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Abstract 

 

Diffusion coefficient of charge carriers in disordered semiconductors 

retaining a combination of exponential and Gaussian mobility-gap states: 

application to amorphous selenium 

 

Dilshad Hossain 

 

Charge carrier transport in disordered semiconductors is highly influenced by the defect states 

near the mobility edges. The ratio of the diffusion coefficient and drift mobility in crystalline 

semiconductor under a wide range of carrier concentration can conveniently be calculated by the 

Einstein relation. The density of states (DOS) in the mobility gap in amorphous/disordered 

semiconductors can change the generalized Einstein relation. It has been found that the ratio of 

the diffusion coefficient and drift mobility is larger than the conventional Einstein relation even 

at the presence of lower carrier concentration than the degenerate limit. A theoretical model for 

the generalized Einstein relation (GER), namely, the diffusivity-mobility ratio, for disordered 

semiconductors retaining a combination of exponential and Gaussian mobility-gap states with 

square-root distribution of extended states, is presented in this thesis work. The conditions for 

determining the diffusion coefficient of charge carriers from Einstein relation are described in 

the thesis work. The effects of various parameters constituting the density of states (DOS) 

distribution on the Einstein relation are examined. The results show that the diffusivity-mobility 

ratio for such DOS distribution substantially deviates from traditional constant value for carrier 
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concentration larger than 1010 cm-3. The value of diffusivity-mobility ratio strongly depends on 

the amount, energy position and the shape of the Gaussian peaks.  

The diffusion coefficient determined from Einstein relation in amorphous semiconductors is 

valid at equilibrium transport when the electric field is very low. Under applied field, charge 

carriers undergo many trapping-detrapping events in the energy distributed mobility gap states 

during their travel. The statistical variations of the trapping and release times create a 

considerable spreading of signal. Thus, the actual diffusion coefficient appears to be much larger 

than it should be from the known Einstein relation. The additional diffusion coefficient due to 

multiple trapping in disordered semiconductors (namely field diffusion) under quasi-equilibrium 

transport is also examined as a function of electric field and carrier concentration. 
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Chapter 1: Introduction 

 

1.1 Semiconductor 

A Semiconductor is a material which has conductivity level higher than an insulator but less than 

a conductor. Semiconductor responds to external forces such as temperature, electric field, light 

etc. which allows manipulation of the conductivity levels. The conductivity level of a 

semiconductor can also be changed by adding doping.  

Semiconductor can handle wide range of current-voltage limit which makes it ideal for various 

complex designs in electronic systems. Since the electrical properties of semiconductor can be 

modified by external means, devices made from semiconductor can be used for switching, 

energy conversion and amplification. In practice, they are used widely to produce various 

compact, reliable, power efficient devices including MOSSFET, solar cell, computer, appliance, 

medical equipment, smartphone, automobile etc.  

Interests in semiconductor can be traced back to nineteenth century when Michael Faraday 

investigated the temperature dependence of the electrical conductivity of silver sulphide in 1833.  

Two major discoveries in the 1870s led to the development of the 1st semiconductor device: 

discovery of the photoconductivity of selenium in 1873 by Willoughby Smith whilst working on 

submarine cables and the discovery of electricity production in a selenium device when light was 

shone on it in 1876 by William Grylls Adams and Richard Evans Day [1]. 

In 1906, Greenleaf Whittier Pickard filed and obtained patent for crystal silicon detector (earliest 

stage of diode detector) [2] and, in 1947, the first transistor was constructed and tested at Bell 

Telephone Laboratories by William Shockley, John Bardeen, and Walter Brattain [2]. 
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In mid 1960s practical MOS transistors were developed. The MOS technologies, especially 

CMOS, become the backbone of modern IC design and development, which can store 

information, and can perform arithmetic and logic on semiconductor chip. The development of 

the integrated circuits and their wide-range use has led to significant improvements in the 

production of electronic devices.  

1.2 Types of Semiconductors 

Different types of semiconductors are used for different purposes. Based on the relative amount 

of free carrier concentration, they can be divided into two categories: degenerate and 

nondegenerate semiconductors. They can also be classified based on the periodic order of atomic 

arrangement: crystalline, polycrystalline, and amorphous semiconductors. 

 

1.2.1 Degenerate vs Nondegenerate Semiconductors 

The electronic and optical properties of semiconductor materials are highly responsive to 

impurities, which may be added in precisely controlled amounts. Such impurities are used to 

vary the conductivities of semiconductors over wide ranges. For example, an impurity 

concentration of one part per million can change a sample of Si from a poor conductor to a good 

conductor. This process of controlled addition of impurities is called doping [3]. Based on the 

level of doping, semiconductors can be divided into two primary categories: degenerate and 

nondegenerate semiconductor.  

 

When doping level is adequately high for the semiconductor to act like metal, it is called 

degenerate semiconductor. Adding high impurity into semiconductor improves the interaction 
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between dopant atoms, which generates a band of donor/acceptor energy levels rather than a 

single discrete energy level. The energy bands can overlap with the corresponding band edges of 

conduction and valance band. Because of the overlapping, the fermi level enters conduction band 

(in case of n-type semiconductor) or valance band (in case of p-type semiconductor) [3].  

 

On the contrary, when the doping level in the semiconductors is low enough to maintain the 

fermi level in the forbidden band gap and not closer than 3kT from the band edges, they are 

called non-degenerate semiconductors [3].  

 

1.2.2 Crystalline vs Amorphous Semiconductor 

Based on the nature of atomic arrangement with their neighbouring atoms, semiconductors can 

be divided into three categories: Crystalline, Polycrystalline and Amorphous semiconductors. 

Crystalline semiconductors are those which have long-range order, i.e., atoms are arranged in a 

regular, periodical, and repeated structure throughout the material. Polycrystalline 

semiconductors are composed of many small crystals with random orientation.  

Conversely, a material is called amorphous material when they lack long-range order throughout 

the whole structure. Such materials are created when they are cooled down rapidly, which 

prevents them from achieving the minimum thermal energy at a specific bond radius (lattice 

point) and locks the atoms in a disorderly arrangement throughout the material. Lower mobility 

in liquid state of a material or complex structure in atomic level makes it difficult for 

crystallization, making it easier to be amorphous.  
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As amorphous semiconductors do not have long-range order and lack periodical or repeated 

structure like crystalline semiconductors, they show small or short-range order which can be 

used as a thin film over large areas that are usually used in photovoltaic technology, x-ray 

detectors, printers etc. However, because of the lack of periodicity, the density of states (DOS) 

is more complex than crystalline semiconductors. Figure 1.1 shows the different atomic 

arrangement between crystalline and amorphous semiconductor.  

