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Abstract

Quantum transport in Dirac materials and their heterostructures

Muhammad Zubair, Ph.D.
Concordia University, 2022

This thesis explores the transport and optical properties of novel two dimensional (2D) materials
such as graphene or graphene nanoribbons, transition metal dichalcogenides (TMDCs), and some
heterostructures based on them. To study these systems, we use a tight-binding, one-particle Hamil-
tonian and take its low-energy limit near the Dirac points. Diagonalizing the Hamiltonian gives the
eigenvalues and eigenvectors which we use to evaluate linear response formulas for the conductiv-
ities in various systems, e.g., bilayer TMDCs in the presence or absence of magnetic and electric
fields. We study in detail physical properties such as the quantum Hall effect, the quantum spin-
Hall effect, and optical properties for one-body collisions of electrons with, e.g., impurities. We also
consider heterostructures, made by encapsulating graphene monolayers on suitable substrates, e.g.,
TMDCs. In addition, we discuss the influence of an off-resonant light on valley-controlled transport
in such systems and predict, among other things, topological phase transitions induced by such a
light. Finally, we address the optical response of armchair graphene nanoribbons (AGNRs) as a
function of the photon frequency. Also, we assess the influence of elastic scattering by impurities

on the diffusive (Drude-type) contribution to the current in these nanoribbons.
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Chapter 1

Novel two-dimensional materials

A wide variety of materials, ranging from graphene to topological insulators were found to have
a common low-energy fermionic dispersion that resembles massless Dirac particles, rather than
the usual free particle parabolic dispersion of the Schrédinger type, conventionally referred to as
Schrodinger fermions. Materials having this unifying emergent Dirac fermion spectral character are
now referred to as Dirac materials. In general, they have a linear electron and hole dispersion near
the Dirac point.

Since the discovery of graphene, Dirac materials have become a very hot topic in solid state
physics both theoretically and experimentally because of their prominent mechanical, optical, elec-
trical and magnetic properties. Recently, graphene has attracted a lot of attention of the scientific
community in the field of spintronics, due to its large electronic mobility, low spin-orbit coupling
(SOC), negligible hyperfine interaction and gate unability. For a clear example, it has been proven
that graphene exhibits a longest spin relaxation length even measured at room temperature. So, in
this quest, the field has moved beyond graphene in searching for new 2D materials (e.g., silicene,
MoS, and WSes etc.) including their van der Waals heterostructures and nanoribbons. The novel
heterostructures provide a testbed for inducing new functionalities in layered materials, e.g., prox-
imity induced SOC in graphene on transition metal dichalcogenides (TMDCs) and rendering them
appropriate for the emerging fields of spintronics and valleytronics.

In this chapter we provide an overview of these new 2D materials. While some of them are

ahead from one another, from the point of view of technological applications and new emerging



fields, such as spintronics and valleytronics, graphene is not a suitable candidate for spintronics
applications due to its vanishing gap. In contrast, TMDCs, due to their large band gaps and giant
SOC are suitable for these fields and very promising. Further, a large SOC in graphene can be

induced by placing it on TMDCs and thus making it useful in these fields.

1.1 Graphene

The study of two-dimensional (2D) materials begun with the first theoretical model of a 2D sheet
of sp? bonded carbon atoms by Wallace in 1947 [1] who investigated the relevant electronic band
structure. After that, a 2D sheet of carbon atoms was prepared by using the method of chemical
reduction of exfoliated graphite [2] in 1962. In the late 60s, it was observed on a platinum surface
as a disordered structure in ultrahigh vacuum [3]. In 2004, after a long time, Geim and Novoselov
experimentally isolated a single layer of graphite, namely graphene, and investigated its electronics
properties [4]. To isolate such a single layer, Novoselov and his coworkers pulled off graphene from
graphite by applying the scotch-tape method. In this regard, they were awarded the Nobel prize in
2010 for their groundbreaking discovery of 2D graphene [5]. After that, the family of 2D materials
has grown appreciably.

The carbon atoms in graphene are arranged in 2D hexagonal lattice. Interestingly, graphene has
attracted the intensive research attention from both the academia and industry due to its rich physics
[6, 7, 8] and high mobility [9]. Furthermore, it is a fundamental building block for manufacturing
various types of well-known allotropes such as 3D graphite, 1D carbon nanotubes, and 0D fullerene
as shown in Fig. 1.1. Due to a strong interest in graphene, publications have been approximated
as 4 x10* in number or more from 2004 up till now [10]. Further, books on graphene have also
been published which show that the field has matured to some extent [11]. Moreover, graphene
has extraordinary properties such as high surface area, high Young’s modulus, 2.3 % absorption
in the white light spectrum and excellent thermal conductivity. Due to these important properties,
graphene carries tremendous potential as material for energy storage and generation [12, 13, 14],
hybrid materials [15, 16], chemical sensors [17, 18], DNA sequencing [19, 20, 21], and high-speed

electronics [22] and optical [12] devices. Some potential applications of feasible uses of graphene



Graphene Carbon-nanotube

Diamond Graphite

Figure 1.1: The different allotropes of carbon. The idea is taken from Ref. [23].

are given below:

1.1.1 Solar cells

The materials that have the ability to absorb sunlight are used to manufacture solar cells. Before
the invention of graphene, the electrodes were prepared by using indium tin oxide (ITO). This
material was very costly. Nowadays, solar cells based on graphene, in which graphene’s sheets are

used as electrodes, have also been suggested. They might be quite cheap as compared to ITO [24].

1.1.2 Graphene-based display screens

In Ref. [25], it was claimed that due to the large conductivity of graphene, we can use it as trans-
parent sheet. Because of this property, graphene is used in organic light-emitting diodes (OLED),
which have a wider use in display screens. Earlier material that was used in OLED was indium,
which is costly and poisonous. Accordingly, replacing it with graphene will reduce the cost remark-

ably. Further, elastic screens can also be designed using graphene [26].

1.1.3 Transistors based on graphene

Graphene has linear dispersion and zero gap at the Charge Neutrality Point (CNP) or Dirac
point. Accordingly, its mobility is found to be 4x10* cm?/ (V.s) [27] at room temperature, whereas
it is 2x 10°-10% cm?/(V.s) at low temperature [28, 29]. Thus, it can be used in high-mobility nano-

electronics. For instance, field-effect Transisters (FET) based on graphene have been manufactured



recently [30, 22].

1.2 Hexagonal Boron nitride

Hexagonal Boron nitride (hBN) has been found to consist of a similar lattice structure as that
found for the carbons of graphene in that it consists of equal numbers of boron and nitrogen atoms.
Sheets of hBN are composed of alternating boron and nitrogen atoms in a honeycomb arrangement
consisting of sp2-bonded 2D layers. This structure means that hBN powder is traditionally used as a
lubricant [31]. The pristine hBN sheets are intrinsically insulators or wide band gap semiconductors
(approximately 5.9 eV) [32]. Because of its good electrical insulation property, hBN has been
applied as a charge leakage barrier layer for use in electronic equipment [33]. It can also be used
as a host for single photon emitters in the infrared and ultraviolet regions of the spectrum [34] with

potential applications in quantum communication and quantum information science.

1.3 Silicene

The silicon analog of graphene, called silicene, is a new 2D material that has been predicted to
be stable [35] and has currently been synthesized on a Ag(111) or MoS, surface [36, 37]. Though
there is some controversy as to how its free-standing version can be really synthesized [38], it has
attracted a great deal of attention [39, 40, 41] because, contrary to graphene, it has a strong spin-
orbit interaction (SOI). In addition, the Dirac cones in silicene are similar to those of graphene. This
similarity results from the fact that carbon and silicon belong to the same column in the periodic ta-
ble of elements. The strong SOI of silicene is predicted to open a gap with a width of approximately
1.55 meV [39] between the low-energy Dirac-like cones, which is appropriate for the observation
of the quantum spin-Hall effect. It has also been predicted that the created gap can be tuned [40] by
applying an external electric field E, perpendicular to the silicene sheet. The tunability of the band
gap is a consequence of the buckled structure, with one of the two sublattices of the honeycomb

lattice shifted vertically with respect to the other.



1.4 Transition metal dichalcogenides

During the past few years, two-dimensional materials have attracted a lot of attention of the
scientific community due to their peculiar electronic properties. Further, they are easy to produce
and have potential applications in future nanoelectronic devices [42]. In this regards, graphene
has been widely studied, because it has a simple structure but very rich physics. However, it has
limited application in the fabrication of logical circuits and optoelectronic devices due to its zero
band gap. Therefore, other 2D materials have been grown for fulfilling this gap e.g., transition
metal dichalcogenides (TMDCs) which were discovered recently [43]. They constitute another
family of 2D materials with large direct band gap [44, 45, 46] and giant intrinsic SOC [43, 47].
The general chemical formula of TMDCs is MX5 in which hexagonal layer of transition metal
atoms (M= Mo, W) is sandwitched between the two layers of chalcogenides atoms (X=S, Se). This
particular combination of layers of different atoms forms the hexagon with M and X5 atoms located
at the alternating corners as can be seen in Fig. 1.2.

Surprisingly, 2D crystals of TMDCs show often very different properties from those of their
3D counterparts [45, 44]. Further, TMDCs are also shaped into mono and few layers. Recently, it
has been demonstrated by experiment that multilayer TMDCs are indirect-gap semiconductor while
monolayer TMDCs are direct-gap ones [45]. The value of direct band gap is in the visible frequency
range. This feature is very useful for optoelectronic’s applications e.g., light-emiting diodes. Re-
cently, a transistor was also fabricated based on a MoS; monolayer, which is an extensively studied
material within the family of TMDCs, with 200 cm?/(V.s) mobility value at room temperature [48].
Moreover, MoS3 has been used as a main component in various nanoelectronic devices, such as am-
plifiers, photodetectors, thin film transistors, and logical circuits [48, 49, 50, 51], due to its excellent
electronic properties. In addition, several other remarkable properties of TMDCs monolayers have
been investigated theoretically and experimentally [52, 53, 54, 55, 56, 57, 58], e.g., magneto-optical

spectra and magnetotransport.



Figure 1.2: Left panel: The atomic structure of layered MoS,. Different sheets of MoSs are com-
posed of three atomic layers S-Mo-S, where Mo and S are covalently bonded. Right panel: A top
view of the honeycomb lattice, emphasizing the inversion symmetry breaking.

1.5 Novel van der Waals heterostructures

In reality, it is a demanding task to create the one conclusive material by combining the differ-
ent ingredients. However, we have some successful examples such as composite materials and ITI-V
heterostructures that revolutionized many aspects of our lives. But, we still required such strategies
that solve the problem for mixing and matching crystals of different properties to create the combi-
nations with predetermined attributes and functionalities. In this regard, 2D materials play their role
for creating the heterostructures with a variety of properties. After the discovery of graphene, the
family of 2D materials with a wide range of properties is expanding day by day. Further, the family
of 2D materials comprises of insulators (e.g., hexagonal boron nitride (hBN)), semiconductors (e.g.,
MoS2), and metals (e.g., NbSez). Also, experiments reveal that these materials are stable at ambient
conditions. Moreover, the study of familiar phenomena, like superconductivity and ferromagnetism,
lead to many thought-provoking questions due to the lack of long range order.

Furthermore, a plethora of exciting phenomena appears when we start to assemble the crystals in
one stack. When graphene interacts with hBN that combination opens the possibility to measure the
Hofstadter butterfly effect and topological currents in such a system. Also, designer heterostructures
give rise to the proximity effect that allows the study of tunneling and drag effects. The optically
active herterostructures can be created by using the semiconducting monolayers. The devices such

as tunneling transistors, resonant tunneling diodes, and light-emitting diodes based on novel van der



waals heterostructures have also been started to emerge.

1.5.1 Modification of spectrum of graphene on hBN

Graphene on hBN leads to the formation of Moiré patterns where electrons feel the periodic
scattering potential. This leads to the reconstruction of the electronic spectrum at the wave vec-
tors which are determined by the periodicity of the Moiré structure. This modification of the en-
ergy spectrum has been observed first in scanning tunneling microscopy [62] and later in transport
[63, 64, 65] and capacitance measurements [66]. Further, secondary Dirac points appear in both
the conduction and valence bands [67]. The energy range in which reconstruction of the spectrum
occurs is estimated to be about 50 meV, which can be determined by the strength of the van der
Waals interaction between graphene and hBN. Moreover, such a reconstruction creates an asymme-

try between graphene’s sublatices and leads to the opening of a gap in the spectrum.

1.5.2 Devices based on plasmon

Plasmons in graphene have attracted a lot of attention because the plasmonic frequency [68]
can be tuned by changing the carrier concentration. Also, plasmonic as well as phonon polaritonic
properties have been studied in other 2D materials. For example, hBN has polar dielectric properties
and thus supports surface phonon polaritons with very low optical losses [69].

Van der Waals heterostructures provide a playground to examine a number of new polaritonic
effects. Scattering of graphene plasmons by impurities can be eliminated when graphene is en-
capsulated with hBN in comparison with bare graphene [70]. Further, hybridization between the
plasmonic modes of different layers of graphene can be achieved by sandwiching the multilayers of
graphene separated by hBN spacers. It is further controlled by the external gate voltage [71]. Also,
it is possible in such heterostructure to enter a regime on which a plasmonic polariton in graphene
and a phonon polariton in hBN coexist. A new collective mode, called plasmon-phonon polari-
ton [72, 73], has been formed due to the strong coupling between these two. Both amplitude and
wavelength can be controlled by gating graphene.

Moreover, the formation of Moiré patterns in aligned graphene/hBN heterostructure further

modifies the graphene-plasmon spectrum. Zone folding results in secondary Dirac points [67],



which allow a new type of vertical transitions. Such transitions are immediately reflected in the
modified damping factor, which exhibits a maximum at such Fermi energies [74]. It has also been
predicted that new plasmonic modes, with carrier density dependence characteristic of parabolic
electronic bands, should appear in the vicinity of van Hove singularities in the reconstructed spec-

trum [74].

1.5.3 Tunneling devices

Graphene can be combined with semiconductor and insulating 2D crystals to create a tunnel
junction [75]. The use of hBN as a tunneling barrier is particularly attractive due to its large band
gap (= 6 eV), low number of impurity states within the barrier, and high breakdown field. Because
the position of the Fermi energy and the DOS in graphene can be varied by external gate, the same
applies for the tunneling current, which allows such structures to be used as field effect tunneling
transistors (FETTs) [76].

Furthermore, the highest on-off ratio for FETTs can be achieved if the changes in the Fermi
energy in graphene are comparable with the gap in the tunneling barrier if hBN is replaced with WSy
(on-off ratio of 106) [77] or MoS3 (on-off ratio of 10% to 10%, probably because of the presence of
impurity bands) [76]. In addition to logic applications, tunneling in van der Waals heterostructures
was exploited for memory devices [78] with a floating gate, logic circuits [79], radio-frequency

oscillators [80], and resonant tunneling diodes [81].

1.5.4 Van der Waals heterostructures for photovoltaic applications

Combinations of graphene, as a channel material, and TMDC:s, as light-sensitive material, allow
the creation of simple and efficient phototransistors [82]. Combining materials with different work
functions can lead to photoexcited electrons and holes accumulated in different layers, giving rise to
indirect excitons e.g., as has been observed for the pairs MoS3/WSe, [83] and MoSeo/WSe, [84].
Such excitons typically have long lifetimes, and their binding energy could be tuned by controlling
the distance between the semiconductor layers. Thus, the more efficient photovoltaic devices can

be created by combining thin layers of TMDCs [85] or metal chalcogenides [86] with graphene.



1.5.5 Light-emitting diodes

The p-n junctions described above can be operated in the regime of electrical injection of the
charge carriers, which leads to electron-hole recombination and light emission [87]. However, such
arrangement is limited by the requirements of synthesizing p- and n-type materials, which have not
yet been demonstrated for all 2D crystals.

A more straightforward arrangement is the carrier injection from highly conductive transparent
electrodes directly into the 2D material in a vertical structure. However, such a scheme requires
careful control of the dwell time of the injected electrons and holes in the semiconductor crystal,
because photoemission is a slow process in comparison with the characteristic time required to
penetrate the junction between graphene and the semiconductor. Thus, two to three layers of hBN
have been used [88] to increase the time electrons and holes spend inside the monolayer TMDC,
allowing their radiative recombination. The quantum efficiency in devices based on W Sey increases

with increasing temperature and injection current, reaching 20% at room temperature [89].

1.6 Experimental methods to synthesis the 2D materials

Mechanical and liquid-phase exfoliations are two common methods used to separate individual
sheets from stacked 2D layered crystals by breaking the weak van der Waals bonds between the
layers. The sheets with perfect crystalline structures can be obtained by mechanical exfoliation
[4, 90, 44]. Thus, these sheets are used to explore the intrinsic properties of the materials. However,
yield from this method is very low.

Liquid-phase exfoliation creates dispersions of 2D layered materials in various solvents or aque-
ous surfactant solutions with the assistance of sonication. Here sonication results in the exfoliation
of the layered crystals into single-layer and multilayer sheets stabilized by interactions with the
solvent or a surfactant. Such dispersion can easily form films by vacuum filtration with thick-
nesses that range from nanometers to tens of micrometers. Compared with mechanical exfoliation,
solution-based exfoliation is an efficient method for producing large quantities of layered materials
[91, 92, 93]. Although it should be noted that control of the number of layers and the lateral size is

difficult, such liquid exfoliation methods also allow easy functionalization of the individual sheets



[94, 95] and the formation of novel composite materials [91, 92, 96].

In addition to the above solution-based exfoliation, wet chemical reactions were also explored
as a means to synthesize 2D materials sheets. For instance, few-layer BN sheets using the reaction
between boric acid with urea at 900 °C under an N> atmosphere has been synthesized [97].

In contrast with either the exfoliation methods or wet chemical reactions, in which control of the
layer number and the lateral size of 2D materials sheets is difficult, a dry chemical vapor deposition
(CVD) method has also been extensively explored. The aim was to synthesize 2D layered materials
on a large scale [98, 99] with the promise of fine control over the number of layers and the crystalline
structures.

Surface segregation like the CVD method is another feasible method for the large-scale synthe-
sis of graphene. It has the potential to control the number of graphene layers [100, 101] and hence
was also used to synthesize h-BN layers [102]. Further, because the CVD growth of h-BN films
unusally involves explosive and toxic chemical and gases, this kind of surface segregation approach

is much simpler and safe.

1.7 Organization of the thesis

The thesis consists of 7 chapters including this introductory one. Chapters 2 - 6 have published
works and their corresponding additional materials are included as appendices at the end of the
dissertation. Concluding remarks as well as future directions are given in the last chapter. To

further orient the reader, a brief overview regarding each chapters is provided below.

» Chapter 2 presents very briefly the material of our published work “quantum magnetotrans-
port in bilayer MoS;: influence of perpendicular electric field”, Ref. (1). Bilayer MoS,
has a four-fold spin and valley degeneracies intrinsically. Therefore, it has limited applica-
tions in the newly emerging fields of spintronics and valleytronics. To make it useful in these
areas, we proposed in this study that a significant amount of spin and valley splittings can
be achieved by applying to it perpendicular electric and magnetic fields. Also, we studied

its spin and valley-resolved Hall and longitudinal conductivities. We pointed out that such a
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transport study could be pertinent to making Hall effect-based sensing devices, e.g., tempera-
ture or pressure sensors etc. This very brief chapter, which is not part of the thesis, is included

to only show how it naturally lead to the studies of chapters 3 - 6.

In chapter 3, we present the results of the manuscript “magneto-optical properties of bilayer
transition metal dichalcogenides”, Ref. (2). In this work, we assessed the spin and valley
dependent optical response of bilayer TMDCs by evaluating the conductivity expressions in
the linear response regime in the presence and absence of electric and magnetic fields. We
found that this optical response could be very useful in designing optical devices, such as

LEDs etc., based on the spin and valley degrees of freedom.

In chapter 4, we will address transport in graphene/ W Se, heterostructures. We will discuss
the effect of different types of symmetry breaking terms, such as band gap and SOC etc., on
the electronic dispersion as well as on ac and dc transport in this heterostructure. We will
show that these symmetry breaking terms can be obtained from a tight-binding model. In
addition, we study screening effects by taking into account the relaxation time for short- and
long-range impurity potentials on the diffusive contribution to the current. The findings of
this chapter “Influence of interface induced valley-Zeeman and spin-orbit couplings on

transport in heterostructures of graphene on WSe»” has been published in Ref. (3).

Chapter 5 comprises the results of our submitted manuscript “Valley-controlled transport
in graphene/ WSe; heterostructures under an off-resonant polarized light”, Ref. (5).
In this work, we predict that we can induce the valley splitting by shining an off-resonant,
circularly polarized light on the heterostructure. Also, we studied the effect of such a light on
the transport coefficients, namely the Hall and diffusive conductivities, which can be used in

building devices like valley valves, valley filters, etc.

In the second-to-last chapter, we present the findings of our published work “Transport in
armchair graphene nanoribbons and in ordinary waveguides”, Ref. (4). We found a
transition from a semiconducting to a metallic state in armchair graphene nanoribbons as a

function of the number of rows contrary to ordinary waveguides where no such transitions
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exist. Also, we discussed the effect of the number of rows on the optical transport coefficients

which are useful for the development of infrared photodetectors.
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Chapter 2

Quantum magnetotransport in bilayer
MoS-: Influence of perpendicular

electric field

2.1 Abstract

We first derive the energy dispersion of bilayer MoS; in the presence of a perpendicular electric
field E,. We show that the band gap and layer splitting can be controlled by the field E,. Away from
the k point, the intrinsic SOC splitting increases in the conduction band but is weakly affected in the
valence band. We then analyze the band structure in the presence of a perpendicular magnetic field
B and the field E;, including spin and valley Zeeman terms, and evaluate the Hall and longitudinal
conductivities. We discuss the numerical results as functions of the fields B and E, for finite
temperatures. The field B gives rise to a significant spin splitting in the conduction band, to a
beating in the Shubnikov-de Haas (SdH) oscillations when it’s weak, and to their splitting when
it’s strong. The Zeeman terms and E, suppress the beating and change the positions of the beating
nodes of the SdH oscillations at low B fields and enhance their splitting at high B fields. Similar
beating patterns are observed in the spin and valley polarizations at low B fields. Interestingly,

a 90% spin polarization and a 100% square-wave-shaped valley polarization are observed at high
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B fields. The Hall-plateau sequence depends on E,. These findings may be pertinent to future

spintronic and valleytronic devices.

