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Montréal, Québec, Canada

April 2022

© Shima Shahfar, 2022



Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Shima Shahfar

Entitled: Unsupervised Structure-Consistent Image-to-Image

Translation

and submitted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Dr. Yiming Xiao Chair

Dr. Adam Krzyzak Examiner

Dr. Yiming Xiao Examiner

Dr. Charalambos Poullis Supervisor

Approved By Dr. Leila Kosseim,
Chair of Department or Graduate Program Director

2022

Dr. Mourad Debbabi, Interim Dean

Faculty of Engineering and Computer Science



Abstract

Unsupervised Structure-Consistent Image-to-Image Translation

Shima Shahfar

There have been significant advances in designing deep networks for complex com-

puter vision tasks. One that is of considerable importance is image understanding

through pixel-wise classification, i.e. semantic segmentation. Despite the advances,

self-supervised algorithms have many limitations and challenges, with perhaps the

most significant being generalization. This thesis introduces a method based on gen-

erative models as a practical approach for addressing these shortcomings. First, we

analyze several semantic segmentation methods to gain insight into their limitations.

We investigate the effectiveness of one of the state-of-the-art methods on two different

problem settings. The latter part of the thesis introduces an alternative approach us-

ing generative adversarial networks and autoencoders for image-to-image translation.

The main idea is encoding an image into two latent codes to represent structure and

style. We propose a new approach to enforce structure-consistency without requiring

semantic labels to disentangle the two latent codes. We further show how this would

result in a more detailed style transfer and image manipulation. Finally, we present

results on multiple datasets and discuss how our approach can be practical in real-

world applications. Our experiments demonstrate that our approach performs better

than the baselines -or, in the worst-case, gives comparable results- while solving some

of the shortcomings in tasks requiring a semantic mask.
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Chapter 1

Introduction

The problem of image understanding has been an important and challenging task in

computer vision. It can have a considerably important role in different real-world

scenarios, from object detection and image classification to semantic segmentation

and image recognition. This thesis focuses on semantic segmentation, which classifies

input images at pixel-level and can provide fine-grained predictions. Recent advances

in deep learning raise new possibilities to achieve better scene understanding through

semantic segmentation. However, the expense of creating datasets can be very high

in any domain. On the other hand, a vast amount of unlabeled data is available and

can be used for training without the further overhead. That is why trying to find

a cost-effective alternative can have a significant impact in practical settings. Thus,

one of this work’s objectives is to use the available data to generate synthetic datasets

for the supervised semantic segmentation task. Techniques for supervised semantic

segmentation tasks usually struggle to generalize when tested on a different domain

regardless of how visually close the images are, caused by a lack of a broad range of

training data or considerable bias in class distributions.

In this thesis, we study how recent advances in generative adversarial networks can

be applied to resolve training data issues. Chapter 2 introduces the concepts necessary

to understand the work. Chapter 3 contains our studies on semantic segmentation

methods and their limitations. Chapter 4 introduces an unsupervised technique for

image-to-image translation that can generate high-quality structure-consistent images

by learning better feature embedding. We further show our results and analysis on

image generation, style transfer, and image reconstruction quality. We also provide a
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quantitative comparison with state-of-the-art methods and explain how this idea can

be used in different applications. Finally, in Chapter 5, we discuss the conclusions of

our works and propose future works.

Contributions In this work, we address the following research questions:

• How can we improve the generalization capability of supervised semantic seg-

mentation models and improve their performance? Researchers have found

different approaches to improve generalization in supervised tasks. Some of the

common approaches are designing methods for better generalization and taking

biases in the training data into consideration while designing the architecture,

creating larger datasets for training that can broaden the data distribution and

improve generalization, and generating synthetic data. The first approach can

reduce the effect of bias, but it cannot resolve the generalization issue since the

data distribution is still limited to the training set. The second approach is

very costly and can be impossible to achieve in many domains, while the third

approach puts most of the pressure on the algorithm design process and gives

researchers the option to choose what data characteristics matter to them the

most for their specific application. We focus on generating synthetic images for

most of this thesis.

• Can we preserve the structure and spatial information without direct super-

vision in image-to-image translation tasks? Recent image-to-image translation

methods [39,40,45] have shown impressive results on single object images. That

being said, to preserve the structure, many works [48, 65, 100] follow semantic

image synthesis problem setting to generate an image conditioned on a semantic

mask, but we do not want to limit our method by requiring pixel annotations.

The idea is that instead of conditioning the image generation on the seman-

tic mask, we encode the input image into semantic and style information and

learn the embedding. We then use a decoder to render the image based on the

extracted embedding.

• Can a better understanding of the geometry of the objects result in transferring

class-based attributes while synthesizing an image? We find that having a

better understanding of the geometry to be beneficial in most circumstances,
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specially for image manipulation. This would allow local manipulation of the

objects. It also act as an auxiliary information that leads to more accurate

attribute transfer. To ensure disentangling structure from texture we propose

a new module to suppress any texture-related features in structure code. We

achieve this through gradient reversal layer [16].

• Would this method perform well in complex domains? To answer this ques-

tion we evaluate our proposed method on aerial imagery which is known to

be a complex domain. Our results show that our method is able to generate

structure-consistent images and transfer texture very well.

Notes on Contributions I am the first author of the papers presented in this the-

sis. My role in this work was to form the ideas, design and implement the algorithms

and pipelines, conduct the experiments and studies, and the writing of scientific pub-

lications. The contributions of co-authors include manuscript review, supervision,

analysing studies, and technical support.
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Chapter 2

Background

Abstract

In this chapter, we present different strategies for learning an image representation.

Before presenting any learning method, we introduce the basics of feed-forward neural

networks. The chapter continues with the discussion on the use case of these mod-

els for image understanding and a general technique to train them. We also discuss

two different supervised approaches in learning representations, namely image clas-

sification and regression, followed by a short introduction of different approaches in

learning representations. Then, we present an overview of object detection, seman-

tic segmentation, generative models, and generative adversarial networks. We close

the chapter by discussing transfer learning, domain adaptation and image to image

translation.

2.1 Neural Networks

The inventor of one of the first neurocomputers, Dr. Robert Hecht-Nielsen, defines ar-

tificial neural networks as ”a computing system made up of a number of simple, highly

interconnected processing elements, which process information by their dynamic state

response to external inputs.” There is a myth that neural networks have been inspired

by the idea of replicating the biological neural systems but after improvements in

computational hardware systems and mainly the work of Alex Krizhevsky et al. in

AlexNet [46] inspired many scientists to achieve better results in machine learning
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tasks.

2.1.1 Artificial Neuron

Classical artificial neurons motivated by biological neurons, which are the basic com-

putational units of the human nervous system, are connected by approximately 1015

synapses. Each neuron works as a function that receives single or multiple inputs and

produces an output.

