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ABSTRACT 

Understanding Geographical Patterns of Scientific Collaboration  

in the field of Artificial Intelligence 

 

Mohammadmahdi Toobaee 

 

The role of geographical proximity in facilitating inter-regional or inter-organizational 

collaborations has been studied thoroughly in recent years. However, the effect of geographical 

proximity on forming scientific collaborations at the individual level has not been addressed so far. 

Using co-publication data of AI researchers from 2000 to 2019, first, the effect of geographical 

proximity on the chance of future scientific collaboration among researchers was studied. The logit 

regression and machine learning classification results show that geographical distance is an 

essential impediment to scientific collaboration at the individual level despite the tremendous 

improvements in transportation and communication technologies during recent decades. Second, 

the interplay between geographical proximity and network proximity was examined to see whether 

network proximity can substitute geographical proximity in encouraging long-distance scientific 

collaborations. The results show that the effect of network proximity on the likelihood of scientific 

collaboration increases with geographical distance, implying that network proximity acts as a 

substitute for geographical proximity. Therefore, policies aiming at encouraging long-distance 

collaborations could positively affect scientific collaboration and future knowledge production. 
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1. INTRODUCTION 

Collaboration is a key driver of scientific output and performance (Ebadi & Schiffauerova, 2015, 

2016). The critical role of collaboration in facilitating the production of new knowledge across 

different fields of science (J. Adams, 2013; B. F. Jones et al., 2008; Wuchty et al., 2007) and the 

positive effect of knowledge production on the long-term economic growth (Aghion & Howitt, 

1992; C. Jones, 1995) have been studied thoroughly in recent years. Moreover, long-distance 

scientific collaborations, including international ones, have shown to be even more important as 

they provide higher quality research productions (J. Adams, 2013; J. D. Adams et al., 2005; Narin 

et al., 1991). Hence, there is no wonder why worldwide policymakers are encouraging scientific 

collaboration at regional, national, and even international levels. European Union (EU), for 

example, launched an ambitious Horizon 2020 program which was the most extensive EU research 

and innovation program ever with around €80 billion of funding available over seven years 

(European Commission, 2014). Their main objective was to develop the European research area 

(ERA) to mitigate the negative effect of geographical distance on EU researchers' collaboration. 

One may think that revolutionary developments in transportation and communication technologies 

could play a crucial role in facilitating collaborations between scientists who are geographically 

far away from each other, diminishing thereby the effect of geographical distance on collaboration 

(Castells, 1996; Johnson & Mareva, 2002). Nevertheless, more recent studies show that, despite all 

technological developments, geography is still among the main determinants of collaboration (see, 

e.g., Bergé, 2017; Bignami et al., 2020; Morescalchi et al., 2015). Also, despite the acknowledged 

importance of geographical distance on collaboration, its by-products, such as differences in 

national systems, make the collaboration even more difficult (Lundvall, 1992). In other words, 

national borders are found to be another significant barrier for scientific collaborations. 
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Considering the importance of long-distance collaboration in producing high-quality research on 

the one hand and the negative effect of geographical distance on forming scientific collaboration, 

on the other hand, the main question here could be: Can other forms of proximity substitute 

geographical proximity to encourage scientific collaboration? To answer this question, we need to 

understand the determinants of scientific collaboration, especially those factors that can help 

bypass geography. 

As different studies discussed it, collaboration requires creating a connection between researchers, 

and in this sense, it can be considered a social process (Freeman et al., 2014; Katz & Martin, 1997). 

Then, those connections gradually form a social network, and social networks are the driver of their 

own evolution over time (Jackson & Rogers, 2007). Therefore, potential network effects that 

influence the collaboration process should not be neglected. Although some studies worked on the 

evolution of scientific collaborations’ networks (Almendral et al., 2007; Balland, 2012; Barabâsi 

et al., 2002; Maggioni et al., 2007; Newman, 2001; Wagner & Leydesdorff, 2005), empirical 

studies on the impact of network proximity on collaboration, and the interplay between 

geographical proximity and network proximity are scarce. If there is a substitutability pattern 

between geographical proximity and network proximity, network proximity would partially 

compensate for the negative effect of geographical distance. In this case, enhancing the network 

proximity of distant researchers through long-distance funding collaborations would help create 

new long-distance connections. Otherwise, if geographical proximity and network proximity are 

proved to be independent, or if there is a complementarity pattern (researchers with greater 

geographical distance benefit less from network proximity) between them, encouraging long-

distance collaborations would not be efficient.  

This thesis has two main research objectives. The first objective is to study the effect of 

geographical distance on scientific collaboration. Besides examining the role of direct geographical 
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distance of partners on the probability of their future collaboration, the impact of institutional 

proximity (national systems) on future scientific collaboration will be studied. The second 

objective is to investigate the interaction effect of geographical proximity and network proximity 

on scientific collaboration. It will provide a clearer picture of the efficiency of funding long-

distance collaborations. 

We study the geographical patterns of collaboration among researchers in four scenarios to reach 

those research objectives. In the first scenario, we limit the study to collaborations among Canadian 

AI1 researchers. There are at least four advantages for studying geo-patterns of collaboration in 

Canada: 1) Canada is the second-largest country globally, with several universities and research 

institutions spread all over the country. Thus, we expect to discern clearer geo-patterns of 

collaboration among researchers compared to smaller countries, 2) there is a large pool of scientists 

and researchers in Canada that provides a desirable collaboration network to study, 3) Canada is 

an industrialized country with advanced communication and transportation infrastructures; 

therefore, the effect of geographical distance on collaboration can be investigated regardless of the 

differences in the level of technological advancements, and 4) the provincial government system 

in Canada would make it possible to study the geo-patterns of collaboration within and between 

different provinces. 

We extend the study to scientific collaborations among AI researchers in Canada and the United 

States in the second scenario. These two countries have a long history of close scientific 

collaborations. Thus, extending the study to Canada and the United States, besides all advantages 

enumerated for the first scenario, provides us with the opportunity to understand the geo-patterns 

of international collaborations among researchers from bordering countries. Then, to better 

 
1 Artificial Intelligence 
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understand how institutional proximity can affect scientific collaborations, we add AI researchers 

from European countries to the study in the third scenario. The fourth scenario is comprehensive, 

studying the geo-pattern of collaboration among researchers worldwide. 

Since the effect of geography on collaboration has been found to be non-homogenous for different 

fields of knowledge (Bignami et al., 2020), we avoided mixing several disciplines and focused on 

collaborations in the field of AI, which is becoming increasingly prominent and more intertwined 

with existing and new technologies. It is anticipated that by 2030 AI will contribute almost 16 

trillion USD to the global economy (PwC, 2017). AI's potential for economic growth and 

technological innovation, along with its capabilities to improve the efficiency of service delivery 

through its various tools (Machin learning, Natural language processing, etc.), has encouraged 

enormous public and private investments in this field. For example, the US government announced 

an investment of $1 billion in AI and Quantum Information Science research centers (US 

Government, 2020). In Canada, the significant AI infrastructure investments known as the 

"superclusters" are expected to contribute to Canada's economy by $66 billion by 2030 

(Government of Canada, 2018). Moreover, as of August 2020, the federal government has awarded 

$1 billion in contributions across the country (Government of Canada, n.d.). Besides, a total of $1.2 

billion in public investments have also been committed for the province of Quebec, and over $2 

billion has been announced in private investments for Montreal (Brandusescu, 2021). 

The organization of this study is as follows. The second chapter covers relevant literature about the 

notion of proximity and its role in explaining scientific collaboration. The third chapter discusses 

the data and methodology we used to reach the research objectives. The fourth chapter presents 

and discusses the results of data analysis. The fifth chapter discusses the main findings of this 

research work and concludes.  
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2. LITERATURE REVIEW 

2.1. Proximity 

Proximity is an influencing factor for knowledge flows in science (Boschma, 2005), and 

researchers from different disciplines try to analyze and understand complex network-related 

problems using this notion (André Torre & Gilly, 2000). 

Although proximity has been historically associated with location (Gilly & Torre, 2000), different 

researchers developed the meaning of proximity, as it has gone beyond a spatial connotation 

(Boschma, 2005). Analyzing the role of technology and R&D2 on the competitive strategies of 

multinational pharmaceutical companies, Zeller (2004) specified the categories of spatial, 

organizational, institutional, cultural, relational, technological, and virtual proximity. In her study, 

geographical proximity is named spatial proximity. Also, she considered the organization as a 

corporate unit with its own set of rules and identity. Then, she addressed adherence logic in two 

elements, i.e., institutional and cultural proximities. She defined institutional proximity as the 

collection of practices, laws, and rules defined by the geographical setting within a country or 

region. Then, cultural proximity is defined based on shared cultural background and the consequent 

norms of behaviour between researchers. She also included personal relationships based on 

informal structures and facilitated knowledge transfer, as relational proximity. Moreover, Zeller 

argued that technologically proximate agents could contribute with their respective findings, 

developments, and know-how; thus, she included technological proximity in her study. The last 

proximity element that she considered in her framework was virtual proximity which is the 

similarity between agents in terms of using ICT3. 

 
2 Research and development 
3 Information and communication technology 
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Another proximity classification framework was introduced by Boschma (2005) with five 

dimensions, i.e., geographical, organizational, social, institutional, and cognitive. In his work, 

social proximity is identical to relational proximity introduced by Zeller (2004). However, 

Boschma did not separate cultural and institutional proximities. An institution in this context has 

two elements: informal institutions referring to cultural factors like ethnics, beliefs, and language, 

and formal institutions referring to laws and regulations. Besides, cognitive proximity accounts for 

agents' similarity in terms of their knowledge base. 

Boschma & Frenken (2010) argued that the list of proximity dimensions can be extended without 

changing the meaning of a dimension, as proximity dimensions are analytically orthogonal even 

though they may be empirically correlated. For example, social proximity is generally higher when 

organizations are geographically proximate since friendships are more easily established and 

maintained over short distances. In general, despite differences between studies in terms of the list 

of proximity dimensions, the factors they use in their studies are shared. However, sometimes they 

rename them, separate them, or merge diverse aspects in one dimension. Although studying several 

proximity dimensions can be helpful in understanding networks' evolution, proximity dimensions 

seem to be substitutes rather than complements (Boschma, 2005). In other words, forming a 

connection requires at least one dimension of proximity, and if more than one exists, then the 

contribution of the additional ones is negligible. Thus, even though building networks requires 

proximity, not every dimension is necessary to form a connection. 

2.2. Proximity and collaboration 

The concept of proximity is an especially useful framework for analyzing the determinants of 

collaboration (Cunningham & Werker, 2012; Kirat & Lung, 1999; Andre Torre & Rallet, 2005). 

Bergé (2017) argued that different dimensions of proximity favor collaboration in two general 

ways: 1) proximity enhances the chance of potential partners to meet, and 2) it reduces the costs 
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involved in the collaboration. Therefore, it increases the expected net benefits of the collaboration 

and augments the likelihood of its success. 

However, various dimensions of proximity may have different influences on collaboration. The 

impacts of different types of proximity on collaboration have been studied by Balland (2012). 

Using data from R&D collaborative projects funded under the European Union 6th Framework 

Programme from 2004 to 2007, Balland showed geographical, organizational, and institutional 

proximity favour collaborations, while cognitive and social proximity does not play a significant 

role. 

