
A Framework for High Availability Management of

Applications Services in Cloud

Yanal Alahmad

A thesis
In the Department

of
Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy (Computer Science) at
Concordia University

Montréal, Québec, Canada

November, 2021
© Yanal Alahmad, 2022

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Yanal Alahmad
Entitled: A Framework for High Availability Management of Applications

Services in Cloud
and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Chair

Dr. Alex De Visscher

External Examiner

Dr. Kim Khoa Nguyen

Examiner

Dr. Jamal Bentahar

Examiner

Dr. Thomas Fevens

Examiner

Dr. Emad Shihab

Supervisor

Dr. Anjali Agarwal

Approved

Dr. Leila Kosseim

Chair of Department or Graduate Program Director

November 30, 2021

Dr. Mourad Debbabi, Dean

Gina Cody School of Engineering and Computer Science

Abstract
A Framework for High Availability Management of Applications Services

in Cloud

Yanal Alahmad, Ph.D.

Concordia University, 2022

Cloud computing is a fast and growing paradigm for hosting applications services that

belong to the Application Service Providers (ASPs). However, Quality of Service (QoS)

remains an issue that opens different research areas in a distributed, elastic and dynamic

cloud platform. One major issue raised for the ASP is service High Availability (HA).

Service availability is a non-functional requirement that indicates the period of time the

service is provided for the end customer. Managing the availability of different application

services during the runtime in a cloud cluster is not an easy task to do due to several

challenges. The key success to maintain service availability is to provide a mechanism to

protect service against failure and recover the service once the failure happens as fast as

possible.

This thesis proposes a general framework for availability management and enables con-

tinuity for applications services in the cloud computing environment. We address service

availability and propose efficient solutions from different perspectives. First, the thesis

proposes a reactive framework that can maintain HA of the application service in a virtu-

alized computing cluster. Second, a proactive service availability framework is proposed.

The framework uses deep learning methods to predict application task termination status

(Success or Fail) in cloud cluster using three public available datasets. The results show

the used methods can predict task termination status with high accuracy. Third, a failure-

aware task scheduler approach is proposed. The scheduler uses a heuristic approach to

solve task scheduling NP-hard problem with the objective to minimize failure probability

and resources usage of tasks. The results show the ability of the scheduler to protect many

tasks and save a large number of resources. Fourth, the thesis proposes an availability-

aware Virtual Machine (VM) dynamic placement framework. The framework tackles VMs

placement as a response to different request types that include deploying a new applica-

tion, VM scaling, and migration. Moreover, an optimization approach that is based on

iii

the heuristic AntColony algorithm is proposed to solve the VM placement NP-hard prob-

lem. The approach targets multiple objectives to minimize power consumption, resources

wastage, and failure of the active servers that are used to host the VMs. In addition, the

placement approach tries to provide application service availability as close as possible to

the requirements by ASP and avoids violation of the Service Level Agreement (SLA). The

results show the ability of the framework to increase the admissibility of new applications

that meet the availability requirements and enhance the resources utilization of servers,

compared to the existing VM placement solutions in the literature.

iv

Acknowledgments

All praises be to “ALLAH” Almighty who gave me opportunity, strength, and patient to

complete this task successfully. His continuous grace and mercy were with me throughout

my life and ever more during my study. I would like to express my gratitude to my supervi-

sor, Prof. Anjali Agarwal whose expertise, understanding, support and patience made this

thesis possible. I appreciate her vast knowledge and skills in many areas, and her assistance

in research and writing papers. I doubt that I will be able to express my appreciation fully

for supervising me during my PhD study, but I owe her my deepest gratitude and thanks.

Deepest thanks also to the committee members for their advices and suggestions regarding

the thesis and beyond. Moreover, I would like to thank NSERC, and MITACS Accelerate

program in collaboration with Cistech for their fund and support.

No body has been more important to me in pursuing this long study journey than the

members of my family. Therefore, I dedicate this thesis to every one of my family who

waited me to finish my PhD. A very special thanks go out to my beloved and supporting

wife Bayan, and my wonderful little son Tameem. Without their love, and encouragement,

I would not have finished this thesis. Most importantly, I would like to thank my mother

and father, whose love, support and guidance are with me during my entire life. Special

thanks go to my two sisters and three bothers for standing beside me and continuous en-

couragement to finish my study.

I would never forget to thank my mother-in-law and father-in-law for praying for me to

be successful. Finally, I would like to thank all my friends for any help or advice during

my studies.

v

Contents

List of Figures ix

List of Tables xi

Acronyms xii

1 Introduction 1
1.1 Motivation . 2

1.2 Research Problems . 4

1.2.1 Resource Failure . 4

1.2.2 Resource Scaling . 5

1.2.3 Application Task Scheduling . 6

1.2.4 VM Placement . 7

1.3 Research Objectives . 8

1.4 Research Contributions . 9

1.4.1 Related Work (Chapter 2) . 10

1.4.2 Reactive Application Service Availability Management (Chapter 3) 10

1.4.3 Proactive Service Availability Framework (Chapter 4) 10

1.4.4 Failure-Aware Application Task Scheduling (Chapter 5) 11

1.4.5 Dynamic VM Placement for Application Service Availability (Chap-

ter 6) . 11

1.5 Thesis Organization . 11

2 Related Work 13
2.1 Reactive Application Service Availability Management 13

2.2 Proactive Service Availability Management 15

vi

2.3 Failure-Aware Task Scheduling . 19

2.4 Availability-Aware VM Placement . 20

2.5 VNF Placement for Network Service Availability in NFV 22

2.6 Summary . 24

3 Reactive Application Service Availability Management 25
3.1 Service Availability Management . 25

3.1.1 Redundancy Models . 26

3.1.2 OpenSAF . 26

3.1.3 Pacemaker . 26

3.2 Reactive Service Availability Management Framework 27

3.2.1 Tenant Requirements . 28

3.2.2 Availability Configuration Manager 28

3.2.3 Deployment Manager . 29

3.2.4 HA Middleware . 30

3.3 Experiments and Results . 31

3.3.1 Experimental Setup . 31

3.3.2 Service Availability Metrics . 32

3.3.3 Experiments with Cloud Container-based Platform 34

3.3.4 Experiments with Cloud VM-based Platform 35

3.3.5 Results Analysis . 36

3.4 Summary . 38

4 Proactive Service Availability Management 39
4.1 Computing Cluster Datasets . 40

4.1.1 Google Cluster Dataset . 40

4.1.2 Alibaba Cluster Dataset . 41

4.1.3 Trinity Cluster Dataset . 42

4.2 Deep Learning - Neural Network . 43

4.3 Proactive Service Availability Framework 44

4.3.1 Data Cleaning and Preparation . 44

4.3.2 Feature Extraction . 45

4.3.3 Task Failure Prediction . 53

4.3.4 Application Task Scheduling . 56

vii

4.4 Experiments and Results . 56

4.4.1 Experimental Setup . 56

4.4.2 Evaluation of Prediction Models 56

4.5 Summary . 60

5 Failure-Aware Application Task Scheduling 61
5.1 Failure-Aware Task Scheduling . 61

5.1.1 Heuristic Solution . 64

5.1.2 Computational Complexity Analysis 66

5.1.3 Experiments and Results . 68

5.2 Container Scheduling for Resource Utilization 73

5.2.1 Container Scheduling Model . 73

5.2.2 Heuristic Solution . 76

5.2.3 Experiments and Results . 78

5.3 Summary . 81

6 Availability-Aware Dynamic VM Placement 83
6.1 Formulation of Application Service Availability in Cloud 84

6.2 Dynamic VM Placement for Service Availability in Cloud Framework . . . 87

6.2.1 Availability-Aware Application Deployment 88

6.2.2 Proactive Application Failure Detection 97

6.2.3 Dynamic Application Reconfiguration 97

6.3 Experiments and Results . 100

6.3.1 Experimental Setup . 100

6.3.2 Results . 102

6.4 Summary . 112

7 Conclusion and Future Work 116
7.1 Conclusion . 116

7.2 Future Work . 117

Bibliography 119

viii

List of Figures

3.1 Reactive Application Service Availability Management Framework 27

3.2 HA Configuration Design and Generate Interface 29

3.3 Slices of HA Configuration . 30

3.4 Sequence diagram of HA middleware to protect stateful application using 2N 32

3.5 Service Availability Metrics . 33

3.6 Private Cloud Container-based Platform 34

3.7 Private Cloud VM-based Platform . 36

4.1 Task Events State Diagram . 41

4.2 Structure of Deep Learning Neural Network 43

4.3 Proactive Service Availability Framework 45

4.4 CDFs for Tasks Execution Time per Termination Status 46

4.5 CDFs for Tasks Resubmission Count per Termination Status 47

4.6 Ratios of Tasks Termination Status per Priority 48

4.7 Ratios of Tasks Termination Status per Class Level 48

4.8 CPU Usage of Tasks per Termination Status 49

4.9 RAM Usage of Tasks per Termination Status 49

4.10 Disk Usage of Tasks per Termination Status 50

4.11 Count of Tasks Instances Failures per Virtual Machine ID 51

4.12 Count of Instances Failures per Task ID 52

4.13 Mean of Requested Nodes per Job Termination Status 52

4.14 Mean of Tasks Count per Job Termination Status 53

4.15 Accuracy of ANN using three datasets . 58

4.16 Error Loss of ANN using three datasets 58

4.17 Accuracy of CNN using three datasets . 59

4.18 Error Loss of CNN using three datasets 59

5.1 Protected Tasks - Google Dataset . 69

ix

5.2 CPU Usage Comparison - Google Dataset 70

5.3 RAM Usage Comparison - Google Dataset 71

5.4 Disk Usage Comparison - Google Dataset 71

5.5 Disk IO Usage Comparison - Google Dataset 72

5.6 CPU Usage Comparison - Trinity Dataset 72

5.7 Average Execution Time of the Failure-Aware Scheduler 74

5.8 Containers Average CPU Usage out of the Demand 75

5.9 Containers Average RAM Usage out of the Demand 75

5.10 Mean Square Error of ANN . 79

5.11 Mean Absolute Error of ANN . 79

5.12 CPU Usage with/without using scheduling model 80

5.13 Ram Usage with/without using scheduling model 80

5.14 Disk Usage with/without using scheduling model 81

6.1 Applications Deployment Model in Cloud Data Center 85

6.2 Multiple-Objectives Dynamic VM Placement for Application Availability

in Cloud (MoVPAAC) Framework. 87

6.3 Applications Availability - Request 1 . 104

6.4 Mean Applications Availability - Group 1 104

6.5 Applications Admissibility- Group 1 . 105

6.6 Servers Power Consumption - Group 1 . 105

6.7 Servers CPU Utilization . 106

6.8 Servers RAM Utilization . 106

6.9 Applications Availability - Request 6 . 109

6.10 Mean Applications Availability - Group 2 110

6.11 Applications Admissibility - Group 2 . 110

6.12 Servers Power Consumption - Group 2 . 111

6.13 AvAAD Average Execution Time . 112

6.14 CHASE Average Execution Time . 113

6.15 FirstFit Average Execution Time . 113

6.16 AvAAD Average Execution Time-Variable Ants and Iterations 114

6.17 AvAAD Average Execution Time-Variable VMs 114

6.18 Evaluation of Availability-Aware VMs Migration Procedure 115

x

List of Tables

2.1 Protection Features of Application HA Solutions 15

2.2 Summary of Related Work for Task Failure Prediction 19

2.3 Summary of Related Work for VM placement 23

3.1 Availability Measurements for Stateful VLC Application 37

3.2 Availability Measurements for Stateless Apache HTTP Server Application . 37

4.1 Statistics of Tasks per Termination Status for Google dataset 40

4.2 Statistics of Instances per Termination Status for Alibaba dataset 42

4.3 Statistics of Jobs per Termination Status for Trinity dataset 42

6.1 Description of Applications Requests - Group 1 103

6.2 Description of Applications Requests - Group 2 107

xi

Acronyms

ANN Artificial Neural Network
ASP Application Service Provider
CC Cloud Computing
CNN Convolutional Neural Network
CSP Cloud Service Provider
HA High Availability
ILP Integer Linear Programming
INLP Integer Non-Linear Programming
MAE Mean Absolute Error
MDP Markov Decision Process
MSE Mean Square Error
MTTF Mean Time to Fail
MTTR Mean Time to Repair
NFV Network Function Virtualization
NFS Network File Storage
NIST National Institute of Standards and Technology
NS Network Service
QoS Quality of Service
SLA Service Level Agreement
SFC Service Function Chain
TSP Telecom Service Provider
VM Virtual Machine
VNF Virtual Network Function
VNFFG Virtual Network Function Forward Graph

xii

Chapter 1

Introduction

Cloud computing (CC) is a popular paradigm that changes the traditional way of providing

computing services to customers. National Institute of Standards and Technology (NIST)

defines CC as a model to enable on-demand network access for a shared and large set

of configurable resources such as networks, servers, applications, and services that can

be quickly provisioned and de-provisioned with minimum management efforts [1]. Vir-

tualization technology [2] is considered the magic key behind the prosperity of the cloud.

Virtualization allows emulating the functionality of computing hardware device as a piece

of software that is called a virtual node. In the cloud context, the virtual node can be either

VM or container that can be executed on a physical computing node such as server (host).

Servers are located at Data Centers (DCs) that belong to the Cloud Service Provider (CSP).

CSP allows customers to get online access to virtual computing resources on-demand based

on the workload fluctuations of the provisioned services. Customer is charged only for the

consumed resources based on the business model ‘pay-as-you-go’. This motivated many of

the institutions and individuals to move their businesses to the cloud and become customers

for CSPs. Although the cloud has many advantages, still QoS remains a main concern is-

sue. With the fast growing number of application services in cloud, availability of the

provisioned application service is raised as a main challenge to be satisfied according to

the given requirements. Service availability is a non-functional requirement that refers to

the percentage of time the service is available for the end customer [3]. Some customers ex-

pect their services to be highly available anytime from anywhere. High Availability (HA)

refers to the ratio 99.999% (aka, five nines) of the time the service is available for the

customer [3]. In other words, service outage should not exceed 5.6 minutes per year for

1

HA service [3]. Other customers demand to enable service continuity feature that allows

resuming service from its last state before it is interrupted.

Managing service availability is very important to guarantee QoS, and enhance the over-

all performance of the resources that are used to provide the service. However, maintaining

service availability during its entire lifetime in a distributed and dynamic cloud environ-

ment is not an easy task that faces several challenges. Our research works in this thesis

focus on application service availability management, service continuity, service protec-

tion, recovery, and resource management from different perspectives. Therefore, we study

and analyze the related research works and solutions from the literature. In addition, we

propose a set of models, optimization methods, algorithms, data analysis, and machine

learning methods, to provide efficient solutions for application service availability man-

agement in cloud. The rest of the chapter is organized as follows. Section 1.1 motivates

our research work. Section 1.2 discusses the problem statement. Section 1.3 summarizes

the main objectives of this research work. Section 1.4 highlights the main contributions of

the research work, at the end Section 1.5 states the thesis organization.

1.1 Motivation

In the cloud environment, ASP can demand a set of resources from CSP to deploy appli-

cation(s) to be provided for the end customers. Usually, ASP delegates the task of applica-

tion service availability management to CSP which can offer what we call ‘availability-as-

service’. ASP and CSP can both agree on the type, number, requirements, and conditions

of the offered resources and services through SLA. Satisfying the availability requirements

of the application is necessary and beneficial for both ASP and CSP. Providing availability

level below what ASP demands can lead to severe losses. According to Gartner [4], down-

time of the web application can cost companies 5,600$ per minute and up to 300,000$

per hour. In addition, providing lower availability can lead to SLA violation that can cost

CSP to pay penalties according to the agreement. Also, lower service availability can lead

to performance degradation or outage (interruption) for the provisioned service that can

impact QoS and user experience, which can reduce the overall profits of ASP and CSP. On

the other hand, providing availability far above the demands can decrease the admissibility

of new services, and hence reduce the profit of the CSP. Providing high availability levels

to protect the service requires adding extra backup resources to protect the service. Extra

2

resources add additional operational and expenditure costs for CSP. Therefore, it is nec-

essary to provide service availability close to the demand by ASP. Through studying the

related works, we found that most of the solutions do not target to satisfy the application

availability requirements. There are few works targeted to maximize the availability of the

application service which is not always a good solution because it can lead to decreasing

the admissibility of new applications and waste resources. This motivated us to propose

a solution that aims to provide service availability as close as possible to the required one

as stated in SLA. The existing solutions focused on the availability of the infrastructure at

virtual and physical layers and neglected the availability of components at the application

layer. So we focus a part of our research work on monitoring, failure detection, recov-

ery, and protection of the application component. In addition, the existing works lack the

definition of end-to-end application service availability. A few works considered service

continuity, most of the solutions try to restart the service from the beginning in case of

failure. It is necessary to enable service continuity for stateful applications, that have a

state, to resume service from its last state before it fails instead of from the beginning. Ser-

vice continuity can be a requirement that needs to be applied to gain the satisfaction of the

customers.

In the cloud context, ASP has the choice to select between VMs and containers to

deploy application components that compose and provide the service. VM is based on

a software image that is larger than the image of the container, so VM can host multiple

components. Container provides a micro-service, so it hosts a maximum of one component.

However, management of VM including creation, operation, migration, and deletion, takes

a longer time than the management of container. Therefore, using VM or container can

play a role in resource utilization, and speed up the process of service recovery in case of

interruption. The existing availability solutions in the literature do not consider the impact

of resources types at the service availability level. In this research work, we differentiate

between using VMs and containers, as well as their roles from service recovery and out-

age perspectives. Cloud enables the elasticity mechanism that allows scaling resources in

different directions based on the workload demands of the service. Adding or removing re-

sources on the fly can decrease or increase the availability level of the provisioned service.

Most of the existing elasticity solutions in the literature do not consider application service

availability while taking resource scaling decisions. In this research work, we coordinate

between the resource scaling actions and the service availability management. In addition,

3

we propose optimization solutions to scale resources while considering the availability re-

quirements of the service. Application task scheduling is a process to determine the se-

quence order to execute the task and to specify in which computing node to execute the

task. Task scheduling is very important that can have an impact on the overall performance

and throughput of the computing cluster, as well as the availability of the task. Application

task in cloud cluster is prone to failure for several reasons such as lack of resource, hard-

ware and software failures. Knowing the termination status of the task, whether success or

failure, can help to protect the task in advance, and hence save consumed resources by the

task. A set of existing research works in the literature proposed different solutions to pre-

dict task failure in cloud cluster. However, most of these solutions do not consider taking

actions for tasks that are predicted as failed. In our work, we consider a set of proactive

actions and rescheduling for tasks based on the prediction of the termination status. VM

placement is a process that includes searching for a computing server to host VM. VM can

host a set of components that belong to the same or different applications. Failure of the

server will definitely lead to the failure of all the VMs that are hosted on the server, hence

interrupting all the provisioned services by the VMs. Therefore, VM placement of VMs

should be done carefully and consider the availability of the service. Many solutions in the

literature tackled VM placement problem for different objectives. However, limited solu-

tions consider meeting service availability requirements. In this research work, we tackle

VM placement problem to achieve multiple objectives.

1.2 Research Problems

This thesis addresses the main challenges that threaten application service availability man-

agement in the cloud computing platform. We discuss the main problems considered in this

work in the following subsections.

1.2.1 Resource Failure

Resource failure is considered as the main threat and a real challenge to service availabil-

ity. At DC of cloud, application service is provided through a set of software components,

where each component provides the functionality of a certain type towards providing the

end-to-end service. Component can be hosted on virtual computing node such as VM or

container that is hosted at the underlying physical computing server (host). Such tight

4

dependency between resources at different layers makes the application service prone to

outage due to resource failure at any time. Resource failure needs an efficient monitoring

mechanism to detect the failure. In addition, it needs a management solution to resume the

interrupted service as fast as possible. There are two main approaches to manage service

availability, either reactive or proactive. The reactive approach usually uses a redundancy

model that includes extra standby (backup) VMs or containers to protect the service. In case

of failure of the active VM that provides the service, the management solution immediately

failover the service to the standby VM that continues providing the service and becomes

active. So the service outage depends mainly on the delay to failover the interrupted service

from active to the standby VMs. To enable service continuity, active VM keeps updating

the service state to the standby VM during the entire lifetime of the service. Although the

reactive approach is efficient and fast for service recovery, it is considered costly because

it requires adding extra standby resources to protect the service. In addition, the commu-

nication between the active and standby resources consumes large networking bandwidth.

Extra costs for operational, maintenance, and power consumption will be added as a result

of using extra resources. On the other hand, the proactive approach usually uses predic-

tion methods such as machine learning, and probability models to predict service failure,

and take the appropriate protection actions before failure actually happens. Although the

proactive approach is not so costly since it does not require adding backup resources, its

accuracy depends mainly on the accuracy of the method that is used to predict the failure.

In addition, the prediction process depends on the data history that includes service failure

patterns. Dataset is mainly used for training and testing the prediction method which nor-

mally takes a long time, as well as large computing resources. In DCs of the cloud, virtual

and physical infrastructure have heterogeneous properties such as CPU, RAM, and storage

capacities. Services demand and competing for the resources, and shortage of fulfilling the

demanded resources by the service can jeopardize its availability. Therefore, both reactive

and proactive availability management approaches should be aware of the demanded re-

sources, as well as the capacities of the infrastructure in DCs to make the correct decision

for service recovery and protection.

1.2.2 Resource Scaling

The elasticity feature in the cloud allows the resources to be added or removed automat-

ically according to the workload demand of the provisioned service [5]. If the workload

5

demands increase, new resources are added. While if the workload demands decrease, a

set of the existing resources are removed. Scaling of the resources can be in any of the two

directions, horizontal or vertical. For example, in VM-based computing cluster, horizontal

scaling can include adding new VMs, or removing existing VMs. While vertical scaling

can include adding virtual resources such as virtual CPU (vCPU) and RAM (vRAM) to

an existing VM, or removing the resources from the VM. Scaling of resources is a real

challenge that can lower service availability, hence violating SLA. For example, removing

standby (backup) VM in case of horizontal scaling can leave the service without any pro-

tection plan in case of failure of the active VM. Vertical VM scaling can lead to a scenario

where the server that hosts the VM may not have enough resources to continue hosting

the VM after its upgrade. So the VM has to be migrated from its current hosted server to

another server that can accommodate the upgraded VM. However, the VM migration has

to be done carefully because it can impact the service availability. If the VM is migrated

to a server with lower availability, this will lower the availability of the end-to-end appli-

cation service for which the VM belongs. Migration of the active VM that is in charge of

providing the service will lead to an interruption of the service until the migration process

is done. Even if the interruption happens for a short period of time, it may not be tolerated

by some customers, especially for HA services. Usually, at DC of the cloud, VM can have

different candidate destination servers to be migrated to with different migration times. The

problem gets more complex if a set of VMs that belong to different applications need to be

migrated at the same time. So the VMs have to be migrated in such a way that can mini-

mize the total migration time of all the VMs, without violating the availability requirement

of any application. To summarize, VMs scaling and migration is a big challenge against

service availability in cloud cluster and is considered as a combinatorial NP-hard problem

that needs an efficient solution such as using a heuristic optimization approach.

1.2.3 Application Task Scheduling

Scheduling of application task at the underlying computing node, whether it is virtual or

physical, is a challenge that can play a crucial role in the termination status of the task,

whether successful or failure. Through our analysis of Google cloud cluster trace logs [6],

we found 29% of all tasks that have been executed at the cluster were failed (terminated

unsuccessfully). In addition, the data analysis shows that task can fail due to several rea-

sons. The scheduling node to execute the task, the configuration of task, or shortage of

6

resources are the main reasons behind the failure of the task. Moreover, the analysis shows

that most of the failed tasks have been resubmitted for execution more than one time to

give them a chance to finish successfully. Waiting for the task to fail, and resubmitting it

several times for the execution can waste a lot of the resources that burden the performance

and throughput of the cluster. So several existing research works tried to predict task fail-

ure using different methods and techniques. However, most of the works predict the task

termination status before the task gets scheduled. These works neglect the runtime usage

of the task which can be very helpful to increase the accuracy of the prediction process.

Moreover, a limited number of works take actions to protect the task in case its termination

status is predicted as failed. Through data analysis, we found a set of remedy actions that

can be taken to protect the task before it actually fails. One effective action is to reschedule

the task on a different computing node than where it is currently being executed. Usually,

in a cloud cluster, there are many computing nodes that can execute the task with different

failure probabilities. So the problem is to select which node to execute the task that can

reduce its failure probability. The problem gets more complex if a set of tasks are required

to be rescheduled at the same time. The next problem is therefore to find the sequence to

schedule the tasks at the underlying nodes in such a way that reduces the resources usage

by the tasks. Scheduling of tasks in cloud cluster from task failure, and resource utilization

perspectives is a real challenge that is also considered as a combinatorial NP-hard problem

that requires using an efficient optimization approach to solve it.