To drive the mathematical form of a artificial neuron, consider a set of features x =

{x1, x2, ..., xi} and a set of weights corresponding to each feature w = {w1, w2, ..., wi}
with a scalar value as bias called b, an artificial neuron f(x) can be defined in vector

notation as:

f(x) = h(wTx+ b)

where h(.) is an activation function or in biological neurons the firing rate.

Activation Functions

Activation functions are usually continuous functions applied element-wise on a pre-

activation. Considering the function defined above, an activation function h(.) deter-

mines whether the neuron should be activated or not by applying an activation func-

tion (or non-linearity) on its pre-activation values. We call wTx + b a pre-activation

which here is simply a linear weighted sum. Most of the activation functions are sim-

ple functions; however, given that the network has enough capacity based on universal

approximation theorem [64], they can make the network approximate any complex

function. Some of the commonly used activation functions are introduced below.

Sigmoid

The Sigmoid function [24] maps any pre-activation values to the range of [0, 1], and

it can be represented by the following formula, which creates an ”S”-shaped curve.

sigmoid(z) =
1

1 + exp−z

where z denotes a pre-activation.
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Hyperbolic Tangent (Tanh)

The Tanh function [21] squashes any pre-activation values to the range of [−1, 1]. It
defines by the following formula

Tanh(z) =
expz − exp−z

expz +exp−z

Rectifier Linear Unit (ReLU)

This function returns zero for all negative inputs, and for positive inputs, it will

return the same value as its pre-activation. ReLU function [63] can be formulated as

max(0, z) and it became more popular during the past few years.

Leaky-ReLU

The idea behind leaky-ReLU [60] is to keep the weights for negative values during

backpropagation and so they added a small negative slope to ReLU.

LeakyReLU(z, λ) = max(0, λz) , λ > 0

Technically ReLU is a particular case of leaky-ReLU where λ = 1.

Exponential Linear Units (ELU)

This activation function was introduced in [11], and it is another variation of ReLU

which tries to decrease bias shifts during the training process by pushing mean acti-

vation towards zero.

ELU(z, λ) = max(0, z) + min(0, λ(exp(z)− 1))

Softmax

Softmax function is used to calculate the probability distribution over a vector of

outputs and then returns the probabilities. It is one of the most common activation

functions for multi-class classification tasks. The softmax formula is as follows:

f(zi) =
exp(zi)

Σj exp(zj)

where all the zi values are the elements of the input vector. The sum of returned

probabilities of Softmax is always equal to 1.

6



2.1.2 Convolutional Neural Networks

Convolutional Neural Networks or ConvNets are very similar to standard neural net-

works that have been around for a long time. The only difference is that in ConvNets

were designed for tasks on images, so they can encode some of the properties of this

domain to the architecture design by using kernels. Using different kernels with differ-

ent weights allows the network to extract different types of features from input, which

can then be used for a more efficient and informed forward function. Also, ConvNets

arranges its neurons in three dimensions which reduces the number of parameters by

a significant factor.

2.1.3 Loss Functions

A loss function, also known as a cost function in mathematical optimization litera-

ture, is a function that maps one or more variables to a single real number [85]. In

mathematical optimization, the loss function is a function that we want to minimize.

It is also true about machine learning and training the neural network, but machine

learning (ML) is different from optimization because, in ML, we do not care about

the objective function. What we care about in machine learning is the test result.

However, in theory, we use the same problem formulation as optimization problems

to train our neural networks.

Empirical Risk Minimization [82] is the process of training a neural network by

minimizing the expectation of the loss (or maximizing its negative). The objective

here is to minimize the loss between the true output and the predictions of the

network.

Empirical Risk Minimization is defined as follows:

L(x, θ) = argmin
θ

1

N
Σnl(f(x

(n); θ), y)

where x is input, y is the target, θ refers to the parameters of the model (usually

weights and biases or offset) and l can be any loss function defined for the task at hand.

Assuming that we have N paired data point for training (x(n), y(n)) in supervised

setting, x(n) refers to the n-th input data. If we add the regularization term to

Empirical Risk function defined above, we can create a structural risk minimization

function as follows:
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L(x, θ) = argmin
θ

1

N
Σnl(f(x

(n); θ), y) + λΓ(θ)

where Γ is a regularizer which is penalizing certain values of θ. Some popular regu-

larizers are L1, L2, and dropout [76].

2.1.4 Training

Usually, when dealing with a machine learning task, we do not know the function

that transfers input x to the output y, and because of that, we cannot calculate the

optimal solution directly using closed-form solutions. Hence, there is no guarantee

that a neural network will find the global optimum solution as it can be non-convex.

In practice, it is common to use gradient-based optimization methods such as gradient

descent and second-order derivatives, to name a few. We will cover some of the most

useful algorithms for training a neural network in the following section.

2.1.5 Optimization Algorithms

Our goal in the optimization step is to find W that minimizes the loss function and

let us qualify the network parameters in each step. We will now motivate and slowly

develop an approach to optimizing the loss function. We will explain some of the

popular optimization algorithms for deep neural networks.

Gradient Decent

Gradient Decent is an optimization algorithm where we take a step in the opposite

direction of the gradients. It is known as the most common way of optimizing neural

network loss functions. We can formulate the update step i as follows:

θi+1 ← θi − η∇θiL(x, θi)

in which ∇ is the learning rate. Although calculating gradients at each step and

moving towards the minimum is an interesting idea, gradient descent needs to sum

the gradients over the entire training set to take a single step, which is usually not

suitable in practice. A standard method to prevent this is to take smaller batches from

the data and do the gradient update step for these smaller batches, usually containing

less than 256 examples depending on the task and accessible computational power.
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Stochastic Gradient Decent (SGD)

One possible solution for computation complexity of gradient descent is to perform

a stochastic gradient descent, where we iteratively follow the direction of the slope

starting from a random point until we find a minimum using one sample each time.

Vanilla SGD is still probably one of the most popular methods of training deep

learning. SGD randomly picks one data point from the training set at each step and

updates the gradients based on this sample. A common mistake is to call the method

they are using SGD when they are sampling more than one point at each step. Based

on the literature, if we use a small number of samples, we use mini-batch gradient

descent or MGD.

SGD with Momentum

One iteration in stochastic gradient descent with momentum consists of the following

steps, with the difference that it now uses a velocity term based on the network’s

previous update [69]:

1. Calculate gradient estimate:

h← 1

m
∇thetaσiL(f(x

(i); θ), y(i))

2. Calculate velocity update:

v ← αv − ϵh

3. Apply update:

θ ← θ + v

SGD with Nesterov Momentum

Nesterov momentum [77] is a modified version of the momentum where the velocity

term will be applied first and the gradient calculation will be applied as a next step.

It can be formulated as follows:

1. Calculate velocity update:

θ̂ ← θ + αv
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2. Calculate gradient estimate:

h← 1

m
∇thetaσiL(f(x

(i); θ̂), y(i))

3. Calculate velocity update:

v ← αv − h

4. Apply update:

θ ← θ + v

v is the velocity term.

