free condition

at time t, and Ss,k
v (t) ⊂ N v

IN(t).

• QSs,k
v (t): the set of neighbors from whom a query has been received, but a reply has

not been sent.

• statekv(t): state of node v for the processing of request k at time t.

• LDs,k
v (t) : the shortest logical distance from node s to node v that is known by node

v at time t for request k.

52

• Psetsv: the non-dominated path set from s to v maintained (known) by node v at time

t.

• SLDs
v(t): the shortest logical distance from s to v through Ss

v(t) at time t.

• RLDs
v(t): the logical distance from s to v that node v reports to all its neighbors at

time t.

• FLDs,k
v (t): the feasible logical distance used by node v to evaluate whether o−LFC

(i.e., loop-free condition) can be satisfied when choosing Ss,k
v .

• L̃D
s,k

v,n(t) : the shortest logical distance from node s to node n that is maintained

(known) by node v at time t for request k, where n ∈ N v
IN(t).

• P̃Set
s

v,n(t): the non-dominated path set from s to n – a neighbor of v, that is main-

tained (known) by v at time t.

• rsv,n(t): this flag is true if node v has sent a query for s to neighbor n but has not

received a reply from n, and false otherwise.

• lcvu(t): cost when using link (u, v) at time t. For the time being, the cost to use a link

at anytime is the delay of the link. When a link is removed or available amount of

CPU/RAM/DISK of a node is no longer enough for the corresponding VNF, then its

corresponding is the layered graph is set to∞.

53

A.2 Pseudo-code

Algorithm 1 Initialize information for source SRC0
k at node v

1: procedure INITIALIZE_NODE(v, k)

2: LD
SRC0

k,k
v ← (v = SRC0

k?0 :∞)

3: SLD
SRC0

k,k
v ← (v = SRC0

k?0 :∞)

4: FLD
SRC0

k,k
v ← (v = SRC0

k?0 :∞)

5: RLD
SRC0

k,k
v ← (v = SRC0

k?0 :∞)

6: S
SRC0

k,k
v ← ∅

7: QS
SRC0

k,k
v ← ∅

8: state
SRC0

k,k
v ← PASSIV E

9: if v = SRC0
k then

10: for each n ∈ N v
OUT do

11: send {UPDATE, v, 0̄, < null >, k} to n .

n.PROCESS_V ECTOR(...)

12: end for

13: else

14: for each n ∈ N v
IN do

15: L̃D
SRC0

k,k

v,n ←∞

16: r
SRC0

k,k
v,n ← false

17: end for

18: end if

19: end procedure

When the abstract node of the source node receives a request or when an abstract node

gets involved with the request for the first time, the abstract node initializes a local record

in its database using Algorithm 1. In other words, only node SRC0
k starts the process by

54

sending an UPDATE message to every its outgoing neighbor. In [12], INITIALIZE_NODE

procedure, line 10-13, they are indented without any block indications. However, based

on their algorithm’s line 12, it indicates that only destination node sends out UPDATE

messages at the beginning.

55

Algorithm 2 Node v receives information of source SRC0
k from its neighbor n.

1: procedure PROCESS_VECTOR(mt, n, rld, < dp, wp >, k)

2: s← SRC0
k

3: if s = v then

4: if mt = QUERY then

5: send {REPLY, v, 0̄, < null >, k} to n

6: else

7: return

8: end if

9: end if

10: if mt = REPLY then

11: rs,kv,n ← false

12: end if

13: P̃Set
s,k

v,n ← P̃Set
s,k

v,n] p . p =< dp, wp > . non-dominated updating operation]

14: L̃D
s,k

v,n ← rld . rld is always more up-to-date than L̃D
s,k

v,n

15: update_successor_set(v, k)

16: LDs,k
v ← min{L̃D

s,k

v,n ⊕ lcnv |n ∈ N v
IN}

17: wLDs,k
v
← the path weight associated with LDs,k

v

18: if states,kv = PASSIV E then

19: process_passive_mode(mt, n, rld, < dp, wp >, k)

20: else

21: process_active_mode(mt, n, rld, < dp, wp >, k)

22: end if

23: end procedure

Whenever an abstract node v receives a message of any types from its neighbor n,

that message is processed by Algorithm 2. To ease the reading, s is used as an alias of the

56

abstract node representing the source node of the request, i.e., s← SRC0
k in this algorithm.