As is discussed in the introduction section, this thesis has two main objectives. First, to study the 

effect of geographical proximity on scientific collaboration among AI researchers; second, to 

examine the substitutability between geographical proximity and network proximity. Thus, we 

review the literature associated with geographical proximity, network proximity, and their 

interaction in the following sections. Moreover, following Bergé (2017), we include two more 

dimensions of proximity, i.e., institutional proximity and cognitive proximity, in the study to 

understand the evolution of scientific collaboration networks better. Thus, the literature related to 

institutional proximity and cognitive proximity is also discussed in other sections. 

2.3. Geographical proximity 

Among different dimensions of proximity, geographical proximity is the most common dimension 

in the literature (Knoben & Oerlemans, 2006). To understand the relationship between 

geographical proximity and scientific collaboration, one may deconstruct it as follows. 

First, authors have to understand and share complex ideas, concepts and methods in order to 

collaborate on knowledge production (Gertler, 1995, 2003). Thus, some researchers argued that 

face-to-face interaction is essential to transfer tacit knowledge and conduct research. Gertler 

(1995), for example, addressed the importance of closeness between collaborating parties for the 
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successful development and adoption of new technologies via interviews with advanced 

manufacturing technologies in Southern Ontario. He concluded that co-location is crucial to 

facilitate face-to-face interactions, consequently enhancing the chance of productive 

collaborations. Rallet & Torre (1999) also confirmed the importance of physical proximity in 

forming innovative collaborations and argued that the transfer of tacit knowledge implies frequent 

face-to-face relations. Howells (2002) discussed the relationship between knowledge and 

geography in the innovation process as well and highlighted the importance of geographical 

proximity in transferring tacit knowledge. In another study, Storper & Venables (2004) discussed 

the main features of face-to-face interactions. They concluded that face-to-face contact is 

particularly important in creative activities where information is imperfect, rapidly changing, and 

not easily codified. 

Moreover, some studies show face-to-face interaction facilitates coordination, communication, and 

direct feedback (Beaver, 2001; Freeman et al., 2014), enhancing successful collaboration. 

Therefore, geographical distance lowers the likelihood of successful collaboration by diminishing 

knowledge exchange opportunities through face-to-face contact and incurring more significant 

travel costs (Katz, 1994; Katz & Martin, 1997). Catalini (2018) investigated the relationship 

between co-location and the rate, direction, and quality of scientific collaboration in a more recent 

study. His results show that co-location enhances the chance of co-publication by 3.5 times. He 

argued that co-location has two main advantages; first, it increases the likelihood of serendipitous 

interaction, and second, it lowers the search cost for new collaborators. 

Second, geographical proximity increases the probability of potential partners meeting in the first 

place via attending social events such as seminars and conferences linked to geographical distance 

(Bergé, 2017). As an example, van Dijk & Maier (2006) studied the data on participating at the 

European Regional Science Association congresses and concluded that geographical proximity 
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heightens the chance of attending them. In another study, Breschi & Lissoni (2009) showed that 

the social embeddedness of researchers decays with geographical distance since they have more 

knowledge about geographically closer partners. Therefore, we should expect the influence of 

geographical distance on collaboration to be negative. Several studies in different contexts (co-

authorship in scientific collaboration, co-patenting, and cooperation among research institutions) 

have evidenced this fact. 

In the case of co-authorship in scientific publication, Ponds et al. (2007) analyzed the geographical 

aspects of collaboration in scientific knowledge production, studying the co-publication data in 

science-based industries (agriculture & food chemistry; biotechnology; fine organic chemistry; 

analysis, measurement & control technology; optics; information technology; semiconductors and 

telecommunication) in the Netherlands during 1988 – 2004. Their main finding was that 

geographical proximity has a significant positive effect on collaboration between academic 

organizations. Besides, they concluded that geographical proximity could overcome the 

institutional differences between organizations, necessary for successful collaboration. 

Hoekman et al. (2009) also studied the inter-regional research collaborations based on scientific 

publications and patents among 1,316 regions in 29 European countries. They found a negative and 

significant association between direct distance and co-publication, implying that the choice for 

collaboration partners in Europe is not just based on scholarly grounds, and geographical barriers 

mainly impede it. Also, they found that there is a higher chance of co-publication when regions 

belong to the same country. Therefore, they concluded that despite the opportunities of 

international collaborations offered by policymakers in the European Union, most researchers are 

biased towards domestic partnerships. 

In a more recent study, Bergé (2017) used the data on scientific co-publications in the field of 

chemistry among 132 regions in five large European countries, i.e., Italy, Germany, Spain, France, 
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and the United Kingdom, between 2001 and 2005. He found that increasing the distance between 

two regions decreases their level of collaboration. In addition, his results showed that national 

borders have the most impeding effect on collaboration, as when regions are in two different 

countries, their level of collaboration decreases by 83%. 

To understand the relationship between geographical proximity and co-patenting, Maggioni et al. 

(2007) analyzed co-patenting among 109 regions in the five large European countries during 1998 

– 2002. Their results clearly showed a negative association between geographical distance and 

collaboration. Besides, they concluded that contiguity would positively affect the number of co-

patenting between regions. In a more recent study, Morescalchi et al. (2015) used data on patents 

filed with the European Patent Office (EPO) for OECD4 countries to study the influence of 

geographical proximity and country borders on inter-regional links in four different networks (co-

inventorship, patent citations, inventor mobility, and the location of R&D laboratories) from 1988 

to 2009. Their results showed that despite globalization and advancement in communication and 

transportation technologies, the constraint imposed by geographical distance on R&D inter-

regional links has increased. 

In the case of cooperation among research institutions, Scherngell & Barber (2009) focused on 

cross-regional R&D collaborations between 255 regions in 27 European countries to identify the 

influence of geographical and technological separation on forming R&D collaborative activities. 

The results showed a negative and significant relationship between direct geographical distance 

and collaboration. Also, they showed that the intensity of collaboration among regions in different 

countries is lower than the intensity of collaboration among regions from the same county. 

Moreover, although they found technological proximity to have a stronger effect on the constitution 
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of R&D collaborations, they concluded that co-localization of organizations in neighbouring 

regions is an essential factor for the constitution of cross-regional R&D collaborations in Europe. 

However, the negative effect of geographical proximity on collaboration could be limited. For 

instance, Mascia et al. (2017) studied the moderating impact of geographical proximity on the 

relationship between competitive interdependence and the propensity of organizations to 

collaborate and exchange resources. They argued that geographical proximity has a differentiated 

influence on two contrary factors affecting the tendency of organizations to collaborate, i.e., 

cooperative opportunities and competitive constraints, and concluded that the effect of 

geographical proximity on collaboration could be limited due to the natural tendency to compete 

for resources. 

In addition, the effect of geography on collaboration could be non-homogeneous. Bignami et al. 

(2020), as an instance, showed that although geographical distance negatively affects collaboration, 

its importance is not equal for different types of knowledge that are being transferred in 

collaboration. They concluded that collaborations in basic science and core knowledge areas are 

more negatively affected by geographical distance than collaborations within clinical science and 

exploration knowledge areas. 

Also, the results of temporal studies on the relationship between geographical proximity and 

collaboration over time are antithetical. While Johnson & Mareva (2002) concluded that the 

importance of geographical distance is diminishing, some studies have reported the effect of 

geographical distance on collaboration to be unchanged (Hoekman et al., 2010) or even becoming 

stronger (Morescalchi et al., 2015) over time notwithstanding developments in communication and 

transportation technologies. 

Too much geographical proximity 
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Whereas geographical distance negatively affects interactive learning and innovation, too much 

proximity can also be harmful to these purposes (Boschma, 2005). Boschma & Frenken (2010) 

called this phenomenon "proximity paradox" and explained that it could happen due to the lack of 

openness and flexibility. They argued that proximity might negatively impact innovation due to 

the problem of spatial lock-in. When "inward-looking" spreads among agents in a region, the main 

risk would be their learning ability to be weakened gradually, which may lead to losing their 

innovative capacity and ability to respond to new developments. 

Moreover, Merton (1973) explained scientific parochialism as another risk of geographical 

proximity. He argued that when researchers limit their interactions to local partners, they will 

deprive themselves of critical information flows in their field. However, Gittelman (2007) believed 

that the current scientific publication procedure that involves exchanging papers drafts would 

prevent scientific parochialism to some extent; it helps scientists keep updated with work from 

peers, no matter where they are located. In addition, she argued that participating in seminars and 

conferences may have a significant role in stimulating knowledge exchange and considering 

collaboration with distant partners.  

Other forms of proximity 

Some researchers believe that the effect of geographical proximity on collaboration cannot be 

evaluated in isolation as other forms of proximity are significant in explaining collaboration. 

Reviewing the literature of scientometric studies that have taken the spatial dimension into account, 

Frenken et al. (2009) provided an analytic framework for spatial scientometric research. They 

propose to use the concept of proximity, which distinguishes physical proximity from other forms 

of proximity (e.g., cognitive, social, organizational, and institutional) as determinants of scientific 

interaction. 
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Moreover, Boschma (2005) argued that geographical proximity per se is neither a necessary nor a 

sufficient condition for collaboration; it facilitates interactive learning by strengthening the other 

dimensions of proximity. As the other dimensions of proximity may provide alternative solutions 

to the problem of spatial lock-in in the region, geographical proximity is not a necessary condition. 

Besides, since the knowledge transfer across large distances requires other forms of proximity to 

be effective, geographical proximity is not sufficient either. Hence, although economic 

geographers have emphasized the economic advantages of geographical proximity, they have 

pointed out that other dimensions of proximity besides geographical proximity are vital in 

understanding collaboration. 
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2.4. Network proximity 

Network proximity can be defined and measured in different ways. For example, the “shortest 

path”, a fundamental concept in graph theory, is the shortest path of vertices and edges that links 

two given nodes (Newman, 2001). In a scientific collaboration network where each node represents 

an author, and each edge represents a co-publication, the shortest path represents how many authors 

are between two researchers tied up by co-authorship links with their peers. In this case, when the 

two specific authors have collaborated in a publication, they would be direct neighbors, and the 

shortest path would be 0. However, Bergé (2017) introduced TENB (Total Expected Number of 

Bridging Paths) to measure the network proximity between two different geographical districts 

based on their indirect connections. He argues that using the concept of TENB avoids the problem 

of reverse causality between co-publication and network proximity at the cost of neglecting 

possible network proximity originating from direct ties. 

Due to the intuitive connection between social bonds and collaboration (Katz & Martin, 1997), the 

structure of scientific collaboration networks has been investigated in different studies (Almendral 

et al., 2007; Barabâsi et al., 2002; Fafchamps et al., 2010; Newman, 2001; Wagner & Leydesdorff, 

2005). Some network mechanisms which can encourage collaboration have been discussed in the 

literature. Carayol et al. (2019) examined the notion of triadic closure as the tendency of two 

indirectly linked nodes to connect. They argue that triads have some advantages over dyads, such 

as conflict mitigation and trust enhancement, leading to triadic closure (Krackhardt, 1999). 

Compared with dyads, partners' negative behaviours are less expected in triads, as the third agent 

who serves the relation can punish it (Bergé, 2017). This structure can become a triadic closure, 

which is especially useful for international collaborations that assessing the reliability of partners 

might be difficult in them. In other words, collaborating with a partner of a partner can be 



15 
 

favourable since it reduces the risks of collaboration by limiting opportunistic behaviours (Bergé, 

2017). 

In this vein, Ter Wal (2014) showed that the importance of triadic closure has increased drastically 

among inventors in Germany since they need more trust between partners due to the change in 

technological regime. In another study, Dahlander & McFarland (2013), after studying the 

researchers' behaviour at Stanford University, concluded that the chance of collaboration is 

positively influenced by having an indirect partner. 