2.2 Introduction

Recently the MoS2 monolayer has provided a new testbed for the study of fermion physics in
reduced dimensions. Its strong intrinsic SOC and huge band gap [59], approximately 2\ = 150
meV and 2A = 1.66 eV, respectively, render it pertinent to potential applications in spintronics and
optoelectronics [103, 44, 48, 45]. Due to these features, MoS2 may be more appropriate for device
applications than graphene and the conventional two-dimensional electron gas (2DEG).

In addition to monolayer MoS,, it has been recently realized that bilayer MoS» has potential ap-
plications in optoelectronics and spintronics. Also, a band-gap tuning is possible in a MoSs bilayer
in the presence of a perpendicular electric field F, [108, 109, 110]. Additional reported prop-
erties of bilayer MoS, include magnetoelectric effects and valley-controlled spin-quantum gates
[111], tuning of the valley magnetic moment [112], and electrical control of the valley-Hall effect
[113]. Moreover, a field-effect transistor has been realized experimentally in a few-layer MoS»
[114]. In contrast, bilayer graphene has intrinsically a very weak SOC [115, 116] and, when
not biased, a zero band gap [117, 118, 119]. There exist numerous theoretical and experimental
[118, 120, 121, 122, 123] studies of magnetotransport properties in bilayer graphene. Although
its band gap can be controlled by an electric field E, [124, 125, 126, 127], high-quality samples
of MoS, bilayers with a strong intrinsic SOC and a huge band gap are of particular importance.
Contrary to bilayer graphene, the MoSs bilayer has greater potential for future spintronic and val-
leytronic applications. Recently, not only the QHE but also the SdH oscillations have been observed
in high-quality monolayer and multilayer MoS2 [57] but neither magnetotransport nor the effect of
an electric field E; have, to our knowledge, been theoretically studied for bilayer MoS;. Such a
study is the aim of the present work.

The chapter is organized as follows. In Sec. 2.3 we formulate the problem and discuss the band
structure of bilayer MoS, with the help of the eigenvalues and eigenfunctions. We then present the

numerical results of the Hall conductivity, spin and valley polarizations using the linear-response
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Figure 2.1: Band structure of bilayer MoS» for A = 0.074 eV and v = 0.047 eV. The upper panels
are for zero electric field energy (V' = 0) and the lower ones for V' = 15 meV. The left (right) panels

are for the K (K”) valley and Q° = sAV/[A2 + +?|1/2,

formulas of Ref. [128]. Interestingly, we find that the Hall-plateau sequence depends on the field

E, and becomes unconventional when E, is present. Also, we compare the results with those on

bilayer graphene. Concluding remarks follow in Sec. 2.6.

2.3 Formulation and electronic spectrum

The one-electron Hamiltonian of bilayer MoS, near the K and K’ valleys [111, 112, 131, 132]

reads
—&7" vEpL Y 0
vEpPL s 0 0
H = * 2 . (1)
v 0 —&"  vppl
0 0 vEppL i



Here, 7 = 1(—1) is for K (K') valley, p, = 7p; + ipy With p = (pg,py) the two-dimensional
momentum operator, £ = K +7sA+sM, —7M,, " = a—sM,+7M,,£3" = a—TsA—sM,+
TMy, & = kK +sM, — 7M, withk = A+ V and a = A — V with A the monolayer band gap.
Further, vp =0.53x10°% m/s [107] is the Fermi velocity, V' the external electric field energy, A the
strength of the intrinsic SOC with spins up (down) represented by s = +1(1)(s = —1({)), and «
the effective interlayer interaction energy. Moreover, M, = ¢’upB/2 is the Zeeman exchange field
induced by ferromagnetic order, g’ the Landé g factor (¢’ = g, + ¢5), and pp the Bohr magneton
[133]; g, = 2 is the free electron g factor and g, = 0.21 the out-of-plane factor due to the strong
SOC in MoS,. The term, M, = g, upB/2 breaks the valley symmetry of the levels and g}, = 3.57
[133]. The valley splitting has been measured in very recent experiments [134, 135, 136, 137]
and is theoretically shown to be approximately 30 meV by first-principles calculations [138]. The
eigenvalues E};” (k) of Eq. (1), when the magnetic field is absent, are E;”" (k) = fivpey” (k). The
subscript ;1 = (1, p2) is used to denote the positive and negative energies of the upper layer, by
p1 = =1, and of the lower layer by us = +1. The factor £;" (k) = ¢ is the solution of the

fourth-degree equation

[(E — o:’) (E + K — Ts)v.’) — kQ} [(E — n') (E +a + TSX) — k2] —~? (E — o:’) (E — n’) =0,
(2)
where k = k, is the wave vector, ¢ = E/hvp with E = E;"(k), N = M hvp, K = k/hvp,
v = ~/hvp, and o/ = a/hvp. In the combined limit A — 0, " — 0, &/ — 0, we obtain the
energy dispersion for bilayer graphene [139].
In the upper panels of Fig. 2.1 we plot the energy dispersion of bilayer MoS; for field £, = 0
(V = 0 meV) at both valleys. We remark the following: (i) The splitting due to the SOC is zero in
the conduction and valence bands even in the presence of SOC [108, 109, 110, 111, 112, 132, 131].
(ii) The splitting due to interlayer hopping is zero in the conduction band but finite in the valence
band [108, 109, 110, 111, 112, 132, 131]. Further, the splitting in the valence band is a combined
effect of inter-layer coupling and SOC given by 2[A? + 42]'/2 at k = 0. This relation indicates that
the valence band is still split for A = 0 [131]. (iii) The gap between conduction and valence band

edges is given by 2A — [A2 + 42]Y/2 for k = 0 [131]. Notice that the effects of SOC and interlayer
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Figure 2.2: Band structure of bilayer MoS, for different electric field E,. The left (right) panel is
for the conduction (valence) band. The curve marking and parameters are as Fig. 2.1.

coupling are negligible in the conduction band, near £ = 0, while at large values of k the SOC effect
dominates.

For a finite field £, (V = 15 meV) we plot the energy spectrum in the lower panels of Fig. 2.1.
We remark the following: (i) The SOC splitting is modified by the field E.. We also note that
the spin splitting in the conduction band due to the SOC is negligible for the parameters and scale
used. On the other hand, the valence band completely dictates the lifting of the spin degeneracy.
(i) An interlayer splitting is obtained in both the conduction and valence bands. Analytically we
obtain the gaps 2V\/[A2 4+ ~4?]'/2, for V' < ), and 2V at the valence and conduction band edges,
respectively. (iii) The band gap is also reduced by the field E, o< V. Itis equal to 2A — V —
A2 + A2 — 75AV/[A2 + 4?12 for V. < A. The spin and layer splittings increase with the
field E, [109, 110, 143] or energy V', which can be seen in Fig. 2.2. So far we assumed that the
band edges are at the K point of the Brillouin zone but this may not be the case neither for the
valence band nor for the conduction band. In fact, there are arguments that our assumption holds
[44, 111, 112, 140, 141] but DFT calculations and a recent ARPES measurement [ 142] indicate that

the valence band edge is shifted to the I" point.

2.3.1 Landau levels

In the presence of a magnetic field B perpendicular to the layers we replace p by —iAV + A in

Eq. (1) and take the vector potential A in the Landau gauge A = (0, Bz, 0). After diagonalizing
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Eq. (1) the LL spectrum is obtained as

EST, = fw, 3T, 3)

where w. = vp+/2eB/h is the cyclotron frequency. For n > 1 the factor E;’L = ¢ is obtained by

diagonalizing Eq. (1) numerically. The eigenfunctions are

Qn ;.1.(;?511 A::,; On
8,4+ 8,—
s+ 1 Onp n—1 ik b = 1 Ty o1 cikuy @)
n,u ] n,uw _ .
v Ly n,p. ¢n v Ly Qi’,p On
Tn’,p. ¢n+l e‘fl,,; ¢n—1
The coefficients are given by Oy}, = nonpu/lenp — d57). Avy = knjponp. and Ynj, =
v+ 1kpp onp/leny — diT], with g, the normalization constants
o = {5 L+ (4 /(e = D] + L bn/ (e —ag P} )

and kny = [(enj + &5 )(enp — d57) — n] /t(enp — d§T), t = y/hwe, df7 = K7 + sA + 7(sM, —
TMy)/hwe, d5T = a” — 7(sM; — TMy) [Awe, d§ = o — sA — 7(sM, — T My) [hwe, and df” =
KT + 1(sM, — TMy)/fw, with & = A+ 7V and " = A — 7V are dimensionless parameters.
Therefore, the wave function of bilayer MoS; is a mixture of Landau wave functions with indices

n—1,n,and n 4+ 1.

2.4 Hall conductivity

To evaluate the Hall conductivity, we use the expression given in chapter 3. Fig. 2.3 shows the
Hall conductivity as a function of the field B for V' = 0 meV. We found that the height of the steps
is not constant: there are two different heights: 2 e2/h and 4 eQ/h see Fig. 2.3, black curve, in the
absence of the spin and valley Zeeman terms. However, additional new heights 2 €2 /h, 3 e?/h and
4 ¢% /h emerge in the sequence ladder in their presence as the red curve shows. Further, the plateaux

in bilayer MoS» have different origin than those in bilayer graphene: the former are due to the strong
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Figure 2.3: Hall conductivity as a function of the magnetic field B for 7' =1 K and V = 0 meV.
The two panels differ only in the range of B. For further clarity, the range 7.5 T-9.5 T is shown in
the inset to the left panel and the range 20 T-27 T in that to the right panel.

SOC whereas the later result from strong interlayer coupling [118, 119]. A noteworthy feature of
bilayer MoS; is that the influence of SOC and interlayer coupling is enhanced with increasing LL
index and leads to new Hall plateaux as is evident from both panels of Fig. 2.3. In contrast to

monolayer MoSs [55], the plateaux in bilayer MoS2 occur at higher magnetic fields.

2.5 Spin and valley polarization

The spin P; and valley P, polarizations are evaluated by using the conductivities expressions
that are given in chapter 3. We plot the spin P; (black solid curve) and P, (red dotted curve)
polarization versus magnetic field at 7' = 1 K, V = 0 meV and finite Zeeman fields in Fig. 2.4.
As expected and can be seen, here too we have a beating pattern at low magnetic fields and well-
resolved separation between both P, and P, at higher magnetic fields. The fact is that strong
magnetic fields give rise to larger splittings of the LLs. In contrast to monolayer MoS; [55], we find
100% valley polarization above B > 13 T whereas we attain 90% spin polarization above B > 20
T. Notice also the square-wave character of P, above B > 13 T. However, for M, = M, = 0, there

is no P and P, as shown by the blue curve.
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Figure 2.4: Spin P; and valley P, polarizations versus magnetic field B at T' = 1 K. The parameters
are the same as in Fig. 2.3 for M, # M, # 0.

2.6 Conclusions

We studied quantum magnetotransport in bilayer MoS, in the presence of perpendicular electric
(E;) and magnetic (B) fields. At B = 0 we showed that there is no spin splitting for zero field
FE, in both the conduction and valence bands whereas there is one for finite field E,. Further, for
E, £ 0 we demonstrated that the conduction band is still spin degenerate while the spin degeneracy
in the valence band is fully lifted (see Fig. 2.1). We showed though that the layer splitting and
band gap can be controlled by the field E,. The spin degeneracy of the levels, for E, = 0, in the
conduction band, is lifted for B # 0 and is also enhanced linearly with B. Furthermore, a finite
field E, leads to a significant enhancement of the spin splitting energy in the adjacent LLs of the
conduction band. Moreover, we showed that the combined action of spin and valley Zeeman fields
and inter-layer splitting allow for intra-LL transitions and lead to new quantum Hall plateaux. The
field E, modifies the layer splitting. As a result, steps of various heights, in multiples of e2/h
(Fig. 2.3), occur in the Hall conductivity.

Beating patterns, at low B fields, and splittings, at strong B fields, also occur in the spin and
valley polarizations. It is worth emphasizing that a 100%, square-wave-shaped valley polarization

is obtained for B > 13 T and 90% spin polarization for B > 20 T. The spin and valley Zeeman
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fields lead to a giant splitting for strong B fields and to a lifting of the fourfold spin and valley
degeneracies. The position of the plateaux as well as the peaks and beating pattern are sensitive to
the field E, and to the spin and valley Zeeman fields. The results, which we hope will be tested
by experiments, indicate that bilayer MoS; is a promising alternative to bilayer graphene in the
quest for gapped Dirac materials. We expect further applications of bilayer MoS; in the field of

valleytronics and spintronics.
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Chapter 3

Magneto-optical properties of bilayer

transition metal dichalcogenides

3.1 Abstract

In transition metal dichalcogenides (TMDCs) the spin-orbit interaction affects differently the
conduction and valence band energies as functions of the wave vector k and the band gap is usually
large except in few TMDCs that are metallic without band gaps. Consequently, when a perpendicu-
lar magnetic field B is applied the conduction and valence band Landau levels are also different and
this leads to a splitting of the interband optical absorption lines in both the absence and presence of
an external electric field E/,. When B and E; are present the peaks in the imaginary part of the Hall
conductivity give two distinct contributions of opposite sign to the interband spectrum. The real
part of the right- and left-handed interband conductivity, however, retains its two-peak structure but
the peaks are shifted in energy and amplitude with respect to each other in contrast with graphene.
The response of the intraband conductivity is significantly modified when the Fermi energy E'r and
the field B are varied. Its optical spectral weight is found to increase with Er in contrast with
the decrease observed in graphene. Further, the position and amplitude of the intraband response
depend on the field B. The absorption peaks vary linearly with B for all fields similar to bilayer
graphene for low fields but in contrast with the high-field /B dependence in it.
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3.2 Introduction

Two-dimensional materials have attracted a lot of attention due to their applications in spintron-
ics [147], valleytronics [61] and optoelectronics [44, 48]. In this regard the group VI transition-metal
dichalcogenides (TMDCs) have the form MX, (M=Mo,W; X=S,Se) are of particular interest due
to their valley degree of freedom, large direct band gap [44, 45, 46] and strong intrinsic spin-orbit
interaction (SOI) [43, 47]. Recently, nanoelectronic devices, such as amplifiers, photodetectors,
thin film transistors, and logical circuits [49, 50, 48, 51], based on their excellent electronic proper-
ties have been experimentally realized. In addition, several properties of TMDC monolayers have
been investigated theoretically and experimentally [52, 53, 54, 55, 56, 57, 58] e.g., magneto-optical
spectra and magnetotransport.

Layered TMDCs, such as bilayer systems, exhibit a broad range of physical properties and
have been extensively studied for applications in catalysis, tribology, electronics, photovoltaics,
and electrochemistry [148, 184, 185, 186]. Also, few layer TMDCs have potential applications
in nanoelectronics and nanophotonics. A field-effect transistor has been realized experimentally
in a few-layer MoS» [114]. Similarly, magnetoelectric effects and valley-controlled spin quantum
gates [111], tuning of the valley magnetic moment [112], electrical control of the valley-Hall effect
[113], and spin-layer locking effect [131] has been explored in bilayer TMDCs. Most recently,
magnetotransport studies of bilayer MoS» have been carried out [152]. Additionally, a band gap
tuning is possible and more easily achievable in bilayer TMDCs than in monolayer TMDCs in the
presence of a perpendicular electric field E; [110, 109, 153]. However, less attention has been paid
to the optical properties of bilayer TMDCs in the simultaneous presence of electric and magnetic
fields.

In this work we study in detail the effect of magnetic and electric fields on the magneto-optical
conductivity of bilayer TMDCs with particular emphasis on the asymmetry between the conduction
band (CB) and valence band (VB). Moreover, we assess the effect of the electric field on the band
structure with and without magnetic field, and on the magneto-optical conductivities. Also, we
compare our results with those for monolayer and bilayer graphene.

We focus on bilayer WSe, due to recent experimental progress [112, 113, 154, 205, 206, 209]
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but our findings are equally pertinent to other bilayer TMDCs, e.g. MoSes and WS». The WSes
bilayer has much stronger SOI in the conduction (2)\, = 30 meV) and valence (2)\, = 450 meV)
bands compared to bilayer MoSa (2A. = 0 meV). The band-edge energy difference FErg between
the I" and K points in bilayer WSes is much smaller than in bilayer MoS, [210, 159]. Therefore,
the CB and VB edges in bilayer WSe,, lie at the K point. Accordingly, bilayer W Sey has advantages
over the MoS; when studying its optical properties due to the direct band gap at the + K points.

In Sec. 3.3 we specify the Hamiltonian and obtain the energy eigenvalues and eigenfunctions
with and without magnetic field. In Sec. 3.4 we present a general expression for the conductivity

o(w) and provide numerical results. Conclusions and a summary follow in Sec. 3.5.

3.3 Energy spectrum

In AB stacked bilayer TMDCs the top layer is rotated with respect to the bottom layer by 180
degrees such that the S atoms in it sit on top of the M atoms of the bottom layer. As a result, the
effective Hamiltonian for bilayer TMDCs can be constructed from that of the single layer by simply
adding the interlayer coupling term ~ [59]. Then the one-electron Hamiltonian of bilayer WSes

near the K and K’ valleys reads [111, 112, 131, 132]

—&7 vpml 0 0
vETY 5" 0 0
H™ = . (6)
v 0 —&7  ourmh
0 0 vpml ar

Here 7 = 1(—1) is for the K (K') valley, 7} = 7m, & imy, &7 = K + 7S\, + sM, — 7M,,,

ST=a—T1sAe—sM, +7My, 5" = a—7sAy — sM, +7My, §§7 = K+ T8+ sM, — M, and
k=A+V and o = A —V with A the monolayer band gap. Further, vp =5x 10° m/s is the Fermi
velocity, V' is the potential difference between the two layers due to a perpendicular electric field
E,, and A the strength of the SOI with spins up (down) represented by s = +1(1)(s = —1(1)).
Moreover, M, = ¢'upB /2 is the Zeeman exchange field induced by ferromagnetic order, g’ the

Landé g factor (¢’ = g, + ¢%), and up the Bohr magneton [136, 135]; g, = 2 is the free electron
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g factor and g; = 0.21 the out-of-plane factor due to the strong SOL The term M, = g,upB/2
breaks the valley symmetry of the levels, g;, = 4 [136, 135]. The eigenvalues Ef},’r(k) of Eq. (6),

when the magnetic field is absent, are

ES" (k) = hopes™ (k). )

The subscript = (g1, ) is used for labeling the energy bands: pq = +1(—1) is for the electron
(hole) branches and ps = +1(—1) is for the upper (lower) layer. Using the label p5 is allowed
provided the interlayer coupling is weak, see Refs. [111, 131]. The factor ;" (k) = ¢ in Eq. (7) is

the solution of the quartic equation

[(e+&T) (e —&) - K] [e+&) (e - &) —F] -7 (e - &) (e - &) =0,

where k = ky is the wave vector, ¢ = E/hvr, &' = & Jhvr, & = &' [hvr, &7 = &5 [hor,
37 =& /hwp, and v/ = y/hop. In the limit ™ — 0, = 5, .., 8, we obtain the energy dispersion
for bilayer graphene [139].

In the upper panel of Fig. 3.1 we plot the energy dispersion of bilayer WSes, for field £, = 0 at
both valleys. We remark the following: (i) The splitting between the levels due to SOl is finite in the
CB given by 2. at k£ = 0 in contrast to bilayer MoSs [111, 112, 131, 152]. Its means that four-fold
degeneracy of CB in WSes is partially lifted. So, the bands are two-two fold degenerate whereas
it is four fold degenerate in bilayer MoS; at k = 0. But, the splitting due to interlayer hopping is
negligible in the CB.(ii) The value of interlayer hopping between the two layers is finite in the VB
[111, 112, 131, 152]. So, splitting of levels in the VB is a combined effect of interlayer hopping and
SOI given by 2[A2 + +?]'/2 at k = 0. This relation indicates that the VB is still split for \,, = 0 or
~ = 0. Further, levels in VB are also two-two fold degenerate as seen upper panel of Fig. (1). (iii)
The gap between conduction and valence band edges is given by 2A — A\, — [A\2 + 72]13’2 for k = 0.

For E, # 0 we plot the energy spectrum in the lower panels of Fig. 3.1. We note the following:
(i) The field E, modifies the SOI splitting. We note that two-fold spin degeneracy of all the bands
in the CB and VB at each valley is completely lifted in contrast to bilayer MoS»>. However, bands

have two-fold valley degeneracy i. e. energies of spin up and spin down bands at K and K’ valleys
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Figure 3.1: Band structure of bilayer WSes for 2\, = 37 meV, 2\, = 303 meV, and 2y = 134
meV. The upper panels are for V' = 0 meV, the lower ones for V' = 30 meV. The left (right) panels
are for the K (K') valley and Z5. = A\, & /A2 + 42 + QF with Q% = s\, V/[A2 + 42]V/2.

are same and vise versa. (ii) An interlayer splitting is obtained in both the CB and VB. Analytically
we obtain the gaps 2V A, /[A2 + +2]1/2 for V' < ), and 2V at the valence and conduction bands
edges, respectively. (iii) The band gap is also reduced by the field E; o< V. Itis equal to 2A —V —

she — [A2 4+ 21Y2 — 75X, V/[A2 + 422 for V < Ay.