Firstly, let’s consider when v is the source node (SRC0
k). If its neighbor n is querying

for the logical distance then it simply replies back an distance of 0 and an empty path. If

a message is not a QUERY message, then it is an UPDATE message. Since v is the

source node, it does not need to update its distance in any cases.

Next, if the message’s type is REPLY then v simply marks that n has replied to its

query.

Line 13-14 of Algorithm 2, v updates its known information about n (L̃D
s,k

v,n and

P̃Set
s,k

v,n) according to the message’s information. In Line 13,] means that the set add

p if it is not dominated by any path in the set and remove paths that are dominated by p. In

Line

In Algorithm 2-line 16, v recompute its known shortest logical distance (LDs,k
v) using

current conditions of its incoming links.

• mt: message type.

• n: the sender of this message.

• rld: logical distance from s to n that node n reports to its neighbors.

• < dp, wp >: a path and its logical distance and delay.

• k: connection request which is considered.

57

Algorithm 3 Update successor set for source SRC0
k of node v

1: procedure UPDATE_SUCCESSOR_SET(v, k)

2: s← SRC0
k

3: Ss,k
v ← {n ∈ N v

IN : L̃D
s,k

v,n ≺ FLDs,k
v }

4: for each n ∈ Ss,k
v do

5: for each p ∈ P̃Set
s,k

v,n do

6: p← p⊕ lcnv

7: PSetv,ks ← PSetv,ks] p . non-dominated paths

8: end for

9: end for

10: SLDs,k
v ← min{L̃D

s,k

v,n ⊕ lcnv : n ∈ Ss,k
v } . SLDs,k

v ←∞ if Ss,k
v = ∅

11: wSLDs,k
v
← the path associated with SLDs,k

v

12: for each n ∈ N v
IN \ Ss,k

v do

13: P̃Set
s,k

v,n ← ∅

14: end for

15: end procedure

Using Algorithm 3, an abstract node v evaluates its successor set according to its current

incoming-link conditions.

58

Algorithm 4 Node v process a vector in passive mode
1: procedure PROCESS_PASSIVE_MODE(mt, n, rld, < dp, wp >, k)

2: s← SRC0
k

3: if LDs,k
v ≺ SLDs,k

v or Ss,k
v = ∅ then . Ss,k

v does not provide optimal path

4: states,kv ← ACTIV E . become active

5: if mt = QUERY then

6: QSs,k
v ← QSs,k

v ∪ n

7: end if

8: RLDs,k
v ← SLDs,k

v

9: for each h ∈ N v,k
OUT do

10: rs,kv,h ← true

11: send {QUERY, v,RLDs,k
v , < SLDs,k

v , wSLDs,k
v
>, k} to h

12: end for

13: else . stay in passive

14: states,kv ← PASSIV E

15: FLDs,k
v ← min{LDs,k

v , RLDs,k
v } . FLD may decrease

16: update_successor_set(v,k) . update according to new FLD

17: flag ← (RLDs,k
v 6= LDs,k

v ?true : false)

18: RLDs,k
v ← LDs,k

v

19: if mt = QUERY then

20: send {REPLY, v,RLDs,k
v , < LDs,k

v , wLDs,k
v
>, k} to n

21: end if

22: if flag = true then

23: for each h ∈ N v,k
OUT do

24: send {UPDATE, v,RLDs,k
v , < LDs,k

v , wLDs,k
v
>, k} to h

25: end for

26: end if

27: end if

28: end procedure
59

When an abstract node v is in a passive state (states,kv = PASSIV E), there are two

cases. In the first case, the successor set of v at the current time can provide the currently

known shortest logical distance (LDs,k
v). In this case, node v first update its feasible logical

distance to maintain loop free condition (Source Node Condition (SNC) [6]) (Line 15,

Algorithm 4). In consequence, its successor set is updated according to its new feasible

logical distance.

