
 

 
 

Monitoring Workers on Construction Sites using Data Fusion of Real-Time 
Worker’s Location, Body Orientation, and Productivity State  

 

Mohammadali Khazen 

 

 

 

A Thesis in 

The Department of 

Building, Civil, and Environmental Engineering 

 

 

 

Presented in Partial Fulfillment of the Requirements 

for the Degree of 

Master of Applied Science in Building Engineering at 

Concordia University 

Montreal, Québec, Canada 

 

 

March 2022 

© Mohammadali Khazen, 2022 



 

 
 

CONCORDIA UNIVERSITY 

School of Graduate Studies 

This is to certify that the thesis prepared 

By:   Mohammadali Khazen 

Entitled:  Monitoring Workers on Construction Sites through a Fusion of Real-Time 
Worker’s Location, Body Orientation, and Productivity State Data 

and submitted in partial fulfillment of the requirements for the Degree of 

Master of Applied Science (Building Engineering) 

complies with the regulations of the University and meets the accepted standards with respect 
to originality and quality. 

Signed by the final Examining Committee: 

 

___________________________________ Chair 

                                   Dr. Po-Han Chen 

 

________________________________ Examiner 

                                   Dr. Amin Hammad 

 

________________________________ Examiner 

                                   Dr. Po-Han Chen 

 

________________________________ Supervisor 

                                   Dr. Mazdak Nik-Bakht 

 

________________________________ Supervisor 

                                   Dr. Osama Moselhi 

 

Approved by  ___________________________________________________ 

Dr. Mazdak Nik-Bakht, Graduate Program Director 

March 2022   ___________________________________________________ 

Dr. Mourad Debbabi, Dean of Faculty  



 

iii 

 

Abstract 

Monitoring Workers on Construction Sites using Data Fusion of Real-Time Worker’s 

Location, Body Orientation, and Productivity State 

 

Mohammadali Khazen 

Traditionally, on-site construction production monitoring depends primarily on manual processes 

that are time-consuming and error-prone. State-of-the-art technologies have been utilized lately 

to improve these processes to support timely decisions pertinent to the productivity and safety of 

onsite operations. This research introduces a novel construction site monitoring system to track 

workers' location, body orientation, and productivity state. The developed system uses Bluetooth 

Low Energy (BLE) based reference transmitting beacons fixed on job sites and a set of receiving 

beacons mounted on workers’  hardhats, chests, and wrists. The system works via three modules, 

i.e. (i) RTLS (Real-Time Location System) module; (ii) body orientation detection module; and (iii) 

productivity state detection module. 

The RTLS module is developed to continuously track the location of the workers and subsequently 

extract the actual labor workspaces. The RTLS is explicitly designed for construction by satisfying 

requirements for widespread on-site adoption, including cost efficiency, deployability, scalability, 

adjustability to the construction site dynamism, and the expected accuracy. The main features of 

the developed RTLS are (i) substituting commonly used BLE receivers with BLE receiving 

beacons; (ii) proposing a modular infrastructure placement strategy; (iii) deploying Trilateration 

and Min-Max as localization techniques; (iv) post-processing the worker’s estimated locations.  

As per the body orientation detection module, it identifies workers' body orientation on the job 

sites, using the impacts of signal blockage by a human body to identify an approximate worker's 

body orientation. It works based on geometrical relationships and Received Signal Strength 

Indicator (RSSI) values between the chest-mounted receiving beacon and the reference 

transmitting beacons. Last but not least, the productivity state detection module determines 

workers' productivity state (i.e., direct work, support work, delay) and travel state, using the 

accelerometer sensor embedded in the body-mounted receiving beacons. Consequently, the 

collected data of the system modules are fused to augment real-time knowledge of workers' status 

on job sites. 
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Chapter 1 – Introduction 

1.1) Motivation and background 

Construction job sites are dynamic environments with various workers and equipment operating 

simultaneously. The systematic control of construction operations can potentially change the 

business processes on the job sites by providing automated data acquisition and analysis for 

productivity and safety, among other applications [1],[2]. Traditionally, on-site monitoring 

techniques primarily depend on manual processes that are time-consuming and error-prone [3]. 

However, a range of state-of-the-art technologies has been applied lately to effectively assist 

construction managers and safety inspectors in making rational decisions supporting the 

management of daily construction activities and site monitoring [4]. Recent studies have 

highlighted that indoor localization applications can manage the worksite more effectively [5],[2]. 

One of the applications of real-time location estimation is to improve safety management on 

construction sites [6]. Unlike the labor-intensive and error-prone traditional methods of manual 

observation, automated safety monitoring allows continuous and accurate observation of 

construction site conditions [4]. For instance, workers’ location data can help decision-makers 

detect common site accidents, such as collisions between workers and equipment and worker 

proximity to danger zones [7].  

Furthermore, indoor localization technologies can improve on-site productivity by closely 

monitoring the workers. Worker’s production rate is the primary indicator of productivity. Mainly, 

distinguishing between direct work time and travel idle/wait times for a specific construction task 

can give insight into more productivity models [8]. The recent use of Real-Time Locating Systems 

(RTLS) focusing on the geographical mapping of worker locations results in trajectories to quantify 

the time spent in specific workspaces [9]. Hence, construction worker tracking on construction 

sites allows identification and tracking of the workforce to support effective progress monitoring, 

activity sequence analysis, and productivity measurements and enhance safety management 

[10]. RTLS location data is often integrated with Building Information Modeling (BIM) to map 

location data on geometrical contextual information of job sites. This integration enables decision-

makers to make informed decisions supporting the management of construction activities. 

For example, geographical mapping of worker locations and trajectories quantifies the time spent 

in workspaces marked in the BIM model [11]. Identifying incidents of proximity/trespassing by the 

workers to the defined danger zone is another example of the integration of RTLS and BIM. Last 
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but not least, in the era of global pandemic diseases, helping determine the workspaces where 

the crews violate social distancing rule is another use case of such integration [12]. Moreover, 

many studies have adopted the head orientation of the workers to capture their visual attention 

on the job site [13]. Based on workers’ field-of-view information, hazard proximity systems are 

developed to generate safety alarms once the workers are not aware of the hazards. On the other 

hand, many previous research efforts have monitored worker state to assess their productivity on 

the job sites. The analysis of workers’ productivity information is used for various purposes, such 

as cost estimating and claim evaluation [11]. 

1.2) Problem Statement 

Although potentials for the worker monitoring systems have been explored on construction sites, 

there are critical factors in developing such systems that have not been carefully considered in 

the previous research. Firstly, the existing BLE-based RTLS relies on mobile phones and Direct 

Current (DC) electronics needing electrical wiring to operate. It causes interference with the 

construction workflow of job sites and can adversely affect the construction workers’ hazard 

recognition [2],[14]. Also, the previous research studies lack an infrastructure placement strategy 

that may be troublesome in the construction environment where the infrastructure must be 

relocated frequently. Secondly, BLE technology has not provided an impressive level of accuracy 

based on the numbers reported in the literature, so it may not be suitable for safety-related 

applications [9]. 

Thirdly, most previous studies only focused on RTLS location data to monitor workers on job sites. 

In most cases, location data cannot provide deep insight into the worker’s status. Although some 

studies incorporated the worker’s productivity state by analyzing the workers’ displacement per 

time unit, that raises the concern that the productivity state data might be unreliable due to the 

inaccuracy associated with the RTLS location data. Besides, recent studies used Inertial 

Measurement Unit (IMU) sensors or computed the direction of the worker’s displacement through 

location data to detect workers’ field of view on a job site for safety management applications. 

The drawbacks of these techniques include increasing the system's implementing cost and 

unreliability associated with the RTLS location data. 

1.3) Research Objectives  

The main goal of this research is to study the possible use of RTLS data integrated with body 

orientation and productivity state data to monitor construction worker(s) with a focus on practical 

deployment, affordability, and sufficient accuracy. Accordingly, hardware/software infrastructure 
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and analysis models are proposed to monitor workers on construction sites. To address the 

problems stated in the previous section, the research objectives of this study are categorized as: 

1. Developing a modular BLE-based infrastructure placement strategy with a minimal dependency 

on wiring and electricity outlets to strategically place BLE-based devices on job sites. 

2. Developing a BLE-based RTLS to continuously locate workers on job sites with high accuracy 

in static and dynamic scenarios and low computational time. 

3. Developing an independent body orientation detection module from RTLS location 

displacement data to identify workers’ focus orientation. 

4. Developing an independent productivity state detection module from RTLS data to identify 

workers’ productivity states.  

It is noted that the RTLS and body orientation detection modules are developed for the indoor 

environment. Besides, the productivity state detection module is developed for repetitive 

constriction activities, including painting, plastering, and masonry. 

1.4) Thesis organization 

This research is presented in four chapters. After a literature review on the comparison of different 

RTLS technologies, BLE-based RTLS configurations, and worker monitoring systems in chapter 

2 (literature review), a worker monitoring system is introduced in chapter 3 (developed methods 

for worker monitoring system). This chapter presents an overview of the proposed methodologies 

by introducing the development of the RTLS module, body orientation detection module, and 

productivity state detection module. The RTLS module comprises three parts as follows: (i) RSSI-

distance prediction model; (ii) localization estimation model; and (iii) estimated location post-

processing model. Each body orientation detection and productivity state detection module 

comprises two parts: (i) data collection and (ii) model architecture and training. At the end of this 

chapter, the modules are validated and verified by a set of in-lab experiments, details of which 

are discussed. Finally, the concluding remarks, the research contributions and impacts, and 

limitations and future remarks are highlighted in chapter 4 (conclusion). 
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Chapter 2 – Literature Review 

This chapter provides a literature study on the comparison of RTLS technologies, BLE-based 

RTLS, and worker monitoring systems sequentially. The first section provides a survey of the 

most used RTLS technologies in construction and compares them based on the project-related 

assessment factors. In the next section, the localization techniques used in BLE-based RTLS are 

discussed, and a comparison between varied RTLS settings and infrastructure reported in the 

literature is provided. Last but not least, different types of worker monitoring systems on job sites 

are explained. 

2.1) Introduction of Different RTLS 

Although the feasibility of deploying RTLS to manage the construction job site is highlighted in 

previous research, selecting the appropriate technology might differ from one project to another 

based on different factors. This section proposed practical criteria based on highlights in the 

selected experimental studies during different phases of their RTLS experiments to evaluate the 

localization systems. The studies include scientific journal papers in the construction engineering 

and management domain published after 2010. Using a construction site as a case study and 

providing a detailed explanation of the systems’ setup and configurations are the metrics for 

selecting the papers. Then, an evaluation framework is created to assess the feasibility of 

implementing localization systems on job sites. Finally, the capabilities and weaknesses of the 

systems are investigated by using our proposed framework. 

The criteria included in the framework to evaluate the localization technologies can be categorized 

into the following parts. (i) Required System Infrastructure to be Installed on Construction Site – 

One of the significant barriers to widely adopting localization systems on construction sites is their 

dependency on the number of system devices required to be installed on job sites. The time and 

effort required for installing the devices can pose significant challenges to the construction 

workflow. The system infrastructure required to be installed on-site must have a compact size to 

increase the adoption rate of localization technologies [12]. In some cases, the safety implications 

resulting from infrastructure such as cables between devices can outweigh the benefits the 

localization system may bring to the site. Specifically, the wired connections between the system 

devices for supplying Direct Current (DC) power or transmitting data can influence the safety of 

the workers [2]. 
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(ii) System deployability in construction – Another decisive factor for deploying the localization 

systems on-site is their usability, referring to the level to which a worker expects the system to be 

free of effort to be used. Specifically, wearable devices should not inconvenience workers as they 

perform regular tasks [15]. The size of wearable devices that the workers must carry can affect 

the acceptance of the workers’ localization technologies [16]. The hardware embedded in the 

worker should be adequate to wear without interferences to the workflow [21]. Furthermore, the 

system infrastructure of some of the technologies is sensitive to the orientations of the installed 

sensors on-sites. The orientation shift of the installed sensors of different technologies can 

negatively affect the localization performance [17]. In some technologies, the localization 

coverage is only extended to the defined portion of the construction site, where sensors are placed 

in a predetermined geometry and fixed orientation [18]. 

(iii) System vulnerability to indoor environments – The main challenge of using localization 

systems is the harsh environment of the job sites. The signals generated between devices can 

be adversely affected by Non-Line of Site (NLoS) propagation or other interference [19]. 

Specifically, performance degradation with an increase in distance between transmitting and 

receiving nodes in communication-based localization systems is observed. The radio signal is 

subject to reflection, diffraction, and scattering due to the construction objects in that environment 

[3]. The sensitivity of the technologies to a specific environment is a decisive factor in selecting 

the appropriate technology for the job sites [6]. (iv) System localization accuracy – The location 

data’s reliability directly affects the decision-making activities in construction management [20]. 

The accuracy of localization technologies can be measured by error calculated as the average 

Euclidean distance between the ground truth and estimated location coordinates [9]. The level of 

positioning accuracy required for each application might differ from one another due to their 

various location information requirements such as symbolic location, absolute location, and 

relative location [21]. The deployment of safety alert systems requires a higher level of accuracy 

of the localization system, whereas, for the productivity-related operations, a mediocre level of 

accuracy might be acceptable [22]. 

Many IoT (Internet of Things) technologies are commonly used by indoor tracking solutions, 

including Bluetooth Low Energy (BLE), Radio Frequency Identification (RFID), and Ultra-

Wideband (UWB) technologies [23]. Also, there are less commonly used alternatives for indoor 

localization, including embedded sensors, Lidar and laser scanning, high-resolution video 

camera, digital photogrammetry, and WiFi [2],[24]. The BLE technology-based system uses 

transmitters/receivers attached to the walls or ceilings of indoor environments to estimate the 
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location of the target node. A BLE-based system comprises a receiver and transmitter which can 

wirelessly communicate with one another. The BLE receiver is either fixed in a known location or 

worn by the workers, and it can capture the Received Signal Strength Indicator (RSSI) from the 

beacons to estimate the worker’s location [19][25]. The two traditional BLE-based locating system 

architectures include (i) mobile beacons that send BLE signals to fixed infrastructure that act as 

receiver and gateway; (ii) mobile receiver (e.g., mobile phone) that act as a gateway to receive 

BLE signals from fixed beacons; (iii) mobile beacon to receive BLE signals from fixed beacons 

and send the data to a gateway (DirAct approach). BLE is considered the most cost-effective 

among other IoT-based technologies and appears reasonably accurate for many indoor 

localization applications in the construction domain [26].  

Similar to the BLE technology, the RFID system typically consists of two components: readers 

and active or passive tags operating at a specific radiofrequency. RFID readers are placed around 

the sensing area, and the tag is worn by workers that are tracked and localized [27],[28]. It 

operates based on capturing the signal from a tag by the readers. The tag’s distance from the 

reader is estimated, and then by having at least three readers, the tag’s location is determined 

through triangulation [29]. There is a problem associated with the simultaneous identification of 

multiple tags, which can reduce the accuracy of the RFID systems [30]. Another drawback to this 

technology is that liquids and metals substantially affect the RFID system’s readability range and 

data transfer rate, resulting in a poor system localization accuracy [31]. The Ultra-wideband 

(UWB) technology is another real-time location system with better performance, in terms of 

accuracy, compared to the RFID technology. Since it uses very narrow pulses of radiofrequency 

energy, it is appropriate for environments where the multi-path effect can happen [30]. Although 

UWB technology can theoretically achieve a high level of accuracy compared to other localization 

technologies, many papers showed that the performance of a UWB system is highly affected by 

Non-Line-of-Sight (NLOS) from readers to the target object [25]. Besides, the main disadvantage 

of implementing UWB technology is its expensive hardware investment (of up to $140 per square 

meter, compared to roughly $20 for RFID and $5 for BLE [27]. 

2.2) Comparison of Different RTLS 

After introducing the technologies, a comparison is made based on the proposed criteria to 

identify the strength and weaknesses of the technologies. 

(i) Required System Infrastructure to be Installed on Construction Site – The UWB technology 

infrastructure consists of receiver sensors required to be installed on the job site. A wired 
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connection between the sensors is necessary to utilize RTLS using the TDOA method. 

Additionally, a data transmission cable is needed to be run from a master sensor to the computer 

running the software platform [7]. DC power or power over ethernet (POE) are the alternatives to 

supply electrical power to the sensors. Regarding RFID technology, its hardware components 

typically include RFID mobile readers, RFID encapsulated tags, RFID label tags, and an RFID 

label tag printer [32]. By contrast to the UWB, the read-only (passive) RFID tags do not require a 

battery or electrical wiring since they are activated by the electromagnetic energy that the reader 

emits [31]. However, electrical power is needed for the hand-held RFID readers. The 

communication architecture of BLE technology is relatively similar to the RFID, and it includes 

three components transmitting node, receiving node, and a gateway [33]. A smartphone or a 

gateway can play the role of receiving node, and BLE beacons act as the transmitting nodes. In 

the case of using a smartphone as a receiver, BLE beacons are the only infrastructure needed to 

be installed on-site for the localization system [34]. As a result, a BLE-based system using a 

smartphone could be a technology that requires the minimum equipment to be installed on the 

job sites compared to others, and it requires the least amount of wiring work for its devices. 

(ii) System deployability in construction – The requirement of establishing a high-quality data 

transmission cable between UWB receivers in dynamic environments such as job sites can affect 

the workers’ safety and workflow. The process of calibrating the UWB sensors and the 

requirement of repeated calibrations can be time-consuming, especially when the power supply 

is down [17]. The total man-minutes for the deployment of four UWB sensors can range from 300 

to 200 man-minutes, and the number increases further as the job site progresses [2]. The UWB 

tags an adequately small size of 24 mm x 13 mm to be worn by the workers without interference 

to the workflow [15]. Likewise, the BLE beacon has a small 13.5 mm x 13.5 mm size to be placed 

on the workers. However, using a smartphone as a receiver causes distraction for the workers, 

adversely affecting hazard recognition, safety risk perception, and safety performance of the 

construction workers [35]. As per RFID, its reader has a larger size than its equivalent in other 

technologies, and it has dimensions of 160 mm x 77 mm x 169 mm. This can cause inconvenience 

for the workers by holding it for a long time. On the other hand, the RFID has compact-size tags 

which can be easily placed on job sites without interfering with the construction workflow. 

(iii) System vulnerability to indoor environments – In UWB, the system can only localize the target 

node when it falls within the defined project area. It means positions outside the boundaries of 

the defined coverage area would not be shown in the log file. Although the positioning accuracy 

of the UWB system can be in the range of a few centimeters, the system cannot perform well in 
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complex and noisy environments [17]. Besides, increasing the tag’s distance from the receiver 

can significantly drop the localization accuracy. It is observed that by increasing the number of 

target tags, the localization accuracy can drop down to 33%. It can adversely affect the scalability 

of the UWB system when it comes to tracking many workers simultaneously [7]. Besides, the 

obstacles existing on job sites can cause UWB communication packet loss which can be the 

source of the localization error [15]. 

Concerning RFID technology, the major disadvantage to RFID is the interference among its 

components by some materials. The proximity of liquids and metals substantially affects the RFID 

system’s readability range and data transfer rate [31]. Besides, the performance of RFID is 

susceptible to an environment with multipath effects and non-line-of-sight (NLOS) signal 

propagation between the tag and the receiver [29]. Similarly, the BLE technology is influenced by 

the multi-path effects of the obstacles in construction sites. Increasing the transmission power of 

the BLE tags can mitigate this effect to some extent; however, it can increase the energy 

consumption of the tags, resulting in higher maintenance costs by replacing the batteries. 

Moreover, it is found that when the transmitting node is placed at distances more than 2.00 m 

from the receiving node, the estimated distance between the beacons may not be reliable [36].  

(iv) System localization accuracy – Since the localization accuracy of different systems cannot be 

used for one-to-one comparison due to the variations in different construction sites, specifications 

related to the testbed of the studies are also considered in addition to the localization error. The 

considered parameters are the testbed dimensions/area, testbed environment, the quantity of the 

used equipment, and the state of the target object during the experiment. Table 1 shows the 

specifications and the localization accuracy of the localization systems.  

Table 1: Claimed Positioning Accuracy of the Localization Systems 

Technology 
Testbed 

Dimensions/
Area 

Testbed 
Environment 

Installed Devices 
On-Site 

Target 
Object  
State 

Accuracy Ref. 

UWB 
40.0 m x 55.0 

m 

Open outdoor 
site without 
obstacles 

4 UWB receivers Stationary 
Avg. Error = 0.18 

(m) 
[2] 

UWB 
13.4 m x 9.6 

m 

Laboratory 
containing many 

metallic 
surfaces 

4 UWB receivers Mobile 
Avg. Error = 0.30 

(m) 
[16] 
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As seen from the table, UWB technology can provide a high positioning accuracy, with an error 

of as low as 18 (cm). The BLE and RFID technologies can also deliver a reasonable level of 

localization accuracy by assigning more devices per unit area on the job sites. Due to the high 

positioning accuracy of UWB, it is generally used in construction activities that require a higher 

level of positioning accuracy, including critical crane lifts, erection of important steel structures, 

and off-site fabrication [2]. Another application of using UWB is construction resource (worker and 

equipment) tracking leading to safety monitoring practices by introducing safety boundaries and 

danger zones [6],[7]. Regarding safety management, RFID technology can also be used to 

provide decision-makers with a warning if a worker is in proximity to hazardous or tagged areas 

[27]. However, the most used application of RFID is the localization of assets to derive knowledge 

about construction project status [31].  

The real-time characteristic of BLE localization technology makes it capable of exchanging a large 

amount of data. Thus, they are mainly integrated with building information modeling (BIM) for 

safety management and productivity monitoring applications on job sites  [4]. BLE technology is 

also considered the most cost-effective among other IoT-based technologies and has low power 

consumption, which allows the beacons to run on batteries for many months. In addition, it 

provides a reasonable amount of accuracy for many indoor localization applications in the 

construction domain. Hence, BLE technology is used in this study to develop RTLS and, 

accordingly, the worker monitoring system. 

UWB ≈ 2400.00 m2 

Construction pit  
(temporarily 
placing steel 

materials) 

8 UWB receivers Mobile 
Avg. Error = 0.48 

(m) 
[15] 

RFID 
30.0 m x 30.0 

m 

Cast-in-place 
concrete 
building 

21 RFID tags 
Unmanned aerial 

vehicle (UAV) 
equipped with 

GPS 

Mobile 
Avg. Error = 2.32 

(m) 
[37] 

RFID 7.5 m x 5.5 m 

Basement of an 
ongoing 

apartment 
without obstacle 

4 RFID readers Mobile 
Avg. Error = 1.27 

(m) 
[29] 

RFID 75.2 m2 
Cast-in-place 

concrete 
building 

24 RFID tags 
RFID tag printer 

Mobile 
Avg. Error = 1.00 

(m) 
[32] 

BLE 10 m x 5.0 m 
Rwoom 

cluttered with 
obstacles (walls) 

12 BLE beacon Stationary MAE = 1.28 [36] 

BLE 6.0 m x 3.0 m 
Office with 
obstacles 

4 BLE beacon Stationary 
Avg. Error = 0.70 

(m) 
[34] 

BLE 9.0 m x 3.0 m 
Construction 

site 
8 BLE beacon Mobile 

Avg. Error = 0.98 
(m) 

[34] 
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2.3) BLE-based Real-Time Locating System (RTLS)  

This section explains the common localization techniques used for BLE-based RTLS. Further, a 

comparison is made between various RTLS settings and infrastructure reported in the literature. 

The most common location estimation techniques for the BLE technology are proximity detection, 

fingerprinting, and trilateration [38]. Each of these techniques has unique advantages and 

limitations, according to the domain of the localization application. The proximity technique 

provides approximate location information of a target node. In other words, it checks the presence 

of the target node to be located in radio coverage of the reference beacon. It only estimates the 

distance between the target node and the beacon instead of providing the exact location of the 

target node. [18]. Zhuang et al. (2016) proposed an RSSI real-time correction method using a 

separate Bluetooth gateway to detect and adjust the RSSI fluctuations of surrounding Bluetooth 

beacons in real-time. Also, they used Particle Swarm Optimization for optimizing BP Neural 

Network (PSO-BPNN) to train the RSSI distance model to reduce the localization error [33]. 

Mackey et al. (2020) applied various Bayesian filtering techniques, including Kalman, particle, 

and Non-parametric Information. They concluded that these filtering techniques could improve 

proximity estimation accuracy up to 30% [39]. 

Fingerprinting is a localization technique comprising two parts. Firstly, the RSSI values received 

by a measuring device in the known locations are recorded, and the location coordinates are in 

the fingerprint database. Then, the worker wearing the BLE device to be located measures the 

RSSI values and compares them with the data in the fingerprint database to predict location [40]. 

Huang et al. (2019) analyzed the relationship between RSSI and the distance between the 

beacons. They designed an algorithm to combine fingerprinting and geometric techniques to 

increase accuracy. The paper also evaluates the effects of an increase in the number of BLE fixed 

receivers and the localization performance [26]. Subedi et al. (2017) improved the traditional 

fingerprinting localization by combining it with the weighted centroid localization technique. They 

could reduce the required reference points by more than 40% without any adverse effect on the 

localization error [41]. Ke et al. (2017) combined the localization algorithm and hardware 

configuration to reduce the error rate. They applied Weighted K-Nearest Neighbors (WKNN) 

algorithm and a mean filter for smoothing the estimated locations [42].  

Last but not least, the trilateration technique uses the RSSI value from the fixed BLE devices; the 

signal is used as a proxy of distance, acting as the radius of a circle with its center at the BLE 

devices. The intersection of three or more circles determines the worker’s location [43]. Paterna 
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et al. (2017) investigated the behavior of BLE channels and the multi-path effect on the accuracy 

of localization. They improved the system’s performance by modifying the trilateration technique 

and applying the Kalman filtering on location data [30]. Huang et al. (2019) proposed hybrid 

trilateration and techniques to solve the problems resulting from the dense Bluetooth environment. 

The Kalman filter is used to merge the trilateration and results [22]. Shi et al. (2020) proposed a 

tri-partition RSSI classification to reduce RSSI fluctuation, and they used it as a tracing algorithm 

as an RSSI filter [44].  

Several studies are reported for indoor localization using each of the three techniques mentioned 

above. Since a direct comparison of those systems only based on their accuracy will not be 

precise due to the contextual differences among the experiments. Hence, specifications related 

to the studies’ test-beds and hardware requirements are also considered, along with their 

localization error. Besides, the proximity technique is excluded from the comparison since it can 

only provide approximate location information of the target. The comparison table consists of 

evaluation metrics including (i) test-bed dimensions, representing the dimensions of the RTLS 

coverage area; (ii) type of reference devices, introducing the type of fixed BLE devices used as 

reference nodes in the test-bed; (iii) number of the reference devices, showing the number of 

fixed BLE devices used as reference nodes in the test-bed; (iv) type of device worn by the target, 

representing the BLE tracking device worn by the worker; (v) accuracy, identified through the 

localization error of the RTLS; and (vi) localization techniques in the RTLS: representing the used 

localization techniques in the RTLS. Table 2 compares various BLE-based RTLS reported in the 

literature within these dimensions. 

Table 2: Summary of relevant related research work 

Testbed 
dimensions 

(m x m) 

Type of 
reference 
devices 

No. of 
reference 
devices 

Type of 
devices worn 
by the target 

Accuracy 
(m) 

Technique Year Ref. 

14.0 x 12.0 AC Gateway 13 BLE Beacon MAE = 0.97 

Fingerprinting 
 

2021 [45] 

8.0 x 8.0 AC Gateway 4 Smartphone 
RMSE = 

1.00 
2019 [46] 

7.1 x 4.2 BLE Beacon 9 Smartphone MAE = 1.12 2019 [47] 

25.0 x 15.0 

Single Board 
Computer 

(SBC): 
Raspberry Pi 

13 Smartphone MAE = 1.18 2020 [48] 
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/ BLE 
Beacon 

80 m² BLE Beacon 26 Smartphone MAE = 1.23 2021 [49] 

4.0 x 3.0 BLE Beacon 5 Smartphone MAE = 1.93 2017 [50] 

14.0 x 11.0 AC Gateway 3 BLE Beacon MAE = 2.58 2021 [51] 

8.8 x 5.6 BLE Beacon 8 Smartphone 
RMSE = 

0.76 

Trilateration 
 

2020 [32] 

10.0 x 5.0 BLE Beacon 12 Smartphone MAE = 1.28 2019 [52] 

8.0 x 3.5 AC Gateway 6 BLE Beacon MAE = 1.78 2019 [53] 

8.7 x 6.2 
SBC 

(Raspberry 
Pi) 

4 BLE Beacon 
90% below 

1.82 
2017 [54] 

6.0 x 5.5 
SBC 

(Raspberry 
Pi) 

3 BLE Beacon MSE = 2.98 2019 [55] 

2.4) Worker Monitoring System 

This chapter provides a literature study on the integration of RTLS and BIM for safety 

management and productivity monitoring applications sequentially. Safety management is 

primarily about identifying incidents of danger zone proximity/trespassing by the workers. The 

productivity monitoring mainly includes (i) determining the heatmap of workspaces to compare 

the ‘as-planned’ VS ‘as-happened’; and (ii) analyzing workers’ time spent in workspaces. 

Huang et al. (2021) used RTLS to detect the proximity of the workers to danger zones on 

construction sites. They processed the worker’s raw location data and extracted insightful 

information, including the target node’s position, orientation, and velocity. Then, their model 

detected the unsafe proximity of the workers to danger zones and generated safety alerts [56]. 

Park et al. (2017) integrated RTLS with BIM-based hazard identification for safety monitoring 

purposes. Potential unsafe areas are firstly defined in a BIM model, and workers’ location data 

were used to detect events where workers are exposed to pre-defined danger zones. In addition, 

they analyzed the trajectories patterns of the workers with respect to the danger zones [57]. Chan 

et al. (2020) integrated the field-of-view of workers as a proxy for hazard awareness to develop 

an improved proximity warning system to danger zones. They developed a rule-based model for 

the warning system, followed by a virtual experiment to evaluate the Integration of worker body 

orientation in safety alarm systems [58]. Teizer et al. (2013) the authors proposed a safety 

management system based on data segmentation of the real-time location data of the workers. A 

rule-based system determined the worker’' state with respect to the danger zones based on their 

velocity. For instance, a velocity higher than 0.3 m/s was considered a traveling activity, and lower 

than 0.3 m/s indicated as stopped traveling. Then, the worker’' proximity to danger zones was 
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automatically determined based on pre-defined criteria, including the target's speed and the 

cluster radius encompassing (x,y) coordinates [8]. 

As per productivity monitoring, Mohanty et al. (2020) used BIM to evaluate the worker’' 

productivity using the percentage of time spent in the assigned workspaces. The real-time location 

data of the workers was matched with their assigned workspace and was shown as a heatmap 

on the site layout to monitor the crowd areas [59]. Zhao et al. (2017) analyzed the worker’' daily 

movements to reveal work interruptions and non-direct moves. They identified workers’ 

productivity by comparing their time spent distribution on each location to the planned workspace. 

The time spent was calculated based on the time difference between the start and finish time in 

which the worker entered his/her workspace (the first and the last location sample generated 

within the workspace) [60]. Zhao et al. (2020) developed an automated process of workspace 

generation based on the location data of workers. They initially created heatmaps based on the 

density of workers’ presence, which could outline an estimate of the workspace with fuzzy 

borders. Accordingly, they proposed various applications, including detecting takt areas in takt 

time planning, estimating the threshold value of the uninterrupted presence of crews, and 

predicting potential congested zones [61]. Table 3 summarizes the choice of sensors and the type 

of data reported in the literature. 

Table 3: Summary of Localization Integration with BIM in the construction domain 

Application 
RTLS 

Technology 
Worker’s Body 

orientation Data 
Worker’s Activity 

Data 
Year Ref. 