Homophily is another characteristic of networks that can affect forming new collaborations. 

Mcpherson et al. (2001) defined homophily as “the positive relationship between the similarity of 

two nodes in a network and the probability of a tie between them.” Studying this feature in different 

contexts, such as forming friendships at school, sociologists have shown that similarity is a force 

that drives developing new links (Mcpherson et al., 2001). In the context of scientific collaboration, 

Blau (1974) investigated the relationship among physic scientists and concluded that having similar 

research interests and personal characteristics positively affect their research relationships. 

In a more recent study, Bergé (2017) argued that the collaboration network could trigger new 

connections through homophily. He believed that in every successful scientific collaboration, 

partners should have shared some similarities (same research topic, same approach to research 

questions, etc.). Therefore, if two agents have links with a third agent, there is an excellent chance 

that they share some similarities, which can lead to their future collaboration. 

Finally, researchers can rely on the network to find their potential partners as it is an authentic 

source of information (Gulati & Gargiulo, 1999). Considering the importance of time for 

researchers (Katz & Martin, 1997) and increasing the demand for scientific collaboration (B. Jones, 

2009), this network function seems crucial for finding the right partners. As time is a primary 

concern for researchers on the one hand, and assessing all potential matches to find the best 
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collaborator is impossible due to lack of information on the other hand, the most efficient decision 

could be the best possible option in the network vicinity (Bergé, 2017). In a related study, 

Fafchamps et al. (2010) showed that when researchers are closer in the network, they have more 

chances to access information about each other. Moreover, they concluded that being closer in the 

network enhances the probability of future collaboration. 
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2.5. Interaction between geography and network proximity 

The impacts of geographical and network proximity on collaboration have been discussed in the 

previous sections. However, one could ask about the net outcome of these two factors. Different 

hypotheses can be developed here. First, the influence of geographical proximity and network 

proximity can be independent, meaning that the benefit of network proximity is homogeneous for 

all potential collaborators regardless of their geographical distance. This independence hypothesis 

can be the case only if geographical and network proximity influence collaboration via completely 

unrelated mechanisms. Since the mechanisms through which they affect collaboration (such as 

improving trust or facilitating searching for a future partner) are the same for both geographical 

proximity and network proximity, their interaction could not be independent (Bergé, 2017).  

Putting the independence hypothesis aside, we need to discuss two contrary patterns: 

complementarity and substitutability. In the complementarity pattern, a higher level of network 

proximity will enhance the chance of collaboration when agents are geographically close. Bergé 

(2017) argued that complementarity can be the case, especially when agents have a “taste for 

similarity.” However, in the substitutability pattern, network proximity is necessary for 

collaboration among two geographically apart agents since they are not subject to any other forms 

of proximity. But, if they are geographically close to each other, a high level of network proximity 

has less importance in encouraging collaboration (Bergé, 2017). 

Several studies focused on the effect of geography and network on collaboration, For example, 

Autant-Bernard et al. (2007) studied the impact of geographical and network proximities on the 

chance of future collaboration, and Maggioni et al. (2007) investigated the determinants of 

patenting activity. Both studies concluded that network and geographical proximity would 

positively affect future collaboration. 
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In an uncommon study, Bergé (2017) examined the interplay between network proximity and 

geographical proximity. Using data on scientific co-publications in the field of chemistry among 

132 regions in five large European countries, he showed that the effect of network proximity on 

future collaboration is mediated by geography. Moreover, he found a substitutability pattern 

between geographical proximity and network proximity showing that network proximity mainly 

benefits distant collaborations. 

The interaction between geography and other forms of proximity 

The interaction between geographical proximity and organizational proximity has been 

investigated in some studies. Analyzing the co-publication data in science-based industries in the 

Netherlands during 1988 – 2004, Ponds et al. (2007) found a substitutability pattern between 

geographical and organizational proximities. However, D'Este et al. (2013) did not find such a 

pattern for university research partnerships in the United Kingdom. 
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2.6. Institutional proximity 

When it comes to collaboration, the effect of national borders is another geographical barrier 

usually discussed under the context of institutional proximity (Hoekman et al., 2009). Boschma 

(2005) argued that the institutional environment shapes, affects, and even constrains interactions 

between agents. Besides, knowledge flow is affected by many factors which can be recognized at 

the national level (Banchoff, 2002; Glänzel, 2001). Funding schemes, as an example, typically 

encourage domestic collaborations since they exist at a national scale most of the time. 

Moreover, people usually travel within a country rather than across countries, and since they keep 

ties with their previous partners, their social networks are mainly developed at the national level 

(Miguélez & Moreno, 2014). In addition, social factors such as language, values, and norms, which 

generally are shared within a country, facilitate collaboration. Therefore, the fact that being from 

different countries negatively affects the collaboration (either co-publication or co-patenting) 

process is demonstrated in the literature (Hoekman et al., 2009, 2010; Morescalchi et al., 2015; 

Scherngell & Barber, 2009). 
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2.7. Cognitive proximity 

Defined as “the shared knowledge base and expertise of different agents,” different frameworks 

recognized cognitive proximity as a determinant of collaboration (Boschma, 2005; Zeller, 2004). 

Boschma (2005) argued that cognitive proximity is crucial to communicate, absorb, comprehend, 

and process new information between partners. Besides, Boschma & Frenken (2010) argued that 

agents tend to select close partners in terms of geographical proximity and from the knowledge 

base point of view. In other words, being capable of absorbing external knowledge is a prerequisite 

for collaboration among local agents (Boschma, 2005). Moreover, several empirical studies 

reported the positive effect of cognitive proximity on collaboration (Bergé, 2017; Cunningham & 

Werker, 2012; Ding, 2011; Jaffe & Hu, 2003; Jaffe & Trajtenberg, 1999). Since AI is not 

homogeneous and includes many different sub-fields like any other scientific discipline, if agents 

are from various sub-fields, they might encounter challenges in collaboration. In other words, we 

should expect cognitive distance to influence scientific collaboration negatively. 
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2.8. Research gap 

As discussed thoroughly in this chapter, several studies have examined the determinants of 

scientific collaboration among regions or organizations using the notion of proximity. However, 

research works that address the efficiency of funding long-distance scientific collaborations are 

scarce. Bergé (2017) worked on the same objective among studies with a relevant topic. Although 

his work is one of a kind, it is limited in some respects. First, he focused on the research 

collaboration among regions in five European countries, i.e., Germany, Spain, Italy, France, and 

the United Kingdom. Second, his study is limited to the co-publications in the field of chemistry 

between 2001and 2005. 

This thesis departs from the previous literature from several aspects. First, we study the geo-pattern 

of scientific collaborations among researchers, not geographical regions or organizations. Second, 

we start with studying the geo-pattern of scientific collaboration among Canadian AI researchers 

and then extend the domain of study to the United States, Europe, and the entire world. This step-

by-step strategy will provide a better insight towards understanding the role of different dimensions 

of proximity on scientific collaboration. Third, this study covers co-publications among AI 

researchers from 2000 to 2019. As AI has been among the fast-growing fields since 2000 (PwC, 

2017), many scientific papers in AI were published after 2000. Therefore, this study is not suffering 

from a limited time span. Finally, we use regression analysis and machine learning classification 

to understand the relationship between scientific collaboration and its determinants better. 
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2.9. Research questions 

The following research questions will be answered at the end of this study:  

1) How does geographical proximity influence the probability of future collaboration? 

2) Can network proximity substitute geographical proximity to encourage long-distance 

scientific collaborations? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

3. METHODOLOGY 

3.1. Models 

Based on the research objectives defined in the previous chapter, two models are built. The first 

model is constructed to investigate the impact of geographical proximity and other dimensions of 

proximity on the probability of future scientific collaboration. Figure 1 demonstrates the conceptual 

diagram of model 1. 

 

 
 

Figure 1. Model 1 conceptual diagram 

 

To investigate the relationship between geographical proximity and scientific collaboration, we 

developed the following null hypothesis: 
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H01: A higher level of geographical proximity does not enhance the likelihood of future scientific 

collaboration. 

The second hypothesis can be developed to study the relationship between network proximity and 

scientific collaboration as: 

H02: A higher level of network proximity does not enhance the likelihood of future scientific 

collaboration. 

However, the effect of institutional proximity on scientific collaboration can be studied at two 

levels: province level and national level. So, the third null hypothesis can be developed as two 

separate hypotheses as below: 

H03a: Being from the same province does not enhance the likelihood of future scientific 

collaboration. 

H03b: Being from the same country does not enhance the likelihood of future scientific 

collaboration. 

The fourth hypothesis is dedicated to the relationship between cognitive proximity and scientific 

collaboration: 

H04: A higher level of cognitive proximity does not enhance the likelihood of future scientific 

collaboration. 

Like institutional proximity, regional contiguity (sharing a boundary in common) can have two 

forms: province contiguity and country contiguity. So, the fifth null hypothesis can be developed 

as two separate hypotheses as below: 

H05a: Province contiguity does not enhance the likelihood of future scientific collaboration. 

H05b: Country contiguity does not enhance the likelihood of future scientific collaboration. 
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The second model is based on the second objective of the study, i.e., investigating the interaction 

influence of geographical proximity and network proximity on scientific collaboration. Figure 2 

presents the conceptual diagram of the second model. 

 

Figure 2. Model 2 conceptual diagram 

 

The hypothesis that can be developed based on the second model is as follows: 

H06: Geographical proximity does not moderate the effect of network proximity on the likelihood 

of future scientific collaboration. 
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3.2. Variables 

3.2.1. Co-publication 

In this study, the dependent variable is co-publication which is employed as a proxy of scientific 

collaboration in several studies (Dahlander & McFarland, 2013; Hoekman et al., 2009; Ponds et 

al., 2007). This binary variable is equal to 1 if authors had at least one co-publication during the 2-

year time window and 0 otherwise. 

3.2.2. Geographical proximity 

Following different studies (see, e.g., Bergé, 2017; Cunningham & Werker, 2012), we used direct 

spatial or “as the crow flies” distance between researchers’ affiliations to measure their 

geographical proximity. To calculate the geographical distance between researchers, we geocoded 

their geographical location by turning their affiliation addresses into geographical coordinates 

using Google Geocoding API (Google, n.d.). 

Finally,  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 as the measure of geographical proximity between author i and author j was 

calculated using the Haversine formula (Inman, 1835) as follow: 

𝑎 = sin2(
𝜑𝑗 − 𝜑𝑖

2
) + cos 𝜑𝑖 × cos 𝜑𝑗 × sin2(

𝜆𝑗 − 𝜆𝑖

2
)          (1) 

𝑐𝑖,𝑗 = 2 × atan2(√𝑎, √1 − 𝑎)          (2) 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 = 𝑅 × 𝑐𝑖,𝑗          (3)  

where 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 is the geographical distance between author i and author j in kilometres, 𝜑𝑖 and 

𝜆𝑖 are, respectively, the latitude and the longitude of the first author’s affiliation in radian, 𝜑𝑗 and 

𝜆𝑗 are, respectively, the latitude and the longitude of the second author’s affiliation in radian, atan2 

is the 2-argument arctangent, and 𝑅 is the average radius of the earth (~ 6,373 kilometres). 
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3.2.3. Institutional proximity 

As institutional proximity usually refers to the collection of practices, laws, and rules defined by 

the geographical setting (Boschma, 2005), we defined this variable at two levels, i.e., province and 

country, in this thesis. In the first scenario, we defined a binary variable as a proxy for institutional 

proximity, capturing the effect of same province collaborations, which takes 0 for two given 

researchers if they are in the same province, and 1 otherwise. In the second scenario where we 

extend the study to the United States, we defined two binary variables as proxies for institutional 

proximity, one to capture the effect of the same province and the other to capture the impact of the 

same country. Similarly, they take 0 when two researchers are in the same province/country and 1 

otherwise. In the third and fourth scenarios where we extend the study to Europe and the entire 

world, we defined one binary variable to capture the effect of the same country. Again, it takes 0 

when two researchers are in the same country and 1 otherwise. 