 

Fig 1.1: Atomic arrangement in (a) Crystalline semiconductor (b) Amorphous semiconductor 

[4]. 

 

1.2.3 Amorphous Semiconductor 

After the development of quantum mechanics in 1920s and 1930s it was readily applied to the 

study of crystalline solid because of its periodic structure. Due to the complexities of the 

application of quantum mechanics to non-periodic structures, the same did not happen to 

amorphous semiconductors. The theoretical understanding of the properties of amorphous 

materials started in 1960s which has resulted in more prominent use since 2000s because of their 
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significant higher level of diversities in their physical properties. Moreover, the preparation of 

amorphous materials usually does not require the same carefully controlled growth techniques 

providing a robust economical advantage for many applications [5]. 

 

When atoms are cooled to form solid structures, the individual atomic electron energy states 

interact with each other and form a series of allowed and forbidden band of energy states. 

However, there are finite number of states in conduction and valence bands, which is expressed 

by the term density of states (DOS). At any energy level, DOS is represented as g(E). Crystalline 

materials have very well-defined DOS which include forbidden band gap (where no electron is 

allowed at thermal equilibrium), valance band and conduction band.  

 

Unlike perfect crystalline materials, amorphous materials lack long-range order, which makes 

the band model of amorphous semiconductor more complicated. However, even though they are 

random in long distance, they have similar structure with neighbouring atoms with local 

bonding, which causes an optical gap like crystalline materials [6]. Due to short-range order, 

amorphous semiconductors have spatial vibrations in bond lengths and angles causing random 

fluctuations in potential energy of electrons throughout the whole sample which leads to defects 

in their band gap.  

 

Instead of sharp band edge like crystalline material, amorphous material has mobility edges 

which separates their localized states from their extended states. The distance between two 

mobility edges is called the mobility gap. The charge carriers can be trapped in the defect states 
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and released from there by thermal energy [7]. Figure 1.2 represents energy band diagram of 

crystalline and amorphous semiconductors. 

 

 

Fig 1.2 (a) Energy band diagram of crystalline semiconductor [7] (b) Energy band  model 

proposed by Mott for amorphous semiconductor [8] (c) The CFO model for amorphous 

semiconductors [9] (d) Deep localized states proposed by Marshall and Owen [10]. 

 

In Figure 1.2 (a) the band model for crystalline semiconductor is presented. Due to periodic 

atomic arrangement, it has sharp band edge and defined forbidden band gap [7]. Figure 1.2 (b) 

represents the band model for amorphous semiconductor proposed by N.F. Mott in 1960s. Based 

on the two features of crystalline semiconductor, he developed the band model for amorphous 

semiconductor. One of the features is that the extended Bloch wave functions describe that the 
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individual atom inside the crystal lattice possess long range order in amplitude and phase. And 

the other one is that the well-defined energy gap known as forbidden energy gap separates the 

valence and conduction bands. Based on these two features, Mott assumed that all amorphous 

semiconductors have common characteristics including short-range order in the Bloch wave 

functions for electrons in their phases and long-range order in their amplitudes resulting in the 

localized states encroaching the bandgap [8]. 

 

Figure 2.2 (c) represents the Cohen, Fritzsche and Ovshinski (CFO) model for amorphous 

semiconductors which is an extension model of N.F. Mott. In this model the localized states are 

continuous through the bandgap and overlap in the region of fermi level [9]. Figure 2.2 (d) 

represents the Marshal and Owen model where the concentration of defect states in band gap are 

assumed to be high. There are two defect states appearing above and below the Fermi level. 

These two defect states act as donor and acceptor like states, and they significantly influence the 

electrical and optical properties of the amorphous materials [10]. 

 

 

1.3 Research motivation 

1.3.1 Conventional Einstein Relation (CER) 

A carrier in a uniform media can jump to any neighbouring site in any direction due to the 

thermal energy. The probability of this jump may depend on energy, distance, transfer 

mechanism etc. This random direction motion is called diffusion [12]. 
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Alternatively, when electric field is applied to the sample, it causes an energy difference between 

the terminals and creates a preferred direction of charge flow. The proportionality constant 

between this charge flow and the electric field is called mobility provided that the drift velocity 

is lower than the thermal velocity. The diffusion coefficient and mobility are closely related and 

the relation between them is called the Einstein relation (ER) [12]. For avoidance of doubt, this 

term will be considered as the conventional Einstein relation.  

                                     (1.1) 

Here, D is diffusion coefficient, µ is the mobility, k is the Boltzmann constant, T is the 

temperature and e is the elementary charge.  

 

1.3.2 Deviation from Conventional Einstein Relation (CER) 

Through the time of flight (TOF) experiment, Richert et al. [13] and Borsenberger et al. [15] 

demonstrated that crystalline semiconductor obeys ER and follows  equation. However, 

in amorphous semiconductor, the presence of multiple traps (due to random orientation in atomic 

structure) in mobility gap raises disorder and the signals from TOF experiment often give 

dispersive transport indicating that the carriers cannot relax to dynamic equilibrium within the 

transit time. In other cases, the signals from TOF experiment shows a plateau region (gaussian 

profile) which is non-dispersive [13]. This indicates that disorder semiconductors do not follow 

the ER, which was later confirmed by Richert et al. [13]. Generally, the deviation of ER involves 

the assumption of media being isotropic and electric field being low enough to maintain linear 

response [13]. 
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Compared to crystalline materials, the charge transport properties of amorphous materials are 

more complex to model and represent mathematically due to their disordered nature. With the 

use of quantum mechanics, crystalline materials can be easily expressed since their long-range 

order greatly simplifies the mathematical models involved. The study of amorphous materials 

then, relies heavily on empirical measurements of the physical and electronic properties of 

interest. The Time-of-Flight (TOF) transient photoconductivity experiment provides an excellent 

means to study the charge transport properties of low mobility solids such as amorphous 

materials. The Time-of-Flight (TOF) transient photoconductivity experiment consists of 

measuring the transient response that occurs due to the drift of injected charge carriers across a 

high resistivity solid. 

 

Koughia et. al. investigated the distribution of localized states (DOS) in stabilized a-Se by 

comparing the measured and calculated electron time-of-flight (TOF) transient photocurrents. 

The theoretical analysis of multiple-trapping transport has been performed by the discretization 

of a continuous DOS and the use of Laplace transform formalism [16]. Kasap et. al. examine 

electron and hole transport in pure and stabilized amorphous selenium and attempt to construct a 

DOS distribution in the mobility gap based on time-of-flight (TOF) transient photoconductivity 

measurements [17]. Benkhedir et. al. also use transient photocurrent measurements on 

evaporated a-Se layers to specify the presence of two sets of discrete traps in the band tail region 

[18].  