Safety 
Management 

BLE Location Data Location Data 2021 [56] 

UWB 
Gyroscopes/ 

Accelerometer 
-- 2020 [58] 

BLE -- -- 2017 [57] 

RFID -- -- 2017 [62] 

UWB -- Location Data 2013 [17] 

RFID -- -- 2010 [63] 

RFID -- -- 2010 [64] 

Productivity 
Monitoring 

BLE -- Location Data 2020 [59] 

BLE -- Location Data 2020 [61] 

BLE/Wi-Fi -- Location Data 2018 [60] 

RFID -- -- 2016 [65] 

UWB -- Location Data 2013 [20] 

2.5) Gaps in the Literature 

 Although potentials for the worker monitoring systems have been explored on construction sites, 

there are critical factors in developing such systems that have not been carefully considered in 
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the previous research. The gaps can be categorized into three parts as follows. (i) On-Site 

Deployability of the Locating System – Mobile phones and Direct Current (DC) electronics 

needing electrical wiring to operate have been extensively used as receivers in the BLE-based 

RTLS. The requirement for establishing a cable from the reivers to DC power can interfere with 

the construction workflow the dynamic environment of construction sites.  As per the mobile 

phone, the distraction caused by using it on-site can adversely affect the construction worker’' 

hazard recognition and safety risk perception. (ii) Lack of Placement Strategy of the System 

Infrastructure – Since the signal interference caused by the existing obstacles and BLE device’' 

sensing range can affect the localization performance, the system infrastructure needs to be 

relocated and be distributed according to the new localization needs and site layout as 

construction progresses. The previous research studies did not accommodate the placement of 

system infrastructure in their test-bed; instead, they placed the infrastructure to provide a 

coverage area for their specific test environment. It may be troublesome in the construction 

environment where the infrastructure must be relocated frequently due to the job site's dynamism. 

(iii) High Localization Accuracy and Precision  – Generally, BLE technology has not provided an 

impressive level of accuracy based on the numbers reported in the literature. Although it may be 

suitable for applications that are less sensitive to accuracy, such as productivity monitoring and 

site attendance, safety-related applications require a high level of accuracy in real-time. (iv) 

Monitoring Workers Based On Location Data – The majority of the previous studies only focused 

on the location data to check the presence of a worker within workspaces/danger zones 

boundaries. The drawback of that method is that the worker’' location data cannot provide deep 

insight into the worker's status. For instance, a worker's presence in a workspace cannot 

necessarily reveal the worker’s productivity state. As per safety management, detecting a 

worker’s unsafe proximity to a danger zone might not be insightful since the worker might already 

be aware of it and must work or travel in its vicinity. (v) Extracting Worker’' Productivity State and 

Field Of View Information From RTLS Data – Some studies proposed incorporating the worker’s 

productivity state by analyzing the worker’' displacement per time unit to address some of the 

discussed problems. That would raise the concern that the productivity state data might be 

unreliable due to the inaccuracy associated with the RTLS predicted location data, specifically in 

the scenarios where the worker travels a short path or is static for a long time. In more recent 

studies, the worker’s field of view on a job site is also included in the worker’' information data for 

the safety management-related applications. The drawbacks of this technique include increasing 

the system’s implementing cost and unreliability associated with the RTLS location data.  
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Chapter 3 – Developed Methods for Worker Monitoring System 

This chapter introduces an automated system that enables real-time data-driven insights at the 

construction workforce, leveraging BLE beacons and the Building Information System (BIM). The 

system uses data fusion of real-time workers’ location, body orientation, and productivity state to 

monitor workers on construction sites continuously. The system has been designed to have three 

accelerometer-embedded receiving beacons mounted on a worker’s hardhat, chest, and wrist. 

The hardhat-mounted and chest-mounted receiving beacons capture BLE signals from the 

reference transmitting beacons strategically placed on a job site and transfer them to the cloud 

database through a gateway. The signals captured by the hardhat-mounted receiving beacon are 

used as a proxy of distance, and the worker’s location is identified using localization techniques. 

Then, the location data is mapped on geometrical contextual information of job sites to check the 

presence of workers in workspaces. The detected transmitting beacons by the chest-mounted 

receiving beacon are used to identify the worker’s body orientation. Last but not least, the 

acceleration data collected by the accelerometer embedded in the receiving beacons is used to 

identify the worker’' productivity state. This chapter provides an overview of the hardware and 

software, and algorithms deployed in the proposed worker monitoring system 

3.1) General Architecture of the System 

The system’s communication architecture comprises four main components, i.e., Data 

Advertisement; Data Reception; Data Transfer, and Cloud Computing. The Data Advertisement 

component comprises transmission beacons fixed in the space, the primary function of which is 

to broadcast radio signals (BLE packets) that cover a particular area. The Data Reception 

component consists of receiving beacons worn or carried by the workers, which capture the 

packets from transmitting beacons, with an RSSI proportional to their distance, and add that 

information in the packet. The Data Transfer module is a gateway. The information (packet) 

collected by the receiving beacons is transmitted back to a central cloud computing system 

through the gateways. They receive packets in range and stream them to the cloud via WiFi. 

Last but not least, Cloud Computing stores data packets in a database through which the 

localization models process the data [36]. In the proposed RTLS, the fixed reference transmitting 

beacons periodically broadcast signal data to the wearable receiving beacon through the data 

BLE packet. Simultaneously, upon receiving the beacon BLE advertising packet from the 

transmitting beacons, the wearable receiving beacon read the RSSI value using its radio circuitry. 

Then, the wearable receiving beacon forwards the measured RSSI data encapsulated in a data 
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BLE advertising packet (collected from the transmitting beacons) to the gateway. Finally, the 

gateway sends the data back to the cloud computing service (Pareto Anywhere middleware) via 

a WI-FI network. The overview of the communication architecture of the proposed system is 

shown in Figure 1. 

 

Figure 1: Overview of Communication Architecture of the Proposed System 

A standard BLE advertising packet supports a payload size of 31 bytes, meaning that its carrying 

capacity is constrained by its payload size. Thus, the receiving beacon is programmed to 

broadcast the identity (ID) of a maximum of three transmitting beacons captured with the highest 

RSSI value at a time. The collected RSSI measurements with respect to the three transmitting 

beacons are recorded with their respective timestamp that indicates the date and time it was 

created. Since the infrastructure placement requires the minimum number of BLE devices per unit 

coverage area and their placement in the effective BLE devices sensing range, a modular 

infrastructure placement strategy on the job site is proposed. The proposed infrastructure 

placement strategy consists of repetitive modules similar in size, shape, and device placement 

that can be linked up to each other to cover the construction site. The modules can perform 

independently and are placed as required for localization on sites. Each module is composed of 

one gateway placed at its center and a certain number of square sub-modules, consisting of four 

fixed transmitters placed at each corner of the square. Moreover, the BLE beacons’ 

configurations, such as Transmission Power and Scan Window, are tuned to trigger the sub-

module change process in order for the receiving beacon to encounter sub-module change as it 

moves from one sub-module to the next one. 
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The software components of the monitoring system comprises three modules: (i) RTLS and 

workspace module, (ii) body orientation detection, and (iii) productivity state detection 

(appendices 1-3). The RTLS and workspace detection module pinpoints workers' real-time 

location and integrates it with a BIM model. To localize worker location, the RSSI values of the 

detected transmitting beacons by the hardhat-mounted receiving beacon are converted to a 

distance, acting as the circle's radius with its center at the transmitting beacon's location. The 

intersection centroid of the three circles is calculated using triangulation techniques. Then, the 

location data is mapped on geometrical contextual information of job sites to check the presence 

of workers in workspaces defined in the BIM model. 

The developed RTLS algorithms generate three models: (i) RSSI-distance estimation model; (ii) 

Localization estimation model; and (iii) Localization post-processing model. After the records 

generated by the receiving beacon are stored in the dataset, the RSSI-distance estimation model 

converts the RSSI values in each record to a length representing the estimated distance between 

the transmitting beacon and the receiving beacon. The transmitting beacon’s ID in each record is 

then transformed by its (x,y) coordinates on the job site in order for the record to be in a readable 

format by the localization estimation model. The coordinate frame of the transmitting beacons is 

configured around a single transmitting beacon to be set as origin, and other transmitting beacons 

are normalized according to that origin. Once the locations of the transmitting beacons and the 

corresponding distances to the receiving beacon are determined, the localization model can 

process the data to estimate the receiving beacon’s position (x,y) coordinates. The estimated 

distance acts as the circle's radius with its center at the transmitting beacon's location. Depending 

on the radii and centers of the circles, the intersection centroid of the three circles helps predict 

the receiving beacon's location coordinates. Since the localization estimation model encounters 

various scenarios, a unique localization algorithm is developed for each arrangement. Finally, the 

estimated locations are post-processed to minimize distortions in the receiving beacon's location 

and improve the localization accuracy. Shifting the worker’s location to the strongest transmitting 

beacon and applying filtering techniques, including Exponential Smoothing, Simple Moving 

Average, and Kalman filters, are the processes followed in the localization post-processing model. 

The processing time for leading for estimating a worker’s location for 2160 records is about 6.5 

seconds. The post-processing time for those records (2160) ranges from one to three seconds, 

depending on the type of filtering technique. 

The body orientation detection module predicts the worker's body orientation in eight ordinal 

orientations on the job site. The module uses the RSSI values and geometrical relationships 
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between the detected transmitting beacons by the chest-mounted receiving beacon and the 

worker's predicted location. To this end, in-lab experiments were carried out to collect data 

between the chest-mounted receiving beacon and reference transmitting beacons for eight ordinal 

orientations. Then, a Deep Neural Network (DNN) model was trained to predict a worker's body 

orientation and focus orientation over a specific period of time. 

Last but not least, the productivity state detection module detects workers' productivity states, 

using motion signals generated by the accelerometer embedded in the three mounted receiving 

beacons. The productivity states include direct work, non-direct work, walking, and idling. The 

productivity state is considered direct work once a worker performs the main task(s), whereas it 

is considered non-direct work once the worker performs the secondary task(s). The productivity 

state detection module comprises six models, and each is individually trained for a specific 

worker. For each model, the tri-axial acceleration data is segmented to generate activity frequency 

images that serve as the input to a trained Convolutional Neural Network (CNN) model to detect 

the worker's productivity state. 

On average, the receiving beacon generates a record every 1.7 seconds with a standard deviation 

of 0.7 seconds. Since the sampling rate of the three receiving beacons is different, their generated 

records require time synchronization. The generated data of the chest-mounted and wrist-

mounted receiving beacons are fuzed to the data of the hardhat-mounted receiving beacon. The 

time synchronization is based on the absolute minimum difference in the timestamp of the 

generated records. The workspace detection module uses the RSSI readings of the hardhat-

mounted receiving beacon, and the body orientation detection system uses the readings of the 

chest-mounted receiving beacon. However, the productivity state detection module depends on 

the readings from the three receiving beacons. The modules can perform independently and be 

deployed as required for different applications except for the body orientation and workspace 

detection modules that rely on RTLS. 

3.2) Infrastructure Placement Strategy 

This section describes the proposed modular infrastructure to manage the placement of the fixed 

transmitting beacons and gateways on the job site. Then, the impacts of the BLE beacons’ 

configuration and the developed algorithm on the efficiency of RTLS are explained. 

This study proposes a modular placement system consisting of repetitive modules similar in size, 

shape, and device placement to distribute the RTLS infrastructure according to the site layout. 
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These modules can be linked to each other to cover the entire construction site or zones of 

interest. The modules can perform independently and are placed as required for localization on 

sites. Each module has a square shape composed of one gateway placed at its center, supporting 

a certain number of sub-modules. Each sub-module also has a square shape consisting of four 

fixed transmitting beacons placed at its corners. The gateway sensing range constrains the 

module's size, and the sub-module dimensions are determined by the maximum distance in which 

the transmitting beacon can reach the receiving beacon and send BLE packets for the RSSI-

distance prediction. Based on the experiments' results, the gateway's effective range was 

estimated at 21 m. That is the maximum distance at which the receiving beacon can have a Line 

of Sight (LoS) with the gateway and broadcast the detected transmitting beacons. Thus, one 

gateway covers a circular area with a 21 m diameter, and accordingly, that recommends the size 

of 42 m for the module. Besides, the maximum allowable distance of the transmitting beacon to 

receiving beacon was determined as 4.25 m, resulting in a sub-module with 4.25 m diagonals. 

Therefore, the module with the side of 30 m and the sub-model with the size of 3.00 m is proposed. 

Figure 2 illustrates the top view of the sub-module and the module. 

 

 
a) A sub-module consisting of four 

transmitting beacons (orange circles). 

b) A module consisting of a gateway (red circle) 

and 100 sub-modules. 

Figure 2: Top view of the sub-module and the module 

Since a BLE packet has a limitation of payload size, only three transmitting beacons with the 

highest RSSI values among all the detected transmitting beacons by the receiving beacon are 

reported back to the gateway. Since the records sometimes contain transmitting beacons that do 

not belong to a sub-module, they can be categorized based on the location of their reference 
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transmitting beacons in a module. This can help classify the records based on the concentration 

level of its transmitting beacons in the module. The more concentrated the transmitting beacons 

of a record are, the more trustable the records will be for the localization model to estimate the 

location of the target node. Thus, based on the level of concentration of the transmitting beacons 

in records, they are categorized as (i) Logical, i.e., a record whose three broadcasted transmitting 

beacons belong to the same sub-module, and the maximum allowable distances between the 

transmitting beacons are equal to or less than the diagonal length of the sub-module; (ii) Semi-

logical, i.e., a record that fulfills the ‘Logical’ requirement for the pair of the two strongest 

transmitting beacons, and the scenarios but not the third transmitting beacon; and finally, (iii) Non-

logical, i.e., a record that belongs to neither Logical nor Semi-logical record. Figure 3 depicts the 

four possible scenarios for Semi-logical records. 

 

Figure 3 Possible scenarios for the Semi-logical records 

When a receiving beacon is located in a sub-module, the transmitting beacons of that sub-module 

are expected to be the closest. In practice, however, sometimes receiving beacons capture 

stronger signals from transmitting beacons farther away than the closest ones, generating records 

with scattered transmitting beacons not necessarily belonging to the same sub-module. The result 

will be Semi- or Non-logical records, which must be reduced as much as possible, to avoid 

confusion for localization algorithms. A hardware-based solution to this issue is setting 

parameters for both transmitting and receiving beacons, dictating how far and how often the 

beacons can transmit and receive signals from one another. The related parameters include (i) 

transmission power determining how powerful the BLE signal is broadcasted, and it has a direct 

effect on the maximum range of the transmitting beacon's signal [66]; (ii) advertising interval, 

which determines the time period between the start of two consecutive advertisements from the 
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transmitting beacon [67]; (iii) scan interval controlling the time period between scans of the 

receiving beacon; and (iv) scan window, setting the duration of each scan for the receiving beacon 

to capture the advertisement packet from the transmitting beacons. In a dense network of sub-

modules where the transmitting beacons are placed close to one another, interference of the 

transmitting beacons' signals can be reduced by decreasing the transmission power. 

Moreover, improving the chance for the receiving beacon to detect its nearest transmitting 

beacons during its receiving period can reduce the number of Semi-logical records. This can be 

set by configuring how often the transmitting beacon broadcasts its advertising packet and how 

long the receiving beacon listens to the transmitting beacon's signals. The transmitting beacons 

must send signals in shorter periods than the scanning interval to ensure that at least one signal 

advertisement is captured during a scan interval [68]. Dividing the scan window by the advertising 

interval determines the number of chances for the receiving beacon to detect the closest 

transmitting beacons. 

A set of experiments was conducted for different beacon configurations to understand the effect 

of configuration parameters on the system performance. The ratio of the Logical records (to all 

records) was considered the basis of the comparison among the settings. Five Transmission 

power levels (-16, -12, -8, -4, and 0 dBm) and 3 scan window durations (200, 400, and 600 ms) 

were tested for the experiment. To evaluate the effects of transmission power on the system's 

performance, the scan window, advertising, and scan intervals of the beacons were set to 600, 

200, and 900 ms, respectively. Regarding the scan window effect, the transmitting beacon's 

transmission power was set to -8 dBm, and the advertising intervals and scan intervals were set 

to 200 and 900 ms, respectively. Table 4 compares the total and Logical records over various 

transmission powers and scan windows, respectively. 

Table 4:  Comparison of total, perfect and logical samples for various Transmission powers 

No. 

Configurations of the Beacons 

Total 
Records 

Logical 
Records 

(a) "Tweak" Configurations of the Beacons 

Transmitting Beacon Receiving Beacon 

Transmission 
Power 

Advertising 
Intervals 

Scan 
Window 

Scan 
Intervals 

1 0 200 600 900 2240 
1497 
(%67) 

2 -4 200 600 900 2185 
1477 
(%68) 

3 -8 200 600 900 2214 
1633 
(%74) 

4 -12 200 600 900 2232 1732 
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(%78) 

5 -16 200 600 900 2274 
1653 
(%73) 

No. 

(b) "Tweak" Configurations of the Beacons 

Total 
Records 

Logical 
Records 

Transmitting Beacon Receiving Beacon 

Transmission 
Power 

Advertising 
Intervals 

Scan 
Window 

Scan 
Intervals 

1 -8 200 600 900 2214 
1633 
(%74) 

2 -8 200 400 900 2333 
1766 
(%76) 

3 -8 200 200 900 1790 
1106 
(%62) 

 

Table 4 (a) shows that configuring the transmitting beacon's transmission power can improve the 

system's performance by increasing the ratio of Logical records (to total records) from 67% to 

78%. Also, except for -16 dBm, the ratio of Logical records went up as the transmission power of 

the transmitting beacons decreased. The transmission power of -12 and -8 dBm had the highest 

ratio of %78 and %76 accordingly. Since there is a high potential for signal interference on the 

construction site, stronger transmission powers are required to cut through the interference. 

Therefore, the transmission power of -8 dBm is more reasonable for the transmitting beacon 

deployed on the job sites. Moreover, it is clear from Table 4(b) that increasing the length of the 

scan window has a positive effect on the ratio of Logical records. It is found that by configuring 

the scan window size as twice as the advertising interval, the Logical records ratio can reach a 

high plateau of 77%.  

Although the ratio of Logical records can be significantly increased by configuring the beacons 

(hardware solution), the remaining number of Semi-logical records generated by the system 

affects the system performance by decreasing the location sampling frequency. Hence, a novel 

algorithm (software solution) is developed to convert Semi-logical records to Logical ones. Figure 

5 shows the processes involved in the record correction algorithm. In order for a Semi-logical 

record to be converted to a Logical one, the third broadcasted transmitting beacon should be 

substituted with the one which belongs to the same module of the other two transmitting beacons. 

The substitution of the third transmitting beacon is made by applying a set of processes on the 

Semi-logical records. Firstly, the algorithm calculates midpoints (Xh1,Yh1) and (Xh2,Yh2) of the lines 

connecting the third transmitting beacon (X3,Y3) to the other two (X1,Y1) and (X2,Y2) (see Figure 

5). Then, the middle point between the previously found midpoints is calculated (Xm,Ym). This 

point acts as a guide to specify the approximate area where the third transmitting beacon should 
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reasonably be located. The next step calculates distances between the guide point and 

transmitting beacons in the neighborhood (except those already included in the record). The 

transmitting beacon whose distance from the guide point is minimum is considered the correct 

third transmitting beacon in the record. In the final step, the correct transmitting beacon replaces 

the old one by keeping its RSSI value. The preserved RSSI value is associated with the old 

transmitting beacon, which is not necessarily the same as the RSSI of the replaced (correct) 

transmitting beacon. However, this can be used as the best approximation for the RSSI value of 

the replaced (correct) transmitting beacon. The algorithm’s processes are depicted in Figure 4. 

 

Figure 4: Semi-logical to Logical Record Converter 
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Figure 5: The processes in the records correction algorithm: (i) Calculating middle points 
between the third transmitting beacon and the other two transmitting beacons, (ii) Determining 

the guide point, (iii) calculating the distance between the guide point and the transmitting 
beacons, (iv) Predicted transmitting beacon replacement. 

3.3) Real-Time Locating System (RTLS) Module 

This section introduces the three models included in the developed RTLS: (i) RSSI-distance 

estimation model; (ii) Localization estimation model; and (iii) Localization post-processing model. 

Firstly, the RSSI-distance estimation model converts the RSSI values in each record to a length 

representing the estimated distance between the transmitting and receiving beacons. Once the 

locations of the transmitting beacons and the corresponding distances to the receiving beacon 

are determined, the localization model processes the data to estimate the receiving beacon’s 

position (x,y) coordinates. The estimated distance acts as the circle's radius with its center at the 

transmitting beacon's location. The intersection centroid of the three circles helps predict the 

receiving beacon's location coordinates. Since the localization estimation model encounters 

various scenarios, a unique localization algorithm is developed for each arrangement. Finally, the 

estimated locations are post-processed to minimize distortions in the receiving beacon's location 

and improve the localization accuracy. The localization post-processing model includes two steps 

(i) shifting the worker’s location to the strongest transmitting beacon and (ii) applying filtering 

techniques, such as Exponential Smoothing, Simple Moving Average, and Kalman filters. 

3.3.1) RSSI-distance Prediction Model 

The RSSI values captured from the three transmitting beacons must be reliably translated into 

physical distances for the Locating System to correctly identify the receiving beacon's location. 

The following parts explain the lab experiment completed to collect data and create RSSI-distance 

models for the developed system. 

 

 

Figure 6: Placement of the devices for the experiments 
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In-lab experiments for developing the RSSI-distance relationship and evaluation of the localization 

system were conducted in the space of 9.00 m × 9.00 m X 3.20 m, as shown in Figure 1. This 

space provided an open space for testing and movable objects for creating different layouts and 

examining the effect of obstacles. The effects of signal reflections and noises on BLE signals 

caused by the furniture, equipment, and magnetic fields in the vicinity of the testbed were 

inevitable. 

The receiver beacon was placed on seventeen reference points (stations) marked at 25 cm 

intervals on a straight line with a total length of four meters to ensure the exact position of the 

beacon while experimenting. The experiments were performed for four orthogonal orientations of 

the transmitting beacon with respect to the receiving beacon. Moreover, the experiments were 

repeated three times at each station to obtain a consistent dataset of RSSI values per each 

reference point. The receiving beacon was moved from the first station (distance from transmitting 

beacon = 0) to the seventeenth reference point (distance from transmitting beacon = 4.0 m). The 

staying time of the transmitting beacon at each reference point was one minute. In the interest of 

time, the same settings were implemented on two parallel straight lines, two meters away from 

one another. 

Two datasets were collected for the two parallel lines of the RSSI-distance experiment (which we 

refer to, as tests ‘a’ and ‘b’). Each dataset has three subsets, and each of them contains RSSI 

records for the four orientations of the transmitting beacon with respect to the receiving beacon 

at the seventeen reference points. The number of RSSI records per staying time period at each 

station (i.e. one minute) and the total number of records at each station considering all the 

orientations were 15 and 180 respectively. The total number of RSSI records for tests ‘a’ and ‘b’ 

were 2,955 and 2,959 data points respectively. The scatter plots of the RSSI records versus 

distance (between the transmitter and receiver) are provided for the two sets in Figure 2. 
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(a) Dataset ‘a’ (b) Dataset ‘b’ 

Figure 7: RSSI data collected in the experiment 

The empirical attenuation relationship is depicted for tests ‘a’ and ‘b’ in Figure 3. As the distance 

between the transmitting and receiving beacons increases, the RSSI values decrease in all 

experiments up to a point then it reaches a low plateau. That point in tests ‘a’ and ‘b’ was at the 

2.75 m and 3.25 m stations, respectively. 

  
(a) Dataset ‘a’ (b) Dataset ‘b’ 

Figure 8: Mean and Standard deviation band plot for the experiment 

The effect of transmitting the beacon’s orientation with respect to the receiving beacon and its 

impact on the RSSI was investigated in the experimental work. In Figure 4, the average RSSI 

records per distance over the four orientations are illustrated in different patterns of lines. As seen, 

at each distance, the receiving beacon seems to capture stronger RSSI values for the front and 

back orientations. Since the BLE chip inside the beacons (regardless of the beacon’s shape) has 

two major axes to transmit signals, the front and back orientations can be associated with one 

axis and the right and left ones to the other axis. This seems to cause the similarity of RSSI 

records between the pair of orientations per each axis and the difference between the orientation 

pairs of the opposite axes. 

The receiving beacon was not able to receive the acceleration of the transmitting beacon, so the 

orientation shift of the transmitting beacon could not be determined. Besides, the beacons which 

are worn by workers can frequently change their orientation with respect to receivers on 

construction sites. Therefore, it is necessary to get enough RSSI records at different orientations 

of the transmitting beacon with respect to the receiving beacon to reach a more reliable RSSI-

distance relationship on site. 
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(a) Dataset ‘a’ (b) Dataset ‘b’ 

Figure 9: The average value of RSSI records per distance, separated based on the four 

orientations 

In the model development, we examined the Path-loss propagation and machine learning models, 

looking for the most accurate one for the distance estimation model due to its direct impact on the 

reliability of the localization system. 

The measured RSSI values in the same station are fluctuant with time due to the environmental 

noises. In order to remove the outlier RSSI values, a Gaussian filter which had been proposed by 

[69], was used in our study. The filter was set in the range of [µ − σ, µ + σ] of the RSSI records 

for each distance, and the measured values outside this range were ignored. Since studies have 

shown that the channel fading characteristics follow a lognormal distribution [33], RSSI-distance 

measurement generally uses the logarithmic distance path-loss model, which is formulated as: 

RSSI= - 10n * lg (
d

d0
) + A + Xσ                                                            (1) 

Where 𝑅𝑆𝑆𝐼 is the Received Signal Strength Indication when the distance between receiving and 

transmitting nodes is 𝑑 . Also, 𝐴 is the RSSI value of the reference point with the known distance 

of 𝑑0 from the transmitting node, which is captured by the receiving node. 𝑛 is a path-loss 

coefficient related to the specific wireless transmission environment; the more obstacles in the 

test area, the larger the value of n will be. 𝑋𝜎 is a Gaussian-distribution random variable with a 

mean of 0 and variance 𝜎2. For the convenience of calculations, let 𝑑0 = 1m and 𝑋𝜎 have a mean 

of zero, so the distance-loss model can be obtained as: 

RSSI= - 10n * log(d) + A      (2) 
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where 𝐴 is the average measured RSSI when the reference node is 1 m away from the 

transmitting node. To calculate the environmental parameter 𝑛, the following equation is used 

[22][70]: 

n= 
A - RSSI

10*log(d)
 

      (3) 

Thus, the RSSI-distance relationship model can be obtained to predict the distance of the blind 

beacon through its RSSI value. In our study, to estimate the value of 𝐴, 312 RSSI records were 

collected when the distance was 1 m. As a result, 𝐴 was estimated as -56.229 dBm. Regarding 

the 𝑛 value, the average RSSI value of 16 different distances ranging from 0.25 m to 4.00 m with 

interval steps of 0.25 m were used. The value of 𝑛 for the distances are shown in table 1. Hence, 

the average value of 𝑛 is calculated as follows: 

 n= ∑  16
i=1 ni*0.25=1.586                                    

 
Table 5: The value of 𝑛 at different distances 

     (4) 

Distance 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

𝒏 1.985 1.904 1.430 - 2.528 2.223 1.369 1.309 

Distance 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 

𝒏 1.444 1.618 1.408 1.195 1.243 1.224 1.407 1.501 

 

Finally, the proposed RSSI-distance relationship is represented by Eq. (5) 

                      

RSSI=-15.86 log(d) -56.229      (5) 
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Figure 10: The average value of RSSI records per distance and RSSI-distance estimation 

model: red line represents the estimated RSSI-distance model, and the blue dots are the 

average RSSI values at each distance 

In addition to the conventional method of estimating the values of 𝐴 and 𝑛, the method of fitting a 

curve to the average RSSI value at different distances (𝐴𝑣𝑔. 𝑅𝑆𝑆𝐼𝑖 , 𝑑𝑖), proposed by[69]. Among 

different curve fitting methods, Logarithmic used by [71] was deployed in our study (Zhu and 

Alsharari 2015). This model was developed based on the 5614 RSSI samples at the 16 test 

stations. The logarithmic regression was carried out by using the average of the RSSI values for 

each distance. Figure 5 demonstrates the average value of records per distance and the RSSI-

distance estimation model. Using logarithmic curve fitting, the path loss model can be expressed 

by Eq. (6). 

  RSSI=-18.644 log(d) - 55.573  

 

(6) 

We trained machine learning models as alternatives to the path loss method for predicting the 

distance through the RSSI values. For distance prediction, this study tested several machine 

learning techniques, including Random Forest, Gradient Boosted Trees, Generalized Linear 

Regression Model, and KNN. After splitting the data into a training set (75%) and test set (25%), 

the hyperparameters for each model were finetuned, and finally, the best models from each 

technique were selected and compared.  

Before training the model, two preprocessing steps were taken. Firstly, the outliers caused by 

environmental noise were identified based on their distance to their nearest RSSI records and 

were eliminated. RSSI records of each distance are ranked based on its distance to its 70 nearest 

neighbors. Based on trial and error, on the reference of the Random Forest (RF) model 

performance, the number of strongest outliers that were removed per each distance and from the 

training set is 12 and 204, respectively. Figure 6 shows the removed outliers as green dots. 

Secondly, the RSSI records were normalized by the z-transformation method. The average and 

standard deviation of the values were calculated, and the scaled value was calculated by Z = (x-

Avg.) / SD. The average value and the standard deviation are 0 and 1. This normalization is 

necessary for some machine learning methods [72].  
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Figure 11: Scatter plot showing the removed outliers: the green dots are the removed outliers  

Four machine learning models were trained in this study, and their performance was compared 

through their accuracy and error. They include Random Forest (RF), Gradient Boosting Decision 

Tree, Generalized Linear Regression (GLR), and k-Nearest Neighbours (kNN). RF is an 

ensemble learning method used for classification and regression. A random forest is an ensemble 

of multiple decision tree sets with the following modification: each tree node represents the best 

split for one specific attribute. Only a subset of specified attributes is considered for the splitting 

rule selection. After that, the erection of new nodes is repeated until the stopping criteria are met. 

The second used algorithm, gradient boosting decision tree, produces a prediction model in the 

form of an ensemble of decision trees models [73], built incrementally where each successive 

estimator gradually reduces the previous model’s error. Building the model takes a longer time 

than the random forests since each tree has to be built based on the results of a prebuilt tree [74]. 

The third tested algorithm is GLM, which is an extension of the traditional linear regression 

models. The GLM is fitted by solving the maximum likelihood optimization problem. This model 

can accommodate many various types of target variables and covariate relationships. Lastly, the 

kNN is one of the most influential classification algorithms, trained on a set of labeled instances 

and making predictions based on the k labeled datapoints that are most similar to each unlabeled 

data point by using metrics such as Euclidean distance. We fine-tuned the model parameters for 

each model through trial and error and optimization to minimize the prediction model’s errors.   

The experiment was designed to compare varied techniques for the distance prediction model, 

which is a fundamental element in the proximity detection system. The prediction results are 
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discussed here for both Path-loss and machine learning models. Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), and Mean Percentage Error (MPE) were considered as criteria 

to make a comparison between the performance of the models. It is noted that the records for 0 

m distance between transmitter and receiver were removed from the calculation of MPE. Since 

the proposed model predicts the distance, MAE can better understand the actual error value. 

Error was defined as the distance between the estimate and actual coordinates in the experiment. 

The logarithmic curve fitting model was associated with less distance prediction error than the 

conventional path-loss model. Table 3 shows the evaluation metrics for the two models. As seen, 

for the conventional path-loss model, the MAE, RMSE, and MPE were 1.176 m, 2.171 m, and -

12.0 percent, respectively. Applying the logarithmic curve fitting model improved the accuracy of 

distance prediction. The MAE was reduced to 0.961 m, the RMSE was only 1.555 m, and MPE 

was improved to -9.9 percent. The results show that the error in the distance prediction model 

can be reduced by about 18 percent in terms of MAE by using a logarithmic curve fitting model. 