Since current LDs,k
v value is the most up-to-date value, it is used as the value to report to

neighbors of v. Note that if a neighbor n is querying v (i.e., asking v to update its successor

set according to the current successor set of n), then v must reply. Otherwise, v only sends

notifications to its neighbor if the reporting value (RLDs,k
v (t)) is different from the last one

before t.

In the second case, the current successor set cannot provide the shortest logical distance

considering all of its incoming neighbors (incoming links towards v). In this case, node v

becomes active to notify nodes upon v that they must update their successor set because

successor set of v is going to be modified. In this case, v must fist set its state to active

(states,kv ← ACTIV E). Then it sends QUERY messages to its outgoing neighbors (out-

going links of v) to ask them to correct their successor sets under condition that v has not

changed its successor set.

60

Algorithm 5 Node v process vector in active mode
1: procedure PROCESS_IN_ACTIVE_MODE(mt, n, rld, < dp, wp >, k)

2: s← SRC0
k

3: if rs,kv,h = false, ∀h ∈ N v
OUT then . receive all replies

4: FLDs,k
v ← min{LDs,k

v , RLDs,k
v } . FLD can increase only at the end of an

active phase

5: update_successor_set(k)

6: if LDs,k
v ≺ SLDs,k

v ∨ (Ss,k
v = ∅ ∧RLDs,k

v ≺ ∞̄) then

7: states,kv ← ACTIV E . start a new active phase

8: if mt = QUERY then

9: QSs,k
v ← QSs,k

v ∪ n

10: end if

11: RLDs,k
v ← SLDs,k

v

12: for each h ∈ N v
OUT do

13: rs,kv,h ← true

14: send {QUERY, v,RLDs,k
v , < SLDs,k

v , wSLDs,k
v
>, k} to h

15: end for

16: else

17: states,kv ← PASSIV E . return to passive

18: flag ← (RLDs,k
v 6= LDs,k

v ?true : false)

19: RLDs,k
v ← LDs,k

v

20: for each h ∈ N v
OUT do

21: if h ∈ QSs,k
v ∨ (h = n ∧mt = QUERY) then

22: send {REPLY, v,RLDs,k
v , < LDs,k

v , wLDs,k
v
>, k} to h

23: else if flag = true then

24: send {UPDATE, v,RLDs,k
v , < LDs,k

v , wLDs,k
v
>, k} to h

25: end if

26: end for

27: QSs,k
v ← ∅

28: end if

29: else

30: if mt = QUERY then

31: if n ∈ Ss,k
v ∧RLDs,k

v ≺ SLDs,k
v then

32: QSi
j,k ← QSi

j,k ∪ n

33: else

34: send {REPLY, v,RLDs,k
v , < LDs,k

v , wLDs,k
v
>, k} to n

35: end if

36: end if

37: end if

38: end procedure

61

When a node v in the active state, it mean that v is waiting for replies from its outgoing

neighbors (REPLY messages). If v is aware that its does not have all required replies, then

it only considers query messages sent to it. Note that when the shortest logical distance of

v current SLDs,k
v is larger than its value used to report RLDs,k

v , it means that its shortest

distance via its successor set has increased. Then, in that case, v puts n to its waiting list.

62

	Acronyms
	List of Figures
	List of Tables
	Introduction
	Networking Background: 5G Slicing
	Our Research Project: Distributed SFC Provisioning
	Key References
	Distributed SFC Provisioning
	Graph Theory Algorithms

	Our Contributions
	Plan of the Thesis

	Distributed Provisioning for 5G Service Requests
	Abstract
	Introduction
	Literature Review
	Distributed Shortest Path Algorithms
	Distributed Multi-Constrained Shortest Path Algorithms

	Problem Statement
	2P-DSP Algorithm
	Distributed Bellman-Ford-based Path Exploration Method
	Distributed Resource Reservation

	Numerical Results
	Experimental Setups
	RCSP vs. 2P-DSP
	Message Exchanging
	Path Collection Strategies

	Conclusion

	Conclusion and Future Work
	Bibliography
	Algorithm Specification
	Notation
	Pseudo-code