The charge carrier statistics and transport in disordered semiconductors do not follow the 

conventional equations for non-degenerate semiconductors because of existence of the mobility 

gap states. For example, the effective drift mobility is highly controlled by the states near the 
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mobility edges [19]. The ratio of the diffusion coefficient and drift mobility in crystalline 

semiconductor under a wide range of carrier concentration can conveniently be calculated by the 

Einstein relation. The density of states (DOS) in the mobility gap in amorphous/disordered 

semiconductors can change ER. It has been noted that the ratio of the diffusion coefficient and 

drift mobility is larger than the ER of kbT/e even at the presence of smaller population than the 

degenerate limit [20] [21]in amorphous semiconductors.   

 

Nguyen and O’Leary [20]analyzed the Einstein relation in disordered semiconductors with 

exponentially decaying tail states and square-root distribution of extended band states under 

thermal equilibrium. More recently, Çopuroglu and Mehmetoglu [22] determined an 

approximate analytical expression for Einstein relation based on the general frame work 

developed by Nguyen and O’Leary [20], Wei et al. [21] analyzed the Einstein relation in organic 

semiconductors having one or more Gaussian distributions of density of states (DOS) under 

thermal equilibrium. However, there exists a combination of exponentially decaying tail states 

and one or more Gaussian distributions of defect states (away from the mobility edges) in the 

mobility gap in some disordered semiconductors (e.g., amorphous selenium) [23] which was not 

considered before. Amorphous selenium-based X-ray detectors are widely used in diagnostic 

medical imaging especially in mammograph [24]. The performance of the detector highly 

depends on the charge carrier transport of the photoconductor [25]. 
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1.4 Research Objectives 

In this thesis work, the generalised Einstein relation (GER), namely, the diffusivity-mobility 

ratio, in disordered semiconductors with square-root distribution of band states, and exponential 

distributions of tail states and one or more Gaussian distributions of defect states near the 

mobility edges is analyzed. Furthermore, an analytical expression for the field stimulated 

diffusion coefficient under quasi-equilibrium condition for the same DOS distribution 

considering multiple trapping model is developed. The GER as a function of Fermi energy, 

electric field, and carrier concentration is also analysed. The model of GER is then applied to 

electrons and holes in a-Se. Finally, the field diffusion coefficient as a function of electric field 

and carrier concentration is analyzed. 

 

1.5 Thesis Outline 

The thesis work is organised in five chapters.  

Chapter 2 focuses on a-Se, which is the primary subject matter of this thesis. The discussion in 

this chapter includes band structure, density of states, and application of a-Se. This chapter also 

includes carrier statistic in degenerate and nondegenerate semiconductors, which demonstrates 

that the Boltzmann approximation does not hold for degenerate semiconductors. 

Chapter 3 explores theoretical aspects of charge carrier transport under multiple trapping at quasi 

thermal equilibrium. Further, the derivation of Einstein relation, charge transport for a-Se with 
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introduction of a new diffusion coefficient called field diffusion coefficient are included in this 

chapter.  

The results and discussions of the thesis work are described in chapter 4. This includes the 

effects of different density of states parameters of a-Se on GER and the dependence of the field-

diffusion coefficient on electric field and carrier concentration. 

Chapter 5 presents the conclusion of this thesis work. This includes the overall conclusion of the 

work, its contribution, and future research prospects.  
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Chapter 2: Amorphous Selenium 

 

2.1 Introduction 

The subject matter of this thesis revolves around electrical properties of a-Se at degenerate limit. 

This chapter explains relevant theoretical premises including carrier statistics in non-degenerate 

and degenerate semiconductors at thermal equilibrium and DOS of a-Se.   

 

2.2 Carrier Statistics in Non-degenerate and Degenerate Semiconductors in 

Thermal Equilibrium 

A semiconductor sample is considered to have thermal equilibrium when there is no external 

force applied to it such as voltage, electric field, temperature gradient etc. The electrical 

properties of semiconductors can be changed by adding impurities called dopant atoms. Adding 

dopant atoms changes the distribution of electrons among the conduction and valance band 

states, causing the Fermi level to become a function of the type and concentration of dopant 

atoms. 

The electron concentration per unit energy per unit volume in the conduction band is [2], 

               (2.1) 
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Here, n(E) is the concentration of electrons, gc(E) is the density of states. The unit of n(E) and 

gc(E) is cm-3eV-1. fF(E) is the probability that a state is occupied by an electron called Fermi-

Dirac probability function. 

The total electron concentration per unit volume in the conduction band is then found by 

integrating Equation (2.1) over the entire conduction-band energy [2], 

             (2.2) 

For non-degenerate semiconductor, it is assumed that the Fermi level is within the forbidden 

energy band gap and Fermi-Dirac probability function is reduced to Boltzmann approximation 

[2]. 

            (2.3) 

          (2.4) 

 Applying the Boltzmann approximation to Equation (2.2), the thermal-equilibrium density of 

electrons in the conduction band is found from [2], 

         (2.5) 

        (2.6)                                                                                          
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             (2.7) 

Here, 

           (2.8) 

The parameter Nc is called the effective density of states at conduction band, h is the Planck  

constant, mn* is called effective mass. For degenerate semiconductor, Boltzmann approximation 

does not hold. By using Fermi-Dirac probability function the thermal equilibrium electron 

concentration is written from equation (2.2) as [2], 

 

                 (2.9) 

            (2.10) 

Where, 

 and                                        (2.11) 

Introducing gamma function, 

                (2.12) 



 

16 

 

Here, 

 

Therefore, electron concentration at degenerate limit [2], 

                  (2.13) 

Here Fermi-Dirac integral, 

         (2.14) 

 

2.3 Amorphous Selenium 

The name “Selenium” originates from the Greek word for moon: “Selene”. Selenium was 

discovered by Jons Jacob Berzelius in 1817. The Amorphous Selenium (a-Se) has low melting 

temperature and high vapour pressure which makes it easy to deposit as thick and uniform layers 

over a large area. a-Se offers great advantages over other chalcogenide glasses. Firstly, both the 

hole and electron can drift throughout the material resulting in increasing overall 

photoconductivity. Secondly, the electronic properties of a-Se are highly responsive to impurities 

(even in ppm range). Hence, by adding small amount of impurities the whole material can 

change into either p-type or n-type.  
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2.3.1 Uses of Amorphous Selenium  

Photoconductor was first discovered by W. Smith in 1873 [26], when he was using rods of 

selenium as resistors to test sub-marine telepathic cables. He discovered that the resistance of 

these rods depends on whether the resistor is illuminated or not. Selenium solar cell was first 

reported in 1883. Between 1920s and 1950s, selenium solar sells were available before silicon 

solar cells were produced. Electrical rectifiers used the crystalline selenium from the 1930s to the 

1960s.  