Table 6: Statistics of the evaluation metrics (MAE, RMSE, and MPE) of the models 

Model 
Conventional 

Path-loss 
Logarithmic 
curve fitting 

Random 
Forest 

Gradient 
Boosted 

Trees 

Generalized 
Linear Model 

KNN 

MAE (m) 1.176 0.961 0.641 0.699 0.704 0.648 

RMSE (m) 2.171 1.555 0.822 0.844 0.858 0.832 

MPE (%) -12.0 -9.9 -25.1 -34.7 -37.2 -18.7 

As to machine learning models’ performance, a 5-fold cross-validation was adapted. As seen in 

table 3, the Random Forest model outperformed all the models in terms of MAE and RMSE, as 

low as 0.641 and 0.822 m, respectively. By contrast, the Generalized Linear Model had the 

highest MAE, RMSE, and MPE of 0.704 m, 0.858 m, and -37.2, respectively, among the machine 

learning models. It can be seen that the Path-loss models had the lowest MPE in comparison with 

the machine learning models. 

3.3.2) Localization Estimation Model  

After estimating the distance between the receiving beacon and each transmitting beacon, the 

receiving beacon's location must be pinpointed. In this section, firstly, different scenarios created 

by the arrangement of the transmitting beacons and their estimated distance from the receiving 

beacon are explained. Then, the localization estimation model consisting of localization 

algorithms developed for each scenario will be presented. According to the prior literature, 

‘trilateration’ and ‘min-max’ were selected as the localization techniques due to their acceptable 
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level of accuracy [54][75] however, they were advanced and upgraded. The trilateration technique 

determines the target's location by finding the intersection point of three circles representing 

distances between the target and reference nodes. However, mathematical trilateration is rarely 

feasible because there is, in practice, an area of possible locations rather than a single location 

point [32][54]. The localization estimation model can encounter various scenarios depending on 

the distances estimated between transmitting beacons and the receiving beacon. Hence, the 

arrangement of circles representing the estimated distance of the receiving beacon from 

transmitting beacons and coordinates of the transmitting beacons should be determined first. For 

each possible arrangement, the receiving beacon’s location is calculated through a separate 

algorithm in the localization model. Given three estimated distances, i.e., r1, r2, and r3, between 

the transmitting beacons t1 through t3, and the target node (receiving beacon), three circles, i.e., 

C1, C2, and C3, can be drawn. Center points of these circles are the known positions of the 

reference transmitting beacons, and their radii are equal to the estimated distances between the 

target node and the transmitting beacons. Based on the estimated radii of the circles and the 

distance of their centers, the arrangement of each three pairs of transmitting beacons in a record 

should be investigated to determine whether two circles intersect. The combination of three pairs 

of transmitting beacons creates different scenarios that are explained in the following. In order to 

clarify the localization model, the scenarios with their corresponding algorithm to estimate the 

target node's location are discussed separately. 

 

  
(a) Scenario (a) (b) Scenario (b) 
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(c) Scenario (c) (d) Scenario (d) 

Figure 12: Scenarios of different arrangements for triangulation 

Scenario (i) Three overlapping circles: As shown in Figure 12 (a), there is an area of overlap 

among the three circles. In this scenario, the target location is estimated as the centroid of the 

intersection area, created by the three points P1, P2, and P3 using the following formula:  

𝐹𝑥 =
𝑃1𝑥 + 𝑃2𝑥 + 𝑃3𝑥

3

𝐹𝑦 =
𝑃1𝑦 + 𝑃2𝑦 + 𝑃3𝑦

3

 (7) 

Scenario (ii) Two overlapping circles and one isolated circle: When only two circles overlap in an 

area, and the third circle is isolated  (Figure 12 (b)); after determining the intersection points P1 

and P2, the distances (d1 and d2) from the center of the isolated transmitting beacon, i.e., h, to 

the two intersection points are calculated. Then, the final estimated location of the target is the 

point whose distance (to the isolated circle’ center) is shorter.  

Scenario (iii) Two circles overlapping the third, but not one another: Figure 12 (c)  demonstrates 

the scenario that one circle (C2) intersects with the other two circles (C1, C3), but C1 and C2 

themselves do not intersect. The intersection points P1 through P4 are calculated between the 

circles in this scenario. Then, the distances d1 and d2 between the intersection points of the 

separate circles (C1, C3) are calculated by equations (8) and (9). Finally, using equation (10), the 

midpoint F on the shorter distance (d1) is chosen as the final estimated location of the target 

beacon. 

𝑑1 = √(𝑃4𝑋 − 𝑃3𝑋)2 + (𝑃4𝑌 − 𝑃3𝑌)2 (8) 
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𝑑2 = √(𝑃2𝑋 − 𝑃1𝑋)2 + (𝑃2𝑌 − 𝑃1𝑌)2 (9) 

𝐹𝑥 =
𝑃1𝑥 + 𝑃2𝑥

2

𝐹𝑦 =
𝑃1𝑦 + 𝑃2𝑦

2

 (10) 

Scenario (iv) Three isolated circles: In rare cases, there are three short coverage areas whose 

corresponding circles do not intersect. Figure 12 (d)  demonstrates the arrangement of the circles 

in this scenario. For this scenario, the min-max or the bounding-box method is deployed for the 

localization. This has a low computational complexity [76]. In this technique, the target beacon 

constructs a bounding box around each transmitting beacon, where the transmitting beacon is 

placed at the center, and the edge length of the bounding box is twice its estimated distance. The 

target beacon determines the intersection of the boxes, with boundary locations given by 𝑥min, 

𝑥max, 𝑦min, and 𝑦max which are calculated from equations (11) through (14). Finally, the center 

point of this intersection box is considered as the estimated target location ( 𝑥est and 𝑦est) which 

are calculated by equations (15) and (16) [75]. Since the circles do not intersect in this scenario, 

the min-max technique creates a hypothetical box whose edges are circumscribed by the edges 

of the transmitting beacons' bounding boxes. 

𝑥𝑚𝑖𝑛 = 𝑚𝑎𝑥(𝑥1 − 𝑑1, 𝑥2 − 𝑑2, 𝑥3 − 𝑑3) (11) 

𝑥𝑚𝑎𝑥 = 𝑚𝑖𝑛(𝑥1 + 𝑑1, 𝑥2 + 𝑑2, 𝑥3 + 𝑑3) (12) 

𝑦𝑚𝑖𝑛 = 𝑚𝑎𝑥(𝑦1 − 𝑑1, 𝑦2 − 𝑑2, 𝑦3 − 𝑑3) (13) 

𝑦𝑚𝑎𝑥 = 𝑚𝑖𝑛(𝑦1 + 𝑑1, 𝑦2 + 𝑑2, 𝑦3 + 𝑑3) (14) 

𝐹𝑥 =
(𝑥𝑚𝑖𝑛 + 𝑥𝑚𝑎𝑥)

2
 

(15) 

𝐹𝑦 =
(𝑦𝑚𝑖𝑛 + 𝑦𝑚𝑎𝑥)

2
 

(16) 
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3.3.3) Estimated Locations Post-Processing Model 

Reflection and diffraction attributed to the presence of walls and floor (objects) within the indoor 

environment can produce multipath and fading effects, respectively. The multipath effects strongly 

affect the propagation of BLE signals and contribute to RSSI fluctuations [54]. This can cause 

distortions in the estimated distances between the receiving beacon and transmitting beacons, 

resulting in noise for the location data of a target node (receiving beacon)  [77]. Therefore, the 

estimated locations are post-processed to minimize the effect of distortions on the location of the 

target node. Two post-processing steps are performed in this study. 

(i) Shifting the Estimated Location to the Strongest Transmitting beacon - The localization model 

considers the transmitting node whose signal is received with the highest RSSI value as the 

closest and most reliable transmitting beacon for the localization. Accordingly, the estimated 

location of the target node will be shifted toward the location of that transmitting beacon. Firstly, 

the associated pair-wise weights between the estimated distances of the target node from the first 

and second transmitting beacons received with the highest RSSI value are computed. It is noted 

that the RSSI-distance model occasionally predicts the distance between the receiving beacon 

and the transmitting beacon with the highest RSSI value longer than the one with the second-

highest RSSI value. Given the two distances d1 and d2  as the  estimated distances between the 

worker and the two  transmitting beacons, sorted ascendingly, the weights are calculated as 

follows: 

𝑤 =
𝑑2

𝑑1
 (17) 

Where 𝑑1 is the estimated distance between the target node and the closest transmitting beacon 

and 𝑑2 is the estimated distance between the target node and the second closest transmitting 

beacon. Then, the following equations are used to adjust and estimate the final location of the 

target node for all the scenarios. 

𝑥𝑓𝑖𝑛 =
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑋 + 𝑋1 ∗ 𝑤

1 + 𝑤
 (18) 

𝑦𝑓𝑖𝑛 =
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑌 + 𝑌1 ∗ 𝑤

1 + 𝑤
 (19) 
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Where 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑋 and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑌 are the coordinates of the estimated location by the localization 

model, and 𝑋1 and 𝑌1 are the coordinates of the location of the strongest transmitting beacon.  

(ii) Filtering Techniques - After shifting the estimated location to the strongest transmitting beacon, 

three filtering techniques are applied to smooth the locations' calculations. They include Simple 

Moving Average (SMA), Exponential Smoothing (ES), and Kalman Filtering (KF). SMA is the most 

common filtering algorithm implemented in localization tasks. Despite its simplicity, it reduces 

random noise while retaining a sharp step response [78]. A filtered record is calculated as the 

average of values within a symmetric window of size N around that record,  where N is the pre-

defined size of the window of the MA filtering [39]. It is given as: 

𝑟𝑒𝑐𝑜𝑟𝑑𝑀𝐴 =
∑  𝑁

𝑖=1 𝑟𝑒𝑐𝑜𝑟𝑑𝑖

𝑁
 (20) 

The second technique used in this study, ES, is one of the most popular and easy-to-use filtering 

methods [79]. The basic formula of exponential smoothing is [80]: 

𝑆𝑡 = 𝛼𝑥𝑡 + (1 − 𝛼)𝑆𝑡−1 (21) 

where 𝑆𝑡 is the smoothed location at time 𝑡, 𝑥𝑡 is the actual observation location at time 𝑡, 𝑆𝑡−1 is 

the smooth location at time 𝑡 − 1, and 𝛼 is the smoothing constant with a domain between 0 and 

1. The accuracy of the exponential smoothing model mainly depends on the selection of 𝛼. 

The third tested technique was KF, which uses noisy observed data and data with other 

inconsistencies to estimate unknown states using a mathematical model. KF filter is a standard 

optimal estimation algorithm based on Bayesian filter theory [81]. It has two stages, prediction 

and update (correction). Firstly, the filter predicts the next state at time 𝑡 based on the current 

state at a time (𝑡-1) before the next state is made. The second stage computes a gain value G(𝑡) 

based on the prior noise estimate. It then updates the posterior state and system noise 

estimations using the latest state observation and current gain value [39]. In our study, the target 

node (the location of a worker) is described by  four parameters (state variables), which can be 

written in a state vector as follows: 

𝒙 =  [x, x_vel, y, y_vel] (22) 
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where x and y are the cartesian coordinates of the target node and x_vel and x_vel are the 

velocities in the x and y directions. The (x,y) coordinates are set as the starting location of the 

target, and the velocity is set to 0 as the initial value for our experiment [54]. The dynamics for 

each of our states in the current record "𝑡" as a function of states in the previous record " 𝑡-1 " are 

given as the following equations: 

x(𝑡) = x(𝑡 − 1) + dt * x_vel(𝑡 − 1) 

x_vel(𝑡) = x_vel(𝑡 − 1) 

y(𝑡) = y(𝑡 − 1) + dt * y_vel(𝑡 − 1) 

y_vel(𝑡) = y_vel(𝑡 − 1) 

(23) 

where dt represents the change in time (time-step), and it is assumed that (x, y) coordinates are 

updated based on current location and velocity. The formulas can be rewritten in matrix format 

as: 

x (𝑡) = F × x (𝑡 − 1) 

where 

(24) 

𝑭 = [

1 𝑑𝑡 0 0
0 1 0 0
0 0 1 𝑑𝑡
0 0 0 1

] (25) 

Besides, the state covariance P indicates how much the state variables influence each other’s 

values, determining the dependency of the system on the initial state values. The values of the 

initial matrix P, i.e. (𝑛), indicate the level of uncertainty that is considered for the estimated state 

(in this case, the location estimated by RTLS): 

𝑷 = [

𝑛 0 0 0
0 𝑛 0 0
0 0 𝑛 0
0 0 0 𝑛

] (26) 
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The measurement matrix H relates the measurements to the states’ variables. z is the 

measurement vector, and X is the states’ variables vector. The H function is used to obtain from 

the state variables vector x the values (in this case, the location) that are being measured [54]: 

𝒛 = [𝑥, 𝑦] (27) 

z = Hx (28) 

𝑯 = [
1 0 0 0
0 0 1 0

] (29) 

 In this study, two variants of post-processing were examined for smoothing the estimated 

locations, namely ‘mild’ and ‘intense.’ Table 7 shows the parameter values used for the post-

processing techniques at each level. 

Table 7: The parameters changed for the post-processing levels 

Post-Processing 
Technique 

Filtering Type Mild Post-Processing 
Intense Post-
Processing 

Shifting the 
estimated location 

– w (weight) = 0.2 * W w (weight) = 1 * w 

Filtering technique 

Exponential 
smoothing 

α (alpha) = 0.3 α (alpha) = 0.8 

Simple moving 
average 

neighbors = 20 records neighbors = 6 records 

Kalman 
observation covariance 

= (5 x previous 
estimated value) 

observation 
covariance = (2000 x 
previous estimated 

value) 

After localizing the worker’s location, the location data is mapped on geometrical contextual 

information of job sites to check the presence of workers in workspaces defined in a BIM model. 

With that goal, workspaces and zones were created as 2-dimensional spaces by a user in Revit 

software [82]. Then, Dynamo scripting language was used to retrieve the identification of the 

workspaces, including their element ID and (x,y) coordinates of vertices composing the bounding 

edges. Lastly, Wooff's algorithm determined whether a worker's estimated location lies inside the 

boundaries of workspaces. It uses the property that the summation of all angles created between 

lines connecting the location of the worker point P and the ith and (i + 1)th vertices of a given 

workspace equals zero if point P lies outside the workspace and equals to ± 2π if point P lies 
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inside the workspace [83]. The angle Θi between the ith and (i + 1)th vertices is calculated as 

follows: 

 

Θi = tan−1 
(Vy − Py)

i+1

(Vx − Px)i+1
+ tan−1 

(Vy − Py)
i

(Vx − Px)i
 (30) 

 

Where (Px, Py) are the location coordinates of the worker and (Vx, Vy) are the location coordinates 

of the vertex of the workspace. Figure 13 shows the placement of a worker inside a typical 

workspace. 

 

Figure 13: Wooff's Algorithm sums the angles created between lines connecting the location of 
the worker point P and the ith and (i + 1)th vertices of a workspace 

3.4) Body Orientation Detection Module 

The BLE technology faces challenges related to signal attenuation caused by the human body, 

which can shadow or even entirely obscure the BLE packets [84]. In other words, the human body 

prevents the receiving beacon from capturing signals from the transmitting beacons located 

behind. The body orientation detection module is developed to utilize such signal blockage to 

detect approximate workers' body orientation, using RTLS location data and RSSI values 

between chest-mounted receiving beacons and reference transmitting beacons. This section 

introduces the body orientation detection module that uses signal blockage by a human body to 

identify an approximate worker's body orientation on job sites. In fact, a receiving beacon mounted 

on the worker’s chest cannot capture signals from the reference transmitting beacons located 

behind the worker [84][85]. To this end, in-lab experiments were carried out to collect data 

between the chest-mounted receiving beacon and reference transmitting beacons for eight ordinal 

orientations. Then, an ANN model was trained to predict the body orientation, using signal data 

and geometrical relationships between the beacons. The details of the data collection and model 

development processes are provided in this section. 
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3.4.1) Data Collection for Body Orientation Detection Module 

The angles between the worker's estimated location by the RTLS with respect to the location of 

the detected reference transmitting beacons are calculated. The angle is measured counter-

clockwise and ranges from 0° to 360°. Figure 14 (a) shows the eight ordinal orientations defined 

in the laboratory. Given two points of 𝑝1 and 𝑝2 in 2-dimensional space, the angle from 𝑝1 to 𝑝2 

is calculated by the following formula: 

 

�⃗�1 ⋅ �⃗�2 = |�⃗�1| ⋅ |�⃗�2| ⋅ cos 𝜃 (31) 

𝜃 = cos−1  (
𝑥1𝑥2 + 𝑦1𝑦2

√(𝑥1
2 + 𝑦1

2) ⋅ (𝑥2
2 + 𝑦2

2)
) (32) 

Where (𝑥1, 𝑦1) and (𝑥2, 𝑦2)  are the position coordinates of the worker and the reference 

transmitting beacon, respectively, and 𝜃 is the calculated angle from the worker to the reference 

transmitting beacon. Furthermore, the feature engineering process was performed on the data to 

create new input from the existing features. The feature engineered attributes include (i) distance 

of the worker from the reference transmitting beacons detected by the chest-mounted receiving 

beacon; (ii) distance of the reference transmitting beacons detected by the chest-mounted 

receiving beacon from one another; (iii) presence of the worker inside a hypothetical triangle 

whose vertices are the location of the reference transmitting beacons detected by the chest-

mounted receiving beacon. It is noted that the reference transmitting beacons detected by the 

chest-mounted receiving beacon are not expected to exactly match the ones detected by the 

hardhat-mounted receiving beacon that are used for RTLS. 

The data collection process was carried out in indoor environments with a testbed size of 8.00 m 

× 8.00 m, where nine reference transmitting beacons were installed hanging from the ceiling. A 

participant stood and walked on stations located 0.50 (m) apart from one another in the testbed 

area. The chest-mounted receiving beacon collected RSSI records from the reference 

transmitting beacons while the participant stood and turned 360° (in 45° intervals) in the counter-

clockwise direction around the vertical axis. For each orientation, the participant stood and walked 

on the stations for a time period of roughly one (hour), and the number of collected records for 

each orientation was 1,416. Figure 14 (b) shows the scatter plot of the angle between the detected 

reference transmitting beacons from the worker’s location for the eight orientations during the 

experiment. 
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a) Eight ordinal orientations 
defined in the laboratory 

b) Scatterplot of the angle between the detected 
reference transmitting beacons from the 

worker’s location 

Figure 14: Experimental setup for the data collection 

3.4.2) Model Architecture and Training for Body Orientation Detection Module 

ANNs are machine-learning algorithms based on a multi-layer perceptron and have been 

deployed for engineering problems. They are composed of input, hidden, and output layers that 

modify the weight between each layer to reduce the error between the actual and predicted values 

[86][87]. Generally, an ANN model that contains at least two hidden layers qualifies as a DNN 

model [87]. In this study, the optimal number of hidden nodes and layers is selected based on the 

best prediction performance on the test set. The input layer of the model has 13 features (including 

(i) two attributes for the angle of the chest-mounted receiving beacon from the two strongest 

reference transmitting beacons detected by the chest-mounted receiving beacon; (ii) two 

attributes for the RSSI value of the two strongest reference transmitting beacons detected by the 

chest-mounted receiving beacon; (iii) three attributes for the distance of the worker from the 

reference transmitting beacons detected by the chest-mounted receiving beacon; (ii) three 

attributes for a distance of the reference transmitting beacons detected by the chest-mounted 

receiving beacon from one another; (iii) one attribute for the presence of the worker inside a 

hypothetical triangle whose vertices are the location of the reference transmitting beacons 

detected by the chest-mounted receiving beacon. The features are normalized to increase the 

efficiency of the DNN model training. Since the eight body orientations have the same probability 

of being selected, the angle features follow a uniform distribution, and accordingly, they were 

normalized using min-max feature scaling. The following formula is used for the normalization so 

that the maximum and minimum values would be one and zero, respectively [72]: 
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𝐸𝑛𝑜𝑟𝑚 =
𝐸 − 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛
 (33) 

 

Where 𝐸𝑛𝑜𝑟𝑚 is the normalized element, 𝐸 is the value of the corresponding element, 𝑉𝑚𝑖𝑛 and 

𝑉𝑚𝑎𝑥 are the minimum and maximum values in the signal vector, respectively. The z-

transformation method was used to normalize the rest of the features by removing the mean and 

scaling to unit variance[88]: 

𝑧 = (𝑥 − 𝑢)/𝑠 (34) 

Where 𝑢 is the mean of the records, and 𝑠 is the standard deviation of the records. As per the 

Neural Network’s hidden layers, the first and second hidden layers include 32 and 64 neural 

nodes, respectively, activated using a rectified linear unit (ReLU) activation function [89]. ReLU is 

the commonly used activation function in DNN and is faster than other functions [29]. For an input 

𝑥, ReLU function 𝑓(𝑥) is as follows: 

𝑓(𝑥) = {
0, if 𝑥 < 0
𝑥, if 𝑥 ≥ 0

 (35) 

Finally, the softmax function is deployed as an output layer to detect the body orientation of 

workers. For an input 𝑥, softmax function computes the probability that 𝑥 belongs to an orientation 

𝑐𝑘 by the following formula [49]: 

𝑝(𝑦 = 𝑐𝑘 ∣ 𝑥; 𝑃) =
𝑒𝑃𝑐𝑘

𝑇 𝑥

∑  𝑛
𝑐𝑖=1 𝑒𝑃𝑐𝑖

𝑇 𝑥
 (36) 

Where 𝑛 is the number of classes (i.e., eight angular classes), 𝑒𝑃𝑐𝑘
𝑇 𝑥 is the standard exponential 

function that is applied to each element of the input vector, and ∑  𝑛
𝑐𝑖=1 𝑒𝑃𝑐𝑖

𝑇 𝑥
 is the normalization 

term that ensures the sum of the function's output values equals one and ranges from zero to 

one. The number of hidden layers and neural nodes is determined by fine-tuning the model on 

the test set.  The learning process is repeated 200 times (epochs) to prevent an occurrence that 

the optimal weight cannot be found. The calculated values of coefficient variation of the root mean 

square error (CVRMSE) were saved during the iteration. The model weights with the lowest 

CVRMSE were determined after each iteration. Figure 15 shows the training and validation losses 

during each epoch. 
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(a) Loss curve (b) Accuracy curve 

Figure 15: Loss and accuracy curves for the trained convolutional neural network model 

It is clear From Figure 15 that the training and validation losses follow the same decreasing curve, 

and over-fitting is not an issue for the trained model. The CNN model achieved an accuracy of 

40% after 100 epochs, and the loss curve stabilized after the 200 epochs to a value close to 1.55. 

It is clear from Figure 15 that the model achieved low accuracy on the test and validation sets and 

cannot effectively capture the complexity of the data. This can be mainly due to the high variance 

of the detected transmitting beacons by the chest-mounted receiving beacons, as depicted in 

Figure 14 (b). The DNN model was trained using 80 percent of the collected data with a batch 

size of 4 and was tested using 20 percent of the data. Since the softmax layer assigns decimal 

probabilities to each label [90], the orientation with the highest probability is selected as the 

predicted orientation.  

3.5) Productivity State Detection Module 

This section introduces the productivity state detection module that is developed to identify the 

productivity states of workers. The productivity state of workers facilitates the calculation of 

workers’ productivity rate by detecting the worker’s actual work input. In this study, the productivity 

states and terminologies introduced by Moselhi et al. (2013) are used, which are as follows: direct 

work, support work, and delay [91]. It is noted that in some previous studies, the term “value-

adding work” is used as “direct work”, and the term “non-value-adding work” is used as “non-

value-adding work” [12]. Since the productivity state cannot be determined once the worker is 

moving, ”travel” is added as the fourth state to separate records that are detected as walking. In 

addition, the “travel” state can also be used for path planning, visualization of congested paths, 

and safety management [11][12]. The productivity states are defined as follows: (i)  direct work, 

i.e., any state that involves movements directly leading to completion of the activity (e.g., painting 
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a wall with a paint roller); (ii)  support work, e.g., any state that involves movements leading to 

getting or moving materials and tools, receiving instructions, and getting and fixing equipment 

(e.g., mixing material paint in a container); (iii) delay, e.g., any state that involves movements 

leading to unplanned breaks, staying on the workspace without performing any work, moving 

around without doing any activities related to the job, and waiting which is the time when workers 

are available, but no work can be performed.; and travel, e.g., any state that a participant is 

moving between workspaces. In this study, the productivity state is considered direct work once 

a worker performs the main construction task(s) whereas, it is considered support work once the 

worker performs the secondary construction task(s). The workers' body movements for the direct 

work and support work states vary based on each crew's main and secondary task(s), whereas 

all workers have the same body movements for the waking and delay states. The productivity 

state detection module comprises six models, and each is individually trained for a specific 

worker. Every model consists of (i) a frequency image generator which segments the tri-axial 

accelerometer data from the receiving beacons and converts them into frequency images; and (ii) 

a productivity state detection model, which is a two-dimensional Convolutional Neural Network 

(CNN) trained to detect the workers' productivity state by taking the generated frequency images 

as input. This section provides the data collection process, pre-processing, and training 

procedures for classifier models. 

3.5.1) Data Collection for Productivity State Detection Module 

One volunteer participated in the data collection process and was instructed to perform the main 

tasks involved in three repetitive construction activities, such as painting, plastering, and masonry. 

The performed tasks include laying bricks, placing mortar, mixing material, plastering, painting, 

traveling, and idling. The collected data for its main construction task(s) is labeled as a direct work 

state to train each worker model. The collected data for the construction tasks that are physically 

distinct from the main tasks is labeled a support work state for each model. Table 8 describes the 

construction tasks, and Table 9 provides a statistic of the data used to train the workers' models. 

Table 8: Description of the collected productivity states and construction activities  

Construction Task Tools Explanation 

Travel - The worker walks at a regular pace. 

Delay - It represents non-productive work, such as chatting, resting, etc. 

Laying Brick 
Free-hand 
performing 

The participant handles bricks and tries to place them in 
a straight line. 

Placing Mortar Brick trowel 
The participant puts mortar on the bricks and tries to level it with 

a brick trowel. 
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Mixing Material Shovel 
The participant mixes material, such as mortar and plaster on 

the ground 

Painting Paint roller 
The participant applies paint on a wall surface by a roller and 

tries to apply it only vertically. 

Plastering 
Plastering 

trowel 
The participant levels a plaster on a surface with a trowel. 

 
Table 9: Statistics of the number of collected data for training the models 

Worker Direct work Support work Travel Delay 

Painter 2255 (2255 applying paint) 

4510 (1504 mixing 
material+ 1504 placing 
mortar + 1504 laying 

bricks) 

1342 1342 

Plasterer 2255 (2255 applying paint) 
2255 (752 mixing 

material+ 752 placing 
mortar + 751 laying bricks) 

1342 1342 

Plastering 
Helper 

1342 (1342 mixing material) 
671 (224 painting+ 224 
plastering+ 223 laying 

bricks) 
1342 1342 

Mason 
1342 (671 placing mortar + 

671 laying bricks) 
1342 (671 painting + 671 

plastering) 
1342 1342 

Masonry 
Helper 

1342 (671 mixing material + 
671 laying bricks) 

1342 (671 painting + 671 
plastering) 

1342 1342 

Runner 2215 (2215 laying bricks) 671 (671 painting) 2215 671 

 

The collected data consists of acceleration values in the x, y, and z-axis, captured from the 

accelerometer embedded in the hardhat- and chest- and writs-mounted receiving beacons. The 

mean sampling rate for the collected acceleration data is one record per 1.6 seconds with a 

standard deviation of 0.7 seconds. Figure 16 shows the 100 consecutive tri-axial acceleration 

records for the two productivity states of travel and delay.  

 
a) Hardhat tri-axial accelerometer signals 

  
i. Delay ii. Travel 

b) Chest tri-axial accelerometer signals 
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iii. Delay iv. Travel 

c) Wrist tri-axial accelerometer signals 

  
v. Delay  vi. Travel 

Figure 16: Illustration of the frequency-based activity images. The blue, red, and green 

lines represent the acceleration values of the beacons mounted on the hardhat, chest, and 

wrist, respectively. 

After collecting data, the activity image generator creates frequency activity images from the raw 

tri-axial accelerometer signals of the three receiving beacons. Firstly, the acceleration change 

data is normalized using the z-transformation technique. Secondly, the segmentation technique 

divides the data into fixed window segments of four records with no inter-window gaps. The 

defined window size is found to be sufficient since it characterizes the proportion of time in which 

workers perform the construction tasks. The segments were stored in a two-dimensional image 

(matrix) with the size of 𝑁 x 𝑀, where 𝑁 is the time step (window size), and 𝑀 is the number of 

multivariate time series (the three tri-axial acceleration data). Each image's grey shade color pixel 

is determined by its corresponding value in the matrix and ranges from -4.24 to 4.74. Figure 17 

(a) illustrates a sample of the generated frequency images.  

3.5.2) Model Architecture and Training for Productivity State Detection Module 

In total, six separate CNN models are trained to detect the productivity state of the six workers. 

The trained models have the same architecture, but their training data are different from one 

another (as explained in section 4.3.1.). CNN is a deep neural network widely used for analyzing 

imaging data, and it is found to be more efficient than hand-crafted feature classification 

techniques for activity detection problems [92][93]. Since frequency images are low-resolution 

with less natural texture information, they require relatively fewer convolutional layers for activity 

classification problems compared to typical images [94]. Although a separate model is trained for 
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each worker, the architecture of the trained models for all the workers is identical. The input layer 

is the 9 x 4 pixel grayscale image (one channel) saved from the activity image generator. The first 

hidden layer of the model has 16 filters (kernels) with a size of (2 x 2), and it is followed by another 

two layers, each with 32 filters of the same kind. The filter matrix is slid over the image by one 

pixel (stride = 1), and for every position, element-wise multiplication (between the image and filter 

matrices) is computed. Then, the multiplication outputs are added to calculate the final value that 

produces a feature map. The feature map is then flattened in the next layer to create a single 

vector and passed through one fully connected layer with 32 neural nodes, followed by a dropout 

layer. Finally, a dense layer (softmax activation) with eight neural nodes is used for construction 

activity detection. This layer generates probabilities for each activity, and the maximum probability 

in the vector is selected as the image class. The number of hidden layers and neural nodes is 

determined by fine-tuning the models on the test set. ADAM optimizer with a learning rate of 0.001 

is deployed to train the six models since it has good performance in deep neural network learning 

[94][95]. The proposed CNN network architecture for the model is shown in Figure 17 (b). 

 
a) Sample of the frequency images obtained from the tri-axial accelerometer signals 

 
b) Structure of the trained activity detection CNN model 

Figure 17: Structure of the trained productivity state detection model 

The models are trained using 90 percent of the generated images that are randomly selected, 

and the models are tested us the remaining 10 percent of the images. The training data is sent 

through the models, and an associated error is calculated based on the models’ classification 

results. Accordingly, the models repeatedly refine the weights until all training data are used. 

Dropout [96] is set to 0.2 for the convolutional layers and the fully connected layer to prevent over-

fitting in the models. The loss function is set to minimize the categorical cross-entropy, using the 
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Adam optimizer [95] with a learning rate of 0.001 [97], and the training is performed with a batch 

size of 32 and 50 epochs.  



 

49 

 

3.6) Test-bed Environment and System Setup 

This section provides the experimental procedures and results of the system modules, including 

RTLS, body orientation detection module, and productivity state detection module. The modules’ 

performance was tested separately in a controlled condition without distractions. Then, the worker 

monitoring system was evaluated in a simulated construction site, where participants performed 

construction operations designed to mimic the actual construction scenarios.  

3.6.1) Real-Time Locating System (RTLS) Module 

This section provides details of the experimental study and analysis of the proposed RTLS and 

describes the test-bed environment, system setup, and trained models and algorithms’ 

performance. The experimental analysis focused on the potential factors that can affect the 

RTLS’s performance, including (i) the post-processing (smoothing) intensity level, (ii) the post-

processing techniques, and (iii) the location of the receiving beacon on the workers.   

An in-lab experiment for analyzing the performance of the developed Locating System was 

conducted in a 9.00 (m) × 8.60 (m) area, referred to later as test-bed, where computers and 

electronic devices, and magnetic fields were present. The lab environment provided an open 

space for testing and creating layouts to help simulate the effect of obstacles on the job site. 