1.2.4 VM Placement

VM placement is a process to find a computing server to host the VM. The placement of

VMs is also a big challenge that can have a direct impact on the quality and availability

of the provisioned services by the VMs, as well as on the resource utilization and power

consumption of the servers that host the VMs. Placement of VMs that provide the same

service type close to each other can reduce the availability zone of the VMs which reduces

the overall availability level of the service. For example, collocating active and standby

(backup) VMs that are in charge of providing a specific service instance on the same server

will definitely lead to a service outage in case of server failure. However, the placement of

VMs close to each other helps to reduce the total number of active computing servers that

are required to host the VMs. As a result, the total power consumption, operational and

maintenance cost of the active servers will be reduced for CSP. Moreover, the placement of

7

the VMs close to each other helps to reduce the communication delay between the VMs, as

a result, the response time of the end-to-end application service will be reduced as well. On

the other hand, the placement of the VMs far away from each other increases the availability

zone of the VMs, hence increasing the overall availability level of the application service.

In addition, distributing VMs at servers can result in load balancing among the servers

that help to enhance their performance. However, distributing VMs far away from each

other can end up with more active servers to host VMs. As a result, additional power

consumption, operational, and maintenance costs for servers will be added for CSP. In

addition, the network bandwidth and delay will increase between communicated VMs that

also increasing the response time of the service. VM placement problem can be static or

dynamic. Static placement is done only for the deployment of VMs that belong to a newly

requested application service. While dynamic VM placement is triggered at any time for

an already existing and hosted VM that provides a service. In some cases, current VM

placement may need to be changed for several reasons such as VM scaling and migration

requests. In this thesis, we tackle dynamic VMs placement NP-hard problem to achieve

multiple objectives. The target is to minimize the power consumption, resources wastage,

and failure ratio of the active servers that are used for placement of the VMs, without

violating the availability requirements of the services that are provisioned through the VMs.

1.3 Research Objectives

In this thesis, the research works target the following objectives:

• Study, analyze, and classify research works in the area of service availability man-

agement and fault tolerance in cloud computing, for better understanding and build

knowledge for the existing works that include proposed solutions, techniques, and

approaches.

• Maintain availability of the application service during its lifetime.

• Enable service continuity to resume service from last updated state.

• Conduct experimental study to compare between VM and container to highlight their

roles for service availability.

• Determine the main metrics to get service availability measurements.

8

• Formulate application service availability in the cloud computing platform.

• Predict termination status of applications tasks during the execution time.

• Minimize the failure ratio of tasks that are executed in cloud cluster compared to the

existing solutions.

• Provide service availability above and near to the availability requirements of the

ASP.

• Admit new requested applications, and increase the overall profit of the CSP.

• Enhance the power consumption of the active computing servers that are located at

DCs, and used to host VMs that provision the services.

• Utilize resources and enhance the performance of the servers.

• Compare the results of the proposed algorithms, approaches, with existing and re-

lated solutions from the literature.

• Develop models, and prototypes to run experiments and get the results as a proof of

concept, and to make comparisons.

1.4 Research Contributions

The main contribution of this thesis is to propose a general framework to enable, man-

age, and enhance application service availability in cloud computing. The contributions of

this thesis can be generally divided into four main categories: reactive application service

availability and continuity management in the cloud platform, proactive service availability

management, failure-aware application task scheduling in cloud cluster, and availability-

aware dynamic VM placement in DCs of cloud. In the following, the detailed contributions

of the thesis are listed per each chapter. They are considered contributions because some of

the proposed solutions include new methods and techniques that do not exist in the litera-

ture. In addition, some of the proposed solutions achieve better results and add new values

compared to the existing solutions that are related to service availability.

9

1.4.1 Related Work (Chapter 2)

• Compare existing application service availability management and fault-tolerant so-

lutions in the cloud.

• Compare existing task failure prediction methods.

• Compare existing failure-aware application task scheduling solutions.

• Compare existing Availability-Aware VM placement solutions.

1.4.2 Reactive Application Service Availability Management (Chapter
3)

• Propose a general framework to manage availability, and enable continuity of the ap-

plication service during its entire lifetime. The framework has the ability to monitor

the application component that provides the service, and detect its failure. In addi-

tion, it uses different redundancy models to failover and recover the service in case

of failure.

• Integrate two distributed open-source availability middlewares named OpenSAF and

Pacemaker to enable HA for application services.

1.4.3 Proactive Service Availability Framework (Chapter 4)

• Study and analyze three publicly available computing cluster datasets to determine

the main characteristics and patterns of application task failure in the cloud platform.

• Propose a proactive failure-aware framework to predict the termination status of

given tasks during the runtime.

• Identify the main features that are related to the task failure.

• Use deep learning methods named Artificial and Convolutional Neural Network,

ANN, and CNN to predict task failure.

10

1.4.4 Failure-Aware Application Task Scheduling (Chapter 5)

• Formulate application task scheduling problem as Integer Linear Programming (ILP)

optimization model with the objective to minimize failure ratio of tasks, and their

resources usage at the same time.

• Propose a heuristic optimization algorithm to schedule tasks that are predicted as

failed.

• Provide a proof of concept that includes statistical and empirical results to evaluate

the proposed framework and methods.

1.4.5 Dynamic VM Placement for Application Service Availability (Chap-
ter 6)

• Formulate the problem of computing application service availability in cloud plat-

form.

• Propose a framework for dynamic VM placement for application service availability

in the cloud.

• Formulate dynamic VMs placement problem as Integer Non-Linear Programming

(INLP) optimization model with multiple objectives.

• Use AntColony heuristic optimization algorithm in conjunction with the VM standby

protection approach to solve multiple objectives VMs placement problem efficiently.

• Develop a prototype to evaluate the proposed framework, algorithms, methods, and

comparison with existing VM placement solutions from the literature.

1.5 Thesis Organization

The remainder of this thesis is organized as follows: In Chapter 2, we discuss the re-

lated work for application service availability and fault tolerance solutions in the cloud.

In Chapter 3, we propose a reactive service availability management framework. In chap-

ter 4, we propose a proactive service availability management framework. In Chapter 5,

we propose optimization models and solutions for application task scheduling problem in

11

cloud cluster. In chapter 6, we propose optimization models and solutions for dynamic VM

placement problem from service availability perspectives in the cloud. The conclusion and

future works are presented in chapter 7.

12

Chapter 2

Related Work

The industry and academic researchers proposed different solutions, algorithms, models,

approaches that are related to availability, fault tolerance, reliability, protection, recovery,

and continuity of application service in distributed systems in general and in cloud com-

puting in particular. In this chapter, we study, analyze and categorize the related works for

service availability management. We categorize the works into five main research areas that

are closely related to service availability. In each area, we discuss the scope, contributions,

metrics, and results of the works. The rest of this chapter is organized as follows. Section

2.1 discusses the existing solutions for reactive application service availability manage-

ment. Section 2.2 discusses the main research works that address proactive service avail-

ability management. Section 2.3 discusses the existing failure-aware and fault tolerance

solutions for task scheduling. Section 2.4 discusses the existing algorithms and techniques

that address the availability-aware VM placement problem. Section 2.5 discusses the ex-

isting solutions that tackle the VNF placement problem for network service availability in

Network Function Virtualization (NFV) platform, and Section 2.6 summarizes the major

findings of studying the related work.

2.1 Reactive Application Service Availability Management

The huge and fast growing demands for deployment applications in the cloud motivated

some IT businesses and researchers to propose solutions to maintain application service

availability and continuity. VMware High Availability (VMwareHA) [7] is a cost-effective

13

solution proposed by VMware [8] for managing HA of application in VM-based cluster.

VMwareHA solution has the ability to protect the application service against both VM

and physical computing host (server) failures. It can monitor the operation status of VM

and host, and detect their failures. In case of host failure, VMwareHA evacuates all the

VMs that are impacted by the failure to another active host where the VMs resume their

execution. In case of VM failure, VMwareHA tries to restart the failed VM on the same

or different host that the VM can resume its execution. VMwareHA does not necessarily

need a redundant standby VM to protect the service in case of failure of the active VM

that is in charge of provisioning the service. Therefore, it is considered a cost-affective

solution for service HA. However, VMwareHA does not protect the application service

against application component failure. The component represents the software process that

provides the service and can be hosted at a computing node whether virtual or physical.

VMwareHA does not support a monitoring mechanism to detect the application component

failure, so it can not protect the service in such type of failure. Also, VMwareHA does not

support service continuity because it does not depend on standby VMs to save and retrieve

the state of the service. VMwareFault Tolerance (VMwareFT) [9] is another HA solution

for application in VM-based cluster that is proposed by VMware [8]. VMwareFT depends

on the existence of a standby VM that is continuously synchronizing its state with the

current state of the active VM. The main role of the standby VM is to take over and continue

providing the service in case of failure of the active VM. VMwareFT, therefore, supports

service protection against the host, VM, and component failures. In addition, it enables the

service to continue from the last updated state of the service before it gets interrupted due to

any type of failure. However, VMwareFT is considered a costly solution because it requires

standby VM(s) that consume more resources, and power that adds extra cost. In addition,

VMwareFT consumes a lot of network bandwidth to synchronize the service state between

active and standby VMs. HA-Lizard [10] is an open-source solution for HA management

of application service that is provided through XenServer virtualization cluster [11]. HA-

Lizard has the ability to detect VM and host failures, but not for the application component

failure. Although HA-Lizard supports service continuity, its scalability is limited by a

small cluster of a few physical servers. Table 2.1 summarizes the protection features of the

existing HA solutions for application in VM-based cluster.

14

Table 2.1: Protection Features of Application HA Solutions

Service HA Solution App Component Failure VM Failure Host Failure Service Continuity
VMwareHA No Yes Yes No
VMwareFT Yes Yes Yes Yes
HA-Lizard No Yes Yes Yes

Cully et al. [12] proposed HA solution named Remus to manage the availability of ap-

plication that is deployed in a virtual cluster. Remus uses the same fault tolerance synchro-

nization technique of VMwareFT HA solution. Although Remus has the ability to detect

application component failure, its synchronization process between redundant VMs con-

sumes a lot of computing power, and network bandwidth that can affect the overall perfor-

mance of the cluster and the quality of the running applications. Kanso and Lemieux [13]

proposed a dynamic approach to enable availability feature for application in the cloud

platform. Authors target to offer application availability management as a service in the

cloud. The approach considers the dynamic nature of the cloud, so it can add the avail-

ability feature on the fly for any new requested application. They use open source HA

middleware [14] to manage the life cycle of application component, and failover of the

application service in case of component failure. However, authors do not provide any

availability measurements for the proposed solution. Li and Kanso [15] presented a com-

parison between VM and container from service availability perspectives in cloud. They

highlighted the main features and limitations of existing solutions. They concluded that

HA feature in container-based cluster is not developed enough yet. So the same authors

in [16] proposed HA solution that leverages the Linux containers to manage availability of

application that is deployed in container-based cluster. The proposed solution restarts the

failed container from its last updated image to recover the service, and enable its continuity.

Authors do not provide any measurements to evaluate their proposed solution.

2.2 Proactive Service Availability Management

Using redundant resources approach to protect the service can add additional costs for oper-

ation, maintenance, and power consumption of the resources for the CSP. Therefore, some

of the existing research works proposed proactive solutions to predict application failure

before it happens, and take the appropriate protective actions. In general, a proactive ap-

proach is considered cost-effective because it does not necessarily require adding standby

15

(backup) resources. There are existing research works in the literature that applied statis-

tical, machine and deep learning methods using Google dataset [6] to predict application

task failure. Chen et al. [17] studied the main features of application job and task failures

in cloud computing. Authors analyzed events and resource usages of the jobs and tasks

to determine features related to the failures. They applied deep learning Recurrent Neural

Network (RNN) to predict job and task failures. RNN achieved an accuracy of around 84%.

Soualhia et al. [18] explored the possibility of predicting application task failure in cloud

platform to enhance the performance of resources that are used to execute tasks. The au-

thors applied a set of statistical and machine learning models such as Decision Tree (DT),

Boost, and Random Forest (RF) to predict task failure. The results show RF achieved the

highest prediction accuracy of up to 95.8%, precision up to 97.4%, and recall up to 96.2%.

Jassas and Mahmoud [19] [20] proposed a framework to predict job failure in cloud.

The framework compares between a set of machine learning models: DT, Logistic Re-

gression (LR), K-Nearest Neighbors (K-NN), Naive Bayes (NB), RF, and Quadratic Dis-

crimination Analysis (QDA) to select the method that achieves higher failure prediction

accuracy. They used datasets from Google, Mustang [22], and Trinity [22] to evaluate the

prediction models. Results show DT model achieved a higher prediction accuracy with pre-

cision up to 98% and recall up to 86%. Shetty et al. [23] discussed the statistical analysis of

tasks resource usage in a distributed computing cluster. They argue that the patterns of the

failed tasks are different than the successful tasks. The authors used XGboost classifier to

predict task failure with 92% precision and 94.8% recall. Liu et al. [24] discussed the pos-

sibility of early task failure prediction in the cloud. They clustered jobs according to their

similarity using Fuzzy C-Means (FCM). They consider each cluster as a separate dataset

for training and testing the prediction models. They conducted a comparison between

three prediction models named, extreme learning machine (ELM), support vector machine

(SVM), and LR to predict task termination status at an early stage of its execution time.

Results show both ELM and SVM achieved 89.96% accuracy, while LR achieved 80.93%

accuracy. Gao et al. [25] used a deep learning method based on multi-layer Bidirectional

Long Short Term Memory (Bi-LSTM) model to predict job and task failures. Authors ex-

tracted static features and derived dynamic ones for jobs and tasks to model training and

testing data sets. Results show Bi-LSTM achieved a high accuracy of up to 93% to pre-

dict task failure, and up to 87% to predict job failure. Rosa et al. [26] analyzed patterns

of failed jobs in the cloud. They inspected the workload of jobs and system attributes to

16

identify root causes of job failure. Authors developed three online prediction models based

on deep learning neural networks to classify job termination state upon its arrival time. The

evaluation results show the prediction models can classify job with 94.4% accuracy, and

classify task with 76.8% accuracy.

Islam and Manivannan [27] identified key features that are associated with the appli-

cation failure in the cloud. They applied LSTM model to predict application termination

status before it terminates. The results show LSTM achieved up to 87% accuracy. Liu et

al. [28] claim that the offline working patterns that are adopted by many machine learning

prediction models can not be used for online prediction in practical operations of the cloud

platform. Therefore, the authors proposed a new method based on an online sequential

extreme learning machine (OS-ELM) to predict job termination status. Results show OS-

ELM achieved up to 93% accuracy. El-Sayed et al. [29] analyzed three log traces from

large computing clusters of Google, Hadoop, and Trinity to know the root causes of jobs

and tasks failures. The authors used RF to classify failure at job and task levels. Results

show RF can predict failure with a recall of up to 94% and precision of up to 95%. Hongyan

et al. [30] compared between Boosting Decision Tree (GBDT), KNN, RF, and LR machine

learning classifiers to predict misconfiguration that can lead to job failure. The classifiers

are evaluated using OpenCloud dataset. Results show GBDT achieved a high accuracy of

up to 92%, 78% precision, and 52% recall. Padmakumari and Umamakeswari [31] applied

different machine learning classifiers to predict task failure of scientific applications. The

authors simulated dataset to train and test classifiers. Results show NB classifier achieved

a high accuracy of up to 94.9%.

Although the above research works applied different methods using different datasets

to predict failures of application jobs and tasks, they do not address the remedy actions to

protect these jobs and tasks that are predicted as failed. Our work is distinct from the above

discussed works, where we propose a set of remedy actions and immediate rescheduling

for tasks that are predicted as failed. The works [32] [33] addressed mitigation actions for

the failed jobs in Google dataset. Rosa et al. [32] applied the statistical methods named,

Linear Discrimination Analysis (LDA), Quadratic Discrimination Analysis (QDA), and LR

to predict job termination status online. The authors proposed to immediately terminate

any job that is predicted as unsuccessful as a mitigation action. However, we believe only

terminating the job is not a feasible solution which the end user may not accept. Islam and

Manivannan [33] applied LSTM to early forecast the termination status of a task during

17

its execution. The authors proposed to reschedule the task that is predicted as failed on a

highly reliable computing node as a protection action. Results show LSTM achieved an

accuracy of up to 91%. Our work is different than [32] [33], where we consider a variety

set of remedy actions to increase the chance of tasks to terminate successfully. Soualhia

et al. [34] proposed a fault tolerance task scheduling framework (ATLAS) for Hadoop

platform. ATLAS uses different machine learning models named RF, NN, Conditional

Tree (CT), Boost Tree (BT), and General Learning Model (GLM) to predict application

task failure. The models are trained and tested using a real Hadoop cluster dataset. ATLAS

can dynamically request to reschedule task that is predicted as unsuccessful. Results show

ATLAS reduced the number of failed jobs up to 43% and failed tasks up to 59%. RF

achieved the highest accuracy of up to 79.9% for map tasks, and up to 94.12% for reduced

tasks. Marahatta et al. [35] applied deep learning neural network (DLNN) approach to

predict task failure according to the requested resource of the task. In addition, the authors

proposed a scheduling algorithm based on vector bin packing for the tasks that are predicted

as failed. DLNN achieved 84% accuracy using Internet Dataset. Table 2.2 summarizes

above discussed work since they are closely related to our work. Clearly, none of the works

consider optimization of multiple remedy actions that can be taken for the tasks that are

predicted as failed during the runtime.

There are few existing research works in the literature that proposed solutions for infras-

tructure failure prediction in the cloud computing platform. Actually, predicting physical

infrastructure failure is very necessary for taking service protection actions, such as mi-

grating VMs and rescheduling tasks on higher reliable infrastructure. Soualhia et al. [36]

proposed a framework to predict different types of failures at the infrastructure level in

the edge computing platform. The framework uses SVM and RF to detect CPU and hard

drive (HD) overload faults. Samir and Pahl [37] presented a model to predict anomalies at

the infrastructure level in the edge computing platform. The model uses Hidden Markov

Model (HMM) to predict the anomalies. Mohammed et al. [38] applied SVM, RF, and

K-NN on time series datasets from the computer failure data repository (CFDR) to predict

infrastructure failure in virtualized HPC system. Li et al. [39] applied HMM to predict VM

failure to enhance the reliability and performance of the cluster. Wang et al. [40] applied

SVM to predict equipment failure in optical networks.

18

Table 2.2: Summary of Related Work for Task Failure Prediction

Reference Method Dataset Accuracy Precision Recall Apply Remedy
Actions

Liu et al. [24] ELM, SVM, LR to Google ELM and SVM X X X
predict task failure highest 89.96%

Chen et al. [17] RNN to predict job Google 81% for job, X X X
and task failure and 84% for task

Soualhia et al. [18] DT, Boost, and RF to Google RF highest 95.8% 97.4% 96.2% X
predict task failure

Jassas and Mahmoud DT, LR, K-NN, NB Google, X DT highest DT highest X
[19] [20] , RF and QDA to Mustang, 98% 86%

predict job failure and Trinity
Shetty et al. [23] XGboost to predict Google X 92% 94.8% X

task failure
Gao et al. [25] Bi-LSTM to predict Google Job 87% and X X X

job and task failures task 93%
Rosa et al. [26] NN To predict Google Job 94.4% and X X X

job and task failures task 76.8%
Islam and LSTM to predict Google 87% X X X
Manivannan [27] task failure
Liu et al. [28] OS-ELM to predict Google 93% X X X

job failure
El-Sayed et al. [29] RF Google, X 95% 94% X

Hadoop,
and Trinity

Hongyan et al. [30] GBDT, KNN, OpenCloud 92% 78% 52% X
RF and LR

Padmakumari NB Simulated 94.9% X X X
and Umamakeswari dataset
[31]
Rosa et el. [32] LDA, QDA and LR to Google X X X Termination

predict job failure of job
Islam and Manivannan LSTM to predict Google 91% X X Reschedule
[33] task failure task
Soualhia et al. [34] RF, NN, CT, BT Hadoop RF for map X X Reschedule

and GLM to predict task 79.9%, task
task failure reduced task 94.12%

Marahatta et al. [35] DLNN Internet 84% X X Reschedule
Dataset task

’X’ denotes not considered

2.3 Failure-Aware Task Scheduling

Different existing research works in the literature addressed application task scheduling

from different objectives such as fault tolerance, power consumption, and resource utiliza-

tion. We are interested in the works and solutions that are related to failure-aware task

scheduling. The works [33] [34] [35] proposed rescheduling solutions for the tasks that are

predicted as failed. The works [41] [42] [43] proposed fault tolerance solutions for schedul-

ing tasks in cloud to enhance availability of the running tasks. Marahatta et al. [44] devel-

oped energy-aware fault-tolerant dynamic application task scheduling (EFDTS) schema at

the underlying VMs. The works [45] [46] proposed an online application task and job

scheduling mechanism based on deep reinforcement learning (DRL) to assign submitted

tasks at different VMs from different QoS perspectives. Frincu and Craciun [47] proposed

multiple objective algorithm for scheduling application tasks at VMs. The objectives are to

19

achieve HA for application, maximize resource utilization, and reduce the cost to provide

the application.

Rjoub et al. [48] used DRL and LSTM to predict for which VM the task should be

scheduled with the goal to utilize virtual resources that helps to increase the termination

success ratio of tasks. Pham et al. [50] introduced a two-stage machine learning ap-

proach to predict the execution time of task workflow that helps to make a decision for

task scheduling in cloud cluster. Khan et al. [50] studied Google dataset to compare differ-

ent task scheduling policies from the power and cost-saving perspectives in heterogeneous

hybrid DCs. Sebastio et al [51] compared different configuration models for deploying

software system in the container-based platform, while considering the availability of the

system. They proposed stochastic model to analyze and estimate the system availability

for each configuration deployment plan to make a decision. Zhang et al. [52] discussed

the importance of application task scheduling for QoS in Cyber Physical Cloud Systems

(CPCSs). The authors proposed a scheduling algorithm based on Priority Queuing Model

with Negative Arrival for real-time CPCS tasks. The simulation results show the ability

of the algorithm to reduce the average waiting time of task to be scheduled for execution.

Hao et al. [53] formalized service scheduling and resource allocation in CPCS as a joint

optimization model with the goal to minimize the response time of the service. They de-

veloped deep learning Q-network (DQN) algorithm to tackle service scheduling. Kuang

and Zhang [54] proposed a task scheduling algorithm in CPCS based on task priority using

value density in a real-time distributed task system. Zhou et al. [55] proposed an algorithm

for scheduling workflow of the applications in CPCS. The objective is to maximize reliabil-

ity and increase the security of the applications. Results show the ability of the scheduling

algorithm to reduce task failure probability up to 52%. Yang et al. [56] proposed a multi-

objective optimization task scheduling method for Cyber-Physical-Social services in the

fog computing platform. The method aims to minimize the execution time and resource

consumption of the scheduled tasks.

2.4 Availability-Aware VM Placement

There are several existing research works in the literature that tackled VM placement prob-

lem from different perspectives such as resources power consumption and operational cost,

20

network bandwidth, and delay. However, a limited number of the works addressed end-

to-end application service availability. Therefore, we highlight research works that tackle

VM placement problem and consider availability, reliability, and fault tolerance solutions

for application service in cloud computing. Jammal et al. [57] [58] proposed CHASE a

component high availability-aware scheduler in the cloud environment. Authors map the

scheduling problem as Integer Linear Programming (ILP) model with the objective to max-

imize the availability of the components. CHASE searches for the servers with maximum

availability to schedule the components. The authors used IBM ILOG CPLEX optimization

solver to find the best scheduling plan for the components. Zhu and Huang [59] addressed

availability concerns of Mobile Edge Computing (MEC) application during the placement

process of application’s components. The authors proposed a stochastic model to track

the cost and availability impact of changing the placement of the components. They used

FirstFit and BestFit heuristic algorithms for the placement of MEC application. Lera et

al. [60] addressed service placement for application fault tolerance in the fog computing

platform. The authors proposed a two-phase placement strategy based on graph partition-

ing and traversal approach to optimize the placement process.

The works [61] [62] tackled reliability of VM placement (RVMP) problem. Yang et

al. [61] proposed INLP model to find the minimum number of the computing nodes to host

the VMs, and guarantee the availability of the VM placement plan to be above a requested

requirement, and the communication delay between VMs peers is below a specific thresh-

old. They used CPLEX to solve RVMP model. Liu et al. [62] mapped VM placement as

ILP model with the objectives to minimize communication traffic and network bandwidth

in DC, and increase reliability of the hosted VMs. The authors used the graph k-cut ap-

proach to solve ILP model. Yang et al. [63] developed a variance-based metric to measure

the risk of violating application availability during VM placement process. The authors

considered the risk of Top-of-Rack (ToR) switch and server failures in DC. They formal-

ized VM placement as ILP model with the objective to minimize computing resources

power consumption, and enhance the availability level for the requested applications. They

proposed the concept of packing then distributing (PTD) the VMs during the placement.

The works [64] [65] [66] [67] [68] proposed cloud fault-tolerance solutions through

VM placement, where they mapped the problem as ILP model. Li and Qian [64] addressed

the placement problem for the multitenant cloud with the goal to reduce network traffic in

DC. Jammal et al. [65] tackled the placement problem of VMs during the live migration

21

process. The authors used VM live migration approach to mitigate service downtime in

case of failure. They used CPLEX to find the destination servers for the migrated VMs.