 

Firstly, the low melting point and high vapour pressure allows for a thick layer of a-Se being 

deposited. While the atomic number (34) for a-Se is not as high as some of the other X-ray 

photoconductors, it can nonetheless absorb X-rays, especially in the mammographic range [28]. 

 

Secondly, a-Se can be readily coated by conventional vacuum deposition over a large area with 

good uniformity up to thicknesses of 1000 µm. This trait is particularly useful, since X-rays 

cannot practically be focused and requires image detectors to be larger than the body parts to be 

imaged [28]. 

 

Thirdly, both holes and electrons are mobile in a-Se, which is a distinct advantage because X-

rays are absorbed throughout the a-Se layer. Thus, both the electrons and holes generated by the 

absorption of an X-ray photon can drift and be collected [28]. 

  

Fourthly, unlike many other amorphous solids, charge transport in a-Se over the time scale of 

interest at room temperature is moderately dispersive for both holes and electrons. Hence, both 
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hole and electron transport can be readily described by a set of shallow traps that control the drift 

mobility and a distribution of deep traps with well-defined trapping times or lifetimes. And 

finally, the dark current in a-Se photoconductors tends to be relatively small compared with 

many other competing photoconductors [28]. 

 

2.4 Density of States of a-Se 

For Amorphous selenium, there are two prominent sets of traps called shallow and deep trap in 

the mobility gap. Shallow traps are close to mobility edges and hence are usually considered for 

charge transport equation. The release time from deep trap is longer than the time scale of 

interest and thus the deep traps determine carrier lifetime. In Figure 2.1 there is a detailed 

illustration of localized density-of-states distribution in a-Se [23]. 
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Fig 2.1: The localized density-of-states distribution in a-Se according to the Abkowitz model 

[23]. 

 

There have been significant prior studies on electronic properties of a-Se since M. Abkowiz has 

proposed a complete DOS for a-Se [23] which showed distinct peaks in the tail (or localized gap) 

states that has later been validated by others [16], [17], [18]. A general consensus on the DOS 
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distribution near the mobility edges is that it is not a single exponentially decaying function (as 

opposed to a-Si:H) but exhibits certain peaks whose exact positions are still controversial. 

Though there are controversies on the magnitude and position of the peak, the density of states 

function for the shallow traps (gs) near conduction (or valence) band can be approximated as the 

sum of the exponential tail and one or more Gaussian peaks [29], 

( )   ( ) 2 2
0

1

exp ( ) / exp /
N

s c c mi mi mi

i

g E g E E kT N E E E
=

= − − + − −  ,    (2.15) 

Where, T0 is the characteristic temperature, gc is the density of states at the conduction band 

edge, Ec is the conduction band mobility edge, Nmi is the peak value of shallow traps at (Ec – E) = 

Emi and i = 1, 2, …N (N is determined by the number of shallow Gaussian peaks in DOS), ∆Emi 

is the width of the Gaussian peak. Note that the shallow trapping states affect the effective drift 

mobility whereas the deep trapping states are responsible for average carrier lifetime [30]. The 

variations on the values of DOS parameters reported in different publications in literature for 

shallow traps for electrons and holes are summarized in Table I and II, respectively.  
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Table I: DOS below conduction-band mobility edge, Ec in the mobility gap. Note that Em is 

measured from Ec.  

Ref. Exponential Tail  Gaussian peak 1 

(Below Ec) 

Gaussian Peak 2 

(Below Ec) 

M.Abkowitz 

[23] 

 

gc = 1020 eV-1cm-3 Em = 0.33 - 0.37 eV 

Nm = 1016 eV-1cm-3 

 

Koughia et al. 

[16] 

gc = 2 × 1021 eV-1cm-3 Em = 0.3 - 0.35 eV 

∆Em = 0.035 eV 

Nm = 2.4×1016 eV-1cm-3 

Em = 0.5 eV 

∆Em = 0.04 eV 

Nm = 5.6×1013 eV-1cm-3 

Kasap et al. 

[17] 

 

gc = 2 ×1021 eV-1cm-3 

 

Em = 0.27 - 0.33 eV 

∆Em = 0.03 - 0.04 eV 

Nm = 1017-1018 eV-1cm-3 

 

Em = 0.38 - 0.48 eV 

∆Em = 0.04 - 0.06 eV 

Nm = 5×1013 – 

 5×1015 eV-1cm-3 

Benkhedir et 

al., [18] 

 Em = 0.26 - 0.3 eV 

 

Em = 0.53 eV 
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Table II: DOS above valence-band mobility edge, Ev in the mobility gap 

Ref. Exponential Tail Gaussian peak 1 

(Above Ev) 

Gaussian peak 2 

(Above Ev ) 

M.Abkowitz [23] 

  

gv = 1020 eV-1cm-3 Em = 0.24 - 0.28 eV 

Nm = 1016 eV-1cm-3 

 

Kasap et al. [17] gv  =2×1021 eV-1cm-3   

Benkhedir et al. 

[18] 

 Em = 0.18 - 0.22 Ev Em = 0.36 - 0.4 eV 

 

 

 

 

Considering a square root distribution for the extended states, the complete DOS near conduction 

band edge can be written according to Nguyen and O’Leary[20], 

 

( ) ( )
2

2
1

2
( ) ;

2

exp exp ;

c
c c c

c

N
c mi

c mi c

ic mi

g E g E E E E

E E E E
g N E E

E





 =

  
= − +    
   

  − − − − 
 = +          



                                (2.16) 

 

Here c = kT0, represents the decay rate of the exponential tail states in mobility gap. The 

valance-band DOS distribution is similar to the conduction band DOS distribution and the 

relation for holes, Dh/h, can also be derived using the similar technique. 
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Chapter 3:  Modeling of Diffusion Coefficient in Disordered 

Semiconductors 

 

3.1 Introduction 

This chapter demonstrates charge carrier transport under multiple trapping in mobility gap 

through a mathematical description. This chapter also derives a diffusion coefficient from GER 

at low electric field as well as a diffusion coefficient from charge carrier transport under multiple 

trapping at high electric field. A mathematical expression of drift mobility at extended states is 

also presented in this chapter. 