Adam

Adam [43] is an adaptive optimization algorithm in the sense that it uses the esti-

mation of second-order derivative and adapts to different learning rates for different

parameters of the model. In order to take advantage of momentum, Adam keeps a

moving average of the gradient.

2.2 Representation Learning

The data representation of the features we are using to train a machine learning

algorithm is an essential characteristic of the data that needs to be considered when

designing a new algorithm. Not long ago, if one wanted to have a well-designed

machine learning algorithm to perform well on the data, the best way to ask a human

expert who used their prior knowledge to identify the most important features in that

data and manually engineer its features for the data. However, it is usually not that

easy for machine learning engineers to have access to experts in all different fields

and create the features in this way. It is also costly and time-consuming. The goal

of representation learning [3] is that we would like our algorithms to automatically

learn the best features for the specific tasks and data.

2.2.1 Supervised Learning

In supervised learning, we have access to labels or annotations during training, de-

pending on a task. Having annotations let us better approximate and create the
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mapping function from inputs to outputs. It also sometimes helps to define more

meaningful loss functions.

Classification

Classification is one of the widely used supervised algorithms. In classification tasks,

we ask computers to predict the likelihood of which class the input data belongs. A

classic example to introduce classification is the task of spam detection. Any incoming

email can be classified as spam or not spam which means we only have two classes,

and so the task is a binary classification. A classification algorithm is usually asked

to create a function f : IRn → {1, 2, ..., k} from input x to the corresponding class

number. There are some variations of the classification algorithm where f outputs

a probability distribution over classes, and then we need to apply a post-processing

step to find the class id. Cross entropy is a common choice of loss function when we

have a classification task.

Regression

Regression is a supervised learning task where we expect the model to predict con-

tinuous outputs f : IRn → IR. The loss or risk functions in regression tasks are

usually basic functions like least-square or L2-norm. You may also see higher norms

being used when facing a regression task. We can formulate a general loss function

for regression tasks as follows:

L(f) = ∥target− f(x)∥pp

2.2.2 Unsupervised Learning

Unsupervised learning is when no annotations are available for training the network.

This problem setting becomes very interesting and extremely helpful in domains where

more data is available, but we do not have access to annotations or are too expen-

sive. This technique allows the network to learn at its own pace and learn common

patterns from unlabeled data. The main assumption is that images are very rich in

information, however, many loss functions designed for supervised learning provide

a sparse feedback to the network. Unsupervised learning aim to discover common

patterns and features solely based on training set.
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2.2.3 Self-supervised Learning

Achieving good performance in supervised tasks usually depends on the amount of

labelled data available for the task at hand. However, collecting and creating manual

labels are expensive and time-consuming. On the other hand, considering the data

being produced in our daily lives worldwide, it would give us a considerable boost in

performance if we can find a way to use these unlabeled data.

The self-supervised learning method is designed to allow the network to learn

from unlabeled data in a somewhat special setting in which they use an unsupervised

method to get the labels for part of the data and then use a supervised learning task

to predict only a subset of information using the rest of the data available.

2.3 Object Detection

Object detection is designed to recognize different objects in an input image, predict

the class they belong to, and find a bounding box around each object that appears in

the image. It is also one of the common computer vision tasks that has been around

long before deep learning and convolutional neural networks. Before the CNN era,

people attempted to solve the problems in multiple steps. Starting from an image,

they have first extracted the edges and then using a feature extractor algorithm such

as SIFT or Histogram of oriented gradients, they would have created a pyramid to

localize different objects.

Nowadays, we have two different types of object detection algorithms: two-step

algorithms and one-step algorithms. Two-step algorithms first predict the bounding

box around the objects, and then in the second step, they predict the class associated

with the object inside the bounding box using a classification algorithm. In the first

step, these methods usually start with a Region Proposal Network (RPN) to extract

many regions most likely to contain the object. These algorithms perform better than

one-step methods, but they are slower in comparison because of the bottleneck in

RPN step. RCNNs [19], Fast RCNNs [18] and Faster RCNNs [68] are few examples

of two-steps algorithms. On the other hand, one-step algorithms are designed for

real-time applications and so they are trying to merge the two steps of detection and

recognition to one. YOLO [67], SSD [57], and RetinaNet [54] are some examples of

one-step object detection algorithms.

12



2.4 Semantic Segmentation

Semantic segmentation is a pixel-wise classification in which we label each pixel of an

image with a corresponding class of the object represented in the image. In semantic

segmentation, we do not separate instances of the same object from each other, and

we behave them all the same. It is worth mentioning that there is a different problem

setting that distinguishes between different instances of the same object, known as

instance segmentation.

The task in semantic segmentation can be defined as follows. Having an image,

either a RGB (height × width × 3) or a grayscale (height × width × 1), our goal is

to output a segmentation map (height×width× 1) where each pixel contains a class

label represented as an integer value corresponding to the class it is representing.

2.5 Generative Models

In this section, we introduce generative models related to our work and their formal

definitions.

2.5.1 Generative Adversarial Networks

Generative Adversarial Networks by [22] is a framework for estimating data distri-

bution and generating samples fortunately near to original distribution. The model

consists of two parts, a generator G which generates new samples and tries to fool

the discriminator D. The idea is that G is generating samples that are close to the

original data distribution we showed to the discriminator, and in the training process,

it will update itself to generate better samples using the discriminator output.

Ian J. Goodfellow refers to this framework as a minimax two-player game in which G

try to minimize the probability of D recognize the fake samples and D try to maximize

the probability of assigning the correct label. The objective function can be written

as follows: min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

If the model has enough capacity, after training D and G simultaneously, we will reach

a point that the discriminator cannot differentiate between the two distributions.
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Conditional GANs

Generative adversarial networks can be extended to conditional generative models [62]

by feeding additional information c into either the discriminator or generator. c can

be any information such as edge mask for semantic segmentation task or class labels

for classification. By doing so, the generator can use prior noise pz(z) and additional

information c to create a hidden representation, and the discriminator will be able

to use the information provided as an input for better discrimination. The objective

function can be represented in what follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|c)] + Ez∼pz(z)[log(1−D(G(z|c)))]

2.5.2 VAEs

Like autoencoders, variational autoencoders consist of an encoder and a decoder.

However, in VAEs, we encode the input to a distribution, whereas, in autoencoders,

we encode the input into a latent code. After encoding an image, we sample a point

from the distribution and pass it to the decoder.

2.6 Image-to-Image Translation

The image-to-image translation task aims to learn a mapping to transfer an image

from one domain to another while preserving general content. There has been much

progress in image-to-image translation problems. Mostly due to the wide range of

applications it can have in computer vision like style transfer, domain adaptation,

image manipulation, segmentation and pose estimation to name a few.