Zhou et al. [66] [67] addressed the optimal redundant VM placement (ORVMP) problem

with the objective to minimize network resources consumption and increase the reliability

of cloud service. The authors used genetic algorithms to solve ORVMP model. Gonzalez

and Tang [68] used FirstFit algorithm for placement of VM replicas (backups) for service

fault tolerance solution at DCs. Alameddine [69] proposed a protection plan that can deter-

mine the number and placement of the backup VMs, to guarantee bandwidth demands and

meet availability requirements of the critical applications in the cloud. The authors mapped

the problem as INLP model, and proposed a heuristic algorithm to solve the model. The

works [70] [71] formalized a cost function to tackle VM placement problem. Chen and

Jiang [70] proposed an adaptive selection method for application service fault-tolerance

plan during VM placement process. The cost function targets multiple objectives that in-

clude minimizing application response time, resources usage consumption, and application

failure rate. Zhang et al. [71] tackled VM placement in cloud DC of star topology to

achieve service fault tolerance. The cost function targets multiple objectives that include

minimizing SLA violation, resources power consumption, and failure rate.

2.5 VNF Placement for Network Service Availability in

NFV

The works [72] [73] addressed VNF placement problem in NFV platform for network ser-

vice availability, where they mapped the problem as INLP model. Ayoubi et al. [72] pro-

posed a framework for embedding elastic and reliable virtual networks (VNs) in the cloud.

The framework handles embedding of new VN request and only scaling up request of an

existing VN in DC. Authors model VN as a composition set of connected VNFs, where

each VNF is mapped as one VM. The goal of the model is to meet the availability require-

ment of VN during its entire lifetime and increase the admissibility chance of new VNs.

The authors proposed to add backup VNFs, and use a tabu-search optimization approach

for reliable VNF placement. Thiruvasagam et al. [73] addressed reliable virtual monitoring

functions (vMFs) placement problem based on NS topological information. The main ob-

jective is to minimize the communication delay between Service Function Chains (SFCs)

that compose NS, and the number of vMFs that are required to monitor NS. The authors

22

used CPLEX to find the best placement plan of vMFs. The works [74] [75] [76] [77] [78]

formulated VNF placement problem as ILP model. Yala et al. [74] used genetic algorithm

to find VNF placement for virtual Content Delivery Network (vCDN). The objective is to

find the trade-off between vCDN deployment cost and its availability level. Yang et al. [75]

tackled stateful VNF placement for NS fault-tolerance. They mapped the problem as an op-

timization function with the goal to increase the user requests. Yansen et al. [76] proposed

availability-aware SFC placement scheme at substrate network in NFV. The main objec-

tive is to minimize the end-to-end delay of SFC. The authors used a layered graph search

approach to locate the placement of SFC. Sharma at al. [77] targeted the high availability

of NS in NFV during VNF placement. The goal is to maximize the profit of the Telecom

Service Provider (TSP), subject to the availability demand of NS by the service operator.

The authors use redundant VNFs and geographic placement approach to solve the place-

ment problem. Abdelaal et al. [78] tackled VNF Forwarding Graph (VNFFG) deployment

problem, where they consider both VM and server failures in NFV platform. They target

the deployment that achieves multiple objectives, minimize network bandwidth, conver-

gence time to allocate/deallocate VNFs, and power consumption of the resources. They

used redundant VNFG to protect VNF service against failures. Mao et al. [79] proposed

online fault-tolerant SFC placement solution in NFV. The authors formulated the problem

as Markov decision process (MDP) model with the objective to maximize the number of

accepted user requests. They proposed a deep reinforcement learning (DRL) method for

the placement of active and standby SFC instances. Table 2.3 summarizes the related work

that are discussed in sections 2.4 and 2.5. Note that none of the existing research works

compute application service availability in the cloud to meet the requirements during the

component, VM, or VNF placement process.

Table 2.3: Summary of Related Work for VM placement

Research Topic Reference Compute Application
Availability

Application Component Placement [57], [58], [59], and [60] X

Reliability-Aware VM Placement [61], [62] and [63] X

Fault Tolerance and Service Availability [64], [65], [66], [67], X
using VM Placement [68], [69], [70], and [71]
VNF Placement for Network [72], [73], [74], [75], X
Service Availability in NFV [76], [77], [78] and [79]

’X’ denotes not considered

23

2.6 Summary

This chapter summarizes the main works and solutions that exist in the literature and are

related to application service availability management in cloud computing. The works

are categorized into five main related research topics: reactive application availability

management, proactive service availability management, failure-aware task scheduling,

availability-aware VM placement, and VNF placement for network service availability in

NFV. The main finding after exploring the related works can be summarized as follows.

Most of the existing reactive availability solutions focus on virtual and physical infras-

tructure failure detection and do not consider failure at the application component level.

Although there are multiple proposed solutions for failure-aware task scheduling in cloud

cluster, a few works considered remedy actions to protect tasks. According to our best of

knowledge, there is no work that formalizes application availability in the cloud platform.

In addition, limited works considered application availability requirements during the VM

placement process.

24

Chapter 3

Reactive Application Service Availability
Management

This chapter introduces our proposed reactive framework to incorporate HA feature, and

enable service continuity for application service in cloud virtual cluster. The framework

includes four main modules that consider the availability requirements of tenant towards

the deployment of HA application. The framework integrates two well-known open source

HA middlewares with VMs and containers to manage service availability. The middlewares

use different types of redundancy models to recover the service in case of VM/container

failure. In addition, the chapter discusses the experiments that have been done in real virtual

clusters, and availability measurements of the proposed framework. The rest of this chapter

is organized as follows. Section 3.1 introduces service availability management. Section

3.2 presents the proposed framework including its modules. Section 3.3 describes the real

experiments and discusses the measurements and results, and Section 3.4 gives a summary

of the chapter.

3.1 Service Availability Management

Before we introduce our reactive framework for service availability management, we intro-

duce the redundancy models and HA middlewares that are used by the framework.

25

3.1.1 Redundancy Models

The redundancy model defines number and the role type of components that are used to

provide and protect the service. Usually, availability management service uses a specific

configuration that defines the used redundancy model(s). Specifications of availability man-

agement framework (AMF) defines a standard set of redundancy models [80]:

• 2N: allows only one active component which provides all the services and only one

standby component. The standby component takes over and continues providing the

services in case of the failure of the active component.

• N+M: allows N number of active components which provide the services, and M

standby components. The service can be failed over to any of the standby compo-

nents that is capable of providing the same type of service.

• N-Way-Active: allows N active components to provide the same type of the service.

In this redundancy model, no standby components are configured.

• N-Way: allows N components in which the component can be active for some ser-

vices and standby for other services at the same time.

3.1.2 OpenSAF

OpenSAF is an open-source middleware that implements a set of standard service specifi-

cations by the Service Availability Forum (SAF) [14] to manage the availability of appli-

cations services in a distributed cluster system. AMF is the core service of OpenSAF is

responsible for managing the availability of the service through controlling the life-cycle

of the components that are in charge of providing the service. AMF uses a specific config-

uration (a.k.a AMF configuration) as XML file, where it defines one or more of the above

redundancy models.

3.1.3 Pacemaker

Pacemaker is a well-known middleware for managing the availability of services in dis-

tributed cluster systems [17]. Many CSPs use the Pacemaker as an availability manager for

the provisioned services to their tenants. Pacemaker is logically responsible for managing

26

the life-cycle of the component(s) which provide the service within a cluster of comput-

ing nodes (virtual or physical). Pacemaker has the ability to detect the node failure using

the Corosync communication service [82] and the Heartbeat monitoring service. Corosync

service provides a closed process cluster communication model with synchronization ca-

pabilities between the processes of the same cluster. Heartbeat service is a daemon that

provides inquiry service for the membership existence of the cluster resources. Pacemaker

supports the configuration of the above redundancy models for the application components

to protect the services against failures. Pacemaker describes the configuration through

XML file.

3.2 Reactive Service Availability Management Framework

We propose a framework to incorporate availability, and enable continuity features for ap-

plication service in virtual cluster. Figure 3.1 depicts the framework that includes four

main modules: Tenant Requirements, Availability Configuration Manager, Deployment

Manager, and the HA middleware.

Figure 3.1: Reactive Application Service Availability Management Framework

27

3.2.1 Tenant Requirements

From the service availability perspective, the cloud tenant such as ASP can request a

specific type of application service with availability requirements, for example, 5 nines

(99.999%), during a specific period of time. In addition, the tenant can determine the re-

dundancy model of the application components to protect the service against different types

of failures. For example, tenant can determine the number of active and standby applica-

tion components to provide and protect the service. Moreover, the tenant can request the

service continuity feature in case of the stateful application which has a state that can be

saved and retrieved at any point in time.

3.2.2 Availability Configuration Manager

The availability Configuration Manager module is responsible for the design and generation

of the configuration for the HA middleware that is used by the CSP. The module includes

two main functional units: Configuration Designer and Configuration Generator. The Con-

figuration Designer is responsible for designing a high abstract level of HA configuration to

provide and protect the services according to the tenant’s requirements. Basically, the Con-

figuration Designer is an expert person who has knowledge about the tenant requirements

and the resources that are available at the CSP including the HA middleware. The designer

can specify information about the type and number of the application components that are

required to exist to provide and protect the requested services. In addition, the designer

can determine information about the placement of the components. For example, design

information can state whether two components from the same application type can have

an affinity or anti-affinity relationship. Affinity relationship means the components should

be located together on the same computing node, and the anti-affinity relationship means

the resources should not be located together on the same computing node. Moreover, the

designer can state the dependency relationships between the components, and hence this

dependency should be respected during the deployment and the lifetime of the components.

For example, when component A depends on component B, this indicates for the Deploy-

ment Manager module that component B should be deployed (existed) for component A

to operate. We implemented an interface as shown in Figure 3.2, where the Configuration

Designer can use it to design the intended configuration.

28

Figure 3.2: HA Configuration Design and Generate Interface

The Configuration Generator unit is responsible for automatically generating the con-

figuration of the corresponding HA middleware according to the configuration design by

the Configuration Designer unit. We build a procedure to automatically transform the HA

configuration design to a formatted HA configuration to be used by the corresponding HA

middleware. Configuration is a structural description for the resources including the appli-

cations components, services, and the relationships between them. Configuration can in-

clude information about the identifications and names of the resources and the services. The

configuration also can include availability actions that are used by the availability manage-

ment service of the HA middleware in case of component failure such as restart/shutdown

of the failed component. In addition, it can include the absolute paths for the software’s

scripts to start/stop the components. Figure 3.3a shows a part of OpenSAF configuration,

and Figure 3.3b shows a part of Pacemaker configuration.

3.2.3 Deployment Manager

The Deployment Manager module takes the generated HA configuration by the Configura-

tion Generator unit as input and deploys all the resources on their corresponding placement

positions as specified in the configuration. In addition, the module considers all types of

29

(a) Part of OpenSAF Configuration (b) Part of Pacemaker Configuration

Figure 3.3: Slices of HA Configuration

dependencies and constraints between the resources as stated in the configuration. After

the deployment process of all resources is completed, the module feeds the configuration to

HA middleware module. We implement the Deployment Manager unit as a procedure that

takes the HA configuration as input and automatically deploys all the resources as stated in

the configuration at the cloud platform of the CSP.

3.2.4 HA Middleware

We integrated two HA middlewares Pacemaker and OpenSAF with the images of VM

and container that are used to host the components of the application to manage HA of

the services provided by the components. Note that we integrated two HA middlewares

for comparison purposes, where only one HA midleware is used at a time. Once the HA

middleware takes the HA configuration as input, the middleware starts the application com-

ponents (active ones) to provision the service to the tenant. During the lifetime of the active

component, the checkpoint service of the HA middleware starts check-pointing the current

30

state of the component and stores the state in shared storage. The middleware check-points

the state of the active components for only the stateful applications, but not for the stateless

applications which have no state. Note that the Pacemaker HA middleware does not have

any mechanism to checkpoint the stateful applications. Therefore we develop a checkpoint

service that periodically (every one second) reads the current state of the active applica-

tion component and saves it at a shared Network File Storage (NFS). On the other hand,

OpenSAF has already a checkpoint service for stateful applications. In order to be fair with

the comparisons between the two HA midlewares, we integrated our checkpoint service

with OpenSAF. In addition, the middleware frequently keeps monitoring the health status

(liveness) of the active components through the monitoring service of the middleware. In

case of failure detection of the active component, the availability management service of

the middleware immediately starts the service recovery procedure. Therefore, the avail-

ability management service failover the service to the standby component which reads the

last state of the active component before it fails from the shared storage and continues pro-

viding the service as a new active component. In case of failure of the active component of

the stateless application, the standby component takes over and starts providing the service

from the beginning of the application. Once the service is recovered again, the manage-

ment service tries to repair the failed component through a repair action as defined in the

configuration such as restarting the failed component. Figure 3.4 illustrates the sequence

diagram of the HA middleware module managing the HA of stateful application service

that is protected using 2N redundancy model.

3.3 Experiments and Results

3.3.1 Experimental Setup

As a proof of concept, we implemented our proposed HA framework using a private cloud

platform at our computing lab. For the setup, we built two cloud platforms, one plat-

form uses the virtual containers and the second platform uses VMs to host the application

components. Both platforms have the same physical infrastructure. The infrastructure in

our setup includes a physical cluster with two homogeneous nodes. Each node is a Dell

workstation with 4 core Intel Xeon 3.6 GHz CPU, 32 GB RAM, and 1 TB ATA HD. The

two nodes are connected through Linksys Ethernet switch with 100Mbps speed. CentOS

7.0 Operating System (OS) is hosted on each node for the Container-based platform. We

31

Figure 3.4: Sequence diagram of HA middleware to protect stateful application using 2N

replaced the CentOS by Xen Hypervisor for the VM-based platform because Xen is bare-

metal hypervisor. The two nodes share a NFS that is configured on one of the physical

hosts. We created LXC linux container image of Ubuntu base OS. We integrated Pace-

maker and OpenSAF HA middlewares with the container image. In addition, we integrated

VLC media player stateful application and Apache HTTP Server stateless application with

the container image. Also, we created a VM image that includes Ubuntu 16.04 OS and the

same middlewares and applications that are integrated with the container image.

3.3.2 Service Availability Metrics

For the implementation, we assume the tenant availability requirements are given as input.

We design the HA configuration based on the tenant requirements and our knowledge with

32

the OpenSAF and Pacemaker. After that, we pass the configuration design to the Configura-

tion Generator unit. The Configuration Generator automatically generates a formatted HA

configuration of the corresponding HA middleware, and then passes the generated configu-

ration to the Deployment Manager module. The Deployment Manager starts automatically

deploying all the resources, as described in the configuration, at the corresponding cloud

platform on our private cloud setup. To evaluate our proposed framework, we run several

types of experiments. The main goal is to prove the ability of the framework to manage

HA of different types of applications services that are deployed at different cloud platforms

and enable service continuity for the stateful applications. Therefore, we use the following

service availability metrics that are defined by [80] and illustrated in Figure 3.5 to get the

measurements:

• Failure Time: time when the active component failure happens.

• Reaction Time: time period for the first reaction by the HA middleware for the

failure.

• Service Recovery Time: time period to recover the interrupted service since the

reaction time.

• Service Outage Time: time period for the entire interruption (absence) of the service

until its recovery. In other words, service outage time is the summation of the reaction

time and the service recovery time.

Figure 3.5: Service Availability Metrics

33

3.3.3 Experiments with Cloud Container-based Platform

For the experiments using the cloud Container-based platform, we designed two HA con-

figurations for the Pacemaker, one configuration to manage HA of the stateful VLC appli-

cation service and the second configuration to manage HA of the stateless Apache HTTP

Server application service. In addition, we designed two HA configurations for the Open-

SAF to manage HA of the same two applications. All the configurations include a cluster

of two containers, each container to be hosted on a separate physical host. We designed

2N redundancy model for both Pacemaker, and OpenSAF. One container hosts the active

component that provides the service, and the second container hosts the standby component

to protect the service. Once the configurations are generated by the Configuration Genera-

tor unit, they are passed to the Deployment Manager module which automatically deploys

the resources and then feeds the configuration to the corresponding HA middleware. The

middleware starts managing HA of the service during its lifetime. Figure 3.6 depicts the

private cloud Container-based platform after the deployment.

Figure 3.6: Private Cloud Container-based Platform

To get the availability measurements using Container-based platform, we run several

experiments by injecting a failure for the active component and see the failover scenario

of the service by the HA middleware, then collect the measurements. For the experiments

with the Pacemaker, we simulate the component failure by stopping the Pacemaker itself on

the container that hosts the active component. We register the time when the Pacemaker is

completely stopped as the failure time. Note that the Pacemaker does not have a mechanism

34

to detect the liveness (existence) of the process of the application component, therefore we

simulate the application failure by stopping the Pacemaker. In addition, Pacemaker regis-

ters a notice with a timestamp at the system log indicating scheduling the Pacemaker for

the shutdown. We consider this notice as the first reaction towards the recovery of the ser-

vice. Therefore, the time period between the failure time and the notice time of scheduling

the Pacemaker for the shutdown is considered as the reaction time. We also register the

time when the Pacemaker failover the application service to the standby component. We

consider the time between the reaction time and the service failover time as the service

recovery time, and the entire time period since the failure to the time when the service is

recovered as the service outage time.

For the experiments with the OpenSAF, we simulate the component failure by stopping

(terminating) the process of the active component. Therefore, we consider the time when

we stop the active process as the failure time. When the availability management service

of OpenSAF receives a notification about the failure of the active component through the

passive monitoring service of OpenSAF, the availability management service directly ter-

minates the component in a graceful manner to guarantee the component is completely

stopped and does not provide the service. We consider the termination action as the first

reaction by OpenSAF towards the service recovery. Therefore, we consider the time period

between the failure and terminating the component as the reaction time. As a result of

the failure, the management service failover the application service to the standby compo-

nent to continue providing the service. Service recovery time and service outage time are

measured in the same way as they are measured for the Pacemaker experiments.

3.3.4 Experiments with Cloud VM-based Platform

For the experiments using the cloud VM-based platform, we designed new configurations.

We replaced the containers with VMs, and the OS of the hosts by Xen hypervisor. Figure

3.7 depicts the private cloud VM-based platform after the deployment. We repeated the

same type of experiments using the VM-based platform as we have done for the experi-

ments using the Container-based platform, and collected the measurements.

35

Figure 3.7: Private Cloud VM-based Platform

3.3.5 Results Analysis

We run several experiments using the Container-based platform (Figure 3.6), and VM-

based platform (Figure 3.7) to get the availability measurements for the VLC and Apache

HTTP services using Pacemaker and OpenSAF. Table 3.1 shows the availability measure-

ments for the stateful VLC application service of the experiments using both platforms,

while Table 3.2 shows the measurements for the stateless Apache HTTP Server application

service of the experiments using the same platforms. Note that all the values in the tables

represent the average values of 10 consecutive experiments that are measured in second

time unit. As shown in the tables, the service recovery of all the applications using the

containers is faster than using the VMs. Therefore, the service outage is shorter using the

containers than using the VMs. For example, it takes an average of 0.181 second with

the Pacemaker and 0.133 second with the OpenSAF to recover the stateful VLC service

using the containers, while it takes 0.23 second with the Pacemaker and 0.2 second with

the OpenSAF to recover the same VLC service using the VMs. Similar observation can be

made for the stateless Apache HTTP Server application. The service recovers faster using

the containers than using the VMs, 0.13 vs 0.18 second with the Pacemaker, and 0.11 vs

0.16 second for the OpenSAF. We believe the service recovery using the containers takes

less time than using the VMs because the communication between containers does not go

36

Table 3.1: Availability Measurements for Stateful VLC Application

Unit:second Reaction Time Service Recovery Time Service Outage Time

Container-based VM-based Container-based VM-based Container-based VM-based
Platform Platform Platform Platform Platform Platform

Pacemaker 0.128 0.25 0.181 0.23 0.309 0.48

OpenSAF 0.01 0.04 0.133 0.2 0.143 0.24

Table 3.2: Availability Measurements for Stateless Apache HTTP Server Application

Unit:second Reaction Time Service Recovery Time Service Outage Time

Pacemaker Container-based VM-based Container-based VM-based Container-based VM-based
Platform Platform Platform Platform Platform Platform

0.157 0.24 0.13 0.18 0.287 0.42

OpenSAF 0.01 0.03 0.11 0.16 0.12 0.19

through the extra hypervisor layer as the case for the communication between the VMs

which impacts the recovery time. In addition, the container is considered more lightweight

than the VM, and hence the number of CPU operations induced by the container is less

than the number of CPU operations of the VM, which makes the container faster than the

VM for detecting the component failure and recovering the service.

Moreover, the measurements show that the service recovery for the Apache HTTP

Server application is faster than the service recovery for the VLC application in all the

experiments using both platforms. In addition, the service outage is shorter for the Apache

than for the VLC. For example, VLC service outage takes 0.309 second while it takes 0.287

second for the Apache service with the Pacemaker using Containers-based platform. With

the OpenSAF using the same platform, the VLC service outage takes 0.143 second and

the Apache service takes 0.12 second. We believe this is because the VLC is a stateful

application and the HA middleware has to retrieve the last state of the active VLC com-

ponent before its failure from the NFS storage to continue providing the service, which

takes extra time. On the other hand, the middleware does not need to retrieve the state of

the active Apache HTTP Server component because it is a stateless application. Also, the

measurements show that the reaction of the OpenSAF for the component failure of both

37

applications VLC and Apache using both platforms is faster than the reaction of the Pace-

maker for the same types of failures. We believe this is because the Pacemaker does not

have a mechanism to detect the application component failure, so we stop the Pacemaker

to simulate the application failure. Therefore, the Pacemaker has to wait until its service

completely stops and then reacts to the failure. While the OpenSAF has a mechanism to

detect the application component failure at the process level, so there is no need to stop the

OpenSAF to simulate the application failure, hence the OpenSAF can detect the component

failure faster.

3.4 Summary

We proposed a reactive framework to manage availability, and enable service continuity

for application service in a virtual cluster. The framework integrated two HA open-source

middlewares OpenSAF and Pacemaker to maintain service availability. The framework

is evaluated using our private cloud platform to manage the availability of VLC stateful

application, and Apache HTTP Server stateless application. The results show the ability of

the framework to recover Apache service faster than VLC service within less than a second

time. In addition, the framework shows the ability to resume VLC streaming service from

its last state before the VLC process fails.

38

Chapter 4

Proactive Service Availability
Management

Usually, reactive approach uses redundant resources to recover the service and maintain its

availability. Redundant resources add extra operational, maintenance, power consumption,

and communication costs for the CSP. This motivated us to propose a proactive framework

to predict the termination status of the application task (service) during the runtime, and

take the appropriate protective action for any task that is predicted as failed. The framework

includes four main modules that work together for a proactive approach to manage the

availability of the application task that is executed in the cloud cluster. We analyze three

publicly available large cluster datasets from Google, Alibaba, and Trinity, to characterize

task failure in the cloud computing platform. The framework uses deep learning models

named Artificial (ANN), and Convolutional Neural Network (CNN) of type LeNet-5 for

different prediction purposes. The rest of this chapter is organized as follows. Section 4.1

describes the three datasets that are used in the prediction process. Section 4.2 discusses

deep learning Neural Network. Section 4.3 introduces the proposed proactive framework

including the modules. Section 4.4 discusses the experiments and results, and Section 4.5

gives a summary of the chapter.

39

4.1 Computing Cluster Datasets

4.1.1 Google Cluster Dataset

In 2011 Google released a huge dataset that includes valuable information about cloud com-

puting cluster for a time period of 29 continuous days [6]. The dataset includes information

of approximately 12,500 computing nodes. It also includes information about the states of

jobs during their lifetime that have been requested by the users. Each job is a composition

set of one or more tasks. Task represents a program unit of a special type that is executed

on only one node. Task information includes the events and usages. Task events include

event timestamp, event type, job id for which the task belongs, and demand resources such

as CPU, RAM, and Disk. In addition, events include configuration information such as

priority and scheduling class level of the task.

The task can go through several events from its submission until termination, as shown

in Figure 4.1. When the task is initially submitted, it will be in the pending state until it gets

scheduled on a computing node and is moved to a running state. If the task is terminated

it would be in the dead state. However, a task is not always terminated successfully where

it can fail for different reasons, such as software bug or exception. It also can be killed by

the user or the system administrator or evicted by other tasks that belong to other jobs and

have higher priority. The dataset shows a few tasks got lost for unknown reasons, so we do

not consider lost tasks in this study. Tasks usage includes information about the resources

usage that have been consumed by each task from the underlying computing node such as

CPU, RAM, Disk I/O, and Disk space. Table 4.1 summarizes the statistics of application

tasks based on the termination status (finished, failed, killed, and evicted) from the Google

cluster. As shown in Table 4.1, a large number of tasks were terminated unsuccessfully

(failed, killed, and evicted).

Table 4.1: Statistics of Tasks per Termination Status for Google dataset

Termination Status Tasks Count Ratio (%)
Finished 18217975 38
Failed 13829769 29

Evicted 5864353 12
Killed 10349680 21
Total 48261777 100

40

Unsubmitted Pending

Submit

Running

Sch
ed

ule
Update Pending

Update Running

Dead

Finish, Fail, Kill, Evict, Lost

Fail, Kill, Lost

Submit

Pending

Figure 4.1: Task Events State Diagram

4.1.2 Alibaba Cluster Dataset

In 2017, Alibaba group released a dataset labeled ‘cluster-trace-v2017’ of a production

computing cluster for a continuous 12 hours time period [21]. The dataset includes in-

formation about application jobs, tasks and their instances that have been executed on the

cluster that contains 1,300 computing nodes. Job is composed of a set of tasks, and each

task can have a set of instances of the same type that execute on the same or different

nodes. Task information includes the demanded resources such as CPU and RAM, as well

as the number of instances of each task. Task instance information includes the event

types, scheduling node, and resources usage of the instance during its execution time. The

instance goes through different events that change its state from its submission until termi-

nation. We focus on the termination status of the instance among the set of event types.