3.3.1 Landau levels

In the presence of a magnetic field B perpendicular to the layers we replace m by —iiV + A in
Eq. (6) and take the vector potential A in the Landau gauge A = (0, Bz, 0). After diagonalizing

Eq. (6) the Landau level (LL) spectrum is obtained as

Epl, = hween, (8)
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with w. = vp+/2eB//h the cyclotron frequency. For n > 1 the factor ef,,’,L = ¢ is the solution of the

quartic equation
[(e+di") (e —d57) —n][(e+df) (e —df") — (n+1)] —t? (e —dfT) (e —df") =0, (9)

where t = y/hwe, di” = K" + sAy + T(sM; — TMy) [Awe, d5 = " — sAe — 7(sMy — T My) [hwe,
di" = o —sA\y—7(sM,—71M,) /hw,, and d]" = KT +sA.+7(sM,—7M,)/hw, with k™ = A+7V
and o™ = A —7V. In the limit & — 0,7 = 5, .., 8, Eq. (8) gives a LL dispersion similar to that of

bilayer graphene [119, 118]. The eigenfunctions are

( Qn,pén \ ( Afl’,; on \
1 n,p. (;?571 1 1 T?a’,; ¢n+1
s+ ikyy 8,— __ ikyy
T e, T _ € . (10)
vV Ly A"ﬁ,’,ﬁ On e V Ly Qfl’,;.a on
sz’,:l—. ¢n+1 @fa,,; éﬂ—l
\ / \ /

Here ¢n, = ¢n(v) = (2"nllp\/m)~/2¢=v"/2H,,(v) is the harmonic oscillator wave function with
v = (z — I%ky)/lp and Hy(v) the Hermite polynomial of order n. Notice that ¢, = 0 for

n < 0. The coefficients are given by Oy, = /n oy /lenp — d57 ). Anj = knponp, and Try, =

v+ 1kpp onp/leny — diT], with g, the normalization constants
s,T 8,72 (n+1) —-1/2
onp = (knp)?[1 + 7] +1 + 7 (1)
(E:"‘:L _di'r) 3 e _ds‘r

and knly = [(enp +di7)(enjp — d5T) —n] /t(en — d57). As Eq. (10) shows, the full wave function
is a mixture of the Landau wave functions with indices n — 1, n, and n 4 1.

For n = 0 there are two special LLs. One has the energies so’i_ =di" and sg::r_ =d; for
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the K and K’ valleys, respectively. The corresponding wave functions are

0 0
1 0 ; 1 @0 .
s+ ikyy 8= _ 3kyy. 12
0,+— \/L_y 0 € ’ ¢0,+— \/L_y 0 € (12)
@0 0

This LL has exactly the same properties as the n = 0 conventional, non-relativistic LL. For A =
Ac = Ay = V = 0, this level has exactly zero energy as the n = 0 LL for bilayer graphene
[119, 118]. Also, from Eq. (9) we obtain three other levels for n = 0. We obtain the wave functions
for two of these levels from Eq. (10) by simply setting n = 0 in it. Further, we specify the quantum
number () labels for these two levels as p = (+,+) and ¢ = (—, +). However, for the third LL

we specify n and p as shown in the eigenfunctions

Qﬁlt _%o ASZ:_ do
5,—
3,_’___ _ 1 0 eékyy? wﬁ‘:_ _ 1 QD,—_t(;bl ei""yy’ (13)
vV Iy Agi_cﬁo viy Qg::_ do
let_td)l 0
where Ay _ = pg" _t(eg”_ — dy"). The normalization constants are
oo = kT _{(k§L ) + 1+ (57— —diT )]} (14)
and ky" _ = (eg”_ +dy" _)(eg__ —dy” _) — 1. The wave function corresponding to this LL is

a mixture of the n = 0 and n = 1 conventional (nonrelativistic) Landau functions ¢ and ¢;. For
A = A. = Ay =V = 0Eq. (13) gives the eigenfunctions for bilayer graphene [119, 118].

In Fig. 3.2 (left panels) we plot the spin and valley dependent LL spectrum, but independent
of ky, given by Eq. (8) versus the magnetic field B for V' = 0 and finite spin M, and valley M,
Zeeman fields. The marking of all curves is explained in the upper panel. We find the following: (i)
The energy spectrum grows linearly with B due to the huge band gap. (ii) For M, = M, = 0, all

LLs (n > 1) are two-fold degenerate corresponding to the two valleys including the n = 0 LL with
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Figure 3.2: Energy spectrum of bilayer WSes versus magnetic field B for M, #, M,, # 0. The left
panel is for the E, = 0 and right one for £, # 0, respectively. The upper panel explains the colour
and style assignments of the curves. The upper row of panels is for the LLs in the conduction band
and the last two rows of panels for the LLs in the valence band.

energies 63’; - eézf - 53:: .. and EO:T__ in both the conduction and valence bands. The LL with

energy 63’;_ = A+ s for n = 0 is doubly degenerate in the conduction band, i.e. e&i_ = 63:_'___
'l's+ '1'7_

and Eot— = Ep4— Further, in the valence band the n = 0 LL is two-fold valley degenerate, i.e.

'l's_

T+ = €0t and 63

T Ts_
80,_+

L =¢gg__. In this situation, interlayer splitting among the levels of WSe,
or MoS; bilayer is zero [152]. On the other hand, the intra-layer spin splitting in bilayer WSes is
significantly large given by 2., which can be clearly seen in the limit of vanishing B as compared
to bilayer MoS, [152]. (iii) For M, # 0, M,, # 0, shown in the left panel of Fig. 3.2, the spin and

valley degeneracies of all LLs (n > 0) are lifted i.e., the energies of the spin-up (-down) LLs at

the K valley are different than the spin-down (-up) ones at the K’ valley in contrast to the B = 0
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case. (iv) The valley Zeeman term M, lifts the spin degeneracy as well as the valley degeneracy
in both the conduction and valence bands. This effect on the LLs, due to the M, term, is absent in
bilayer MoS3 [152]. Notice that the inter-layer splitting among the levels of bilayer WSe, vanishes
in contrast to bilayer MoS» [152].

We show the LL spectrum in Fig. 3.2 (right panels) for finite field E, (V = 12 meV) including
the M, and M, terms. We deduce the following: (i) The field E, modifies the interlayer splitting,
e.g., it makes it 24 meV and 23 meV in the conduction and valence bands, respectively. (ii) The spin
and valley degeneracies of all levels (n > 0) are completely lifted, i.e., the energies of the spin-up
(T) states at the K valley and a spin-down (|) ones at the K’ valley are totally different in contrast
to the B = 0 case. Moreover, we can adjust the LL separation by varying the external electric and
magnetic fields. This becomes important when we tune the onset frequency of the magneto-optical

conductivity.

3.3.2 Density of states

The density of states D(E) is given by

DE)=—= Y 6&©E-E), (15)

n T, 8,1, Ky
where Sy = L,L, is the area of the system. The sum over k, can be calculated by using kg =
L, /21% and the prescription Zky — (Ly/27)gsgo j‘,’m dky = (So/Do)gsgv. wWith Do = 2ml%;
gs(gv) denotes the spin (valley) degeneracy. In this work we take g; = g» = 1 because the spin
and valley degeneracies are lifted. Er at constant electron concentration n, we obtain E'r from the

relation

ne = / D(E)f E)dE_gsf’" S B (16)

Do N,T,8,[1

where f(En,) = 1/[1 + exp[B8(En} — Er)]] is the Fermi-Dirac function and 8 = 1/kpT.
The black solid curve in the upper panels of Fig. 3.3 shows Er, obtained from Eq. (16) numeri-
cally, versus B for E, = 0. The field B lifts the spin and valley degeneracies of all LLs (n > 0), i.e.

the spin-up and spin-down electrons in the K valley have different energies than the corresponding
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Figure 3.3: Fermi energy Ep versus B for an electron density ne = 4.3 x 10'3 cm™2. The upper
panels are for V' = 0 meV and the lower ones for V' = 12 meV.

ones in the K’ valley. This leads to additional intra-LL small jumps in Fig. 3.3 (upper panels) that
are enhanced, as shown in the lower panels of Fig. 3.3, when a finite electric field E; is applied.

We evaluate D(E) per unit area assuming a Gaussian broadening of the § function in Eq. (15).
At zero temperature we have D(E) = (gsgu/Dol'v2r) Y. - exp[—(E — E¢)?/2T'%], where T is
the width of the distribution and |() = |n, p, s, 7, ky). In Fig. 3.4 we plot the dimensionless D(E)
versus the field B in the conduction band for two different values of E, and I'. The Shubnikov-
de Haas (SdH) oscillations are clearly shown. The level broadening effect becomes significant for
weak B fields due to the small LL separation. On the other hand, this effect may become very weak
in strong fields B for which the LL separation is strong and I" < v/B.

Looking closely at Fig. 3.4 we observe a beating of the SdH oscillations at low fields B and

a pronounced splitting at higher fields. The beating of the oscillations is observed for B < 10
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Figure 3.4: Dimensionless density of states, at the Fermi level, as a function of field B for LL
width T' = 0.05v/B meV (black curve) and T' = 0.1v/B meV (red curve). The upper panels are for
V' = 0 and the lower ones for V' = 30 meV.

T, with E; = 0, and for B < 5 T with E; # 0. Away from these ranges the beating pattern
is replaced by a split in the SdH oscillations. This behaviour is explained by the closeness of the
oscillation frequencies of the SOI-split LLs. The field B enhances the splitting in the conduction
band by mixing the spin-up and spin-down states of neighbouring LLLs into two unequally spaced
energy branches. This is also the case of a 2DEG [146]. This beating pattern occurs when the level
broadening is of the order of fiw,; it is replaced by a split in the oscillations when the SOI becomes
weak for large fields B. We further notice that the beating pattern shifts to lower magnetic fields for

finite electric field energy V.
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Figure 3.5: Real part of the longitudinal optical conductivity 07¢(w) versus the photon energy i
for a field B = 30 T. The solid black and dotted red curves are for V = 0 and V = 12 meV,
respectively. The inset shows Rea”%(w) for higher fiw. The spin assignment of the curves follows
from Eq. (22).

3.4 Conductivities

We consider a many-body system described by the Hamiltonian H = Ho+H;—R - F(t), where
Hy is the unperturbed part, H7 is a binary-type interaction (e.g., between electrons and impurities
or phonons), and —R - F(¢) is the interaction of the system with the external field F(t) [128]. For
conductivity problems we have F(t) = eE(t), where E(¢) is the electric field, e the electron charge,
R = }_,. . and r; the position operator of electron i. In the representation in which Hp is diagonal
the many-body density operator p = p%+ p"? has a diagonal part p¢ and a nondiagonal part p"?. For

weak electric fields and weak scattering potentials, for which the first Born approximation applies,

d

the conductivity tensor has a diagonal part aﬁv and a nondiagonal part a::ﬁ LOuy = crﬁl, +Oys sV =
I, Y.
In general we have two kinds of currents, diffusive and hopping, with Oﬁv = aﬁif + crﬁ?f, but

usually only one of them is present. When a magnetic field is present we have only a hopping current

since the diffusive part crfff,f vanishes identically due to the vanishing velocity matrix elements as is
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Figure 3.6: As in Fig. 3.5 but for two different values of E'r as indicated.

evident, for elastic scattering, by its form [128]

- k-
where 7, is the momentum relaxation time, w the frequency, and v, the diagonal matrix elements
of the velocity operator. Further, f¢ = [1 + exp B(E; — Ep)]™! is the Fermi-Dirac distribution
function, § = 1/kgT, T the temperature, and Sy the area of the sample. In our case vpe =0 and
the conductivity given by Eq. (17) vanishes.

The ac hopping conductivity cr‘”‘(w) is given by Eq. (2.64) of Ref. [44]. In strong fields B it is
much smaller than the contribution G.uw given below, and is neglected. Regarding this contribution
L?ﬁ one can use the identity f-(1— fe)[1 —exp B(E¢ — E¢r)] = fe — fer and cast the original form

in the more familiar one [128]

(fe = fer)vueervuce
opd(w) = (18)
#2;‘? (Eg — Ecr (EC — E(! 4 hw — EF)

where the sum runs over all quantum numbers [() = |n, u,s,7,ky) and |(') = |n',p', 8", 7", k7))



with ¢ # ¢’. The infinitesimal quantity € in the original form [128] has been replaced by I'c =~ T’
to account for the broadening of the energy levels. The familiar selection rules n’ = n + 1 are
obtained through an evaluation of velocity matrix elements, see Eqgs. (20)- (21) below. In the zero-
temperature limit the Fermi function can be replaced by a step function. Further, we assume positive
values of Ep, so that all transitions to negative levels are Pauli blocked. In Eq. (18) v,¢¢ and Vpcer
are the off-diagonal matrix elements of the velocity operator. They are evaluated using the operator

expressions vy = 0H /0p, and vy = OH /Opy, and are given in terms of the Pauli matrices o, as

Oy 0 Oy 0
Uy = TUF , Uy =UF , (19)

. _ 8T _ 8T s, &7 s, 1.8,1
With e, g, = €np — d5 ,Engy, = €np —dy and Q = VRO uCp/ 0s¢.and R = kyy, kn,”u,

the results are

1R 1R
(Clve |¢) =7Q[Vn+T ( e Em)én,nw_l +vi ( o E;w)én,wﬂ}, (20)
1 R

(1) = TiQVATT (4 Vot Vi1 (o + o )onmsa].  @D)

!
En,dg €n,dy €n,dy En,d4

where p = {p1,p2}. Using Egs. (20), (21), and (18) we obtain the real and imaginary parts of

the conductivities ¢7¢(w) and crﬁ’}f,(w) which for convenience and later purposes we write, setting

Apni1 = Enp — si’;m, as
Reo??
2
e oT 1 1
— ¥ ml| R ] @
2h 8,T M1t s (AN,R‘H + w) +1I7 (Aﬂ,n‘f'l - w) + 12
Irno;‘yd
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Figure 3.7: (B, w) Contour plot of the real part of the longitudinal conductivity for E; = 0 (upper
panel) and E, # 0 (lower panel). The level width I is set to 0.4v/B meV.

Imo™d
-5 > Bontt +0 Bnnt1 =@ (23)
~ 2k LT N e T (A il
S,T,ﬂ,ﬂ-,ﬂ.’ ( n,n+1 + w) + ( nn+l — w) +
Reoﬁg
with
8,T 71.8T 8T ST
o = m+1) (0 )2 { T Pt 1 ]2 F(Enp) — f(Epyq ) (24)
ThHH RSNt En,dy Entl,da Enp — Ef;,’:tl,p;

Here @ = w/w, and I' = T'/fw,. The Fermi Dirac function at T = 0 becomes the Heaviside
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Figure 3.8: As in Fig. 3.5 but for Imo,,.

step function ©(z) and enforces the Pauli exclusion principle for optical transitions, i.e., transitions
occur only between the occupied n state and the unoccupied n’ one. The n = 0 contributions to
the absorptive conductivity Eq. (22) are evaluated separately. The results are given by Eq. (108) in
Appendix A.

Notice that in the limit w — 0,I" — 0 we have

Re ol = Im 074 = Im o1 = 0, (25)
82 ??B,T
Reold =" Y~ i (26)
Y
h 35:“»“»“" An,n+1

The electron energies are different than those of the holes due to A, the different values of the
SOI and interlayer hopping (see Fig. 3.1). The terms intra-band and inter-band transitions refer to
the bands in the absence of the magnetic field (B = 0). In bilayer WSes they belong to totally

different regimes because of Aw,. << A: the intra-band transitions fall in the microwave-to-THz



regime and the inter-band ones in the visible frequency range because of the large value of the gap
A. Unlike bilayer graphene-like 2D systems, the asymmetry between the CB and VB in the bilayer
WSes spectrum, due to the huge band gap and strong SOI, has important implications for the peaks
seen in Reotd(w) and Imo7d(w) as functions of the photon energy (fiw).

The absorptive part of the longitudinal conductivity is shown in Fig. 3.5 for a temperature T' = 0
K and a level broadening I"' = 0.04v/B meV. A larger magnetic field (B = 30 T) has been used for
well-resolved LL separation. The black solid and red dashed curves are for E; = 0 and F, # 0,
respectively. Here, we took Er = 0 eV in the gap. The optical selection rules allow n to change
by only 1, see Eqgs. (20) - (21). In addition, one needs to go from occupied (n) to unoccupied (n')
states through the absorption of photons with transitions allowed only between same-spin states.
For E, = 0 and E, # 0, the series of peaks occur at fiw = —E:’;l,_,m + E;:ZFM and hw =

_Ez:i,NQ + E:L e for integer n. This series of peaks corresponds to the allowed inter-band
transitions in the LL structure. As we can see from Fig. 3.5, the peaks are split due to the lifting of
the spin and valley degeneracies in the presence of B and absence of E, in contrast to the B = 0
case. The spin-up transitions —n — (n+1) in K (K’) and spin-down ones n — —(n+1) in K (K’)
are suppressed as seen by the small peaks in Fig. 3.5. On the other hand, the large peaks correspond
to the spin-down transitions —n — (n + 1) in K (K’) and the spin-up ones n — —(n + 1) in K
(K").

When the electric field is applied, the splitting of the peaks increases and the peaks move to
lower energies as well as to higher energies. Further, the spin and valley responses switch their
labels. The shifting of peaks to lower energies signals the reduction of the band gap between CB
and VB as can be seen in Figs. 3.1 and 3.2. Moreover, the shifting of the peaks to higher energies
signals an increase of the gap between the E:TH(E;S;Z_) and E;;_ (E::i+) bands (see Figs. 3.1
and 3.2). As the electric field is turned on, the intensity of the peaks is reduced due to a redistribution
of the spectral weight between the peaks as shown by the red dotted curve in Fig. 3.5. In contrast
to monolayer WSes [53], oxz doesn’t show any beating pattern at higher photon energies (not
shown here) due to the well separated spin-up and spin-down states which do not mix at these

frequencies. Another noteworthy point is that peak features in bilayer WSes are completely different

than in bilayer graphene [ 160] due to the lack of perfect symmetry between the positive and negative
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Figure 3.9: The real part of oz, (upper panel) and the maginary part of oy (lower panel) vs fw for
V =0, Er = 0meV, B = 30T, and two values of the level width I".

branches (see Fig. 3.1).

A magnetic and electric control of the valley polarization can be clearly seen as the correspond-
ing peaks in two different valleys appear at different frequencies. In addition to the valley-controlled
transport, the peaks in each valley split as a result of all LLs becoming spin split. The spin and val-
ley splittings can be understood with the help of Eq. (22) and the corresponding energies. One
noteworthy feature, that becomes clear by comparing the black and red curves of Fig. 3.5, is that
the peaks are well separated for F, # 0 in both spin and valley spaces. In massless Dirac systems
[161], the spin and valley peaks occur at the same frequency and hence a series of four peaks is
replaced by one peak in contrast to bilayer WSe, shown in Fig. 3.5. It is obvious from Fig. 3.5

that real absorptive part of oz, of the bilayer WSe has a much richer structure than its monolayer

39



n I I I I

- -1 - -
0.4}— : 3 T e
N ; :
L 2 E |
- o F i -
03— " °F E —
= C YA \ R O V=0 meV ]
< F 1%55 1.615 -
Soaf L &
B u A :~:_
0.1}— i ]
- . I ‘. =

010.50 1.5 1.54

ficw (V)
0.4 LI LI I LI L L I | I B | I I L L L L I LI LI I L |
=~ B I s s e LR a -1
: 4 ! 1 i J o, :
5 # H 1
B :“E: [ 4 E [ i ] 1
03— 2 [ : : b ] —
oL LT L 1 7
= r ! G Je k) : V=30 meV ]
Bool— 'ss 157 1.59 1.61 _]
= L Hiew (eV) i
5 L .
B : -
01—

%2 1505 1525 1.545
fico (eV)

1.465 1485
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counterpart [53].

The effect of varying E'r is shown in Fig. 3.6 for E, = 0. The value Er = 0.8358 eV is situated
between the n = 0 and n = 1 LLs, the first four peaks occurring at fuw < 1.53 eV are completely
removed due to Pauli blocking while all others (fww > 1.53 eV) occur at the same energies as in
Fig. 3.5. This behaviour is opposite to that of other 2D materials [161, 162, 163, 164] like graphene,
silicene, a — T3 and topological insulators, in which the spectral weight of the inter-band peaks is
continuously redistributed into the intra-band ones. This shows how the conductivity changes as
Er moves through the LLs. Further, for E, # 0 the lower peaks also disappear as Er moves to

higher LLs.
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For simplicity, we show a (B, w) contour plot of Reoy, only for the K valley in Fig. 3.7 versus
B for two values of V: V' = 0 meV (upper panel) and V = 30 meV (lower panel). In bilayer
WSes, as might be expected from Eq. (8), all observed transition energies behave linearly with the
magnetic field (oc #%w2). In contrast, in bilayer graphene [160] this occurs only for weak B fields,
but it switches over to a v/B dependence as the corresponding energy goes out of the parabolic
band region. Also, the slope of the transition energies depends on the LL index n. In weak fields,
the peaks are smeared out more easily in bilayer WSes than in its monolayer counterpart [53]. As
expected, for V' # 0, the peaks move to lower values of fiw due to the reduction of the gap between
the CB and VB (cf. lower panel of Fig. 3.7).

Figure 3.8 gives results for the Im o4y as a function of energy fuw in eV. The symmetry between
positive and negative branches is no longer observed due to the A and SOI terms in Eq. (6), and the
peaks corresponding to the transitions —n — (n + 1) and n — —(n + 1) have slightly different
energies. Also, we can see the splitting of the conductivity peaks due to these transitions. The
strength of the splitting directly reflects the energy difference between the CB and VB branches for
the same n. The consequences of this difference are even more striking for the Hall conductivity
than it is for the longitudinal one. So, we can see this mismatch as emergence of positive and
negative oscillations in conductivity. This behaviour can also be understood by the negative sign
between the two terms of Eq. (22). For the massless Dirac case, the negative and positive peaks
would have the same energy and hence cancel out perfectly. Furthermore, there are no downward
peaks in the range fiw < 1.53 eV for E, = 0 but there are when the field E; is present.

In Fig. 3.9 we show the dependence of Reo, and Imoy,, on the values of I'. The solid black
curve is for broadening I' = 0.04y/B meV and the red dotted one for T' = 0.08y/B meV. The
separation of the split peaks becomes narrow with increasing broadening I'. By further increasing
I', the splitting of the peaks disappears because the broadening covers the spacing between the spin-
split LLs. To retain these peaks one has to apply a magnetic field for which the spin splitting exceeds
the LL broadening I o< v/B. In other words, a large I" smears out the peaks.