One can say this task has been popularized by the work of [35] where they proposed

a method based on Conditional GANs [62]. The novelty of their work is that they

learn the mapping from one domain to another using paired images and learn a

loss function in the training process. This additional feature makes the architecture

suitable for a wide range of problems where designing a loss function is difficult.
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2.7 Conclusion

In this chapter, the fundamentals of neural networks, generative models and famous

computer vision tasks have been covered. We also discussed different optimization

methods and common problem settings.
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Chapter 3

Semantic Segmentation

Abstract

This chapter discusses the effectiveness of supervised semantic segmentation for geospa-

tial data and explores its limitations. We build upon Gated Shape CNNs for Semantic

Segmentation (Gated-SCNN) [78], and we reduce the training time of this method

by optimizing the forward path. We show our results on two datasets, namely, Inria

and Spacenet6.
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3.1 Introduction

The idea behind GSCNN is that all types of features cannot be processed through

one convolutional neural network. Towards this, they proposed a different branch to

extract shapes and boundaries. Predicting pixels around boundaries is usually where

many segmentation networks fail. This new branch can be added to any existing

network to achieve better results since the information learned in the shape branch

will be concatenated with the traditional segmentation branch. We chose this method

due to the superiority and high performance they achieved. We present fast-GSCNN

by proposing some changes to the code and moving the shape branch processing

on GPU instead of CPU. We improved the technique’s performance by revising the

activation function of the final layer, which resulted in faster convergence. First, we

evaluate the architecture on Inria [61] and SpaceNet6 [72] datasets. We then discuss

our findings, observations and future works.

3.2 Methodology

Figure 1: A representation of GSCNN [78] architecture. The photo is borrowed from

the original paper.

GSCNN [78] is an architecture with two-stream designed to improve the quality

of segmentation models by better predicting masks around object boundaries. The

regular stream can be any feedforward convolutional network. We use ResNet-101

architecture [26]. The shape stream would first extract edges by calculating the

image gradient. The architecture of this stream consists of 1 × 1 convolutions, a
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City IoU Accuracy SOTA IoU SOTA Accuracy

Bellingham 67.56 96.58 74.63 97.47

Bloomington 67.71 96.89 80.80 98.18

Innsbruck 72.06 96.64 79.50 97.58

San Francisco 76.14 91.96 81.85 94.08

Eastern Tvrol 73.47 97.58 81.71 98.39

overall 72.87 95.93 80.32 97.14

Table 1: Quantitative comparison of our results on Inria datasets with the state of

the art [5].

few residual blocks and gated convolution layers to combine different components.

They improved Deeplab V3 [6] by 1.5 in terms of mIoU and 4 percent in terms of F-

boundary score. The training is an end-to-end process performed by the fusion module

via combining the two branches and learning how to predict both the segmentation

mask and boundary mask simultaneously. The Dual-Task Regularizer helps to exploit

the boundary space to make better predictions. The Fusion module takes the output

of the two branches as an input and combines the two using Atrous Spatial Pyramid

Pooling [25] and produces a categorical distribution of different classes.

Objective function We jointly train the two streams using the Fusion module.

L = λmainLCE(s, spred) + λshapeLBCE(b, b̂) + λregLreg where s is the ground truth

segmentation map, and b is the grounth truth boundary map. We calculate cross

entropy between the ground truth and predicted labels.

3.3 Experiments

Datasets.

• Inria [61] is an aerial imagery dataset for building segmentation. The training

set contains 180 images with 5000 × 5000 resolution from 5 cities. Each image

covers an area of approximately 1500m × 1500m. The test set contains 180

images of the same size collected from 5 cities not part of the training set.

• SpaceNet6 [72] is a multi-sensor dataset that consists of two modalities that
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Figure 2: Data visualization from [72]. ”Left: SAR Intensity (HH, VV, VH). Center:

Visible Spectrum Imagery (R,G,B). Right: False Color Composite Imagery (NIR, R,

G).”

can be used during training. One is collected by Synthetic Aperture Radar

(SAR) sensors with four polarizations (HH, VV, HV, VH), and the other is

RGB imagery collected using Maxar Worldview-2 satellite. The annotations for

building footprints are provided by the 3DBAG dataset [?,?]. The challenge of

this dataset is that, due to the high costs of data collection, RGB imagery is

only available at training time. Figure 2 shows some samples of the dataset.
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Figure 3: Qualitative results of our fast-GSCNN on Inria test set. The images shown

are from San Fransisco and Bloomington.

Figure 4: Example roof tops extracted from Inria. The variety of roof tops in Inria

is limited since it only contains images from 5 cities. These variations are one of

the reasons we believe that a network trained on one city cannot be generalized to

samples from other cities not seen during training.
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Figure 5: This figure provide an example of how fast-GSCNN perform on SpaceNet6

dataset. First row shows ground truth and second row represents our predictions.

Metrics Results on validation set

Mean IoU 0.8375

Precision 0.8903

Recall 0.916

F-score 0.9095

Accuracy 0.9753

Table 2: Quantitative comparison of our results on SpaceNet6.
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Performance metrics. We use mean IoU and accuracy to measure the perfor-

mance of our experiments. The Intersection-Over-Union (IoU), also known as the

Jaccard Index, calculates the overlap between the predicted segmentation mask and

the ground truth divided by the union of prediction and ground truth.

SpaceNet6 dataset A great characteristic of GSCNN is that the shape branch

can be removed at inference time since it has been designed to assist the main branch.

We decided to study the effectiveness of GSCNN in a slightly different setting than

traditional semantic segmentation. We pass SAR images to the main branch, but

instead of extracting boundaries from SAR, we calculate image gradients from the

RGB input image. This allows us to remove the shape branch at test time without

hurting the performance. The problems that require multi-modal input are usually

more difficult than their single modal setting. Figure 5 show the quality of our

predictions on SpaceNet6. Table ?? provide quantitative results on the validation

set.

3.4 Conclusion

In this chapter, we have presented a study on semantic segmentation for aerial im-

agery. However, these models cannot generalize to images from other cities, and as

discussed before, collecting and annotating new data can be very expensive. For

these reasons, we decided to design an unsupervised image-to-image translation net-

work and generate synthetic data to fix this issue. We present our method in the

next chapter.
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Chapter 4

Image-to-Image Translation

This chapter is based on the conference paper ”Unsupervised Structure-Consistent

Image-to-Image Translation”, Shahfar S., Poullis C., Under review.

Abstract

The Swapping Autoencoder architecture achieved state-of-the-art performance in

deep image manipulation and image-to-image translation. In this work, we present

a novel deep generative model for image manipulation. We introduce a new module

that encourages better disentanglement between the structure and the style, based on

gradient reversal layers. Furthermore, we present an attribute-based transfer method

to achieve a more refined control in style transfer while preserving structural infor-

mation without requiring a semantic mask. To manipulate an image, we encode both

the geometry of the objects and the general style of the input images into two latent

codes with an additional constraint that enforces structure consistency. The superior-

ity of the proposed model is demonstrated on complex domains such as aerial images

where existing state-of-the-art are known to fail. Moreover, our model improves the

quality metrics for a wide range of datasets while achieving comparable results with

multi-modal image generation techniques such as SMIS and BicycleGAN.
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Figure 1: Performance on CelebAMask-HQ: Our model generates structure-

consistent samples while transferring style from one image to another. Unlike most

models that fail to preserve small structural details, our approach is able to preserve

fine details such as earrings (see last row).