Table 4.2 summarizes the statistics of tasks instances based on their termination status that

can be Terminated, Failed, or Cancelled from Alibaba cluster. Terminated means instance

was finished successfully. Failed means instance was failed and hence terminated unsuc-

cessfully due to software or hardware error in the cluster. Cancelled means the instance

was interrupted by administrative operation and did not start or finish its execution. We

consider the cancelled instance as failed. As shown in Table 4.2, the ratio of the failed

instances is 2.3%, which is very small compared to the high ratio of 97.6% for the termi-

nated instances. However, the total number of the failed instances can have an impact on

the overall performance and resource usage of the cluster, and are worth to be detected as

early as possible to take actions.

41

Table 4.2: Statistics of Instances per Termination Status for Alibaba dataset

Termination Status Tasks Count Ratio (%)
Terminated 729982 97.6

Failed 17372 2.3
Cancelled 293 0.01

Total 747647 100

4.1.3 Trinity Cluster Dataset

Trinity is the largest supercomputer at the Los Alamos National Lab (LANL) and it is used

for capability computing [22]. In 2018, LANL released a dataset for the jobs that have

been executed on the computing nodes of the Trinity cluster for three months period from

February to April 2016. At the time of the trace logs, Trinity included 9,408 identical

nodes, a total of 301056 Intel Xeon E5-2698v3 2.3GHz cores and 1.2PB RAM, making it

the largest cluster with a publicly available trace by the number of CPU cores [22]. The

dataset includes information of 23,359 jobs of OpenScience workloads that were issued

by 88 users. Job information includes the event types that the job goes through during its

lifetime, and demanded resources such as the number of nodes and CPU cores to execute

the job. Note that LANL does not reveal information about the tasks that belong to the

jobs. Therefore, in this research work, we map the job as a single unit like a task. We

focus on the job termination status that can be Ended, Failed, or Cancelled. Ended means

the job was terminated successfully. Table 4.3 summarizes the statistics of jobs based on

their termination status from the Trinity cluster. Note that the ratio of both Failed and

Cancelled jobs is 27.6% of the total submitted jobs, which is considered high and can lead

to performance degradation, and waste a large amount of resources of the Trinity cluster.

Table 4.3: Statistics of Jobs per Termination Status for Trinity dataset

Termination Status Jobs Count Ratio (%)
Ended 16923 72.4
Failed 5185 22.2

Cancelled 1251 5.4
Total 23359 100

42

4.2 Deep Learning - Neural Network

In the literature, some research works used statistical and machine learning methods such as

Support Vector Machine (SVM) and Hidden Markov Model (HMM) on Google dataset to

predict job/task termination status. Such methods assume data segments are independent of

each other that makes them a poor choice for Google dense dataset where many of the data

segments are dependent and correlated with each other. Therefore, we use deep learning

(DL) models such as ANN and CNN (LeNet-5) to discover the hidden patterns that are

related to the task termination status from the datasets, combine the patterns together, and

build efficient decision rules. In addition, DL helps to identify the relationships between

the extracted features of the task, as well as the relationships between tasks, and these help

to increase the accuracy of the prediction process. In this thesis, we use DL approach to

predict task termination status, whether a success or fail. Based on that a decision is taken

if the task is to be protected which can decrease its failure probability.

Input Layer

Hidden Layer 1 Hidden Layer m

Output Layer

x1

xn

y^

w1

wn

b1

bn

...

Figure 4.2: Structure of Deep Learning Neural Network

Figure 4.2 illustrates the general structure of deep learning neural network. It is a fully

connected multilayer of neurons that includes one input layer, one or more hidden layers,

43

and one output layer. The network gets deeper by the increasing number of intermediate

hidden layers. Each layer is composed of a set of neurons (nodes), where each neuron

is connected with all the other neurons of the next layer through synapses (connections).

Each neuron takes a set of inputs, the corresponding weights of the input, and biases, then

passes the result of (∑((inputs∗weights)+biases)) to activation function such as Sigmoid

or Tanh, then passes the output of the function to all the neurons of the next layer until

the final output layer is reached. Training of neural network means learning the weights

that are associated with synapses for which the prediction error is minimum compared to

the original (true) state of the input. Using feed-forward and backward iterations, a deep

neural network updates the weights of synapses in such a way that minimizes the error

ratio of predicting the output of a given input compared with its real value. It uses special

optimizers to optimize the process of finding the optimal weights that minimize the error

loss during the training process.

4.3 Proactive Service Availability Framework

We propose a proactive service availability framework to maintain the availability of appli-

cation task during its execution until successful termination. The main goal of the frame-

work is to predict the termination status of application tasks, either finished or failed, during

the execution time as early as possible and to take the right remedy actions for these tasks

that are predicted as failed. The framework also minimizes the failure ratio of application

tasks and their resources usage. Figure 4.3 depicts the general proactive framework that

includes four main modules: Data Cleaning and Preparation, Feature Extraction, Task Fail-

ure Prediction, and Failure-Aware Task Scheduler. The modules are discussed in detail in

the subsequent sections. Note that the proposed framework is general and independent of

the cloud platform. It can be used with any given dataset that includes related information

to predict termination status and take remedy actions for both jobs and tasks. However, the

framework requires configuration parameters for each distinct cluster platform.

4.3.1 Data Cleaning and Preparation

To know the main task failure patterns and characteristics in computing clusters, we studied

and analyzed a large number of CSV trace logs that are collected from three different

platforms named Google, Alibaba, and LANL Trinity. Logs contain information about task

44

Trace Log
Files

Cloud Service Provider Cluster

Computing
node 1

...

Data Cleaning and
Preparation

Possible
Actions

Trace Log
Files

Data Cleaning and
Preparation

Possible
Actions

Features
Extraction

{Tasks IDs}, Prediction Model

Failure-Aware Task
Scheduler (Algorithm 2)

Tasks Predicted
as Failed

Cloud Manager

Map of Tasks and their
Remedy Actions

No Actions for Tasks
Predicted as Terminated

Task Failure Prediction
(Algorithm 1)

Training and Testing

Prediction
Tasks Predicted As

Ultimate Failed

Failed Tasks to
be Rescheduled

......Computing
node 2

... Computing
node n

Figure 4.3: Proactive Service Availability Framework

events, usages, and scheduling nodes that are located in separate files. Each file contains

a tabular set of records and their columns (attributes). Each record represents information

for one task sample. In general, trace files contain many noisy and missing data (Null).

Here we discuss some of the data cleaning and preparation that we have done for the input

trace logs. For example, some numeric attributes contain characters instead of numbers.

We neglect them as noisy data. Any missing data is filled with the corresponding default

values. For example, we replace Null values of task usage with zero. Other modules of the

framework require events and usage information together for tasks. Therefore, we wrote a

script file to merge the files and get the required information for each task. Usages of tasks

are logged periodically based on the platform. For example, in Google platform, task usage

is logged every five minutes. Therefore, we wrote another script file to aggregate the total

usage and compute the mean usage for each task. Tasks can have the same identification

(ID) whether they belong to the same or different users. To uniquely identify tasks, we

combined the ID of the task with the ID of the job for which the task belongs. The same

task can run on multiple nodes at different times, so we combined together task ID, job ID,

and ID of the node where the task was executed to distinguish the task usage per node.

4.3.2 Feature Extraction

Through analyzing large datasets, we find the correlations between the task’s attributes

(features) and its failure in each dataset separately. In Google trace logs, we found that

the unsuccessful tasks take a longer execution time than the successfully terminated tasks.

45

We computed the cumulative distribution function (CDF) for the tasks extracted from the

trace logs that were executed during the first day. Figure 4.4 shows the CDFs for the

Figure 4.4: CDFs for Tasks Execution Time per Termination Status

execution time of tasks for each termination status. An unsuccessful task has a higher

chance to be resubmitted more than one time until it is successful. Some tasks are of

type debugging and testing, and take longer execution time before the user or the system

administrator kills them. Usually, failure tasks get stuck or frozen for a while before they

terminate unsuccessfully. In some situations, the task with a lower priority can run for

a long time before getting evicted by another task that has a higher priority. Figure 4.5

shows the CDFs for tasks resubmission for each termination status during the first day. We

can see the frequency of unsuccessful tasks resubmission is higher than the frequency of

finished tasks resubmission. We found 60% of failed tasks, 20% of evicted tasks, and 11%

of killed tasks are resubmitted, while only 5% of finished tasks are resubmitted during the

entire trace period (29 days). Usually, the user keeps trying to resubmit unsuccessful task

until it terminates successfully. In some cases, the user tries to resubmit the finished task

for validation purposes. As we can see in Figure 4.5, some of the killed tasks have been

resubmitted more than 250 times.

We studied the effect of both task priority and scheduling class level on task failure.

Figure 4.6 shows ratios of tasks termination status per priority value for all the tasks exe-

cuted during 29 days. We notice both tasks with lower and higher priority have a higher

ratio of failure. We believe this is because tasks with lower priority are prone to get evicted

46

Figure 4.5: CDFs for Tasks Resubmission Count per Termination Status

by tasks with higher priority. On the other hand, usually tasks with higher priority demand

more resources than the tasks with lower priority. Shortage of fulfilling the resource de-

mands of any task can lead to its failure. Figure 4.7 shows ratios of tasks termination status

per scheduling class level during the entire trace period. We notice tasks with lower class

level have a lower chance to fail. We do not have a clear clue for this because the dataset

does not reveal detailed information regarding the scheduling class level. All that we know,

the class level is used during the task scheduling process to satisfy certain constraints. To

investigate the relationship between resource usage and task termination status, we com-

puted usage of CPU, RAM, and Disk I/O consumed by tasks for each termination status

during the first day. Figures 4.8, 4.9, and 4.10 show the usage of CPU, RAM, and Disk IO

respectively for tasks per termination status. We can see unsuccessful tasks consume a large

amount of resources. Google dataset suffers from main limitations, that some of the fea-

tures are with empty values for many of the tasks. In addition, the complete information of

tasks is located in different schemas that need to be merged together. Through analyzing

large Google traces, we found other features that can play a role in the termination status

of the task. These features can be used in training and testing datasets for the prediction

module to predict task status. We categorized features into static and dynamic. Static fea-

tures can be extracted directly from the tasks events traces. They mainly represent resource

demand and the configuration of tasks. We extracted the following static features for tasks

from Google trace logs: <Task ID, Job ID, Machine ID, Scheduling Class Level, Priority,

47

Figure 4.6: Ratios of Tasks Termination Status per Priority

Figure 4.7: Ratios of Tasks Termination Status per Class Level

48

Figure 4.8: CPU Usage of Tasks per Termination Status

Figure 4.9: RAM Usage of Tasks per Termination Status

49

Figure 4.10: Disk Usage of Tasks per Termination Status

CPU Demand, RAM Demand, Disk Space Demand, Task Termination Status >. Dynamic

features require special computations to be extracted because they change by changing the

scheduling of the task, which can be extracted from tasks usage traces. We extracted the

following dynamic features for tasks: <Mean Execution Time, Mean CPU Usage, Mean

RAM Usage, Mean Disk Space Usage, Mean I/O Usage >. We merged both the static and

dynamic features for each task to build the training and testing dataset for the prediction

module.

In Alibaba trace logs, we noticed a correlation between task instance failure and the

computing machine (node) that hosts the instance. For some machines, the count of the

failed instances of the same or different tasks is high. On the other hand, some other

machines register zero cases for instance failure. As shown in Figure 4.11, the count of the

failed instances reaches up to 64 for some individual machines. We computed the failure

occurrences of instances per each task ID. As shown in Figure 4.12, for some tasks, the

number of the failed instances that belong to the same task type reaches up to 4,000. Some

of the instances failed on the same or different computing machines. Although the ratio

2.3% of the failed instances is very small, it is worth mentioning that the failed instances

consumed a total of 9,684 CPU units during 12 hours time period. The logs miss the RAM

usage for many of the failed instances. We extracted the following static features for all

task instances: <Task ID, Job ID, Machine ID, Number of Instances, Requested CPU,

Requested RAM, Instance Termination Status >. We also extracted the following dynamic

50

features: <Mean CPU Usage, Total Sequence Number >. Alibaba dataset includes a small

number of tasks that have failed compared to the ones that have succeeded. We consider

this as a limitation for us having small number of the failed tasks in the training dataset. In

addition, the dataset misses the RAM and Disk usages information of tasks.

Figure 4.11: Count of Tasks Instances Failures per Virtual Machine ID

LANL Trinity trace logs do not include any information about tasks. However, it in-

cludes information about jobs that have been executed on the cluster. Therefore, we inves-

tigated the correlation between job features and their failure. We noticed that the failed jobs

demand more computing nodes and resources to execute than the successfully ended jobs.

As shown in Figure 4.13 the mean of the demanded nodes by the failed jobs is equal to

345, and 250 by the successfully terminated jobs. In addition, failed jobs have more tasks

than successful jobs. As shown in Figure 4.14, the mean of the tasks counts of the failed

and successfully terminated jobs is equal to 4,366 and 2,630 respectively. We believe this

is because the requested resources that are not satisfied during the execution time will lead

the job to its failure. We extracted the following static features from the Trinity trace logs:

<User ID, Group ID, Submit Time, Start Time, Queue Time, Requested Nodes, Tasks Num-

ber, Job Termination Status >. Trinity dataset suffers from main limitations, that it only

includes information about jobs and misses the information for their tasks. In addition, it

does not include the information for the RAM and Disk usages of the jobs. Note that we

defined the features for each dataset in the features extraction module. For any new dataset

from a new platform, the features are required to be defined as well.

51

Figure 4.12: Count of Instances Failures per Task ID

Figure 4.13: Mean of Requested Nodes per Job Termination Status

52

Figure 4.14: Mean of Tasks Count per Job Termination Status

4.3.3 Task Failure Prediction

Task failure prediction is an important module of the framework that uses one of the deep

machine learning models, ANN, or CNN, to predict termination status for a given set of

tasks during their execution time. Algorithm 1 describes the functionality of the task fail-

ure prediction module. The algorithm takes a set of tasks T , dataset D, prediction model

M, and parameter O as input. It returns the map predFailedTasksMap as an output that

includes the tasks for which the prediction status is predicted as failed and the failure prob-

ability of each task. Set T represents the tasks for which the termination status is required

to be predicted. Set D represents the dataset that is extracted from input trace logs, cleaned

by the cleaning and preparation module, filtered, and compliant with the feature extraction

module. D is used to train and test the selected prediction model, and to extract the tasks

information. The parameter M determines the required prediction model to be used dur-

ing the prediction process. The parameter O is an administrative operation to determine

the flow of the module, either for training and testing the model or to use the model for

prediction purposes. The algorithm begins by initializing the map predFailedTasksMap

with a Null value (line 1). It then selects the prediction model as either ANN or CNN

based on the parameter M (line 2). If the parameter O is equal to ‘Training’ the selected

model requires training and testing with list T as empty, otherwise, the model is used for

the prediction. This is to avoid training and testing the model every time the prediction

53

process is called to reduce the computing cost. Note that it is required to train and test the

model at least one time before starting the first prediction request. The parameter O can be

used any time, based on the request, to train and test the model using a new input dataset

D. If the selected prediction model requires training (line 3), the algorithm assigns 80% of

D as training dataset (line 4) and 20% as a testing dataset (line 5). The training and testing

processes run in lines 6 and 7 respectively. In this case, the algorithm will return an empty

predFailedTasksMap and terminate (line 23) because the prediction process is not called.

If O equals to ‘Prediction’, the prediction process for a given set of tasks T is required (line

9). For each task t ∈ T (line 10), the algorithm extracts the complete information of t (line

11). The algorithm predicts the termination status (line 12) and the failure probability (line

13) of t using the selected prediction model. In case the termination status of t is predicted

as ‘Failed’ (line 14), the algorithm adds a tuple that includes t and its f ailureProbability

to the map predFailedTasksMap (line 15). Otherwise, if the termination status of t is pre-

dicted as ‘Terminated’ (line 17), it adds t to the list of tasks that are predicted as terminated

predTerminatedTasksList (line 18). Once the termination status is predicted for all tasks

∈ T , the algorithm returns the map predFailedTasksMap and terminates (line 23).

For computational complexity of Algorithm 1, the prediction module uses the approach

described in Algorithm 1 to predict the termination status for a given set T of tasks. In

some cases, the algorithm requires to train and test the selected model before the prediction

process starts. In the case of training and testing, the algorithm takes an input dataset of size

n tasks, and processing costs a linear execution time O(n). In case the algorithm is used

for prediction, it takes the set T of size n tasks. For each task t ∈ T , the prediction model

predicts the termination status and failure probability of t, which costs O(2) execution

time. If the termination status is predicted as ‘Failed’, t and its failure probability are added

to the map of tasks that are predicted as failed which costs O(2) execution time. If the

termination status is predicted as ‘Terminated’, t is added to the list of terminated tasks

which costs O(1) execution time. In the worst-case scenario, each t costs O(4) execution

time. So the entire cost to process all the tasks ∈ T is O(4n) that can be simplified as a

linear cost O(n) execution time.

54

Algorithm 1 Task Failure Prediction
Input: Tasks Set T , Dataset D, Model M, Operation O
Output: Map predFailedTasksMap

1: predFailedTasksMap = Null
2: predModel← (ANN,CNN) based on M
3: if (O == ‘Training’) then
4: trainSet← 80% of D
5: testSet← 20% of D
6: predModel.startTraning(trainSet)
7: predModel.startTesting(testSet)
8: end if
9: if (O == ‘Prediction’) then

10: for each t ∈ T do
11: t← getTaskIn f ormation(D, t.taskID)
12: terminationStatus← predModel.predictTerminationStatus(t)
13: f ailureProbability← predModel.getFailureProbability(t)
14: if (terminationStatus == ‘Failed’) then
15: Add < t, f ailureProbability > to predFailedTasksMap
16: else
17: if (terminationStatus == ‘Terminated’) then
18: Add t to predTerminatedTasksList
19: end if
20: end if
21: end for
22: end if
23: return predFailedTasksMap

55

4.3.4 Application Task Scheduling

The failure-aware scheduler is considered the core module of the proposed framework. The

main purpose of the module is to take the appropriate remedy actions for tasks that are pre-

dicted as failed by the prediction module and reschedule them immediately on computing

nodes of the cluster to increase their chances to terminate successfully. We discuss the

failure-aware scheduler module in detail in the next chapter 5.

4.4 Experiments and Results

4.4.1 Experimental Setup

We conducted several types of experiments using three different datasets collected from

the computing clusters of Google [6], Alibaba [21], and LANL Trinity [22]. The purpose

of the experiments is to evaluate our proposed framework including the modules and used

methods in this research work. All the experiments are carried out using Python version 3

on 64-bit Windows 10 machine equipped with an Intel Core i7-8665U 2.11 GHz processor

and 16 GB of RAM.

4.4.2 Evaluation of Prediction Models

The prediction module uses one of the deep learning models either ANN or CNN to predict

the termination status of given tasks. Both ANN and CNN are implemented using sequen-

tial API from TensorFlow 2 platform. Each includes a neural network that is composed

of one input, two hidden, and one output layer. For CNN model, all the layers are convo-

lutional. The number of neurons for the input layer for both models varies based on the

input dataset. For the Google dataset, the number of neurons in the input layer equals to

the number of the input features of the task that is equal to 13. For Alibaba and Trinity

datasets, the number of neurons in the input layer equals 8 and 7 respectively. The number

of neurons in each hidden layer is equal to 100, and the number of neurons in the output

layer is equal to 1 for all the input datasets and models. The models use Adam optimizer,

Sigmoid activation function for classification, and Relu activation function for regression.

In all the three datasets, we divided 80% of the input dataset for training and 20% for testing

the prediction models (ANN, CNN). The models were trained for 100 epochs (iterations).

The models were trained and then tested using different number of tasks based on the input

56

dataset. Note that the used datasets for training and testing are not of time-series form.

The total number of input tasks from Google equals 1,000,000. Using the Alibaba dataset,

the total number of input tasks equals 35,330. Using the Trinity dataset, the total number

of input jobs equals to 12,872. For the three input datasets, 50% of the total input tasks

and jobs were terminated successfully and the other 50% were failed. Note that the total

number of input tasks from Alibaba, and jobs from Trinity datasets are less as compared to

Google because they include less number of the failed tasks and jobs. However, the models

used all the failed tasks in Alibaba and Trinity.

To evaluate the prediction models, we measured the Accuracy and Error Loss of both

models ANN and CNN using three input datasets. Accuracy is a commonly used mea-

surement in machine learning that describes the percentage of the test samples that are

predicted correctly. Error Loss is another commonly used measurement in machine learn-

ing that describes the distance (difference) between the true value of the input sample and

its predicted value. Figure 4.15 shows the accuracy of the ANN model using the three

datasets. ANN achieves a high accuracy of around 94% using the dataset of Google, 89%

using Trinity, and 84% using Alibaba. Figure 4.16 shows the error loss of ANN. It achieves

a low error loss of around 14% using Google dataset, 24% using Trinity, and 23% using

Alibaba. We believe using the Google dataset, ANN achieves the highest accuracy and

lowest error loss because the dataset includes a large input number of both terminated and

failed tasks, where the model gets longer and deeper training to predict the task termination

status. In addition, the Google input dataset includes more features (attributes) that help to

increase the density of the data, hence increasing the similarity between tasks which leads

to an increase in the accuracy.

The same thing is applied to CNN model. As shown in Figure 4.17, CNN achieves

a high accuracy of around 92% using the dataset of Google, 88% using Trinity, and 83%

using Alibaba. Also, CNN achieves a low error loss of around 18% using the dataset of

Google, 28% using Trinity, and 25% using Alibaba as shown in Figure 4.18. We believe

ANN achieves higher accuracy than CNN because ANN considers all the input features

together during the training process, while CNN may not consider all the features together

due to dimensional input transformation during the training process.

57

Figure 4.15: Accuracy of ANN using three datasets

Figure 4.16: Error Loss of ANN using three datasets

58

Figure 4.17: Accuracy of CNN using three datasets

Figure 4.18: Error Loss of CNN using three datasets

59

4.5 Summary

We proposed a proactive service availability framework that can predict the termination

status for a given set of applications tasks during the runtime. The framework uses deep

learning ANN and CNN models for prediction. Both ANN and CNN were trained and

tested using three datasets from Google, Alibaba, and Trinity clusters. The results show

that ANN can predict task failure with high accuracy of around 94%, and a low error loss

of around 14% using the Google dataset. CNN can predict task failure with an accuracy of

around 92%, and error loss of around 18% using the same dataset.

60

Chapter 5

Failure-Aware Application Task
Scheduling

Scheduling application tasks plays an important role in the availability of the task and

the overall application. For example, scheduling a task at a computing node with a high

available value will increase the availability of the task, while scheduling it at a node with

lower availability will decrease the availability of the task. Successful termination of task

helps to save and utilize resources of the cluster where the task is executed. In case of task

failure, the task may need to be rescheduled several times before it terminates successfully

that leads to waste more resources compared to what the task demands. Scheduling a set

of tasks at the underlying computing nodes that are located in cloud DCs is considered

NP-hard problem. This motivated us to propose a local heuristic solution for scheduling

tasks that are predicted as failed to boost their chance to terminate successfully. In addition,

we propose local heuristic solution to schedule containers to utilize resources of computing

nodes. The rest of this chapter is organized as follows. Section 5.1 discusses thoroughly the

failure-aware scheduler module of the proposed framework that is discussed in Section 4.3

of the previous chapter. Section 5.2 introduces heuristic solution for container scheduling

for resource utilization at DC, and Section 5.3 provides a summary of the chapter.

5.1 Failure-Aware Task Scheduling

Failure-aware task scheduler is a core module of the proactive framework of Section 4.3.

The main purpose of the module is to take a set of remedy actions including scheduling

61

at computing nodes for the tasks that are predicted as failed by the prediction module

of the same framework. We propose a set of remedy actions that can be taken by the

scheduler module based on the analysis of the trace log files of each platform. From Google

trace logs, we consider the following set of remedy actions: {change task scheduling node,

change task priority, change task scheduling level}. Although there are other actions such

as resource demands that can play a role in the termination status of the task, we believe

such actions should not be changed because they are considered as requirements. From

Alibaba trace logs, we consider only the remedy action {change task scheduling node}
because the traces do not include other scheduling information that can be changed for the

tasks, such as priority and scheduling level. From Trinity trace logs, we do not consider any

action because the trace logs miss the configuration information and scheduling nodes for

jobs. Note that the set of remedy actions is an input for the failure-aware scheduler module.

We define the actions for Google and Alibaba datasets in the Possible Actions repository of

the framework. For any new platform, the actions have to be defined as well. Although the

actions are limited, the scheduler module faces two main challenges. The first challenge is

to determine the order of failed tasks to apply the remedy actions. The second challenge is

to select the actions. To illustrate the actions selection challenge, for example in the Google

dataset, there are 12,500 available nodes to schedule tasks, where task priority values range

between 0-11, and task class level values range between 0-3. This leaves the scheduler

module with a very large combination of actions equal to 12,500*12*4= 600,000 to take

for only one task. To handle all the tasks, this number is multiplied by the total number of

tasks.