The peak structure just described above for Re 0™¢(w) and Im cr;}f,(w) importantly affects the
behaviour of the conductivity for right (+) and left (—) polarized light. For real experiments that

probe the circular polarization of resonant light, as in the case of the Kerr and Faraday effects, one
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Figure 3.11: Power spectrum vs fiw for V' = 0 (black solid curve), V = 12 meV (dotted red curve),
and field B=30T.

evaluates the quantity o+ (w) given by

0+(w) = Rea™(w) + Imog‘yd(w), (27)

with the +(—) sign corresponding to the right (left) polarization. In Fig. 3.10 we show o_(w)
(dotted red curve) and o (w) (solid black curve) as functions of the frequency, for Er = 0.0 eV
in the gap, with £/, = 0 (upper panel) and E, # 0 (lower panel), using the parameters of Fig. 3.5.
As seen, there is a direct correspondence between these results and those of Figs. 3.5 and 3.8. The
heights of the peaks for £, = 0 and E, # 0 in o_(w) are slightly higher than those in o4 (w). Also,
note that there is a double split-peak structure rather than a four split-peak structure as in o, (w).
The peaks of o_(w) and o4 (w) are displaced in energy with respect to each other. Similar to the

behaviour of Rea”4(w) and Imar;.,"gj‘}E

(w), the spin and valley splittings increase with E,.
The difference between o_(w) and o (w) is also reflected in the power absorption spectrum
given by

P(w) = (B/2)[022() + 0y(w) — i0ya(w) + i0ry ()] (28)
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nd

wv Since the component crff”, @ = z,y, vanishes. The

We recall that oy, = Jﬁv + JES =
component a;"g(w) is given by 07%(w) and Imcr;}g(w) = Ima;}:f(w). The spectrum P(w) is shown
in Fig. 3.11 as a function of the photon frequency for £, = 0 and E, # 0. Given that Im Jgg(w)
is the negative of Re o7¢(w), see Eq. (22), the peaks in it are essentially the same as those in the
longitudinal optical conductivity but positive and negative. Similar to Reo”?(w) and Ima;"yd(w),
spin and valley splittings can be clearly seen in Fig. 3.11 and for E, # 0 the separation between
them increases.

The semiclassical limit of the magneto-optical conductivity occurs when the magnetic field is
very weak and the spacing becomes inconsequential. This occurs for a large Fermi energy, Er >
e‘g:;_. For Er > 0, only intra-band transitions are obtained between the nth and (n + 1)th LLs in
the CB. For n >> 0, consider Ep ~ Ej, 1 ,, lies between the nth and (n + 1)th LLs. In this limit,
the energy spacing is linear in B in contrast to the /B behaviour in Weyl semimetals [165]. The
pertinent energy difference is En 4+ y, — Ent1 4y, = —Hhwe.

We show the results of Rea”%(w) for the intra-band case in Fig. 3.12. We see from the upper
panel that there is a spectral weight redistribution to a strong intra-band response when Er in-
creased. Furthermore, the optical spectral weight under these curves increases with E'r in contrast
to topological insulators [161]. Further, a double peak response is present in the strong intra-band
response as the dashed red curve in the upper panel shows. This results from the spin splitting of the
LLs that renders the spin levels at a given valley unequal in energy. Also, the separation between
the double peaks (red dashed curve) increases with Er. Similar to the monolayer WSes [53], these
peaks lie in the range of microwave-to-THz frequencies and their height is larger than that of the
inter-band transitions shown in Figs. 3.5 - 3.11. Further, when we increase the magnetic field B, as
seen in the lower panel of Fig. 3.12, the intra-band peaks move to higher energies and their height is
reduced in contrast to massless Dirac materials [161, 162]. For large Er the effect of E, becomes
inconsequential. These results are consistent with graphene-like 2D systems in which the relevant

spectral weight increases with Er, while the optical features in these 2D systems lie only in the

THz regime [161, 162, 163, 164, 165].
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Figure 3.12: (a) Intra-band limit of the real part of the longitudinal conductivity versus photon
energy fiw for B = 30 T and two values of E. (b) As in (a) for four values of B and Er close to
860 meV for B # 30 T. The energy hw is measured from the bottom of the conduction band.

3.5 Summary and conclusions

We have shown how the gap A and the SOI strength modify the electronic energy dispersion
in bilayer WSe, , unlike bilayer graphene [119, 118], in the absence and presence of magnetic and
electric fields. For B = FE, = 0 and B # E, # 0, the energies of the levels in the conduction and
valence bands no longer mirror each other, cf. Figs. 3.1 - 3.2. Further, we have studied the spin- and
valley-controlled magnetotransport in the presence and absence of E,. We point out that inter-band
optical transitions from level n in the valence band to level n + 1 in the conduction band no longer
have the same energy as those from level n + 1 to level n; this splits the corresponding absorption

line in the real part of the longitudinal conductivity. Also, the optical spectral weight of these lines
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is different (see the large and small peaks of Fig. 3.4) from that in graphene. The energy of the
splitting is related to the mismatch in energy levels between the conduction and valence bands, see
Fig. 3.2. A similar splitting was found for the imaginary part of the Hall conductivity.

Due to the large A, A; and A, terms, the conductivity peaks in WSe, depend linearly on B,
contrary to bilayer graphene [160], and reflect the equidistant LLs in each band. In addition, the
onset energies of the spin- and valley-dependent transitions reflect the energy difference between
the LLs and are controlled by the magnetic and electric fields. The other determining factors are
the band gap and the SOI strength. Accordingly, we may expect that a careful tuning of electric and
magnetic fields will determine the value of band gap and SOI strength. However, for the absorption
of circularly polarized light, two-peak structures are recovered but in this case there is a shift in the
energy position and amplitude of the lines between right and left polarizations in contrast to what is
found when the band gap and SOI terms in the electron dispersion curves are zero for graphene.

The semiclassical limit is affected by the magnetic field. This significantly shifts not only the
intra-band peak to higher fiw values, but also reduces the peak amplitude in contrast with graphene.
The lineshape associated with the intra-band magneto-conductivity is significantly changed when
the Fermi energy is varied. The optical spectral weight under these curves is found to increase in
contrast to topological insulators and similar massless Dirac systems [161]. These novel findings
may be pertinent to the development of spintronic and valleytronic optical devices based on bilayer

TMDCs.
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Chapter 4

Influence of interface induced
valley-Zeeman and spin-orbit couplings
on transport in heterostructures of

graphene on WSe-

4.1 Abstract

We investigate the electronic dispersion and transport properties of graphene/WSe; heterostruc-
tures in the presence of a proximity induced spin-orbit coupling (SOC) using a low-energy Hamilto-
nian, with different types of symmetry breaking terms, obtained from a four-band, first and second
nearest-neighbour tight-binding (TB) one. The competition between different perturbation terms
leads to inverted SOC bands. Further, we study the effect of symmetry breaking terms on ac
and dc transport by evaluating the corresponding conductivities within linear response theory. The
scattering-independent part of the valley-Hall conductivity, as a function of the Fermi energy Er, is
mostly negative in the ranges —Ap < Er and Erp > A when the strength Ap of the Rashba SOC

increases except for a very narrow region around Er = 0 in which it peaks sharply upward. The
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scattering-dependent diffusive conductivity increases linearly with electron density, is directly pro-
portional to Ap in the low- and high-density regimes, but weakens for Ap = 0. We investigate the
optical response in the presence of a SOC-tunable band gap for variable Er. An interesting feature
of this SOC tuning is that it can be used to switch on and off the Drude-type intraband response.
Furthermore, the ac conductivity exhibits interband responses due to the Rashba SOC. We also show
that the valley-Hall conductivity changes sign when E' is comparable to A and vanishes at higher
values of E'r. It also exhibits a strong dependence on temperature and a considerable structure as a

function of the frequency.

4.2 Introduction

Two-dimensional (2D) materials have become a hot topic in solid state physics, especially since
the discovery of graphene, both theoretically and experimentally because of their prominent me-
chanical, optical, electrical and magnetic properties [265]. Recently graphene has attracted a lot
of attention in the field of spintronics due to its large electronic mobility, low spin-orbit cou-
pling (SOC), negligible hyperfine interaction and gate tunability [266]. For a clear example, it
has been proven that graphene exhibits a very long spin relaxation length even at room temperature
[268, 269]. Due to the weak SOC though, it is not a suitable candidate for the observation of im-
portant spin-dependent phenomena including the spin-Hall effect [271] and anomalous Hall effect
[272].

To render graphene useful in spintronics, several experimental groups used different techniques
to tailor the SOC strength in it through coupling with foreign atoms or materials [273, 274, 276,
175, 176, 177, 178], such as graphene hydrogenation [179, 278] or fluorination [181] as well as
heavy adatom decoration [182, 183]. However, these approaches not only reduce the transport
quality, but also make it difficult to reproduce [179, 278] and detect [181, 182, 183] the induced
SOC. To overcome these difficulties, graphene is recently grown on different novel 2D materials,
which are ideal candidates to induce SOC via proximity effects [184, 185, 186, 187, 188, 1809,
190]. Hexagonal boron nitride (BN) has a weak SOC, and therefore, is not a suitable substrate

for the proximity effect [191]. The family of 2D transition metal dichalcogenides (TMDCs) are
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the next best candidates, which have large direct band gaps and giant intrinsic SOC [44, 192]. In
this respect, graphene on TMDCs has been investigated for transport [267, 194, 195] as well as
intriguing technological applications, including field-effect tunnelling transistors (FETTs), radio-
frequency oscillators, and efficient phototransistors [196, 82, 197, 198, 76, 80]. Also, the proximity-
induced SOC in graphene/TMDCs heterostructures has recently been shown to depend [199, 200]
on the twist angle between the lattice of graphene and that of the TMDC.

In addition, it has been found in room-temperature experimental studies of the spin-Hall effect
that few-layer WS, induces a large SOC in graphene, about 17 meV [201] as compared to the very
weak one in pristine graphene [202]. Also, it has been unambiguously demonstrated experimentally
that a room-temperature spin-Hall effect in graphene is induced by MoSs proximity [203]. More-
over, when graphene is placed on a multilayer WSs substrate, an additional valley-Zeeman SOC,
due to the broken sublattice symmetry, along with the Rashba SOC have been predicted theoretically
and observed experimentally [190, 204, 205, 206]. This SOC induces a spin splitting of degenerate
bands, with out-of-plane spin polarization at the K and K’ points, and an opposite spin splitting in
different valleys. Analogous to the Zeeman splitting, the SOC is termed valley-Zeeman because the
effective Zeeman fields are valley-dependent. It is the dominant SOC in TMDCs and is also pre-
dicted to be induced in graphene on TMDCs [190, 204, 205, 206]. To our knowledge though, apart
from some spin-transport studies [207] and two experimental magneto-transport studies [208], nei-
ther ac and dc scattering-dependent charge transport nor the simultaneous effect of valley-Zeeman
and Rashba SOCs have been theoretically studied in graphene on TMDCs.

In this work we study in detail the effect of the valley-Zeeman and Rashba-type SOCs on ac
and dc transport in graphene/W Ses heterostructures. There results a Mexican hat dispersion [209]
contrary to other family memebers of TMDCs , e.g., MoSa, WS4 etc. [210]. Such a dispersion leads
to more features in the optical conductivity when the Fermi level moves between the minimum and
maximum of the Mexican hat. Also, we compare our results with those for pristine graphene.

In Sec. 4.3 we specify the Hamiltonian and obtain the eigenvalues and eigenfunctions in the
presence of symmetry breaking terms. In Sec. 4.4 we present general expressions for the conduc-

tivities and provide numerical results. Conclusions and a summary follow in Sec. 4.5.
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(a)

Figure 4.1: (a) Real-space graphene with @; and @» the primitive lattice vectors. (b) Graphene’s
first Brillouin zone and high symmetry points I', K, and M in reciprocal space. Its primitive lattice
vectors are b; and by. (c) Schematic representation of graphene on a WSes substrate.

4.3 Formulation

Graphene is a 2D, one-atom thick planar sheet of bonded carbon atoms densely packed in a
honeycomb structure as shown in Fig. 4.1 (a). The lattice structure can be viewed as a triangular
lattice with two sites A (red filled spheres) and B (blue filled spheres) per unit cell. The arrows
indicate the primitive lattice vectors @ = a(1,0) and @ = a(1/2,v/3/2), with a the triangular
lattice constant of the structure, and span the graphene lattice. Further, @; and @ generate the re-
ciprocal lattice vectors of the Brillouin zone, cf. Fig. 4.1 (b), given by by = 47/+v/3a(v/3/2, —1/2)
and by = 47 / \/ga(O, 1). From the explicit expressions of by and by we find the two inequivalent
Dirac points (valleys) given by K = (47/3a)(1,0) and K’ = (47/3a)(1/2,/3/2).

The monolayer graphene system is described by the four-band, second nearest-neighbour tight-

binding (TB) Hamiltonian [188, 209, 211]

21 -
H=- Z tciacja + Z Ancic;facm + Z AngIQCja! + 3 Z Z c;facja: Ar(s x dij)z]aa’-
(i,5) i (.30 (i,5) cc
(29)

Here Ajj = iA¢,vijsz/3 V3, c;f o, creates an electron with spin polarization « at site 7 that belongs to
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Figure 4.2: Energy dispersion in a graphene/WSe, heterostructure using the TB model (29) along
the path —M — —K —T' -+ K — M for (a) Ac,, Ar = 0, (b) A¢; # 0,Ar =0, (c) A¢; =0, AR #
0, and (d) A¢,, AR # 0.
sublattice A or B, and (i, j) (((Z, 7))) runs over the nearest (second nearest) neighbouring sites. The
second term is a staggered on-site potential, which takes into account the effective energy difference
experienced by atoms at the lattice sites A (n,; = +1) and B (n; = —1), respectively. The third and
fourth terms represent the proximity-induced enhancement of the SOC due to a weak hybridization
with the heavy atoms in WSes. The third term is the valley-Zeeman SOC where v;; = +1, if the
second nearest hopping is anticlockwise with respect to the positive z axis, and v;; = —1 if it is
clockwise. The last term is the Rashba SOC parametrized by Ap. It arises because the inversion
symmetry is broken when the graphene sheet is placed on top of WSes as shown in Fig.5.2 (c).
Also, djj = dj/|d;j|, where s = (sg, sy, s;) is the Pauli spin matrix and d;; the vector connecting
the sites z and 7 in the same sublattice.

In Fig. 4.2 we plot the numerically evaluated energy dispersion of Eq. (29) to better understand

the characteristics of the induced intrinsic SOCs. Near the K point, for A;; = Ag = 0, the band



structure has linear band crossings near k£ = 0 as can be seen from Fig. 4.2 (a). For A;, # 0 and
Ar = 0 the spectrum is gapless and the spin degeneracy is broken away from k£ = 0, see Fig. 4.2
(b). Further, if only Ap is present, the spectrum is also gapless, cf. Fig. 4.2 (c). However, a gap is
created when both A, and Ag are finite, cf. Fig. 4.2 (d).

We analyze the physics of electrons near the Fermi energy using a low-energy effective Hamil-
tonian derived from Eq. (29) and a Dirac theory around the K and K’ valleys [188, 204, 206]. It
reads

H,"::, = vp(Noepy + oyDy) + Ao, + Aogsn + Ar(18y0z — $20y). (30)

Here 7 = +1 denotes the valleys K and K’, A is the mass term that breaks the inversion symmetry,
A = ), is the valley-Zeeman SOC strength, Ag the Rashba type SOC strength, (o, oy. 02) the
Pauli matrix that corresponds to the pseudospin (i.e., A — B sublattice), og is the unit matrix in
the sublattice space, and vr (8.2 x 10° m/s) denotes the Fermi velocity of Dirac fermions. For
simplicity, we neglect the intrinsic SOC A; and consider only the Ap > )\; case. Also, we expect
that small but finite values of \; do not qualitatively affect our results as long as A >> A;. Further,
we will also neglect the A term in our numerical treatment because A >> A.

Upon diagonalizing Eq. (30) we obtain the dispersion
Ee(k) = [[A% + )2 + B202k? + 20% + 25V T |1/, 31)

where T = A% (A% — 20A) +A%02k? (A% + A2) +A2A2 and € = {I, s}. Further, [ = +1(—1) de-
notes the conduction (valence) band and s = +1(—1) represents the spin-up (spin-down) branches.
Notice that Eq. (31) has a valley degeneracy despite the valley-Zeeman term. The normalized eigen-

functions for both valleys are

1 —A?em
Nt Allei® N 1
£ £ ik-r — 3 ik-r
Ui (k) = —— T Y (k) = —= e, (32)
¢ *) V'S0 —iBgew ¢ *) VSo écge%d’
—nge%ﬁb —éB?e@“’fj
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Figure 4.3: Low-energy dispersion in a graphene/WSes heterostructure for A = 0 and different
combinations of A and Ag.

respectively, with

NZ =1[1+(A)% + (BD? + (¢ 77, (33)
So = Ly Ly the area of the sample, and ¢ = tan~"'(ky/ke). Further, A7 = (E! —nA —n\)/horpk,
B? =2\p [(E?)2 —(A+ A)Q]/ﬁvpk[(E? + nA)? — A? — B?v}k?], and Cg = QAR(EE —nA —
n\) /(B +n))? — A% — R vgk?].

We plot Eq. (31) in Fig. 4.3 for different combinations of the A and A terms whose realistic
values fall in the ranges 5 — 6 meV and 10 — 15 meV, respectively, as determined experimentally in
Ref. [212]. Here, the larger values of SOCs are used just to see well-resolved bands splitting. For
A = Ar = 0, the band structure has linear bands crossing near k = 0 for both valleys as can be seen

from panel (a). For A # 0 and Ar = 0, the energy dispersion is spin non-degenerate and valley

52



1 _2F T T T T E I , T T T T ﬂ

L (A AR)meV : 1
—— (00 ¥ §

R 7

08755 0.00 0.02
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(A, Ar) = (3,6) meV. All cases are for A = 0.

degenerate with a gapless behaviour as shown in panel (b). Further, the energy dispersion shows
the gapless behaviour for A = 0 and Ap # 0 whereas it is spin-split as seen from panel (c). How-
ever, for A and Ap finite, the Rashba coupling not only creates a gap between the conduction and
valence band, by mixing the spin-up and spin-down states, but also produces an avoided crossing,

see Fig. 4.1 (d). The analytical form of the momentum kq, at which an avoided crossing occurs, and

of the gap Ey = A are

1 (A2 +AA)(AZ +2X% — AA)71/2
by — [( )(2 2\ )} 1 (34)
hop A2 4 )%
A2+ A(2) + A)q1/2
= . 35
A1 2/\3[ 22 2% ] (35)

The density of states (DOS) per unit area corresponding to Eq. (31) is given by D(E) =
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2 ¢ 0(E — E¢) with [() = [€,n, k). For Ag = 0 it takes the simple form

1 E E
D(E)= —— — —SAO(=—-sA—A 36
(E) 271'&21;%2&:‘5 X O —=A=4), 56)
and for A = A\ = 0 the form
1 E E
D(F)= ——— — —sA\p|O(=— — DAg). 37
() MQU%;‘E sAR|O(F — (s + 1)Ar) (37)

The DOS is shown in Fig. 4.4 for several values of A and Ar. The black curve is for monolayer
graphene, with A = Agp = 0, and is included for comparison. The E;_ and E, dispersions
give rise to a square root singularity at E = A\r/4/A2 + A% and a step at E = /A% +4)%,
respectively, as shown by the black dot-dashed curve of Fig. 4.4. The origin of the singularity is the
Mexican-hat energy dispersion, cf. Fig. 4.3. In addition, the step emerges from the bottom of the
E band and is a van Hove singularity associated with the dispersion flattening at this point. The

square root singularity is calculated near the Mexican-hat minimum E = A\g/4/A2 + A% at which

kh | 2m*
D(E)= —4/ — 38
(E) arh\| E — Ay’ (38)

with m* = Ap(A2 +2%)3/2 /202 \(A2 4 2)%,) the effective mass and B, _ = A + (A%/2m*)(k —

D(FE) reads

k1)? the energy. This singularity is similar to that of the one-dimensional density of states. In the
limit Ap = 0 and A £ 0, the DOS has a finite value A/Zwﬁ?v} at E = 0 (see blue dashed curve).
For E > ), it increases linearly with E. Also, for A = 0and Ag # 0, it is finite at & = O but has a

step at ¥ = 2\p, see the red dotted curve.

4.4 Conductivities

We consider a many-body system described by the Hamiltonian H = Ho+H;—R - F(t), where
Hy is the unperturbed part, H is a binary-type interaction (e.g., between electrons and impurities
or phonons), and —R - F(¢) is the interaction of the system with the external field F(t) [128]. For

conductivity problems we have F(t) = eE(t), where E(¢) is the electric field, e the electron charge,
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Figure 4.5: Valley-Hall conductivity versus Fermi energy at 7' = 0.5 K. For further clarity, the
range -0.35 meV < Er < 0.35 meV is shown in the inset without the Ap = 0 curve.

R= Zt r; , and r; the position operator of electron i. In the representation in which Hy is diagonal
the many-body density operator p = p®+ p" has a diagonal part p? and a nondiagonal part p". For
weak electric fields and weak scattering potentials, for which the first Born approximation applies,

the conductivity tensor has a diagonal part Jﬁv and a nondiagonal part o

ot the total conductivity is

T

d d
Oy = Opy + Jﬂuaﬁau =T,y

In general we have two kinds of currents, diffusive and hopping, with Oﬁv = aﬁif + crﬁ?f, but

usually only one of them is present. If no magnetic field is present, the hopping term o¢? vanishes

pv
identically and only the term aﬁf,f survives. For elastic scattering it is given by [128]

. _ B PR T N
(@) = 5 zcjfc(l OF (39)

with 7, the momentum relaxation time, w the frequency, and vy, the diagonal matrix elements of the

velocity operator. Further, f¢ = [1+exp[3(E¢ — Er)]] ! is the Fermi-Dirac distribution function,



Table 4.1: Band gap energies involved in optical transitions, cf. Fig. 4.7, for A = 8 meV,
Ar = 6 meV, and two values of Er. Also, M = \/()\2+/\fQ)J‘_E'§?—)v.2)v.%2 and L =

VAR + 2+ 03) (B} + A2 £ 2).