According to the study by Kalla et al. (2016), WiFi signals can cause failure in the connectivity 

between BLE devices and negatively affect the data transmission [98]. Since the gateway 

detected more than 50 wireless stations in the area used for the experiments, the effects of signal 

reflections and noise on BLE signals caused by the WiFi and objects in the vicinity of the test-bed 

have been inevitable. Figure 18 provides an overview of the test-bed. 

 

  

(a) Construction Automation Lab layout 
(b) The layout of the test-bed and the 

grid 
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(c) Placement plan of the transmitting 

beacons and the reference points: The 

orange circles represent the 

transmitting beacons, and red circles 

represent the stations. 

(d) Heat map of the number of records 

received by the target node at each 

station 

Figure 18: View of the in-lab test-bed and Placement plan of the devices and the reference 
points 

Two sub-modules, consisting of six transmitting beacons, were deployed in the experiment. The 

receiving beacon, placed on top of a construction helmet, acted as the target node. The 

experimental methodology comprises two scenarios where the target node is static and dynamic 

to obtain a reliable system performance evaluation. For the static scenario, 66 reference 

gridpoints (stations) located 0.60 m apart from one another were marked in the test-bed (Figure 

18) to ensure the target node's exact location while analyzing the system's localization accuracy. 

The number of records that the receiving beacon captured from the transmitting beacons at each 

station was around 35, and in total, 2,344 records were collected. Figure 18 shows the plan of the 

transmitting beacons and the reference grid points, and a heat map of the number of records per 

station is provided in Figure 18 (d).  

As for the dynamic scenario, the receiving beacon captured signals while closed-loop trajectory 

paths were walked continuously by the target node, as illustrated in Figure 19. Two trajectory 

patterns were considered, and for each of them, the experiment was repeated three times with 

various speeds to obtain a reliable estimation of the system performance when the target node is 

dynamic.   
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(a) Trajectory pattern (I) (b) Trajectory pattern (II) 

  
(c) Actual locations of the records for the 

trajectory pattern (I) 
(d) Actual locations of the records for the 

trajectory pattern (II) 

  
(e) Speed distribution for the trajectory 

pattern (I) 
(f) Speed distribution for the trajectory 

pattern (II) 
Figure 19: Trajectory patterns of the target and its actual locations on the trajectorys’ paths and 

the speed distribution that it traveled 

Since the number of turnovers included in the trajectory pattern (I) is less than that of the pattern 

(II), the target could travel pattern (I) with a higher speed. The number of records generated was 

140 and 301 during the trajectory patterns (I) and (II), respectively. Figure 19 (c-d)  illustrates the 

actual records generated during the trajectory patterns, and the speed distribution of the target 

during the trajectory patterns are shown in Figure 19 (e-f). 
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3.6.2) Productivity State and Body Orientation Detection Modules 

The body orientation and productivity state detection modules were tested in a simulated 

construction site. Participants performed construction operations that were designed to mimic the 

actual construction scenarios. This section presents the experimental procedures and results. 

Three construction activities were considered to be performed by three crews, including painting, 

plastering, and masonry. The painting crew consisted of one worker (the painter), whereas the 

plastering and masonry crews were composed of two (the plasterer and the plastering helper) 

and three workers (the mason, the masonry helper, and the runner). A specific number of 

construction tasks were defined and assigned to previously instructed participants to perform for 

each worker. Figure 20 shows the main construction tasks performed by each worker. 

 

    
Mixing material the 
paint with a brusher 

Staining a paint roller 
with paint 

Painting with a paint 
roller 

Sticking/removing 
types from surface 

(a) Painter 

    
Sticking/removing types 

from the surface 
Plastering the surface 

Making plaster Waiting for plasterer 

(b) Plasterer (c) Plastering helper 

    
Marking the wall layout 

with chalks 
Waiting for the helper Laying bricks 

Placing mortar on 
bricks 

(d) Mason 
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Making mortar Laying bricks Carrying wheelbarrow Handling bricks 

(e) Masonry helper (f) Runner 

Figure 20: Simulated construction tasks performed by each crew 

Two rounds of experiments were performed to analyze the system’s performance. In the first 

round, called "single-crew" experiments, each crew was recorded performing its constriction 

activities separately from the other crews. While in the second round of experiments named "full-

operation" experiments, the three crews (totally six workers) worked simultaneously to assess the 

potential effects of multiple sensors and the subsequent overlaps and interruptions on the 

system's performance. Each round of the experiments was repeated at least twice to obtain a 

consistent system evaluation. The experiments were also repeated by different participants 

playing the roles of various workers to investigate the effects of different working styles on the 

system’s classification performance. 

The experiments were conducted in a laboratory environment with a testbed of 14.0m × 8.0m, 

where computers, electronic devices, and magnetic fields were present. The lab environment 

provided an open space for testing, the objects referred to above created a layout that simulates 

the effect of obstacles on the job site. The experimental layout for the simulated construction site 

consisted of a painting workspace, plastering workspace, masonry workspace, danger zone, 

material storage area, and storage area. Furthermore, four video cameras were installed on the 

experimental testbed to record the workers' activities' ground truth. Figure 21 shows a schematic 

illustration of the site layout and the reference transmitting beacons placement.  
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a) System Infrastructure Placement  b) Simulated Construction Site Layout 
 

Figure 21: Simulated Construction Site Layout and Infrastructure Placement 

3.7) System Performance  

This section provides the system performance of the developed system’s modules, including the 

real-time locating system (RTLS), body orientation detection, and productivity state detection. 

3.7.1) Real-Time Locating System (RTLS)  

The system localization accuracy is examined against the effects of the post-processing 

techniques/intensity, filtering techniques, localization, and placement of the receiving beacon on 

different human body parts. The distance error between the ground truth location 𝑝 = (𝑥real , 𝑦real ) 

and the estimated location �̂� = (𝑥calc , 𝑦calc ) is computed using the Mean Absolute Error (MAE): 

 Error = √(𝑥calc − 𝑥real )
2 + (𝑦calc − 𝑦real )

2 (37) 

where 𝑥calc  and 𝑦calc  are the coordinates of the target’s estimated location, and 𝑥Real  and 𝑦Real  

are the actual coordinates of the target. 

Firstly, different intensity levels of post-processing on the localization accuracy for static and 

dynamic targets are compared. In order to show the effectiveness of post-processing on the 

estimated locations, the system was also tested on the raw location data, i.e., without shifting the 

estimated locations and applying the filtering techniques. Table 10 shows the impacts of the 

different strength levels of post-processing on the localization accuracy for both experiment 

scenarios. 
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Table 10: Localization accuracy for the experiment scenarios with various post-processing 

methods 

Filtering 
Technique 

Applying “Intense” smoothing in post-
processing 

Applying “Mild” smoothing in post-
processing 

Static 
Dynamic 

Static 
Dynamic 

Trajectory 
pattern (I) 

Trajectory 
pattern (II) 

Trajectory 
pattern (I) 

Trajectory 
pattern (II) 

MAE SD MAE SD MAE SD MAE SD MAE SD MAE SD 

Kalman 
0.64 
(m) 

0.43 
(m) 

1.85 
(m) 

0.84 
(m) 

1.50 
(m) 

0.99 
(m) 

0.78 
(m) 

0.56 
(m) 

0.66 
(m) 

0.55 
(m) 

0.51 
(m) 

0.43 
(m) 

Moving 
Average 

0.65 
(m) 

0.44 
(m) 

2.21 
(m) 

1.05 
(m) 

1.81 
(m) 

1.05 
(m) 

0.73 
(m) 

0.46 
(m) 

0.72 
(m) 

0.48 
(m) 

0.56 
(m) 

0.49 
(m) 

Exponential 
Smoothing 

0.75 
(m) 

0.51 
(m) 

1.05 
(m) 

0.80 
(m) 

1.57 
(m) 

1.07 
(m) 

0.90 
(m) 

0.69 
(m) 

0.99 
(m) 

1.02 
(m) 

0.89 
(m) 

1.03 
(m) 

Raw 
Locations 

1.04 
(m) 

0.82 
(m) 

1.18 
(m) 

1.12 
(m) 

1.03 
(m) 

0.93 
(m) 

1.04 
(m) 

0.82 
(m) 

1.18 
(m) 

1.12 
(m) 

1.03 
(m) 

0.93 
(m) 

 

As shown in Table 10, the least effective filtering technique could improve the accuracy of the raw 

estimated locations by around 28 percent through applying an “intense” smoothing, and the mean 

error can be reduced to as low as 0.64 m using the Kalman filter for the static test scenario. In 

sharp contrast, applying the Kalman filter's intense post-processing increased the mean error by 

178 percent. Since the target does not move (for a short time) in a static scenario, the filtering 

techniques could leverage the previous records generated with a similar location, resulting in the 

minimized effect of noisy estimated locations by applying an intense smoothing. However, the 

target movement in the dynamic test scenario had a significant negative impact on the 

effectiveness of applying the intense filtering. It is evident from Table 10 that applying mild post-

processing on the raw estimated locations for the dynamic test scenario could reduce the mean 

error from 1.18 m to 0.66 m and from 1.03 m to 0.51 m for the trajectory patterns (I) and (II), 

respectively. In the best scenario, the “Mild” strength level of post-processing achieved a mean 

error and SD of 0.51 m and 0.43 m, respectively, for the dynamic test scenario. Besides, the mean 

localization error increased by about 15 percent by applying the mild smoothing post-processing 

in the static test scenario. Therefore, applying intense post-processing might result in better 

system performance for applications where the target maintains a static state such as asset 

tracking. However, considering a mild level is beneficial in the application where the target is 

dynamic, including worker localization. 

Furthermore, the consistency of a target’s estimated locations in the coverage area is analyzed 

in dynamic and static test scenarios to comprehend the precision of the system's performance. In 

this analysis, the mild and intense levels of post-processing using the Kalman filter were applied 

https://www.wordhippo.com/what-is/another-word-for/negative_influence.html
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for the dynamic and static test scenarios, respectively. As per the static test scenario, a heatmap 

was produced to show the localization error of the static test experiment (under intense Kalman). 

The 66 centers gridpoints in the heatmap denote the test stations in the test bed. Regarding the 

dynamic test scenario, scatter plots of the distance error of the target’s estimated locations in both 

trajectory patterns were created. Figure 22 (a) shows the heatmap of MAE of the estimated 

locations at each station and the. Scatter plots showing the system's precision in the coverage 

area are also depicted in Figure 22 (b).  

 
(a) Static test scenario –  Heatmap of MAE of the estimated locations at each station 

 

  
(i) Actual locations of the target in the 

trajectory pattern (I) 
(ii) Actual locations of the target in 

the trajectory pattern (I) 

  
(iii) Actual locations of the target in the 

trajectory pattern (II) 
(iv) Error of the estimated locations in 

the trajectory pattern (II) 
(b) Dynamic test scenarios – Scatter plots showing the system's precision in the coverage 

area 
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Figure 22: Performance of RTLS in the static and dynamic scenarios 

As seen in Figure 22 (a), except for four test stations, the MAE of the rest of the stations is equal 

to or less than 1.00 (m). The results are shown in Figure 22 (b-ii & iv) conclude that the errors are 

uniformly distributed in the test-bed except for the areas around the turnovers.  

Secondly, to assess the sensitivity of the localization accuracy to the post-processing techniques,  

the raw estimated locations were compared against post-processed estimated results; i.e.,  

estimated locations shifted towards the closest transmitting beacon; filtered estimated locations, 

and filtered shifted locations. According to the earlier results, intense and mild post-processing 

were applied for the static and dynamic test scenarios, respectively, to achieve the best results 

for each test scenario. Table 11 shows the statistics of the localization error for both test 

scenarios.  

Table 11: Statistics of localization error for the raw and post-processed data 

Target State Metrics 
Raw 

Locations 

Post Processing 

Shifting to the 
Strongest 

Transmitting beacon 

Filtering on the 
Raw Locations 

Filtering on the 
Shifted 

Locations 

Static 

MAE 1.03 (m) 1.04 (m) 0.84 (m) 0.65 (m) 

SD 
Error 

0.76 (m) 0.81 (m) 0.46 (m) 0.44 (m) 

Dynamic 
MAE 1.08 (m) 1.00 (m) 0.66 (m) 0.56 (m) 

SD 
Error 

1.00 (m) 1.04 (m) 0.50 (m) 0.48 (m) 

As seen in Table 11, the “shifting to the strongest transmitting beacon” technique does not 

increase the system localization accuracy in the first place in the two test scenarios; however, its 

combination with the filtering techniques could reduce the mean localization error to 0.65 m and  

0.56 m for the static and dynamic test scenarios, respectively. These numbers were 0.84 m and  

0.66 m when the filtering techniques were applied to the raw locations in the static and dynamic 

test scenarios. Figure 23 shows the distribution of the estimated locations of the target in the static 

and dynamic test scenarios. 

(a) Static Test Scenario 
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(i) Raw Locations 
(ii) Shifting to the Strongest Transmitting 

beacon 

  

(iii) Filtering on the Raw Locations (iv) Filtering on the Shifted Locations 

(b) Dynamic Test Scenario 

  

Trajectory pattern (I) Trajectory pattern (II) 

(c) Raw Estimated Locations 

  

Trajectory pattern (I) Trajectory pattern (II) 



 

59 

 

(d) Shifting to the Strongest Transmitting beacon 

  

Trajectory pattern (I) Trajectory pattern (II) 

(e) Filtering on the Raw Locations 

  

Trajectory pattern (I) Trajectory pattern (II) 

(f) Filtering on the Shifted Locations 

Figure 23: The distribution of estimated locations for the raw and post-processed data 

Figure 23 (a) shows that the “shifting to the strongest transmitting beacon” technique moves the 

estimated locations toward the transmitting beacon's location, whereas applying the filtering on 

the raw locations tends to concentrate the estimated locations to the center of the sub-modules. 

It is observed that applying the filtering techniques on the “shifted locations” makes the estimated 

locations distributed over the sub-module area in the static test scenario. That was also observed 

for the dynamic test scenario, as shown in Figure 23 (b). The positive impacts of the combination 

of the two post-processing techniques on the raw estimated locations to make them follow the 

actual trajectories of the target are apparent for both test scenarios. Since the localization 

precision is critical in the deployability of the system for safety-related applications, the Cumulative 

Distribution Function (CDF) and localization errors in 90 % and 95 % of time metrics are used to 

investigate the system's performance in extreme cases. Table 12 shows the statistics of the error 

metrics for the static and dynamic test scenarios, and Figure 24 depicts the CDFs of the filtering 

techniques for both test scenarios 
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Table 12: Statistics of the error metrics between estimated and actual locations 

for the static test scenario 

Metric 
Raw 

Locations 
Exponential 
Smoothing 

Simple Moving 
Average 

Kalman 
Filtering 

MAE 1.04 (m) 0.75 (m) 0.65 (m) 0.64 (m) 

SD Error 0.82 (m) 0.51 (m) 0.44 (m) 0.43 (m) 

90% of Time Error 1.94 (m) 1.35 (m) 1.18 (m) 1.15 (m) 

95% of Time Error 2.47 (m) 1.58 (m) 1.52 (m) 1.40 (m) 

for the dynamic test scenario 

Metric 
Raw 

Locations 
Exponential 
Smoothing 

Simple Moving 
Average 

Kalman 
Filtering 

MAE 1.08 (m) 0.90 (m) 0.63 (m) 0.56 (m) 

SD Error 1.00 (m) 0.91 (m) 0.48 (m) 0.48 (m) 

90% of Time Error 2.49 (m) 2.06 (m) 1.28 (m) 1.17 (m) 

95% of Time Error 3.11 (m) 2.80 (m) 1.54 (m) 1.53 (m) 

 

As seen from Table 12, applying the Kalman filter improved the localization accuracy by 39% and 

48% in terms of the mean error for the static and dynamic test scenarios, respectively. The 

Exponential Smoothing was associated with more error compared to the others, with mean errors 

of 0.75 m and 0.90 m for the static and dynamic test scenarios, respectively.  In contrast, the 

Kalman filtering techniques had the best performance in both scenarios, reducing the mean error 

to 0.56 (m) in the dynamic test scenario. Besides, Kalman filtering can substantially reduce errors 

in 90% of the time from 1.94 m to 1.15 m and from 2.49 m to 1.17 m for the static and dynamic 

test scenarios, respectively. As for the errors in 95% of the time, 38% and 43% improvement can 

be archived using the Moving Average and Kalman filtering techniques, respectively. To sum up, 

the Kalman filter outperformed other filtering techniques in terms of all the metrics in both test 

scenarios. 

  
(a) Target State: Dynamic (b) Target State: Static 

Figure 24: Cumulative Distribution Function (CDF) of the localization error for the experiment scenarios. 
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By comparing the CDF (Cumulative Distribution Function) plots between the filtering techniques, 

as shown in Figure 24, it is observed that the performance difference between the filtering 

techniques is more evident in the dynamic test scenario than the static one. It is observed that up 

to around 90% of the time, the orange line (Moving Average) is slightly lower than the green line 

(Kalman filter), indicating better performance for the Kalman filter. Both filtering techniques had a 

better performance than ES, specifically in the dynamic test scenario. Lastly, the curves for the 

filtering techniques seem to be steeper than raw locations, confirming the effectiveness of 

applying filtering techniques on the estimated locations to enhance the system's localization 

accuracy. 

Thirdly, the effect of the Receiving beacon placement on a human body is examined. The signal 

attenuation caused by the human body shadows or obscures the BLE packets. This can directly 

affect the RSSI-distance estimation model, resulting in unreliable localization of the receiving 

beacon. The target locations for different receiving beacon placements on the human body are 

compared to demonstrate these effects. The placements considered for this experiment include 

(i) on the top of a hardhat, (ii) on the chest of workers, and (iii) on the worker’s wrist. Additionally, 

the receiving beacon placement on a tripod at the same level as the transmitting beacons was 

used as a benchmark to compare the estimated locations for the different placements. The 

estimated locations of the different placements of the receiving beacon in the test-bed are 

depicted in Figure 25. 

  
(a) Tripod (b) Hardhat 
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(c) Chest (d) Right Wrist 

Figure 25: The distribution of estimated locations for the placements of the receiving beacon 

As seen, the human body signal absorption affects the estimated locations for the “chest” and 

“right wrist” scenarios. This is because the human body prevents the receiving beacon from 

capturing BLE packets from the transmitting beacons located behind. Such blockage can, at the 

same time, create additional opportunities for monitoring the site processes, as discussed in the 

next section. Since the receiving beacon has Line-of-Sight with the transmitting beacons in the 

“on top of a hardhat” scenario, its estimated locations are similar to those of the “tripod” scenario. 

Hence, placing the receiving beacon on the top of the workers’ hardhat can be the best position 

to track the workers. 

3.7.2) Body Orientation Detection Module 

Firstly, the performance of the model is evaluated on the test set. The head-orientation detection 

model was evaluated using a validation set containing 2,279 records collected for the eight ordinal 

orientations. The absolute error of the orientation detection model, defined as the difference 

between the actual and detected body orientations, was used as the performance measure. 

Figure 26 shows the estimated body orientation of the target projected on its estimated locations, 

and Table 13 shows the statistics of the error metrics for the body orientation detection model. 

    



 

63 

 

a) Orientation: 0 

degree 
b) Orientation: 

45 degree 

c) Orientation: 

90 degree 

d) Orientation: 

135 degree 

    
e) Orientation: 

180 degree 

f) Orientation: 

225 degree 

g) Orientation: 

270 degree 

h) Orientation: 

315 degree 
Figure 26: Estimated orientations of the target – Red triangles show the correct predicted 

orientation, and blue triangles show the incorrectly predicted orientation. The ground truth body 
orientation of the target is illustrated on the top-left of each figure. 

Table 13: Statistics of the error metrics between estimated and actual body orientations 

Orientation 0° 45° 90° 135° 180° 225° 270° 315° All 

Mean error 
(degree) 

58.2 34.8 52.7 33.3 29.7 21.7 34.4 33.1 36.5 

SD error 
(degree) 

24.5 25.9 48.5 45.6 `17.6 30.5 37.0 22.0 35.9 

 

As seen from Table 13, the model achieved a mean error and standard deviation of 36 and 35 

degrees, respectively. The mean error ranges from 21 degrees to 58 degrees for the orientation 

South (225°) to the East (0°), respectively. Since no previous research uses RSSI values between 

BLE beacons for human orientation prediction, it is unfair to compare the developed system 

performance with studies that deployed more sophisticated devices, such as cameras or 

Gyroscope sensors. However, the achieved results show the potential of the system to perform 

as close as other systems [99][100]. 

Secondly, the performance of the model is evaluated in the simulated operations. The 

performance of the body orientation detection module is examined for the painter and plasterer 

since their body orientation was nearly the same during their work. The mason was excluded from 

the evaluation since their chest- and hardhat-mounted receiving beacons mostly did not have LoS 

with the reference transmitting beacons. The records whose productivity state was detected as 

direct work and support work states were considered for the evaluation analysis. The painter 

worked on the wall “AB” while the plasterer worked on the three sides of the column, named “Side 

A”, ”Side B”, and “Side C”, Since the body orientation often changes during the working time, the 

workers' focus orientation during the working time is also considered as an evaluation criterion to 
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assess the module performance. Hence, the most frequent body orientation in a time window of 

eight minutes is determined and considered the orientation values of that window. Figure 27 

shows the statistics of the predicted body orientations during the experiment and the estimated 

locations overlayed with body orientation. The accuracy of the predicted body orientations is 

presented in Table 10. 

 

  
Scatter plot of estimated locations and 

orientations 
Scatter plot of estimated locations 

and orientations  

  

Statistics of the body orientation on the 
wall AB 

Statistics of the body orientation on 
the wall AB 

(a) Single-crew Painting Experiments (b) Full-operation Painting 
Experiments 
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Scatter plot of 
estimated locations 
and orientations on 

side “C” of the 
column 

Scatter plot of 
estimated locations 
and orientations on 

side “B” of the column 

Scatter plot of 
estimated locations 
and orientations on 

side “A” of the column 

   

Statistics of the body 
orientation on side 
“C” of the column 

Statistics of the body 
orientation on side “B” 

of the column 

Statistics of the body 
orientation on side “A” 

of the column 
(c) Single-crew Plastering Experiments 

   
Scatter plot of 

estimated locations 
and orientations on 

side “C” of the 
column 

Scatter plot of 
estimated locations 
and orientations on 

side “B” of the column 

Scatter plot of 
estimated locations 
and orientations on 

side “A” of the column 
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Statistics of the body 

orientation on side “C” of the 
column 

Statistics of the body 
orientation on side “B” of the 

column 

Statistics of the body 
orientation on side “A” of the 

column 
(d) Full operation Plastering Experiments 

Figure 27: Performance of the body orientation detection module. The red and blue triangles 
represent the correct and incorrect predicted body orientations. 

Table 14: Body orientation detection module accuracy with the raw and the most frequent body orientations 

Worker 
Body 

Orientation 

Raw predicted body orientation Predicted focus orientation 

Single-crew 
Experiments 

Full-Operation 
Experiments 

Single-crew 
Experiments 

Full-Operation 
Experiments 

Mean 
error 

SD 
error 

Mean 
error 

SD 
error 

Mean 
error 

SD 
error 

Mean 
error 

SD error 

Painter West (180°) 62° 44° 65° 54° 37° 21° 22° 0° 

Plasterer 

West (180°) 57° 48° 93° 52° 87° 11° 135° 0° 

North (90°) 63° 33° 57° 48° 90° 0° 52° 24° 

East (0°) 53° 26° 54° 36° 45° 0° 45° 0° 

 

As seen in Figure 27 (i-ii), the body orientation of the painter was frequently predicted to the West 

and West-South orientations (180° and 225°) in the experiments. The module achieved a mean 

error of 37° and 22° in the predicted focus orientation of the painter in the single-crew and full-

operation experiments, respectively. Unlike plastering work located in the middle of the simulated 

site, the painter worked on the edge of the site where the presence of the other crews did not 

cause signal interference for the body orientation detection module. In addition, the painter’s 

chest-mounted receiving beacon generally had LoS with the reference transmitting beacons, 

resulting in the expected performance of the body orientation detection module. Hence, the totality 

of the predicted body orientations of the full-operation experiments was relatively similar to the 

single-crew experiments.  
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On the other hand, the model could not function normally for the plasterer due to the presence of 

the column that blocked the LoS of the chest-mounted receiving beacon from the reference 

transmitting beacons. Specifically for the North orientation (90°), the column was located in the 

sightline between the chest-mounted receiving and reference transmitting beacons. The mean 

error of the predicted body orientations for the three sides of the column ranges from 53° to 63° 

for the single-crew experiments. While the plasterer was working in the East direction (0°), the 

module typically detected the body orientation toward North-East (45°) in the single-crew 

experiments. In contrast, the predicted orientations were typically shifted toward South-East 

(315°) in the full-operation experiments. The most likely reason is the presence of the mason 

helper in the upper left of the plasterer in the full-operation experiments, verifying the impacts of 

the signal blockage caused by the worker body on the module performance. Due to the 

scatteredness of the predicted body orientations, the focus orientation of the plasterer was not 

accurate compared to the painter. Overall, the results show that the predicted body orientations 

can be used to identify building component(s) that a worker is working over a specific time period, 

on the condition that the LoS exists between the chest-mounted and the reference beacons. 

3.7.3) Productivity State Detection Module 

The performance of the productivity state detection module is evaluated both on the testbed and 

the simulated operations. As per the testbed, the classification performance of the six models was 

evaluated by using metrics, including Precision, Recall, and F1-Score. Precision and Recall are 

the most frequently used evaluation metrics reported in the deep learning literature [101]. 

Precision is a positive predictive value, whereas recall is also known as sensitivity [72]. 

F1-Score metric is described as the harmonic mean of Recall and Precision [102]. The average 

accuracy of five-fold cross-validation was used as the final result of the classification of the 

productivity state detection module. Table 15 shows the classification report of the models' 

performance. 

Table 15: Classification report showing the productivity state model performance. 

Worker Precision Recall F1-Score Support 

Painter 0.87 0.87 0.87 945 

Plasterer 0.89 0.89 0.89 719 

Plastering 
helper 

0.84 0.84 0.84 470 

Mason 0.87 0.87 0.87 537 

Masonry 
helper 

0.84 0.83 0.83 675 
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Runner 0.83 0.83 0.83 577 

Since the number of supports (test samples) for the models is different, as shown in Table 15, 

F1-score is a better metric for evaluating the trained models. The module achieved an F1-score 

of at least 0.84 in predicting the productivity state for the worker. The support work state is 

predicted with higher accuracy than other classes, except for the painter and mason crews. The 

model achieved a prediction accuracy of 89%, 87%, and 87% for the plasterer, painter, and 

mason, respectively. On the other hand, the plastering helper and the runner are the more 

challenging crews for the model to detect productivity. The reason might be the subtle differences 

in body movement in performing tasks that the classifier models could not well measure. Overall, 

the results show that the model can differentiate the productivity states for all the workers. Figure 

28 shows the confusion matrix, highlighting instances where the models do not recognize 

productivity states correctly. The right coordinate represents the actual class of the productivity 

state, and the bottom coordinate represents the prediction results of the states. Besides, the 

values in the main diagonal show the recall of the model's predictions. 

  

a) Painter b) Plasterer 
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c) Plastering helper d) Mason 

  
e) Masonry helper f) Runner 

Figure 28: Confusion Matrix showing the productivity state model performance. 

As seen in Figure 28, the delay state was rarely confused with the other classes except for the 

painter. However, the direct work state for the painter was predicted with a recall of as high as 

0.96 since its direct work state is more distinguishable than its support work. The same distinction 

between direct work and support work can be observed for the runner, where the F1-score of 0.99 

and 0.84 were achieved, respectively. On the other hand, the model trained for the mason 

occasionally confused direct work and support work states. The reason might be the similarity of 

the body posture for the productivity states, generating similar acceleration values that are 

challenging for the model to differentiate. 
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Furthermore, the model's performance is evaluated in the simulated operation experiments.  

Figure 29 shows the estimated location of the workers over the workspaces during the single-

crew and full-operation experiments. 

  
a) Single-crew Painting Experiment b) Single-crew Plastering Experiment 

  
c) Single-crew Masonry Experiment d) Full-Operation Experiments 

Figure 29: Workspaces and estimated locations of the crews 

As seen from Figure 29 (a), the painter did not travel to the storage area, whereas for the 

plastering and masonry activities, the plastering helper and runner traveled to the storage area to 

take the materials, respectively (Figure 29 (b-c)). The plastering helper went to the storage area 

only once (at the beginning of the activity); however, the runner had to go to the storage area 

several times to bring the material. Figure 30 (a) shows the productivity states ratio of the workers 

during the full-operation experiments. Figure 30 (b) shows the predicted productivity state of the 

workers in the workspaces. It is noted that the provided analysis is based on a portion of the time 

that workers started and finished their construction tasks. 
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a) Overlaying worker's productivity state over the workspaces 

 
b) Overlaying worker's productivity state over the crews 

 
i. Single-crew experiments 

 
ii. Full-operation experiments 
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c) Overlaying the runner's productivity state over the estimated locations in the traveling 

path 
Figure 30: Worker’s productivity states over workspaces 

As seen from Figure 30 (a), the predominant productivity state (65 percent to be exact) of the 

records in the danger zone was travel since it was located in the traveling path, and the runner 

had to carry the wheelbarrow between the storage area and the masonry workspace. Likewise, 

48 percent of the productivity state of the generated records in the storage area was travel since 

almost half of the storage area was used as a traveling path by the runner. The minority of the 

productivity states was predicted as a delay in the rest area since only the working time was 

considered for the analysis. The direct work state of the generated records in the rest area could 

be the productivity states of masonry helper and plastering helper, whose locations were wrongly 

predicted in the rest area, as depicted in Figure 29 (d). In addition, only four records of the painter 

were predicted as travel state; however, about eight percent of productivity states predicted in 

painting workspace was travel due to the RTLS location inaccuracy associated with plastering 

crew (plasterer and plastering helper). In general, the productivity states generated in the painting, 

plastering, masonry, and general zone follow almost the same pattern.  

It is clear from Figure 30 (b) that the painter, plasterer, and plastering helper rarely walked during 

the painting activity. The runner had the highest ratio of travel to other states among workers, 

which was about 40 percent. Among other workers, the masonry helper had the highest walking 

ratio to other states, which was about 9 percent. The reason is that the worker had to pour mortar 

over the wall bricks in the masonry workspace and return to his workspace (material storage 

area). The level of accuracy of the productivity state module is verified by comparing the observed 

productivity state of crews from the video recordings and the predicted states by the module. The 

manual productivity assessment was made while the workers worked at the workspaces, except 

for the runner. Table 16 compares the values obtained from the automated and manual 

productivity state analysis. 

Table 16: Average difference and standard deviation of the differences between the automated 
and manual activity analysis 

 Delay Support work Direct work Travel 

Painter 

Mean actual duration 38 (sec) 362 (sec) 156 (sec) n/a 

Mean error 24% 12% 19% n/a 

SD error 12% 5% 11% n/a 

Plasterer 

Mean actual duration  120 (sec) 215 (sec) 377 (sec) n/a 

Mean error  17% 13% 15% n/a 
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SD error  12% 5% 9% n/a 

Plastering Helper 

Mean actual duration  244 (sec) 266 (sec) 196 (sec) n/a 

Mean error 26% 28% 37% n/a 

SD error  18% 9% 28% n/a 

Mason 

Mean actual duration  249 (sec) 283 (sec) 491 (sec) n/a 

Mean error 33% 14% 19% n/a 

SD error 14% 10% 21% n/a 

Masonry Helper 

Mean actual duration 202 (sec) 394 (sec) 477 (sec) n/a 

Mean error  30% 15% 22% n/a 

SD error  14% 10% 14% n/a 

Runner 

Mean actual duration  82 (sec) 206 (sec) 367 (sec) 293 (sec) 

Mean error  22% 53% 17% 32% 

SD error  25% 7% 11% 22% 

 

As seen from Table 16, the model identified the direct work state of the plasterer and painter with 

a mean error of less than 15% and 19% for the work states, respectively. In contrast, the model 

had the worse performance in predicting the direct work state of the plastering helper that was 

associated with a mean error of as high as 37%. It verifies the relatively poor performance of the 

model trained for the plastering helper, as discussed in the previous section. Typically, the delay 

state of the workers was predicted with lower accuracy than other states, especially for the mason 

and masonry helper. The reason may be that the hand motion of the workers confused the 

productivity state detection model to detect the delay state accurately. The travel state was 

identified with a high mean error of 34% for the runner. The reason might be the different level of 

speed at which the runner carried the wheelbarrow during his/her traveling path. Since the runner 

had to maneuver the wheelbarrow at the end of the danger zone to reach the storage area, he 

paid more attention once he reached the corner. Accordingly, his productivity state was 

sometimes detected as the direct work state. Figure 30 (b) shows the overlay of the runner's 

productivity state over its estimated locations in the traveling path. 