Actually, knowing the sequence of tasks and actions plays a key role in the perfor-

mance of the cluster in general, and in the termination status of tasks in particular. We

believe using the brute force approach to know the best sequence of tasks and actions will

take a longer time and require higher computations. Therefore, the brute force approach is

not a feasible solution, especially where the actions have to be selected and taken during

the runtime, and where some tasks can not tolerate the delay due to their requirements.

Therefore, we map tasks sequence and actions selection as an optimization problem with

multiple constraints. We formulate the problem as an integer linear programming (ILP)

model with an objective function and a set of constraints. In addition, we propose a local

heuristic solution for the model. The objective function is to find a set of actions to apply

62

for a set of tasks that are predicted as failed, in such a way that minimizes the failure prob-

ability of tasks as well as their resources (CPU and RAM) usage. The objective function is

formalized in Equation (5.1), where T is the set of tasks that are predicted as failed by the

prediction module, A is the set of actions that are available in the possible actions repository

and can be taken for T , f ailureta is the failure probability, CpuUsageta is the CPU usage,

and RamUsageta is the RAM usage of task t if the action a is taken. The binary decision

variable Xta with value 1 indicates that action a is taken for task t, and 0 value otherwise,

as defined in Equation (5.2).

minimize
|T |

∑
t=1

|A|

∑
a=1

(f ailureta +CpuUsageta +RamUsageta)×Xta (5.1)

Xta =

1, if action a is taken for task t

0, otherwise
(5.2)

The set of constraints for the model, as in Equations (5.3 - 5.9), are defined to control

the actions selection process and respect the task scheduling requirements. The constraints

force the following: at least one action a should be taken for any task t as formalized in

Equation (5.3). Task t should be scheduled on a maximum of one node, where N is a set of

nodes that are available for scheduling tasks as in Equation (5.4). Note that N ∈ A, where

the scheduling nodes are considered as actions that can be taken for tasks ∈ T . In other

words scheduling task t at node n ∈ N is considered as action a ∈ A. The selected node

n ∈ N should have enough resources, CPU, RAM, and Disk, to host task t as in Equations

(5.5 - 5.7). Note that we assume scheduling task t at node n ∈ N does not have any impact

on the other tasks that are already scheduled on n. Task t should not be collocated with any

other dependent task k on the same selected node n ∈ N as in Equation (5.8), where the set

Di includes the dependent tasks. Task y should not be collocated with any other redundant

(backup) task z on the same selected node as in Equation (5.9), where the set Ri includes

the dependent tasks.
|A|

∑
a=1

Xta ≥ 1 ∀t ∈ T (5.3)

|A|

∑
a=1|a∈N

Xta ≤ 1 ∀t ∈ T (5.4)

|T |

∑
t=1

CPUt×Xta ≤CPUa ∀a ∈ N (5.5)

63

|T |

∑
t=1

RAMt×Xta ≤ RAMa ∀a ∈ N (5.6)

|T |

∑
t=1

Diskt×Xta ≤ Diska ∀a ∈ N (5.7)

Xta +Xka = 1 ∀t and k ∈ T ,∀t and k ∈ Di,∀a ∈ N (5.8)

Xya +Xza = 1 ∀y and z ∈ T ,∀y and z ∈ Ri,∀a ∈ N (5.9)

5.1.1 Heuristic Solution

We propose a local heuristic approach to solve the proposed ILP model and find the se-

quence of tasks and remedy actions that achieve the objectives. To avoid the burden of

the brute force approach, the heuristic approach aims to reduce the search space to find a

solution for ILP model in a short time. Therefore, we divide the scheduling nodes that are

defined in the Possible Actions repository into three groups according to the availability of

the nodes regardless of the input dataset. This categorization is based on our assumption

that can be used in ILP model. The high availability group includes nodes with avail-

ability values greater than or equal to 0.9, medium availability group with values greater

than or equal to 0.75 and less than 0.9, low availability group with values lower than 0.75.

We compute node availability as the ratio of the node failure to its recovery as defined in

Equation (5.10), where MTTF refers to the mean time between two consecutive failures,

and MTTR refers to the mean time to repair the node after the failure. Both Google and

Alibaba datasets include information about events of nodes such as adding, updating, and

removing the nodes including the timestamp of each event. We consider events updating

and removing as node failure, and adding events as node repair. The heuristic approach tries

to schedule tasks with high failure probability at the nodes with high availability values to

boost the chances of tasks terminating successfully.

Availability(node) =
MT T Fnode

MT T Fnode +MT T Rnode
(5.10)

64

Algorithm 2 describes the proposed local heuristic approach to find the sequence of

tasks and their remedy actions. The algorithm takes the tasks map T that is sent by the

prediction module, and the reference R for the Possible Actions repository as input. It

returns the map TasksRemedyActionsMap that includes the sequence of tasks and their

remedy actions to be taken. The cloud manager at the platform applies the remedy actions.

The algorithm begins by initializing the map TasksRemedyActionsMap (line 1), and the

list of ultimately failed tasks UltimateFailedTasksList (line 2) with a Null value. Then

it sorts tasks ∈ T in descending order according to the failure probability (line 3). This

is to give priority to the tasks that have high failure probability values. It retrieves the

set N of scheduling nodes (line 4), and the set A of configuration (line 5) possible actions

from R. The algorithm groups and sorts the nodes N into the set G in descending order

according to their availability (line 6). For each task t ∈ T , the algorithm considers initially

that no solution exists for t (line 8), and the list of remedy actions RemedyActionsList is

empty (line 9). The minimum cost minCost of the selected remedy for t is initialized with

a high value (line 10). The remedy actions selection process starts with actions of type

scheduling node. It searches for scheduling node n per group g ∈ G (line 11) instead of

all the nodes ∈ N. This will help to reduce the search space to find the scheduling node,

and hence reduce the execution time to find the solution. For each node n, the algorithm

checks if n has enough resources such as CPU and RAM to host task t, and that task t has

no conflict, such as redundancy, with any other tasks that are hosted on n (line 13). If n

passes the constraints check to host t, the algorithm sets n as a candidate scheduling node

for t (line 14). With each selected n, the algorithm tries all other possible configuration

actions ∈ A (line 15). For each configuration a ∈ A, it sets a for t (line 16). With the new

actions, the algorithm uses the selected prediction model (ANN, CNN) by the prediction

module to predict the termination status of t (line 17). If the predicted termination status

of t is changed to ‘Terminated’ (line 17), the algorithm marks a solution is found for t (line

18). Then the cost for the selected actions is computed as the summation of the failure

probability, predicted CPU, and RAM usage of t (line 19). If the cost is less than the

current minimum cost minCost (line 20), the algorithm sets cost as minimum cost minCost

(line 21), n as a candidate scheduling node remedy action (line 22), and a as a candidate

configuration action (line 23) that achieve the minimum cost so far. Once the approach

tries all the scheduling nodes ∈ group g and the actions ∈ A, it checks if a solution is found

so far for t (line 29). If so, the approach adds n (line 30) and a (line 31) that achieve the

65

minimum cost to the list of remedy actions RemedyActionsList. Then, a tuple includes t

and its corresponding remedy actions that are stored in RemedyActionsList is added to the

map TasksRemedyActionsMap (line 32). If no solution is found for t yet, in other words,

the termination status of t is still ‘Failed’, the algorithm continues exploring the solution

using the next g ∈ G (line 11). The algorithm tries all the actions and if the predicted

termination status stays as ‘Failed’, the algorithm considers these tasks to fail ultimately.

For each task t that is not located in the map TasksRemedyActionsMap, the algorithm adds

t to the list of ultimate failed tasks UltimateFailedTasksList (lines 37-41). At the end, the

algorithm returns the map TasksRemedyActionsMap and terminates (line 42). Note that

the cloud manager can use TasksRemedyActionsMap to execute the remedy actions for the

corresponding tasks at the cloud platform.

5.1.2 Computational Complexity Analysis

The failure-aware scheduler module uses the approach described in Algorithm 2 to handle

tasks that are predicted as failed. In the beginning, the algorithm sorts the input tasks map

T and the scheduling nodes set N, and groups them based on the availability into the set G.

Here any sorting algorithm can be applied. Sorting T costs O(nlogn) execution time, and

grouping N costs O(n) execution time. After sorting and grouping, the algorithm handles

each task t ∈ T individually. So for each t, it tries to find the candidate scheduling node

n and the configuration a as remedy actions for t that achieves the minimum cost. We

optimize the actions selection process to reduce the number of selected actions. So the

algorithm sorts and divides the nodes set N into groups set G based on the availability. This

is to reduce the search space to find remedy actions for t including the scheduling node

n. So for each t ∈ T , the algorithm searches for n in each group g ∈ G starting from g

with the highest availability. With each n ∈ g, the algorithm tries each configuration action

a ∈ A for t. At the end of each g and A, the algorithm checks if a solution is found for

t that includes n and a for which the termination status of t is changed to ‘Terminated’

and achieve the minimum cost. If so, the algorithm stops exploring other actions for t.

If not, it continues exploring other actions starting from the next g. In the average case,

our experiments show, the prediction process takes O(n) for each t. The actions selection

process takes logarithmic time O(logn) for each t. So for all the n number of tasks in

T , the prediction and actions selection processes cost an average O(n2 +nlogn) execution

time. In the worst-case scenario which has a low chance to happen, the scheduler may

66

Algorithm 2 Failure-Aware Task Scheduler
Input: Tasks Map T , Possible Actions Repository R
Output: Tasks Actions Map TasksRemedyActionsMap < Task,Actions >

1: TasksRemedyActionsMap = Null
2: UltimateFailedTasksList = Null
3: Sort T descending based on failure probability
4: N← R.getScheduleNodesActions()
5: A← R.getCon f igurationActions()
6: G← group and sort N descending based on availability
7: for each t ∈ T do
8: f indSolution = False
9: RemedyActionsList = Null

10: minCost = ∞

11: for each g ∈ G do
12: for each n ∈ g do
13: if (n.getResources()≥ t.getDemandResources()) and

(t has no dependency or redundancy with any other task hosted on n) then
14: t.setScheduleNodeAction()← n
15: for each a ∈ A do
16: t.setCon f igurationAction()← a
17: if (predModel.predictTerminationStatus(t) ==‘Terminated’)

then
18: f indSolution = True
19: cost = predModel.predictFailProbability(t)+

predModel.predictCpuUsage(t)+predModel.predictRamUsage(t)
20: if (cost <minCost) then
21: minCost← cost
22: minSchedNodeAction← n
23: minCon f igAction← a
24: end if
25: end if
26: end for
27: end if
28: end for
29: if f indSolution then
30: RemedyActionsList.add(minSchedNodeAction)
31: RemedyActionsList.add(minCon f igAction)
32: TasksRemedyActionsMap.add (t,RemedyActionsList)
33: break
34: end if
35: end for
36: end for
37: for each t ∈ T do
38: if t /∈ TasksRemedyActionsMap then
39: UltimateFailedTasksList.add(t)
40: end if
41: end for
42: return TasksRemedyActionsMap

67

explore all the actions in the repository R including all the nodes in the groups, and the

prediction termination status of each t ∈ T stays ‘Failed’ (not changed). In such a case,

for T the prediction and actions selection processes cost O(2n2), which is greater than the

average-case scenario.

5.1.3 Experiments and Results

For the experiments to evaluate the failure-aware task scheduler, we used the same setup to

evaluate the modules of the proactive framework as described in Section 4.4 of the previous

chapter. We evaluated the ability of the failure-aware task scheduler module for taking the

right remedy actions and protecting tasks that were predicted as failed. As shown in Figure

5.1, using Google dataset the scheduler could protect around 185,000 (37%) out of 500,000

total input failed tasks by changing the scheduling node among 12,500 input available

nodes, 159,000 (31.8%) by changing task priority, and 29,000 (5.8%) by changing the

scheduling class level. We notice the scheduling node as a remedy action has more effect

on the task termination status than the priority and class level because the failure of the node

will lead to an inevitable failure of all tasks that are executed on the node. Task priority

has more effect than the scheduling class level. We believe this is because priority plays

a key role in the task eviction. In addition, the range of the priority values is larger than

the range of the class level values. As a result, the scheduler has more options to change

the priority of the task and finish successfully. To check the impact of the available nodes

in the cluster, we found the ratio of the protected tasks to the scheduled tasks increases by

increasing the number of the nodes. As shown in Figure 5.1, the number of the protected

tasks by changing the scheduling node using 12,500 nodes is 185,000 (37%), which is

higher than 170,000 (34%) protected tasks using 1,300 nodes. This is because the scheduler

will have more chances to reschedule the failed task, hence the task will have a higher

chance to terminate successfully. Using the Alibaba dataset, the scheduler could protect

around 7,052 (40%) of all 17,665 input failed tasks by changing the scheduling nodes of

tasks as the only available remedy action by the dataset. The scheduler could save more

tasks using the Alibaba dataset than using the Google dataset. We believe this is because

the scheduling node in Alibaba dataset plays a crucial role in the success or failure of the

tasks that are hosted on the node. As shown in Figure 4.11, some nodes in the Alibaba

cluster failed more frequently. So rescheduling the task on a stable and highly available

node can boost the chance of the task to terminate successfully. A similar figure that can

68

show the number of the protected tasks using the Alibaba dataset is not possible, since it

includes only one remedy action.

Figure 5.1: Protected Tasks - Google Dataset

To recognize the significance of early task failure prediction and taking the remedy

actions, we compare the resource usage with and without using our proposed proactive

failure-aware task scheduling framework. We assume the prediction process is done af-

ter 10% of elapsed execution time for each task. Figures 5.2, 5.3, 5.4, and 5.5 depict

the comparison for the usages of CPU, RAM, Disk space, and Disk I/O respectively with

and without using the framework for tasks that have been executed during the first day at

Google cluster. As we can see, using the framework will reduce the resource usage of dif-

ferent types remarkably. As shown in the Figures 5.2, and 5.3, at some points in time the

framework saves up to 2,000 CPU and 1,500 RAM units. This is because the framework

will help to detect tasks failures at an early stage of their execution and take the appro-

priate remedy actions immediately to protect the tasks from subsequent failures. In other

words, the framework will not wait until the tasks actually fail and resubmit them, which

can save the wastefulness of the resources. Using the Alibaba dataset, it is difficult to show

the significance of the framework in saving the resources, and this is because the ratio of

the failed tasks is very small compared to the terminated task. In addition, the failed tasks

are spread during the 12 hours trace period. However, it is worth mentioning here, for the

Alibaba dataset our framework could save a total of 9,684 CPU units during the 12 hours.

We could not compute the saved RAM units because many of tasks in the input trace logs

69

miss this information. Using the Trinity dataset, the prediction module could predict the

termination status for a given set of jobs, however, the scheduler module could not take

remedy actions for the failed jobs and this is because the trace logs miss the scheduling

nodes and configuration parameters for the jobs. Therefore, we assumed the jobs that are

predicted as failed will be terminated immediately without taking any further action. In

other words, the failed job will not be resubmitted. Figure 5.6 shows the amount of CPU

units that our framework could save during the entire period of Trinity trace logs, as a result

of terminating the jobs that are predicted as failed. Other figures that show the amount of

saved resources, such as RAM and Disk, are not possible to generate for the Trinity dataset,

since the dataset includes only the CPU information of the jobs.

Figure 5.2: CPU Usage Comparison - Google Dataset

To measure the scalability and performance of the framework, we measure the average

execution time that the framework takes to predict the termination status for different sets

of tasks and to take the right remedy actions for the tasks that are predicted as failed.

Using both Google and Alibaba datasets, we measure the average execution time for 7

sets of tasks with different sizes that range between 2,000 and 128,000 tasks. Using the

Google dataset, we measure the average execution time for the same sets of tasks using 3

different sets of computing nodes with different sizes that are equal to 1,300, 5,000, and

12,500 (maximum number) nodes. Using the Alibaba dataset, we measure the average

execution time for the same input sets of tasks using only one set of computing nodes that

is equal to 1,300 nodes which is the maximum number of nodes that are available in the

70

Figure 5.3: RAM Usage Comparison - Google Dataset

Figure 5.4: Disk Usage Comparison - Google Dataset

71

Figure 5.5: Disk IO Usage Comparison - Google Dataset

Figure 5.6: CPU Usage Comparison - Trinity Dataset

72

Alibaba computing cluster. Note that all the tasks and nodes sets from both Google and

Alibaba datasets are selected randomly. As shown in Figure 5.7, using Alibaba dataset

the framework took less execution time than using Google dataset for the same size of

input tasks sets and using 1,300 available computing nodes. For example, the framework

took around 8 minutes to predict and take remedy actions for tasks set of size 128,000

using 1,300 nodes that are taken from Alibaba dataset, while the scheduler took around 9.5

minutes to predict and take actions for the same size of tasks set and nodes set that are taken

from Google dataset. We believe this is because the number of the remedy actions that are

available from Google dataset for the scheduler is higher than the number of actions that are

available from the Alibaba dataset. The scheduler, therefore, tries more actions to protect

tasks that are predicted as failed when using the Google dataset than using the Alibaba

dataset. In addition, using the Google dataset the scheduler has a high chance to deal and

handle a higher number of failed tasks than using the Alibaba dataset even for the same

input tasks set. This is because the Alibaba dataset has a smaller number of failed tasks

as compared to the Google dataset. As a result, the scheduler takes more time to handle

tasks that are taken from the Google dataset. To check the impact of the available nodes

in the cluster on the performance of the framework, we found the more nodes are available

the longer execution time the framework takes. As shown in Figure 5.7, the framework

took around 7.7 minutes to handle 32,000 tasks using 5,000 nodes, while it took a longer

execution time of around 9 minutes to handle the same set of tasks using 12,500 nodes.

This is because, with a high number of computing nodes, the scheduler will have more

nodes options to check and compute the cost function to select the scheduling node for

each task. Hence, the scheduler will take a longer execution time to process all the given

tasks.

5.2 Container Scheduling for Resource Utilization

5.2.1 Container Scheduling Model

Scheduling of containers at the underlying computing nodes that are located at the DC plays

an important role to utilize the resources of the nodes. Resource utilization of nodes helps

to enhance their performance and availability which can be reflected on the containers that

provision the application services. In other words, resource utilization at container-based

cluster helps to enhance the availability and quality of the provided services. Analysis of

73

Figure 5.7: Average Execution Time of the Failure-Aware Scheduler

Alibaba dataset for container-based cluster [21] show that the average resources usage of

the containers is very low compared to the average resource demand of the same containers.

As shown in Figure 5.8, the maximum average CPU usage is 13.7% out of the total 6 CPU

units demanded. Figure 5.9 shows that the maximum average RAM usage is 60% out of

the total 5 RAM units requested.

As we notice there is a big difference between the demand and usage of the resources by

the containers that were executed in the Alibaba computing cluster. We believe this is due

to the container scheduling issue, where the used scheduler does not map the demand re-

sources with the current usage of the computing nodes (servers in the Alibaba cluster). This

motivated us to propose a scheduling solution for containers at computing servers in DCs.

We formalized container scheduling as ILP model with an objective and set of constraints.

The main objective of the scheduling process is to schedule containers to be hosted at the

computing servers based on their resources demands, in such a way to minimize the total

resources usage of the containers as defined in Equation (5.11). Minimizing the resources

usage by the containers helps to reduce the workload at the servers that help to increase

their availability, hence this is reflected on the availability of the service that is related to

the container that is hosted at the server. The resourcesUsage(containeri) is the resource

usage of the containeri that is predicted by ANN method. The binary decision variable Xi j

with value equals to 1 indicates that containeri is hosted on the server j, and with value 0

otherwise as in Equation (5.12). The selected server j should have enough resources (CPU,

74

Figure 5.8: Containers Average CPU Usage out of the Demand

Figure 5.9: Containers Average RAM Usage out of the Demand

75

Ram, and Disk) to host containeri. So we define a set of constraints as defined in Equations

(5.13-5.15) to control the scheduling process.

minimize
|C|

∑
i=1

|S|

∑
j=1

resourcesUsage(containeri)×Xi j (5.11)

Xi j =

{
1, if server j hosts containeri

0, otherwise
(5.12)

Subject to:

|C|

∑
i=1

requestedCpu(containeri)×Xi j <= availableCpu(server j)∀server j ∈ S (5.13)

|C|

∑
i=1

requestedRam(containeri)×Xi j <= availableRam(server j)∀server j ∈ S (5.14)

|C|

∑
i=1

requestedDisk(containeri)×Xi j <= availableDisk(server j)∀server j ∈ S (5.15)

5.2.2 Heuristic Solution

We propose a local heuristic approach that uses deep learning ANN to solve ILP model and

schedule containers to be executed at servers available in the cluster. ANN is trained and

tested using a clean dataset that was extracted from Alibaba dataset according to specified

features. After we analyzed Allibaba dataset, we found the following features that can have

a correlation with the container resources usage and demand: <containerID, serverID,

cpuDemand, ramDemand, diskDemand, containerCpuUsage, containerRamUsage, con-

tainerDiskUsage, serverCpuCapacity, serverRamCapacity, serverDiskCapacity, serverCpu-

Usage, serverRamUsage, serverDiskUsage >.

Algorithm 3 describes the local heuristic approach. It takes the set of Containers C that

are waiting to be scheduled and a set of available Servers S as input. It returns the map

schedulingMap that includes scheduling and placement of Containers at Servers as output.

In the beginning, the algorithm sorts the Containers set C in descending order according to

their demand of resources, and store them in the list sortedContainersList as per line 1. For

each container c located in sorted list sortedContainersList, the algorithm finds the server

s that is capable to host c, and c consumes the minimum number of the resources. This is

76

Algorithm 3 Heuristic Containers Scheduling
Input: set of Containers C, set of Servers S
Output: schedulingMap < container,server >

1: Sort C based on demand resources in decreasing order, and store them in
sortedContainersList

2: for each c ∈ sortedContainersList do
3: minResUsage = ∞

4: minServer = Null
5: for each s ∈ S do
6: if s can host c then
7: set c.setServerID()=s.getServerID()
8: totContResUsage = ANN.predCpuUsage(c) +

ANN.predRamUsage(c)+ANN.predDiskUsage(c)
9: if totContResUsage <minResUsage then

10: minResUsage = totContResUsage
11: minServer = s
12: end if
13: end if
14: end for
15: add < c,minServer > to schedulingMap
16: end for
17: return schedulingMap

77

because the allocated resources may be different than the demanded resources. So for each

s ∈ S, it checks if server s has enough resources to host c as per line 5. If so, the algorithm

schedules c to be executed at s (line 7). After that, the total resources usage as a result of

placing c at s is computed. The total usage equals the summation of predicted CPU usage,

Ram usage, and Disk usage by c as per line 8. Each of these resource usage is predicted

using the deep learning ANN as a regression prediction value. The algorithm checks if the

total usage is less than the current minimum usage (line 9), if yes it replaces the current

minimum usage by total usage and marks s as minimum server as per lines 10-11. Once

the algorithm checks all servers ∈ S for container c, it finds the server s where c consumes

minimum resources. As a result, it adds the pair < c,minServer > to the scheduling map

schedulingMap as per line 15. At the end, the algorithm returns the map schedulingMap

as per line 16.

5.2.3 Experiments and Results

For the experiments to evaluate the proposed container scheduling heuristic approach, we

used the same setup for the experiments that were conducted to evaluate the prediction

module as in section 4.4. Before we train ANN with the Alibaba dataset, we cleaned the

dataset and then extracted the corresponding features that are listed above. For example,

some attributes such as Disk usage are missing (null values). For these, we replace the null

with zero values. In addition, some containers have a failure termination event type. We

do not consider failed containers. We only consider the containers that have terminated

successfully as indicated in the trace log. We split 90% of the input cleaned dataset into a

training set and 10% for a testing set. Both sets are given to deep learning ANN for training

and testing. ANN is trained for 10 epochs and then tested. The structure of the used ANN

includes one input layer with 14 neurons, two hidden layers with 100 neurons each, and

one output layer with 3 neurons.

We computed Mean Square Error (MSE) and Mean Absolute Error (MAE) to evalu-

ate ANN. MSE measures the prediction error difference between output and input values.

MAE measures the prediction absolute error difference between output and input values.

Figure 5.10 depicts the MSE for ANN, as shown ANN has the ability to predict resources

CPU, Ram, and Disk, with a small prediction error that gives a good indication for the ac-

curacy of the method. Figure 5.11 depicts the MAE of ANN, as shown ANN also achieves

a small absolute prediction error. We believe this is because ANN is trained with large data

78

Figure 5.10: Mean Square Error of ANN

Figure 5.11: Mean Absolute Error of ANN

79

Figure 5.12: CPU Usage with/without using scheduling model

Figure 5.13: Ram Usage with/without using scheduling model

80

Figure 5.14: Disk Usage with/without using scheduling model

samples, and it passes through different layers and many iterations to reduce the predic-

tion error. To evaluate the significance of using the proposed containers scheduling model,

we compare the resources CPU, Ram, and Disk usages with and without using the model.

Figures 5.12, 5.13, and 5.14 show the comparison for the CPU, Ram, and Disk usages re-

spectively. Note that using the proposed model can reduce the resources usage during the

execution time of the system. We believe this is because ANN is aware of the pattern usage

of the containers and servers from the training dataset, so ANN can predict the resources

usage of the container once it is scheduled to be executed on a specific server. The proposed

scheduling approach searches for the server that has the capability to host the container and

induces minimum resources usage. We could not plot the resources usage in the time period

before 600 minutes in the figures 5.12, 5.13, and 5.14 because the information is missing

in Alibaba dataset.