 

3.2 Charge Carrier Transport Under Multiple Trapping 

The diffusion coefficient determined from Einstein relation in amorphous semiconductors is 

valid at quasi-equilibrium transport when the electric field is very low [31]. Under applied field, 

charge carriers undergo many trapping-detrapping events in the energy distributed mobility gap 

states during their travel. The statistical variations of the trapping and release times create a 

considerable spreading of signal. Thus, the actual diffusion coefficient appears to be much larger 

than it should be from the known Einstein relation [31] [32] .The additional diffusion coefficient 

is known as the field stimulated diffusion. Rudenko and Arkhipov  [32] developed a formulation 

for field-diffusion coefficient (FDC) under quasi-equilibrium condition considering multiple 

trapping model. However, their formulation is valid for small signal condition and thus it is 

independent of carrier concentration.  Later, Li et al. [31] evaluated this diffusion coefficient for 
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organic semiconductors where the DOS consists of a single Gaussian peak only and considering 

carrier hopping transport. However, the multiple trapping model (i.e., the extended states 

transport with carriers trapped and released from the shallow trapping states) is more appropriate 

to describe the charge carrier transport in amorphous semiconductors at room temperature [33]. 

Nikitenko and Kudrov [33] described field diffusion coefficient (FDC)considering multiple 

trapping model, which is applicable to organic semiconductors having a DOS distribution 

consists of a single Gaussian peak only. 

 

The multiple trapping model (i.e., the extended states transport with carriers trapped and released 

from the shallow trapping states) can successfully describe the charge carrier transport in 

amorphous semiconductors [34]. In multiple trapping model, the continuity equation for 

electrons including carrier drift and diffusion under uniform electric field F can be written as, 

 

( ) ( ) ( )2

0 0 2

, , ,
0

c c

e e

n x t n x t n x t
F D

t x x


  
− − =

         (3.1) 

Where x is the space co-ordinate, t is the time, n is the total electron concentration in DOS 

considering electrons in the extended and shallow states, nc is the electron concentration in the 

extended states (i.e., the quasi-free electron concentration), 0e and D0e are the drift mobility and 

diffusion coefficient of electrons at the extended states. Note that the states above the conduction 

band edge (Ec) are termed as the extended states and the states below but close to Ec are called 

the shallow states. The carrier release phenomenon from a shallow trap is much faster, and the 

carrier trapping is balanced by the carrier release process. Therefore, the kinetic equation for the 
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trapped electron concentration (nt) at energy E from the conduction band edge is 

( ) ( ) ( ) ( ) ( ) ( )
( , , )

, , , , , exp /t
t t c t c b

dn E x t
C E g E n E x t n x t n E x t E E k T

dt
= − − − −      

         (3.2)         

Where,  

( ) ( ) ( ), , ,c tn x t n x t n x t= +
         (3.3) 

And  

( ) ( ), , ,
CE

t tn x t n E x t dE
−

=           (3.4) 

Here Ec is the energy at the conduction band mobility edge, Ct is the capture coefficient of free 

electrons, g(E) is the density of states of a-Se at energy E in the mid gap, nc is the quasi-free 

electron concentration, and   is the attempt-to-escape frequency. The relation between  and tC  

can be determined by the principle of detailed balance, which gives  =NcCt = (gckT)Ct, where gc 

is the density of states at the conduction band edge and (gckT) is approximately the effective 

density of states Nc at the conduction band. If   is independent of energy, then Ct is also 

independent of energy. For simplicity, Ct is assumed to be independent of energy [32]. 

 

A equilibrium transport is reached when the concentration of free electrons nc is in equilibrium 

with the trapped concentration nt. Under this equilibrium transport (i.e., at steady state), the time 

derivative in equation (3.2) is zero and thus, 

                (3.5) 
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From the relation of  (attempt-to-escape frequency) and Ct (capture coefficient of free electrons) 

and considering Ct is to be independent of energy equation (3.5) can be written as 

 

                   (3.6) 

 

Substituting nt(E,x,t) from equation (3.6) into equation (3.4), 

 

( )
( )

( ) ( )
( , ) ,

exp / exp /

cE

t c

c c Fn b c c b

g E
n x t n x t dE

N E E k T N E E k T−
=

− − + − −      
   (3.7) 

 

Where the quasi-Fermi level EFn is determined by the carrier concentration in the extended states 

as, 

( ) ( ), ln / ,Fn c b c cE x t E k T N n x t= −            (3.8)  

 

So the total carrier concentration n(x,t) can be written as, 

          (3.9) 

 

Under non-degenerate limit, the first term in the denominator of equation (3.7) is much smaller 

than the second term. In other words, neglecting the trap saturation effect (second term in 
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equation (3.2)). Under small signal, nt in equation (3.7) is independent of extended state carrier 

concentration. Thus, the free carrier concentration from equation (3.9) can be expressed as [32], 

 

       (3.10) 

 

Thus, the relation between free carrier concentration and total carrier concentration is expressed 

as, 

( )( , ) ,
1

e
c

e

n x t n x t




 
=  

+  .          (3.11) 

Where, 

 

( ) ( )1 / exp /
cE

e c c bg E N E E k T dE −

−
= −             (3.12) 

 

Substituting nc from equation (3.10) into equation (3.1) gives, 

( ) ( ) ( )2

2

, , ,
0e e

n x t n x t n x t
F D

t x x


  
− − =

           (3.13) 

Where, 

0
1

e
e e

e


 



 
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+            (3.14) 

0
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e
e e

e

D D




 
=  

+            (3.15) 
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The parameters e and De are named as the effective drift mobility and diffusion coefficient of 

electrons [30]. 

 

3.3 Modeling Diffusion Coefficient from GER 

The effective drift mobility in amorphous semiconductor is shallow-trapped controlled and 

thermally activated. The effective drift mobility is reduced by the trapping and release events, 

and, under quasi-equilibrium, the drift mobility is the multiplication of the extended state 

mobility and a factor for the trapping and release event.  

 

The drift current density jdr and diffusion current density jd of electrons at x with an electric field 

F(x) can be written as, 

 

dr ej en F=                         (3.16) 

 d e

dn
j eD

dx
=                        (3.17) 

where n is the total electron density considering electrons in the extended and shallow states, e 

and De are the effective drift mobility and diffusion coefficient from equation (3.14) and (3.15) 

of electrons [30]. The electric field can be expressed as [35], 

 

                                      (3.18) 

At thermal equilibrium, the drift and diffusion currents are equal and flow in the opposite 

directions. Equating equations (3.16) & (3.17) and replacing the expression of F  [35], 
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                            (3.19) 

 

To make the derivation more formal the fact that a difference in potential between two 

points are defined as the difference between the quasi-Fermi-levels is assumed,  

 

                   (3.20) 

where EFn is the quasi-Fermi energy of electrons at position x.  