As previously mentioned, the participant who performed the second experiment of the single-crew 

experiments was different from the one who performed the first experiment of the first round and 

the full-operation experiments. Figure 31 shows the distribution of the productivity state of different 

workers over the experiments. The results for the plasterer in the second full-operation experiment 

were excluded due to the defection in the chest-mounted receiving beacon. 
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a) Painter b) Plasterer 

  
c) Plastering Helper d) Mason 

  
e) Masonry Helper f) Runner 

Figure 31: Detected Productivity State of Workers over the Experiments 

As seen from Figure 31, for the plasterer and masonry helper, the productivity performance of the 

different participants who performed the activities is distinguishable from one another. The 

productivity performance of the workers (except for the plastering helper) followed almost the 

same pattern for the last two experiments. It shows the impacts of the learning curve of activities 

by the workers that was stabilized after performing the activity after the second time. The direct 

work was the dominant productivity state for the plasterer, masonry helper, mason, and runner. 

By contrast, direct work and support work had a roughly similar share in the predicted productivity 

state of the painter and plastering helper. The painter had to perform a relatively higher number 

of secondary construction tasks, including mixing the paint and staining a paint roller with paint. 

Besides, the plastering helper had the highest ratio of delay productivity state compared to other 
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workers. The reason is that this worker had to frequently wait for the plasterer until their plaster 

material was finishes and refilled the plaster bucket. Oppositely, the runner had the highest ratio 

of travel state in comparison with other workers, which was about 24 percent of the total predicted 

states during the four experiments. The automated and manual activity analysis results for the 

experiments are shown in Figure 32. The time difference is calculated based on the difference in 

the actual and predicted time spent for each productivity state. While the actual time spent is 

calculated based on the video recordings, the predicted time spent is computed by adding the 

time difference between executive records for each productivity state. 

  
a) Painter b) Plasterer 

  
c) Plastering helper d) Mason 

  
e) Masonry helper f) Runner 

 

Figure 32: Time difference between the predicted and actual productivity states of the workers 
over the experiments 
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As seen from Figure 32, for the plasterer and mason, the time difference error of the second 

single-crew experiment generally differs from other experiments. In the second single-crew 

experiment, the time difference was roughly 280 and 510 percent higher for the plasterer and 

mason, respectively. As mentioned, the second single-crew experiment was conducted by a 

participant who is different from the participant who conducted the other experiments. It confirms 

the impacts of the different working styles of the participants on the productivity state model's 

performance. The worse performance of the module occurred for the second full-operation 

experiment for the plastering helper followed by the plastering helper, which was as high as 31 

and 23 percent, respectively. Both workers performed the construction task of mixing the material, 

which might have confused their classifier models for productivity state detection. The time 

difference error for the plastering helper was unusually high in the second full-operation 

experiment since the wrist-mounted receiving beacon was removed several times during that 

experiment. 
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3.8) Recommendations for Construction Sites 

Based on the level of accuracy achieved and the man-hours requirement for installing the RTLS 

infrastructure, the authors conclude that deploying the proposed BLE-based RTLS  is feasible for 

tracking workers on construction job sites. Deploying BLE beacons as the reference and tracking 

BLE devices help to minimize the interference to the workflow and safety implications resulting 

from cables of the wired sensors, and it also makes the RTLS infrastructure more resistant to fall 

damages. Since the location data are not collected nor transferred through the worker's 

smartphone, the data privacy issue is resolved in the developed RTLS. This issue is regarded as 

the most critical concern by workers in adopting tracking devices on job sites [59]. Unlike other 

Locating Systems, which performed better in specific zones, such as areas closer to the fixed 

transmitting/receiving beacons ([50], [52], the accuracy of our proposed system has no bias 

toward a specific area of the test-bed including sub-module edges or areas close to the 

transmitting beacons (see Figure 22). This supports the scalability of the proposed infrastructure 

and suggests that placing modules beside one another is not expected to negatively affect the 

localization’s accuracy. It is noted that the proposed RTLS is highly dependent on a Line-of-Sight 

(LOS) between the beacons, which makes the system not ideal for the applications that require 

the receiving beacon to be mounted at a significantly lower height from the reference transmitting 

beacons, such as material tracking. However, the system is highly recommended for construction 

applications that require tracking the workers' location and construction equipment.  

Moreover, various intensity levels of the post-processing were found to be efficient for different 

applications, depending on the level of the worker’s movement that each application requires to 

monitor. For instance, productivity assessment of crews involved in static operations, e.g., 

masonry work, carpentry welding, plastering, etc., requires an intense level of smoothing. Since 

the workers do not move (in short intervals), the filtering techniques can take advantage of 

previous states’ records to interpret the current state, which minimizes the error in the estimated 

locations. By contrast, mild smoothing is necessary for applications associated with workers’ 

dynamic behavior, such as safety-related applications, including the deployment of safety alert 

systems for hazardous zones avoidance when approaching dangerous areas on the job site. A 

combination of mild and intense smoothing will be efficient for other applications in which the 

workers are both static and dynamic, such as automated workspace identification. As per the 

filtering type, Moving Average is the ideal alternative for safety-related applications due to its 

acceptable performance in 95% of the time and the shorter computation time than others, which 

will be essential for deploying real-time solutions. Although the Kalman filter roughly outperforms 
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other filtering techniques in all the evaluation metrics considered in this study, it takes a 

significantly higher computation time, making it less appropriate for safety management 

applications compared to the Moving Average. However, the Kalman filter can be deployed 

successfully for productivity monitoring applications, including path planning and workspace 

identification. Besides, the results of the effect of the receiving beacon placement on a human 

body show the workers’ hardhat is the best place for localization since the human body blockage 

cannot cause signal blockage. 

The body orientation detection module could provide an acceptable level of accuracy in detecting 

the building component on which a worker performs construction activity, specifically for the 

building component located on the sub-modules boundary edge. Like RTLS, the body orientation 

detection module is highly dependent on a LOS between the chest-mounted and reference 

beacons, which makes the module not ideal for applications requiring a worker to work on building 

component that blocks the LOS between the beacons. The module detected the wall on which a 

painter was painting, whereas the module produced a relatively large error in predicting body 

orientation for the plasterer due to the signal blockage caused by the column. The productivity 

state detection module's performance was independent of RTLS location data, resulting in more 

reliable productivity state data regardless of LOS between body-mounted and reference beacons. 

It is particularly advantageous in detecting productivity states for construction activities requiring 

workers to have body posture where the LOS cannot be maintained. For instance, the mason's 

hardhat- and chest-mounted beacons mostly have NLOS with reference beacons when the 

worker lays bricks at low altitude, so the developed productivity state detection module can be 

superior to the RTLS location displacement method. In addition, the module classified the working 

productivity state into direct work and support work. Such classification produced insightful 

information for productivity assessment of workers, which could not be provided through the RTLS 

location displacement method. 

For a successful RTLS deployment on job sites, the following recommendations are made to 

enable a proper setup: (i) deploy the sub-module on the boundary of the area of interest (no need 

for a buffer area outside the target zone); (ii) distribute the sub-modules according to the site 

layout and keep on changing the position of the sub-module as the layout of the construction site 

changes during the project; (iii) consider the minimum size of the sub-module that is the maximum 

distance in which the transmitting beacon can send BLE packets reliably for RSSI-distance 

prediction throughout the localization; (iv) keep the transmitting beacons at a minimum of height 

that is equal to the average of the worker’s height, i.e. 2 (m), or more in order for the beacons to 
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have LOS with one another (increasing the height beyond that results in a shorter sub-module 

size); (v) turn the orientation of the transmitting beacons towards the ground to provide evenly 

transmission coverage area (particularly for the job sites with many obstacles). 

The proper setup of RTLS positively affects the performance of the body orientation module by 

providing accurate location data. In addition, the following recommendations are made for the 

efficient deployment of the body orientation detection module: (i) place the boundary edge of sub-

module(s) on the wall on which a worker is supposed to work; (ii) do not use the module for 

workers who are supposed to work on building components not located in boundaries of sub-

modules; (iii) reduce the size of sub-modules in workspaces where many workers are supposed 

to work in close proximity; and (iv) consider deploying the module for workers who can mostly 

keep their bodies upright during the working time. Unlike RTLS and body orientation detection 

modules, the performance of the productivity state detection module is independent of the 

reference transmitting beacons (sub-modules). However, the following suggestions are made for 

a successful deployment of the productivity state detection module: (i) consider a reliable 

installation of the body-mounted beacons for workers who are supposed to perform intense 

physical construction activities and (ii) pay attention to keep the orientation of the body-mounted 

beacons similar to the body-mounted beacons on which the classifier models are trained. 

Chapter 4 – Conclusion 

4.1) Research Summary 

Tracking workers and objects on construction job sites is essential for various applications, 

including safety, progress monitoring, on-site coordination, and geographical mapping of worker 

locations and trajectories. Potentially, higher knowledge of worker performance can be achieved 

by integrating worker location data with additional information, such as body orientation and 

productivity state data. The main goals of this study included: (i) designing a Real-Time Locating 

System for construction job sites by considering the aspects affecting the system deployability in 

the construction domain, including portability, affordability, scalability, and localization accuracy; 

(ii) developing a body orientation detection model to predict the worker's body orientation in eight 

ordinal orientations using the RSSI values and geometrical relationship data between reference 

transmitting and chest-mounted receiving beacons; and (iii) developing a productivity state 

detection model to predict the productivity state of the worker using acceleration signals 

processing provided by the accelerometer-embedded receiving beacons mounted on the worker's 

hardhat, chest, and writs. It is noted that the RTLS and body orientation detection modules are 
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developed for the indoor environment. Besides, the productivity state detection module is 

developed for repetitive constriction activities, including painting, plastering, and masonry. 

A novel BLE-based RTLS was proposed, in which BLE beacons replaced the commonly used 

Bluetooth-enabled devices. For this purpose, the beacons’ configurations were tuned, and a 

record correction algorithm was developed to solve the shortage of BLE packets limited payload 

that the receiving beacon relies on to broadcast the location data to the gateway. A modular 

system infrastructure placement was proposed based on the effective devices' range to 

strategically place the beacons on job sites. The proposed localization estimation model 

categorized and subsequently localized the records based on the reference transmitting beacons’ 

position and estimated the distance between the receiving and transmitting beacons based on 

the RSSI. Finally, the locations were post-processed by filtering techniques to mitigate the effect 

of environmental noises. The performed experimental work indicated a localization error of 0.56 

(m) and 0.64 (m) in a middle-size room in cases of dynamic and static targets, respectively. As 

per the localization precision, the system demonstrated no bias toward a specific coverage area 

and achieved, in 90% of the time, an error of less than 1.15 (m) and 1.17 (m) for static and dynamic 

test scenarios, respectively. 

The body orientation detection module used the RSSI values and geometrical relationship data 

between reference transmitting and chest-mounted receiving beacons to predict the worker's 

body orientation. To this end, in-lab experiments were carried out to collect data between the 

chest-mounted receiving beacon and reference transmitting beacons for eight ordinal 

orientations. Finally, an ANN model was trained to predict the worker body orientation in eight 

ordinal orientations. Last but not least, the productivity state detection module predicted the 

productivity state of the worker using acceleration signals processing provided by the 

accelerometer-embedded receiving beacons mounted on the worker's hardhat, chest, and writs. 

With that goal, firstly, a frequency image generator segmented the tri-axial accelerometer data 

from the receiving beacons and converted them into frequency images. Secondly, six two-

dimensional Convolutional Neural Networks (CNN) were trained to detect the workers' 

productivity states by taking the generated frequency images as input. The system performance 

was validated through experiments conducted on an in-lab simulated construction site by six 

volunteers, who played the role of various construction workers. The experimental results 

indicated that the productivity state detection module achieved a less than 20 percent time 

difference error in detecting the direct work and support work productivity states for the painter, 

plasterer, and mason. The body orientation detection module achieved a mean error of less than 
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30° in detecting the focus orientation on the condition that the LoS exists between the reference 

transmitting and chest-mounted receiving beacons.  

4.2) Research Contributions 

The main contributions of this work summarized as (i) proposing an RTLS architecture with 

minimal dependency on wiring and electricity outlets; (ii) developing an algorithm and configuring 

receiving and transmitting beacons to minimize the effect of signal interference caused by a 

network of transmitters ; (iii) categorizing the measurements of positions and distances of the 

(fixed) transmitting beacons from the (moving) receiver and developing localization algorithms for 

each category; (iv) examining the performance of various post-processing mechanisms on the 

estimated locations to find the best solutions for mitigating the system's incoherence in computed 

locations when the target is static and dynamic; (v) training a DNN model that uses RSSI values 

between chest-mounted receiving and reference transmitting beacons that are used for RTLS to 

detect body orientation; and (vi) training CNN models that take low-frequency acceleration data 

of the accelerometer embedded in the hardhat- and chest- and wrist-mounted beacons to detect 

worker’s productivity states. 

In the proposed RTLS, the substitution of the commonly used Bluetooth-enabled devices with 

BLE beacons made the distributed infrastructure of the system, except for gateways  (one every 

900 m2 in a square-form layout), independent from wiring work and DC power supply. This 

substantially increased the system's deployability and flexibility of application on construction 

sites. The proposed modular system infrastructure placement strategy minimized the number of 

required on-site devices and improved the RTLS scalability and efficiency in terms of cost and 

power consumption. In traditional Bluetooth-based RTLS architecture, receiving nodes that 

require wiring are usually used as fixed benchmarks, and the moving objects are tracked through 

transmitting devices.  

This study also proved that placing the receiving beacon on top of workers’ hardhat is ideal, 

compared to other placements such as the chest or pocket, since the receiving beacon had a 

Line-of-Sight (LOS) with the reference transmitting beacons. However, mounting the receiving 

beacon on the chest was beneficial for body orientation prediction due to the signal blockage 

caused by the human body. The body orientation detection module used the existing RTLS 

reference transmitting beacons and a chest-mounted receiving beacon to continuously predict 

workers' body orientation. Unlike IMU sensors that require other equipment for recalibration due 

to the accumulation of the sensor orientation errors, the performance of the developed body 
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orientation detection module remained stable during its operation. Additionally, deploying BLE 

beacons can substantially reduce the system implementation cost since they are more affordable 

than IMU-equipped BLE beacons. The productivity state detection module utilized the 

accelerometer embedded in the hardhat- and chest-mounted beacons deployed for the RTLS and 

body orientation detection modules and additional wrist-mounted beacon. Although the record 

generation frequency of the BLE beacon is typically lower than IMU sensors, they reduce the 

implementation cost of the system. The developed productivity state detection module classified 

workers’ productivity states into direct work and support work states, which could not be 

distinguished by the workers’ RTLS location displacement method. 

The innovation of the developed BLE-based worker monitoring system is that its modules can 

make most of the infrastructure required for RTLS, including the reference transmitting beacon 

and gateways. It can satisfy requirements for widespread on-site adoption, including cost 

efficiency and deployability to the construction sites. However, the system modules can perform 

independently and be deployed as required for different applications except for the body 

orientation detection module that relies on RTLS. The real-time worker location data can be used 

in various applications, including (i) visualizing congested workspaces occupied by different 

subcontractors and planning optimized traveling paths for workers and equipment; (ii) determining 

time spent in various workspaces; and (iii) automating log of workers’ site attendance, arrival 

times, and exit times. The real-time worker body orientation data can be used in various 

applications, such as (i) measuring workers’ awareness of danger zones and moving equipment 

on job sites; (ii) identifying the building component(s) on which a worker is working; and (iii) 

identifying the construction social networks among the workers of the different crews to control 

social distancing in pandemic situations. Last but not least, the real-time worker productivity states 

data can be used in applications, including (i) facilitating the calculation of workers’ realistic 

productivity rate by detecting actual direct work time (work input); (ii) detecting the unusual ratio 

of delay to working time to understand the potential body fatigue associated with construction 

tasks; (iii) detecting the unusual ratio of travel to working time to detect unoptimized traveling 

paths required for construction activities on construction sites; (iv) providing a detailed breakdown 

of working time to train workforce by influencing actions on workforce training to increase 

productivity; and (v) detecting unusual high support work time or low direct work time to defect 

inefficiency/defect in tools and equipment. 
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4.3) Limitations and Future Study 

Although this study highlighted the feasibility of deploying BLE beacon technology as a worker 

monitoring system, it had several limitations that require further investigation. Firstly, since the 

experiments were conducted in a controlled laboratory environment, the effect of distractions and 

noise, which generally exist in a construction environment, was minimized. Thus, the system's 

performance should be tested against the effects of other parameters such as weather conditions 

and proximity to the construction equipment. Secondly, for measuring the localization accuracy, 

the body position of the worker wearing the receivers was assumed to be almost vertical in this 

experiment. The assumption was valid for tracking workers in most activities; however, if the work 

involved physical movements of the worker’s head, the accuracy of the RTLS could be affected 

due to the Non-Line of-Sight (NLoS) between the receiving and transmitting beacons. Moreover, 

the body orientation detection module was negatively affected once the chest-mounted beacon 

did not have a LoS with the reference beacons. Especially in places where it was impossible to 

install the reference beacons on building components (e.g., column) and in places where many 

workers were supposed to work simultaneously. Although the accuracy of the predicted body 

orientations sufficed for productivity monitoring applications, a higher level of accuracy might have 

been required for safety-related applications. 

Furthermore, the accuracy of the productivity state detection module could be improved by using 

IMU sensors to measure angular velocity and magnetic fields data. More sophisticated sensors 

and infrastructure settings might also be required to improve the performance of the productivity 

state detection module by increasing the frequency of acceleration records. Collecting data from 

multiple participants and increasing the size of the training set could also improve the performance 

of the productivity state detection module. Although the data labeled as support work productivity 

state of workers were not necessarily related to their secondary tasks, collecting specific data 

based on the secondary tasks of workers can improve the productivity state detection module’s 

performance. The productivity state data linkage to 4D BIM could generate in-depth insights into 

workers' construction activities on job sites. For example, workers' direct work productivity could 

be translated into construction activities by knowing the workspace and crew of workers provided 

by the 4D BIM (schedule and BIM model). Although only three repetitive construction activities 

were considered for training the productivity state detection module, the number of activities can 

be expanded in future studies to incorporate other construction activities, such as plumbing and 

carpentry. 
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The impact of various beacon configurations on the battery life was a practical factor for 

deployment that requires investigation. In addition, deploying the system in real conditions of the 

construction site with actual workers would be necessary to understand the deployability and 

issues such as cultural and possible behavioral changes. The productivity state detection can be 

further improved to detect construction activity by increasing the frequency of record generation. 

This can help solve the privacy issues of tracking workers on job sites since the module can detect 

the performed activities without knowing workers’ names and body-mounted beacon IDs. Last but 

not least, incorporating other data acquisition techniques, such as computer vision, is beneficial 

not only to improve the performance of productivity state data but also to provide the work output 

of workers, resulting in a more realistic productivity assessment of workers. Additionally, the fuzed 

workers' data can be used to develop an alerting system for safety management on job sites. The 

system can be particularly advantageous to assessing workers’ awareness of the danger zone 

by using the workers’ body orientation and productivity state data, resulting in a low false alarm 

system. 
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Appendices  

Appendix 1) RTLS’s Python Code  

The results 

Importing the Required Libraries 

 

    import numpy as np 

    import pandas as pd 

    import seaborn as sns 

    pd.set_option('max_colwidth', 20000000) 

    from sklearn import metrics 

    from pykalman import KalmanFilter 

    import matplotlib.pyplot as plt 

    import math 

 

Importing the Raw Dataset from Elasticsearch 

 

    df=pd.read_excel(r'G:\Localization\210418\210418.xlsx') 

    df=df.sort_values(by=['timestamp']) 

    df.head() 

 

                             _id            _index  _score _type  \ 
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    8206  1618760836758-0000a7c0  diract-proximity     NaN  _doc    

    8205  1618760838159-0000a7c0  diract-proximity     NaN  _doc    

    8204  1618760839729-0000a7c0  diract-proximity     NaN  _doc    

    8203  1618760840946-0000a7c0  diract-proximity     NaN  _doc    

    8202  1618760842341-0000a7c0  diract-proximity     NaN  _doc    

 

                     acceleration  batteryPercentage  cyclicCount instanceId  \ 

    8206  ['-0.125','-0.062','1']                 57            0   0000a7c0    

    8205  ['-0.125','-0.062','1']                 57            1   0000a7c0    

    8204  ['-0.125','-0.062','1']                 57            2   0000a7c0    

    8203  ['-0.125','-0.062','1']                 57            3   0000a7c0    

    8202  ['-0.125','-0.062','1']                 57            5   0000a7c0    

 

                                                                                                                   nearest  \ 

    8206                                       [{'instanceId':'00000058','rssi':-68},{'instanceId':'00000060','rssi':-73}]    

    8205                                       [{'instanceId':'00000060','rssi':-73},{'instanceId':'0000004e','rssi':-75}]    

    8204                                       [{'instanceId':'00000058','rssi':-68},{'instanceId':'00000060','rssi':-73}]    

    8203                                       [{'instanceId':'00000061','rssi':-69},{'instanceId':'00000060','rssi':-73}]    

    8202  [{'instanceId':'00000061','rssi':-71},{'instanceId':'0000004e','rssi':-75},{'instanceId':'00000060','rssi':-75}]    

 

                        timestamp   

    8206  Apr 18, 2021 @ 11:47:16   
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    8205  Apr 18, 2021 @ 11:47:18   

    8204  Apr 18, 2021 @ 11:47:19   

    8203  Apr 18, 2021 @ 11:47:20   

    8202  Apr 18, 2021 @ 11:47:22   

 

Pre-Processing the Elasticsearch Raw Dataset 

 

The three instances (detected transmitters) and their corresponding RSSI values are defined. Also, a column for the Puck is added. 

 

    instance_1=df['nearest'].str.slice(16,24,1) 

    instance_2=df['nearest'].str.slice(53,61,1) 

    instance_3=df['nearest'].str.slice(90,98,1) 

 

    rssi_1=df['nearest'].str.slice(33,36,1) 

    rssi_2=df['nearest'].str.slice(70,73,1) 

    rssi_3=df['nearest'].str.slice(107,110,1) 

    Puck=df['instanceId'] 

 

    Processed_dataset=pd.DataFrame(df['timestamp']) 

    Processed_dataset['instance_1']=instance_1 

    Processed_dataset['instance_2']=instance_2 

    Processed_dataset['instance_3']=instance_3 
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    Processed_dataset['rssi_1']=rssi_1 

    Processed_dataset['rssi_2']=rssi_2 

    Processed_dataset['rssi_3']=rssi_3 

    Processed_dataset['rssi_3']=rssi_3 

    Processed_dataset['Puck']=Puck 

 

    Processed_dataset=Processed_dataset.reset_index(drop=True) 

    Processed_dataset=Processed_dataset[Processed_dataset!=''] 

    Processed_dataset.dropna(inplace=True) 

    Processed_dataset=Processed_dataset.reset_index(drop=True) 

 

    # Rarely, the dataset coming from the Kibana has a couple of string values in the RSSI numeric columns. 

    # Thus, in order for the RSSI columns to be readable for the ML models, we need to remove string characters from them and convert 

them to integers. 

    # Since by applying str.extract function the negative sign of RSSI were removed, we need to multiply them by (-1). 

 

    Processed_dataset['rssi_1']=pd.DataFrame(Processed_dataset['rssi_1'])['rssi_1'].str.extract(r'(\d+)', expand=False) 

    Processed_dataset['rssi_2']=pd.DataFrame(Processed_dataset['rssi_2'])['rssi_2'].str.extract(r'(\d+)', expand=False) 

    Processed_dataset['rssi_3']=pd.DataFrame(Processed_dataset['rssi_3'])['rssi_3'].str.extract(r'(\d+)', expand=False) 

 

    Processed_dataset.dropna(inplace=True) 
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    Processed_dataset['rssi_1']=Processed_dataset['rssi_1'].astype(int) 

    Processed_dataset['rssi_2']=Processed_dataset['rssi_2'].astype(int) 

    Processed_dataset['rssi_3']=Processed_dataset['rssi_3'].astype(int) 

 

    Processed_dataset['rssi_1']=Processed_dataset['rssi_1']*-1 

    Processed_dataset['rssi_2']=Processed_dataset['rssi_2']*-1 

    Processed_dataset['rssi_3']=Processed_dataset['rssi_3']*-1 

 

    Processed_dataset.head() 

 

                     timestamp instance_1 instance_2 instance_3  rssi_1  rssi_2  \ 

    0  Apr 18, 2021 @ 11:47:22   00000061   0000004e   00000060     -71     -75    

    1  Apr 18, 2021 @ 11:47:23   00000061   0000004e   00000060     -71     -75    

    2  Apr 18, 2021 @ 11:47:25   00000058   00000061   00000060     -68     -74    

    3  Apr 18, 2021 @ 11:47:45   00000058   00000061   00000060     -68     -70    

    4  Apr 18, 2021 @ 11:47:48   00000058   00000061   00000060     -67     -71    

 

       rssi_3      Puck   

    0     -75  0000a7c0   

    1     -75  0000a7c0   

    2     -75  0000a7c0   

    3     -74  0000a7c0   
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    4     -73  0000a7c0   

 

Converting the Reference Transmitters ID's to (x,y) Coordinates. 

 

    Processed_dataset["X1"]=Processed_dataset["instance_1"] 

    Processed_dataset["X2"]=Processed_dataset["instance_2"] 

    Processed_dataset["X3"]=Processed_dataset["instance_3"] 

 

    Processed_dataset.rename(columns={"instance_1":"Y1"},inplace=True) 

    Processed_dataset.rename(columns={"instance_2":"Y2"},inplace=True) 

    Processed_dataset.rename(columns={"instance_3":"Y3"},inplace=True) 

 

    # This requires the user to input the (x,y) coordinates for the fixed transmitters on-site. 

 

    x_axis={'00000058':3,'00000059':0,'00000060':6,'00000061':3,'0000004d':0,'0000004e':6} 

    y_axis={'00000058':0,'00000059':3,'00000060':0,'00000061':3,'0000004d':0,'0000004e':3} 

 

    Processed_dataset["X1"]=pd.DataFrame(Processed_dataset["Y1"].replace(x_axis)) 

    Processed_dataset["X2"]=pd.DataFrame(Processed_dataset["Y2"].replace(x_axis)) 

    Processed_dataset["X3"]=pd.DataFrame(Processed_dataset["Y3"].replace(x_axis)) 

 

    Processed_dataset["Y1"]=pd.DataFrame(Processed_dataset["Y1"].replace(y_axis)) 
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    Processed_dataset["Y2"]=pd.DataFrame(Processed_dataset["Y2"].replace(y_axis)) 

    Processed_dataset["Y3"]=pd.DataFrame(Processed_dataset["Y3"].replace(y_axis)) 

 

    # Converting string values of coordiantes to float 

    df=Processed_dataset 

    df[['Y1', 'Y2', 'Y3','X1', 'X2', 'X3']]=df[['Y1', 'Y2', 'Y3','X1', 'X2', 'X3']].apply(lambda x: pd.to_numeric(x, errors = 'coerce')).dropna() 

 

    df.head() 

 

                     timestamp   Y1   Y2   Y3  rssi_1  rssi_2  rssi_3      Puck  \ 

    0  Apr 18, 2021 @ 11:47:22  3.0  3.0  0.0     -71     -75     -75  0000a7c0    

    1  Apr 18, 2021 @ 11:47:23  3.0  3.0  0.0     -71     -75     -75  0000a7c0    

    2  Apr 18, 2021 @ 11:47:25  0.0  3.0  0.0     -68     -74     -75  0000a7c0    

    3  Apr 18, 2021 @ 11:47:45  0.0  3.0  0.0     -68     -70     -74  0000a7c0    

    4  Apr 18, 2021 @ 11:47:48  0.0  3.0  0.0     -67     -71     -73  0000a7c0    

 

        X1   X2   X3   

    0  3.0  6.0  6.0   

    1  3.0  6.0  6.0   

    2  3.0  3.0  6.0   

    3  3.0  3.0  6.0   

    4  3.0  3.0  6.0   
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Determining the Types of the Records 

 

    # Calculating the distance between the three detected transmitters 

    df['dis_12']=np.sqrt(((df['X1']-df['X2'])**2)+((df['Y1']-df['Y2'])**2)) 

    df['dis_13']=np.sqrt(((df['X1']-df['X3'])**2)+((df['Y1']-df['Y3'])**2)) 

    df['dis_23']=np.sqrt(((df['X2']-df['X3'])**2)+((df['Y2']-df['Y3'])**2)) 

 

    # Type (1) is the Logical recaords 

 

    # Condition1 

    type1=df[(df['dis_12']<4.25)&(df['dis_13']<4.25)&(df['dis_23']<4.25)] 

    type1=type1.reset_index(drop=True).drop(['dis_12','dis_13','dis_23'],axis=1) 

 

    # Type (2) is the Semi-Logical recaords 

 

    # Condition1 

    type2=df[~((df['dis_12']<4.25)&(df['dis_13']<4.25)&(df['dis_23']<4.25))] 

    # Condition2 

    type2=type2[type2['dis_12']<4.25] 

    type2=type2.reset_index(drop=True).drop(['dis_12','dis_13','dis_23'],axis=1) 
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Semi-Logical to Logical Converter Model 

 

    # Determining the clue point  

    type2['Xfin']=((((type2['X1']+type2['X3'])/2)+((type2['X2']+type2['X3'])/2)))/2 

    type2['yfin']=((((type2['Y1']+type2['Y3'])/2)+((type2['Y2']+type2['Y3'])/2)))/2 

 

    # Finding the distance of the clue point from the transmitters 

    type2['tr_60']=np.sqrt(((type2['Xfin']-6)**2)+((type2['yfin']-0)**2)) 

    type2['tr_4e']=np.sqrt(((type2['Xfin']-6)**2)+((type2['yfin']-3)**2)) 

    type2['tr_61']=np.sqrt(((type2['Xfin']-3)**2)+((type2['yfin']-3)**2)) 

    type2['tr_58']=np.sqrt(((type2['Xfin']-3)**2)+((type2['yfin']-0)**2)) 

    type2['tr_4d']=np.sqrt(((type2['Xfin']-6)**2)+((type2['yfin']-0)**2)) 

    type2['tr_59']=np.sqrt(((type2['Xfin']-6)**2)+((type2['yfin']-3)**2)) 

 

    #### The already detected transmitters shoud be omitted 

    def my_fun(x,X1,Y1,X2,Y2,X3,Y3,tr_60,tr_4e,tr_61,tr_58,tr_4d,tr_59): 

         

        if ((x[X1]==6)&(x[Y1]==0))|((x[X2]==6)&(x[Y2]==0))|((x[X3]==6)&(x[Y3]==0)): 

            x[tr_60]=999999 

        else: 

            x[tr_60]=x[tr_60] 

        return x 
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    type2=type2.apply(lambda x:my_fun(x,'X1','Y1','X2','Y2','X3','Y3','tr_60','tr_4e','tr_61','tr_58','tr_4d','tr_59'), axis=1) 

 

    def my_fun(x,X1,Y1,X2,Y2,X3,Y3,tr_60,tr_4e,tr_61,tr_58,tr_4d,tr_59): 