4.1 Introduction

Image-to-image translation and image manipulation techniques attracted much at-

tention [15,31,36,38,40,53,55,84,89,98] recently as they can have a significant effect
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Figure 2: Our method learns structure-consistent image-to-image translation with-

out requiring a semantic mask. We learn to disentangle structure and texture for

applications such as style transfer and image editing tasks. The first(left) image

shows the first input image, and the second/third/fourth images show the generated

image where the structure is retained from the first input image and the texture from

the second/third/fourth input image, which appear in the inset images. Note that

the tree’s structure is preserved, and its texture -in this case, the foliage’s colour and

density- changes according to the texture of the second input image in the inset. Our

model was not trained on any season transfer dataset.

on many different tasks. Of particular interest is creating realistic synthetic train-

ing datasets to improve models’ performance and generalization. One example that

demonstrates the use of a synthetic dataset in the training of networks is presented

in [96] where the authors introduce a semi-supervised approach to generate datasets

for semantic segmentation.

There are a plethora of works [39,40,45] which report that for images containing

single objects such as faces, or for images having the same semantic layout such as

building facades, deep image manipulation techniques can produce realistic synthetic

images. However, generating natural scenes or more visually complex images remains

a challenge due to differences in the semantic layouts of the input images.

The challenge of deep image manipulation state-of-the-art with complex scenes

is recognizing and learning essential features and characteristics from the input im-

age. Structural information is typically shared or has common characteristics across

different images in a dataset. On the other hand, the texture appears entangled

with intrinsic image features. The standard approach to preserving the structural
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information is to condition the generation process on the input semantic mask using

conditional image synthesis frameworks. However, that approach is not practical for

image manipulation since the assumption of having access to semantic masks does

not hold in most cases. Researchers explored different methods such as [53, 73], but

in this work, we assume that image representations can be disentangled into the

content/structure and texture/style.

To address this problem, we propose an auxiliary module that enforces the sep-

aration of structure from texture. This branch promotes the disentanglement of

structure and texture by suppressing the existence of texture related information in

structure code through applying gradient reversal layer. Additionally, it will encour-

age the emergence of deep features which is of high importance for image editing

tasks. In this paper, we pursue three main objectives: 1) consistent and accurate

structure preservation, 2) diverse, and 3) realistic image synthesis. Our goal is to

learn multi-modal structure-consistent image-to-image translation in a fully unsuper-

vised approach without requiring semantic segmentation masks.

Better structure preservation can impact many applications such as creating a

3D synthetic simulation world, image editing, semantic image synthesis and style

transfer. To summarize, our technical contributions are:

• A new approach for a structure-consistent image-to-image translation that does

not require previous knowledge on the geometry of the objects in the scene.

• An auxiliary module that enforces better disentanglement between the structure

and texture information.

• An extension of the Swapping Autoencoder model with our auxiliary module.

We present experiments on several datasets, including the CelebAMaskHQ [48] Fig-

ure 1, the LSUN Church [90] Figure 2, and Cityscapes [12] Figure 6. Our results

demonstrate that the proposed method improves the performance with less training.

4.2 Related Work

This section provides an overview of the most relevant state-of-the-art, grouped ac-

cording to their methodology.
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Generative models. Generative Adversarial Networks (GANs) [22] introduced an

adversarial process to train a generative model. The problem is formulated as a zero-

sum game between a generator and discriminator where the optimal solution is to

find a Nash equilibrium. Ian J. Goodfellow refers to this framework as a minimax

two-player game in which generator G tries to minimize the probability of the dis-

criminator D to recognize the fake samples, and D tries to maximize the probability

of assigning the correct label. The objective function can be written as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ +Ez∼pz(z)[log(1−D(G(z)))]
(1)

GANs have proven to be very successful [7, 39, 40, 97] compared to other common

approaches such as [30, 70, 80, 81, 83]. Both GANs and Variational Autoencoders

(VAEs) [44] contain an encoder and a decoder; however, they differ in the sense that

the GAN is a framework for estimating data distribution. On the other hand, VAEs

learn the stochasticity within the data using the encoder’s latent code to match the

Gaussian distribution by reparameterizing the latent distribution and maximizing the

log-likelihood function. Some methods [2, 99] combine GAN and VAE or GAN and

Autoencoders in their models to achieve multi-modal image generation and prevent

mode collapse.

Conditional generative models such as conditional VAEs [74], conditional GANs

[62], conditional autoregressive methods [23,80], to name a few, have shown promising

results [98] but we focus on conditional GANs for the rest of this section. Generative

adversarial networks can be extended to conditional generative models [62] by feeding

additional information c into the discriminator and generator. This c can be any

information such as edge mask for semantic segmentation task or class labels for

classification. By doing so, the generator can use prior noise pz(z) and additional

information c to create a hidden representation and the discriminator will use the

information provided as an input for a better discrimination. The quality of the

results generated using conditional GANs inspired many applications employing this

method, including, but not limited to, image-to-image translation [38,55,84,89], image

editing [8, 27], image inpainting [56, 75, 88], text-to-image [87, 93], photo colorization

[52, 71, 92, 95], conditional domain adaptation [4, 9, 10, 91], super resolution [37, 47],

style transfer [17,32,37,39,40,86]. Our work extends the image-to-image translation

framework with a focus on image manipulation and style transfer.
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Image-to-image translation is a framework to transfer an input image into a

synthesized output image while preserving some information from the input. There

are many methods designed for different applications. The main difference is in the

information they preserve from the input image, which depends on the application.

Image-to-image translation showed promise [15,31,36,98], however, as stated in [99],

the quality improvement may come with the cost of losing multi-modality. Recent

works show that it is possible to prevent losing multi-modality and use this method

for multi-domain scenarios [33, 49,50,99].

Unsupervised disentanglement aims to model the variations in data. It has been

the focus of several pioneer works such as [7,29,73]. InfoGAN [7], for example, achieves

this by maximizing the mutual information between latent variables and input data,

whereas [41, 51, 66, 99] disentangle input information to structure and texture codes.

Our work builds on the same principles to disentangle structure and texture in a

completely unsupervised approach. However, we go one step further and aim for

better disentanglement by introducing a new module to enforce better separation

between the two. We show that our approach can achieve the desired disentanglement

and generate realistic and diverse images while disentangling structure from style

better than previous methods.

Multi-modal image synthesis overcomes the limitation of conditional GANs ig-

noring the latent code, also known as mode collapse. The idea behind the multi-modal

image-to-image translation is to learn a conditional distribution while generating di-

verse images. Early works on conditional image-to-image translation were mostly

focused on producing deterministic outputs [36, 55], which limits their applicability.

In Section ??, we show that our method can synthesize comparable results with the

current state-of-the-art [99,100].