 

Thus, the general form of Einstein relation (GER) which related the effective diffusion 

coefficient and drift mobility is given by [20] [22],  

0

0

e e

e e

Fn

D D n

dn
e

dE

 
= =          (3.21) 

Where EFn is the quasi-Fermi energy of electrons in eV. Equation (3.21) is widely used for 

determining Einstein relation in crystalline semiconductors.  One can use the same form of 

Einstein relation in disordered semiconductors under thermal equilibrium provided that the small 

signal criteria are met when the trap saturation effect can be neglected.   

 

The electron occupancy probability at energy E is determined by the Fermi-Dirac statistics and 

given by, 
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          (3.22) 

In the case of pure crystalline semiconductors within the non-degenerate limit, i.e., when the 

Fermi level is within the bandgap and not closer than 3kT to the band edges, 

          (3.23) 

In this case, 

            (3.24) 

and equation (3.21) becomes, 

e

e

D kT

e
=            (3.25) 

Equation (3.25) is the conventional Einstein relation (CER) in pure crystalline semiconductors 

under non-degenerate limit. For disordered or degenerate semiconductors, there is no simple 

analytical expression for n and the total electron concentration in DOS can be written as, 

( ) ( ) ( ),Fn Fnn E g E f E E dE


−
=          (3.26) 

Where g(E) is the density of states. Once g(E) is known, n can be determined and equation (3.21) 

becomes, 
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
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        (3.27)                                            
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Note that the difference between two integrals of equation (3.26) depends on mobility gap states 

and Fermi energy.   

 

3.4 Developing Field Diffusion Coefficient Under Quasi-Equilibrium 

Transport 

The transport of excess carriers in disordered semiconductors with a wide spectrum of localized 

states can not be described by the instantaneous establishment of equilibrium transport described 

above. Rudenko and Arkhipov [32]  described the quasi-equilibrium transport (i.e., relaxing the 

steady-state solution of equation (3.2)) behavior by assuming that the third term of equation (3.2) 

is small compared to the first term. That means, the release event is slower than the trapping 

event. However, their formulations are valid under small signal case since they neglected trap 

saturation effect in equation (3.2). Nikitenko and Kudrov [33] extended the model by 

incorporating trap saturation effect. The approximate continuity equation under quasi-

equilibrium transport was proposed as [32]  [33], 

 

From equation (3.2), 

               (3.28)         

Where, 
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.                  (3.29) 

      

Integrating equation (3.27) with respect to energy, using equation (3.8) , 

   (3.30) 

        (3.31) 

               

( ) ( )

( )
1

exp /

1 exp /

cE c b

el

c Fn b

g E E E k T
dE

N E E k T
 −

−

−  =
+ −  

         (3.32) 

 

Considering trap saturation effect, equation (3.11), (3.14), (3.15) become, 

          (3.33) 

           (3.34) 

          (3.35) 
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From equation (3.6),  approximation (equation 8) 

      (3.36) 

   

Differentiating equation (3.36) with respect to time, 

     (3.37) 

 

From equation (3.26), 

        (3.38)       

     

Integrating equation (3.31) with respect to energy, 

 (3.39) 

 

Applying equation (3.3), (3.4), (3.31), (3.33), (3.37) into equation (3.39), 

     (3.40)   
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Where, 

      (3.41) 

       

Substituting equation (3.13) into (3.40), 

               (3.42) 

 

From equation (3.1), 

                             (3.43) 

 

Ignoring higher order and applying (3.34) and (3.35), 

               (3.44) 

          (3.45)       

Where, 
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The term Dfe is named as the field diffusion coefficient, which is the addition term as compared 

to the thermal equilibrium case in equation (3.13). The field diffusion coefficient becomes carrier 

concentration dependent because of the second term in the denominator of equation (3.41), 

which arises by considering the trap saturation effect (second term in equation 3.2). Otherwise, 

Dfe is simply proportional to the square of electric field. For small signal and shallow trap levels 

E  EFn, the second term in the denominator of equation (3.41) is much smaller than one and can 

be neglected, which is the formulation of Rudenko and Arkhipov [32]. Therefore, the field 

diffusion coefficient is the maximum at small signal, decreases monotonously with increasing 

the carrier concentration and becomes negligibly small at very high carrier concentrations.  

 

For the DOS profile in equation (3.2) and under small signal case, one can get analytical 

expressions for e
-1 and e,max

-1 as [19], 
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And, 
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Thus, the maximum value of field diffusion coefficient is, 
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 3.5 Effective Drift mobility for a-Se at High Electric Field 

The theoretical model is applied to a-Se to find the effects of various parameters on the diffusion 

coefficient as a function of carrier concentration. The low-field extended state mobilities of 

electrons and holes in a-Se are found to be  1 and 2.6 cm2/Vs, respectively [36]. The effective 

drift mobility of both holes and electrons in a-Se increases with increasing temperature and 

applied electric field [37]. The effective drift mobilities of electrons and holes at room 

temperature and up to the moderate field (F  10 V/m) are in the range 0.003–0.006 and 0.12–

0.14 cm2/Vs, respectively [38]. The effective drift mobility of holes and electrons in a-Se at high 

electric fields increases with increasing field and reaches a saturation value at a field higher than 

100 V/µm [39]. For convenience, the empirical relations for the effective hole and electron 

mobilities in a-Se at high electric field (F  10 V/m) and at room temperature are obtained by 

fitting the experimental results [37] [38] which are [36], 

 

( )
( )

0.745
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h F
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  (3.50) 
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1 exp 110 / 20
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F
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+ − −  
  (3.51) 

where F is the electric field in V/m and   is the mobility in cm2/Vs. 

 

As mentioned earlier, the effects on holes are identical to electrons having the similar DOS 

parameters near the valence band. Therefore, for simplicity, only the effects of various DOS 

parameters on electron transport in Figures 4.1 to 4.4 is showed, considering only one Gaussian 

peak in mobility gap. As described in Tables I & II, the variations of parameters are observed as, 
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gc = 1020 - 2  1021 cm-3eV-1, Em = 0.2 - 0.5 eV, Em = 0.03 to 0.05 eV, and Nm = 1013 - 1018 cm-

3eV-1. The characteristics temperature in a-Se is found to be 275 K [36] and thus c = 0.02374 

eV. Then, the Einstein relation for both electrons and holes using the values of different 

parameters from Tables I and II is presented.  