Transition energies Formula Erp =6.6meV FEp=9.6meV
Ay 2\\r/y/ 22 + 2} 9.6 9.6
As 20/ (4N + AXE + 9A20E) /(A2 + A3 412 412
Aoy 22 16 16
Ao 2,/A% + 422, 28.8 28.8
A, 2\/202 4+ 20} + B —2M —2L 322
Ay 2\/202 4+ 203 + B} +2M + 2L 50 574

B =1/kgT and T' the temperature.

Regarding the contribution crﬁ'ﬂ one can use the identity fe(1 — f¢r) [1 — exp|[f(E¢ — EC’)” =

f¢ — fer and cast the original form in the more familiar one [128]

o™ _ ihe? ) (fe = fer) vwee vueer (40
So ’(EC—Ecr EC—EC!—i—ﬁw %F)j
(#C
where the sum runs over all quantum numbers ¢ and ¢’ with ¢ # ¢’. The infinitesimal quantity e
in the original form has been replaced by I'¢ to account for the broadening of the energy levels. In
Eq. (40) vy¢er and vyeer are the off-diagonal matrix elements of the velocity operator. The relevant
velocity operators are given by v, = 0H /hdk, and v, = OH /hdk,. With ( = {l,s.k,n} =

{&, k,n} for brevity, they read

(¢lvz|¢") = vp NINJ(DZ €% + F e 7)o 10, (41)
(¢ vy [€) = ivp N{ NG (DY g™ — Fleie'®)di e, “2)
where Dg g = An, + B:C; 7C7 and Fggr A” + Bn, Cn.

We now calculate the conductivity oy, 4(j.) given by Eq. (40). Further, the velocity matrix

elements (41) and (42) are diagonal in k, therefore k& will be suppressed in order to simplify the
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Figure 4.6: Same as in Fig. 4.5 but for different values of 7.

notation. The summation in Eq. (40) runs over all quantum numbers £,£", , 7', and k. The parameter
I‘Eg,, that takes into account the level broadening, is assumed to be independent of the band and

valley indices, i.e., Fif}, = TI". Using Eqgs. (41) and (42) we can express Eq. (40) as

. e*h2v? (Nﬂ D2 (feh — fon) .
O'S’g(zw) — 'UF Z /dk +;’;)2 j—kIQ] [AEE, + fw — zl—‘)]
133 ‘55' 3
X [DE)? — (Fl)?] (43)

where A?gr = E?k — E?,k. Further, in the limit I’ = w = 0, Eq. (43) reduces to

e?h? (NN (foh — f2
o = UFZ/dkk (A’? /)2 fe) [(DZe)* = (Fe)”] “4)
3

In the valley-Hall effect electrons from regions near the inequivalent K and K’ valleys flow to
opposite transverse edges of the system, in the presence of SOCs when a longitudinal electric field

is applied [129, 130]. Further, one can probe the valley-Hall effect by measuring the Berry curvature
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Figure 4.7: Band structure near the Fermi energy Er in the presence of SOC terms for A = 8 meV
and Ar = 6 meV. The black dashed and dotted lines show Er = 6.6 meV and Er = 9.6 meV. The
various gap energies, indicated by A;, A,, etc. are displayed in table 4.1. Notice that for Er = 9.6
meV the energy A, does not contribute to any transitions.

associated with the Bloch electrons [59]. The valley-Hall conductivity corresponding to Eq. (43) is

defined by

ch (n=+,s,5")— "xd(n =—,s,5). (45)

ss!

The spin-Hall conductivity o,

gz corresponding to Eq. (43), is finite only when both the Kane-Mele

and valley- Zeeman SOCs are present. Hence, even in the presence of Rashba SOC, o7, vanishes
[203]. Since a spin current is defined by Js = (#/2e)(J+ — J;), we have to multiply o, by 1/2e

[271, 213]. Further, we find that charge Hall conductivity always vanishes

= omd(n,s,s)=0 (46)

nss’
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The component 074 (iw) is also obtained from Eq. (40):

TNTY2 1
nd - ie ﬁ vd / (N ) (fgk ferr) n .
one(iw) = dkk A, + hw — )
- % Ader[(Ade + Tiw)? +T72] Ae )

x[ gg!)2 (Fe)]- 47

For A = 0 and Ar # 0, Eq. (43) vanishes because the factor (Dg,gf) — (F, . E’) becomes zero,
whereas Eq. (47) survives. Moreover, in the limit A\ = Ap = 0, Eq. (47) reduces to the optical
conductivity of pristine graphene, which is independent of 7w and given by e2 /2h [214].

We now consider the diagonal component 0%, given by Eq. (39). Using Eq. (41), with £ = ¢/,
we obtain

2
(Ag + B?C;?) Tgk
1+ éwrgk

e%frﬁ

Lw) = SEEY [ ark (D0 - £
né

(48)

At very low temperatures we can make the approximation 3 fg}k(l - f?k) ~ 0(E¢ — Er) and
Tgk = ;?k_F‘ because all states untill the Fermi level are occupied.

In Fig. 4.5 we plot Eq. (43) in the dc limit (w = 0) as a function of Er forI' = 0.2 meV, A = 3
meV and for different values of Ag. When EF is in the gap, i.e., in the range —AAr/ A2 4 )‘212
< Ep < Mpg/4(/A2 + )%, the valley-Hall conductivity is quantized in units of 2e/2h similar to
the case of gapped graphene and topological insulators [130, 215]. The reason is that the factor
Y nee (NENE)? (D ) — (Fler)?)/(Ader)?, called Berry curvature ©(k), of Eq. (43) in the limit
w = 0 has a peak, which is well covered by occupied states for Ep > AAg/4/A%2 + A%. As a
consequence, the valley-Hall conductivity approaches the quantized value. For AAp/y/A2 + A%

< Er < Ap, o, decreases with E'r. Further, as can be seen, when Er becomes comparable to
AR, a sign change occurs in the conductivity which later vanishes at higher values of Er, Exp >>
\/A? + 4)%. The change in sign is due to the Rashba coupling between the spin-up and spin-down
bands. Furthermore, this off-diagonal term in spin space permits transitions between two conduction
spin subbands (see Eq. (31)), that could be interpreted as spin-flip transitions near the band touching.
In addition, the coupling strength between opposite spin bands becomes weaker as Ap increases.

As a result, the negative part of the conductivity due to the spin-up band diminishes and o, shows
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Figure 4.8: Band structure near the Fermi energy Er in the presence of SOC terms for A = 8
meV and Arp = 6 meV. Black and red arrows represent possible interband transitions. Red arrows
indicate the Drude type intraband transitions. (a) A #£ 0, AR, Er =0. (b)) A# 0, Ap =0, Er =1
meV. () Ag Z0, \, Er =0.(d) Ag # 0, \g =0, Ep = 2.8 meV.

the usual behaviour of gapped graphene and topological insulators [130, 215]. Further, as can be
seen in the inset, the band gap increases with Ap. Also, the value of the conductivity at Er = 0 is
due to the finite one of I' (= 0.2 meV); if we take I' = 0, the conductivity diverges at Er = 0 but
its overall qualitative behavior remains as shown.

We now take into account the effect of temperature 7" on the valley-Hall conductivity contained
in the Fermi function, which is independent of electron-phonon interaction in the first Born approx-
imation [128]. The valley-Hall conductivity is evaluated numerically with the help of Eq. (43) and
plotted in Fig. 4.6 for four values of T. We find a strong 7" dependence, particularly when the Fermi
level is in the gap. The quantization of the valley-Hall conductivity is destroyed at high values of 7".
This occurs when the thermal broadening kpT' becomes comparable to the energy gap. Notice that

the effect of temperature on o7,

ya 18 similar to that on the spin-Hall conductivity in a graphene/MoS2
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Figure 4.9: Real part of longitudinal conductivity versus photon energy at 7' = 0.5 K. The upper
panel is for Ar = 0 and the lower one is for A # 0.

heterostructure by considering valley-Zeeman and Kane-Mele SOCs in the absence of the Rashba
SOC.

Various transition energies, which play an important role in the optical conductivity, are shown
in Fig. 4.7 for A, A\p # 0. Their analytical expressions are displayed in table 4.1. Notice that for
Er = 6.6 meV, the energies A, and Ay, indicated with black arrows, become also important in
optical transitions, since E'r crosses the curve E4_ at two values of the momentum. However, for
Er = 9.6 meV, only Ay contributes to optical transitions because Ef cuts E,_ curve only at one

value of the momentum. In Fig. 4.8, we show possible allowed interband and intraband transitions
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Figure 4.10: Same as in Fig. 4.9 but for A\, Ap # 0.

by contrasting the case A # 0,Ag = 0 in the upper panels and the case A = 0,Ar # 0 in the
lower panels. The blue arrows represent the interband transitions £, _ — E, for0 < Ep < A
and 0 < Er < Ap as can be seen in Fig. 4.8 (b) and (d). The black arrows represent the allowed
interband transitions E_y — E; _(Eyy)and E__ — E4 (E4y) for Ep = 0and Ep # 0,
repectively, while the red arrows indicate intraband transitions that occur near E.

Now we present results for the real part of Eqs. (47) and (48) (Reo,, = Reo?, + Reo™),
evaluated numerically, versus fiw using a Lorentzian form of Dirac delta function and taking I' = 0.2
meV for T' # 0. We start from the upper panel of Fig. 4.9 by considering the case A # 0 and
Ar = 0. The transitions are vertical for photon’s momentum g ~ 0 and connect the filled valence
band to empty conduction band, see Fig. 4.8 (a). For the case of Er = 0, intraband response
appears due to the transition £y — FE,_ and has a § function form, centred around fww = 0,
which broadens the peak when any kind of scattering is taken into account. Further, intraband
responses occur when the Fermi level is located away from the Dirac point. For iw = 2\ we obtain

another Dirac delta peak due to the transition from E__ — E_ _, which is also broadened through
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Figure 4.11: Valley-Hall conductivity versus photon energy for A\p = 0at7 = 0.5 K.

imd(x) = limr— o(1/x — i), cf. Eq. (47). For 0 < Ep < A, the new absorption peaks appear at
hw = 2Ef and iw = 2(Ep + A) due to the possible transitions E__ — E,_and E_, — E, _.
For E'r > A, the absorption peaks disappear below fww < 2 because the transition E__ — FE4_ is
no longer possible due to the filling of states below the Fermi level that are Pauli blocked. Further,
the Drude peak persists at low fw, but now two other pieces of interband transitions emerge with
onsets at Ag + Ep and Ay + Ef.

In the lower panel of Fig. 4.9 we show the results for real part of the longitudinal conductivity
for A = 0, Ar # 0 for different values of Er. For Er = 0, we can see that there is a peak at 2Ap
which is the separation between E__ and E, _ bands. In addition, there is a kink at 4\ due to the
transition E_, — F, . As we increase the Fermi level, say,0 < Er < Agand EF > AR, the peak
becomes sharper and we see a onset of a Drude contribution at low fiw due to intraband transitions
E, — FE, and B4, — E,. incontrast to Ep = 0 case (black dot-dashed curve). Further,
for finite values of Er, we see the steps at 2EF similar to monolayer graphene (A = Ar = 0) as

well as features at A, + Ep, Ay — Ep, and Ay + E'r above which we attain the flat absorption like

63



B ErF (meV) 7

o -

o H 0.995 -

i - —

~ — 13

- -

QL -

o ox (A, Ar) = (1, 6) meV ]
S

[ab] -
-

B Es (meV) i
------ 6.6 E

— 96 —

(A, Ar) = (8, 8) meV E

.
'
.
.
\
.
\
1
.
]
<
adaag

L L I L L L [l
0.025 0.050
hw (eV)

Figure 4.12: Same as in Fig. 4.11 but with the upper panel for Agp > A and the lower one for
AR < A

pristine graphene [214]. Note that our results are similar to bilayer graphene [216, 217]. But here,
the Rashba SOC, which allows the interband transitions between opposite spin bands, gives rise to
the absorption peaks, while these peaks in bilayer graphene are due to interlayer hopping between
two graphene sheets.

The real part of the longitudinal conductivity as a function of the photon energy, for A, Ag # 0,
is show in Fig. 4.10 for several values of Er: (i) just below the maximum of the Mexican hat i.e.
Me/(A2 +22%)1/2 < Ep < X (ii) just above the Mexican hat, i.e., for A < Ep < (A2 +2)%)1/2.

For Er = 0 we find a large absorption peak at approximately 2\, which corresponds to transitions
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between the two square-root singularities of the DOS, see Fig. 4.4, or transitions between the two
minima of the Mexican hat structures of the E__ and E__ bands. As Er moves into the Mexican
hat, this feature disappears because states below Er are occupied and, therefore, Pauli blocked.
Further, the major peaks are due to the transitions By -+ F44, E__ - FE_4 F__ — F,, and
E_, — E, . respectively. The gap energies which contribute to the onset of these transition peaks
are indicated in Fig. 4.7 and given analytically in table 4.1. Also, the conductivity retains the flat
absorption at sufficiently higher values of fiw similar to pristine graphene [214].

Plots of the real part of agr for Er = 0 ( black dotdashed curve) and Er # 0 (red and blue
dashed curves) in the absence of Rashba SOC (A = 0) are shown in Fig. 4.11. In the dc limit, the
expected value of the valley-Hall conductivity is obtained as can be seen in Fig. 4.5 (black curve).
If the system is illuminated by photons of frequency w, the amplitude of the absorption peaks is
suppressed for Er = 0, while an increase in it is observed for Er # 0. For hw = 2|)| a strong
valley-Hall response is observed for Er # 0. Therefore, it can be expected that a stronger valley-
Hall response may be accessible when the photon energy is tuned to the valley-Zeeman SOC. For

fw > 2|\

. 0y, decreases rapidly and approaches zero at sufficiently higher values of Aw.

The real part of the valley-Hall conductivity is shown in Fig. 4.12 for several values of Er. In
the dc limit (w = 0), we obtain the quantized value of the valley-Hall conductivity (Reoy, = e/h)
for Er = 0 (black curve in the upper panel). If the system is subjected to photon of frequency w,
an increase in the magnitude of the valley-Hall response is observed. The absorption peaks occur
at the same onset energies as indicated in Fig. 4.7. For example, the first peak appeared when
hw = 2/, or transition between the minima of the E__ and E, _ bands. Further, the change in
sign of the conductivity is due to the Rashba SOC, which is responsible for the coupling between
spin-up and spin-down bands e.g., the transition from the maximum of Mexican hat of E__ band
to the minimum of E , band around k£ = 0. Furthermore, for finite values of Er we obtain new
features in the optical spectrum due to the emergence of new transitions such as £, — E,
e.g., some features are completely removed due to Pauli blocking. Also, the valley-Hall response
is diminished at sufficiently high frequencies. However, in the case of Ap < A (lower panel),
the difference among the optical transition energies is significantly enhanced due to larger values

of A and new features emerge at the momenta at which Er crosses the Fy_ band (see Fig. 4.7).
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Figure 4.13: Longitudinal conductivity o2, in units of €2 /h versus electron concentration n,, for
different values of A and Ag. For further clarity, the range 0 — 5 meV is shown in inset.

Moreover, some of the optical transitions are no longer possible, e.g., E__ — E;_ when EF is
just above the Mexican hat because the states below it are occupied and, therefore, Pauli blocked

(blue curve).

d

rr*

In Fig. 4.13 we plot o2, from Eq. (48), by evaluating it numerically versus electron concen-
tration (n.) and using the expression of 7 given in Appendix B but evaluated at the Fermi level,
k = kp. The conductivity increases with Er and therefore with the carrier density n.. The diffu-
sive conductivity increases linearly with n. but cusp-like features appear when E 4 band begin to
occupied at specific values of 7, in contrast to pristine graphene [218, 219]. This behaviour makes
graphene/WS; a suitable candidate for charge switches contrary to pristine graphene. The screening
effect becomes significantly weaker when only the A term is present. Moreover, the conductivity
shown in Fig. 4.14 increases in the low-density regime for A = 0 and Ar # 0 as compared to the

A#0,Agp =0and A\, A # 0 case. In the limit A = Ap = 0 we obtain the result similar to pristine

graphene [218, 219].
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Figure 4.14: Same as in Fig. 4.13 but for different values of Ag.
4.5 Summary and conclusion

We studied the energy dispersion of graphene/WSes heterostructures by using a TB model in
the presence of valley-Zeeman and Rashba SOCs. We found that the effective Hamiltonian (29)
derived from the TB one (30) nicely captures the low-energy physics near the K and K’ valleys. We
demonstrated that the density of states has a finite value around £ = 0 in both cases A % 0, Ap = 0
and A = 0, Ar # 0. In addition, it has a square root singularity when both A and Ap are present.
This singularity is similar to that in biased bilayer graphene; however, here it is due to the Rashba
SOC whereas in biased bilayer graphene it is due to interlayer hopping. We also found that the
ac and dc valley-Hall conductivities change sign in the presence of the Ar term, which leads to
interband transitions. Also, the band gap is enhanced by increasing the strength Ag. Further, for
Agr >> A the valley-Hall conductivity exhibits a behaviour similar to that in gapped graphene and
topological insulators [130, 215]. The screening effect in the diffusive conductivity is dominant

only when the Rashba SOC is present, whereas it is significantly suppressed for A # 0, A\gp = 0.
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Also, the conductivity increases with Ag in the low- and high-density regimes, see Fig. 4.14.

The dc valley-Hall conductivity changes sign when Ep is comparable to Ap and vanishes at
higher values of E, cf. Fig. 4.5. It also exhibits a strong temperature dependence when the Fermi
level in the gap, cf. Fig. 4.6.

The intraband response of the ac longitudinal conductivity for A\ = O (see upper panel of
Fig. 4.9) shifts towards lower photon energies when E increases compared to A # 0 (see lower
panel of Fig. 4.9 and Fig. 4.10). We also noted the switching on and off of the Drude response when
the Fermi energy is varied (see Fig. 4.10), which may be of interest in technological applications.
In addition, for A, A\ # 0 new onsets in the optical conductivity appear due to the shifting of the
Fermi level through the Mexican hat structure (see Figs. 4.10 and 4.12), which may be a promising
feature in optical experiments. Our findings may be pertinent to developing future spintronics and
valleytronics devices such as field-effect tunnelling transistors, memory devices, phototransistors,

efc.
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Chapter 5

Valley-controlled transport in graphene/
WSe- heterostructures under an

off-resonant polarized light

5.1 Abstract

We investigate the electronic dispersion and transport properties of graphene/WSe; heterostruc-
tures in the presence of a proximity-induced spin-orbit coupling A,, sublattice potential A, and an
off-resonant circularly polarized light of frequency €2 and effective energy Aq. Using a low-energy
Hamiltonian we find that the interplay between different perturbation terms leads to inverted spin-
orbit coupled bands. At high €2 we study the band structure and dc transport using the Floquet
theory and linear response formalism, respectively. We find that the inverted band structure trans-
fers into the direct band one when the off-resonant light is present. The valley-Hall conductivity
behaves as an even function of the Fermi energy in the presence and absence of this light. At Ag
= A, - A a transition occurs from the valley-Hall phase to the anomalous Hall phase. In addition,
the valley-Hall conductivity switches sign when the polarization of the off-resonant light changes.
The valley polarization vanishes for Ag = 0 but it is finite for Ag 7 0 and reflects the lifting of

the valley degeneracy of the energy levels, for Ag = 0, when the off-resonant light is present. The
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corresponding spin polarization, present for A = 0, increases for Ag # 0. Further, pure K or K’
valley polarization is generated when Ag changes sign. Also, the charge Hall conductivity is finite

for A # 0 and changes sign when the handedness of the light polarization changes.

5.2 Introduction

Since its discovery graphene has attracted immense attention both theoretically and experimen-
tally due to its peculiar electronic and optical properties [265]. But, it has limited usage in the
field of spintronics due to its very weak intrinsic spin orbit coupling (SOC). The intrinsic SOC in
graphene is theoretically predicted to be weak, 12 peV [202]. A value of 20 peV is reported in
a recent experiment for graphene on SiO5 substrate [221]. A lot of efforts have been made to en-
hance the strength of SOC in graphene by employing external means, such as graphene hydrogena-
tion [179, 278] or fluorination [181] as well as heavy adatom decoration [182, 183], and bringing
it to proximity with other two-dimensional materials specifically transition metal dichalcogenides
(TMDCs) [184, 185, 186]. In recent years the heterostructures of graphene and TMDCs have be-
come more promising because the Dirac cone of graphene is well fit in the band gap of TMDCs,
which leaves it intact. The giant native SOC of TMDC:s is transferred to graphene via hybridization
processes. Moreover, the combinations of graphene with TMDCs, such as MoSs or WSes, exhibit
the proximity SOC on the meV scale [210, 212, 222, 201, 223, 224, 225, 226]

Presently SOC, induced by proximity effects, is no longer limited to theoretical studies, as it has
been demonstrated by experimentally as well [227]. The breaking of spatial symmetry due to the
substrate leads to an alteration of the Hamiltonian and spin degeneracy of graphene and opens a gap
in its massless energy dispersion. In addition, it has been verified by experiments [190, 226, 228,
189] that another type of sublattice-resolved intrinsic SOC arises, the so-called valley-Zeeman or
staggered SOC with opposite sign on the A and B sublattices. Further, enhancement of the Rashba
SOC and creation of staggered potentials are also unavoidable [229].