 

        if ((x[X1]==6)&(x[Y1]==3))|((x[X2]==6)&(x[Y2]==3))|((x[X3]==6)&(x[Y3]==3)): 

            x[tr_4e]=999999 

        else: 

            x[tr_4e]=x[tr_4e] 

        return x  

    type2=type2.apply(lambda x:my_fun(x,'X1','Y1','X2','Y2','X3','Y3','tr_60','tr_4e','tr_61','tr_58','tr_4d','tr_59'), axis=1) 

 

    def my_fun(x,X1,Y1,X2,Y2,X3,Y3,tr_60,tr_4e,tr_61,tr_58,tr_4d,tr_59): 

 

        if ((x[X1]==3)&(x[Y1]==3))|((x[X2]==3)&(x[Y2]==3))|((x[X3]==3)&(x[Y3]==3)): 

            x[tr_61]=999999 

        else: 

            x[tr_61]=x[tr_61] 

        return x 

    type2=type2.apply(lambda x:my_fun(x,'X1','Y1','X2','Y2','X3','Y3','tr_60','tr_4e','tr_61','tr_58','tr_4d','tr_59'), axis=1) 

 

    def my_fun(x,X1,Y1,X2,Y2,X3,Y3,tr_60,tr_4e,tr_61,tr_58,tr_4d,tr_59): 
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        if ((x[X1]==3)&(x[Y1]==3))|((x[X2]==3)&(x[Y2]==0))|((x[X3]==3)&(x[Y3]==0)): 

            x[tr_58]=999999 

        else: 

            x[tr_58]=x[tr_58] 

        return x  

    type2=type2.apply(lambda x:my_fun(x,'X1','Y1','X2','Y2','X3','Y3','tr_60','tr_4e','tr_61','tr_58','tr_4d','tr_59'), axis=1) 

 

    def my_fun(x,X1,Y1,X2,Y2,X3,Y3,tr_60,tr_4e,tr_61,tr_58,tr_4d,tr_59): 

 

        if ((x[X1]==6)&(x[Y1]==0))|((x[X2]==6)&(x[Y2]==0))|((x[X3]==6)&(x[Y3]==0)): 

            x[tr_4d]=999999 

        else: 

            x[tr_4d]=x[tr_4d] 

        return x 

    type2=type2.apply(lambda x:my_fun(x,'X1','Y1','X2','Y2','X3','Y3','tr_60','tr_4e','tr_61','tr_58','tr_4d','tr_59'), axis=1) 

 

    def my_fun(x,X1,Y1,X2,Y2,X3,Y3,tr_60,tr_4e,tr_61,tr_58,tr_4d,tr_59): 

 

        if ((x[X1]==6)&(x[Y1]==3))|((x[X2]==6)&(x[Y2]==0))|((x[X3]==6)&(x[Y3]==0)): 

            x[tr_59]=999999 

        else: 

            x[tr_59]=x[tr_59] 
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        return x  

    type2=type2.apply(lambda x:my_fun(x,'X1','Y1','X2','Y2','X3','Y3','tr_60','tr_4e','tr_61','tr_58','tr_4d','tr_59'), axis=1) 

 

    # The transmitter whose distance from the clue point is the minimum should replace the wrong detected transmitter along with its 

RSSI value. 

    type2['corrected_tr_X']=type2[['tr_60','tr_4e','tr_61','tr_58','tr_4d','tr_59']].idxmin(axis = 1) 

    type2['corrected_tr_Y']=type2[['tr_60','tr_4e','tr_61','tr_58','tr_4d','tr_59']].idxmin(axis = 1) 

 

    corrected_tr_X={'tr_58':'00000058','tr_59':'00000059','tr_60':'00000060','tr_61':'00000061','tr_4d':'0000004d','tr_4e':'0000004e'} 

    corrected_tr_Y={'tr_58':'00000058','tr_59':'00000059','tr_60':'00000060','tr_61':'00000061','tr_4d':'0000004d','tr_4e':'0000004e'} 

 

    type2['corrected_tr_X']=pd.DataFrame(type2['corrected_tr_X'].replace(corrected_tr_X)) 

    type2['corrected_tr_Y']=pd.DataFrame(type2['corrected_tr_Y'].replace(corrected_tr_Y)) 

 

    type2['corrected_tr_X']=pd.DataFrame(type2['corrected_tr_X'].replace(x_axis)) 

    type2['corrected_tr_Y']=pd.DataFrame(type2['corrected_tr_Y'].replace(y_axis)) 

 

    type2[['corrected_tr_X','corrected_tr_Y']]=type2[['corrected_tr_X','corrected_tr_Y']].apply(lambda x: x.astype(float)) 

 

    type2['X3']=type2['corrected_tr_X'] 

    type2['Y3']=type2['corrected_tr_Y'] 

    type2=type2.drop(['corrected_tr_X','corrected_tr_Y'],axis=1) 
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    type2=type2[['timestamp', 'Y1', 'Y2', 'Y3', 'rssi_1', 'rssi_2', 'rssi_3', 

                 'Puck','X1', 'X2', 'X3']] 

 

    all_data=pd.DataFrame(Processed_dataset['timestamp']) 

    data=pd.merge(all_data, pd.concat([type1,type2],axis=0), on="timestamp",how='outer').ffill().dropna() 

    data.head() 

 

                     timestamp   Y1   Y2   Y3  rssi_1  rssi_2  rssi_3      Puck  \ 

    0  Apr 18, 2021 @ 11:47:22  3.0  3.0  0.0   -71.0   -75.0   -75.0  0000a7c0    

    1  Apr 18, 2021 @ 11:47:23  3.0  3.0  0.0   -71.0   -75.0   -75.0  0000a7c0    

    2  Apr 18, 2021 @ 11:47:25  0.0  3.0  0.0   -68.0   -74.0   -75.0  0000a7c0    

    3  Apr 18, 2021 @ 11:47:45  0.0  3.0  0.0   -68.0   -70.0   -74.0  0000a7c0    

    4  Apr 18, 2021 @ 11:47:48  0.0  3.0  0.0   -67.0   -71.0   -73.0  0000a7c0    

 

        X1   X2   X3   

    0  3.0  6.0  6.0   

    1  3.0  6.0  6.0   

    2  3.0  3.0  6.0   

    3  3.0  3.0  6.0   

    4  3.0  3.0  6.0   
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RSSI-distance Prediction Model 

 

Importing the training dataset to train the RF model to predict the diatance from the RSSI values. The train set consistes four orientation 

sof the Receiving beacon (Puck) with respect to the transmitter. 

 

    Back_dataset=pd.read_csv(r"G:\Final RSSI-distance-1.80 m Height\Back\Back-dataset.csv") 

    Front_dataset=pd.read_csv(r"G:\Final RSSI-distance-1.80 m Height\Front\Front-dataset.csv") 

    Right_dataset=pd.read_csv(r"G:\Final RSSI-distance-1.80 m Height\Right\Right-dataset.csv") 

    Left_dataset=pd.read_csv(r"G:\Final RSSI-distance-1.80 m Height\Left\Lefr-Dataset.csv") 

 

    All_dataset=pd.DataFrame() 

    All_dataset=All_dataset.append([Back_dataset,Front_dataset,Right_dataset,Left_dataset]) 

 

    """ 

    We need to filter our desired records based on their distnaces according to the Max diameter of one module. 

    e.g. here, the records with distnace from 0 to 4.25m are selected.  

    """ 

    Sub_dataset=All_dataset[All_dataset['distance']<=4.25] 

 

    """ 

    As a rule X shoud have a two dimensions (2D) and y should have one dimension (1D). If the taring set has only one attribute, 

    we should apply .to_numpy().reshape(-1,1) to the X to solve the problem. 
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    """ 

    X=pd.DataFrame(Sub_dataset['rssi']) 

    #y=pd.DataFrame(Sub_dataset['distance']) 

    y=Sub_dataset['distance'] 

 

Applying the RF model for the RSSI-distance prediction 

 

    from sklearn.ensemble import RandomForestRegressor 

    rfc = RandomForestRegressor(n_estimators=130,criterion='mse',max_depth=25,min_samples_leaf=8,bootstrap = 

True,max_features = 'sqrt') 

    rfc.fit(X,y) 

 

    distance_1=rfc.predict(pd.DataFrame(data['rssi_1'])) 

    distance_2=rfc.predict(pd.DataFrame(data['rssi_2'])) 

    distance_3=rfc.predict(pd.DataFrame(data['rssi_3'])) 

 

    distance_1=pd.DataFrame(distance_1).rename({0:'distance_1',}, axis=1) 

    distance_2=pd.DataFrame(distance_2).rename({0:'distance_2',}, axis=1) 

    distance_3=pd.DataFrame(distance_3).rename({0:'distance_3',}, axis=1) 

 

    data=pd.concat([data, distance_1.reindex(Processed_dataset.index)], axis=1) 

    data=pd.concat([data, distance_2.reindex(Processed_dataset.index)], axis=1) 
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    data=pd.concat([data, distance_3.reindex(Processed_dataset.index)], axis=1) 

 

    data=data.drop(['rssi_1','rssi_2','rssi_3'], axis=1).dropna() 

    data=data[['timestamp','Puck','X1','Y1','X2','Y2','X3','Y3','distance_1','distance_2','distance_3']] 

    df = data 

 

    df.head() 

 

                     timestamp      Puck   X1   Y1   X2   Y2   X3   Y3  \ 

    0  Apr 18, 2021 @ 11:47:22  0000a7c0  3.0  3.0  6.0  3.0  6.0  0.0    

    1  Apr 18, 2021 @ 11:47:23  0000a7c0  3.0  3.0  6.0  3.0  6.0  0.0    

    2  Apr 18, 2021 @ 11:47:25  0000a7c0  3.0  0.0  3.0  3.0  6.0  0.0    

    3  Apr 18, 2021 @ 11:47:45  0000a7c0  3.0  0.0  3.0  3.0  6.0  0.0    

    4  Apr 18, 2021 @ 11:47:48  0000a7c0  3.0  0.0  3.0  3.0  6.0  0.0    

 

       distance_1  distance_2  distance_3   

    0    3.471563    3.250526    3.250526   

    1    3.471563    3.250526    3.250526   

    2    3.361573    3.424589    3.250526   

    3    3.361573    3.384148    3.424589   

    4    2.908053    3.471563    3.427018   
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    #data.to_excel(r"C:\Users\ali\Desktop\test_triangulation.xlsx",index=False) 

 

Estimating the Locations through the Traingualtrion Models 

 

    #### Calculating the distance between the three detected transmitters 

    df['dis_12']=np.sqrt(((df['X1']-df['X2'])**2)+((df['Y1']-df['Y2'])**2)) 

    df['dis_13']=np.sqrt(((df['X1']-df['X3'])**2)+((df['Y1']-df['Y3'])**2)) 

    df['dis_23']=np.sqrt(((df['X2']-df['X3'])**2)+((df['Y2']-df['Y3'])**2)) 

 

    #### Removing the outliers that a pair of identical transmitters exits in a record 

    df=df[(df['dis_12']!=0)&(df['dis_13']!=0)&(df['dis_23']!=0)] 

 

Defining rules to check if a pair of circles intersect each other or are isolated. 

 

    #check1_1,check1_2 

    def my_fun(x):   

         

        if x['dis_12']>(x['distance_1']+x['distance_2']): 

            x['check1_1']=1 

        else: 

            x['check1_1']=0 

        return x 
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    df=df.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if x['dis_12']<abs(x['distance_1']-x['distance_2']): 

            x['check1_2']=1 

        else: 

            x['check1_2']=0 

        return x 

    df=df.apply(lambda x:my_fun(x), axis=1) 

 

 

    #check2_1,check2_2 

    def my_fun(x):   

         

        if x['dis_23']>(x['distance_2']+x['distance_3']): 

            x['check2_1']=1 

        else: 

            x['check2_1']=0 

        return x 

    df=df.apply(lambda x:my_fun(x), axis=1) 
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    def my_fun(x):   

         

        if x['dis_23']<abs(x['distance_2']-x['distance_3']): 

            x['check2_2']=1 

        else: 

            x['check2_2']=0 

        return x 

    df=df.apply(lambda x:my_fun(x), axis=1) 

 

 

    #check3_1,check3_2 

    def my_fun(x):   

         

        if x['dis_13']>(x['distance_1']+x['distance_3']): 

            x['check3_1']=1 

        else: 

            x['check3_1']=0 

        return x 

    df=df.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   
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        if x['dis_13']<abs(x['distance_1']-x['distance_3']): 

            x['check3_2']=1 

        else: 

            x['check3_2']=0 

        return x 

    df=df.apply(lambda x:my_fun(x), axis=1) 

 

Categorizing the placements of the circles with respect to each other 

 

Type1 ( one circle is isolated and the other two intersect each other) 

 

    # In type1, we have 3 different sub-types based on which circle is isolated. 

 

    type1_1=df[(df['check1_1']==0)&(df['check1_2']==0)& 

    (df['check2_1']==1)&(df['check2_2']==0)& 

    (df['check3_1']==1)&(df['check3_2']==0)] 

 

    type1_2=df[(df['check1_1']==1)&(df['check1_2']==0)& 

    (df['check2_1']==0)&(df['check2_2']==0)& 

    (df['check3_1']==1)&(df['check3_2']==0)] 

 

    type1_3=df[(df['check1_1']==1)&(df['check1_2']==0)& 
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    (df['check2_1']==1)&(df['check2_2']==0)& 

    (df['check3_1']==0)&(df['check3_2']==0)] 

 

Triangulation Algorithm for Type1 

 

type1_1 

 

    #### Finding the segment a named 'intersections_a' 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['intersections_a']=((x['distance_1']**2)-(x['distance_2']**2)+(x['dis_12']**2))/(2*x['dis_12']) 

        else: 

            x['intersections_a']=((x['distance_2']**2)-(x['distance_1']**2)+(x['dis_12']**2))/(2*x['dis_12']) 

        return x 

    type1_1=type1_1.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the segment h named 'intersections_h' 

 

    def my_fun(x):   
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        if  x['distance_1']>x['distance_2']: 

            x['intersections_h']=np.sqrt((x['distance_1']**2)-(x['intersections_a']**2)) 

        else: 

            x['intersections_h']=np.sqrt((x['distance_2']**2)-(x['intersections_a']**2)) 

        return x 

    type1_1=type1_1.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the point P3 (in vector form of X and Y) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['P3_X']=x['X1']+(x['intersections_a']/x['dis_12'])*(x['X2']-x['X1']) 

        else: 

            x['P3_X']=x['X2']+(x['intersections_a']/x['dis_12'])*(x['X1']-x['X2']) 

        return x 

    type1_1=type1_1.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['P3_Y']=x['Y1']+((x['intersections_a']/x['dis_12'])*(x['Y2']-x['Y1'])) 
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        else: 

            x['P3_Y']=x['Y2']+((x['intersections_a']/x['dis_12'])*(x['Y1']-x['Y2'])) 

        return x 

    type1_1=type1_1.apply(lambda x:my_fun(x), axis=1) 

 

    #### Getting the pair of points 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_12'])*(x['Y2']-x['Y1'])) 

        else: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_12'])*(x['Y1']-x['Y2'])) 

        return x 

    type1_1=type1_1.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_12'])*(x['X2']-x['X1'])) 

        else: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_12'])*(x['X1']-x['X2'])) 
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        return x 

    type1_1=type1_1.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_12'])*(x['Y2']-x['Y1'])) 

        else: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_12'])*(x['Y1']-x['Y2'])) 

        return x 

    type1_1=type1_1.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_12'])*(x['X2']-x['X1'])) 

        else: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_12'])*(x['X1']-x['X2'])) 

        return x 

    type1_1=type1_1.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the distance of the intersection points from the center of the isolated circle 
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    def my_fun(x):   

         

        x['intersection1_distance']=np.sqrt(((x['X3']-x['X4_1'])**2)+((x['Y3']-x['Y4_1'])**2)) 

        x['intersection2_distance']=np.sqrt(((x['X3']-x['X4_2'])**2)+((x['Y3']-x['Y4_2'])**2))     

        return x 

    type1_1=type1_1.apply(lambda x:my_fun(x), axis=1) 

 

    #### Determining the nearest intersection point to the isolated circle 

 

    #Just in case, if there is no record in this type, so we need manually create columns of 'location_X' 

    # and 'location_Y' in order for the model not to break. 

 

    type1_1['location_X']=0 

    type1_1['location_Y']=0 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_X']=x['X4_2'] 

        else: 

            x['location_X']=x['X4_1'] 
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        return x 

    type1_1=type1_1.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_Y']=x['Y4_2'] 

        else: 

            x['location_Y']=x['Y4_1'] 

        return x 

    type1_1=type1_1.apply(lambda x:my_fun(x), axis=1) 

 

    type1_1=type1_1[['timestamp', 'Puck', 'X1', 'Y1', 'distance_1','distance_2', 'distance_3','location_X', 'location_Y']] 

 

type1_2 

 

    #### Finding the segment a named 'intersections_a' 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['intersections_a']=((x['distance_2']**2)-(x['distance_3']**2)+(x['dis_23']**2))/(2*x['dis_23']) 
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        else: 

            x['intersections_a']=((x['distance_3']**2)-(x['distance_2']**2)+(x['dis_23']**2))/(2*x['dis_23']) 

        return x 

    type1_2=type1_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the segment h named 'intersections_h' 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['intersections_h']=np.sqrt((x['distance_2']**2)-(x['intersections_a']**2)) 

        else: 

            x['intersections_h']=np.sqrt((x['distance_3']**2)-(x['intersections_a']**2)) 

        return x 

    type1_2=type1_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the point P3 (in vector form of X and Y) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['P3_X']=x['X2']+(x['intersections_a']/x['dis_23'])*(x['X3']-x['X2']) 
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        else: 

            x['P3_X']=x['X3']+(x['intersections_a']/x['dis_23'])*(x['X2']-x['X3']) 

        return x 

    type1_2=type1_2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['P3_Y']=x['Y2']+((x['intersections_a']/x['dis_23'])*(x['Y3']-x['Y2'])) 

        else: 

            x['P3_Y']=x['Y3']+((x['intersections_a']/x['dis_23'])*(x['Y2']-x['Y3'])) 

        return x 

    type1_2=type1_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Getting the pair of points 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_23'])*(x['Y3']-x['Y2'])) 

        else: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_23'])*(x['Y2']-x['Y3'])) 
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        return x 

    type1_2=type1_2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_23'])*(x['X3']-x['X2'])) 

        else: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_23'])*(x['X2']-x['X3'])) 

        return x 

    type1_2=type1_2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_23'])*(x['Y3']-x['Y2'])) 

        else: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_23'])*(x['Y2']-x['Y3'])) 

        return x 

    type1_2=type1_2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   
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        if  x['distance_2']>x['distance_3']: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_23'])*(x['X3']-x['X2'])) 

        else: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_23'])*(x['X2']-x['X3'])) 

        return x 

    type1_2=type1_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the distance of the intersection points from the center of the isolated circle 

 

    def my_fun(x):   

         

        x['intersection1_distance']=np.sqrt(((x['X1']-x['X4_1'])**2)+((x['Y1']-x['Y4_1'])**2)) 

        x['intersection2_distance']=np.sqrt(((x['X1']-x['X4_2'])**2)+((x['Y1']-x['Y4_2'])**2))     

        return x 

    type1_2=type1_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Determining the nearest intersection point to the isolated circle 

 

    #Just in case, if there is no record in this type, so we need manually create columns of 'location_X' 

    # and 'location_Y' in order for the model not to break. 
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    type1_2['location_X']=0 

    type1_2['location_Y']=0 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_X']=x['X4_2'] 

        else: 

            x['location_X']=x['X4_1'] 

        return x 

    type1_2=type1_2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_Y']=x['Y4_2'] 

        else: 

            x['location_Y']=x['Y4_1'] 

        return x 

    type1_2=type1_2.apply(lambda x:my_fun(x), axis=1) 

 

    type1_2=type1_2[['timestamp', 'Puck', 'X1', 'Y1', 'distance_1','distance_2', 'distance_3','location_X', 'location_Y']] 
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type1_3 

 

    #### Finding the segment a named 'intersections_a' 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['intersections_a']=((x['distance_1']**2)-(x['distance_3']**2)+(x['dis_13']**2))/(2*x['dis_13']) 

        else: 

            x['intersections_a']=((x['distance_3']**2)-(x['distance_1']**2)+(x['dis_13']**2))/(2*x['dis_13']) 

        return x 

    type1_3=type1_3.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the segment h named 'intersections_h' 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['intersections_h']=np.sqrt((x['distance_1']**2)-(x['intersections_a']**2)) 

        else: 

            x['intersections_h']=np.sqrt((x['distance_3']**2)-(x['intersections_a']**2)) 
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        return x 

    type1_3=type1_3.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the point P3 (in vector form of X and Y) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['P3_X']=x['X1']+(x['intersections_a']/x['dis_13'])*(x['X3']-x['X1']) 

        else: 

            x['P3_X']=x['X3']+(x['intersections_a']/x['dis_13'])*(x['X1']-x['X3']) 

        return x 

    type1_3=type1_3.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['P3_Y']=x['Y1']+((x['intersections_a']/x['dis_13'])*(x['Y3']-x['Y1'])) 

        else: 

            x['P3_Y']=x['Y3']+((x['intersections_a']/x['dis_13'])*(x['Y1']-x['Y3'])) 

        return x 

    type1_3=type1_3.apply(lambda x:my_fun(x), axis=1) 
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    #### Getting the pair of points 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_13'])*(x['Y3']-x['Y1'])) 

        else: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_13'])*(x['Y1']-x['Y3'])) 

        return x 

    type1_3=type1_3.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_13'])*(x['X3']-x['X1'])) 

        else: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_13'])*(x['X1']-x['X3'])) 

        return x 

    type1_3=type1_3.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   
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        if  x['distance_1']>x['distance_3']: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_13'])*(x['Y3']-x['Y1'])) 

        else: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_13'])*(x['Y1']-x['Y3'])) 

        return x 

    type1_3=type1_3.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_13'])*(x['X3']-x['X1'])) 

        else: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_13'])*(x['X1']-x['X3'])) 

        return x 

    type1_3=type1_3.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the distance of the intersection points from the center of the isolated circle 

 

    def my_fun(x):   

         

        x['intersection1_distance']=np.sqrt(((x['X2']-x['X4_1'])**2)+((x['Y2']-x['Y4_1'])**2)) 
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        x['intersection2_distance']=np.sqrt(((x['X2']-x['X4_2'])**2)+((x['Y2']-x['Y4_2'])**2))     

        return x 

    type1_3=type1_3.apply(lambda x:my_fun(x), axis=1) 

 

    #### Determining the nearest intersection point to the isolated circle 

 

    #Just in case, if there is no record in this type, so we need manually create columns of 'location_X' 

    # and 'location_Y' in order for the model not to break. 

 

    type1_3['location_X']=0 

    type1_3['location_Y']=0 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_X']=x['X4_2'] 

        else: 

            x['location_X']=x['X4_1'] 

        return x 

    type1_3=type1_3.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   
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        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_Y']=x['Y4_2'] 

        else: 

            x['location_Y']=x['Y4_1'] 

        return x 

    type1_3=type1_3.apply(lambda x:my_fun(x), axis=1) 

 

    type1_3=type1_3[['timestamp', 'Puck', 'X1', 'Y1', 'distance_1','distance_2', 'distance_3','location_X', 'location_Y']] 

 

Type2 (all the circles intersect each other) 

 

    # In type2, the three circles intersect each other 

 

    type2=df[(df['check1_1']==0)&(df['check1_2']==0)& 

    (df['check2_1']==0)&(df['check2_2']==0)& 

    (df['check3_1']==0)&(df['check3_2']==0)] 

 

    #### Finding intersections of circles of 1 and 2 

 

    ######## Finding the segment a named 'intersections_a' 
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    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['intersections_a']=((x['distance_1']**2)-(x['distance_2']**2)+(x['dis_12']**2))/(2*x['dis_12']) 

        else: 

            x['intersections_a']=((x['distance_2']**2)-(x['distance_1']**2)+(x['dis_12']**2))/(2*x['dis_12']) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the segment h named 'intersections_h' 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['intersections_h']=np.sqrt((x['distance_1']**2)-(x['intersections_a']**2)) 

        else: 

            x['intersections_h']=np.sqrt((x['distance_2']**2)-(x['intersections_a']**2)) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the point P3 (in vector form of X and Y) 

 



 

132 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['P3_X']=x['X1']+(x['intersections_a']/x['dis_12'])*(x['X2']-x['X1']) 

        else: 

            x['P3_X']=x['X2']+(x['intersections_a']/x['dis_12'])*(x['X1']-x['X2']) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['P3_Y']=x['Y1']+((x['intersections_a']/x['dis_12'])*(x['Y2']-x['Y1'])) 

        else: 

            x['P3_Y']=x['Y2']+((x['intersections_a']/x['dis_12'])*(x['Y1']-x['Y2'])) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Getting the pair of points 

 

    def my_fun(x):   
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        if  x['distance_1']>x['distance_2']: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_12'])*(x['Y2']-x['Y1'])) 

        else: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_12'])*(x['Y1']-x['Y2'])) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_12'])*(x['X2']-x['X1'])) 

        else: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_12'])*(x['X1']-x['X2'])) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_12'])*(x['Y2']-x['Y1'])) 

        else: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_12'])*(x['Y1']-x['Y2'])) 
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        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_12'])*(x['X2']-x['X1'])) 

        else: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_12'])*(x['X1']-x['X2'])) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the distance of the intersection points from the center of the isolated circle 

 

    def my_fun(x):   

         

        x['intersection1_distance']=np.sqrt(((x['X3']-x['X4_1'])**2)+((x['Y3']-x['Y4_1'])**2)) 

        x['intersection2_distance']=np.sqrt(((x['X3']-x['X4_2'])**2)+((x['Y3']-x['Y4_2'])**2))     

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Determining the nearest intersection point to the isolated circle 
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    #Just in case, if there is no record in this type, so we need manually create columns of 'location_X' 

    # and 'location_Y' in order for the model not to break. 

 

    type2['location_X']=0 

    type2['location_Y']=0 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P1_X']=x['X4_2'] 

        else: 

            x['location_P1_X']=x['X4_1'] 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P1_Y']=x['Y4_2'] 

        else: 

            x['location_P1_Y']=x['Y4_1'] 
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        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding intersections of circles of 2 and 3 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['intersections_a']=((x['distance_2']**2)-(x['distance_3']**2)+(x['dis_23']**2))/(2*x['dis_23']) 

        else: 

            x['intersections_a']=((x['distance_3']**2)-(x['distance_2']**2)+(x['dis_23']**2))/(2*x['dis_23']) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the segment h named 'intersections_h' 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['intersections_h']=np.sqrt((x['distance_2']**2)-(x['intersections_a']**2)) 

        else: 

            x['intersections_h']=np.sqrt((x['distance_3']**2)-(x['intersections_a']**2)) 
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        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the point P3 (in vector form of X and Y) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['P3_X']=x['X2']+(x['intersections_a']/x['dis_23'])*(x['X3']-x['X2']) 

        else: 

            x['P3_X']=x['X3']+(x['intersections_a']/x['dis_23'])*(x['X2']-x['X3']) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['P3_Y']=x['Y2']+((x['intersections_a']/x['dis_23'])*(x['Y3']-x['Y2'])) 

        else: 

            x['P3_Y']=x['Y3']+((x['intersections_a']/x['dis_23'])*(x['Y2']-x['Y3'])) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 
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    #### Getting the pair of points 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_23'])*(x['Y3']-x['Y2'])) 

        else: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_23'])*(x['Y2']-x['Y3'])) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_23'])*(x['X3']-x['X2'])) 

        else: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_23'])*(x['X2']-x['X3'])) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   
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        if  x['distance_2']>x['distance_3']: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_23'])*(x['Y3']-x['Y2'])) 

        else: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_23'])*(x['Y2']-x['Y3'])) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_23'])*(x['X3']-x['X2'])) 

        else: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_23'])*(x['X2']-x['X3'])) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the distance of the intersection points from the center of the isolated circle 

 

    def my_fun(x):   

         

        x['intersection1_distance']=np.sqrt(((x['X1']-x['X4_1'])**2)+((x['Y1']-x['Y4_1'])**2)) 
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        x['intersection2_distance']=np.sqrt(((x['X1']-x['X4_2'])**2)+((x['Y1']-x['Y4_2'])**2))     

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Determining the nearest intersection point to the isolated circle 

 

    #Just in case, if there is no record in this type, so we need manually create columns of 'location_X' 

    # and 'location_Y' in order for the model not to break. 

 

    type2['location_X']=0 

    type2['location_Y']=0 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P2_X']=x['X4_2'] 

        else: 

            x['location_P2_X']=x['X4_1'] 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   
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        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P2_Y']=x['Y4_2'] 

        else: 

            x['location_P2_Y']=x['Y4_1'] 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding intersections of circles of 1 and 3 

 

    #### Finding the segment a named 'intersections_a' 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['intersections_a']=((x['distance_1']**2)-(x['distance_3']**2)+(x['dis_13']**2))/(2*x['dis_13']) 

        else: 

            x['intersections_a']=((x['distance_3']**2)-(x['distance_1']**2)+(x['dis_13']**2))/(2*x['dis_13']) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the segment h named 'intersections_h' 
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    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['intersections_h']=np.sqrt((x['distance_1']**2)-(x['intersections_a']**2)) 

        else: 

            x['intersections_h']=np.sqrt((x['distance_3']**2)-(x['intersections_a']**2)) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the point P3 (in vector form of X and Y) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['P3_X']=x['X1']+(x['intersections_a']/x['dis_13'])*(x['X3']-x['X1']) 

        else: 

            x['P3_X']=x['X3']+(x['intersections_a']/x['dis_13'])*(x['X1']-x['X3']) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   
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        if  x['distance_1']>x['distance_3']: 

            x['P3_Y']=x['Y1']+((x['intersections_a']/x['dis_13'])*(x['Y3']-x['Y1'])) 

        else: 

            x['P3_Y']=x['Y3']+((x['intersections_a']/x['dis_13'])*(x['Y1']-x['Y3'])) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Getting the pair of points 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_13'])*(x['Y3']-x['Y1'])) 

        else: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_13'])*(x['Y1']-x['Y3'])) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 
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            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_13'])*(x['X3']-x['X1'])) 

        else: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_13'])*(x['X1']-x['X3'])) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_13'])*(x['Y3']-x['Y1'])) 

        else: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_13'])*(x['Y1']-x['Y3'])) 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_13'])*(x['X3']-x['X1'])) 

        else: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_13'])*(x['X1']-x['X3'])) 

        return x 
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    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the distance of the intersection points from the center of the isolated circle 

 

    def my_fun(x):   

         

        x['intersection1_distance']=np.sqrt(((x['X2']-x['X4_1'])**2)+((x['Y2']-x['Y4_1'])**2)) 

        x['intersection2_distance']=np.sqrt(((x['X2']-x['X4_2'])**2)+((x['Y2']-x['Y4_2'])**2))     

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Determining the nearest intersection point to the isolated circle 

 

    #Just in case, if there is no record in this type, so we need manually create columns of 'location_X' 

    # and 'location_Y' in order for the model not to break. 

 

    type2['location_X']=0 

    type2['location_Y']=0 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 
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            x['location_P3_X']=x['X4_2'] 

        else: 

            x['location_P3_X']=x['X4_1'] 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P3_Y']=x['Y4_2'] 

        else: 

            x['location_P3_Y']=x['Y4_1'] 

        return x 

    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Taking an average of the intersection points 

 

    def my_fun(x):   

         

        x['location_X']=(x['location_P1_X']+x['location_P2_X']+x['location_P3_X'])/3 

        x['location_Y']=(x['location_P1_Y']+x['location_P2_Y']+x['location_P3_Y'])/3   

        return x 
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    type2=type2.apply(lambda x:my_fun(x), axis=1) 

 

    type2=type2[['timestamp', 'Puck', 'X1', 'Y1', 'distance_1','distance_2', 'distance_3','location_X', 'location_Y']] 

 

Type3 (two pairs of circles inrtersect with each other) 

 