3.2.4. Network proximity 

To estimate the network proximity of researchers, we used the “Total Expected Number of 

Bridging Paths (TENB)” measure, introduced by Bergé (2017). As he developed this metric to 

measure the network proximity between two different geographical districts based on their indirect 

connections, we customized it to capture the network proximity between researchers via the 

following equation: 

𝑇𝐸𝑁𝐵𝑖,𝑗 = ∑
𝑔𝑖,𝑘 × 𝑔𝑗,𝑘

𝑛𝑘
𝑘

       (4) 

where 𝑇𝐸𝑁𝐵𝑖,𝑗 is the total expected number of bridging paths between author i and author j, 𝑔𝑖,𝑘 is 

the total number of co-publications between author i and author k, 𝑔𝑗,𝑘 is the total number of co- 

publications between author j and author k, 𝑛𝑘 is the total number of publications by author k. If  
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𝑇𝐸𝑁𝐵𝑎,𝑏 > 𝑇𝐸𝑁𝐵𝑎,𝑐, it means that author a and author b are closer with respect to their indirect 

connections than author a and author c. 

One could argue that the network proximity originating from the direct connections between 

researchers may also be necessary for triggering new collaborations. Yet, since the identification 

of network proximity is based on network connections, direct collaborations between the two 

researchers would directly influence their level of network proximity. As this thesis is trying to 

explain collaborations, this would create a problem of reverse causality (Bergé, 2017). In 

consequence, using the concept of TENB means this problem is avoided at the cost of neglecting 

possible network proximity originating from direct ties. 

3.2.5. Cognitive proximity 

We implemented the LDA5 topic modelling technique (Blei et al., 2003) to estimate the cognitive 

proximity among authors. Topic modelling, in general, is a type of statistical modelling for 

discovering distinct topics that occur in a collection of documents. LDA is a topic model which 

helps classify text in a document to a particular topic. It builds a topic per document model and 

words per topic model, modelled as Dirichlet distributions. In this study, first, we created a vector 

of topics for each publication. Some data preprocessing steps are required to maximize the 

likelihood of capturing the main topics discussed in each publication: 

Step 1: Concatenating title and abstract 

Step 2: Removing punctuation marks 

Step 3: Lowercasing words 

Step 4: Lemmatizing 

Step 5: Removing stop words 

 
5 Latent Dirichlet Allocation 
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Step 6: Building Bigrams and Trigrams 

Step 7: TF-IFD6 removal  

Step 8: Creating the dictionary 

Then, to find the optimum number of the topics, we calculated the coherence measure for a range 

of topics from 5 to 35. A set of statements or facts is said to be coherent, if they support each other. 

Thus, a coherent fact set can be interpreted in a context that covers all or most of the facts. In this 

study, we calculated the coherence value based on Röder et al. (2015). First, the word set t is 

segmentated into a set of pairs of word subsets S. Second, word probabilities P are computed based 

on a given reference corpus. Both, the set of word subsets S as well as the computed probabilities 

P are consumed by the confirmation measure to calculate the agreements ϕ of pairs of S. Last, those 

values are aggregated to a single coherence value c. Figure 3 shows the coherence value for a given 

number of topics. As seen, the highest coherence value (0.498) is associated with the number of 

topics equal to nine. 

 

Figure 3. Topic modelling coherence values 
 

6 Term Frequency - Inverse Document Frequency 
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Therefore, we chose nine as the number of topics for LDA topic modelling. As a result, a vector 

with nine elements was generated for each publication. The value of each element shows the weight 

of the respective topic in that specific publication. To see if topics are distinct enough, we generated 

the intertopic distance map, which visualizes the topics in a two-dimensional space (Figure 4). The 

area of these topic circles is proportional to the number of words that belong to each topic across 

the dictionary. Besides, top-20 most relevant terms for the first topic, as an instance, are presented 

in Figure 4. 

 

 

Figure 4. Intertopic distance map for topic one 

 

After attaining the topic vectors for all publications, the knowledge base vector of each author was 

calculated as the average of topic vectors of all their works published during the past 3-year 

window. Therefore, for any specific author to have the knowledge base vector, they must have at 

least one publication during that period.  
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Finally, the 𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 as the measure of cognitive proximity between author i and 

author j was defined as: 

𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗  = 1 − 𝑐𝑜𝑟𝑟(𝑠𝑖, 𝑠𝑗)         (5) 

where 𝑠𝑖 and 𝑠𝑗 are the knowledge base vectors of author i and author j, respectively; 

and 𝑐𝑜𝑟𝑟(𝑠𝑖, 𝑠𝑗) is the correlation between the knowledge base vectors of author i and author j. As 

inferred from equation (5), when two authors have the same knowledge base vectors, the 

correlation between their knowledge base vectors would be equal to 1; consequently, their 

cognitive distance is 0, implying the highest level of cognitive proximity. At the other extreme, 

when the correlation between knowledge base vectors of two authors is equal to -1, their cognitive 

distance would be equal to 2, implying the lowest level of cognitive proximity. 

3.2.6. Regional contiguity 

Following Bergé (2017), we added two variables of regional contiguity to capture the effects of 

geography that are not seized by geographical proximity. These binary variables that capture the 

impact of collaboration between researchers from contiguous provinces/countries take the value of 

0 for two given researchers if they are in two contiguous provinces/countries and 1 otherwise. 
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3.3. Data 

The information on publications was extracted from Elsevier’s Scopus. Data collection and 

preparation involved several steps. First, the bibliographic data, including but not limited to title, 

abstract, keywords, date of publication, author list, etc., were retrieved from Scopus, filtering in 

research articles, conference papers, book chapters, and books published from 2000 to 2019. Only 

publications for which both title and abstract were available were included.  

We used the (“artificial intelligence” OR “machine learning” OR “deep learning”) search query to 

extract AI-related publications where at least one of the mentioned phrases appeared in the title, 

abstract or the keywords section of the publication. The result of running this query was the main 

database of the study with 45,738 publications by 153,720 authors from 162 different countries 

during 2000 - 2019. 

We filtered the publications based on each scenario before forming the datasets to answer the 

research questions for different scenarios explained in the previous chapter. In the first scenario, 

we just included the publications with Canadian authors. The result was a subset of the main 

database with 670 publications by 1,923 authors. Then, we expanded the data to Canada and the 

United States in the second scenario. There are 7,180 publications by 22,727 authors from these 

two countries in this scenario. Adding European publications, there are 20,508 publications by 

64,852 researchers from Canada, the United States, and European countries in the third scenario. 

Finally, the last scenario covers entire publications in the main database. 
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3.4. Dataset formation 

We followed Bergé (2017)’s approach in forming datasets and constructed the dependent and 

independent variables in different time windows to prevent simultaneity biases. Thus, we 

considered sliding 2-year and 3-year time windows to calculate the dependent variable and 

independent variables, respectively.  

To form the dataset for each scenario, we first developed the network of potential co-authorship 

that contains all possible scientific collaborations among authors who had at least one publication 

during the 2-year time window and at least one publication during the 3-year time window. Figures 

5 to 8 compare the number of authors and their collaborations during each time window for each 

scenario. Consequently, we formed a network for each 2-year time window in which each node 

represents an author, and each edge represents a possible collaboration between two authors and a 

dataset record. Then, we calculated the dependent variable and independent variables for each 

record. For every given pair of authors, if they had at least one co-publication during the 2-year 

time window, the co-publication variable takes 1, otherwise 0. Independent variables were 

calculated based on authors' publications during the respective 3-year time window. These steps 

were repeated for all 2-year time windows as specified in Table 1. With concatenating datasets 

resulting from each 2-year network, we built the final dataset for each scenario. 

Table 1. Time windows to form datasets 

Network formation periods Independent variables estimation periods 

2004 - 2005 2001 - 2003 

2006 - 2007 2003 - 2005 

2008 - 2009 2005 - 2007 

2010 - 2011 2007 - 2009 

2012 - 2013 2009 - 2011 

2014 - 2015 2011 - 2013 

2016 - 2017 2013 - 2015 

2018 - 2019 2015 - 2017 
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Figure 5. Number of authors and collaborations in the first scenario 
 

 

Figure 6. Number of authors and collaborations in the second scenario 
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Figure 7. Number of authors and collaborations in the third scenario 

 

 

Figure 8. Number of authors and collaborations in the fourth scenario 
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3.5. Data analysis methods 

To address the hypotheses developed in the previous section, we used two data analysis methods: 

logistic regression and machine learning classification. As these methods use different approaches 

to answer the same research questions, comparing the outcomes would provide a better insight 

towards understanding the relationship between dependent variables/features and the independent 

variable/target. 

3.5.1. Logit regression 

Logistic regression models the probabilities for problems with a binary dependent variable. It is an 

extension of the linear regression model for classification problems. The problem of using linear 

regression for classification problems with two possible outcomes is that it considers classes as 

numbers (0 and 1) and simply interpolates between the points. Therefore, we cannot interpret the 

results as probabilities. Also, the linear model extrapolates points meaning that the predictions 

could be higher than 1 and lower than 0, which does not make sense for a classification problem. 

Moreover, there is no meaningful threshold to distinguish one class from another because the 

predicted outcome is just a linear interpolation between points and not a probability. One solution 

to tackle those limitations of using linear regression for classification problems is logistic 

regression. It uses the logistic function to squeeze the output of a linear equation between 0 and 1. 

The function is defined as follows: 

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜂) =
1

1 + exp (−𝜂)
          (6) 

We can wrap the linear equation into the logistic function to have probabilities between 0 and 1 as 

the output for classification problems. 