                                           

3.6 Conclusion 

The density of states of a-Se consists of defect states in mobility gap, which results in the 

diffusion coefficient of a-Se deviating from the ER and necessitating the development of 

diffusion coefficient from GER under quasi-equilibrium transport at low electric field. In high 

electric field, charge carriers of a-Se undergoes many trapping and detrapping events in the 

energy distributed mobility gap states during their travel. Hence, the actual diffusion coefficient 

appears to be much larger than it should be from the CER. The additional diffusional coefficient 

called field diffusion coefficient is developed from charge carrier statistics under multiple 

trapping.  
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Chapter 4: Result and discussion 

 

4.1 Introduction 

Chapter 3 has established the theoretical model of diffusion coefficient and field diffusion 

coefficient at low and high electric field respectively. In this chapter, those diffusion coefficients 

are graphically presented to validate ER for a-Se. The effects of the DOS parameters of a-Se on 

the Einstein relation as a function of carrier concentration is analysed in this chapter. Finally, an 

analysis of the field diffusion coefficient of electrons and holes in a-Se is also included in this 

chapter. 

 

4.2 Diffusion coefficient from Einstein relation 

The conventional Einstein relation in equation (3.25) provides the diffusion coefficient under 

thermal equilibrium. This thermal diffusion coefficient for a-Se is examined. The extended state 

electron concentration nc is a function of the Fermi level, which is not influenced by the bandgap 

states.  Therefore, the Fermi level or the extended state electron concentration nc can be treated 

as the independent variable for examining the Einstein relation. Figure 4.3 shows the effect of Nm 

of a single Gaussian peak on the De/µe ratio as a function of extended state electron concentration 

nc. The De/µe ratio is normalized with respect to kT/e. The following parameters are: gc = 4  

1020 cm-3eV-1, Em = 0.35 eV, ∆Em = 0.05 eV and T = 295 K. The dotted line represents the 

normalized Einstein relation for no band gap states (i.e., a representation of pure crystalline 

case). The Einstein relation in pure crystalline semiconductors follows the traditional constant 
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value De/µe = kT/e up to the degenerate limit (i.e., n  1018 cm-3). The difference between the 

dotted and solid line represents the effects of exponential tail states, which depends on c. The 

effect of c on Einstein relation has been described in detail in ref- [20] in this thesis work, it is 

considered a fixed value (c = 0.02374 eV) that is appropriate for a-Se. The ratio De/µe deviates 

and the deviation increases with increasing electron concentration. This ratio increases from 1.5 

% to 5 % by increasing the electron concentration from 1010 to 1015 cm-3. On the other hand, this 

deviation becomes very substantial with Gaussian peaks in DOS near the conduction band. The 

De/µe ratio shows a bump for one Gaussian peak in DOS with higher Nm leading to a higher peak 

and moving of the peak at a higher electron concentration.  After the respective peaks, all curves 

for the De/µe ratio converge towards the degenerate case at very high electron concentration, 

which can be explained by the fact that the electron concentration in deep degenerate case is 

determined by the extended band states rather than the localized gap states. The effect of the 

width (Em) of Gaussian peak in DOS on the De/µe ratio is similar to the magnitude Nm (Figure 

4.1). On the other hand, the effect of gc on the De/µe ratio is opposite to that of Nm (Figure 4.2).  
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Fig. 4.1: The variation of normalized ratio De/µe as a function of the free electron concentration 

for different ∆Em. 

 

 

At very low electron concentration, The De/µe ratio does not have significance impact on varying 

gaussian width. As we increase gaussian width, De/µe ratio will increase around 1015 cm-3eV-1 

electron concentration. This shows that the disperse Gaussian distribution in mobility gap will 

deviate Einstein relation from its unity. 
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Fig. 4.2: The variation of normalized ratio De/µe as a function of the free electron concentration 

for different gc.  

 

Figure 4.2 shows the effect of gc on the De/µe   ratio as function of electron concentration. The 

effect of Gaussian peak increases with decreasing gc. That means, the relative value of Gaussian 

states with respect to the extended states has the influence on deviation of ER. 
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Fig. 4.3: The variation of normalized ratio De/µe as a function of the free electron concentration 

for different Nm.  

 

The effects of the location of the Gaussian peak (Em) in DOS on the De/µe ratio as a function of 

the Fermi level is shown in Figure 4.4 The peak in the De/µe ratio increases with increasing Em at 

the same Nm (Figure 4.3). Note that, the peak in the De/µe   ratio is non-existent when Em is ~ 0.2 

eV or less, which signifies that the closer the Gaussian peak to the mobility edge having the same 

Nm, the lesser the existence of Gaussian peak as compared to the exponential band tail. However, 

with the increase in Em, the peak starts to form and increase, signifying that the further the 

Gaussian peak from band edges, the more significant the impact around the same electron 

concentration.    
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Fig. 4.4: The variation of the normalized ratio De/µe   with the Fermi-level for different positions 

of Gaussian peak near conduction band.  

 

The Einstein relation for electrons considering usual DOS values from Table I is plotted. Note 

that Abkowiz [23] has found only one Gaussian peak, whereas, later, other researchers have 

found two Gaussian peaks near conduction band and their energy positions are quite similar. 

Therefore, it have been shown the GER for electrons using two sets of parameters from ref - [23] 

and [17] in Figure 4.5. It has been taken Em = 0.35 eV, Nm = 1016 eV-1cm-3, ∆Em = 0.05 eV and gc 

= 1020 cm-3 for the curve marked as Abkowitz [23] Following parameters are taken for two 

Gaussian peaks in DOS proposed by Kasap et al. [17]: Nm1 = 5 × 1017 eV-1cm-3, Em1 = 0.3 eV, 

∆Em1 = 0.04 eV; Nm2 = 5 × 1015 eV-1cm-3,  Em2  = 0.45 eV,  ∆Em2  = 0.06 eV and gc = 2 × 1021 cm-
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3. In both curves, the deviation of Einstein relation from traditional value is noticeable for 

electron concentration higher than 1010 cm-3.   

 

  

Fig. 4.5: The variation on normalized De/µe ratio with electron concentration using parameters 

specified by Abkowitz [23] and Kasap et al. [17]. 