    # In type3, we have 3 different sub-type based on which circle intersects with the other circles. 

 

    type3_1=df[(df['check1_1']==0)&(df['check1_2']==0)& 

    (df['check2_1']==1)&(df['check2_2']==0)& 

    (df['check3_1']==0)&(df['check3_2']==0)] 

 

    type3_2=df[(df['check1_1']==0)&(df['check1_2']==0)& 

    (df['check2_1']==0)&(df['check2_2']==0)& 

    (df['check3_1']==1)&(df['check3_2']==0)] 

 

    type3_3=df[(df['check1_1']==1)&(df['check1_2']==0)& 

    (df['check2_1']==0)&(df['check2_2']==0)& 

    (df['check3_1']==0)&(df['check3_2']==0)] 

 

    ### type3_1 
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    #### Finding intersections of the first pair 

 

    ######## Finding the segment a named 'intersections_a' 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['intersections_a']=((x['distance_1']**2)-(x['distance_2']**2)+(x['dis_12']**2))/(2*x['dis_12']) 

        else: 

            x['intersections_a']=((x['distance_2']**2)-(x['distance_1']**2)+(x['dis_12']**2))/(2*x['dis_12']) 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the segment h named 'intersections_h' 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['intersections_h']=np.sqrt((x['distance_1']**2)-(x['intersections_a']**2)) 

        else: 

            x['intersections_h']=np.sqrt((x['distance_2']**2)-(x['intersections_a']**2)) 

        return x 
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    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the point P3 (in vector form of X and Y) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['P3_X']=x['X1']+(x['intersections_a']/x['dis_12'])*(x['X2']-x['X1']) 

        else: 

            x['P3_X']=x['X2']+(x['intersections_a']/x['dis_12'])*(x['X1']-x['X2']) 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['P3_Y']=x['Y1']+((x['intersections_a']/x['dis_12'])*(x['Y2']-x['Y1'])) 

        else: 

            x['P3_Y']=x['Y2']+((x['intersections_a']/x['dis_12'])*(x['Y1']-x['Y2'])) 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 
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    #### Getting the pair of points 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_12'])*(x['Y2']-x['Y1'])) 

        else: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_12'])*(x['Y1']-x['Y2'])) 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_12'])*(x['X2']-x['X1'])) 

        else: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_12'])*(x['X1']-x['X2'])) 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   
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        if  x['distance_1']>x['distance_2']: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_12'])*(x['Y2']-x['Y1'])) 

        else: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_12'])*(x['Y1']-x['Y2'])) 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_12'])*(x['X2']-x['X1'])) 

        else: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_12'])*(x['X1']-x['X2'])) 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the distance of the intersection points from the center of the isolated circle 

 

    def my_fun(x):   

         

        x['intersection1_distance']=np.sqrt(((x['X3']-x['X4_1'])**2)+((x['Y3']-x['Y4_1'])**2)) 

        x['intersection2_distance']=np.sqrt(((x['X3']-x['X4_2'])**2)+((x['Y3']-x['Y4_2'])**2))     



 

152 

 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    #### Determining the nearest intersection point to the isolated circle 

 

    #Just in case, if there is no record in this type, so we need manually create columns of 'location_X' 

    # and 'location_Y' in order for the model not to break. 

 

    type3_1['location_X']=0 

    type3_1['location_Y']=0 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P1_X']=x['X4_2'] 

        else: 

            x['location_P1_X']=x['X4_1'] 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   
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        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P1_Y']=x['Y4_2'] 

        else: 

            x['location_P1_Y']=x['Y4_1'] 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding intersections of the second pair 

 

    #### Finding the segment a named 'intersections_a' 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['intersections_a']=((x['distance_1']**2)-(x['distance_3']**2)+(x['dis_13']**2))/(2*x['dis_13']) 

        else: 

            x['intersections_a']=((x['distance_3']**2)-(x['distance_1']**2)+(x['dis_13']**2))/(2*x['dis_13']) 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the segment h named 'intersections_h' 
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    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['intersections_h']=np.sqrt((x['distance_1']**2)-(x['intersections_a']**2)) 

        else: 

            x['intersections_h']=np.sqrt((x['distance_3']**2)-(x['intersections_a']**2)) 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the point P3 (in vector form of X and Y) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['P3_X']=x['X1']+(x['intersections_a']/x['dis_13'])*(x['X3']-x['X1']) 

        else: 

            x['P3_X']=x['X3']+(x['intersections_a']/x['dis_13'])*(x['X1']-x['X3']) 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   
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        if  x['distance_1']>x['distance_3']: 

            x['P3_Y']=x['Y1']+((x['intersections_a']/x['dis_13'])*(x['Y3']-x['Y1'])) 

        else: 

            x['P3_Y']=x['Y3']+((x['intersections_a']/x['dis_13'])*(x['Y1']-x['Y3'])) 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    #### Getting the pair of points 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_13'])*(x['Y3']-x['Y1'])) 

        else: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_13'])*(x['Y1']-x['Y3'])) 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_13'])*(x['X3']-x['X1'])) 
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        else: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_13'])*(x['X1']-x['X3'])) 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_13'])*(x['Y3']-x['Y1'])) 

        else: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_13'])*(x['Y1']-x['Y3'])) 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_13'])*(x['X3']-x['X1'])) 

        else: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_13'])*(x['X1']-x['X3'])) 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 
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    #### Finding the distance of the intersection points from the center of the isolated circle 

 

    def my_fun(x):   

         

        x['intersection1_distance']=np.sqrt(((x['X2']-x['X4_1'])**2)+((x['Y2']-x['Y4_1'])**2)) 

        x['intersection2_distance']=np.sqrt(((x['X2']-x['X4_2'])**2)+((x['Y2']-x['Y4_2'])**2))     

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    #### Determining the nearest intersection point to the isolated circle 

 

    #Just in case, if there is no record in this type, so we need manually create columns of 'location_X' 

    # and 'location_Y' in order for the model not to break. 

 

    type3_1['location_X']=0 

    type3_1['location_Y']=0 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P2_X']=x['X4_2'] 
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        else: 

            x['location_P2_X']=x['X4_1'] 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P2_Y']=x['Y4_2'] 

        else: 

            x['location_P2_Y']=x['Y4_1'] 

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 

 

    #### Taking an average of the intersection points 

 

    def my_fun(x):   

         

        x['location_X']=(x['location_P1_X']+x['location_P2_X'])/2 

        x['location_Y']=(x['location_P1_Y']+x['location_P2_Y'])/2   

        return x 

    type3_1=type3_1.apply(lambda x:my_fun(x), axis=1) 
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    type3_1=type3_1[['timestamp', 'Puck', 'X1', 'Y1', 'distance_1','distance_2', 'distance_3','location_X', 'location_Y']] 

 

type3_2 

 

    #### Finding intersections of the first pair 

 

    ######## Finding the segment a named 'intersections_a' 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['intersections_a']=((x['distance_1']**2)-(x['distance_2']**2)+(x['dis_12']**2))/(2*x['dis_12']) 

        else: 

            x['intersections_a']=((x['distance_2']**2)-(x['distance_1']**2)+(x['dis_12']**2))/(2*x['dis_12']) 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the segment h named 'intersections_h' 

 

    def my_fun(x):   
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        if  x['distance_1']>x['distance_2']: 

            x['intersections_h']=np.sqrt((x['distance_1']**2)-(x['intersections_a']**2)) 

        else: 

            x['intersections_h']=np.sqrt((x['distance_2']**2)-(x['intersections_a']**2)) 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the point P3 (in vector form of X and Y) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['P3_X']=x['X1']+(x['intersections_a']/x['dis_12'])*(x['X2']-x['X1']) 

        else: 

            x['P3_X']=x['X2']+(x['intersections_a']/x['dis_12'])*(x['X1']-x['X2']) 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['P3_Y']=x['Y1']+((x['intersections_a']/x['dis_12'])*(x['Y2']-x['Y1'])) 
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        else: 

            x['P3_Y']=x['Y2']+((x['intersections_a']/x['dis_12'])*(x['Y1']-x['Y2'])) 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Getting the pair of points 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_12'])*(x['Y2']-x['Y1'])) 

        else: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_12'])*(x['Y1']-x['Y2'])) 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_12'])*(x['X2']-x['X1'])) 

        else: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_12'])*(x['X1']-x['X2'])) 
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        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_12'])*(x['Y2']-x['Y1'])) 

        else: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_12'])*(x['Y1']-x['Y2'])) 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_2']: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_12'])*(x['X2']-x['X1'])) 

        else: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_12'])*(x['X1']-x['X2'])) 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the distance of the intersection points from the center of the isolated circle 
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    def my_fun(x):   

         

        x['intersection1_distance']=np.sqrt(((x['X3']-x['X4_1'])**2)+((x['Y3']-x['Y4_1'])**2)) 

        x['intersection2_distance']=np.sqrt(((x['X3']-x['X4_2'])**2)+((x['Y3']-x['Y4_2'])**2))     

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Determining the nearest intersection point to the isolated circle 

 

    #Just in case, if there is no record in this type, so we need manually create columns of 'location_X' 

    # and 'location_Y' in order for the model not to break. 

 

    type3_2['location_X']=0 

    type3_2['location_Y']=0 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P1_X']=x['X4_2'] 

        else: 

            x['location_P1_X']=x['X4_1'] 
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        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P1_Y']=x['Y4_2'] 

        else: 

            x['location_P1_Y']=x['Y4_1'] 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding intersections of the second pair 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['intersections_a']=((x['distance_2']**2)-(x['distance_3']**2)+(x['dis_23']**2))/(2*x['dis_23']) 

        else: 

            x['intersections_a']=((x['distance_3']**2)-(x['distance_2']**2)+(x['dis_23']**2))/(2*x['dis_23']) 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 
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    #### Finding the segment h named 'intersections_h' 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['intersections_h']=np.sqrt((x['distance_2']**2)-(x['intersections_a']**2)) 

        else: 

            x['intersections_h']=np.sqrt((x['distance_3']**2)-(x['intersections_a']**2)) 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the point P3 (in vector form of X and Y) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['P3_X']=x['X2']+(x['intersections_a']/x['dis_23'])*(x['X3']-x['X2']) 

        else: 

            x['P3_X']=x['X3']+(x['intersections_a']/x['dis_23'])*(x['X2']-x['X3']) 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 



 

166 

 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['P3_Y']=x['Y2']+((x['intersections_a']/x['dis_23'])*(x['Y3']-x['Y2'])) 

        else: 

            x['P3_Y']=x['Y3']+((x['intersections_a']/x['dis_23'])*(x['Y2']-x['Y3'])) 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Getting the pair of points 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_23'])*(x['Y3']-x['Y2'])) 

        else: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_23'])*(x['Y2']-x['Y3'])) 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   
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        if  x['distance_2']>x['distance_3']: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_23'])*(x['X3']-x['X2'])) 

        else: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_23'])*(x['X2']-x['X3'])) 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_23'])*(x['Y3']-x['Y2'])) 

        else: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_23'])*(x['Y2']-x['Y3'])) 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_23'])*(x['X3']-x['X2'])) 

        else: 
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            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_23'])*(x['X2']-x['X3'])) 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the distance of the intersection points from the center of the isolated circle 

 

    def my_fun(x):   

         

        x['intersection1_distance']=np.sqrt(((x['X1']-x['X4_1'])**2)+((x['Y1']-x['Y4_1'])**2)) 

        x['intersection2_distance']=np.sqrt(((x['X1']-x['X4_2'])**2)+((x['Y1']-x['Y4_2'])**2))     

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Determining the nearest intersection point to the isolated circle 

 

    #Just in case, if there is no record in this type, so we need manually create columns of 'location_X' 

    # and 'location_Y' in order for the model not to break. 

 

    type3_2['location_X']=0 

    type3_2['location_Y']=0 

 

    def my_fun(x):   
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        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P2_X']=x['X4_2'] 

        else: 

            x['location_P2_X']=x['X4_1'] 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P2_Y']=x['Y4_2'] 

        else: 

            x['location_P2_Y']=x['Y4_1'] 

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    #### Taking an average of the intersection points 

 

    def my_fun(x):   

         

        x['location_X']=(x['location_P1_X']+x['location_P2_X'])/2 
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        x['location_Y']=(x['location_P1_Y']+x['location_P2_Y'])/2   

        return x 

    type3_2=type3_2.apply(lambda x:my_fun(x), axis=1) 

 

    type3_2=type3_2[['timestamp', 'Puck', 'X1', 'Y1', 'distance_1','distance_2', 'distance_3','location_X', 'location_Y']] 

 

type3_3 

 

    #### Finding intersections of the first pair 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['intersections_a']=((x['distance_2']**2)-(x['distance_3']**2)+(x['dis_23']**2))/(2*x['dis_23']) 

        else: 

            x['intersections_a']=((x['distance_3']**2)-(x['distance_2']**2)+(x['dis_23']**2))/(2*x['dis_23']) 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the segment h named 'intersections_h' 

 

    def my_fun(x):   
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        if  x['distance_2']>x['distance_3']: 

            x['intersections_h']=np.sqrt((x['distance_2']**2)-(x['intersections_a']**2)) 

        else: 

            x['intersections_h']=np.sqrt((x['distance_3']**2)-(x['intersections_a']**2)) 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the point P3 (in vector form of X and Y) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['P3_X']=x['X2']+(x['intersections_a']/x['dis_23'])*(x['X3']-x['X2']) 

        else: 

            x['P3_X']=x['X3']+(x['intersections_a']/x['dis_23'])*(x['X2']-x['X3']) 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 
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            x['P3_Y']=x['Y2']+((x['intersections_a']/x['dis_23'])*(x['Y3']-x['Y2'])) 

        else: 

            x['P3_Y']=x['Y3']+((x['intersections_a']/x['dis_23'])*(x['Y2']-x['Y3'])) 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    #### Getting the pair of points 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_23'])*(x['Y3']-x['Y2'])) 

        else: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_23'])*(x['Y2']-x['Y3'])) 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_23'])*(x['X3']-x['X2'])) 

        else: 
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            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_23'])*(x['X2']-x['X3'])) 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_23'])*(x['Y3']-x['Y2'])) 

        else: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_23'])*(x['Y2']-x['Y3'])) 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_2']>x['distance_3']: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_23'])*(x['X3']-x['X2'])) 

        else: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_23'])*(x['X2']-x['X3'])) 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 
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    #### Finding the distance of the intersection points from the center of the isolated circle 

 

    def my_fun(x):   

         

        x['intersection1_distance']=np.sqrt(((x['X1']-x['X4_1'])**2)+((x['Y1']-x['Y4_1'])**2)) 

        x['intersection2_distance']=np.sqrt(((x['X1']-x['X4_2'])**2)+((x['Y1']-x['Y4_2'])**2))     

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    #### Determining the nearest intersection point to the isolated circle 

 

    #Just in case, if there is no record in this type, so we need manually create columns of 'location_X' 

    # and 'location_Y' in order for the model not to break. 

 

    type3_3['location_X']=0 

    type3_3['location_Y']=0 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P1_X']=x['X4_2'] 

        else: 
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            x['location_P1_X']=x['X4_1'] 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P1_Y']=x['Y4_2'] 

        else: 

            x['location_P1_Y']=x['Y4_1'] 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the segment a named 'intersections_a' 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['intersections_a']=((x['distance_1']**2)-(x['distance_3']**2)+(x['dis_13']**2))/(2*x['dis_13']) 

        else: 

            x['intersections_a']=((x['distance_3']**2)-(x['distance_1']**2)+(x['dis_13']**2))/(2*x['dis_13']) 

        return x 
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    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the segment h named 'intersections_h' 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['intersections_h']=np.sqrt((x['distance_1']**2)-(x['intersections_a']**2)) 

        else: 

            x['intersections_h']=np.sqrt((x['distance_3']**2)-(x['intersections_a']**2)) 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the point P3 (in vector form of X and Y) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['P3_X']=x['X1']+(x['intersections_a']/x['dis_13'])*(x['X3']-x['X1']) 

        else: 

            x['P3_X']=x['X3']+(x['intersections_a']/x['dis_13'])*(x['X1']-x['X3']) 

        return x 



 

177 

 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['P3_Y']=x['Y1']+((x['intersections_a']/x['dis_13'])*(x['Y3']-x['Y1'])) 

        else: 

            x['P3_Y']=x['Y3']+((x['intersections_a']/x['dis_13'])*(x['Y1']-x['Y3'])) 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    #### Getting the pair of points 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_13'])*(x['Y3']-x['Y1'])) 

        else: 

            x['X4_1']=x['P3_X']+((x['intersections_h']/x['dis_13'])*(x['Y1']-x['Y3'])) 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 



 

178 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_13'])*(x['X3']-x['X1'])) 

        else: 

            x['Y4_1']=x['P3_Y']-((x['intersections_h']/x['dis_13'])*(x['X1']-x['X3'])) 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_13'])*(x['Y3']-x['Y1'])) 

        else: 

            x['X4_2']=x['P3_X']-((x['intersections_h']/x['dis_13'])*(x['Y1']-x['Y3'])) 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['distance_1']>x['distance_3']: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_13'])*(x['X3']-x['X1'])) 
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        else: 

            x['Y4_2']=x['P3_Y']+((x['intersections_h']/x['dis_13'])*(x['X1']-x['X3'])) 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    #### Finding the distance of the intersection points from the center of the isolated circle 

 

    def my_fun(x):   

         

        x['intersection1_distance']=np.sqrt(((x['X2']-x['X4_1'])**2)+((x['Y2']-x['Y4_1'])**2)) 

        x['intersection2_distance']=np.sqrt(((x['X2']-x['X4_2'])**2)+((x['Y2']-x['Y4_2'])**2))     

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    #### Determining the nearest intersection point to the isolated circle 

 

    #Just in case, if there is no record in this type, so we need manually create columns of 'location_X' 

    # and 'location_Y' in order for the model not to break. 

 

    type3_3['location_X']=0 

    type3_3['location_Y']=0 
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    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P2_X']=x['X4_2'] 

        else: 

            x['location_P2_X']=x['X4_1'] 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    def my_fun(x):   

         

        if  x['intersection1_distance']>x['intersection2_distance']: 

            x['location_P2_Y']=x['Y4_2'] 

        else: 

            x['location_P2_Y']=x['Y4_1'] 

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    #### Taking an average of the intersection points 

    def my_fun(x):   

        

        x['location_X']=(x['location_P1_X']+x['location_P2_X'])/2 
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        x['location_Y']=(x['location_P1_Y']+x['location_P2_Y'])/2   

        return x 

    type3_3=type3_3.apply(lambda x:my_fun(x), axis=1) 

 

    type3_3=type3_3[['timestamp', 'Puck', 'X1', 'Y1', 'distance_1','distance_2', 'distance_3','location_X', 'location_Y']] 

 

Type4 (the circles don't intersect each other) 

 

    type4=df[(df['check1_1']==1)&(df['check1_2']==0)& 

    (df['check2_1']==1)&(df['check2_2']==0)& 

    (df['check3_1']==1)&(df['check3_2']==0)] 

 

    # Min-Max method: 

    def my_fun(x):   

         

        x['Xmin']=max((x['X1']-x['distance_1']),(x['X2']-x['distance_2']),(x['X3']-x['distance_3'])) 

        x['Xmax']=min((x['X1']+x['distance_1']),(x['X2']+x['distance_2']),(x['X3']+x['distance_3'])) 

        x['Ymin']=max((x['Y1']-x['distance_1']),(x['Y2']-x['distance_2']),(x['Y3']-x['distance_3'])) 

        x['Ymax']=min((x['Y1']+x['distance_1']),(x['Y2']+x['distance_2']),(x['Y3']+x['distance_3'])) 

        x['location_X']=(x['Xmin']+x['Xmax'])/2 

        x['location_Y']=(x['Ymin']+x['Ymax'])/2     

        return x 
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    type4=type4.apply(lambda x:my_fun(x), axis=1) 

    type4=type4[['timestamp', 'Puck', 'X1', 'Y1', 'distance_1','distance_2', 'distance_3','location_X', 'location_Y']] 

Concat all the estimated locations of the four categories 

   

all_locations=pd.concat([type1_1,type1_2,type1_3,type2,type3_1,type3_2,type3_3,type4],axis=0).sort_values('timestamp').reset_ind

ex(drop=True) 

Post-Processing the Estimated Locations 

Shifting the estimated locations toward to the strongest transmitter 

    # In rare cases, the estimated distance is zero. So, this can affects the divison lines bellow. Hence, we add 0.000001 to the distances.  

    def my_fun(x):   

         

        x['distance_1']=x['distance_1']+0.000001 

        x['distance_2']=x['distance_2']+0.000001 

        x['location_X']=((x['location_X']+x['X1']*(0.2*(x['distance_2'])/x['distance_1']))/(1+(0.2*(x['distance_2'])/x['distance_1']))) 

        x['location_Y']=((x['location_Y']+x['Y1']*(0.2*(x['distance_2'])/x['distance_1']))/(1+(0.2*(x['distance_2'])/x['distance_1']))) 

        return x 

    all_locations=all_locations.apply(lambda x:my_fun(x), axis=1) 

    all_locations=all_locations[['timestamp', 'Puck','location_X', 'location_Y']] 

Applying Kalman Filtering 

    dff=all_locations[['location_X','location_Y']] 

    measurements =np.asarray(dff) 

    initial_state_mean = [measurements[0, 0], 
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                          0, 

                          measurements[0, 1], 

                          0] 

    transition_matrix = [[1, 1, 0, 0], 

                         [0, 1, 0, 0], 

                         [0, 0, 1, 1], 

                         [0, 0, 0, 1]] 

    observation_matrix = [[1, 0, 0, 0], 

                          [0, 0, 1, 0]] 

 

    kf1 = KalmanFilter(transition_matrices = transition_matrix, 

                      observation_matrices = observation_matrix, 

                      initial_state_mean = initial_state_mean) 

 

    kf1 = kf1.em(measurements, n_iter=5) 

    (smoothed_state_means, smoothed_state_covariances) = kf1.smooth(measurements) 

    kf2 = KalmanFilter(transition_matrices = transition_matrix, 

                      observation_matrices = observation_matrix, 

                      initial_state_mean = initial_state_mean, 

                      observation_covariance = 5 *kf1.observation_covariance, 

                      em_vars=['transition_covariance', 'initial_state_covariance']) 

    kf2 = kf2.em(measurements, n_iter=5) 
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    (smoothed_state_means, smoothed_state_covariances)  = kf2.smooth(measurements) 

    plt.figure(1) 

    times = range(measurements.shape[0]) 

    plt.plot(times, measurements[:, 0], 'bo',         times, measurements[:, 1], 'ro', 

             times, smoothed_state_means[:, 0], 'b--', 

             times, smoothed_state_means[:, 2], 'r--',) 

    plt.show() 

    Smooth=pd.DataFrame(smoothed_state_means[:]).rename(columns={0:'location_X',2:'location_Y'})[['location_X','location_Y']] 
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Appendix 2) Head Orientation Detection Module’ Python Code 

 

    import numpy as np 

    import pandas as pd 

    import seaborn as sns 

    pd.set_option('max_colwidth', 20000000) 

    from sklearn import metrics 

    import math 

    import pygame 

 

    import pandas as pd 

    import numpy as np 

    import matplotlib.pyplot as plt 

    from sklearn.model_selection import train_test_split 

    from sklearn.preprocessing import StandardScaler, LabelEncoder 

    import pickle 

 

    pygame 2.0.1 (SDL 2.0.14, Python 3.8.5) 

    Hello from the pygame community. https://www.pygame.org/contribute.html 

 

    df1=pd.read_excel(r"G:\Localization\211015\211015.xlsx") 

    df2=pd.read_excel(r'G:\Localization\211016\211016.xlsx') 
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    df3=pd.read_excel(r'G:\Localization\211017\211017.xlsx') 

    df4=pd.read_excel(r'G:\Localization\211023\211023.xlsx') 

    df5=pd.read_excel(r'G:\Localization\211024\211024.xlsx') 

    df6=pd.read_excel(r'G:\Localization\211026\211026.xlsx') 

    df7=pd.read_excel(r'G:\Localization\211027\211027.xlsx') 

    df8=pd.read_excel(r'G:\Localization\211028\211028.xlsx') 

 

    df=pd.concat([df1,df2,df3,df4,df5,df6,df7,df8],axis=0) 

    df=df.sort_values(by=['timestamp']) 

    df=df.drop_duplicates(subset=['timestamp']) 

 

The Puck ID should be chosen. 

 

    df=df[df['instanceId']=='0000a7c0'] 

 

    alk=pd.DataFrame(df['timestamp'].apply(lambda x: x.replace('@',''))) 

    df['timestamp']=pd.DataFrame(pd.to_datetime(alk['timestamp'], infer_datetime_format=True)) 

    df['diff_seconds'] = pd.DataFrame(df['timestamp'].diff(1))['timestamp'].dt.total_seconds() 

 

    df=df[(df['diff_seconds']<=5)].sort_values('timestamp').reset_index().drop('index',axis=1) 

 

    a1=df['acceleration'].str.split(",", n = 2, expand = True).rename({0:'acc_x',1:'acc_y',2:'acc_z'},axis=1)[['acc_x','acc_y','acc_z']] 
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    acc=pd.concat([a1,df],axis=1) 

 

    acc['acc_x']=acc['acc_x'].str.replace("[", '').str.replace("'", '').str.replace("'", '').apply(lambda x: pd.to_numeric(x, errors = 

'coerce')).astype(float) 

    acc['acc_y']=acc['acc_y'].str.replace("'", '').str.replace("'", '').apply(lambda x: pd.to_numeric(x, errors = 'coerce')).astype(float) 

    acc['acc_z']=acc['acc_z'].str.replace("]", '').str.replace("'", '').apply(lambda x: pd.to_numeric(x, errors = 'coerce')).astype(float) 

 

    acc = acc[['timestamp','acc_x','acc_y','acc_z']] 

 

    """ 

    Three instances and their corresponding rssi values are defined.Also, a column for the Puck is added. 

    """ 

 

    instance_1=df['nearest'].str.slice(16,24,1) 

    instance_2=df['nearest'].str.slice(53,61,1) 

    instance_3=df['nearest'].str.slice(90,98,1) 

    rssi_1=df['nearest'].str.slice(33,36,1) 

    rssi_2=df['nearest'].str.slice(70,73,1) 

    rssi_3=df['nearest'].str.slice(107,110,1) 

    Puck=df['instanceId'] 

 

    Processed_dataset=pd.DataFrame(df['timestamp']) 
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    Processed_dataset['instance_1']=instance_1 

    Processed_dataset['instance_2']=instance_2 

    Processed_dataset['instance_3']=instance_3 

    Processed_dataset['rssi_1']=rssi_1 

    Processed_dataset['rssi_2']=rssi_2 

    Processed_dataset['rssi_3']=rssi_3 

    Processed_dataset['rssi_3']=rssi_3 

    Processed_dataset['Puck']=Puck 

 

 

    #Processed_dataset=Processed_dataset.set_index('timestamp') 

 

    Processed_dataset=Processed_dataset.reset_index(drop=True) 

 

    Processed_dataset=Processed_dataset[Processed_dataset!=''] 

 

    Processed_dataset.dropna(inplace=True) 

 

    Processed_dataset=Processed_dataset.reset_index(drop=True) 

 

    """ 

    In order for the rssi columns to be ML model readable, we need to remove string records from them. Beacause rarely the dataset 



 

189 

 

    coming from the Kibana has couple of string values. 

 

    The missing records should be removed. 

 

    Since by applying str.extract function, the negetaavie sign of rssi were removed, we should multiply them by -1. 