𝑃(𝑦 = 1) =
1

1 + exp (−(𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛))
          (7) 
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Since the outcome in logistic regression is a probability between 0 and 1, the interpretation of the 

coefficients differs from that of the coefficients in linear regression. If we reformulate the equation 

for the interpretation so that only the linear term is on the right side of the formula, then we have: 

ln (
𝑃(𝑦 = 1)

1 − 𝑃(𝑦 = 1)
) = ln (

𝑃(𝑦 = 1)

𝑃(𝑦 = 0)
) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛          (8) 

The term in the ln () function, i.e., probability of class 1 divided by the probability of class 0, is 

called “odds.” To figure out how the prediction changes when the feature  𝑥𝑗  is changed by 1 unit, 

we need a little shuffling of the terms by applying the exp () function to both sides of the equation 

(7): 

𝑃(𝑦 = 1)

1 − 𝑃(𝑦 = 1)
= 𝑜𝑑𝑑𝑠 = exp(𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛)         (9) 

Looking at the ratio of two predictions: 

𝑜𝑑𝑑𝑠𝑥𝑗+1

𝑜𝑑𝑑𝑠𝑥𝑗

=
exp(𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑗(𝑥𝑗 + 1) + ⋯ + 𝛽𝑛𝑥𝑛)

exp(𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑗𝑥𝑗 + ⋯ + 𝛽𝑛𝑥𝑛)
          (10) 

and applying the following rule: 

exp (𝑎)

exp (𝑏)
= exp(𝑎 − 𝑏)          (11) 

we have: 

𝑜𝑑𝑑𝑠𝑥𝑗+1

𝑜𝑑𝑑𝑠𝑥𝑗

= exp(𝛽𝑗(𝑥𝑗 + 1) − 𝛽𝑖𝑥𝑗) = exp(𝛽𝑗)         (12) 

suggesting that for numerical features, if the value of the feature 𝑥𝑗 increases by one unit, the 

estimated odds change by a factor of exp (𝛽𝑗), and for binary categorical features, changing the 

feature 𝑥𝑘 from the reference category to the other category changes the estimated odds by a factor 

of exp (𝛽𝑘). 
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Considering the Boolean nature of the dependent variable in this study (1 for at least one co-

publication for a given pair of researchers, 0 otherwise), we use logit regression to study the 

relationship between the independent variables and the dependent variable. The model is specified 

as follows: 

𝑃(𝐶𝑜˗𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 1) = 𝐹(𝛽′𝑋)         (12) 

where Co-publication is a binary variable that takes 1 if two researchers have at least one co-

publication, otherwise 0; the 𝐹 function is the cumulative probability density function of the logit 

distribution presented in the equation (6); 𝛽′ is the vector of the coefficients, and 𝑋 is the vector of 

independent variables. To examine the hypotheses developed in the first mode, the vector 𝑋 

includes the natural logarithm of geographical distance, the natural logarithm of TENB, the binary 

variable representing the institutional proximity, the cognitive distance, and the binary variable 

representing regional contiguity. Besides, the interaction between geographical distance and TENB 

was added to the vector 𝑋 to examine the hypothesis H06 from the second model demonstrated in 

Figure 2. 

3.5.2. Machine learning classification 

Since the study aims to understand the influence of different dimensions of proximity on forming 

scientific collaboration, we can formulate the problem as a supervised machine learning 

classification. In this sense, the target would be the binary variable of co-publication that takes 1 if 

any given pair of researchers had any co-publication and 0 otherwise. Also, the independent 

variables explained in the logistic regression analysis section would be the features that predict 

future co-publication among researchers. 

While there are many algorithms for supervised learning out there, we implemented those used to 

analyze factor contributions in academic data. We find that many authors in the literature make use 
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of a logistic regression classifier (Bethard & Jurafsky, 2010; Dong et al., 2015; Getoor, 2005). In 

this case, the statistical analysis performed by logistic regression is used iteratively for training as 

a supervised classifier. Logistic regression classifier is often implemented for classification 

purposes due to their output consisting of linear combination of the variables with weights, which 

would provide insights on variable importance (Breiman, 2003). In addition, other prominent 

models such as support vector machines (SVM) would also have the potential to produce accurate 

predictions. Yet, SVM is arguably better when applied to regression problems (i.e. when the 

response variable is of continuous nature) than for binary classification (Bethard & Jurafsky, 2010; 

Breiman, 2003). We also implement models based on decision trees (DT) classifiers, which were 

introduced in the 1960’s (Dong et al., 2015). Decision trees are one of the most popular methods 

for data mining, due to their ease of use and interpretation, robustness even with missing values, 

and their flexibility to use both discrete (categorical) and continuous variables (Song & Lu, 2015).  

Originating from decision trees, random forests (RF) algorithms (Breiman, 2003) grow an 

ensemble of trees and lets them vote for the most prominent class. Notably, RF are considered to 

be accurate classifiers, showing comparable or even better prediction performance than other 

learning methods (Breiman, 2001; Xu, 2013). They have been extensively used in classification 

problems (e.g. Dong et al., 2015; Lichtenwalter et al., 2010; Sarigöl et al., 2014) having led to 

significant improvements in classification accuracy (Breiman, 2003) thanks to their particular 

advantages, such as robustness against overfitting (a potential problem with decision trees). 

There are many measures to evaluate a machine learning classifier. Following several studies using 

machine learning for link prediction (Aiello et al., 2012; Clauset et al., 2008; Moradabadi & 

Meybodi, 2017; Schall, 2014), we use AUC7 to evaluate the classification results. Moreover, AUC 

 
7 Area Under the Curve 
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is a classification threshold invariant metric. It measures the quality of the model's predictions 

irrespective of what classification threshold is chosen. 

We implement a multi-step strategy to find the model best fits the dataset and generates the highest 

possible AUC score. In the first step, we split the dataset into two sets of the train (90%) and test 

(10%) datasets. The test dataset would be untouched to test the final model performance. As the 

data is imbalanced in all scenarios, we oversample the data via SMOTE8 (Chawla et al., 2002), in 

the second step. Then, we apply various machine learning classifiers (Logistic Regression, Nearest 

Neighbors, Gaussian Naive Bayes, Support Vector Machines, Random Forest, and Extreme 

Gradient Boosting) with default hyperparameters to train models through five-fold stratified cross-

validation on the train dataset. In each cross-validation fold, the train dataset is further split into a 

train and a validation dataset containing 80% and 20% of the original train dataset, respectively. 

Then, the classifier with the highest cross-validation AUC scores will be selected for 

hyperparameters tuning.  

We implement a two-step hyperparameters tuning in this study. First, the random search method is 

used to find the approximate range for each parameter. Then, the more accurate grid search method 

is used to fine-tune the parameters found in the random search. After finding the best 

hyperparameters that maximize the AUC score, the final model will be tested with the test dataset 

put aside in the first step. To analyze the effect of each feature on predicting future scientific 

collaboration, we use the concept of SHAP9 values developed by Lundberg & Lee (2017). They 

introduced this game-theoretic approach that assigns each feature an importance value for a 

particular prediction. 

  

 
8 Synthetic Minority Over-sampling Technique 
9 SHapley Additive exPlanations 
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4. RESULTS AND DISCUSSION 

In this chapter, the results of the data analysis are provided. First, the descriptive statistics are 

presented. Then, after discussing the correlation analysis matrices, the logistics regression analysis 

and machine learning classification results are presented and discussed. 

4.1. Descriptive statistics 

This section presents the descriptive statistics of each scenario via tables 2 to 5. In the first scenario, 

which covers collaborations among Canadian authors, there are 2,702 observations. The dataset is 

imbalanced as observations associated with pairs of authors with at least one co-publication form 

only 3% of total observations. Analyzing the statistics of geographical distance among authors is 

very informative; although the maximum geographical distance in the dataset is more than 4,400 

kilometres, the maximum geographical distance for authors who had a co-publication is only 817 

kilometres. Moreover, 75% of all collaborations happened among authors whose affiliations were 

close geographically (less than 7 kilometres). Comparing the average of TENB between the entire 

dataset and the subset of collaborations also shows the role of network proximity in collaboration. 

The average of TENB for the pair of authors with at least one co-publication is 26 times greater 

than the average of TENB for the entire dataset. Comparing the average and maximum cognitive 

distance among the whole dataset and the subset of collaborations also implies the critical role of 

cognitive proximity in forming scientific collaboration. The average cognitive distance among 

authors with co-publication is around 17 times smaller than the average cognitive distance in the 

entire dataset. Besides, the maximum cognitive distance in the whole dataset is more than three 

times greater than the maximum cognitive distance for authors in the subset of collaboration. 

Belonging to the same province also seems essential to form collaborations, as only 5% of total 

collaborations happened among authors from different provinces. 
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Table 2. Descriptive statistics – First scenario 

 Co-

publication 
Geo. distance (km) TENB Cog. distance 

Different 

provinces 

Not 

contiguous 
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mean 0.03 1.00 1,460.63 62.72 0.06 1.56 0.83 0.05 0.72 0.05 0.70 0.95 

std 0.17 0.00 1,341.75 165.35 0.36 0.98 0.42 0.12 0.45 0.22 0.46 0.22 

min 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

25% 0.00 1.00 335.64 0.00 0.00 1.00 0.51 0.00 0.00 0.00 0.00 1.00 

50% 0.00 1.00 793.20 0.16 0.00 2.00 0.91 0.00 1.00 0.00 1.00 1.00 

75% 0.00 1.00 2,883.09 6.84 0.00 2.00 1.18 0.01 1.00 0.00 1.00 1.00 

max 1.00 1.00 4,440.56 817.86 3.00 3.00 1.74 0.57 1.00 1.00 1.00 1.00 

Total number of observations:          2,702                    Total number of collaborations:          81      

 

Analyzing the statistics of variables in the other scenarios shows the same pattern. In all scenarios, 

the average geographical distance among authors in the collaboration subset is shorter than the 

average geographical distance in the entire dataset. Moreover, the average TENB of the whole 

dataset in all scenarios is considerably lower than the average TENB for their respected subset of 

collaboration, implying the critical role of network proximity in forming scientific collaborations. 

Also, comparing the average and maximum values for cognitive distance among authors in the 

collaboration subsets with the same parameters for authors in the entire datasets clearly shows that 

cognitive proximity influences forming scientific collaboration. Besides, discussing the average of 

different country binary variables show that authors from the same country are more likely to 

collaborate. Only 1% of total collaborations happened among authors from different countries in 

the second scenario. Although this figure is higher for the third (36%) and the fourth (40%) 

scenarios, it still shows that institutional proximity is an essential factor in scientific collaboration. 
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Table 3. Descriptive statistics – Second scenario 

 Co-

publication 
Geo. distance (km) TENB Cog. distance 

Different 

provinces 

Different 

countries 
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mean 0.04 1.00 1,874.81 586.71 0.11 2.42 0.84 0.16 0.92 0.29 0.15 0.01 0.97 0.99 

std 0.20 0.00 1,279.83 1131.26 0.78 2.92 0.41 0.30 0.28 0.46 0.36 0.11 0.17 0.10 

min 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

25% 0.00 1.00 760.37 0.00 0.00 0.00 0.54 0.00 1.00 0.00 0.00 0.00 1.00 1.00 

50% 0.00 1.00 1,600.59 0.73 0.00 1.18 0.94 0.00 1.00 0.00 0.00 0.00 1.00 1.00 

75% 0.00 1.00 3,006.78 613.60 0.00 3.5 1.18 0.16 1.00 1.00 0.00 0.00 1.00 1.00 

max 1.00 1.00 7,157.89 7157.89 20.00 20.00 1.81 1.71 1.00 1.00 1.00 1.00 1.00 1.00 

Total number of observations:          47,599                  Total number of collaborations:          1,994 

 

Table 4. Descriptive statistics – Third scenario 
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Geo. distance (km) TENB Cog. distance 
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continents 
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mean 0.01 1.00 4,336.88 1,870.27 0.06 5.39 0.88 0.26 0.78 0.36 0.50 0.19 0.93 0.96 

std 0.10 0.00 3,137.02 2,719.77 1.03 8.61 0.39 0.26 0.41 0.48 0.50 0.40 0.26 0.21 

min 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

25% 0.00 1.00 1,168.52 0.58 0.00 0.33 0.59 0.05 1.00 0.00 0.00 0.00 1.00 1.00 

50% 0.00 1.00 4,327.86 381.23 0.00 5.39 0.97 0.26 1.00 0.00 0.00 0.00 1.00 1.00 

75% 0.00 1.00 6,979.76 2,746.68 0.00 5.39 1.20 0.26 1.00 1.00 1.00 0.0 1.00 1.00 

max 1.00 1.00 13,713.99 11,594.67 48.83 48.83 1.97 1.75 1.00 1.00 1.00 1.00 1.00 1.00 