Style transfer also known as texture transfer, can be defined as the problem of

synthesizing an image with style extracted from the source image while preserving

the semantics of the content image. Recent style transfer methods [39, 40] proposed

the use of conditional normalization layers such as Conditional Instance Normalization

[14] and Adaptive Instance Normalization [32] as a practical approach to transfer the

global style. Normalization layers used in most style transfer methods are known to

diminish semantic information. Spatially-Adaptive Normalization [65] was introduced

as a way to avoid semantic-level information loss. We propose a closely related method
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for preserving semantic information without having access to a segmentation mask.

4.3 Method

Deep image manipulation requires an architecture with excellent feature extraction

capabilities that allows for better disentanglement of texture from structure later on.

Using an encoder, our goal is to disentangle the structure from the texture for both

input images to our model. When swapping the texture or structure codes between

the two randomly sampled input images x1, x2 ∈H×W×3, our model can synthesize an

image with the same structural information as to its content reference, but having the

visual appearance or texture of the style reference image. Thus, we aim to generate

realistic synthesized images where the structure for the first image is preserved while

transferring the style from the second image.

Our solution comprises three key modules with two discriminators namely D and

Dstyle as shown in Figure 3: an encoder E, a generator G, and a disentanglement

module T which enforces better disentanglement of the structure from the style. The

encoder learns how to encode visual information into two latent codes. Similar to [66],

we enforce a mapping from any combination of the two latent codes to a realistic

image by training an autoencoder. The generator is responsible for synthesizing

realistic images using the two extracted latent codes. The disentanglement module is

designed to enforce the separation of the structure from the texture. We present the

details of the objective function in the subsequent sections.

4.3.1 Encoder

The encoder E learns a mapping from the input image to two latent codes corre-

sponding to the structure and the texture. We use a traditional autoencoder training

process. We employ a reconstruction loss to measure the difference between the orig-

inal image and the synthesized version with an additional non-saturating adversarial

loss [22] to enforce realistic image generation, and is defined as,

Lenc(x1, x̂1) = Lrec(E,G) + Ladv(E,G,D)

= ∥x1 −G(E(x1))∥1 − log(D(G(E(x1))))
(2)
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Figure 3: Overview. The geometry of the objects and the general style of the

input images are encoded into two latent codes with an additional constraint that

enforces structure consistency. We introduce a new module that encourages better

disentanglement between the structure and the style, based on gradient reversal layers.

This results in an attribute-based transfer that allows for a finer style transfer control

while preserving structural information without requiring a semantic mask.
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4.3.2 Generator

Assuming we have already learned how to disentangle the structure from the texture,

we can pass two images x1, x2 to the encoder and get the latent codes z1, z2 where

z1 = (z1s , z
1
t )and z2 = (z2s , z

2
t ). The generator conditioned on the latent structure code

learns to map the extracted structure and texture codes to an image. The texture code

will be added through weight modulation/demodulation introduced in [40]. Swapping

the two texture codes before passing them to the generator is a common method to

transfer style from one image to another. To ensure that the generated image is

realistic, an additional non-saturating adversarial loss [22] is added to the overall

objective function:

Lswap(E,G,D) = − log(D(G(z1s , z
2
t ))) (3)

4.3.3 Structure and texture disentanglement

The latent codes must represent the structure and texture. However, this cannot be

achieved in our current setting without additional constraints to encourage consistent

structure and texture disentanglement. The approach used for learning consistent

texture codes is to enforce all the patches sampled from the image generated in the

previous step by swapping the textures to be visually similar to patches extracted

from the texture reference image [66]. We achieve this using the following loss:

Lstyle(E,G,Dstyle) = − log(Dstyle(C(G(z1s , z
2
t )), C(x2)))) (4)

where C is a random crop of size in the range [ 1
8
, 1
4
]. This formulation results in

learning a more consistent style transfer. Experiments have shown that this term is

not enough and that better disentanglement can be achieved by enforcing the struc-

ture code not to contain texture-related information. In order to enforce structure

consistency, we introduce an extra module with a gradient reversal layer (GRL) fol-

lowed by a generator. This new generator has the same architecture as the original

generator, but it reconstructs an image with an all-zero texture code that is theoret-

ically impossible. Our analysis of previous works shows that structure code contains

spatial information and includes style-related information. An inconsistent encoding

will cause the network to generate odd samples that do not follow the algorithms

and cannot be interpreted. We train this module using a reconstruction loss and a
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Method LSUN Church #iterations

StyleGAN2 [40] 57.54 48 M

Swapping [66] 52.34 14 days x 4 V100 GPUs

Ours(validation) 52.96±1.7 4M

Table 1: Quantitative comparison of FID and training time/number of iterations

on the validation set with state of the art methods. Our proposed method achieves

comparable performance in terms of FID while it converge significantly faster.

non-saturating adversarial loss [22].

Laux(x1, x̂1) = Lrec(E, T ) + Ladv(E, T,D)

= ∥x1 − T (E(x1))∥1 − log(D(T (E(x1))))
(5)

Adding the gradient reversal layer, as shown in [16], forces the encoder to suppress

any style-related information in the structure code. It also proved to be useful in

cross domain disentanglement [20]. The auxiliary loss from this branch would help

the encoder to disentangle structure from texture better.

4.3.4 Objective function

We jointly train the encoder, generators and discriminators to optimize the final

objective, which is the weighted sum of previously mentioned loss functions and is

given by,

Ltotal = λrecLenc + λswapLswap + λstyleLstyle + λauxLaux (6)

where λrec, λswap, λstyle, λaux are weights that control the importance of each term.

We will discuss the optimal values found for each term in section ??.

4.4 Experiments

Implementation details. In all reported experiments, we randomly crop and resize

the input images to 256 × 256 resolution. We use the Adam optimizer [42] with

β1 = 0.0, β2 = 0.99. All reported results are computed on at least 4 NVIDIA TESLA

P100 GPUs. The discriminator D is based on StyleGAN 2 [40] and Dstyle is based

on Swapping autoencoder [66]. We experimented with different hyper-parameters for

λrec, λswap, λstyle, λaux but in this version we simply set the loss weights to be all 1.0.
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Figure 4: Left: Results from Swapping Autoencoder [66] on LSUN Church. Right:

Our results on the same images. As evident, our model achieves better feature em-

bedding and can retain the structural information of the input image while swapping

only the texture with that of a second input image. Finer-level details such as spires

and buildings outline are also retained. Most notably, our model was trained for a

fraction of iterations compared to [66].
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Datasets. We evaluate our method on the following benchmark datasets.

• CelebAMask-HQ [48] has 30,000 face images collected from the CelebA [58]

dataset. CelebAMask-HQ contains annotations for 19 classes. However, we do

not use masks in our training pipeline.

• LSUN church [90] is a subset of the Large-scale Scene Understanding (LSUN)

dataset. The training set contains 126,227 images. It is a challenging dataset

if no preprocessing is applied due to the diversity of the images.