5.3 Summary

Failure-aware application task scheduler module is proposed in this Chapter. The module

takes the remedy actions, including the rescheduling, for tasks that are predicted as failed.

Task scheduling is formulated as ILP model with the objective to minimize the failure ratio,

and resources usage of tasks. A local heuristic approach is proposed to find the scheduling

plan for the tasks. The results show the ability of the scheduler module to protect up to 37%

81

and 40% of tasks that were extracted from Google, and Alibaba datasets respectively. In

addition, the results show the scalability of the scheduler module to handle a large number

of tasks at a cluster of a large number of computing nodes. Moreover, local heuristic

optimization solution is proposed for containers scheduling at computing servers. The

solution uses deep learning ANN to predict the resource usage of scheduling container at a

specific server. The results show the ability of ANN to predict the CPU usage with lower

MSE, and MAE, and could save a large amount of CPU units.

82

Chapter 6

Availability-Aware Dynamic VM
Placement

VM placement is a well-known combinatorial NP-hard problem to assign a set of VMs

at a set of servers located at DC(s) and to target specific objective(s). VMs placement

can be static that is triggered only for new VMs request. It also can be dynamic, where

the placement process can be triggered at any time for new VMs request, or for already

hosted VMs. Placement of the VM may require to be changed for several reasons such

as service scaling, workload demand changes, and VM migration. Achieving multiple

objectives through VMs placement can make the problem more complex that grows ex-

ponentially with growing number of the VMs. In this thesis, we tackle the dynamic VM

placement problem for maintaining the availability of the provisioned applications in the

cloud. We propose a framework that includes three modules to handle VMs placement

during deployment, scaling, and failure of applications to achieve multiple objectives and

meet the availability requirements of ASPs. We formulate application service availability

in a cloud computing platform. In addition, we formulate the dynamic VMs placement

problem as an INLP model with multiple objectives and a set of constraints. We propose to

use AntColony heuristic optimization algorithm to find the placement plan of VMs at the

underlying servers. The rest of this chapter is organized as follows. Section 6.1 discusses

the formulation of application service availability in the cloud and the impact of dynamic

VM placement at the availability level of the service. Section 6.2 introduces the dynamic

VMs placement framework including the modules. Section 6.3 discusses the experiments

and presents the results, and Section 6.4 provides a summary for the chapter.

83

6.1 Formulation of Application Service Availability in Cloud

In cloud computing, ASP can request from CSP to deploy an end-to-end application service

according to specific requirements including availability. As a result, CSP provides ASP

with online access for a set of VMs to deploy the application components. An application

component is simply software that provides a functionality type in a specific domain such

as web (HTTP server), and networking (NAT, firewall). Each VM is deployed on only one

physical computing node (server) at DC. Each VM belongs to a specific application and

demands a set of resources of different types such as CPU and RAM. Each server has a

specific capacity of each resource type and a set of properties such as availability to operate

and host VMs. Availability of server j, As
j, can be computed as in Equation (6.1), where

MT T Fj refers to the mean time between two consecutive failures of server s j, and MT T R j

is the mean time to repair server s j. Both MTTF and MTTR can be known for CSP via the

operational patterns history of the server.

As
j =

MT T Fj

MT T Fj +MT T R j
(6.1)

To illustrate how we formalize application service availability in cloud platform, we

discuss the following example. Figure 6.1a shows an abstract model of application ser-

vice app1 that is composed of three different functionalities, where each functionality is

provided through a separate VM, which are vm1, vm2, and vm3. The service app1 is re-

quested by ASP with availability requirement of 0.9, and demand of resources for each

VM. For simplicity, we show only the CPU demand beside each VM. Each VM is hosted

on one server, we show the CPU capacity and availability beside each server. For avail-

ability purposes, we assume VMs that belong to the same application can not be collocated

on the same server. Availability of VM depends on the availability of the server where

the VM is hosted. If server fails, all the VMs that are hosted on the server will fail as

well. So we consider availability of VM same as availability of the server that hosts the

VM. We model application as a chain of functionalities that are provided through a set

of VMs. Therefore, availability of application depends on the availability of all the func-

tionalities that together provide end-to-end application service. Availability of application

appa that is denoted as Aapp
a can be computed as the multiplication of the availability of

all the functionalities that compose application appa as defined in Equation (6.2), where

84

Server 1

(3, 0.97) (3, 0.95) (3, 0.95) (7, 0.99)

(5, 0.99) (5, 0.99) (6, 0.98)(8, 0.96)

VM 1

Server 2 Server 3 Server 4

Server 5 Server 6 Server 7 Server 8

VM 2

VM 3

(2) (2)

(3)

Network Switch 1

Network Switch 2

Network Switch 3

(a) app1 Deployment 1

Server 1

(3, 0.97) (3, 0.95) (3, 0.95) (7, 0.99)

(5, 0.99) (5, 0.99) (6, 0.98)(8, 0.96)

VM 1

Server 2 Server 3 Server 4

Server 5 Server 6 Server 7 Server 8

VM 2 VM 3

(2)

(2) (3)

Network Switch 1

Network Switch 2

Network Switch 3

(b) app1 Deployment 2

Server 1

(3, 0.97) (3, 0.95) (3, 0.95) (7, 0.99)

(5, 0.99) (5, 0.99) (6, 0.98)(8, 0.96)

VM 1

Server 2 Server 3 Server 4

Server 5 Server 6 Server 7 Server 8

VM 2_1 VM 3

(2)

(2) (3)

Network Switch 1

Network Switch 2

Network Switch 3

VM 2_2
(2)

(c) app1 Deployment 3

Server 1

(3, 0.97) (3, 0.95) (3, 0.95) (7, 0.99)

(5, 0.99) (5, 0.99) (6, 0.98)(8, 0.96)

VM 1

Server 2 Server 3 Server 4

Server 5 Server 6 Server 7 Server 8

VM 2_1 VM 3

(4) (2) (3)

Network Switch 1

Network Switch 2

Network Switch 3

VM 2_2
(2)

(d) app1 Deployment 4

Server 1

(3, 0.97) (3, 0.95) (3, 0.95) (7, 0.99)

(5, 0.99) (5, 0.99) (6, 0.98)(8, 0.96)

VM 1

Server 2 Server 3 Server 4

Server 5 Server 6 Server 7 Server 8

VM 2_1 VM 3

(4) (2) (3)

Network Switch 1

Network Switch 2

Network Switch 3

VM 2_2
(2)

VM 4
(2)

VM 5 (3)

VM 6
(3)

(e) app1 and app2 Deployment

Server 1

(3, 0.97) (3, 0.95) (3, 0.95) (7, 0.99)

(5, 0.99) (5, 0.99) (6, 0.98)(8, 0.96)

VM 1

Server 2 Server 3 Server 4

Server 5 Server 6 Server 7 Server 8

VM 2_1 VM 3

(4) (2) (3)

Network Switch 1

Network Switch 2

Network Switch 3

VM 2_2
(2)

VM 7

(2)

VM 8 (3)

VM 9
(4)

VM 4

(2)

VM 5
(3)

VM 6
(3)

(f) app1, app2 and app3 Deployment

Figure 6.1: Applications Deployment Model in Cloud Data Center

A f unc
f is the availability of the functionality f ∈ Fa, and Fa is the set of functionalities that

are required to provide application appa. Availability of functionality f depends on the

availability of the VMs that provide f . In other words, functionality f is available as long

as there is at least one VM that provides f . So A f unc
f can be computed as the complement

for the failure probability of all VMs that provide f as defined in Equation (6.3), where

vmv provides functionality f , and V f unc
f is the set of all VMs that provide functionality

f . Failure of vmv is equal to failure of the server j that hosts vmv. Failure of server s j

is equal to the complement of its availability as defined in Equation (6.4). According to

Equation (6.2), availability of the deployed application app1 that is shown in Figure 6.1a

85

can be computed as Aapp
app1 = As

server1
∗As

server2
∗As

server8
= 0.97 ∗ 0.95 ∗ 0.98 = 0.9 that is

greater than or equal to the required availability of app1 by ASP. Availability of app1 can

be improved if vm2 is hosted on server6 instead of server2 as depicted in Figure 6.1b,

where Aapp
app1 = As

server1
∗As

server6
∗As

server8
= 0.97∗0.99∗0.98 = 0.94. The availability can

be further improved if a standby VM vm2 2 is added for vm2 1, and hosted on server3 as

shown in Figure 6.1c. The availability is computed as Aapp
app1 = As

server1
∗ (1− (Fails

server6
∗

Fails
server3

)) ∗As
server8

= 0.97 ∗ (1− (0.01 ∗ 0.05)) ∗ 0.98 = 0.95. Now if a CPU scaling up

request for vm1 with 2 additional units is demanded, in this case server1 will not be able to

host vm1 with the new 4 CPU units demand because server1 has only 3 CPU units capacity.

So vm1 has to be migrated to other server with at least 4 CPU units capacity, and without

violating availability requirement of app1. vm1 can be migrated to server5 as shown in

Figure 6.1d, where Aapp
app1 = 0.96∗ (1− (0.01∗0.05))∗0.98 = 0.94.

To illustrate the application admissibility problem, let us assume another ASP request-

ing a new application app2 that includes three VMs vm4, vm5, and vm6, with availability

requirement of 0.88. If CSP adopts a placement policy that hosts VMs at the servers that has

maximum availability to increase the application availability, app2 will be deployed in DC

as depicted in Figure 6.1e. So, Aapp
app2 =As

server6
∗As

server7
∗As

server4
= 0.99∗0.99∗0.99= 0.97

that satisfies the requirement. Note that for app2, CSP provides availability greater than

and far from the required availability by ASP. Let assume the same or different ASP re-

quests a new application app3 that includes three VMs vm7, vm8, and vm9 with availability

requirement equals to 0.97. According to the current situation of DC that is shown in Fig-

ure 6.1e, the request for app3 is rejected, because app3 can not be admitted and deployed

at DC since it violates the availability requirement. As a result, CSP will lose the profit of

hosting app3. However, CSP could admit app3 and all other applications app1 and app2

at DC, if CSP adopts the policy to provide application availability that is close to the re-

quested one. As shown in Figure 6.1f, the three applications are admitted and deployed in

the DC while they satisfy their availability requirements, where availability of app1, app2,

and app3 are equal to 0.94, 0.88, and 0.97 respectively.

Aapp
a =

|Fa|

∏
f=1

A f unc
f (6.2)

A f unc
f = 1−

|V f unc
f |

∏
v=1

Failvm
v (6.3)

Fails
j = 1−As

j (6.4)

86

6.2 Dynamic VM Placement for Service Availability in Cloud

Framework

We propose a framework named ‘Multiple-Objectives Dynamic VM Placement for Application

Availability in Cloud’ (MoVPAAC). The framework generates a placement plan for a set of

VMs that belong to a set of requested applications at the servers in the DC of the cloud. The

goal of the placement is to achieve multiple objectives and satisfy the availability require-

ment of each application as requested by ASP. In addition, the framework has the ability

to dynamically change the placement of VMs in cases of application scaling or failure.

Figure 6.2 depicts the proposed MoVPAAC framework. It includes three main modules:

Availability-Aware Application Deployment, Proactive Application Failure Detection, and

Dynamic Application Reconfiguration. We discuss the modules in detail separately in the

next subsections.

Availability-Aware Application
Deployment

Dynamic Application
Reconfiguration

Proactive Application Failure
Detection

Data CenterData CenterData Center
Cloud Service Provider

Availability-Aware Application
Deployment

Dynamic Application
Reconfiguration

Proactive Application Failure
Detection

Incoming Applications
Requests

Cloud Manager
Enquiry

Response

Enquiry Response

Deployment
Solution

Application Scaling
Reconfiguration

Solution

Application Failure

Figure 6.2: Multiple-Objectives Dynamic VM Placement for Application Availability in
Cloud (MoVPAAC) Framework.

87

6.2.1 Availability-Aware Application Deployment

Availability-Aware Application Deployment module is mainly responsible for generating

VMs placement plan for deployment of applications at the underlying servers located at

DC according to the objectives and requirements. The applications include a set of VMs.

The module returns the VMs placement plan for the cloud manager to deploy the requested

applications. VM placement includes contradictory objectives and is considered NP-hard

problem. The module handles VM dynamic problem that is described as follows. Given a

set of applications with their requirements including availability as they are requested by

ASPs, where each application includes a set of VMs, and each VM provides the function-

ality of a specific type towards providing the end-to-end application service. The goal is

to find the placement plan for VMs at the servers that are located at DC targeting the three

objectives, minimize power consumption, resources wastage, and failures ratio of servers,

and seek to maintain availability requirements of the applications during their entire execu-

tion times. We formalize the problem as INLP optimization model with multiple objectives

and a set of constraints. In addition, we propose a local heuristic approach based on Ant-

Colony optimization method in conjunction with the VM standby protection approach to

find a solution for the model and deploy all the requested applications.

The problem statement can be formalized as follows. Given a set of applications A that

are requested by a set of ASPs, where each application appa ∈ A has availability require-

ment Aapp
reqa as requested by the corresponding ASP. Each appa includes a set of VMs V app

a .

Each VM vmi ∈ V app
a has a resource demand of different types such as CPU, RAM, and

Disk. On the other side, DC includes a set of servers S, where each server s j ∈ S has a

resource capacity of different types to host VMs. The goal is to place each vmi at one s j in

such a way that achieves the three objectives, and Aapp
a ≥ Aapp

reqa ,∀appa ∈ A.

The first objective is to minimize the total power consumption of the active servers that

are used to host VMs that belong to A. To compute the power consumption of server s j

in DC, we adopt the linear relationship between server power consumption and its CPU

utilization as described in [83]. We define the average power consumption of s j that is

denoted as Pj in Equation (6.5), where Pactive
j and Pidle

j are the average power consumption

values when s j is active and idle respectively, and Uc
j is the CPU utilization of s j where

Uc
j ∈ [0,1]. The first objective is formalized in Equation (6.6), where V A is the set that

includes all the VMs that compose all the requested applications located in A, xi j is binary

decision variable where value 1 indicates that vmi is placed on server s j and a value 0

88

indicates otherwise as defined in Equation (6.10), Rvm
i,c is the CPU resource demand by vmi.

Pj = (Pactive
j −Pidle

j)×Uc
j +Pidle

j (6.5)

Minimize
|S|

∑
j=1

Pj =
|S|

∑
j=1

(((Pactive
j −Pidle

j)×
|V A|

∑
i=1

(Rvm
i,c × xi, j)+Pidle

j)) (6.6)

The second objective is to minimize the total resources wastage of active servers. We

define the cost of wasting resources of server s j that is denoted as Wj in Equation (6.7),

where Lc
j, Lr

j, and Ld
j represent the normalized remaining CPU, RAM, and Disk resources

of server s j respectively. β is a very small value that we set as 0.00001. Uc, U r, and Ud

represent the normalized CPU, RAM, and Disk resource usage respectively of server s j.

The second objective is formalized in Equation (6.8), where T s
j,c, T s

j,r, and T s
j,d represent

the upper thresholds of CPU, RAM, and Disk utilization of server s j respectively. We

define an upper threshold for each resource type which is the same for all the servers in DC

to avoid any server from reaching to a full usage state that may impact the performance of

the server. Rvm
i,r and Rvm

i,d are the RAM and Disk resource demand by vmi respectively.

The third objective is to minimize the total failures ratio of the servers at DC. We com-

pute failure of s j that is Fails
j as the complement for availability of s j as in Equation (6.4),

where As
j is computed as in Equation (6.1). The third objective is formalized in Equation

(6.9).

Wj =
||Lc

j−Lr
j|−Ld

j |+β

Uc +U r +Ud (6.7)

Minimize
|S|

∑
j=1

Wj =
|S|

∑
j=1

((||(T s
j,c−

|V A|

∑
i=1

(Rvm
i,c × xi, j))− (T s

j,r−
|V A|

∑
i=1

(Rvm
i,r × xi, j))|

− (T s
j,d−

|V A|

∑
i=1

(Rvm
i,d × xi, j))|+β)/(

|V A|

∑
i=1

(Rvm
i,c × xi, j)+

|V A|

∑
i=1

(Rvm
i,r × xi, j)+

|V A|

∑
i=1

(Rvm
i,d × xi, j)) (6.8)

Minimize
|S|

∑
j=1

Fails
j =

|S|

∑
j=1

|V A|

∑
i=1

Fails
j× xi j (6.9)

We define a set of constraints to control the placement of VMs. Server s j can be in

only one state either active or idle. Binary decision variable xi j where value 1 means vmi is

89

placed at server s j, and a value 0 otherwise as defined in Equation (6.10). Any vmi is hosted

on maximum one server as defined in Equation (6.11). Any server s j should have enough

resources, CPU, RAM, and Disk to be able to host any vmi as defined in Equations (6.12 -

6.14). VMs that belong to the same application appa should not be collocated on the same

server. We define such anti-affinity constraint in Equation (6.15), to force placement of

VMs that provide and protect end-to-end application service on different servers to increase

the availability of the service [72]. Availability of any requested application should be

greater than or equal to the required availability that is requested by ASP as defined in

Equation (6.16). Subject to:

xi j =

{
1, if vmi is placed on s j

0, otherwise
(6.10)

|S|

∑
j=1

xi j ≤ 1 ∀i ∈ I (6.11)

|V A|

∑
i=1

(Rvm
i,c × xi j)≤ T s

j,c ∀ j ∈ J (6.12)

|V A|

∑
i=1

(Rvm
i,r × xi j)≤ T s

j,r ∀ j ∈ J (6.13)

|V A|

∑
i=1

(Rvm
i,d × xi j)≤ T s

j,d ∀ j ∈ J (6.14)

xi j + xz j < 1 ∀vmi,vmz ∈V app
a ,∀s j ∈ S (6.15)

AA
appa
≥ AA

reqappa
∀appa ∈ A (6.16)

We propose a local heuristic algorithm named Availability-Aware Applications Deploy-

ment (AvAAD) to solve INLP model and find the placement of VMs that compose the

requested applications. The AvAAD algorithm uses AntColony optimization algorithm to

solve multiple objectives VMs placement, in conjunction with the proposed standby pro-

tection approach to satisfy the availability requirements of the applications. Algorithm

4 describes AvAAD, it takes the list of the requested applications appsList including

their requirements, available servers list serversList at DC as input. The algorithm re-

turns the list of non admitted (rejected) applications nonAdmittedAppsList as output. In

90

the beginning the algorithm initializes variables vmsList, paretoSet, violatedAvAppsList,

and nonAdmittedAppsList as empty. For each vm ∈ V app
a , the algorithm adds the vm to

vmsList. Then it calls MOAntColony (Algorithm 5) and passes the arguments vmsList

and serversList to it. MOAntColony returns back paretoSet that includes placement of

vmsList at serversList. Using paretoSet, the algorithm computes availability Aapp
a of each

appa ∈ appsList. It adds each appa that violates its availability requirement (Aapp
a <

AA
reqa

) to violatedAvAppsList. For each appa ∈ violatedAvAppsList, the algorithm tries

to enhance its availability by adding new VM standby to protect the functionality that has

minimum availability among functionalities ∈ appa. It keeps adding standby VMs one

at a time until either (Aapp
a ≥ Aapp

reqa), or count of added standby VMs reaches the maxi-

mum number of standby VMs that can be added for appa. Any new added standby VM

is placed on the server s j ∈ serversList that has maximum value of 1
Pj+W j+Fails

j
. This is to

keep the consistency with the three objectives of MOAntColony algorithm. Once AvAAD

handles all violated applications, it checks again if there are applications that still violate

their availability requirements. If so, it considers applications as rejected that can not be

admitted in DC and adds violated appa to nonAdmittedAppsList that returns at the end of

the algorithm.

For the time complexity analysis of Algorithm 4, in lines (2-5) it takes O(n) execution

time to extract VMs that belong to requested applications. At line (7), it calls MOAnt-

Colony Algorithm 5 to find placement plan of vmsList at servers located in serversList.

Note that the performance of Algorithm 4 depends mainly on the performance of MOAnt-

Colony. AntColony is a meta heuristic algorithm that takes a polynomial execution time

O(nk) to find the optimization solution [37]. In the context of VM placement problem, k

value depends mainly on number of iterations, ants, VMs and servers that AntColony uses

to find the placement solution. In lines (8-13), the algorithm takes O(n) execution time to

determine the applications that violate their availability requirements. At lines (14-21), it

takes O(n2) execution time to satisfy the availability for each application that violates its re-

quired availability. At lines (22-26), the algorithm takes O(n) execution time to determine

the rejected applications that can not be admitted at DC since they violate their availability

requirements. So in total, Algorithm 4 takes O(n)+O(nk)+O(n)+O(n2)+O(n) which

can be simplified to O(nk) execution time.

91

Algorithm 4 Availability-Aware Application Deployment
Input: appsList, serversList

Output: nonAdmittedAppsList

1: initialize vmsList, paretoSet, violatedAvAppsList, nonAdmittedAppsList as empty

2: for each appa ∈ appsList do
3: for each vm ∈ V app

a do
4: Add vm to vmsList

5: end for
6: end for
7: paretoSet = MOAntColony(vmsList,serversList)

8: for each appa ∈ appsList do
9: Aapp

a ← computeAvailability(appa) // using Equation (6.2)

10: if Aapp
a < Aapp

reqa then
11: Add appa to violatedAvAppsList

12: end if
13: end for
14: for each appa ∈ violatedAvAppsList do
15: vmsAddedStandby = 0

16: while ((Aapp
a < Aapp

reqa) and (vmsAddedStandby< app.getMaxAddVmStandby())) do
17: Add standby vm to the first functionality of min availability ∈ appa

18: place standby vm at s j with max 1
Pj+W j+Fails

j

19: vmsAddedStandby+= 1

20: end while
21: end for
22: for each appa ∈ violatedAvAppsList do
23: if Aapp

a < Aapp
reqa then

24: Add appa to nonAdmittedAppsList

25: end if
26: end for
27: return nonAdmittedAppsList

In order to achieve the objectives of applications deployment, we propose a local heuris-

tic algorithm named Multiple Objectives Ant Colony (MOAntColony) that uses Ant Colony

Optimization (ACO) algorithm to find the placement of VMs that belong to the requested

92

applications. MOAntColony algorithm is described in Algorithm 5. In the beginning, the

algorithm initializes the parameters and all the pheromones trials. In each iterative step,

each ant z receives vmsList that compose appsList that are requested to be deployed. Ant z

picks a server currServer and starts the placement process of vmsList at currServer using

pseudo-random-proportional rule [84]. The rule defines the desirability of an ant to select

a specific vm as the next one to place at currServer. It depends on the pheromone con-

centration level and the heuristic information that can guide ant z to select vm. The local

pheromone concentration level is updated once ant z makes a movement (placement) step.

Ant z keeps moving until it finishes placement of vmsList and builds its solution. Once

all ants finish and build their own solutions, a global pheromone is updated based on the

pareto set PS that includes best-located solutions. The algorithm initializes the pheromone

level τ0 as defined in Equation (6.17), where n is the total number of VMs that require

placement, P
′
(S0) is the normalized power consumption of the servers listed in the initial

placement solution S0 that is generated by FirstFit VM placement algorithm, W
′
(S0) and

Fail′(S0) are the resource wastage and failures of servers listed in S0 respectively. P
′
(S0) is

defined in Equation (6.18), where Pmax
j is the maximum power consumption of the server

j. W
′
(S0) and Fail′(S0) are defined in Equations (6.19, 6.20) respectively. The heuristic

information ηi, j indicates the desirability of an ant z for placement of vmi at server s j. The

desirability ηi, j considers the partial contribution for each objective. Every ant z starts with

vmsList to place them at a set of available servers that are arranged randomly in the list L.

Ant z starts placement of vmsList on servers ∈ L that are selected sequentially one by one.

As a result, the sequence of servers from 1 to j is known at the placement step of vmi at

s j. So the partial contribution of the current placement step for the first, second and third

objectives are defined in Equations (6.21, 6.22, 6.23) respectively. We combine the three

partial contributions together for the heuristic placement decision as defined in Equation

(6.24).

τ0 =
1

n× (P′(S0)+W ′
(S0)+Fail ′(S0)

(6.17)

P
′
(S0) =

M

∑
j=1

(Pj/Pmax
j) (6.18)

W
′
(S0) =

M

∑
j=1

(Wj) (6.19)

93

Fail
′
(S0) =

M

∑
j=1

(Fail j) (6.20)

ηi, j,1 =
1

β +
j

∑
k=1

(Pk/Pmax
k)

(6.21)

ηi, j,2 =
1

β +
j

∑
k=1

Wk

(6.22)

ηi, j,3 =
1

β +
j

∑
k=1

Failk

(6.23)

ηi, j = ηi, j,1 +ηi, j,2 +ηi, j,3 (6.24)

Ant z selects vmi as the next VM to be placed at the current server s j based on pseudo-

random-proportional rule as defined in Equation (6.25) [84], where α is a parameter to

control pheromone trail importance, q is a random number ∈ [0,1], q0 is a fixed value

0 < q0 < 1. If q is less than or equal to q0, this is a case for exploitation, otherwise it is

for exploration as defined in Equation (6.25). U is the set of VMs that can be hosted on s j.