Total number of observations:          3,372,222               Total number of collaborations:          33,892 
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Table 5. Descriptive statistics – Fourth scenario 
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publication 
Geo. distance (km) TENB Cog. distance 
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mean 0.01 1.00 7,050.29 2,399.09 1.97 170.3 0.89 0.14 0.88 0.40 0.70 0.26 0.95 0.93 

std 0.11 0.00 4,360.46 3,079.16 27.32 189.5 0.39 0.26 0.33 0.49 0.46 0.44 0.21 0.26 

min 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

25% 0.00 1.00 2,943.61 242.80 0.00 1.00 0.62 0.00 1.00 0.00 0.00 0.00 1.00 1.00 

50% 0.00 1.00 7,593.68 1,229.41 0.00 94.16 0.98 0.04 1.00 0.00 1.00 0.00 1.00 1.00 

75% 0.00 1.00 9,857.26 3,461.81 0.00 261.7 1.20 0.14 1.00 1.00 1.00 1.00 1.00 1.00 

max 1.00 1.00 19,966.06 19,438.04 491.7 491.7 1.97 1.75 1.00 1.00 1.00 1.00 1.00 1.00 

Total number of observations:          7,762,616               Total number of collaborations:          89,766 
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4.2. Correlation analysis 

Tables 6 to 9 present the correlation matrix for different scenarios. There is a negative correlation 

between co-publication and geographical distance in all scenarios, implying the negative effect of 

geographical distance on scientific collaboration. In all scenarios, the strong and positive 

correlation between co-publication and TENB reflects the critical role of network proximity on 

scientific collaboration. Besides, as expected, the correlation between co-publication and cognitive 

distance in all scenarios is negative. 

Table 6. Correlation’s matrix – First scenario 

 Co-

publication 
Geo. distance TENB Cog. distance 

Different 

provinces 

Not 

contiguous 

Co-

publication 
1.0***      

Geo. distance -0.18*** 1.0***     

TENB 0.74*** -0.16*** 1.0***    

Cog. distance -0.33*** 0.17*** -0.32*** 1.0***   

Different 

provinces 
-0.26*** 0.59*** -0.24*** 0.12*** 1.0***  

Not 

contiguous 
0.09*** 0.39*** 0.09*** 0.03 -0.4*** 1.0*** 

Level of statistical significance: ***1% 

 

Table 7. Correlation’s matrix – Second scenario 

 Co-

publication 

Geo. 

distance 
TENB 

Cog. 

distance 

Different 

provinces 

Different 

countries 

Not 

contiguous 

Co-

publication 
1.0***       

Geo. 

distance 
-0.21*** 1.0***      

TENB 0.62*** -0.15*** 1.0***     

Cog. 

distance 
-0.35*** 0.11*** -0.27*** 1.0***    

Different 

provinces 
-0.47*** 0.40*** -0.34*** 0.17*** 1.0***   

Different 

countries 
-0.08*** 0.07*** -0.05*** 0.01 0.13*** 1.0***  

Not 

contiguous 
0.02*** 0.18*** 0.02*** 0.02*** -0.05*** -0.21*** 1.0*** 

Level of statistical significance: ***1% 
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In the first two scenarios in which the binary variable of different provinces is included in the 

model, the negative correlation between co-publication and being from different provinces 

confirms the effect of institutional proximity on scientific collaboration. However, as expected, 

there is a positive and strong correlation between geographical distance, different countries, and 

different continents. For example, the correlation among geographical distance and different 

continents in the third and fourth scenarios are 92% and 80%, respectively. Thus, to avoid 

multicollinearity problems, we exclude the different continents variable from those scenarios in 

further analyses. 

Table 8. Correlation’s matrix – Third scenario 

 Co-

publication 

Geo. 

distance 
TENB 

Cog. 

distance 

Different 

countries 

Different 

continents 

Not 

contiguous 

Co-

publication 
1.0***       

Geo. 

distance 
-0.08*** 1.0***      

TENB 0.52*** -0.04*** 1.0***     

Cog. 

distance 
-0.16*** 0.03*** -0.11*** 1.0***    

Different 

countries 
-0.10*** 0.45*** -0.05*** 0.04*** 1.0***   

Different 

continents 
-0.06*** 0.92*** -0.03*** 0.02*** 0.52*** 1.0***  

Not 

contiguous 
0.01*** 0.27*** 0.01*** 0.01*** -0.15*** 0.28*** 1.0*** 

Level of statistical significance: ***1% 

 

Table 9. Correlation’s matrix – Fourth scenario 

 Co-

publication 

Geo. 

distance 
TENB 

Cog. 

distance 

Different 

countries 

Different 

continents 

Not 

contiguous 

Co-

publication 
1.0***       

Geo. 

distance 
-0.12*** 1.0***      

TENB 0.67*** -0.08*** 1.0***     

Cog. 

distance 
-0.20*** 0.05*** -0.16*** 1.0***    

Different 

countries 
-0.20*** 0.48*** -0.16*** 0.08*** 1.0***   

Different 

continents 
-0.13*** 0.80*** -0.11*** 0.05*** 0.56*** 1.0***  

Not 

contiguous 
0.01*** 0.25*** 0.02*** 0.01*** -0.08*** 0.29*** 1.0*** 

Level of statistical significance: ***1%  
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4.3. Logistic regression results 

In this section, the results of logistic regression analysis are discussed. We provide the results of 

each scenario for two models explained in the methodology section. Table 10 shows the logistic 

regression analysis results for the first scenario. In the first model, all the independent variables 

were included. The negative and significant coefficient of geographical distance confirms the 

hindering effect of geographical distance on scientific collaboration, as a 10% increase in the 

geographical distance among authors would decrease the chance of their collaboration by 7%. The 

positive effect of network proximity on scientific collaboration is reflected in the positive and 

significant coefficient of TENB; a 1% increase in TENB would increase the probability of 

collaboration by 4%. Also, the negative and significant coefficient of cognitive distance shows the 

negative influence of cognitive distance on scientific collaboration. However, the coefficients of 

different provinces and not contiguous variables are not significantly different from zero. 

In the second model, the interaction between geographical distance and TENB is added. The 

coefficient of the interaction term is positive and significant, implying that the effect of TENB on 

scientific collaboration is even more powerful when authors have a farther geographical distance. 

Table 10. Logistic regression results – First scenario 

Model (1) (2) 

Dependent variable Co-publication Co-publication 

Geo. distance (ln) -0.69*** (0.10) -0.89*** (0.14) 

TENB (ln) 4.06*** (0.41) 2.64*** (0.54) 

Geo. distance (ln) ˟ TENB (ln)  0.44*** (0.15) 

Cog. distance -5.60*** (0.82) -5.36*** (0.82) 

Different provinces 1.11 (0.75) 1.50 (0.87) 

Not contiguous 0.69 (0.28) 1.00 (0.81) 

Number of observations 2,878 2,878 

Pseudo R2 0.85 0.86 

BIC 296.41 259.05 

Level of statistical significance: ***1% 
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The result of logistic regression in the second scenario is provided in Table 11. The negative and 

significant coefficients of geographical distance and cognitive distance confirm the hindering 

effects of these two variables on scientific collaboration. Also, the positive and significant 

coefficient of TENB refers to the critical role of network proximity on scientific collaboration. 

Moreover, the different countries variable added in the second scenario has a negative and 

significant coefficient. It implies being from different countries (Canada or the United States) 

would decrease the probability of collaboration by 77%10. Like the first scenario, adding the 

interaction between geographical distance and TENB to the second model, the positive and 

significant coefficient of the interaction term confirms that when authors are farther geographically, 

the role of TENB in forming scientific collaboration is more powerful. 

Table 11. Logistic regression results – Second scenario 

Model (1) (2) 

Dependent variable Co-publication Co-publication 

Geo. distance (ln) -0.53*** (0.02) -0.58*** (0.07) 

TENB (ln) 5.99*** (0.16) 2.14*** (0.22) 

Geo. distance (ln) ˟ TENB (ln)  0.66*** (0.04) 

Cog. distance -2.72*** (0.09) -2.74*** (0.09) 

Different provinces -0.50*** (0.13) -0.49*** (0.43) 

Different countries -1.48*** (0.40) -1.49*** (0.42) 

Not contiguous 1.84*** (0.22) 2.05*** (0.08) 

Number of observations 50,156 50,156 

Pseudo R2 0.75 0.76 

BIC 7,694.35 7,534.40 

Level of statistical significance: ***1% 

 

The results in the third and fourth scenarios are almost the same as in the first two scenarios. The 

negative and significant effects of geographical distance and cognitive distance, and the positive 

and significant effect of TENB, on scientific collaboration can be seen in the regression results.  

 
10 (1 - exp (-1.48)) 
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Table 12. Logistic regression results – Third scenario 

Model (1) (2) 

Dependent variable Co-publication Co-publication 

Geo. distance (ln) -0.36*** (0.00) -0.38*** (0.00) 

TENB (ln) 6.56*** (0.03) 3.97*** (0.05) 

Geo. distance (ln) ˟ TENB (ln)  0.41*** (0.01) 

Cog. distance -2.41*** (0.01) -2.40*** (0.01) 

Different countries -0.34*** (0.01) -0.34*** (0.01) 

Not contiguous 0.83*** (0.01) 0.91*** (0.01) 

Number of observations 3,672,155 3,672,155 

Pseudo R2 0.72 0.72 

BIC 638,721.85 637,076.32 

Level of statistical significance: ***1% 
 

Table 13. Logistic regression results – Fourth scenario 

Model (1) (2) 

Dependent variable Co-publication Co-publication 

Geo. distance (ln) -0.39*** (0.00) -0.40*** (0.00) 

TENB (ln) 7.21*** (0.03) 4.24*** (0.05) 

Geo. distance (ln) ˟ TENB (ln)  0.43*** (0.01) 

Cog. distance -2.59*** (0.01) -2.58*** (0.01) 

Different countries -0.36*** (0.01) -0.34*** (0.01) 

Not contiguous 1.22*** (0.01) 1.29*** (0.01) 

Number of observations 8,440,135 8,440,135 

Pseudo R2 0.75 0.75 

BIC 1,263,501.13 1,260,965.54 

Level of statistical significance: ***1% 
 

Moreover, the negative impact of different countries on scientific collaboration is evident in these 

two scenarios as well. Ceteris paribus, if authors are from two different countries, their chance of 

collaboration would decrease by 30%11 to 29%12. Besides, the coefficient of the variables 

representing the interaction between geographical distance and TENB is positive and significantly 

different from zero in the third and fourth scenarios.  

 
11 (1 - exp (-0.36)) 
12 (1 - exp (-0.34)) 
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4.4. Machine learning results 

The machine learning classification results are presented in this section. For the first scenario, Table 

14 shows the results of applying different classifiers on the train dataset. The results show that the 

Extreme Gradient Boosting (so-called XGBoost) provides the best AUC score among other 

classifiers. 