• Cityscapes [12] is a street view dataset collected from 50 cities across Germany.

The training set contains 3000 images with fine annotations, and the test set

contains 500 images. It is considered a challenging dataset for image-to-image

translation because each scene may contain up to 30 classes.

• Inria [61] is an aerial imagery dataset designed for semantic segmentation of

building footprints. The training set contains 180 images with 5000 × 5000

resolution from 5 cities. Each image covers an area of approximately 1500m×
1500m. The test set contains 180 images of the same size collected from 5 cities

that are not part of the training set.

Baselines. We compare our approach to a number of image-to-image transla-

tion, style transfer and multi-modal image synthesis methods including Swapping

Autoencoder [66], StyleGAN2 [40], SMIS [100] and BicycleGAN [99]. We either use

the results published by authors or generated using their official source code for all

comparisons.

Performance metrics. We use Fréchet Inception Distance (FID) [28] to measure

the quality of generated images. FID calculates the difference between the real and

the generated data distributions using the Inception network to extract the features.

Structure-consistent style transfer. This section evaluates the quality of our

generated images on style transfer and compares them to state-of-the-art. In Figure

4, we provide a qualitative comparison of our synthesized images with our baselines.

We find that our method produces comparable results with [66] and [40] on LSUN

Church dataset. A significant advantage of our approach is that it required only 3.9M

iterations for training which demonstrates that not only is our approach significantly

faster than our predecessors, but it surpasses their performance in terms of FID on the
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validation set, as shown in sota. Figure 4 shows that our method can generate samples

with high visual quality on style transfer while preserving structure. Furthermore,

structure similarity across generated samples supports the idea behind our auxiliary

branch.

Figure 5: Image translation on LSUN Church: Each column corresponds to

a particular texture extracted form the images on first row, respectively, each row

contain the generated images with shared structure embedding.

Realism of reconstruction. The diagonals of Figure 1, 7 and 5 show the quality

of our method on image reconstruction task from the learned feature embedding.
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Our method preserves windows, doorways, trees, spires and generally the geometry

of the objects as well as finer details such as earrings and tank top strap in Figure 1

(second row). We report quantitative comparison using the LPIPS [94] to compare

the similarity of reconstructed images in the supplementary material.

Disentanglement of structure and texture. Accurately disentangling struc-

ture and texture is an important task both for style transfer and image manipulation.

Given that this disentanglement is performed entirely unsupervised, we can evaluate

the effectiveness of our new module by comparing the performance of our method

with previous works on style transfer from existing images. Better disentanglement

of structure and texture leads to a finer manipulation, resulting in significantly more

realistic images. Figure 4 (left) shows the results from Swapping Autoencoder [66] on

LSUN Church. Our results, shown on the right, demonstrate that our model achieves

better feature embedding and generates images that retain the structural information

of the input image while transferring only the texture from the second input image.

Finer-level details such as spires and buildings’ outlines are also preserved.

Texture code normalization. We evaluated the effect of normalization on the

texture latent code and found that applying L2-norm results in faster convergence

and more realistic synthesis. In this work we do not employ normalization in the

generator, as in [34,79], and similar to [66].

Applications. In Figure 5, we show examples from LSUN Church [90] that

showcase the applicability of our method to other contexts. The bottom row shows

a concrete example of how our technique preserves structures while transferring fine

details. As it is evident, the building’s structure is preserved while the texture is

replaced. Similarly, the tree’s structure is preserved, and its texture -in this case, the

foliage’s colour and density- changes according to each of the source images appearing

in the top row. It should be noted that the model was not trained on any season

transfer dataset.

Semantic image synthesis is one of the critical tasks in designing 3D environments,

image colorization, and image editing, but it requires semantic masks and correspond-

ing input images for training a model. This poses a limitation for many real-world

applications where it is not simple to produce segmentation masks to train a con-

ditional generative model in a supervised setting, but they need accurate semantic

consistency. Our method can perfectly adopt for semantically multi-modal image
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Figure 6: The left column shows the input images from Cityscapes, the second

column are reconstruction of input images. We provide a visualization of structure

latent codes in the third column after applying PCA and then resizing it to 256×256

for the purpose of visualization. The last column shows our generated images by

swapping the texture between first and third row and between second and fourth

row. As it can be seen the lightning information, asphalt texture and coloring of the

facades are the main information that transferred by swapping the texture codes.

synthesis in an unsupervised setting.
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Figure 7: Qualitative comparison of style transfer on CelebAMask-HQ. In each col-

umn, the first row is the texture input image and the remaining rows are the outputs

according to the structure input image (first image of each row). On the second row,

we can see the specular highlight on the person’s face is embedded as a structure and

is retained.

Discussion and limitations. Our method is superior to state-of-the-art unsu-

pervised approaches and gives comparable results to supervised techniques for image

manipulation and image-to-image translation. We showed that incorporating the pro-

posed auxiliary module as part of the training encourages better disentanglement of
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the structure from the texture and better feature embedding. This opens up new

applications for image editing and style transfer. Previous works [13] explored the

effect of combining multiple loss functions with different weights all in a single model

using [29] to achieve better optimization. We believe this can be applied in the image

manipulation setting, where the importance of structure versus texture may differ

from one scenario to another by designing an architecture in which one can specify

the percentage of structure versus texture for image generation.

4.5 Limitations

The proposed method works best when both structure reference and texture reference

images contain the same class of objects and it struggle if you try to transfer style

from an image that does not have that object. The behaviour of our model is not

completely predictable in those cases. As you can see in the last row of Figure 8,

where the network added trees on a position where it supposed to be a building, our

network may generate an image very close to the structure image with very little

change or it may replace some objects. However, we didn’t remove such cases during

training but ignoring them can be a reasonable next step for style transfer tasks

unless we achieve a better understanding of underlying meaning of learned texture

embedding.

4.6 Applications

The motivation of our work is to remove biases from training datasets caused by class

imbalances. Many benchmark datasets introduce bias [12,59] that can limit the gen-

eralization capability of any network trained on them. Moreover, it can significantly

limit the impact of methods trained on these datasets in real-world scenarios.

In this section, we present two unique applications of our technique:

• The first application addresses bias in training datasets and demonstrates how

our method contributes to overcoming this issue.

• The second application addresses the cost-effective generation of training datasets

for the task of semantic segmentation in satellite images while incurring no ad-

ditional labelling cost.
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Figure 8: Performance on Inria dataset. Left-to-right: first input x1, second

input x2, reconstruction of x1, our generated sample using structure of x1 and texture

of x2. The first column shows the structure reference images, the second column

the texture reference images from which we extract their texture embedding. The

third column shows the reconstructions of the first column using the learnt latent

codes. The last column shows the synthesized images with the style transferred from

the second image while preserving the structure of the first. Learning consistent

embedding for aerial imagery is clearly more complex than single object datasets.