ηu, j is the pheromone value as defined in Equation (6.24), τu, j is the local pheromone up-

date as defined in (6.27). Pr is random-proportional rule probability distribution as defined

in Equation (6.26) [84]. There are two steps to update the pheromone, local and global.

When ant z assigns vmi at s j, it does local pheromone update as defined in Equation (6.27),

where τ0 is the initial pheromone level, and 0 < ρl < 1 is the local pheromone evaporating

parameter, and t is the current iteration. The global pheromone update is done according to

the rule as defined in Equation (6.28), where 0 < ρg < 1 is the global pheromone evapora-

tion parameter. λ is a coefficient that is defined in Equation (6.29), where Z is the number

of the ants, T S is the number of the iterations where the global solution Sol is located in

pareto set PS. P
′
(Sol), W

′
(Sol), and Fail

′
(Sol) are the normalized power consumption,

resource wastage, and failures respectively of servers that are listed in the solution Sol. As

we discussed previously, Algorithm 5 uses mainly AntColony meta heuristic optimization

algorithm that takes O(nk) execution time [84]. The value of k depends on number of it-

erations T , ants Z, VMs in vmsList, and servers in serversList that are used by AntColony

algorithm to find the placement plan for the VMs.

94

i =

{
maxu∈U{α× τu, j +(1−α)×ηu, j}, q≤ q0

Pr, otherwise
(6.25)

Pru, j =

α×τu, j+(1−α)×ηu, j

|U |
∑

u=1
(α×τu, j+(1−α)×ηu, j)

, u ∈U

0, otherwise

(6.26)

τi, j(t) = (1−ρl)× τi, j(t−1)+ρl× τ0 (6.27)

τi, j(t) = (1−ρg)× τi, j(t−1)+
ρg×λ

P′(Sol)+W ′(Sol)+Fail′(Sol)
(6.28)

λ =
Z

t−T Sol +1
(6.29)

95

Algorithm 5 MOAntColony
Input: vmsList, serversList

Output: Pareto Set PS

1: Initialize values of parameters τ0, α , q0,ρl , ρg, Z, and T

2: Initialize PS as empty

3: Initialize all pheromone values to τ0

4: for t=1 to T do
5: for z=1 to Z do
6: sort serversList in random order

7: while not all vms ∈ vmsList are placed do
8: currServer=select a new server from serversList

9: while there is a vm can be placed at currServer do
10: for each remaining vm can be placed at currServer do
11: Calculate desirability For vm as in Equation (6.25)

12: Calculate probability For vm as in Equation (6.26)

13: end for
14: Select vm to assign

15: Generate q randomly

16: if q≤ q0 then
17: exploitation as in Equation (6.25)

18: else
19: exploration as in Equation (6.25)

20: Update local pheromone as in Equation (6.27)

21: end if
22: end while
23: end while
24: end for
25: Calculate the three objectives For each solution Sol generated by each ant z

26: if S is non-dominated by any other solution then
27: Add Sol to PS

28: Remove solutions ∈ PS that are dominated by Sol

29: end if
30: for each Sol ∈ PS do
31: Update global pheromone as in Equation (6.28)

32: end for
33: end for
34: return PS

96

6.2.2 Proactive Application Failure Detection

The main goal of the proactive application failure detection module is to detect application

failure at an early stage of its provisioning before the failure actually happens. Failure of

application leads to a service outage that can impact QoS, and SLA violation. Detection

of application failure at an early stage helps to take the appropriate service recovery action

as fast as possible. The module uses the same prediction approach that is used by the task

failure prediction module of the framework that is discussed in Section 4.3 of Chapter 4 to

predict failure of a set of given tasks during the runtime.

6.2.3 Dynamic Application Reconfiguration

This module receives a reconfiguration request for a set of provisioned applications for

which the availability requirements are threatened to be violated. The request can come ei-

ther from the proactive application failure module as a notification for applications that are

predicted as failed, or from the cloud manager as a notification for scaling requests. For the

request from the proactive module, the dynamic application reconfiguration module adds a

new VM that provides the same task that is predicted as failed to replace the existing VM.

This is applied for all the tasks that are predicted as failed. Since the newly added VMs

will be hosted on the servers at DC, the reconfiguration module takes care of the placement

process. We propose a placement process for the newly added VMs to recover the applica-

tion services that are predicted as failed. The process targets the three objectives as defined

in Equations (6.6, 6.8, 6.9), and respect the constraints that are defined in Equations (6.10-

6.16), to be consistent with the objectives of the proposed framework MoVPAAC. The

placement procedure for the added VMs to recover applications services is described in

Algorithm 6. The algorithm takes the list of application tasks that are predicted as failed

f ailPredTasksList, and the list of servers at DC serversList as input. It returns the map

that includes the placement of newly added VMs to provision tasks as output. For each

task ∈ f ailPredTasksList, the algorithm adds a new vm to provide task. For each added

vm, the algorithm searches for one server ∈ serversList that can host vm, has minimum

summation value of power consumption, resources waste, and failure, and without violat-

ing any of the constraints that are defined in Equations (6.10-6.16). Once the algorithm

finds the server, it adds the record < vm,server > to the map vmsPlacementMap. In the

97

end, the algorithm returns the map vmsPlacementMap. For the time complexity of Al-

gorithm 6, it takes O(n2) because for each added vm, the algorithm searches for the best

server among serversList that can host vm with minimum cost.

Algorithm 6 VM Placement For Application Recovery
Input: f ailPredTasksList, serversList
Output: vmsPlacementMap

1: for each task ∈ f ailPredTasksList do
2: Add vm provides task
3: minCost = ∞

4: minServer = empty
5: for each server ∈ serversList do
6: if server can host vm and satisfy constraints in Equations (6.10 - 6.16) then
7: serverCost = Pserver +Wserver +Fails

server
8: if serverCost < minCost then
9: minCost = serverCost

10: minServer = server
11: end if
12: end if
13: end for
14: Add < vm,minSerer > to vmsPlacementMap
15: end for
16: return vmsPlacementMap

For the scaling request from the cloud manager at CSP, the request can be one of the

four scaling types (directions): scaling out, scaling up, scaling in, or scaling down. Scale

out includes a request to add a set of new VMs, while the scale up is to add resources such

as virtual CPU (vCPU), and RAM (vRAM) to an existing set of VMs. Scale in includes a

request to remove a set of existing VMs, while the scale down is to remove virtual resources

from an existing set of VMs. For application scaling out request, the reconfiguration mod-

ule handles placement of the newly added VMs the same way it handles the request from

the proactive application failure module. For the scaling up, in some cases, some servers

may not have enough resources to continue hosting the VMs after they are updated with

the new resources. In such a case, the VMs have to be migrated to other servers that can

accommodate them without violating any of the constraints that are defined in Equations

(6.10-6.16). The migration process has to be done carefully because it can have a big influ-

ence on the outage period of the application service. The problem can be summarized as

follows, one VM can be migrated to different servers, without violating constraints, with

98

different migration times. There are different VMs that belong to different applications

and need to be migrated. The goal is to migrate all the VMs with minimum migration

time, hence reducing the outage time of the applications. We formalize the problem as

INLP model with the objective to minimize the migration time of the VMs that need to be

migrated as defined in Equation (6.30), that obey the constraints as defined in Equations

(6.10-6.16), where G is the set of VMs that need to be migrated, S is the set of the available

servers at DC, migrationTimen, j,d is the time to migrate vmn from source server s j to the

destination server sd . The binary decision variable xn j with a value 1 means vmn is hosted

on server s j and 0 otherwise, znd is another binary decision variable that is defined in Equa-

tion (6.31), with value 1 means vmn need to be migrated to the server d, and 0 otherwise.

We propose a local heuristic approach, that is described in Algorithm 7, to solve the INLP

model and find the placement servers of the VMs that demand scaling. The algorithm takes

the set of VMs that require scaling vmsScaleList, available servers at DC serversList, and

the scaling type scaleType as input. It returns a map that includes the placement of the

VMs that demand scaling at the servers in DC. The algorithm checks type of the scaling

request. If the scaling type is out, that means a new set of VMs needs to be added. For

each added vm, the algorithm searches for a server that can host vm, has minimum summa-

tion value of power consumption, resource waste, and failure, and meet all the constraints

that are defined in Equations (6.10-6.16). Once the algorithm finds the placement server

minServer to host vm, it adds the record < vm,minServer > to the map vmsPlacementMap.

If the scaling type is up, the algorithm determines the VMs that need to be migrated from

their hosted servers. For each vm that needs to be migrated, the algorithm finds a desti-

nation server that contributes to minimize the total migration time as defined in Equation

(6.30). If the algorithm finds the destination server minDestServer to host vm, it adds

the record < vm,minDestServer > to the map vmsPlacementMap. For both scaling types

in and down, for any vm ∈ vmsScaleList, the algorithm rejects any scaling action for vm

that violates the application availability requirement constraint that is defined in Equation

(6.16), otherwise, it allows the action to be applied by the cloud manager.

For the time complexity analysis of Algorithm 7, at lines (1-15) it takes O(n2) execution

time because for each scale out vm, the algorithm searches for the best server with minimum

cost that can host vm. For the scaling up request at lines (16-33), the algorithm takes O(n2)

execution time because for each vm that requires to be migrated, the algorithm searches

for the server that can host the vm with minimum migration time. For the scaling request

99

of type in or down, the algorithm takes O(n) execution time to allow or reject the scaling

action. In total the algorithm takes O(n2)+O(n2)+O(n)+O(n) that can be simplified to

O(n2) execution time.

Minimize
|S|

∑
j=1

|S|

∑
d=1|d 6= j

|G|

∑
n=1

(migrationTimen, j,d× xn j× znd) (6.30)

znd =

{
1, if vmn requires to be migrated to s j

0, otherwise
(6.31)

Subject to constraints that are defined in Equations (6.10-6.16)

6.3 Experiments and Results

6.3.1 Experimental Setup

We conducted several types of experiments to evaluate the proposed MoVPAAC framework

including its modules and used algorithms in this research work. We built a simulation

to simulate the elements including their properties and requirements, that we need as a

proof of concept for this research work, such as DC, servers, VMs, and applications. The

simulation is implemented using C++ programming language. All the experiments are

carried out on 64-bit Windows 10 machine equipped with an Intel Core i7-8665U 2.11GHz

processor and 16 GB of RAM.

To evaluate the availability-aware application deployment module, we divided the ex-

periments into two groups. The first group includes a set of application deployment requests

including their requirements as requested by a set of ASPs, where the applications do not

include any standby (backup) VMs. Note that the first request (number 1) includes five

applications with different structures and availability requirements. We set the availability

requirement of application number 5 with a value equal to 0.99999 (aka five nines) to show

the ability of our approach to meet such availability value demands by ASPs. We select

this structure type for the applications to evaluate the ability of the deployment module to

add standby protection plan to satisfy the availability requirements of the applications. In

addition, to check the impact of adding extra standby resources on the performance of the

servers at DC. We used four requests, where each request includes a different number of

applications. For the experiments of the first group, we simulated one DC that includes 85

100

Algorithm 7 VM Placement For Application Scaling
Input: vmsScaleList, serversList, scaleType
Output: vmsPlacementMap

1: if scaleType = ‘out’ then
2: for each vm ∈ vmsScaleList do
3: minCost = ∞

4: minServer = empty
5: for each server ∈ serversList do
6: if server can host vm and satisfy constraints in Equations (6.10 - 6.16) then
7: serverCost = Pserver +Wserver +Failserver
8: if serverCost < minCost then
9: minCost = serverCost

10: minServer = server
11: end if
12: end if
13: end for
14: Add < vm,minSerer > to vmsPlacementMap
15: end for
16: else if scaleType = ‘up’ then
17: for each vm ∈ vmsScaleList do
18: currServer = vm.hetHostedServer()
19: if currServer can not host vm then
20: minMigrationCost = ∞

21: minDestServer = empty
22: for each server ∈ serversList do
23: if server can host vm and satisfy constraints in Equations (6.10 - 6.16)

then
24: serverMigrationCost = getV mMigrTime(vm,currServer,server)
25: if serverMigrationCost < minMigrationCost then
26: minMigrationCost
27: minDestServer = server
28: end if
29: end if
30: end for
31: Add <vm,minDestServer> to vmsPlacementMap
32: end if
33: end for
34: else if scaleType = ‘in’ OR scaleType = ‘down’ then
35: for each vm ∈ vmsScaleList do
36: if scale action For vm violates the availability constraint in Equation (6.16) then
37: reject scale action For vm
38: end if
39: end for
40: end if
41: return vmsPlacementMap

101

servers. We assign heterogeneous resource properties to the servers. The CPU and RAM

capacities of the servers are generated randomly based on a uniform distribution with val-

ues ranging between 8-15 units. The availability levels of the servers are also generated

randomly based on a uniform distribution with values ranging between 0.7-0.97. We set

Pactive and Pidle with the values 215, and 162 respectively which are the same for all the

servers. Table 6.1 describes the structure, number of VMs, availability requirement for all

the applications of the four requests in the first group of the experiments. The CPU and

RAM demands of the VMs are also generated randomly based on a uniform distribution

with values ranging between 2-5 units. We submitted each request in Table 6.1 separately to

the availability-aware application deployment module to deploy the applications and return

the placement plan of the VMs that compose the applications. For MOAntColony algo-

rithm, we set the number of iterations T = 10 and the number of ants Z = 12 for placement

of VMs. We compare the placement results that are generated by AvAAD Algorithm 6 with

the results of two other VM placement algorithms from the literature that are CHASE [58]

and FirstFit.

6.3.2 Results

To evaluate the ability of the deployment module to deploy the requested applications

while satisfying their availability requirements, we computed the availability of all the

applications after their deployments are done by the three placement algorithms, AvAAD,

CHASE, and FirstFit, and compared them with the requested availability of the applications

by ASPs. Figure 6.3 shows the availability comparison of the five applications of request

1 after they are deployed in DC by each of the three placement algorithms. As we can

see AvAAD algorithm could deploy all the applications and meet their availability require-

ments. CHASE algorithm violated the availability requirements for 4 applications out of 5,

and FirstFit algorithm violated availability for all the applications. This is because AvAAD

algorithm uses VM standby protection approach to satisfy the availability requirements of

the applications. Even though CHASE tries to maximize the availability of the application

by selecting the servers with maximum availability values, still it can violate the availability

because it does not target to meet the application availability requirement that is requested

by ASP. FirstFit violates availability requirements because it depends on the selection of

the first server that can host VM that requires a placement. So if the availability of the first

selected server is low, the end-to-end application availability will be low as well. Figure 6.4

102

Table 6.1: Description of Applications Requests - Group 1

Request 1
Req Availability Funct Number VMs Number

Application 1 0.97 3 3
Application 2 0.88 4 4
Application 3 0.94 5 5
Application 4 0.95 6 6
Application 5 0.99999 3 3

Request 2
Req Availability Funct Number VMs Number

Application 1 0.95 3 3
Application 2 0.93 3 3
Application 3 0.98 2 2
Application 4 0.8 2 2
Application 5 0.82 2 2

Request 3
Req Availability Funct Number VMs Number

Application 1 0.97 4 4
Application 2 0.98 4 4
Application 3 0.96 4 4
Application 4 0.95 5 5
Application 5 0.98 4 5
Application 6 0.96 6 6

Request 4
Req Availability Funct Number VMs Number

Application 1 0.85 3 3
Application 2 0.87 4 4
Application 3 0.83 3 3
Application 4 0.8 4 4
Application 5 0.99 5 5
Application 6 0.96 5 5
Application 7 0.98 6 6

shows the mean availability of the applications per each request separately. AvAAD algo-

rithm achieved mean availability close to the required mean availability of the applications,

while CHASE and FirstFit achieved mean availability far from the required one. Figure 6.5

shows the admissibility of the applications per each request. AvAAD contributed to admit

all the applications of all the requests at DC because it meets their requirements including

the availability. Both CHASE and FirstFit contributed to reject many of the applications at

DC because they violate mainly their availability requirements.

To evaluate the placement algorithms on the performance of the servers at DC, we

computed the mean power consumption of the servers that host VMs that compose the ap-

plications per each request. As shown in Figure 6.6, AvAAD consumes power consumption

higher than both CHASE and FirstFit. This is because AvAAD adds extra standby VMs to

103

Figure 6.3: Applications Availability - Request 1

Figure 6.4: Mean Applications Availability - Group 1

104

Figure 6.5: Applications Admissibility- Group 1

Figure 6.6: Servers Power Consumption - Group 1

105

Figure 6.7: Servers CPU Utilization

Figure 6.8: Servers RAM Utilization

106

satisfy the availability requirements for only the applications that violate their availability.

As a result, extra standby VMs consume additional power consumption. We computed

the mean of CPU and RAM utilization of the servers after deployment of the applications

per each request. Figures 6.7 and 6.8 show CPU and RAM utilization of the servers re-

spectively. AvAAD achieves stable and high CPU and RAM utilization because one of

its objectives is to minimize wastefulness of the resources. Note that the CPU and RAM

utilization by AvAAD does not cross the ratio 80% as the case for CHASE and FirstFit

algorithms for some requests. This is because we set an upper threshold that is equal to

80% for both CPU and RAM utilization, to avoid any server from reaching a full state of

VMs which can impact the performance of the server.

Table 6.2: Description of Applications Requests - Group 2

Request 5
Req Availability Funct Number VMs Number

Application 1 0.9 2 4
Application 2 0.88 2 4
Application 3 0.93 2 4
Application 4 0.87 2 4
Application 5 0.85 2 4

Request 6
Req Availability Funct Number VMs Number

Application 1 0.92 3 6
Application 2 0.96 3 6
Application 3 0.94 3 6
Application 4 0.9 3 6
Application 5 0.93 3 6
Application 6 0.88 3 6

Request 7
Req Availability Funct Number VMs Number

Application 1 0.95 3 9
Application 2 0.93 3 9
Application 3 0.94 3 9
Application 4 0.89 3 9
Application 5 0.93 3 9
Application 6 0.94 3 9

Request 8
Req Availability Funct Number VMs Number

Application 1 0.9 4 8
Application 2 0.94 4 8
Application 3 0.91 4 8
Application 4 0.95 4 8
Application 5 0.85 4 8
Application 6 0.9 4 8
Application 7 0.94 4 8

107

In the second group of the experiments, the applications include standby VMs to re-

cover the application service in case of failure of the active VM(s). We do this type of the

experiments to evaluate the performance of AvAAD algorithm without using the standby

protection plan to meet the availability requirements. Table 6.2 describes the structure of

the applications that belong to the second group of the experiments. Note that we kept the

same properties of VMs and servers that are used in the first group of the experiments, ex-

cept we change the availability values of the servers that are generated randomly based on a

uniform random distribution with the new range between 0.6-0.9, for illustrative purposes.

Figure 6.9 shows the availability that is achieved by each placement algorithm for the six

applications that belong to request number 6. AvAAD algorithm can satisfy availability

requirements for applications without adding standby VMs, that helps to reduce the overall

power consumption of the servers at DC as shown in Figure 6.12. CHASE algorithm sat-

isfied availability for most of the applications since there are standby VMs. However, still

CHASE can violate availability for the applications because it does not prioritize applica-

tions based on their availability requirements. In other words, using CHASE, application

with low availability requirement can be placed on servers with high availability values and

these servers get full. This can lead to deploy application with high availability requirement

on servers with low availability values, and hence reduces the overall availability of the ap-

plication and violate its requirement. FirstFit violates availability requirements for most

of the requested applications because it does not target availability requirement during the

server selection process to host VMs. Figure 6.10 shows the mean availability of the ap-

plications per each request. AvAAD algorithm achieved mean availability greater than and

closer to the required one, while CHASE achieved mean availability greater than and far

from the required one. FirstFit achieved mean availability less than the required one. Al-

though the applications of all the requests in the second group of the experiments include

redundant VMs as shown in Table 6.2, it is not necessarily meeting the HA (aka five nines)

requirements of the requested application. In such case, our AvAAD algorithm still needs

to add extra standby VM(s) to meet the HA, while CHASE and FirstFit do not do that,

hence they fail to meet HA. Note that, in case of existing redundant VMs, AvAAD may

not need to add large number of the standby VMs to achieve HA. Figure 6.11 shows the

admissibility of the applications per each request, where AvAAD admitted all the requested

applications without adding extra standby VMs. Using standby VMs, CHASE could admit

108

most of the applications, FirstFit rejected many of the applications due to its servers se-

lection strategy. As shown in Figure 6.12, using AvAAD the servers consumed less power

than using CHASE and FirstFit. This is because AvAAD did not need to add extra standby

VMs for the protection approach. In addition, one of AvAAD’s objectives is to minimize

the power consumption of the active servers.

Figure 6.9: Applications Availability - Request 6

To compare the performance of the three VM placement algorithms, we computed the

average execution time that each algorithm takes to place different sets of VMs with num-

bers ranging between 30 and 54 VMs. Figures 6.13, 6.14, and 6.15 show the average

execution time of AvAAD, CHASE and FirstFit algorithms respectively. AvAAD takes

less and reasonable time compared to CHASE, for example, AvADD took around 4.2 sec-

onds to find servers for placement of 54 VMs, while CHASE took around 380 seconds for

placement of the same VMs. FirstFit is the fastest algorithm that took less than a second for

placement of the same 54 VMs. We believe this is because AvAAD uses an optimization

MOAntColony algorithm that optimizes the servers search process for placement of the

VMs. CHASE uses CPLEX to solve the placement problem, whereas CPLEX uses some

pruning techniques such as branch-and-bound algorithm to solve VM placement combi-

natorial problem, still it takes a long execution time that grows with a large number of

VMs. FirstFit just searches for the first server that can host the current VM that reducing

the search time dramatically. Note that the execution of AvAAD depends on the number

109

Figure 6.10: Mean Applications Availability - Group 2

Figure 6.11: Applications Admissibility - Group 2

110

Figure 6.12: Servers Power Consumption - Group 2

of iterations T as well as the number of ants Z that are used by MOAntColony algorithm.

So we measured the execution time of AvAAD for placement of 42 VMs using different

number of ants and iterations. As shown in Figure 6.16, the execution time of AvAAD

algorithm increases by increasing the number of ant or number of iterations. To test the ex-

ecution time of AvAAD for placement of large number of VMs, we computed its average

execution time for placement of different sets of VMs ranging between 60 and 300 VMs.

As shown in Figure 6.17, AvAAD takes reasonable execution time to host a large number

of VMs, where it increases by increasing the number of the VMs.

To evaluate the availability-aware VMs migration (AvAVMmigration) procedure that is

used by the dynamic reconfiguration application module, we computed the migration time

that AvAVMmigration takes to migrate different sets of VMs with different numbers that

range between 2 and 10 VMs. We compare the migration time by AvAVMmigration with

the time that is taken by the procedure, named VMmigrationMaxAvServer, that migrates

VMs to the servers with the maximum availability and can host the migrated VMs. We

generated a random migration time based on a uniform distribution between servers in the

range between 60 and 200 seconds. Figure 6.18 shows the comparison of the VMs mi-

gration time by the two migration procedures. The proposed AvAVMmigration procedure

takes less time to migrate VMs between servers than the procedure VMmigrationMax-

AvServer. This is because AvAVMmigration searches for the destination servers for which

111

Figure 6.13: AvAAD Average Execution Time

the migration time is shorter to migrate the VMs without violating constraints, instead of

migrating the VMs to the servers with high availability that may take longer time as shown

in Figure 6.18.

6.4 Summary

In this chapter, we tackled the dynamic VM placement NP-hard problem from application

availability perspectives. We formalized application availability in cloud and dynamic VM

placement problem as INLP model with multiple objectives and set of constraints. In addi-

tion, a framework is proposed to handle VMs placement to deploy applications and main-

tain their availability according to the requirements of ASPs. The framework includes three

main modules to handle VMs placement during deployment, failure, and scaling requests

of the applications. The deployment module uses AntColony optimization algorithm, and

VM standby protection approach to achieve multiple objectives and satisfy the availability

requirements of the requested applications. The results show the ability of the proposed

VM placement algorithm to admit a higher number of applications compared to CHASE

and FirstFit VM placement algorithms from the literature. In addition, the proposed place-

ment solution achieved less power consumption, and high CPU and RAM utilization of the

112

Figure 6.14: CHASE Average Execution Time

Figure 6.15: FirstFit Average Execution Time

113

Figure 6.16: AvAAD Average Execution Time-Variable Ants and Iterations

Figure 6.17: AvAAD Average Execution Time-Variable VMs

114

Figure 6.18: Evaluation of Availability-Aware VMs Migration Procedure

servers.

115

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis tackled the main challenges that face application service availability in cloud

computing. It addressed different issues and factors that are related to service availability

management from different perspectives and actors such as ASP and CSP. Therefore, the

thesis proposed different models, solutions, algorithms, and approaches that can help to

improve service availability, fault tolerance, resources utilization, and cluster performance

in the cloud environment.