Table 14. Cross-validation results – First scenario 

Classifier Accuracy AUC Precision Recall F1 score 

Logit regression 0.97 (± 0.01) 0.98 (± 0.01) 0.53 (± 0.06) 0.96 (± 0.05) 0.68 (± 0.06) 

Gaussian Naive Bayes 0.95 (± 0.01) 0.98 (± 0.02) 0.40 (± 0.08) 0.90 (± 0.05) 0.55 (± 0.08) 

Nearest Neighbors 0.98 (± 0.00) 0.95 (± 0.04) 0.67 (± 0.07) 0.89 (± 0.09) 0.76 (± 0.03) 

Support Vector Machines 0.98 (± 0.01) 0.97 (± 0.01) 0.58 (± 0.08) 0.95 (± 0.05) 0.71 (± 0.06) 

Random Forest 0.99 (± 0.01) 0.98 (± 0.02) 0.86 (± 0.11) 0.93 (± 0.06) 0.89 (± 0.06) 

Extreme Gradient Boosting 1.00 (± 0.00) 0.99 (± 0.01) 0.92 (± 0.07) 0.95 (± 0.03) 0.93 (± 0.04) 

 

For both random search and grid search hyperparameters tunings, the range and the best 

hyperparameters are provided in Table 15. In the random search, we consider 200 fits to find the 

approximate range of each parameter. Then, we fine-tuned the parameters in a grid search with 

7,290 fits. The best AUC score achieved in the hyperparameters tuning is 0.996. However, to assess 

the model's actual performance, the model was tested using the test dataset we put aside in the first 

step. The result of the model evaluation using the test dataset and the confusion matrix are presented 

in Table 16 and Table 17, respectively. 
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Table 15. Hyperparameters tuning – First scenario 

Classifier: Extreme Gradient Boosting (XGBoost) 

Hyperparameter Random search range Best parameter Grid search range Best parameter 

max_depth 3, 4, 5 5 4, 5 4 

learning_rate Uniform (0.1, 0.6) 0.55 0.53, 0.55, 0.57 0.55 

subsample Uniform (0.1, 0.9) 0.87 0.85, 0.87, 0.89 0.87 

colsample_bytree Uniform (0.1, 0.9) 0.78 0.75, 0.77, 0.79 0.75 

colsample_bylevel Uniform (0.1, 0.9) 0.93 0.90, 0.93, 0.95 0.90 

n_estimators 100, 200, … 1000 500 450, 500, 550 500 

gamma 0, 0.1, 0.2, …, 0.5 0 0 0 

scale_pos_weight 1, 2, 3, … 30 9 7, 8, 9 8 

Total number of fits 200 7,290 

Best AUC score 0.996 0.996 

 

Table 16. Final model evaluation with the test dataset – First scenario 

Accuracy  0.99 

AUC 0.94 

Precision 1.00 

Recall 0.88 

F1 score 0.93 

 

Table 17. Confusion matrix - First scenario 

  Predict 

  0 1 

Actual 
0 263 0 

1 1 7 

 

After reviewing the model performance, the importance of each feature in predicting the co-

publication should be discussed. Figure 9 demonstrates the beeswarm plot of SHAP values for the 

first scenario. This plot is designed to display an information-dense summary of how the features 

in a dataset impact the model’s output. The features are sorted from the most important (on the top) 

to the least important (at the bottom). 
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Figure 9. Beeswarm plot – First scenario 
 

As shown in Figure 9, cognitive distance has been the most important feature in predicting 

scientific collaborations. Moreover, a high density of observations with a high level of cognitive 

distance on the left side of the diagram, which associates with negative SHAP values, confirms the 

negative effect of cognitive distance on the likelihood of scientific collaboration. On the contrary, 

observations with a higher level of TENB are mainly associated with higher SHAP values, 

implying the positive role of network proximity in forming scientific collaboration. For binary 

variables, i.e., different provinces and not contiguous, the pattern is even more evident; 

observations in blue represent the same province/contiguous provinces collaborations, while the 

observations in red represent different provinces/not contiguous collaborations. As expected, for 

those two binary variables, the blue dots are concentrated on the right side of the diagram. In 

contrast, the red dots are concentrated on the left side, implying the negative influence of being 

from different provinces/not contiguous provinces on forming scientific collaborations. Regarding 

the geographical distance, although observations with close geographical distance are associated 

with both high and low SHAP values, the high density of observations with high geographical 

distance on the left side of the diagram is discernible. 
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The results of applying different classifiers on the dataset of the second scenario are presented in 

Table 18. XGBoost provides the best AUC score among all classifiers like the first scenario. 

Table 18. Cross-validation results – Second scenario 

Classifier Accuracy AUC Precision Recall F1 score 

Logit regression 0.96 (± 0.01) 0.97 (± 0.01) 0.51 (± 0.02) 0.87 (± 0.02) 0.65 (± 0.01) 

Gaussian Naive Bayes 0.93 (± 0.01) 0.96 (± 0.01) 0.36 (± 0.04) 0.90 (± 0.02) 0.51 (± 0.04) 

Nearest Neighbors 0.97 (± 0.00) 0.94 (± 0.01) 0.58 (± 0.02) 0.86 (± 0.03) 0.69 (± 0.02) 

Support Vector Machines 0.93 (± 0.00) 0.86 (± 0.02) 0.35 (± 0.01) 0.71 (± 0.03) 0.47 (± 0.02) 

Random Forest 0.98 (± 0.00) 0.97 (± 0.01) 0.74 (± 0.02) 0.90 (± 0.03) 0.81 (± 0.02) 

Extreme Gradient Boosting 0.99 (± 0.00) 0.98 (± 0.01) 0.93 (± 0.01) 0.83 (± 0.04) 0.88 (± 0.02) 

 

The results of hyperparameters tuning are provided in Table 19. Although an AUC score of 0.984 

is achieved in the random search hyperparameters tuning, the model performance is improved by 

0.005 after fine-tuning the hyperparameters in the grid search. 

Table 19. Hyperparameters tuning – Second scenario 

Classifier: Extreme Gradient Boosting (XGBoost) 

Hyperparameter Random search range Best parameter Grid search range Best parameter 

max_depth 4, 5 5 5 5 

learning_rate Uniform (0.1, 0.6) 0.22 0.20, 0.22, 0.24 0.22 

subsample Uniform (0.1, 0.9) 0.60 0.58, 0.60, 0.62 0.58 

colsample_bytree Uniform (0.1, 0.9) 0.90 0.88, 0.90, 0.92 0.88 

colsample_bylevel Uniform (0.1, 0.9) 0.32 0.30, 0.32, 0.34 0.3 

n_estimators 100, 200, … 1000 200 150, 200, 250 250 

gamma 0, 0.1, 0.2, …, 0.5 0.2 0.1, 0.2, 0.3 0.3 

scale_pos_weight 1, 2, 3, … 30 1 1, 2 1 

Total number of fits 200 7,290 

Best AUC score 0.984 0.989 
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Table 20. Final model evaluation with the test dataset – Second scenario 

Accuracy  0.98 

AUC 0.95 

Precision 0.70 

Recall 0.92 

F1 score 0.80 

 

Table 21. Confusion matrix - Second scenario 

  Predict 

  0 1 

Actual 
0 4,485 76 

1 15 184 

 

The importance of each feature on the model’s output in the second scenario is depicted in Figure 

10. Cognitive distance has the most important role in predicting scientific collaborations in the 

second scenario, like the first scenario. The density of red points on the left side of the diagram 

implies more cognitive distance decrease the probability of scientific collaboration. Geographical 

distance is in second place in terms of importance in the second scenario. As expected, a closer 

geographical distance is associated with a higher chance of scientific collaboration. TENB has third 

place in this scenario. The high density of observations with low values of TENB on the left side 

of the diagram refers to the critical role of network proximity in forming scientific collaborations. 

The pattern is apparent regarding the different provinces. Observations associated with authors 

from different provinces are mainly concentrated on the left side of the diagram, implying that 

when authors are from different provinces, the chance of collaboration is lower. The same pattern 

can be seen for the different counties. Observations associated with authors from different countries 

are spread on the left side of the diagram, confirming the negative effect of being from different 

countries on the likelihood of scientific collaboration. 
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Figure 10. Beeswarm plot – Second scenario 
 

The results of applying different classifiers on the dataset of the third scenario are presented in 

Table 22. XGBoost provides the best AUC score among all other classifiers like the first and second 

scenarios. The results of hyperparameters tuning for this scenario are also provided in Table 23. 

Although in the random search hyperparameters tuning, an AUC score of 0.979 is achieved, the 

model performance is improved by 0.003 after fine-tuning the parameters in the grid search. 

Table 22. Cross-validation results – Third scenario 

Classifier Accuracy AUC Precision Recall F1 score 

Logit regression 1.00 (± 0.00) 0.95 (± 0.00) 0.91 (± 0.00) 0.73 (± 0.02) 0.81 (± 0.00) 

Gaussian Naive Bayes 1.00 (± 0.00) 0.95 (± 0.00) 0.90 (± 0.00) 0.73 (± 0.02) 0.81 (± 0.00) 

Nearest Neighbors 0.99 (± 0.00) 0.93 (± 0.00) 0.61 (± 0.00) 0.81 (± 0.00) 0.70 (± 0.00) 

Support Vector Machines 0.98 (± 0.01) 0.91 (± 0.02) 0.31 (± 0.08) 0.71 (± 0.06) 0.42 (± 0.07) 

Random Forest 1.00 (± 0.00) 0.96 (± 0.00) 0.79 (± 0.00) 0.84 (± 0.00) 0.81 (± 0.00) 

Extreme Gradient Boosting 1.00 (± 0.00) 0.97 (± 0.00) 0.96 (± 0.00) 0.75 (± 0.00) 0.84 (± 0.00) 
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Table 23. Hyperparameters tuning – Third scenario 

Classifier: Extreme Gradient Boosting (XGBoost) 

Hyperparameter Random search range Best parameter Grid search range Best parameter 

max_depth 4, 5, 6 4 4 4 

learning_rate Uniform (0.1, 0.6) 0.35 0.33, 0.35, 0.37 0.33 

subsample Uniform (0.1, 0.9) 0.93 0.90, 0.93, 0.95 0.93 

colsample_bytree Uniform (0.1, 0.9) 0.77 0.75, 0.77, 0.79 0.75 

colsample_bylevel Uniform (0.1, 0.9) 0.69 0.67, 0.69, 0.71 0.67 

n_estimators 100, 200, … 1000 700 650, 700, 750 750 

gamma 0, 0.1, 0.2, …, 0.5 0.4 0.3, 0.4, 0.5 0.4 

scale_pos_weight 1, 2, 3, … 30 3 3, 4 3 

Total number of fits 200 7,290 

Best AUC score 0.979 0.982 

 

Table 24. Final model evaluation with the test dataset – Third scenario 

Accuracy  0.99 

AUC 0.90 

Precision 0.77 

Recall 0.79 

F1 score 0.78 

 

Table 25. Confusion matrix - Third scenario 

  Predict 

  0 1 

Actual 
0 333,041 792 

1 666 2,723 

 

The impact of each feature on the model’s output in the third scenario is depicted in Figure 11. 

Like the first and the second scenarios, cognitive distance is the most important feature in 

predicting the scientific collaborations in the third scenario. The concentration of the red dots on 

the left side of the diagram confirms that a higher cognitive distance between authors decreases the 
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probability of scientific collaboration. Like the second scenario, geographical distance is in the 

second place of importance. 

 
 

Figure 11. Beeswarm plot – Third scenario 
 

As expected, a farther geographical distance is associated with a lower chance of scientific 

collaboration. For the different countries, the pattern is evident. Observations related to authors 

from different countries are mainly concentrated on the left side of the diagram, implying that when 

authors are from different countries, the chance of collaboration is lower. TENB has the fourth 

place in this scenario. The association between higher values of TENB and a higher chance of 

scientific collaboration is discernible. 