Nowadays, the optical control of functional materials has been become a hot topic in the con-
densed matter physics. In addition, it creates a bridge between condensed matter physics [230]

and ultrafast spectroscopy [231]. Many intriguing phenomena have been realized in optically
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driven quantum solids such as light induced superconductivity [232, 233], photo-initiated insulator-
metal transition [234, 235], microscopic interactions, such as the electron-phonon one, controlled
by light [236, 237, 238], and theoretically predicted Floquet topological phases of matters [239,
240, 241, 242, 243]. These Floquet phases have stimulated much interest but direct evidence for
electron-photon Floquet dressed states is scarce to date [244, 245] contrary to the field of artificial
lattices [246, 247, 248, 249, 250, 251].

Recently, light-induced anomalous Hall effect has been observed experimentally in monolayer
graphene by using an ultrafast transport technique [252] and predicted theoretically using a quantum
Liouville equation with relaxation [253]. Also, graphene under the influence of light has been stud-
ied in various frameworks [239, 240, 241, 242, 254, 255, 256, 257, 258] The transport properties,
especially valley-dependent dc transport, using the Floquet theory, have not been addressed suffi-
ciently in contrast with a large amount of research on proximitized graphene. As far as transport in
the presence of an off-resonant light is concerned, we are aware only of an electron transport study
in MoS; [231], of another one on graphene and the Lieb lattice [259], and of a thermal transport
study in topological insulators in the absence of any SOC [260]. Here we investigate theoretically
the band structure in laser-driven graphene/WSe; heterostructures using the Floquet theory in the
high-frequency regime. Also, we study dc transport in such heterostructres in the framework of
linear response theory. We show that the interplay between the proximity SOCs and off-resonant
light leads to a phase transition from the inverted band regime to the direct one. Our results are in
good agreement with experimental results [252] in the limit of vanishing proximity SOCs.

In Sec. 5.3 we specify the Hamiltonian and obtain the eigenvalues and eigenfunctions of the
proximity modified graphene as well as an analytical expression for the density of states (DOS).
In Sec. 5.4 we derive analytical expressions for the conductivities and provide numerical results.

Conclusions and a summary follow in Sec. 5.5.
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5.3 Formulation

The real space tight-binding (TB) Hamiltonian of proximitized graphene is written as [229, 200,

271]
1 .
H = —t Z Ciacja + AZ’?&CIQCM + ﬁ Z /\}v@jc;[acja: [$2]aa
(i.g).a ia ((i.3)),00!
2R ; .
5 Y dpcial(s x dij)z)aa- (49)
(i!j)!aa!

Here c;-[a creates an electron with spin polarization « at site ¢ that belongs to sublattice A or B,
and (7, j) ({(¢,7))) runs over the nearest (second nearest) neighbouring sites. The second term is
a staggered on-site potential, which takes into account the effective energy difference experienced
by atoms at the lattice sites A (7., = +1) and B (1., = —1), respectively. The third and fourth
terms represent the proximity-induced enhancement of the spin orbit coupling (SOC) due to a weak
hybridization with the heavy atoms in transition metal dichalcogenides (TMDCs). The third term
is the sublattice resolved intrinsic SOC (/\f, with ¢« = A, B) where v;3; = +1, if the second nearest
hopping is anticlockwise, and v;; = —1 if it is clockwise with respect to the positive z axis. The last
term is the Rashba SOC parametrized by Ap. It arises because the inversion symmetry is broken
when the graphene sheet is placed on top of TMDCs. Also, dij = dij/|dyj|. s = (s, sy, 52 ) is the
Pauli spin matrix, and d;; the vector connecting the sites 7 and j in the same sublattice.

We analyze the physics of electrons near the Fermi energy using a low-energy effective Hamil-

tonian derived from Eq. (83) and a Dirac theory around K and K’ points. It reads [188, 206, 204]
1
Hgy) = vp(nogpe + oypy) + A0, + Ap(nSy0z — sz0y) + 5 [)\fl(oz +0op) + )‘1‘?(02 —op)|ns. (50)

Here n = +1 denotes the valleys K and K’, s = +1(—1) is for spin up (down), A is the
mass term that breaks the inversion symmetry, Ag the Rashba type SOC strength, (o, oy, and o)
the Pauli matrix that corresponds to the pseudospin (i.e., A — B sublattice); o is the unit matrix
in the sublattice space and vr (8.2 x 10° m/s) denotes the Fermi velocity of Dirac fermions. The

last term arises due to the breaking of sublattice symmetry and can be categorized into two groups
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Figure 5.1: (a) Real-space graphene with @; and @» the primitive lattice vectors. (b) Graphene’s
first Brillouin zone and high symmetry points I', K, K’, and M in reciprocal space. Its primitive
lattice vectors are by and by. (c) Schematics of graphene epitaxially grown on a WSey substrate and
irradiated by a left circularly polarized light.

according to its dependence on sublattice spin: (i) Ago0,1ms When Agp = ()\}‘1 + )q?)/z. This is
called conventional Kane-Mele (KM) type SOC, which has a magnitude of the order of peV in
graphene/TMDCs heterostuctures [229, 204, 202]; (ii)) Ayoqns when A, = (A}q — )q? )/2. Itis
called valley-Zeeman or staggered SOC and has been experimentally confirmed in graphene on
TMDCs [190, 226, 228, 189]; it occurs only for A= —)\IB. Further, Refs. [202], [229], and [204]
show that Ay, is negligibly small or zero. In view of that, we treat only the regime A\, >> A, and
neglect Ag, altogether.

As shown in Fig. 5.1, monolayer graphene, irradiated by off-resonant circularly polarized light,
is grown on WSe, that provides a staggered potential and induces SOC in graphene. We study the
changes induced by circularly polarized light in graphene/W Ses in the presence of a perpendicular
electric field . We describe the monochromatic light through a time-dependent vector potential
A(t) = (Eo/)(cos Qt, psin Qt) with Q its frequency, Ey the amplitude of the field E, and p =

+1(—1) for left (right) circular polarization. The vector potential is periodic in time A(t +T") =
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A(t) with T = 27 /Q. Eq. (88) in the presence of circularly polarized light reads

Hy(t) = Hg,+V (), (51)
with
Hg, = vr(nozps + oypy) + Aoz + Avoons + Ar(1Sy0z — S20y)
V(t) = —(evp/h)[nopAz(t) + oyAy(t)]. (52)

For i) > t, where t is the hopping parameter, Eq. (51) can be reduced to an effective static,
time-independent Hamiltonian Hgg (t) using Floquet theory [240]. Hﬁf}f (t) is defined through the

time evolution operator over one period

T
U =T exp|[—i / He(t)dt] = exp[—iHIT, (53)
0

where T is time ordering operator. Using perturbation theory and expanding U in the limit of large

frequency (2, we obtain
Vo1 = Vi

H = HY, + =

+0(Q7?), (54)

where Vi, = (1/T) [T e~ ™%V (t)dt is the m-th Fourier harmonic of the time-periodic Hamilto-
nian. Corrections to Eq. (54), to all orders of 1/(2, can be obtained by the method of Ref. [259].

Here we neglect them because we treat only the case £ > t. Using Eqgs. (51) and (54) we obtain
Hg:;f = U [??Umpx + Jypy] + (A +p"}'Aﬂ)o'z + A’UO-D??S + )\R(??Syffm - 3.1:0'1_,-‘); (55)

where Ag = vie?EZ /hQ3 is the energy term due to the circularly polarized light, which essentially
renormalizes the mass of the Dirac Fermions [240].

The diagonalization of Eq. (55) gives the dispersion

EP(k) = {Gn+2\h+ e +2sVT}/2 (56)
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Figure 5.2: Energy dispersion curves around K and K’ of a graphene/WSe, heterostructure for
A =1meV, Ay, = 4 meV, and Ap = 2 meV. The left panel shows the inverted band regime,
with strong spin mixing of different states with black/red shading, obtained when Ag < A + A,.
The right panel shows direct band regime with nearly full spin polarization and obtained when
Agq > A+ )\,. The marking of all curves resulting from Eq. (8), with p = 1 for all of them and not
specified, is shown inside the panels.

where £ = {I,s} and Gy = AJ + A2,

A + npAgq and A2 = /\%{ + /\3. Further, I = +1(—1) denotes the conduction (valence) band and

s = +1(—1) represents the spin-up (spin-down) branches. The normalized eigenfunctions for both

valleys are
1 AP
N-HD A’T}Peérﬁ NP 1
ik- — £ ik-r
iP(k) = £ ¢ X P (k) = kT (57)
e (B =Ts —iBPci e W =75 iCP 2
—iCP 2 —iBPei®



L] L] L] L] I T T L] L] I L] L] L] L] I L] L] L] L] L] L] L] L] I L] L] L] L] I L] L] L] L] I L] L] T T
—Spin up
———-Spin down

Aq (MmeV)

———
1
L}
/I
/

0 'Erar e | B I P | Lol Erar el P I |

-50 -25 0 25 50 -50 -25 0 25 50
E (meV) E (meV)

Figure 5.3: Density of states for two values of Aq, as indicated, and I' = 0.01 meV. The left panel
shows the valley components of the DOS, with both spins included, whereas the right panel shows
the spin components of the DOS, with both valleys included. In both panels the curves indicated by
arrows show the total DOS. The parameters A, \,, and A are the same as in Fig. 5.2. The marking
of the curves is shown inside the panels. In the left panel both spin contributions are included, in
the right one both valley contributions are included.

respectively, with

NP =1[1+ (A7) + (BP)? + (C")?] 72, (58)
So = LzLy the area of the sample, and ¢ = tan~'(ky/kz). Further, A7 = {E/® —nal}/ep.
BY = 2p{(EP) - (a])*}/a{(EF + nal)(EP — nol) — &}, and O = 2Ap{E -
1o} /{(EP +nall) (B —naj)) — &2} with a7 = Ay, + Ay, and o] = Ay — A,
In numerical calculations throughout the manuscript, we use values of the parameters A, A, and
Ar somewhat larger than those of [209] to have well-resolved spin and valley splittings since the
overall physics of the system is not changed when we do so. As for the values of Aq, it is known
that the off-resonant light does not directly excite the electrons; instead, it modifies the electron
bands through virtual photon absorption processes. To study the topological transitions of bands,
this light must satisfy the condition A{) >> ¢;. Accordingly, we will use the values of Ag from
Refs. [240, 252].
The typical band structure (56) for both valleys is illustrated in Fig. 5.2 forp = +1, Qo < A +

Ay (inverted band regime), and A > A+ A, (direct band regime). The left panel shows the inverted
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band regime. The inversion occurs due to the anticrossing of the bands with opposite spins and in the

presence of the Rashba SOC. The right panel depicts the direct band regime with simple parabolic

dispersion. It is found that the spin and valley degeneracies are completely lifted when Ag >

A + Xy, whereas the valley degeneracy is restored in the opposite limit similar to silicene [261].

The valleys are interchanged if proximitized graphene is irradiated by a right circularly polarized

light p = —1 (not shown here).

5.3.1 Limiting cases and density of states (DOS)

i) Setting A = 0 in Eq. (56), we obtain

EF(k) = X+ A% +2)% +€f +2sVY /2

withY = Ek/\2 + (A n/\UAg)Q.
ii) In the limit Ap = 0, Eq. (56) reduces

EP(k) = [} + AZ] % 1 sh,.

The DOS per unit area corresponding to Eq. (56) is given by

|Elvg? [9(IEI [EfGD) | O(E| - |EZ)

D(E) = :
) = Srr2 1—X/M+ 1+ A/M~-

with

Eff = XM+Ap, Ef=[(w- Anp)? +4)F]

M* = [A%— MAg)? + B20EA%es]"?

Ruper = E*+ A — A7, £2[NE? — A3 (A + Agp)?]

1/2

/2

(59)

(60)

(61)

(62)

In Fig. 5.3 we plot the DOS given by Eq. (61). The two jumps in the DOS indicate that two

gaps open at each valley, displaying the clear signature of lifting the spin and valley degeneracies,

when graphene on W Ses substrate is in the direct band regime. The spin and valley degeneracies are
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Figure 5.4: Longitudinal conductivity vs Fermi energy Er for T = 0K, and 77 = 1 x 107 1% s.
The other parameters are the same as in Fig. 5.2.

completely lifted in the direct band regime while only the spin degeneracy is lifted in the inverted
band regime. Note that the DOS diverges in the inverted band regime as D(E) « (E — A;)~1/2
with Ay = Ag(Ay + A) /(A% + A2)1/2 (see green curves in both panels). This divergence is due to
the mexican-hat energy dispersion [217], cf. Fig. 5.2. In passing we may add that this behaviour of
the DOS remains the same as the broadened one provided the level width I" is small, I' < 0.5 meV.

For higher I the small structure of the DOS curves is smoothened out.

5.4 Conductivities

We consider a many-body system described by the Hamiltonian H = Ho+H;—R - F(t), where
Hy is the unperturbed part, H is a binary-type interaction (e.g., between electrons and impurities
or phonons), and —R - F(¢) is the interaction of the system with the external field F(t) [128]. For
conductivity problems we have F(t) = eE(t), where E(¢) is the electric field, e the electron charge,
R =), r;, and r; the position operator of electron 4. In the representation in which Hj is diagonal
the many-body density operator p = p% + p™® has a diagonal part p? and a nondiagonal part p"¢.

Correspondingly, for weak electric fields and weak scattering potentials, for which the first Born

o.nd.

approximation applies, the conductivity tensor has a diagonal part aﬁv and a nondiagonal part o/,

the total conductivity is o0

d d
;j,b' :pr‘ —"_JI:‘H?!'L?U = mﬂy'

In general we have two kinds of currents, diffusive and hopping, with crﬁl, = aﬁif + crf,,?f, but
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Figure 5.5: Total longitudinal conductivity vs Fermi energy Er. The parameters are A = 0.54
meV, Ar = 0.56 meV, and A, = 1.22 meV [209].

usually only one of them is present. If no magnetic field is present, the hopping term f,ff vanishes
identically and only the term aﬁi,f survives. For elastic scattering it is given by [128]
d pe?
O'pv = ?0 Z fc(l — fC)UVC U,U-C Tc, (63)
¢

with 7¢ the momentum relaxation time, and vy the diagonal matrix elements of the velocity opera-
tor. Further, f¢ = [1+ exp[B(E¢ — Ep)]]_l is the Fermi-Dirac distribution function, 3 = 1/kgT,
and 7" the temperature.

Regarding the contribution cr:fﬁ one can use the identity f¢(1 — f)[1 — exp[B(E¢ — Epr)]] =

fe — fer and cast the original form [128] in the more familiar one

o %ﬁe =% (fe — &) vueer Vueer (64)
A (EC EC’ Eg - Ec.f — 31—‘)

where the sum runs over all quantum numbers ¢ and ¢’ with ¢ # ¢’. The infinitesimal quantity €, in
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the original form of the conductivity, has been replaced by I'¢ to phenomenologically account for the
broadening of the energy levels. One should keep in mind that disorder leads to some modification
of the Hall conductivity. However, this problem is not studied here. In Eq. (64) v,¢¢ and Upger are
the off-diagonal matrix elements of the velocity operator. The relevant velocity operators are given
by v, = 0H /fhdk, and v, = OH /hok,. With ¢ = {l,s,k,n,p} = {&, k,n,p} for brevity, they
read

(Clve |¢') = veN[PNIP (D€ + % e ") 6y O (65)

(' vy Q) = iwvp NP NF (D e™*® — FJ%,)6p 1St (66)

&€
where DI, = AT + BIPCJP and F[%, = AT + BJFC".

The diagonal velocity matrix elements v, = 6‘E§p /hOk, from Eq. (56) can be readily found

Iﬁv% kg sA?
Vgt = + .
z( Egp [ T ]

(67)

It’s worth pointing out that our approach for evaluating the conductivity tensor is the same or
similar with that followed in Refs. [231, 262] for MoS,, [263, 162, 264] for silicene, and [153] for
WSes. In all of them a perpendicular electric field, not the source-to-drain one, was included in Hy.
This is similar to our inclusion of the off-resonant light term V() and was also the case of Ref.
[260].

We now calculate the conductivity or  given by Eq. (64). Further, the velocity matrix elements
(80) and (81) are diagonal in &, therefore k will be suppressed in order to simplify the notation. The

réé

summation in Eq. (64) runs over all quantum numbers &, £, 77, 77/, and k. The parameter e = ey

that takes into account the level broadening, is assumed independent of the band and valley indices,

ie., Ff]f;, = TI". Using Eqgs. (80) and (81) we can express Eq. (64) as

2e2h2v2, (NNPFE — fem)
REJ (ff 7}'110) = h /dkk (Anp) +I’2 [(D££’)2_(Fgg’ ]’
Imopd(&,¢,n,p) = 0, (68)
where AT, = E} — E[L.
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Figure 5.6: Valley P, and spin P; polarization vs E'r for different values of Ag, as indicated, and
Ar = 4 meV. The other parameters are the same as in Fig. 5.4. Notice that P, = 0 for Ag = 0
while P; # 0.

For A = A = Ag = 0 and Ag # 0, Eq. (68) vanishes because the factor (D?i,)2 — (FQ}EIV be-
comes zero. Ignoring skew and intervalley scatterings, the valley-Hall conductivity (o, ) obtained

from Eq. (68) can be evaluated as

ov = O [op(€.€ +,p) — opa(&,€,—.p)], (69)
&'
where we set Rea;‘g(g,g’, n,p) = a;,‘g(f, §',m,p). The spin-Hall conductivity oy, corresponding
to Eq. (68) is finite only when both KM and staggered SOCs are present [203]. Therefore, oy,
vanishes even in the presence of Rashba SOC. Even if it does not in graphene on WSe,, it is assumed
negligible in the regime A, >> Ag, that we treat and we neglect it altogether, see also Sec. II, above
Eq. (51). As usual, we have to multiply oy, by 1/2e [271].

We can find a simple analytical result from Eq. (86) for the specific case A,, Ap = 0 in the low
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temperature limit. It is

4

%, —(A +npAq) < Ep < A+npAgq
Oyz = (70)
e 1A +pAg

Equations (16)-(17) of Ref. [231] in the limit A — O are similar to Eq. (70). For Ag — 0,

Eq. (70) reduces to a result reported in Ref. [130]. Further, we find the charge Hall conductivity

oy = Y ol & n,n,p) = (71)

€

In the limit A — 0, f’gm vanishes.
We now consider the diagonal component 0%, given by Eq. (63). Using Eq. (80), with £ = ¢/,
we obtain

EQU%‘ B

™

oga(&mp) = / dkk (N) SR (L — fR)AF + BFCF? . (12)

At very low temperatures we can make the approximation S (1 — f¥) ~ 6(E}” — Er) and
Toe = Tip - We find r = o4(€,m,p)/04,(€,m,p) << 1, mainly because 074 (&,7,p) o< I. The
precise value of r depends on the scattering strength through I and 7 appearing in ¢2,(£, 7, p). In

what follows we neglect 074 (&, 0, p).

After evaluating the integral over k, Eq. (72) becomes

2 9(Ep — ET
4 e TrER [, mp np ~mpy2 AT N lg
op(&m p )= oz [(Ag + B C) (N) 1 X2/M lep
9(Ep — EIP
np MNP NP2 ¢ ATTIP Y4 g
+ (A + B G ) (Ne) BESYa e_p]’ 7

where 7 = Tng is the relaxation time evaluated at the Fermi level. As indicated, the 1st and 2nd
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Figure 5.7: Valley-Hall conductivity vs. Er for T' = 1 K and I' = 0. The other parameters are
A = 0.54 meV, Ap = 0.56 meV, and A\, = 1.22 meV [209]. The green curve is measured in units
of e/h and the blue one in units of ¢/10h. The inset is a blowup of the region —2 meV < Ep < 2
meV.

line in the square brackets are to be evaluated at e; r and e_f, respectively, where €1 is obtained
from Eq. (62) for E = Er. To evaluate Eq. (72) numerically we used a Lorentzian broadening of
6(E2p — Ep).

The valley P, and spin P; polarizations, corresponding to Eq. (72), are

ol (l,s,+,p) —ol,(l,s,—,D)
P — Tr 1= 1 rr i | 1 , (?4)
! %J: ng(lis= +1p) +ng(£=sﬂ _ip)
and
d o d o
Pg — E J:éx(l:\—i_? "'?:p) J:;E(l:\ ???:\p) . (?5)
ol Jmm(l:‘h "'?:p) +Jmm(l:_: "'?:p)

In Fig. 5.4 we plot the conductivity, given by Eq. (72), as a function of the Fermi energy E'r

by evaluating the integral over k numerically for two values of the parameter Ap and p = +1.
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Figure 5.8: Charge Hall conductivity vs. Er for different values of Ag. The other parameters are
the same as in Fig. 5.7. It vanishes for Ag = 0 and changes sign when Ag is changed to —Agq.

Further, the left panel represents the valley-dependent contribution of Eq. (72), with both spins in-
cluded, whereas the right one depicts its spin-dependent contribution with both valleys included. To
display the result clearly, we set A = 1 meV, Ap = 2 meV, A, = 4meV,and 7 = 1 X 10~15
sec. We find that o2,(&, 7, p) vanishes when Ep is in the gap while it increases linearly when Ep
is outside the gap. The kink appears when E'r crosses the conduction band (Eii) Moreover, we
find 0¢,(¢,+,4) = 0&,(&,—, +) in the inverted band regime (Aq = 0) while 02, (&, +,+) #
ol (¢, —,+) in the direct band regime (Aq # 0). We also verified that the analytical result
(Eq. (73)) agrees well with the numerical one obtained from Eq. (72).

We plot the total longitudinal conductivity, with both valleys and spins included, in Fig. 5.5 for
different values of Aq. As expected, o2, is an even function of Aq. In addition, the band gap
increases with Aq.

The valley P, and spin P; polarizations versus Er are shown in Fig. 5.6 for A\p = 4 meV

and three different values of Ag. It can be seen that P, = 0 in the inverted band regime while
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P, # 0 in the direct band one. In other words, the valley polarization can be switched on and off
by controlling the parameter Ag. On the other hand, P ## 0 in both band regimes. It is interesting
to study P, in the direct band regime (Aq # 0). The contribution of o¢_(¢,+) to P, is zero in
the range A\, + A — Ag < Er < Ay + A + Aq. Thus, P, = 1, which is a pure K’ valley
polarization for A # 0. When we change the polarization of light to p = —1, a pure K valley
polarization is obtained. That is, one can easily reverse the valley polarization by reversing that of
the circularly polarized light. This result may be useful in valleytronics applications, such as making
valley valves [129].