 

Also, the Einstein relation for holes considering usual DOS values from Table II have been 

plotted. Note that Abkowitz [23] has found only one Gaussian peak but Kasap et al. [17] haven’t 

found any remarkable peak whereas Benkhedir et al. [18] have found two Gaussian peaks near 

valence band.  Therefore, it  have been shown the GER for holes using two sets of parameters 

from refs [23] , [18] in Figure 4.6 It has been taken Em = 0.27 eV, Nm = 1016 eV-1cm-3, ∆Em = 0.05 

eV and gv = 1020 cm-3 for the curve marked as Abkowitz. [23] Following parameters are taken 

for two Gaussian peaks in DOS proposed by Benkhedir et al. [18] Nm1 = 5×1017 eV-1cm-3, Em1 = 
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0.2 eV, ∆Em1 = 0.05 eV, Nm2 = 5×1015 eV-1cm-3, Em2 = 0.4 eV, ∆Em2 = 0.05 eV and gv = 4 × 1020 

cm-3. 

 

 

Fig. 4.6: The variation on normalized Dh/µh ratio with hole concentration using parameters 

specified by Abkowitz [23] and Benkhedir et al. [18].  

 

The deviation in Einstein relation from conventional relation for electrons is more prominent 

than that for holes. Because the amount of Gaussian distributed shallow defect states near 

conduction bands is larger than that of defect states near valence bands. The mobility of electrons 

is more affected by the shallow states than that of holes [37]. As evident from Figures 4.1 to 4.6, 

the Ein stein relation almost follows the traditional value if the carrier concentration is less than 

1010 cm-3. The Gaussian peaks in the mobility gap have a substantial effect on Einstein relation if 

the carrier concentration exceeds 1010 cm-3. The Einstein relation is one to three times more than 
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the conventional value at moderate carrier concentration of 1010 to 1014 cm-3. Therefore, this 

deviation should be considered in more accurate device modeling.    

 

4.3 Field-Diffusion Under Quasi-Equilibrium Transport 

The field-diffusion coefficient of electrons and holes in a-Se are examined considering one 

Gaussian peak in the DOS of near band states. Note that limit of numerical integral of equation 

edit is considered just to include all shallow trap levels. Figure 4.7 shows the field-diffusion 

coefficient of electrons in a-Se as a function of electron concentration for different Electric field. 

The following DOS parameters are assumed for electrons: Em = 0.35 eV, Nm = 1016 eV-1cm-3, 

∆Em = 0.05 eV and gc = 41020 cm-3 [36]. The field diffusion coefficient is almost constant up to 

the carrier concentration of 1012 cm-3 and decreases abruptly with increasing carrier 

concentration. The field-diffusion coefficient becomes negligibly small when carrier 

concentration is higher than 1015 cm-3. The carrier transport quickly reaches equilibrium with 

increasing carrier concentration through trap saturation and release events, and thus the field 

diffusion vanishes. Figure 4.8 shows the total normalized diffusion (thermal + field) coefficient 

of electrons as a function of electric field at three different carrier concentrations. The 

normalized field diffusion coefficient increases abruptly at low field and then remains almost 

stable for the electric field higher than 40 V/µm.  
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Fig. 4.7: Normalized field-diffusion coefficient of electrons in a-Se as a function of electron 

concentration at three different electric fields.  
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Fig. 4.8: Normalized total diffusion coefficient of electrons in a-Se as a function of electric field 

at three different electron concentrations.  

 

Figure 4.9 shows the field-diffusion coefficient of holes in a-Se as a function of hole 

concentration. The following DOS parameters are assumed for holes: Em = 0.27 eV, Nm = 1016 

eV-1cm-3, ∆Em = 0.05 eV and gv = 4  1020 cm-3 [36]. Figure 4.10 the total normalized diffusion 

(thermal + field) coefficient of holes as a function of electric field at three different carrier 

concentrations. The results of holes are similar to that of electrons because of similar DOS 

parameters.  
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Fig. 4.9: Normalized field-diffusion coefficient of holes in a-Se as a function of hole 

concentration at three different electric fields.  
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Fig. 4.10: Normalized total diffusion coefficient of holes in a-Se as a function of electric field at 

three different hole concentrations.  

 

4.4 Conclusion 

Due to the defect states of a-Se, ER deviates from its unity value when carrier concentration is 

larger than 1010 cm-3. The deviation of ER also strongly depends on the variation in DOS 

parameters including the position, width, and carrier concentration of Gaussian distribution, with 

an increase of ER noted with the increase of each of the Gaussian parameter.  

 

The field diffusion coefficient of a-Se depends on electric filed as well as carrier concentration. 

At a carrier concentration lower than 1012 cm-3, the field diffusion coefficient is almost constant. 

With higher carrier concentration, the field diffusion coefficient starts decreasing and after 1015 

cm-3 it becomes almost non-existent.   
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Chapter 5: Conclusions and Contributions 

 

5.1 Conclusions 

This thesis work has analyzed the generalized Einstein relation for DOS in a-Se that consists of 

square-root distribution for extended band states and summation of exponential and the Gaussian 

distributions for tail states close to the mobility edges. The effects of the DOS parameters on the 

Einstein relationship as a function of carrier concentration has been analysed. The results show 

that the diffusivity-mobility ratio for such DOS distribution substantially deviates from 

traditional constant value for carrier concentration larger than 1010 cm-3 and strongly depends on 

the amount, energy position, and the shape of the Gaussian peaks. The diffusion coefficient of 

charge carriers obtained from Einstein relation is valid at thermal equilibrium or at a very low 

electric field under small signal. This thesis work also analyzed the field diffusion coefficient of 

electrons and holes in a-Se, which is found to strongly dependent on the electric field and carrier 

concentration. It increases with electric field but decreases with increasing carrier concentration.  

 

5.2 Contributions 

The contributions of this thesis work can be summarized below: 

• Developed a theoretical model for analysing the generalized Einstein relation in amorphous 

semiconductors at thermal equilibrium with a particular application to amorphous selenium. 

• The effects of different DOS parameters on GER are analyzed. 

• A new field-induced diffusion coefficient for amorphous semiconductors was introduced 

which depends on both the electric field and carrier concentration. 
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• The effects of electric field and carrier concentration on field-diffusion coefficient was 

investigated.  

 

5.3 Future works 

It would be very conclusive if the theoretical results could be verified with the experimental 

measurement. Unfortunately, no experimental data was available in literature. This could a 

potential future work. The analytical and semi-analytical work of this thesis can also be verified 

with Monte Carlo simulation considering the true carrier dynamics.   

 

 

5.4 Publication 

Dilshad Hossain, M.Z. Kabir, "Diffusion coefficient of charge carriers in disordered 

semiconductors retaining a combination of exponential and Gaussian mobility-gap states: 

Application to amorphous selenium", Journal of Vacuum Science & Technology B, vol 39, no 6, 

pp 062211, 2021. 
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