The main contributions of this thesis can be summarized as follows. First, the thesis

proposed a comprehensive study, analysis, and classification of the research works and so-

lutions that exist in the literature. Second, a reactive framework is proposed to manage

application service HA and enable its continuity in the virtual computing cluster. The

framework can protect the service against failures of application component, VM, and

physical computing server using redundancy models. Third, proactive service availabil-

ity management is also proposed. The framework analyzed three public available cluster

datasets from Google, Alibaba, and Trinity to identify the main features that are related

to the failure of the application task (service). In addition, the framework uses ANN and

CNN deep learning models to predict task failure during its execution time. Both ANN

and CNN could predict task failure with high accuracy and low error. Fourth, the thesis

mapped the task scheduling NP-hard problem as ILP model, to minimize the number of

the failed tasks and their resources usage. In addition, a heuristic optimization solution is

proposed to find the scheduling of tasks that are predicted as failed. The results show the

116

ability of the scheduler to protect a large number of tasks and save their wasted resources.

Finally, the thesis tackled the dynamic VM placement problem for service availability. It

formalized the application availability in the cloud and the VM placement problem as INLP

model. The model targets three main objectives to minimize power consumption, resources

wastage, and failure of the active servers that are used to host the VMs. In addition, the

model tries to provide application availability above and near the requirements by ASP.

AntColony heuristic optimization algorithm in conjunction with VM standby protection

approach is used to find VMs placement plan that achieves multiple objectives. Dynamic

VM placement is resolved for different request types, deployment of a new application,

VM scaling, and migration. The results show the ability of the proposed placement solu-

tion to meet the availability requirements and increase the admissibility of the requested

applications.

7.2 Future Work

We believe there are still open research issues that are worth to be investigated to improve

application service availability, and performance of the cluster in cloud computing. The

proposed reactive service availability management framework depends on the system ad-

ministrator to specify the role of the application components and their deployment positions

at DCs of CSP. It would be a good idea to develop the framework in such a way that can au-

tomatically determine the role of the components based on the requirements of the tenant.

In addition, the framework can automatically deploy the components based on their roles

at DCs, and respect the constraints. The HA module of the framework depends mainly on

the monitoring service of the used HA middleware to monitor the status of the component.

This can force some limitations, where the period of component status checking depends

on the ability of the middleware. In addition, the existing monitoring services monitor only

the active component. However, for some applications monitoring the standby component

status can help to reduce the service recovery time. It would be very beneficial to build a

separate dynamic monitoring engine that can be integrated with the HA middleware. The

monitoring engine can allow configuring the period of component liveness checking. In ad-

dition, the monitoring engine can be used to monitor the status of both active and standby

components, and report that to the availability management service of the HA middleware

117

to take recovery action. For the stateful application, the framework stores the state of the ac-

tive component at a shared storage to be retrieved in case of failover. The frequent updates

and retrievals of the states of the active components can impact the overall performance of

the systems and QoS. Therefore, it can be helpful to investigate other mechanisms to find

an efficient procedure to update and retrieve the status of the active component.

The task failure prediction module of the proactive framework assumes that the predic-

tion process is triggered based on a request from the cluster manager. Actually, it would be

more effective to have an automatic service that can trigger the prediction process for a set

of tasks. The service can specify which tasks to predict their termination status, as well as

the time to trigger the prediction process. In addition, the service can adapt the time of the

prediction based on the performance of the computing cluster, and the status of the running

tasks. It would be very helpful to develop a smart elasticity engine that can take the scaling

actions based on the workload of the service, and coordinate with the service availability

manager to avoid SLA violation. In addition, developing a resource manager that can con-

solidate the physical computing servers with reactive/proactive availability management

solutions can help to reduce the overall cost of provisioning the service, as well as the

power consumption of the servers at DCs. Moreover, other objectives such as minimizing

the network bandwidth and delay of the provisioned application service can be targeted by

the proposed availability-aware dynamic VM placement solution.

118

Bibliography

[1] NIST Definition of Cloud Computing. Accessed: September. 6, 2021. [Online]. Avail-

able: https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-145.pdf

[2] Virtualization Overview. Accessed: September. 6, 2021. [Online]. Available:

https://www.vmware.com/pdf/virtualization.pdf.

[3] D. Siewiorek and J. Gray, “High-Availability Computer Systems” in Computer, vol.

24, no. 09, pp. 39-48, 1991.

[4] The Cost of Service Downtime. Accessed: September. 1, 2021. [Online]. Available:

https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/.

[5] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud computing: What it is,

and what it is not,” in Proceedings of the 10th International Conference on Autonomic

Computing (ICAC 13), 2013, pp. 23-27.

[6] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces: format +

schema,” Technical report, Google Inc. Mountain View, CA, USA, November 2011.

[7] VMware High Availability. Accessed: 15 September, 2021. [Online]. Available:

https://www.vmware.com/pdf/ha datasheet.pdf.

[8] VMware. Accessed: 15 September, 2021. [Online]. Available:

https://www.vmware.com/.

[9] VMware vSphere 6 Fault Tolerance. 15 September, 2021. [Online].

https://learnvmware.online/wp-content/uploads/2018/02/vmware-vsphere6-ft-arch-

perf.pdf.

[10] Ha-lizard - High Availability Solution for XenServer. Accessed: 15 September, 2021.

[Online]. Available: https://www.halizard.com/.

119

[11] Citrix Hypervisor. Accessed: 15 September, 2021. [Online]. Available:

https://www.citrix.com/products/citrix-hypervisor/.

[12] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield, “Re-

mus: high availability via asynchronous virtual machine replication,” In Proceedings

of the 5th USENIX Symposium on Networked Systems Design and Implementation

(NSDI’08). USENIX Association, USA, 2008, pp. 161–174.

[13] A. Kanso and Y. Lemieux, “Achieving High Availability at the Application Level in

the Cloud,” 2013 IEEE Sixth International Conference on Cloud Computing, 2013, pp.

778-785.

[14] Open Service Availability Middleware. Accessed: 15 September, 2021. Available:

[Online]. https://opensaf.sourceforge.io/index.html.

[15] W. Li and A. Kanso, “Comparing Containers versus Virtual Machines for Achieving

High Availability,” 2015 IEEE International Conference on Cloud Engineering, 2015,

pp. 353-358.

[16] W. Li, A. Kanso and A. Gherbi, “Leveraging Linux Containers to Achieve High Avail-

ability for Cloud Services,” 2015 IEEE International Conference on Cloud Engineer-

ing, 2015, pp. 76-83.

[17] X. Chen, C. Lu and K. Pattabiraman, “Failure Prediction of Jobs in Compute Clouds:

A Google Cluster Case Study,” 2014 IEEE International Symposium on Software Re-

liability Engineering Workshops, 2014, pp. 341-346.

[18] M. Soualhia, F. Khomh, and S. Tahar,“Predicting Scheduling Failures in the Cloud: A

Case Study with Google Clusters and Hadoop on Amazon EMR,” 2015 IEEE 17th In-

ternational Conference on High Performance Computing and Communications, 2015,

pp. 58-65.

[19] M. S. Jassas and Q. H. Mahmoud, “Failure Characterization and Prediction of

Scheduling Jobs in Google Cluster Traces,” 2019 IEEE 10th GCC Conference & Ex-

hibition (GCC), 2019, pp. 1-7.

[20] M. S. Jassas and Q. H. Mahmoud, “Evaluation of a failure prediction model for large

scale cloud applications,” Canadian Conference on Artificial Intelligence. Springer,

2020, pp. 321–327.

120

[21] Alibaba Cluster Trace. Accessed: Mar. 10, 2021. [Online]. Available:

https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2017.

[22] Atlas Cluster Trace. Accessed: Mar. 15, 2021. [Online]. Available:

https://ftp.pdl.cmu.edu/pub/datasets/ATLAS/.

[23] J. Shetty, R. Sajjan, and S. G, “Task Resource Usage Analysis and Failure Prediction

in Cloud,” 9th International Conference on Cloud Computing, Data Science Engineer-

ing (Confluence), 2019, pp. 342-348.

[24] C. Liu, L. Dai, Y. Lai, G. Lai, and W. Mao, “Failure prediction of tasks in the cloud

at an earlier stage: A solution based on domain information mining,” Computing, vol.

102, no. 9, pp. 2001-2023, Sep. 2020.

[25] J. Gao, H. Wang, and H. Shen, “Task Failure Prediction in Cloud Data Centers Us-

ing Deep Learning,” IEEE Transactions on Services Computing, pp. 1–1, 2020, doi:

10.1109/TSC.2020.2993728.

[26] A. Rosà, L. Y. Chen and W. Binder, “Failure Analysis and Prediction for Big-Data

Systems,” IEEE Transactions on Services Computing, vol. 10, no. 6, pp. 984-998,

2017.

[27] T. Islam and D. Manivannan, “Predicting Application Failure in Cloud: A Machine

Learning Approach,” 2017 IEEE International Conference on Cognitive Computing

(ICCC), 2017, pp. 24-31.

[28] C. Liu, J. Han, Y. Shang, C. Liu, B. Cheng and J. Chen, “Predicting of Job Failure in

Compute Cloud Based on Online Extreme Learning Machine: A Comparative Study,”

IEEE Access, vol. 5, pp. 9359-9368, 2017.

[29] N. El-Sayed, H. Zhu and B. Schroeder, “Learning from Failure Across Multiple Clus-

ters: A Trace-Driven Approach to Understanding, Predicting, and Mitigating Job Ter-

minations,” 2017 IEEE 37th International Conference on Distributed Computing Sys-

tems (ICDCS), 2017, pp. 1333-1344.

[30] T. Hongyan, L. Ying, W. Long, G. Jing and W. Zhonghai, “Predicting

Misconfiguration-Induced Unsuccessful Executions of Jobs in Big Data System,” 2017

121

IEEE 41st Annual Computer Software and Applications Conference (COMPSAC),

2017, pp. 772-777.

[31] P. Padmakumari and A. Umamakeswari, “Task Failure Prediction using Combine

Bagging Ensemble (CBE) Classification in Cloud Workflow,” Wirel. Pers. Commun.

vol. 107, no. 1, pp. 23–40, 2019.

[32] A. Rosà, L. Y. Chen and W. Binder, “Predicting and Mitigating Jobs Failures in Big

Data Clusters,” 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing, 2015, pp. 221-230.

[33] T. Islam and D. Manivannan, “FaCS: Toward a Fault-Tolerant Cloud Scheduler Lever-

aging Long Short-Term Memory Network,” 2019 6th IEEE International Conference

on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Con-

ference on Edge Computing and Scalable Cloud (EdgeCom), 2019, pp. 1-6.

[34] M. Soualhia, F. Khomh and S. Tahar, “A Dynamic and Failure-Aware Task Scheduling

Framework for Hadoop,” IEEE Transactions on Cloud Computing, vol. 8, no. 2, pp.

553-569, 2020.

[35] A. Marahatta, Q. Xin, C. Chi, F. Zhang and Z. Liu, “PEFS: AI-driven Prediction

based Energy-aware Fault-tolerant Scheduling Scheme for Cloud Data Center,” IEEE

Transactions on Sustainable Computing, 2020.

[36] M. Soualhia, C. Fu, and F. Khomh, “Infrastructure Fault Detection and Prediction in

Edge Cloud Environments,” 2019 4th ACM/IEEE Symposium on Edge Computing,

2019, pp. 222-235.

[37] A. Samir and C. Pahl, “Detecting and Predicting Anomalies for Edge Cluster En-

vironments using Hidden Markov Models,” 2019 Fourth International Conference on

Fog and Mobile Edge Computing (FMEC), 2019, pp. 21-28.

[38] Mohammed, B., Awan, I., Ugail, H. et al, “Failure prediction using machine learning

in a virtualised HPC system and application,” Cluster Comput, vol. 22, pp. 471–485,

2019.

[39] Z. Li, L. Liu and D. Kong, “Virtual Machine Failure Prediction Method Based

on AdaBoost-Hidden Markov Model,” 2019 International Conference on Intelligent

Transportation, Big Data & Smart City (ICITBS), 2019, pp. 700-703.

122

[40] Z. Wang, M. Zhang, D. Wang, C. Song, M. Liu, J. Li, L. Lou, and Z. Liu, “Failure

prediction using machine learning and time series in optical network,” Opt. Express,

vol. 25, pp. 18553-18565, 2017.

[41] P. Guo, M. Liu, J. Wu, Z. Xue and X. He, “Energy-Efficient Fault-Tolerant Scheduling

Algorithm for Real-Time Tasks in Cloud-Based 5G Networks,” IEEE Access, vol. 6,

pp. 53671-53683, 2018.

[42] H. Sun, H. Yu, G. Fan and L. Chen, “QoS-Aware Task Placement With Fault-

Tolerance in the Edge-Cloud,” IEEE Access, vol. 8, pp. 77987-78003, 2020.

[43] P. Guo, M. Liu and Z. Xue, “Fault-Tolerant Scheduling Algorithm for Periodic Real-

Time Tasks in Clouds,” 2018 IEEE 4th Information Technology and Mechatronics En-

gineering Conference (ITOEC), 2018, pp. 467-470.

[44] A. Marahatta, Y. Wang, F. Zhang, A. Kumar, S. S. Tyagi, and Z. Liu, “Energy-Aware

Fault-Tolerant Dynamic Task Scheduling Scheme for Virtualized Cloud Data Centers,”

Mobile Networks and Applications, vol. 24, pp. 1-15, 2018.

[45] L. Ran, X. Shi and M. Shang, “SLAs-Aware Online Task Scheduling Based on Deep

Reinforcement Learning Method in Cloud Environment,” 2019 IEEE 21st International

Conference on High Performance Computing and Communications; IEEE 17th Inter-

national Conference on Smart City; IEEE 5th International Conference on Data Sci-

ence and Systems (HPCC/SmartCity/DSS), 2019, pp. 1518-1525.

[46] Y. Wei, L. Pan, S. Liu, L. Wu and X. Meng, “DRL-Scheduling: An Intelligent QoS-

Aware Job Scheduling Framework for Applications in Clouds,” IEEE Access, vol. 6,

pp. 55112-55125, 2018.

[47] M. E. Frincu and C. Craciun, “Multi-objective Meta-heuristics for Scheduling Ap-

plications with High Availability Requirements and Cost Constraints in Multi-Cloud

Environments,” 2011 Fourth IEEE International Conference on Utility and Cloud Com-

puting, 2011, pp. 267-274.

[48] G. Rjoub, J. Bentahar, O. Abdel Wahab and A. Bataineh, “Deep Smart Scheduling: A

Deep Learning Approach for Automated Big Data Scheduling Over the Cloud,” 2019

7th International Conference on Future Internet of Things and Cloud (FiCloud), 2019,

pp. 189-196.

123

[49] T. Pham, J. J. Durillo and T. Fahringer, “Predicting Workflow Task Execution Time

in the Cloud Using A Two-Stage Machine Learning Approach,” IEEE Transactions on

Cloud Computing, vol. 8, no. 1, pp. 256-268, 2020.

[50] Khan, A., M. Zakarya, I. Rahman, Rahim Khan and R. Buyya, “HeporCloud: An

energy and performance efficient resource orchestrator for hybrid heterogeneous cloud

computing environments,” Journal of Network and Computer Applications, vol. 173,

pp. 102869, 2021.

[51] S. Sebastio, R. Ghosh and T. Mukherjee, “An Availability Analysis Approach for De-

ployment Configurations of Containers,” in IEEE Transactions on Services Computing,

vol. 14, no. 1, pp. 16-29, 2021.

[52] L. Zhang, D. Lai, B. Xu and C. Liu, ”Scheduling Algorithms for Cloud Based Cyber-

Physical Systems Specification,” 2018 24th International Conference on Automation

and Computing (ICAC), 2018, pp. 1-6.

[53] Y. Hao, M. Chen, H. Gharavi, Y. Zhang and K. Hwang, “Deep Reinforcement Learn-

ing for Edge Service Placement in Softwarized Industrial Cyber-Physical System,” in

IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5552-5561, 2021.

[54] L. Kuang and L. Zhang, “Level value density task scheduling algorithm for cy-

ber physical systems on cloud,” 2017 IEEE SmartWorld, Ubiquitous Intelligence &

Computing, Advanced & Trusted Computed, Scalable Computing & Communications,

Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2017, pp. 1-8.

[55] J. Zhou, J. Sun, M. Zhang and Y. Ma, “Dependable Scheduling for Real-Time Work-

flows on Cyber–Physical Cloud Systems,” IEEE Transactions on Industrial Informat-

ics, vol. 17, no. 11, pp. 7820-7829, 2021.

[56] M. Yang, H. Ma, S. Wei, Y. Zeng, Y. Chen and Y. Hu, “A Multi-Objective Task

Scheduling Method for Fog Computing in Cyber-Physical-Social Services,” IEEE Ac-

cess, vol. 8, pp. 65085-65095, 2020.

[57] M. Jammal, A. Kanso and A. Shami, “High availability-aware optimization digest for

applications deployment in cloud,” 2015 IEEE International Conference on Communi-

cations (ICC), 2015, pp. 6822-6828.

124

[58] M. Jammal, A. Kanso and A. Shami, “CHASE: Component High Availability-Aware

Scheduler in Cloud Computing Environment,” 2015 IEEE 8th International Conference

on Cloud Computing, 2015, pp. 477-484.

[59] H. Zhu and C. Huang, “Availability-Aware Mobile Edge Application Placement in

5G Networks,” GLOBECOM 2017 - 2017 IEEE Global Communications Conference,

2017, pp. 1-6.

[60] I. Lera, C. Guerrero and C. Juiz, “Availability-Aware Service Placement Policy in Fog

Computing Based on Graph Partitions,” IEEE Internet of Things Journal, vol. 6, no. 2,

pp. 3641-3651, April 2019.

[61] S. Yang, P. Wieder and R. Yahyapour, “Reliable Virtual Machine placement in dis-

tributed clouds,” 2016 8th International Workshop on Resilient Networks Design and

Modeling (RNDM), 2016, pp. 267-273.

[62] X. Liu, B. Cheng, Y. Yue, M. Wang, B. Li and J. Chen, “Traffic-Aware and Reliability-

Guaranteed Virtual Machine Placement Optimization in Cloud Datacenters,” 2019

IEEE 12th International Conference on Cloud Computing (CLOUD), 2019, pp. 91-98.

[63] Z. Yang, L. Liu, C. Qiao, S. Das, R. Ramesh and A. Y. Du, “Availability-aware energy-

efficient virtual machine placement,” 2015 IEEE International Conference on Commu-

nications (ICC), 2015, pp. 5853-5858.

[64] X. Li and C. Qian, “Traffic and failure aware VM placement for multi-tenant

cloud computing,” 2015 IEEE 23rd International Symposium on Quality of Service

(IWQoS), 2015, pp. 41-50.

[65] M. Jammal, H. Hawilo, A. Kanso and A. Shami, “Mitigating the Risk of Cloud Ser-

vices Downtime Using Live Migration and High Availability-Aware Placement,” 2016

IEEE International Conference on Cloud Computing Technology and Science (Cloud-

Com), 2016, pp. 578-583.

[66] A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang, R. N.Chang, M. R. Lyu, and R.

Buyya, “Cloud Service Reliability Enhancement via Virtual Machine Placement Opti-

mization,” in IEEE Transactions on Services Computing, vol. 10, no. 6, pp. 902-913, 1

Nov.-Dec. 2017.

125

[67] Zhou, A., Wang, S., Hsu, CH. et al. “Virtual machine placement with (m, n)-fault

tolerance in cloud data center,” Cluster Comput 22, 11619–11631 (2019).

[68] C. Gonzalez and B. Tang, “FT-VMP: Fault-Tolerant Virtual Machine Placement in

Cloud Data Centers,” 2020 29th International Conference on Computer Communica-

tions and Networks (ICCCN), 2020.

[69] H. A. Alameddine, S. Ayoubi and C. Assi, “An Efficient Survivable Design With

Bandwidth Guarantees for Multi-Tenant Cloud Networks,” in IEEE Transactions on

Network and Service Management, vol. 14, no. 2, pp. 357-372, June 2017.

[70] Chen, X. and J. Jiang. “A method of virtual machine placement for fault-tolerant cloud

applications,” Intell. Autom. Soft Comput. 22 (2016): 587-597.

[71] W. Zhang, X. Chen and J. Jiang, “A multi-objective optimization method of initial

virtual machine fault-tolerant placement for star topological data centers of cloud sys-

tems,” in Tsinghua Science and Technology, vol. 26, no. 1, pp. 95-111, Feb. 2021.

[72] S. Ayoubi, Y. Zhang and C. Assi, “A Reliable Embedding Framework for Elastic Vir-

tualized Services in the Cloud,” in IEEE Transactions on Network and Service Man-

agement, vol. 13, no. 3, pp. 489-503, Sept. 2016.

[73] P. K. Thiruvasagam, A. Chakraborty, A. Mathew and C. S. R. Murthy, “Reliable

Placement of Service Function Chains and Virtual Monitoring Functions With Mini-

mal Cost in Softwarized 5G Networks,” in IEEE Transactions on Network and Service

Management, vol. 18, no. 2, pp. 1491-1507, June 2021.

[74] L. Yala, P. A. Frangoudis, G. Lucarelli and A. Ksentini, “Cost and Availability Aware

Resource Allocation and Virtual Function Placement for CDNaaS Provision,” in IEEE

Transactions on Network and Service Management, vol. 15, no. 4, pp. 1334-1348, Dec.

2018.

[75] B. Yang, Z. Xu, W. Chai, W. Liang, D. Tuncer, A. Galis, and G. Pavlou, “Algorithms

for Fault-Tolerant Placement of Stateful Virtualized Network Functions,” 2018 IEEE

International Conference on Communications (ICC), 2018, pp. 1-7.

[76] Xu, Yansen, and Ved P. Kafle. “An Availability-Enhanced Service Function Chain

Placement Scheme in Network Function Virtualization,” Journal of Sensor and Actua-

tor Networks 8, no. 2: 34, 2019.

126

[77] S. Sharma, A. Kushwaha, A. Somani and A. Gumaste, “Designing Highly-Available

Service Provider Networks with NFV Components,” 2019 28th International Confer-

ence on Computer Communication and Networks (ICCCN), 2019, pp. 1-9.

[78] M. A. Abdelaal, G. A. Ebrahim and W. R. Anis, “High Availability Deployment of

Virtual Network Function Forwarding Graph in Cloud Computing Environments,” in

IEEE Access, vol. 9, pp. 53861-53884, 2021.

[79] W. Mao, L. Wang, J. Zhao and Y. Xu, “Online Fault-tolerant VNF Chain Placement:

A Deep Reinforcement Learning Approach,” 2020 IFIP Networking Conference (Net-

working), 2020, pp. 163-171.

[80] Availability Management Framework Specification. Accessed: 18 September, 2021.

[Online]. Available: https://opensaf.sourceforge.io/SAI-AIS-AMF-B.04.01.AL.pdf.

[81] Pacemaker 1.1 clusters from scratch. Accessed: 18 September, 2021. [Online]. Avail-

able: http://clusterlabs.org/doc/Cluster/ from/ Scratch.pdf.

[82] The Corosync cluster engine. Accessed: 18 September, 2021. [Online]. Available:

http://corosync.github.io/corosync/.

[83] X. Fan, W. Weber, and L. Barroso, “Power provisioning for a warehouse-sized com-

puter, ” the 34th Annual International Symposium on Computer Architecture, 2007,

pp. 13–23.

[84] A. Ashraf and I. Porres, “Multi-objective dynamic virtual machine consolidation in

the cloud using ant colony system,” International Journal of Parallel, Emergent and

Distributed Systems, vol. 33, no. 1, pp. 103-120, 2018.

127

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Research Problems
	Resource Failure
	Resource Scaling
	Application Task Scheduling
	VM Placement

	Research Objectives
	Research Contributions
	Related Work (Chapter 2)
	Reactive Application Service Availability Management (Chapter 3)
	Proactive Service Availability Framework (Chapter 4)
	Failure-Aware Application Task Scheduling (Chapter 5)
	Dynamic VM Placement for Application Service Availability (Chapter 6)

	Thesis Organization

	Related Work
	Reactive Application Service Availability Management
	Proactive Service Availability Management
	Failure-Aware Task Scheduling
	Availability-Aware VM Placement
	VNF Placement for Network Service Availability in NFV
	Summary

	Reactive Application Service Availability Management
	Service Availability Management
	Redundancy Models
	OpenSAF
	Pacemaker

	Reactive Service Availability Management Framework
	Tenant Requirements
	Availability Configuration Manager
	Deployment Manager
	HA Middleware

	Experiments and Results
	Experimental Setup
	Service Availability Metrics
	Experiments with Cloud Container-based Platform
	Experiments with Cloud VM-based Platform
	Results Analysis

	Summary

	Proactive Service Availability Management
	Computing Cluster Datasets
	Google Cluster Dataset
	Alibaba Cluster Dataset
	Trinity Cluster Dataset

	Deep Learning - Neural Network
	Proactive Service Availability Framework
	Data Cleaning and Preparation
	Feature Extraction
	Task Failure Prediction
	Application Task Scheduling

	Experiments and Results
	Experimental Setup
	Evaluation of Prediction Models

	Summary

	Failure-Aware Application Task Scheduling
	Failure-Aware Task Scheduling
	Heuristic Solution
	Computational Complexity Analysis
	Experiments and Results

	Container Scheduling for Resource Utilization
	Container Scheduling Model
	Heuristic Solution
	Experiments and Results

	Summary

	Availability-Aware Dynamic VM Placement
	Formulation of Application Service Availability in Cloud
	Dynamic VM Placement for Service Availability in Cloud Framework
	Availability-Aware Application Deployment
	Proactive Application Failure Detection
	Dynamic Application Reconfiguration

	Experiments and Results
	Experimental Setup
	Results

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