In Fig. 5.7 we show the numerically evaluated valley-Hall conductivity oy, from Eq. (86), in
the inverted (An = 0) and direct (Aq # 0) band regimes for I = I’ with s # ', as well as
for I # I’ with s = s’ and s # s’. We used a sufficiently low temperature (T = 1 K) to ensure
that thermal vibrations of atoms have a negligible contribution to the electron transport. oy, is
quantized and has the universal value 2e2 /h when the Fermi level is in the gap —1 meV < Er <1
meV (see green curve, compare with the DOS in Fig. 2). Its absolute value is reduced outside the
gap as Er increases. The two peaks, to the left and right of the gap, at Er ~ +1.5 meV, appear
due to the inverted band structure or the mexican hat-like dispersion as can be seen in the inset
of Fig. 5.7. oy, vanishes when Ep is in the gap in the direct band regime Ag # 0 as the blue
curve shows. The reason is that in this case electrons from both valleys flow in opposite directions
and their contributions to the valley current exactly cancel each other. A non zero valley-Hall
current is produced when EF crosses the conduction and valence bands. When E'r grows further,
the conductivity decreases. It is also worth noticing that the valley conductivity changes sign (not
shown) if proximitized graphene is irradiated by a right circularly polarized light (p = —1).

For Ag = 0 a quantized valley-Hall conductivity of 2¢2/h is obtained in the band gap as
can be seen from the green curve in the inset of Fig. 5.7. On the other hand, for Ag # 0 the
valley-Hall conductivity is quenched to zero within the band gap (see the blue curve of Fig. 5.7),
while a quantized charge Hall conductivity of 2¢2/h and —2¢? /h is obtained for the left- and right-
handed circularly polarized light, respectively, as shown in Fig. 5.8. The reason for the change

2e2/h — —2¢?/h is that this nondiagonal contribution to the conductivity is an odd function of

Aq.



5.5 Summary and conclusion

We investigated the valley-dependent dc transport by employing the linear response formalism
and Floquet theory in the high-frequency limit as well as the energy dispersion in the presence
of proximity-induced gaps. We derived analytical expressions for the energy dispersion relation of
Dirac fermions, the DOS, and the diagonal and nondiagonal parts of the conductivity. We found that
a transition occurs from an inverted band regime to a direct one for Ag > A + A, (see Fig. 5.2). In
addition, the energy dispersion shows a complete lifting of the fourfold spin and valley degeneracies
in the direct band structure while it has a rwofold valley degeneracy in the inverted band phase. We
demonstrated that the DOS exhibits a van Hove singularity due to the inverted band structure, which
remained unchanged as long as Ag < A + A,. The four jumps in the DOS are due to the lifting of
the fourfold spin and valley degeneracy in the direct band regime in contrast to pristine graphene,
cf. Fig. 5.3.

We showed that the valley polarization P, vanishes for Aqg < A+, while for Ag > A+, itis
finite, P, # 0; this might be useful in the design of valleytronics devices such as optically controlled
valley filters and valves based on proxitimized graphene. On the other hand, Ps ## 0 in both band
regimes. Further, 100% K or K’ valley polarization is achieved in the range A\, + A — Aq < Ep <
Av + A + Ag when the handedness of the light polarization changes.

We found that, when E in the gap, oy, = 2¢?% /h in the invert band regime while Oy = 0in
the direct band regime. Peaks are found in the curve of o), versus Er when E crosses the inverted
dispersion, see the green curve in Fig. 5.7. Moreover, for Aqg > A + A, we have a;r # 0 when
EF crosses the conduction and valence bands. The valley-Hall conductivity tends to oy,, = 0 for
both invert and direct band regimes in the limit Fr — +oco. A last finding is that the charge Hall
conductivity is finite for Ag # 0 and changes sign when the handedness of the light polarization
changes.

Our results may be pertinent to developing future spintronics and valleytronics devices such as

field-effect tunnelling transistors, memory devices, phototransistors, etc.
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Chapter 6

Transport in armchair graphene

nanoribbons and in ordinary waveguides

6.1 Abstract

We study dc and ac transport along armchair graphene nanoribbons using the k - p spectrum
and eigenfunctions and general linear-response expressions for the conductivities. Then we contrast
the results with those for transport along ordinary waveguides. In all cases we assess the influ-
ence of elastic scattering by impurities, describe it quantitatively with a Drude-type contribution to
the current previously not reported, and evaluate the corresponding relaxation time for long- and
short-range impurity potentials. We show that this contribution dominates the response at very low
frequencies. In both cases the conductivities increase with the electron density and show cusps when
new subbands start being occupied. As functions of the frequency the conductivities in armchair
graphene nanoribbons exhibit a much richer peak structure than in ordinary waveguides: in the for-
mer intraband and interband transitions are allowed whereas in the latter only the intraband ones

occur. This difference can be traced to that between the corresponding spectra and eigenfunctions.
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Figure 6.1: Left panel: Graphene unit cell (dashed rhombus) and its primitive vectors @; and @,.
Right panel: The corresponding Brillouin zone with b; and bs the reciprocal lattice vectors.

6.2 Introduction

Graphene nanoribbons have been studied extensively theoretically and experimentally. Previous
studies focused on their electronic structure, spectrum, and eigenfunctions [265], optical properties
[266, 267], elementary excitations [268], magnetic susceptibility [269, 270], excitonic effects [271].
A short review of transport properties, focused on localization concepts, appeared in Ref. [272],
some numerical results in Ref. [273], numerically studied thermal transport in Ref. [274], and spin
tranport in substitutionally doped, zig-zag graphene nanoribbons in Ref. [275]. Experimental results
have also been reported [276]. The influence of impurity scattering or disorder though has received
a limited attention [275]. In particular, we are not aware of any study of dc and ac transport, say,
within linear-response theory, that takes into account scattering by randomly distributed impurities,
most of the studies use scattering-independent Kubo formulas or consider scattering numerically.

In this work we study dc and ac transport along armchair graphene nanoribbons (AGNRs) or or-
dinary waveguides using linear-response, scattering-dependent and scattering-independent expres-
sions for the conductivities. In the former case we evaluate the relaxation time for long- and short-
range impurity potentials. We present the basics in Sec. 6.3 and the conductivities in Sec. 6.4. A

summary follows in Sec. 6.5.
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6.3 AGNRs, ordinary waveguides

6.3.1 AGNRs

Graphene is a two-dimensional, one-atom thick planar sheet of bonded carbon atoms densely
packed in a honeycomb structure as shown in the left panel of Fig. 6.1. In it the ribbon extends along
the x axis while the graphene sheet is confined along the y axis. The lattice structure can be viewed
as a triangular lattice with two sites A (green filled circles) and B (yellow filled circles) per unit
cell as shown by the rectangular box in the left panel of Fig. 6.1. The arrows indicate the primitive
lattice vectors @ = a(0,1) and @ = a(1/2,1/3/2), with a the triangular lattice constant of the
structure, and span the graphene lattice. Further, @; and @ generate the reciprocal lattice vectors
of the Brillouin zone, cf. Fig. 6.1, given by by = 47 /v/3a(/3/2,—1/2) and by = 47/+/3a(0,1).
From the explicit expressions of by and by we find the two inequivalent Dirac points (valleys) given

by K = 47/3a(0,1) and K’ = 47/3a(0, —1). The k - p Hamiltonian near the Dirac points reads

H = hp , (76)

where 7 is Plank’s constant, vg the Fermi velocity, and k+ = ky%ik,. The resulting eigenfunctions

of Eq. (76) for AGNRs, shown in Fig. 6.2, take the form

ne _égkyn Kz eékyny

1 ez’kyny .
Unnks = —F7== et (77)
,ﬂ? - - !
TO2VLW —fqe_tgkymkz e tkyny
e—ikyny

where 0y, k. = tan~!(kg/kyn). The energy dispersion of graphene AGNRs corresponding to Eq.

YT

(76) is [265]

mee = nhvpe, €= [k, + k212, (78)
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Figure 6.2: Geometry of an AGNR. The dashed box shows the unit cell and dm represents the
dimmer number.

where n = +1(—1) stands for the conduction (valence) band. The allowed values of ky, are

[265, 266, 268, 269]

_nm 4m 2m(3n—2(dm +1))
Fym = W 3a 3a(dm + 1) ’ (79)

here W = a(dm + 1)/2 is the ribbon width, dm the number of rows of AGNRs, a = V3ace,
ace =~ 1.42 A is the carbon-carbon distance, and n = 1,2, ..., N is the subband index with N the
maximum number of dimmers. It follows from Eq. (79), if 3n — 2(dm + 1) = 0, then k,,, = 0 for
particular nn. So, a zero energy state appears near k; — 0 as in graphene, whereas the other states
have band gap because 3n — 2(dm + 1) # 0. The energy dispersions for semiconducting (dm = 4)
and metallic (dm = 5) nanoribbons are shown in Fig. 6.3.

Velocity matrix elements. To evaluate the various conductivities we need the matrix elements of

the velocity operators vy = 0H /hdk, and vy = OH /hdk,. With

Ur = VUF , Uy = UF 1 (80)
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Figure 6.3: Single-particle energy dispersion in AGNRs with & = ak;. The left panel is for
semiconducting (dm=4) and the right one for metallic (dm=5) AGNRs. The insect in the right panel

shows the dispersion for = +1 and n=3, 5 .

their matrix elements (|¢) = |n, 7, kg)) are

<C!‘ Vg IC) _ N(neégkryn,ké _ nfe—'iekyn‘k:l: )5n,ﬂ!5kx,k; (81)

(C| vy ‘C.!) _ M(?’;’ewkymkf + ne—ingn,k’z )5»‘31,]@’1: n # nf’ (82)
with eX0kunke — (ky, + iky) /e, . N = —ivp /2, and M = —ivp/7(n —n') .

6.3.2 Ordinary waveguides

In Fig. 6.4 we consider an ordinary quantum wire along the z axis generated by confining a
2DEG along the y direction. We assume the confining potential V (y) to be parabolic, i.e., V(y) =

m*w?y? /2. The eigenvalues are
Bk, = (n+1/2)kwo + k2k2/2m*, (83)
and the corresponding eigenfunctions
Unky, = (2"l TV2H,(y/€) eV 12 gikat (84)

with £ = (h/m*wo)'/? and Hy(y/f) the Hermite polynomials. Here only the diagonal matrix

elements v, = fiky /m* are relevant since the nondiagonal ones ((¢’| v [¢)) vanish. However, the
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FN

Figure 6.4: Geometry of a parabolically confined (left panel), along the y direction, quantum wire
of width L,, = W and length L, = L. The right panel shows the wire’s spectrum.

nondiagonal velocity matrix elements ({¢| vy |¢")) along the confinement direction are non zero and

given as
(Cl Uy |C,> = j\'rﬂ,[('-"ljr + 1)571-’—1—1,71 - (1/2)571*—1,71] 5kzk-’z (85)

where N,, = (ih/m*£)(2% n’1/2"n!)1/2. Tt is evident from the right panel of Fig. 6.4 that the
spectrum consists of a set of equidistant, oscillator subbands due to the harmonic confinement along

the y direction.

6.4 Conductivities

We consider a many-body system described by the Hamiltonian H = Ho+H;—R - F(t), where
Hy is the unperturbed part, H7 is a binary-type interaction (e.g., between electrons and impurities
or phonons), and —R - F(¢) is the interaction of the system with the external field F(t) [128]. For
conductivity problems we have F(t) = eE(t), where E(¢) is the electric field, e the electron charge,
R = }_,. . and r; the position operator of electron i. In the representation in which Hp is diagonal
the many-body density operator p = p?+ p"? has a diagonal part p? and a nondiagonal part p"¢. For
weak electric fields and weak scattering potentials, for which the first Born approximation applies,

the conductivity tensor has a diagonal part Jﬂv and a nondiagonal part 0% the total conductivity is

pve
Jﬁ, = Jﬁv + O'I:g, B,V =2z,y.
In general we have two kinds of currents, diffusive and hopping, with Uﬁv = aﬁif + crﬁ?f, but

usually only one of them is present. If no magnetic field is present, the hopping term orf,ff vanishes
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Figure 6.5: Schematic representation of intraband and interband transitions in the energy dispersion
of a metallic AGNR.

identically [128] and only the term aﬁf,f survives. For elastic scattering it is given by [128, 215]
. _ B UneUueTe.
o) = g LI~ IO e (36)

where 7¢ is the momentum relaxation time, w the frequency, and vy¢ the diagonal matrix elements
of the velocity operator. Further, f; = [1 + exp B8(E; — Ep)]™! is the Fermi-Dirac distribution
function, 8 = 1/kgT, T the temperature, kg the Boltzmann constant, and Sy the area of the
sample.

Regarding the contribution o Eﬂ one can use the identity fe(1 — for)[1 — exp B(E¢ — E¢r)] =

fe — fer and cast the original form in the more familiar one [128, 215]

S Z (fe = fer)vweervucer 87)

nd
JPV(w) 0 e (Ec—Ecr (Ec—EC!—I—ELU—EF)

where the sum runs over all quantum numbers |¢) and |¢’) with { # ¢’. The infinitesimal quantity e
in the original form [128] has been replaced by I'+ to account for the broadening of the energy levels.
In Eq. (87) vy¢er and wyeer are the nondiagonal matrix elements of the velocity operator. Further,
diagonal and nondiagonal contributions describe intraband and interband transitions, respectively,

as shown schematically in Fig. 6.5.

94



30

L] L] L] | I | L] L] L] I L] L] L] | I | L] L] Il’

- (&) Q =0.2 A
20 —]
= B 7]
o - =
o = _
10— —]

0 Il Il
(s} 1 2 3 4

€F

L] L] L] L] L] | | | I L] L] L] L] I L] L] L] L] —
18 —~—Reo)y _—
126 —
= =
= S\ s Imog, E
o - TS ¥ -
oF ' e ——
—6 :_ ! nd —:
- — Imcrwr 3
_1 2 :_I(bl) Il Il I Il ] ] ] Il Il Il Il I Il Il Il I_:
4

o
Y

Figure 6.6: Diagonal conductivity, in units of €2£/h of an ordinary waveguide vs ep = Er /hwo
in (a) and vs photon energy (2 = w/wp) in (b). The black (blue) curves are for Recrfj:r (Imcgm) and
the dark green (red dotted) ones are for Reor;‘yd (Imor;‘g). Here we used v = I' /hwy = 0.1.

6.4.1 Diagonal conductivity in ordinary waveguides

For w = 0 and p = v = x Eq. (86) becomes

/3"32 2
Ory = Tankz(l_fnkx)UxTnkx- (88)

nkz

For very low temperatures, we make the approximation S fpr_(1 — fnx,) = 0(Enk, — Er), replace

7¢ by 7r, and use the prescription ka — (Lg/27) fdkx. Then Eq. (88), with vy = hky/m*,



takes the form

ol (iw) = —°F Z\/Ep— s (89)

(1 + iwTp)

where E,, = (n + 1/2)kwp and o¢ = €2 /wh+/2m*. For the dc conductivity we simply set w = 0.
In Fig. 6.6 we show the diagonal conductivity as a function of Er (upper panel) and photon

energy (lower panel) for fiwg = 0.5 meV [277]. The conductivity increases with the increase of

Er but cusps appear due to the presence of discrete levels in the lateral direction produced by the

parabolic confinement. In addition, o9,

vanishes when the Fermi level is in the range 0 < ep < 0.5
since the electron density is null in this range of energy. We can see that Rec?, has a Drude-type
peak around Q = 0 while Imo?, has peak around = 0.1 as can be seen in the lower panel
of Fig. 6.6. Furthermore, it can also be seen that the Drude-type contribution survives at low
frequencies while it vanishes at higher frequencies. Note that the nondiagonal contribution ¢ to

the conductivity of 2DEG when confined in a ribbon vanishes, since the velocity matrix elements

are diagonal, whereas we will find below that it survives in graphene ribbons.

6.4.2 Nondiagonal conductivity in ordinary waveguides

With the help of matrix elements (85) and |() = |n, k;), we can recast Eq. (87) as

ndi: N ”+1 V(i = fith)
ouy (i) = 47“/—2]” [E — E,]1/2
Fwo + Fw + il Fiwo — Fiw — il 00
| o + w)® + T2 (Fwo — Fw)? + T2

where By, = E, + h*kZ, /2m*. In the limit ' = w = 0, one can show that o74(iw) vanishes.

In Fig. 6.6 (b), we have plotted the numerically evaluated Rearmi (dark green curve) and Imcrw
(red dotted curve) as functions of the dimensionless photon energy (2 = w/wp). We can see that
Reor;fg is finite at 2 = 0, due to I' # 0, and attains a maximum value at {} = 1. Upon further
increasing (> 1) we see that Recr y approaches to zero. On the other hand, we observe that
Ima acqulres positive and negative values due to the fwy — fw factor in Eq. (90). For fiwg > hw,

the second term of Eq. (90) is greater than the first one and we find the positive peak. However,
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we obtain a negative absorption peak for fwp < fuw. It can also be seen from Eq. (90) that only
intraband transitions occur in contrast to AGNRs where both intraband and interband transitions

occur, see Egs. (103)-(104) below.

6.4.3 Diagonal conductivity in AGNRs

T = constant

From Eq. (78) we readily find the velocity

vg = NUFkz /€. (91)

Substituting Eq. (91) in Eq. (86), using Bf,?kz(l - f?k,,.) ~ 5(E;;kz — EF) and T,;"kz = 7F at
zero temperature, and performing the integration over k,((L,/2n) [ dk,), we find the conductivity

expression of AGNRs for finite w as

2
d, . \_ €UpTR Z Xpn

where Xpp = [e% — kgn]” 2 er = Ep /hvp, and the summation terminates at the last occupied

level. Equation (92) is only valid for ep > kyy,. For ky, = 0 it reduces to

2
P e“vpTE
Urr(zw) = h(

m nrg, (93)

where n is the number of occupied levels.

T # constant

Long-range impurities. Using Eqs. (91), (120), and the same assumptions, as given above Eq.

(92), in Eq. (86) we obtain forw =0and n = +1

(94)

B e?A X2, [ k2 +4X2.

d
0) =
700 = — &2 Lk + [k2 +4X 3,12
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Figure 6.7: Conductivity o2, for screened Coulomb scatterers as a function of the dimensionless

carrier density (N = ane/2m) for semiconducting (black curves) and metallic (red curves) nanorib-
bons. Cusps in the curves appear when new subbands are occupied by increasing the electron den-
sity. For further clarity the ranges 0 — 0.3 and 0.5 — 75 are shown in the insets.

with A = 2A%v% /n;U2. For ky,, = 0 Eq. (94) becomes

e?A k2 + 42,
nr.
h kg + [k2 4 4<% ]1/2

02,(0) = 95)

Short-range impurities. We consider the potential U (z) = Up §(z —z;) with Uj its constant strength

and z; the position of the impurity. Corresponding to Eq. (94) we find the dc conductivity is now

given by
QB X2
0 (0) = ==Y ==, (96)
€r
n

where B = whv% /2n;U§. For ky, = 0 Eq. (96) becomes

2
od,(0) = %np. (97)

For the finite frequency w results we simply divide those of Egs. (94)-(97) by 1 + iwTp.

In Fig. 6.7, we plot o2, as a function of the dimensionless carrier density (N. = an./2m)
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Figure 6.8: Schematic representation of some allowed transitions indicated by arrows. The hori-
zontal red dashed lines show the Fermi level. T; and T denote intraband (i = 1) and interband
(2 = 2) transitions, respectively at the peaks of oy and o4, in Fig. 6.9, see Egs. (100)-(104), while
D represents the Drude-type intraband transition, cf. Eq. (92).

for dm = 4 (black line) and dm = 5 (red line). The relevant relaxation time is given by Eq.
(120) in appendix. The factor kg can be approximated by the Thomas-Fermi wave vector ks =
(2me? /€) D(Er) with € the relative dielectric constant and D(Er) the density of states at the Fermi
level. We can see that o, increases almost linearly from O with the peaks at critical value of N,.
These peaks appear when the subbands start to be occupied by electrons,. Also, this behaviour is
consistent with the band structures, cf. Fig. 6.3. These jumps are absent in the conductivity of
graphene [218, 219]. Further, we observe the richer structure of peaks for semiconducting ribbons
than metallic ones due to the opening of gaps among the subbands of semiconducting nanoribbons
as can be seen by comparing the left and right panels of Fig. 6.3. It is worth mentioning that this
scattering-dependent contribution was not accounted for in previous studies, see, e.g., Refs. [266,

269].
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6.4.4 Nondiagonal conductivity in AGNRs

With |{) = |n,n, kz) Eq. (87) becomes

e n _ ¢n' n n
nd ;- . 1] nkz n'ke mm-’kx ' nks (98)
O (i) = L E" —E%, EY% —E% +hw+il™
T onmnn'kok!l, Nk n'ke ~nks ke *fm’k k’
where Urﬂn’k (n', 0, kl|vz|n,n, k) and vm ke = (051, kg|vz|n,m, kz) are the nondiagonal

matrix elements of the velocity operator. Further, the velocity matrix element (81) is diagonal in &,
therefore k, will be suppressed in order to simplify the notation. The summation in Eq. (98) runs
over all quantum numbers n,n’, 7, 77, and k;. The parameter I‘"“;, that takes into account the level
broadening, is assumed to be independent of the band and subband indices i.e. I‘m, = T'. Also,
we will simplify the notation over summation by considering the subband orthogonality dy,,k; .-

Hence, after expanding the fraction, Eq. (98) can be rewritten as

o) = P2y ks = Sia) Vet Vints By = By, + o =0
zz L, el Ef.. — Epr, (B, — BTy, + fw)? T2

We evaluate Eq. (99) by considering the summation over n = +1, ' = —1, and = —1,
7 = +1,denotedby ° , and ), . Forn=1n'the contributions ),  and} __ to Reoy, 4 (i)
are not allowed due to the condition ¢ # (’, cf. Egs. (81) and (86). Hence, the summation over
n = 1’ is given only by the Drude-type, intraband contribution orgm(éw) to the total conductivity, see
Egs. (90) and (92).