    """ 

 

    Processed_dataset['rssi_1']=pd.DataFrame(Processed_dataset['rssi_1'])['rssi_1'].str.extract(r'(\d+)', expand=False) 

    Processed_dataset['rssi_2']=pd.DataFrame(Processed_dataset['rssi_2'])['rssi_2'].str.extract(r'(\d+)', expand=False) 

    Processed_dataset['rssi_3']=pd.DataFrame(Processed_dataset['rssi_3'])['rssi_3'].str.extract(r'(\d+)', expand=False) 

 

    Processed_dataset.dropna(inplace=True) 

 

    Processed_dataset['rssi_1']=Processed_dataset['rssi_1'].astype(int) 

    Processed_dataset['rssi_2']=Processed_dataset['rssi_2'].astype(int) 

    Processed_dataset['rssi_3']=Processed_dataset['rssi_3'].astype(int) 

 

    Processed_dataset['rssi_1']=Processed_dataset['rssi_1']*-1 

    Processed_dataset['rssi_2']=Processed_dataset['rssi_2']*-1 

    Processed_dataset['rssi_3']=Processed_dataset['rssi_3']*-1 

 

    Processed_dataset["X1"]=Processed_dataset["instance_1"] 
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    Processed_dataset["X2"]=Processed_dataset["instance_2"] 

    Processed_dataset["X3"]=Processed_dataset["instance_3"] 

 

    Processed_dataset.rename(columns={"instance_1":"Y1"},inplace=True) 

    Processed_dataset.rename(columns={"instance_2":"Y2"},inplace=True) 

    Processed_dataset.rename(columns={"instance_3":"Y3"},inplace=True) 

 

    x_axis={'0000004d':0,'00000058':4,'00000060':8,'0000004e':8,'00000061':4,'00000059':0,'000000a9':0,'000000ae':4,'000000af':8} 

    y_axis={'0000004d':0,'00000058':4,'00000060':0,'0000004e':4,'00000061':4,'00000059':4,'000000a9':8,'000000ae':8,'000000af':8} 

 

    Processed_dataset["X1"]=pd.DataFrame(Processed_dataset["Y1"].replace(x_axis)) 

    Processed_dataset["X2"]=pd.DataFrame(Processed_dataset["Y2"].replace(x_axis)) 

    Processed_dataset["X3"]=pd.DataFrame(Processed_dataset["Y3"].replace(x_axis)) 

 

    Processed_dataset["Y1"]=pd.DataFrame(Processed_dataset["Y1"].replace(y_axis)) 

    Processed_dataset["Y2"]=pd.DataFrame(Processed_dataset["Y2"].replace(y_axis)) 

    Processed_dataset["Y3"]=pd.DataFrame(Processed_dataset["Y3"].replace(y_axis)) 

 

    df=Processed_dataset 

 

    # Converting string values of coordiantes of the transmitters to float 

    df[['Y1', 'Y2', 'Y3','X1', 'X2', 'X3']]=df[['Y1', 'Y2', 'Y3','X1', 'X2', 'X3']].apply(lambda x: pd.to_numeric(x, errors = 'coerce')).dropna() 
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    # reorder by column name 

    df2 = df.reindex(["timestamp","X1","Y1","X2", "Y2","X3","Y3","rssi_1","rssi_2","rssi_3","Puck"], axis=1) 

    df2=df2.sort_values(by=['timestamp']) 

 

Importing location dataset and applying Fuzzy matching 

 

    # Correcting the timestamp format 

    df1=pd.read_excel(r"G:\Localization\211015\all-location.xlsx") 

    df12=pd.read_excel(r"G:\Localization\211016\all-location.xlsx") 

    df13=pd.read_excel(r"G:\Localization\211017\all-location.xlsx") 

    df14=pd.read_excel(r"G:\Localization\211023\all-location.xlsx") 

    df15=pd.read_excel(r"G:\Localization\211024\all-location.xlsx") 

    df16=pd.read_excel(r"G:\Localization\211026\all-location.xlsx") 

    df17=pd.read_excel(r"G:\Localization\211027\all-location.xlsx") 

    df18=pd.read_excel(r"G:\Localization\211028\all-location.xlsx") 

 

    df1=pd.concat([df1,df12,df13,df14,df15,df16,df17,df18],axis=0) 

    df1=df1.sort_values(by=['timestamp']) 

    df1=df1.drop_duplicates(subset=['timestamp']) 

 

    # Correcting the timestamp format 
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    alk=pd.DataFrame(df1['timestamp'].apply(lambda x: x.replace('@',''))) 

    df1['timestamp']=pd.DataFrame(pd.to_datetime(alk['timestamp'], infer_datetime_format=True)) 

 

    df1['diff_seconds'] = pd.DataFrame(df1['timestamp'].diff(1))['timestamp'].dt.total_seconds() 

    df1=df1[(df1['diff_seconds']<=5)].sort_values('timestamp').reset_index().drop('index',axis=1) 

 

    #Fuzzy Matching 

    fuzzy_matched = pd.merge_asof(df1, df2, left_on='timestamp',right_on='timestamp', direction='nearest') 

 

Calculating the angle between the TARGET and First Transmitter 

 

    def angle_of_vector(x, y): 

        return pygame.math.Vector2(x, y).angle_to((1, 0)) 

 

    def angle_of_line(x): 

        return angle_of_vector(x['X1']-x['location_X'], x['Y1']-x['location_Y']) 

    fuzzy_matched['angle_1'] = fuzzy_matched.apply(lambda x:angle_of_line(x), axis=1) 

 

Correcting the angles 

 

    def angle_correction(x): 

        if x['angle_1'] == 0: 
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            return x 

        elif 0>x['angle_1']>=-180: 

            return -1 * x['angle_1'] 

        elif 0<x['angle_1']<180: 

            return 360 - x['angle_1'] 

    fuzzy_matched['angle_1'] = fuzzy_matched.apply(lambda x:angle_correction(x), axis=1) 

 

Calculating the angle between the TARGET and Second Transmitter 

 

    def angle_of_vector(x, y): 

        return pygame.math.Vector2(x, y).angle_to((1, 0)) 

 

    def angle_of_line(x): 

        return angle_of_vector(x['X2']-x['location_X'], x['Y2']-x['location_Y']) 

    fuzzy_matched['angle_2'] = fuzzy_matched.apply(lambda x:angle_of_line(x), axis=1) 

 

Correcting the angles 

 

    def angle_correction(x): 

        if x['angle_2'] == 0: 

            return x 

        elif 0>x['angle_2']>=-180: 
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            return -1 * x['angle_2'] 

        elif 0<x['angle_2']<180: 

            return 360 - x['angle_2'] 

    fuzzy_matched['angle_2'] = fuzzy_matched.apply(lambda x:angle_correction(x), axis=1) 

 

Calculating the angle between the TARGET and Third Transmitter 

 

    def angle_of_vector(x, y): 

        return pygame.math.Vector2(x, y).angle_to((1, 0)) 

 

    def angle_of_line(x): 

        return angle_of_vector(x['X3']-x['location_X'], x['Y3']-x['location_Y']) 

    fuzzy_matched['angle_3'] = fuzzy_matched.apply(lambda x:angle_of_line(x), axis=1) 

 

Correcting the angles 

 

    def angle_correction(x): 

        if x['angle_3'] == 0: 

            return x 

        elif 0>x['angle_3']>=-180: 

            return -1 * x['angle_3'] 

        elif 0<x['angle_3']<180: 



 

195 

 

            return 360 - x['angle_3'] 

    fuzzy_matched['angle_3'] = fuzzy_matched.apply(lambda x:angle_correction(x), axis=1) 

 

Performing feature engineering process 

 

    def boundries(x):   

             

        Xmin=min(x['X1'],x['X2'],x['X3']) 

        Xmax=max(x['X1'],x['X2'],x['X3']) 

        Ymin=min(x['Y1'],x['Y2'],x['Y3']) 

        Ymax=max(x['Y1'],x['Y2'],x['Y3']) 

         

        if (Xmin<=x['location_X']<=Xmax)&(Ymin<=x['location_Y']<=Ymax): 

            x['check']=1 

                  

        else: 

                  

           x['check']=0 

                  

        return x     

                  

    fuzzy_matched = fuzzy_matched.apply(lambda x:boundries(x), axis=1) 
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Pre-processing the Dataset 

 

    final = fuzzy_matched.drop(['diff_seconds','Puck'],axis=1) 

 

    def boundries(x):   

         

        x['dis1'] = np.sqrt(((x['location_X']-x['X1'])**2) + ((x['location_Y']-x['Y1'])**2)) 

        x['dis2'] = np.sqrt(((x['location_X']-x['X2'])**2) + ((x['location_Y']-x['Y2'])**2)) 

        x['dis3'] = np.sqrt(((x['location_X']-x['X3'])**2) + ((x['location_Y']-x['Y3'])**2)) 

        return x 

 

             

 

    final = final.apply(lambda x:boundries(x), axis=1) 

 

    def boundries(x):   

         

        x['dis1_1'] = np.sqrt(((x['X2']-x['X1'])**2) + ((x['Y2']-x['Y1'])**2)) 

        x['dis2_1'] = np.sqrt(((x['X3']-x['X2'])**2) + ((x['Y3']-x['Y2'])**2)) 

        x['dis3_1'] = np.sqrt(((x['X1']-x['X3'])**2) + ((x['Y1']-x['Y3'])**2)) 

        return x 
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    final = final.apply(lambda x:boundries(x), axis=1) 

 

    # Putting labels 

 

    # Creating Orientation attribute 

    final['or']=np.nan 

 

    # # # #Experiment1 

    final.loc[('2021-10-15 08:55:45'<=final['timestamp'])&(final['timestamp']<='2021-10-15 09:11:23'),'or']='right' 

    final.loc[('2021-10-15 08:37:20'<=final['timestamp'])&(final['timestamp']<='2021-10-15 08:55:05'),'or']='down_right' 

    final.loc[('2021-10-14 17:40:00'<=final['timestamp'])&(final['timestamp']<='2021-10-14 17:54:54'),'or']='down' 

    final.loc[('2021-10-14 17:14:25'<=final['timestamp'])&(final['timestamp']<='2021-10-14 17:31:22'),'or']='down_left' 

    final.loc[('2021-10-14 16:42:04'<=final['timestamp'])&(final['timestamp']<='2021-10-14 17:00:54'),'or']='left' 

    final.loc[('2021-10-14 16:13:20'<=final['timestamp'])&(final['timestamp']<='2021-10-14 16:31:28'),'or']='up_left' 

    final.loc[('2021-10-14 15:56:25'<=final['timestamp'])&(final['timestamp']<='2021-10-14 16:11:38'),'or']='up' 

    final.loc[('2021-10-15 18:16:30'<=final['timestamp'])&(final['timestamp']<='2021-10-15 18:33:40'),'or']='up_right' 

 

 

    # # # #Experiment2 
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    # final.loc[('2021-10-16 16:30:30'<=final['timestamp'])&(final['timestamp']<='2021-10-16 16:54:00'),'or']='right' 

    # final.loc[('2021-10-16 16:54:50'<=final['timestamp'])&(final['timestamp']<='2021-10-16 17:09:19'),'or']='down_right' 

    # final.loc[('2021-10-16 15:41:20'<=final['timestamp'])&(final['timestamp']<='2021-10-16 16:02:40'),'or']='down' 

    # final.loc[('2021-10-16 17:10:15'<=final['timestamp'])&(final['timestamp']<='2021-10-16 17:26:20'),'or']='down_left' 

    # final.loc[('2021-10-16 17:27:20'<=final['timestamp'])&(final['timestamp']<='2021-10-16 17:32:22'),'or']='down_left' 

    # final.loc[('2021-10-16 15:26:50'<=final['timestamp'])&(final['timestamp']<='2021-10-16 15:40:32'),'or']='left' 

    # final.loc[('2021-10-16 18:53:20'<=final['timestamp'])&(final['timestamp']<='2021-10-16 19:08:55'),'or']='up_left' 

    # final.loc[('2021-10-16 18:36:20'<=final['timestamp'])&(final['timestamp']<='2021-10-16 18:52:37'),'or']='up' 

    # final.loc[('2021-10-16 18:17:59'<=final['timestamp'])&(final['timestamp']<='2021-10-16 18:35:23'),'or']='up_right' 

 

 

    # # # #Experiment3 

    # final.loc[('2021-10-17 11:39:59'<=final['timestamp'])&(final['timestamp']<='2021-10-17 11:57:00'),'or']='right' 

    # final.loc[('2021-10-17 15:34:30'<=final['timestamp'])&(final['timestamp']<='2021-10-17 15:51:40'),'or']='down_right' 

    # final.loc[('2021-10-17 15:11:15'<=final['timestamp'])&(final['timestamp']<='2021-10-17 15:31:45'),'or']='down' 

    # final.loc[('2021-10-17 14:11:04'<=final['timestamp'])&(final['timestamp']<='2021-10-17 14:26:00'),'or']='down_left' 

    # final.loc[('2021-10-17 14:26:40'<=final['timestamp'])&(final['timestamp']<='2021-10-17 14:31:55'),'or']='down_left' 

    # final.loc[('2021-10-17 13:53:25'<=final['timestamp'])&(final['timestamp']<='2021-10-17 14:09:18'),'or']='left' 

    # final.loc[('2021-10-17 13:36:40'<=final['timestamp'])&(final['timestamp']<='2021-10-17 13:51:15'),'or']='up_left' 

    # final.loc[('2021-10-17 13:18:50'<=final['timestamp'])&(final['timestamp']<='2021-10-17 13:34:55'),'or']='up' 

    # final.loc[('2021-10-17 11:59:04'<=final['timestamp'])&(final['timestamp']<='2021-10-17 12:13:33'),'or']='up_right' 
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    #Experiment4 

    final.loc[('2021-10-23 09:40:20'<=final['timestamp'])&(final['timestamp']<='2021-10-23 09:56:25'),'or']='right' 

    final.loc[('2021-10-23 12:37:59'<=final['timestamp'])&(final['timestamp']<='2021-10-23 12:54:15'),'or']='down_right' 

    final.loc[('2021-10-23 12:17:35'<=final['timestamp'])&(final['timestamp']<='2021-10-23 12:36:40'),'or']='down' 

    final.loc[('2021-10-23 11:52:15'<=final['timestamp'])&(final['timestamp']<='2021-10-23 12:07:05'),'or']='down_left' 

    final.loc[('2021-10-23 11:32:55'<=final['timestamp'])&(final['timestamp']<='2021-10-23 11:51:25'),'or']='left' 

    final.loc[('2021-10-23 10:49:35'<=final['timestamp'])&(final['timestamp']<='2021-10-23 11:06:25'),'or']='up_left' 

    final.loc[('2021-10-23 10:19:20'<=final['timestamp'])&(final['timestamp']<='2021-10-23 10:35:45'),'or']='up' 

    final.loc[('2021-10-23 09:57:25'<=final['timestamp'])&(final['timestamp']<='2021-10-23 10:14:45'),'or']='up_right' 

 

    # #Experiment5 

    #final.loc[('2021-10-24 19:23:40'<=final['timestamp'])&(final['timestamp']<='2021-10-24 19:32:55'),'or']='right' 

    # final.loc[('2021-10-24 20:53:45'<=final['timestamp'])&(final['timestamp']<='2021-10-24 21:03:35'),'or']='down_right' 

    # final.loc[('2021-10-24 20:42:50'<=final['timestamp'])&(final['timestamp']<='2021-10-24 20:52:40'),'or']='down' 

    # final.loc[('2021-10-24 20:29:04'<=final['timestamp'])&(final['timestamp']<='2021-10-24 20:39:05'),'or']='down_left' 

    # final.loc[('2021-10-24 20:16:35'<=final['timestamp'])&(final['timestamp']<='2021-10-24 20:26:00'),'or']='left' 

    # final.loc[('2021-10-24 20:05:30'<=final['timestamp'])&(final['timestamp']<='2021-10-24 20:15:15'),'or']='up_left' 

    # final.loc[('2021-10-24 19:53:45'<=final['timestamp'])&(final['timestamp']<='2021-10-24 20:04:10'),'or']='up' 

    # final.loc[('2021-10-24 19:34:55'<=final['timestamp'])&(final['timestamp']<='2021-10-24 19:44:35'),'or']='up_right' 

 

    #Experiment6 

    final.loc[('2021-10-26 08:33:04'<=final['timestamp'])&(final['timestamp']<='2021-10-26 08:49:05'),'or']='right' 
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    final.loc[('2021-10-26 10:50:45'<=final['timestamp'])&(final['timestamp']<='2021-10-26 11:07:05'),'or']='down_right' 

    final.loc[('2021-10-26 10:33:25'<=final['timestamp'])&(final['timestamp']<='2021-10-26 10:48:45'),'or']='down' 

    final.loc[('2021-10-26 10:16:05'<=final['timestamp'])&(final['timestamp']<='2021-10-26 10:31:55'),'or']='down_left' 

    final.loc[('2021-10-26 09:59:30'<=final['timestamp'])&(final['timestamp']<='2021-10-26 10:15:10'),'or']='left' 

    final.loc[('2021-10-26 09:30:30'<=final['timestamp'])&(final['timestamp']<='2021-10-26 09:47:10'),'or']='up_left' 

    final.loc[('2021-10-26 09:08:03'<=final['timestamp'])&(final['timestamp']<='2021-10-26 09:23:25'),'or']='up' 

    final.loc[('2021-10-26 08:50:20'<=final['timestamp'])&(final['timestamp']<='2021-10-26 09:07:05'),'or']='up_right' 

 

    final.loc[('2021-10-27 18:45:45'<=final['timestamp'])&(final['timestamp']<='2021-10-27 18:56:00'),'or']='right' 

    final.loc[('2021-10-27 20:23:10'<=final['timestamp'])&(final['timestamp']<='2021-10-27 20:33:10'),'or']='down_right' 

    final.loc[('2021-10-27 20:10:45'<=final['timestamp'])&(final['timestamp']<='2021-10-27 20:22:25'),'or']='down' 

    final.loc[('2021-10-27 19:59:20'<=final['timestamp'])&(final['timestamp']<='2021-10-27 20:09:33'),'or']='down_left' 

    final.loc[('2021-10-27 19:48:25'<=final['timestamp'])&(final['timestamp']<='2021-10-27 19:58:33'),'or']='left' 

    final.loc[('2021-10-27 19:20:45'<=final['timestamp'])&(final['timestamp']<='2021-10-27 19:31:25'),'or']='up_left' 

    final.loc[('2021-10-27 19:09:35'<=final['timestamp'])&(final['timestamp']<='2021-10-27 19:19:35'),'or']='up' 

    final.loc[('2021-10-27 18:56:50'<=final['timestamp'])&(final['timestamp']<='2021-10-27 19:06:55'),'or']='up_right' 

 

    final.loc[('2021-10-28 10:22:50'<=final['timestamp'])&(final['timestamp']<='2021-10-28 10:28:35'),'or']='right' 

    final.loc[('2021-10-28 11:11:05'<=final['timestamp'])&(final['timestamp']<='2021-10-28 11:17:05'),'or']='down_right' 

    final.loc[('2021-10-28 11:04:05'<=final['timestamp'])&(final['timestamp']<='2021-10-28 11:10:05'),'or']='down' 

    final.loc[('2021-10-28 10:56:25'<=final['timestamp'])&(final['timestamp']<='2021-10-28 11:03:15'),'or']='down_left' 

    final.loc[('2021-10-28 10:49:50'<=final['timestamp'])&(final['timestamp']<='2021-10-28 10:55:05'),'or']='left' 
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    final.loc[('2021-10-28 10:43:05'<=final['timestamp'])&(final['timestamp']<='2021-10-28 10:48:55'),'or']='up_left' 

    final.loc[('2021-10-28 10:36:15'<=final['timestamp'])&(final['timestamp']<='2021-10-28 10:42:15'),'or']='up' 

    final.loc[('2021-10-28 10:29:30'<=final['timestamp'])&(final['timestamp']<='2021-10-28 10:35:25'),'or']='up_right' 

 

    final = final.dropna() 

    from sklearn.utils import shuffle 

    final = shuffle(final) 

 

    left = final[final['or']=='left'].head(1917).copy() 

    right = final[final['or']=='right'].head(1917).copy() 

    up_left = final[final['or']=='up_left'].head(1917).copy() 

    up_right = final[final['or']=='up_right'].head(1917).copy() 

    down_left = final[final['or']=='down_left'].head(1917).copy() 

    down = final[final['or']=='down'].head(1917).copy() 

    up = final[final['or']=='up'].head(1917).copy() 

    down_right = final[final['or']=='down_right'].head(1917).copy() 

 

    final_dataset = pd.DataFrame() 

    final_dataset = final_dataset.append([left, right, up_left,up_right,down_left,down,up,down_right]) 

 

 

    #final_dataset = final_dataset[['rssi_1', 'rssi_2', 'rssi_3', 'angle_1', 'angle_2','angle_3','or']] 
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    final_dataset = final_dataset.rename({'or':'label'},axis=1) 

 

    final_dataset=final_dataset.dropna().sort_values('timestamp') 

 

    #final_dataset = pd.merge(final_dataset, acc, on=['timestamp']) 

    final_dataset = pd.merge_asof(final_dataset, acc, left_on='timestamp',right_on='timestamp', direction='nearest') 

 

    #### Encoding the lables 

 

    from sklearn.preprocessing import LabelEncoder 

 

    label = LabelEncoder() 

    final_dataset['label'] = label.fit_transform(final_dataset['label']) 

    final_dataset 

 

    label.classes_ 

 

    array(['down', 'down_left', 'down_right', 'left', 'right', 'up', 

           'up_left', 'up_right'], dtype=object) 

 

Normalizing the training set 

 



 

203 

 

 

    from sklearn.preprocessing import MinMaxScaler 

    ### Standardized data  

 

    X = final_dataset.drop(['timestamp','label','acc_x','acc_y','acc_z','location_X', 'location_Y', 'X1', 'Y1', 'X2', 'Y2', 'X3', 'Y3',],axis=1) 

    y = final_dataset['label'] 

 

    scaler = MinMaxScaler() 

    X[['angle_1','angle_2','angle_3']] = scaler.fit_transform(X[['angle_1','angle_2','angle_3']]) 

 

    scaler = StandardScaler() 

    X[['rssi_1', 'rssi_2', 'rssi_3','dis1','dis2','dis3','dis1_1','dis2_1','dis3_1']] = scaler.fit_transform(X[['rssi_1', 'rssi_2', 

'rssi_3','dis1','dis2','dis3','dis1_1','dis2_1','dis3_1']]) 

 

    # scaled_X = pd.DataFrame(data = X, columns = ['rssi_1', 'rssi_2', 'angle_1', 'angle_2']) 

    # scaled_X['label'] = y.values 

 

    # scaled_X 

 

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2) 

 

Trianing the model 
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    ### Creating the Model 

 

    import tensorflow as tf 

    from tensorflow.keras.models import Sequential 

    from tensorflow.keras.layers import Dense, Activation,Dropout 

    from tensorflow.keras.constraints import max_norm 

    from tensorflow.keras.optimizers import Adam 

 

    model = Sequential() 

 

    # input layer 

    model.add(Dense(13,  activation='relu')) 

    model.add(Dropout(0.1)) 

 

    model.add(Dense(32,  activation='relu')) 

    model.add(Dropout(0.1)) 

 

    model.add(Dense(64,  activation='relu')) 

    model.add(Dropout(0.1)) 
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    # output layer 

    model.add(Dense(8, activation='softmax')) 

 

    # Compile model 

    model.compile(optimizer=Adam(learning_rate = 0.001), 

                  loss = 'sparse_categorical_crossentropy', metrics = ['accuracy']) 

 

    history = model.fit(X_train, y_train, batch_size=16 ,epochs = 200,validation_data= (X_test, y_test), verbose=1) 

 

    def plot_learningCurve(history, epochs): 

      # Plot training & validation accuracy values 

      epoch_range = range(1, epochs+1) 

      plt.plot(epoch_range, history.history['accuracy']) 

      plt.plot(epoch_range, history.history['val_accuracy']) 

      plt.title('Model accuracy') 

      plt.ylabel('Accuracy') 

      plt.xlabel('Epoch') 

      plt.legend(['Train', 'Val'], loc='upper left') 

      plt.show() 

 

      # Plot training & validation loss values 

      plt.plot(epoch_range, history.history['loss']) 
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      plt.plot(epoch_range, history.history['val_loss']) 

      plt.title('Model loss') 

      plt.ylabel('Loss') 

      plt.xlabel('Epoch') 

      plt.legend(['Train', 'Val'], loc='upper left') 

      plt.show() 

    plot_learningCurve(history,200) 

 

    from mlxtend.plotting import plot_confusion_matrix 

    from sklearn.metrics import confusion_matrix,classification_report 

    plot_learningCurve(history,200) 

    y_pred=model.predict(X_test)  

    y_pred=np.argmax(y_pred,axis=1) 

    mat = confusion_matrix(y_test, y_pred) 

 

    mat = confusion_matrix(y_test, y_pred) 

    plot_confusion_matrix(conf_mat=mat, class_names=label.classes_, show_normed=True, figsize=(7,7)) 

 

Adding confidence level to the predicted classes 

 

    pred_conf = pd.DataFrame((model.predict(X_test) > 0.5).astype("int32")) 
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    dictionary = {False: "low", True: "high"} 

    pred_conf['pred_conf'] = pd.DataFrame(pred_conf.sum(axis=1) != 0).replace({0: dictionary}) 

 

    pred_conf = pd.DataFrame(pred_conf) 

 

    dic_label = {0:'down',1:'down_left',2:'down_right',3:'left',4:'right',5:'up',6:'up_left',7:'up_right'} 

 

    final_predictions = pd.DataFrame(y_pred).replace(dic_label) 
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Appendix 3) Productivity State Detection Module’ Python Code  

     

import tensorflow as tf 

    from tensorflow.keras import Sequential 

    from tensorflow.keras.layers import Flatten, Dense, Dropout, BatchNormalization 

    from tensorflow.keras.layers import Conv2D, MaxPool2D 

    from tensorflow.keras.optimizers import Adam 

    import pandas as pd 

    import numpy as np 

    import matplotlib.pyplot as plt 

    from sklearn.model_selection import train_test_split 

    from sklearn.preprocessing import StandardScaler, LabelEncoder 

    from sklearn.utils import shuffle 

 

Load the Dataset 

    data=pd.read_csv(r"G:\Localization\211027\labelled_dataset.csv") 

    data=data[['timestamp', 'acc_x_h', 'acc_y_h', 'acc_z_h', 'acc_x_w', 'acc_y_w','acc_z_w', 'acc_x_c', 'acc_y_c', 'acc_z_c','activity']] 

    data=data.dropna() 

Balance this data 

 

    data['acc_x_h'] = data['acc_x_h'].astype('float') 

    data['acc_y_h'] = data['acc_y_h'].astype('float') 
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    data['acc_z_h'] = data['acc_z_h'].astype('float') 

    data['acc_x_w'] = data['acc_x_w'].astype('float') 

    data['acc_y_w'] = data['acc_y_w'].astype('float') 

    data['acc_z_w'] = data['acc_z_w'].astype('float') 

    data['acc_x_c'] = data['acc_x_c'].astype('float') 

    data['acc_y_c'] = data['acc_y_c'].astype('float') 

    data['acc_z_c'] = data['acc_z_c'].astype('float') 

 

    Fs = 1 

    activities = data['activity'].value_counts().index 

 

    def plot_activity(activity, data): 

        fig, (ax0, ax1, ax2) = plt.subplots(nrows=3, figsize=(13, 5), sharex=True) 

        plot_axis(ax0, data['timestamp'], data['acc_x_h'], 'X-Axis') 

        plot_axis(ax1, data['timestamp'], data['acc_y_h'], 'Y-Axis') 

        plot_axis(ax2, data['timestamp'], data['acc_z_h'], 'Z-Axis') 

        plt.subplots_adjust(hspace=0.2) 

        fig.suptitle(activity) 

        plt.subplots_adjust(top=0.90) 

        plt.show() 

 

    def plot_axis(ax, x, y, title): 
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        ax.plot(x, y, 'g') 

        ax.set_title(title) 

        ax.xaxis.set_visible(False) 

        ax.set_ylim([min(y) - np.std(y), max(y) + np.std(y)]) 

        ax.set_xlim([min(x), max(x)]) 

        ax.grid(True) 

 

    for activity in activities: 

        data_for_plot = data[(data['activity'] == activity)][:Fs*100] 

        plot_activity(activity, data_for_plot) 

    def plot_activity(activity, data): 

        fig, (ax0, ax1, ax2) = plt.subplots(nrows=3, figsize=(13, 5), sharex=True) 

        plot_axis(ax0, data['timestamp'], data['acc_x_c'], 'X-Axis') 

        plot_axis(ax1, data['timestamp'], data['acc_y_c'], 'Y-Axis') 

        plot_axis(ax2, data['timestamp'], data['acc_z_c'], 'Z-Axis') 

        plt.subplots_adjust(hspace=0.2) 

        fig.suptitle(activity) 

        plt.subplots_adjust(top=0.90) 

        plt.show() 

 

    def plot_axis(ax, x, y, title): 

        ax.plot(x, y, 'r') 
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        ax.set_title(title) 

        ax.xaxis.set_visible(False) 

        ax.set_ylim([min(y) - np.std(y), max(y) + np.std(y)]) 

        ax.set_xlim([min(x), max(x)]) 

        ax.grid(True) 

 

    for activity in activities: 

        data_for_plot = data[(data['activity'] == activity)][:Fs*100] 

        plot_activity(activity, data_for_plot) 

    df = data.drop(['timestamp'], axis = 1).copy() 

    df.head() 

 

    #jogging = df[df['activity']=='jogging'].head(560).copy() 

    #walking = df[df['activity']=='walking'].head(560).copy() 

    #idling = df[df['activity']=='idling'].head(560).copy() 

 

    idling = df[df['activity']=='idling'].tail(1342).copy() 

    walking = df[df['activity']=='walking'].tail(1342).copy() 

 

 

    brick_laying = df[df['activity']=='brick_laying'].tail(1127).copy() 

    plastering = df[df['activity']=='plastering'].head(1127).copy() 
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    mortar = df[df['activity']=='mortar'].tail(1127).copy() 

    shoveling = df[df['activity']=='shoveling'].tail(1127).copy() 

    painting = df[df['activity']=='painting'].tail(2255).copy() 

 

    others1 = pd.DataFrame() 

    others1 = others1.append([shoveling,mortar,brick_laying,painting,plastering]) 

    others1 = shuffle(others1).tail(1342) 

 

    others = pd.DataFrame() 

    others = others.append([others1]) 

 

    others['activity'] = 'others' 

 

    others = others[others['activity']=='others'].tail(1127).copy() 

 

 

    value_add_work = pd.DataFrame() 

    value_add_work = value_add_work.append([painting]) 

    value_add_work = value_add_work.tail(2255) 

    value_add_work['activity'] = 'value_add_work' 
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    non_value_add_work = pd.DataFrame() 

    non_value_add_work = non_value_add_work.append([shoveling,mortar,brick_laying,others]) 

    non_value_add_work = non_value_add_work.tail(4510) 

    non_value_add_work['activity'] = 'non_value_add_work' 

    non_value_add_work = non_value_add_work[non_value_add_work['activity']=='non_value_add_work'].tail(4510).copy() 

 

    balanced_data = pd.DataFrame() 

    balanced_data = balanced_data.append([idling,walking,value_add_work,non_value_add_work]) 

    balanced_data.shape 

 

    from sklearn.preprocessing import LabelEncoder 

 

    label = LabelEncoder() 

    balanced_data['label'] = label.fit_transform(balanced_data['activity']) 

    [9447 rows x 11 columns] 

 

Standardized data 

 

    balanced_data['acc_x_h'] = balanced_data['acc_x_h'].diff(1) 

    balanced_data['acc_y_h'] = balanced_data['acc_y_h'].diff(1) 

    balanced_data['acc_z_h'] = balanced_data['acc_z_h'].diff(1) 

    balanced_data['acc_x_w'] = balanced_data['acc_x_w'].diff(1) 
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    balanced_data['acc_y_w'] = balanced_data['acc_y_w'].diff(1) 

    balanced_data['acc_z_w'] = balanced_data['acc_z_w'].diff(1) 

    balanced_data['acc_x_c'] = balanced_data['acc_x_c'].diff(1) 

    balanced_data['acc_y_c'] = balanced_data['acc_y_c'].diff(1) 

    balanced_data['acc_z_c'] = balanced_data['acc_z_c'].diff(1) 

 

    balanced_data = balanced_data.fillna(0) 

 

    X = balanced_data.drop(['activity','label'],axis=1) 

    y = balanced_data['label'] 

 

    scaled_X = pd.DataFrame(data = X, columns = ['acc_x_h', 'acc_y_h', 'acc_z_h', 'acc_x_w', 'acc_y_w','acc_z_w', 'acc_x_c', 'acc_y_c', 

'acc_z_c']) 

    scaled_X['label'] = y.values 

 

 

Frame Preparation 

    import scipy.stats as stats 

 

    Fs = 1 

    frame_size = Fs*4 

    hop_size = Fs*1 
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    def get_frames(df, frame_size, hop_size): 

 

        N_FEATURES = 9 

 

        frames = [] 

        labels = [] 

        for i in range(0, len(df) - frame_size, hop_size): 

            acc_x_h = df['acc_x_h'].values[i: i + frame_size] 

            acc_y_h = df['acc_y_h'].values[i: i + frame_size] 

            acc_z_h = df['acc_z_h'].values[i: i + frame_size] 

            acc_x_w = df['acc_x_w'].values[i: i + frame_size] 

            acc_y_w = df['acc_y_w'].values[i: i + frame_size] 

            acc_z_w = df['acc_z_w'].values[i: i + frame_size] 

            acc_x_c = df['acc_x_c'].values[i: i + frame_size] 

            acc_y_c = df['acc_y_c'].values[i: i + frame_size] 

            acc_z_c = df['acc_z_c'].values[i: i + frame_size] 

             

             

            # Retrieve the most often used label in this segment 

            label = stats.mode(df['label'][i: i + frame_size])[0][0] 

            frames.append([acc_x_h, acc_y_h, acc_z_h,acc_x_w, acc_y_w, acc_z_w,acc_x_c,acc_y_c,acc_z_c]) 
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            labels.append(label) 

 

        # Bring the segments into a better shape 

        frames = np.asarray(frames) 

        labels = np.asarray(labels) 

 

        return frames, labels 

 

    X, y = get_frames(scaled_X, frame_size, hop_size) 

 

    X.shape, y.shape 

 

    ((9443, 9, 4), (9443,)) 

 

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state = 0, stratify = y) 

 

    scaler = StandardScaler() 

    X_train = scaler.fit_transform(X_train.reshape(-1, X_train.shape[-1])).reshape(X_train.shape) 

    X_test = scaler.transform(X_test.reshape(-1, X_test.shape[-1])).reshape(X_test.shape) 

 

    import pickle 

    scalerfile = 'scaler_Dec_painter.sav' 
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    pickle.dump(scaler, open(scalerfile, 'wb')) 

 

    X_train.shape, X_test.shape 

 

    ((8498, 9, 4), (945, 9, 4)) 

 

    X_train[0].shape, X_test[0].shape 

 

    ((9, 4), (9, 4)) 

 

    X_train = X_train.reshape(8498, 9, 4,1) 

    X_test = X_test.reshape(945, 9, 4,1) 

 

    X_train[0].shape, X_test[0].shape 

 

    ((9, 4, 1), (9, 4, 1)) 

 

    label.classes_ 

 

    array(['idling', 'non_value_add_work', 'value_add_work', 'walking'], 

          dtype=object) 
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    X_train.min() 

 

2D CNN Model 

    model = Sequential() 

    model.add(Conv2D(32, (2, 2), activation = 'relu', input_shape = X_train[0].shape)) 

    model.add(Dropout(0.2)) 

 

    model.add(Conv2D(32, (2, 2), activation='relu')) 

    model.add(Dropout(0.2)) 

 

    model.add(Conv2D(32, (2, 2), activation='relu')) 

    model.add(Dropout(0.2)) 

 

 

    model.add(Flatten()) 

 

    model.add(Dense(64, activation = 'relu')) 

    model.add(Dropout(0.2)) 

 

 

    model.add(Dense(4, activation='softmax')) 
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    model.compile(optimizer=Adam(learning_rate = 0.001), 

                  loss = 'sparse_categorical_crossentropy', metrics = ['accuracy']) 

 

    history = model.fit(X_train, y_train,epochs = 50, validation_data= (X_test, y_test), verbose=1) 

 

     

 

 

 

 