We argue that given the complexity of the problem our method still preserves fine

details such as front and back windows of the cars which shows its potential.
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Figure 9: Additional qualitative results on CelebAMask-HQ dataset.
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Figure 10: Illustration of structure embedding for a set of randomly sampled images.

As shown in top right, the network learned to encode different body parts in the

structure code.
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Figure 11: Illustration of some limitations of our method. Top right shows the

learned structure embedding.
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Furthermore, we present additional comparisons with state-of-the-art and quan-

titative results on the datasets LSUN Church [90], CelebAMask-HQ [48], Inria [61].

Finally, we conclude with a discussion on the limitations of our technique.

4.6.1 Application: Addressing bias in training datasets

Often we talk about biases in different datasets as an issue that needs to be addressed

while designing the method, and we observe some generalization issues caused mainly

due to imbalances in class distributions. A different approach is to adjust or expand

our existing datasets to overcome this issue. Our method can preserve fine details;

for example, in face datasets, these often imbalanced features can be gender, age,

skin colour, hair colour, and accessories such as earrings, eyeglasses, hats, etc. Using

our method allows us to balance the dataset by generating synthetic images with

under-represented features. Furthermore, in cases where labels are available for the

source image, these will also be the same for the generated images since our method

preserves the same structure as the source image and only changes the appearance.

Examples are shown in Figure 12.

Figure 12: In all rows, the first(left) image shows the first input image, and the

second/third/fourth images show the generated image where the structure is retained

from the first input image and the texture from the second/third/fourth input image,

which appear in the inset images.
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4.6.2 Application: Training datasets for Semantic Segmen-

tation of Satellite Images

Collecting satellite imagery for semantic segmentation is known to be an expensive

and challenging task. The process of capturing images is expensive, but it may also

contain inaccuracies due to the dynamic environment, e.g. a new building may ap-

pear that was not present at the time of acquisition of the satellite images. Another

common issue is that the data collected from one city/continent cannot be easily

generalized for a different city/continent. Considering all the challenges mentioned

above, deploying a semantic segmentation network for aerial imagery can be challeng-

ing. Our structure-consistent network is designed to help overcome these challenges

by generating realistic samples for different cities and weather conditions and gener-

ally creating datasets by style transfer. Our approach significantly reduces the time

needed to process the data since we can expand any existing dataset to the desired

style by only having a few images from the new city without requiring semantic labels

Figure 15. Moreover, it can also be extremely useful for editing or expanding already

existing datasets by changing the learned structure embedding.

4.7 Additional comparison to state-of-the-art

In Figure 13, 14, and 15, 16, 10, 4.5 we provide additional qualitative results on both

reconstruction and style transfer tasks.

4.8 Quantitative results

Table 2 provides quantitative comparison of our method with Swapping Autoencoder

[66], StyleGAN2 [40], MaskGAN [48], SMIS [100], and BicycleGAN [99].

4.9 Conclusion

We present an end-to-end process for training a structure-consistent image manipu-

lation of existing images. We show that our approach can disentangle structure and

texture with higher accuracy while preserving finer details than previous works. We
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Figure 13: Illustration of style transfer on CelebAMask-HQ using our learned em-

bedding.

have extensively tested our method and showed that it could consistently transfer

texture to the correct parts and preserve structural information without requiring a

semantic mask. Most notably, this is achieved while also reducing the computational

time needed for training such a network. Although our method outperforms some

state-of-the-art in the image-to-image translation task, defining and disentangling

structure from texture in multi-object scenarios such as Cityscapes remains challeng-

ing due to the diversity of the objects and complexity of the scene. In the future,
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Figure 14: Image translation on LSUN Church showing the quality of our method

in different lightning and weather.
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Figure 15: This figure provide an example of how our method can preserve the

geometry of objects and semantic details while transferring the style. This would

allow us to generate multiple samples with no extra labeling cost.

Method LSUN Church CelebAMask-HQ Cityscapes

Ours 52.96±1.7 29.69 174.8

Swapping [66] 52.34 32.83 182.5

StyleGAN2 [40] 57.54 - -

MaskGAN [48] - 46.84 -

SMIS [100] - - 49.81

BicycleGAN [99] - - 87.74

Table 2: Quantitative comparison of FID on style transfer with some label-to-

image translation work that are known for multimodal image synthesis and Swapping

Autoencoder. In cases that we didn’t have access to metric values calculated by the

author, we trained their model for the same number of iterations as our network.

Our method can achieve better results on CelebAMask-HQ and comparable results

on LSUN Church trained for only 1.2M and 4M images.

we plan to explore the knowledge embedded in latent codes for different datasets and

study extending this framework to other domains as discussed in Section 5.4.
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Figure 16: Results of our method on DeepFashion dataset. The model is trained

and tested at 256px-by-256px.
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Method LSUN Church

StyleGAN2 [40] 0.377

Image2StyleGAN [1] 0.186

Swapping [66] 0.227

Ours 0.284

Table 3: Comparison of reconstructed image quality using LPIPS [94] on LSUN

Church. Our method focus on preserving structural details and can produce high

quality results. Given the fact that our model have only been trained on 4M images

which reduce the training time by a great factor, our method can reconstruct input

images better than StyleGAN2 [66].

Figure 17: Results of our method on DeepFashion dataset. The model can accurately

transfer the style of clothes and preserve the structure of the structure reference input.
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Chapter 5

Conclusion

In this work, we introduced an unsupervised image-to-image translation method

designed to create realistic synthetic datasets for domains that collecting data is

costly. Our method improves the quality of image synthesis by generating structure-

consistent images across different viewpoints. Our experiments on multiple datasets

show improvements in disentangling structure and texture. Many recent works sug-

gested that training on large datasets can significantly improve the performance of

downstream tasks. However, it is not a reasonable next step in many domains due to

environmental challenges and the high costs of creating such datasets. That is one of

the main reason we focused on tackling this problem in this thesis and introduced our

unsupervised structure-consistent image-to-image translation method. We, therefore,

believe that our method can open up many doors for future work. Future directions

could be as follows:

• Creating large datasets for Semantic Segmentation: The process of collecting

data and creating annotations can be time consuming and expensive. How-

ever, [96] has demonstrated that it is possible to generate datasets for semantic

segmentation by annotating a small fraction of synthesized images. Given that

our method preserves structure, one can use few samples from existing datasets

to train a segmentation module and to generate the annotations.

• Reducing bias in datasets: One of the sensitive challenges in data collection is

to ensure that the dataset is not biased and that it is a fair representative of the

population. Many existing semantic segmentation datasets suffer from bias that

is caused by imbalances in class distributions. Our structure-consistent image
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generation network seems like a promising approach to balance the distributions

by generating samples for under-represented classes.

• Image editing by exploring latent space: Given that we can separate the struc-

ture from the texture, exploring the structure and texture latent spaces by

interpolating between two samples would be an interesting next step that can

result in finding feature directions for image editing.

• Texture and structure interpretation: Studying interpretability of texture and

structure embedding can guide researchers to achieve finer control in style trans-

fer and image editing.
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