The results of applying different classifiers on the dataset of the fourth scenario are presented in 

Table 26. Like the other scenarios, XGBoost provides the best AUC score among all other 

classifiers. 
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Table 26. Cross-validation results – Fourth scenario 

Classifier Accuracy AUC Precision Recall F1 score 

Logit regression 1.00 (± 0.00) 0.96 (± 0.00) 0.95 (± 0.00) 0.77 (± 0.00) 0.85 (± 0.00) 

Gaussian Naive Bayes 1.00 (± 0.00) 0.96 (± 0.00) 0.95 (± 0.00) 0.77 (± 0.00) 0.08 (± 0.00) 

Nearest Neighbors 0.99 (± 0.00) 0.95 (± 0.02) 0.69 (± 0.00) 0.86 (± 0.00) 0.77 (± 0.00) 

Support Vector Machines 0.99 (± 0.01) 0.94 (± 0.02) 0.55 (± 0.08) 0.78 (± 0.06) 0.62 (± 0.07) 

Random Forest 1.00 (± 0.00) 0.96 (± 0.00) 0.79 (± 0.00) 0.84 (± 0.00) 0.81 (± 0.00) 

Extreme Gradient Boosting 0.90 (± 0.01) 0.97 (± 0.00) 0.96 (± 0.00) 0.79 (± 0.00) 0.87 (± 0.00) 

 

The results of hyperparameters tuning for the fourth scenario are provided in Table 27. Although 

in the random search hyperparameters tuning, an AUC score of 0.968 is achieved, the model 

performance is improved by 0.008 after fine-tuning the parameters in the grid search. 

Table 27. Hyperparameters tuning – Fourth scenario 

Classifier: Extreme Gradient Boosting (XGBoost) 

Hyperparameter Random search range Best parameter Grid search range Best parameter 

max_depth 4, 5, 6 4 4 4 

learning_rate Uniform (0.1, 0.6) 0.35 0.33, 0.35, 0.37 0.33 

subsample Uniform (0.1, 0.9) 0.93 0.90, 0.93, 0.95 0.93 

colsample_bytree Uniform (0.1, 0.9) 0.77 0.75, 0.77, 0.79 0.75 

colsample_bylevel Uniform (0.1, 0.9) 0.69 0.67, 0.69, 0.71 0.67 

n_estimators 100, 200, … 1000 700 650, 700, 750 750 

gamma 0, 0.1, 0.2, …, 0.5 0.4 0.3, 0.4, 0.5 0.4 

scale_pos_weight 1, 2, 3, … 30 3 3, 4 3 

Total number of fits 200 7,290 

Best AUC score 0.968 0.976 

 

Table 28. Final model evaluation with the test dataset – Fourth scenario 

Accuracy  0.99 

AUC 0.91 

Precision 0.83 

Recall 0.82 

F1 score 0.83 
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Table 29. Confusion matrix - Fourth scenario 

  Predict 

  0 1 

Actual 
0 765,811 1,474 

1 1,577 7,400 

 
The impact of each feature on the model’s output in the fourth scenario is depicted in Figure 12. 

Like all other scenarios, cognitive distance is the most important feature in predicting scientific 

collaborations. The concentration of the red dots on the left side of the diagram confirms that a 

higher cognitive distance between authors decreases the probability of scientific collaboration. 

Geographical distance is in the second place of importance. As expected, a farther geographical 

distance is associated with a lower chance of scientific collaboration. TENB has the third place in 

this scenario. The association between higher values of TENB and a higher chance of scientific 

collaboration is discernible. For the different countries, the pattern is clear. Observations associated 

with authors from different countries are mainly concentrated on the left side of the diagram, 

implying that when authors are from different countries, the chance of collaboration is lower. 

 

Figure 12. Beeswarm plot – Fourth scenario 
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4.5. Discussion 

The results of logistic regression analysis and machine learning classification were provided in the 

previous chapter. Now, we want to discuss the results to see if the null hypotheses developed in 

chapter three can be rejected. 

The logistic regression results show a negative and significant association between geographical 

distance and the probability of scientific collaboration in all scenarios. All else being equal, a 10% 

increase in the geographical distance would decrease the chance of collaboration between authors 

by 3 to 7%. SHAP feature importance analysis also confirms the logistic regression results. As 

clearly illustrated in all beeswarm diagrams, observations related to authors with farther 

geographical distance are mainly associated with lower SHAP values, implying a lower chance of 

collaboration for those authors. These findings are in line with several previous studies (Bergé, 

2017; Frenken et al., 2009; Maggioni et al., 2007; Morescalchi et al., 2015; Ponds et al., 2007; 

Scherngell & Barber, 2009) that found a negative association between geographical distance and 

scientific collaboration. Thus, we can reject the first null hypotheses: 

H01: A higher level of geographical proximity does not enhance the likelihood of future scientific 

collaboration. 

The second null hypothesis developed in this study was about the association between network 

proximity and scientific collaboration. The regression results show a positive and significant 

relationship between network proximity and the chance of scientific collaboration in all scenarios. 

Ceteris paribus, 1% increase in the level of network proximity would enhance the opportunity of 

scientific collaboration by up to 7.2%. The feature importance analysis confirms the logistic 

regression results. Higher values of TENB are generally associated with higher SHAP values, 

implying that when authors are closer in the network, they are more likely to have at least one co-
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publication. This result aligns with Bergé (2017) that used the same measure (TENB) to gauge 

network proximity. Therefore, we can reject the second null hypothesis: 

H02: A higher level of network proximity does not enhance the likelihood of future scientific 

collaboration. 

In this study, two variables represented institutional proximity, i.e., different provinces included in 

the first and the second scenarios, and different countries included in all scenarios except the first 

one. Although the coefficients of different provinces in both scenarios are not significantly different 

from zero, the feature importance analysis clearly shows an association between being from 

different provinces and a lower chance of scientific collaboration. However, the negative and 

significant association between different countries and the likelihood of scientific collaboration is 

much more discernible in the third and the fourth scenarios where several countries are included. 

All else being equal, when authors are from different countries, their chance of collaboration would 

decrease by around 30%. The feature importance analysis confirms this result, as observations 

related to authors from different countries are mainly associated with lower SHAP values. This 

finding confirms many previous studies (Bergé, 2017; Hoekman et al., 2009, 2010; Morescalchi et 

al., 2015; Scherngell & Barber, 2009) that found being from different countries would negatively 

affect collaboration. So, both third null hypotheses can be rejected: 

H03a: Being from the same province does not enhance the likelihood of future scientific 

collaboration. 

H03b: Being from the same country does not enhance the likelihood of future scientific 

collaboration. 

The fourth null hypothesis was about the effect of cognitive proximity on the chance of scientific 

collaboration among authors. The negative and significant coefficient of cognitive distance in all 

scenarios clearly shows that authors with higher cognitive distance are less likely to collaborate. 
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However, the magnitude of this effect becomes smaller in scenarios that include more countries. 

The feature importance analysis confirms the logistic regression results regarding the cognitive 

distance. According to beeswarm diagrams, cognitive distance is the most important feature in 

predicting future scientific collaborations in all scenarios. Besides, observations related to authors 

with higher cognitive distance are generally associated with lower SHAP values, implying a lower 

chance of scientific collaboration. This result is in line with several empirical studies that report 

the negative effect of cognitive distance on collaboration (Bergé, 2017; Cunningham & Werker, 

2012; Ding, 2011; Jaffe & Hu, 2003; Jaffe & Trajtenberg, 1999). Therefore, the fourth null 

hypothesis can be rejected: 

H04: A higher level of cognitive proximity does not enhance the likelihood of future scientific 

collaboration. 

The fifth null hypotheses were about regional contiguity and scientific collaboration. As can be 

seen in the regression results, in the first scenario where not contiguous variable identifies if authors 

are from contiguous provinces, the coefficient is not significantly different from zero, implying 

that contiguity of authors’ provinces does not affect the chance of scientific collaboration. Besides, 

the coefficient is positive and significant in the second scenario, where not contiguous variable 

again identifies if authors are from contiguous provinces. Therefore, we cannot reject the following 

null hypothesis: 

H05a: Province contiguity does not enhance the likelihood of future scientific collaboration. 

In the third and the fourth scenarios that not contiguous variable measures contiguity of authors’ 

countries, not contiguous variable has a positive and significant coefficient. Thus, the following 

hypothesis cannot be rejected: 

H05b: Country contiguity does not enhance the likelihood of future scientific collaboration. 
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The last null hypothesis developed in this study was about the substitutability of network proximity 

and geographical proximity. As the logistic regression results show, the coefficient of interaction 

between geographical distance and network proximity is positive and significant in all scenarios, 

implying that geographical proximity moderates the relationship between network proximity and 

the probability of scientific collaboration. In other words, as the effect of network proximity 

increases with geographical distance, network proximity does not seem to have a homogeneous 

overall impact. Instead, it acts as a substitute for geographical proximity. Thus, we can reject the 

sixth null hypothesis: 

H06: Geographical proximity does not moderate the effect of network proximity on the likelihood 

of future scientific collaboration. 
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5. CONCLUSION 

In this study, we examined the relationship between the geographical proximity of researchers and 

the likelihood of scientific collaboration among them. Using the co-publication data in Artificial 

Intelligence during 2000 – 2019, we studied the geographical patterns of scientific collaboration 

among AI researchers in four scenarios. In the first scenario, we only included Canadian AI 

researchers. Then, in the second scenario, AI researchers from the United States were added to the 

study. To have a more comprehensive understanding of geographical patterns of scientific 

collaboration, the scope of the study was extended to European countries and all countries around 

the world, in the third and the fourth scenarios, respectively. The logistic regression and machine 

learning classification results clearly show that geographical distance is among the main barriers 

to scientific collaborations at the individual level. 

However, examining the relationship between the interaction of geographical proximity and 

network proximity, and the probability of scientific collaboration revealed a substitutability pattern. 

The logistic regression results show that the influence of network proximity rises when researchers 

are geographically farther. This result aligns with Bergé (2017) that found a substitutability pattern 

between network proximity and geographical proximity.  

The substitutability pattern between geographical proximity and network proximity has an 

important implication from a policy-making point of view. Supporting long-distance scientific 

collaborations not only could result in higher quality research productions (see, e.g., J. Adams, 

2013; J. D. Adams et al., 2005) but also may increase indirect connections among researchers, 

which in turn will trigger new scientific collaborations. Forming new long-distance collaboration 

increases the network proximity (measured by TENB) of researchers who had a scientific 

collaboration with the researchers in the new collaboration. This, in turn, may trigger new 
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collaborations because of network effects, implying that more distant/more yielding collaborations 

are more likely to be established. In this sense, policies aiming at encouraging long-distance 

collaborations could positively affect knowledge production and ease future knowledge flows. 

This study contributes to understanding the influence of various forms of proximity on the 

probability of scientific collaboration at the individual level. Although the effect of different types 

of proximity on scientific collaborations among geographical regions or organizations has been 

studied before, to the best of my knowledge, this is the first comprehensive study that examines 

the role of geographical proximity, network proximity, and their interaction on the chance of 

scientific collaborations. 

Future works 

This thesis has focused on the field of Artificial Intelligence. Thus, extending the study to other 

areas of science will be helpful to see whether they display the same pattern of substitutability 

between geographical proximity and network proximity. Moreover, when it comes to studying the 

determinants of scientific collaboration at the individual level, adding more individual explanatory 

variables (gender, age, seniority, language, religion, etc.) to the model can be helpful to predict 

future collaborations more precisely. 
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