The real and imaginary parts corresponding to Eq. (99) read

Reol(iv) = - i / el L) o e (100)
A T kynl 52[{_:2 _ k,gn]]'XQ + — 7
and
2 Em k2 (fn _fn )
nd . — € UF yn _kz +k:|:
Imofs(iw) = —— Z[kynlde e ke (R+ — R-), (101)
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Figure 6.9: Real part of the conductivity vs frequency for e = 0 (upper panel) and ep = 0.1 (lower

panel, kgT'/ep = 0.001, and I" /g9 = 0.002. The solid curves are for semiconducting nanoribbons
(dm = 4) and the dotted ones are for metallic ribbons (dm = 5).

with g, = (kfn + kfﬂ,,,)lf2 and ky, the maximum value of k, below for which the k - p theory is

valid. Further, v, ol _, = oMt _, ol , = v%kgn/ez [see Eq. (81)], Cx = I'((2hvpe +

fw)? +12)71 and Ry = (2hwpe + w)((2kvpe & fiw)? +T12) L. In the limit kyy, = 0, the real and
imaginary parts of the nondiagonal conductivity will vanish as is evident from Eqs. (100)-(101).
Further, for w = 0 and I" # 0, the real part [see Eq. (100)] of the nondiagonal conductivity survives
whereas the imaginary one vanishes [see Eq. (101)]. Also, it can be seen from Eqgs. (100) and (101)
that transitions occur between the valence and conduction band with the same index n. Some of
these transitions are shown schematically in Fig. 6.8 for two values of the Fermi level (dashed red

lines) with T, and T}, denoting the intraband (i = 1) and interband (i = 2) ones, respectively at the
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Figure 6.10: As in Fig. 6.9 but for the imaginary part of the total conductivity vs frequency.

nd nd
peaks of o3 and oy,

For T' = 0 and Ep in the gap we have f"; = land f}; = 0. After evaluating the integrals

over € in Egs. (100)-(101) we rewrite them in the combined form

. 9 - 2
dy: 1e“Uy 2UL k Qy
g™ (ZEJJ) = 7) E [1 + ﬁ]na ' (102)

where w = ﬁw/ﬁ’t)p, Fl = I’/pr, U:E = (wl + irl),p = (4k12m — UE)UQ, and Qi =p +iU_.

For Rea;,“g(z'w) we follow the same procedure and from the sum over n'(s n), cf. Eq. (82), we
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keep only the dominant terms n’ = n £ 1. We then obtain

n:l:l n nt1
Reo'“d(zw) _ 2ﬁ'UFZ/ dk [f+ )D+ (f —J- )D_

h2 E.E, o E'g.:l:l
(ﬂ o fEiI)D+ . (fn fﬁil)D_
+ = (103)
and
2 n+l n n+1
" ¢ hvp (3 = FPYEy + (7 = [ E-
Imoy, (iw) 2 Z/ dky [ e - Ezﬂ
n+l n:l:l
— Ey n E_

where Dy = I((fivpe}, —hvpep=" £hw)?+T?)~ ! and Ex = (hope}, +hvpel" thw)((vpep +
hwopept! + fw)? +T2)~! with €} = (k2, + k2)"/2 According to Egs. (103) and (104), the ab-
sorption occurs between the valence band with index n and the conduction band with n + 1. The
integrals over k; in Egs. (103) and (104) are not tractable and we evaluate them numerically.

In Fig. 6.9 we show Reo, and Reoyy as functions of €2 for e = 0 (upper panel) and e = 0.1
(lower panel). The solid curves are for semiconducting nanoribbons (dm = 4) and the dotted ones
for metallic ribbons (dm = 5). The optical selection rules (n — n’ = An) allow subband index
n to change by only O along the z (wire) direction. However, we have An = =1 along the y
(confinement) direction, but the amplitude of the peaks is small. Hereafter, we call the transitions
satisfying An = 0 direct transitions and those satisfying An = +1 indirect transitions. In addition,
one needs to go from occupied to unoccupied states through the absorption of photons. The series
of peaks corresponding to Reo,, and Reoy, occur at fw = —E™; + E%} and fw = —E™) +
E’f,‘j;l, respectively. These peaks correspond to the allowed interband transitions in the energy
spectrum. The position of the absorption peaks follows the same order as indicated in Fig. 6.8.
These results for AGNRs are similar to those in Ref. [269] apart from the contribution crﬁ (iw)
which is completely absent and only the real parts of the conductivities o, (zw) are plotted.

In the upper panel of Fig. 6.9 in which Fermi level is in gap i.e., er = 0, we can see that a

Drude-type intraband transition is allowed in Reo,,, for dm = 5 due to the nonvanshing v, velocity
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matrix elements with An = 0 [see Eq. (81) and transition D in Fig. 6.8]. On the other hand,
we cannot see any type of intraband transitions in Reo,, because v, the velocity matrix elements
vansh as can be seen from Eq. (81). However, for dm = 4, only interband absorption transitions
are allowed due to the Pauli exclusion principle in both Reo s, and Reoy,. But, when we move the
Fermi level to 0.1 [see the red dashed curve in Fig. 6.8], the absorption peak, say T3, in Reo,
is suppressed due to the Pauli exclusion principle for dm = 4 in the range 0.017 < Q < 0.27
whereas a absorption peak due to intraband transition (T} ) appears in Reoyy as can be seen in the
lower panel of Fig. 6.9. Moreover, a Drude absorption peaks appear at low 2 in Reo, for both
dm = 4 and dm = 5. One note worthy feature is that resonance energies E™; — EEH of indirect
transitions are appeared between the Ef, — E™, that are the energies corresponding to absorption
peaks of direct transitions.

We have plotted Imo,, and Imo,,, versus the dimensionless photon energy (£2) in Fig. 6.10.
The absorption peaks in Imo,, have negative and positive values due to the negative sign between
R, and R_ terms in Eq. (101), and the peaks corresponding to the transitions —n — n and
n — —n have slightly different energies. This mismatch creates positive and negative peaks in
the conductivity. However, the amplitude of the negative peaks is small as compared to that of the

positive ones. This argument applies also to Ima,, [see Eq. (104)].

6.5 Summary and conclusion

We studied dc and ac transport in both metallic and semiconducting AGNRs. We derived an-
alytical expressions for the diagonal and nondiagonal conductivities by employing linear response
theory. We found that semiconducting to metallic transitions occur by changing the number of rows
(dm) [see Fig. 6.3] in contrast to ordinary waveguides in which such transitions do not occur, see
Fig. 6.4. In addition, the diagonal conductivity for scattering by screened Coulomb impurities was
shown to depend approximately linearly on the carrier density and exhibits upward cusps when
the Fermi level crosses the subbands. Further, we showed that the diagonal conductivity varies
approximately linearly with the electron concentration in AGNRs, cf. Fig. 6.7.

Importantly, in all cases we showed that the scattering-dependent conductivity is described

104



quantitatively by a Drude-type contribution org;m(z'w) which, to our knowledge, was not previously
reported or explicitly evaluated. We did show that this contribution dominates the response at very
low frequencies at which the usual, scattering-independent contribution near vanishes.

Moreover, we obtained the optical selection rules An = 0 along the wire and An = +1 along
the confinement direction of AGNRs. We have demonstrated that the peak amplitude of the indirect
transitions is suppressed contrary to that of the direct ones. Also, we showed that the absoption
of low-energy photons is sensitive to the variation of the Fermi level, in contrast to monolayer
WSesy [53], in which the spectral weight of the interband peaks is continuously redistributed into
the intraband ones [see Fig. 6.9] similar to that of other 2D materials [161, 163] like graphene,
silicene, & — T3, and topological insulators. A similar behaviour was found for the imaginary part
of the conductivity. Furthermore, only intraband transitions occur in ordinary waveguides, cf. Fig.
6.6 (b) and Eq. (90), in contrast to AGNRs in which both intra- and inter-band transitions occur [see
Figs. (6.9)-(6.10) and Egs. (103)- (104)].

The details of the previous paragraphs could best be tested, we think, by optical experiments in
AGNRs and by contrasting their results with those in unconfined graphene or other 2D materials
and standard waveguides. The peak positions, that are sensitive to the dm-dependent energy gap
between the subbands, cf. Eq. (3), could be tuned by a careful choice of dm in experiments per-
formed in the far infrared (IR) range. This could lead to the development of new optical devices,
in particular novel IR photodetectors based on photon absorption rather than on thermionic emis-
sion or tunnelling in arrays of GRNs proposed in Ref. [279]. Moreover, the scattering-dependent
contribution o2 ,(iw) to the power spectrum should be evident at very low frequencies at which the
other conductivity contributions cﬁﬁ(éw}, as well as agy(iw) in our case, vanish (I' = 0) or nearly
so (I' # 0) and afm(éw) dominates the spectrum, cf. Ref. [215]. We are not aware of any such
experiments but hope that they will be carried out and also test the selection rules An = 0 and

An = 41 mentioned above.
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Chapter 7

Conclusion and future directions

In chapter 2 we studied the effect of perpendicular electric (£,) and magnetic (B) fields on
the quantum magnetotransport of bilayer MoS,. For E,, B = 0, bands are spin and valley degen-
erate, while both spin and valley degeneracies are lifted in valence band for E, # 0. However,
there is no spin and valley splitting in the conduction band in the presence of perpendicular E,. On
the other hand, spin and valley degeneracies are fully lifted in conduction band for E, = 0 and
B +# 0. Further, we found that strength of layer splitting and band gap can be controlled by the
external parameter such as E,. Spin and valley polarizations show beating behavior at low B while
it is replaced by SdH oscillations at high B similar to monolayer MoSs; [55] and the conventional
2DEG [146]. Moreover, we showed that the combined action of spin and valley Zeeman fields and
interlayer splitting allow for inter LL transitions and lead to new quantum Hall plateaux. The field
E, modifies the layer splitting. As a result, steps of various heights, in multiples of e2 /h, occur in
the Hall conductivity.

In chapter 3 we found that, when present, A and the SOI not only modify the band structure
of bilayer WSes, but also significantly affect the spin- and valley-controlled magnetotransport in
the presence and absence of electric E, and magnetic B fields. We showed that the energy spectra
for B,E, = 0 and B, E, # 0 no longer mirror each other. We point out that interband optical
transitions, from level n in the valence band to level n + 1 in the conduction band, no longer have
the same energy as those from level n + 1 to level n; this splits the corresponding absorption line

in the real part of the longitudinal conductivity. The large values of A, A and A, terms not only
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force the conductivity peaks to vary linearly with B, but also guarantee the equidistant spacing
between the Landau levels (LLs). A similar peak behavior was found in the imaginary part of the
Hall conductivity. Also, we may expect that the values of A and SOI can be determined by carefully
tuning the strength of F; and B. Furthermore, the semiclassical limit of the magnetoconductivity
is affected by the variation of B and Fermi energy Er .

In chapter 4 we studied the effect of valley Zeeman and Rashba SOC on the energy dispersion
of graphene/WSes heterostructures as well as on the transport coefficients. We derived the effective
Hamiltonian from the tight-binding (TB) model. We found that density of states shows finite values
in both cases A # 0, A\g = 0 and A = 0, A # 0. While a square root singularity is found when both
A and Ap are present. The presence of Ar not only changes the sign of valley Hall conductivity,
but also it enhances the gap between the bands. Also we found that effect of screening on diffusive
conductivity dominates as long as Ap # 0, while it is significantly suppressed for A # 0, Az = 0.
Further, a Drude response can be switched on and off with the variation of Er. This behavior could
be useful in technological applications.

In chapter 5 we investigated the influence of off-resonant circularly polarized light on the band
structured of proximitized graphene as well as on the valley-dependent dc transport by employing
the linear response formalism and Floquet theory. It was found that there is a transition from inverted
band to direct one for Ag > A + X,. In this band regime, spin and valley degeneracies are
completely lifted. Further, we showed that valley polarization vanishes for Aqg < A + A,, while it
get finite value for Ag > A 4+ Ay. Moreover, we predicted that valley-Hall conductivity takes the
quantized value oy, = 2¢? /h in gap when Ag < A + ), while it vanishes for Ag > A + ),. On
the other hand, charge Hall conductivity has finite values when Ag > A + A, while it goes to zero
in the opposite limit. In addition, valley and charge Hall conductivities does not switch sign unless
the handedness of the light switches sign.

In chapter 6 we found a semiconductor-to-metal transition in AGNRs by changing the number
of rows (dm), while there was no such transition in ordinary waveguides. In addition, we showed
that the screened diagonal conductivity varies linearly with the carrier density and exhibits cusps
when the Fermi level crosses the subbands. Further, we predicted different optical selection rules

along the wire (z) and the direction of confinement (y) in AGNRs. Both inter- and intra-band
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transitions occur in AGNRs whereas in ordinary waveguides only the intra-band one occurs. The
amplitudes of the direct transition peaks are larger than those of the indirect ones. Moreover, we
showed that the absorption of low-energy photons is sensitive to the variation of the Fermi level.
Also, we found a similar behavior in the imaginary part of the conductivity.

In chapters 2-5 our focus was the study of multiple aspects of spin and valley transport in
TMDCs such as MoS3, WSes as well as in graphene/TMDCs heterostructures. We predicted sig-
nificant spin and valley splittings as well as topological transitions in their novel heterostructures in
the presence and absence of externally applied perpendicular magnetic and electric fields. More-
over, we predicted a topological transition between different phases, e.g., the valley-Hall phase to
the anomalous Hall one, in graphene/TMDCs heterostructure under an off-resonant light. Also, we
pointed out a remarkable valley polarization, which can be switched on and off by controlling the
intensity of the off-resonant light, in these heterostructures.

In chapter 6, we predicted a semiconductor-to-metal transition in AGNRs by changing the num-
ber of rows dm. Due to such peculiar behaviors, we expect that these materials could find novel
uses in electronics, spintronics and valleytronics such as making IR photodectors, thermalassisted

switching, valley valves, etc.

7.1 Future research plans

In the near future I plan to explore many-body phenomena in the above mentioned low dimen-

sional systems. In more detail I plan to undertake the following subjects.

7.1.1 Spintronics and valleytronics based on magnetic 2D materials

Ferromagnetism, which by itself is an interesting correlation phenomenon, can also lead to
great theoretical and technological potentials when combined with spintronics or valleytronics. One
subject I would like to explore, which is timely and can be immediately rewarding, is the correlation
among electronic structure, transport, and magnetic order in ferromagnets based on van der Waals
heterostructures of novel graphene-like 2D materials such as in TMDCs, phosphorene, etc. The

long-term goal of this research direction is to achieve a coherent understanding of spin and valley

109



degrees of freedom in magnetic 2D materials and hopefully to set the stage for a completely new

paradigm of information processing beyond conventional semiconductor electronics.

7.1.2 Light-matter interaction and Floquet topological phases

Floquet lattice models as a marriage of optics and electronics is an active and exciting research
direction. Therefore, my plan is to study different low-dimensional systems taking into account the
effects of weak and strong light-matter interaction, and in particular to study many-body interactions
in driven systems. As a start, I will try to contribute to understanding the physics of novel systems
such as Floquet-Chern fractional insulators, flat bands, and generally symmetry-breaking phases in
nonequilibrium states. This project belongs to the interdisciplinary area between optics, physics,

and materials science.
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Appendix A

Chapter 3

A.1 Zero-level Hall conductivity

Using Eq. (10), and Eq. (12) the off-diagonal velocity matrix elements for n = 0 are

(0, p, 8, 7| v |n',,u',s',1' ) = TUp gngi, i b5t X {Vn’/sn,d:? + kg;kfl, L’/Eo?d":} 80.n'—1(105)
( ror f| 0 - 8,7 s’,'r’5 Va; ksrks 7! 5 (106)
n,p,s,T |Vy | s Ky S?T) = TWF Qﬂ,pgn’,p’ 5,8 X n /En,da + 0.u%n /50 dy 0,n'—1

(0, +—,7| vy |n',p:",s’,1"> = TURY, <n’,p:',s’,1"| vy |0, +—,7) = TivpY,

Y = o8 kST 60 S0 (107)

n" NIRRT A

Using these expressions, the conductivities take the form

Re o™
1 1
_:F_ > nD,l,,u,,u[ 7 T 2, = ]=
o P (Sn—eiu+@) +T (e —) + 17
Im o7
Ty

1 1
2h Z 0,+ {( 8,T 8T _\2 —— + 8T 5T J_})2 f‘2]?(108)

’ _ 2 _
s, €o— —€opt @) +T? (g} —€0
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where

ESTEST o §5T _ £ST
ns,'r _ f(gs’T Qs,'r )2[ 1 0,p 1:}-’-’] O,p 1,p/
0,1,p,p! 0,u=1,pf E'Jl d €0,ds E‘S’L — g‘:’;‘! ’
8T 8T
B fO,.u-’

_ f(gs,r kST )2 0,+—

109)
0, 0, 5T 8T * (
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8,T
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Appendix B

Chapter 4

B.1 Relaxation time

The relaxation time is generally a function of the incoming electron’s wave vector and at low
temperatures only states near the Fermi level will contribute to transport and single-particle proper-
ties. Below we provide expressions for the relaxation time at the Fermi energy in the limiting cases
AN # 0,Ag = 0and A, XA = 0,Ap # 0, because in these cases the summation over final states
can be performed analytically. Within the first Born approximation the standard formula for the
momentum relaxation time has the form

1 1 B 2mn
¢ Tgk A

> 1&m k| U) |€, 7', k) P6(Eer — Ber)(1 — cos ), (110)
&!,n!,k!
where U(r) is the impurity potential, n; the impurity density, and # the angle between the initial &
and final £’ wave vectors. Equation (110) holds only for elastic scattering (§ = &',n=17",k = k')
and for central potentials U(r) i.e. U(r) = U(r). The results for two types of impurity potentials
are as follows.
Short-range impurities. We have U(r) = Upd(r — rj) where r and r; are the position vectors of
the electron and impurity, respectively, and Uj is the strength of potential. In this case U(q) = Uy
is the Fourier transform of U(r) = (1/y/LeLy) 3, U(q)e'@* with |q| = 2ksin(#/2). The results

are:
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DArR=0

1 _ Ven(N)* /A2 + (Rwpk)? n)4 72
e (Fior)? [(AD* — (AD)? +1]. (111)

In the limit A, A = 0, the above result reduces to graphene’s scattering time Eq. (24) of Ref. [218]

1 %2?'1316
E = Witop’ (112)
Also, for A = 0 Eq. (111) agrees with the result for topological insulators [215].
i)AA=0
2 M4, /42 2
1 Voni(Ns)™y/ Ak + (fwrk)
— = Y [[(AT)? + (BIPP? + (C)* = [1+ (CT)?]
Tskp U
[(AD)? + (BI)?] —2(C)? + 1] (113)

Long-range impurities. We assume U(r) = eQe %" /Ameger, where k; is the screening wave
vector, @ is the charge of the impurity, and € the dielectric constant. In this case U(q) = 2nUy/+\/k2 + ¢*
with Uy = eQ /4mepe. The results are:

DAp=0

Lo YN RE R CRRE [ (a2 aa?

ol 2h3v% k? aZz+1
2 as(2a3 + 1)]]

2
[2a vaz+1

In the limit A = XA = 0 we set ag = k¢/2k and obtain the relaxation time in pristine graphene

(114)

[220]
1 Vini(as — /a2 +1)? (115)

Tk 4h2vpk

F
Moreover, for A = 0 Eq. (114) gives the relaxation time for topological insulators [215].

i) A, A =0
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Appendix C

Chapter 6

C.1 Relaxation time
Within the first Born approximation, the standard formula for relaxation time takes the form

1 1 2mn; 5
T_ = +n = AL, Z |(‘”»a?}', k.’c|Um }n",n",k'ﬂ 5( ke :kr)(l—COSQ) (117)
¢ ‘r,lk‘;,,- nr,n!,k.rz

where U, = U(x) is the impurity potential, n; the impurity density, and @ the angle between
the initial (kyn, k;) and final (k,,, k;) wave vectors. Equation (117) holds only for the elastic
scattering. The results for two types of impurity potentials are as follows.

Long-range impurities: For screened, Coulomb-type impurities we consider the model potential

[278]
Uy = Upe *1"1 /{/|2], (118)

where Uy = 2me2,/c/eper, ks is the screening wave vector, ¢ the free space permittivity, €, the
static dielectric constant, and c is the constant of order 1 in units of inverse length. In this case, we

write Uy = Y, Ug, €'%* with Up, = Up{[ks + /K2 + a2 ] /(K + ¢3)} /2 the Fourier transform
of U,. We obtain

| (n,m, ka| €97 |0/, 0 kL) |2 = |mm + €7 ?| Uy | 260 Ok, + g e s (119)
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with gz = ky — k, and ¢ = 6

ke — Oky, k- The integration over gy is straightforward. That over

k., is carried out using the properties of the § function and only the root k!, = —k, of the equation
Egkz — E,";:k; = 0 contributes to the integral. For simplicity we also take ¢ ~ 0 and use § ~ 7.
With k. evaluated at the Fermi level the final result is

/1.2 2
1 n;U2 kijn + |kr|? (ks + ksF) (120)

™ 2R%up |kr| k25 ’

where k2, = k2 + 4|kp|?. The term ky, in Eq. (120) denotes the Fermi wave vector for the nth
subband. In the limit k,;,, = 0 Eq. (120) becomes
1 mU2 ks + kep

P 2RPvp KXy (121)

Further, for kg > kp, Eq. (121) reduces to

1 nU2
g ) 122
TF hupk, (122)

Short-range impurities: we have U(z) = Upd(z — z;) with Uy the constant strength of potential
and z; the position of the impurity. In this case, the matrix element becomes | (n, 1, kz| Uy |n', 7, kL) |*> =

UZ. This leads to

T whiup |kg|

1 2 ket ke (123)

For ky,, = 0 Eq. (123) reduces to

1 2nUg

— . 124
7 mhivp (124)
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