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Abstract

Road Extraction from High-Resolution Satellite Imagery using Deep

Reinforcement Learning

Nima Sarang

Reinforcement learning (RL) has emerged as one of the most promising and powerful

techniques in deep learning. Despite its success, there have been very few practi-

cal applications of RL in computer vision tasks, where supervised learning is most

dominant. In this thesis, we reformulate Road Extraction from Satellite Imagery as

an RL problem. We aim to address some of the challenges of supervised learning

methods and open the door for future works. To the best of our knowledge, this is

the first time RL has been successfully applied to the complex real-world problem

of road extraction, where the challenges are partially-observable, large-scale environ-

ments, and long time horizons. First, we design an environment, an action space, and

a reward function that fully captures the problem as a partially observable Markov

decision process. We propose a novel neural network architecture that captures the

multi-modality in the input data. Then, we propose methods to address the chal-

lenges that come with the long time horizon aspect of the environment, and optimize

and improve the policy e�ciently. Due to the large-scale nature of the problem, we

employ self-supervised representation learning to reduce the computational cost and

increase the performance of the policy. We present experiments on satellite images of

fifteen cities that demonstrate comparable performance to state-of-the-art methods.

iii



Acknowledgments

My sincere thanks go to my supervisor, Professor Poullis, for all his support and

guidance. I am extremely grateful for all the valuable lessons he taught me and made

me become a better researcher. I would also want to thank my dear friend Shima

Shahfar who helped me with some of my ideas and listened patiently to my endless

talking. Lastly, I want to thank my family for their unconditional love and support

throughout these years. I am certain that I couldn’t have come this far without their

help.

iv



Contents

List of Figures vii

List of Tables x

1 Introduction 1

2 Background and Related Work 4

2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Bandits Problem . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . 6

2.2 Self-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Road Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Tractable Deep Reinforcement Learning 14

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Tractable Reinforcement Learning . . . . . . . . . . . . . . . . 16

3.3.2 Road Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



3.4.2 State Representation . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.3 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.4 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.5 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.6 Policy Optimization . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.3 Design decisions . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.4 Ablations on Self-supervised Loss . . . . . . . . . . . . . . . . 27

3.5.5 Early Termination . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.6 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.7 Comparisons with state-of-the-art results . . . . . . . . . . . . 29

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7.1 Discrete and Continuous Action Representation . . . . . . . . 32

3.7.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 33

3.7.3 Reward Functions . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7.4 Interpretability Analysis . . . . . . . . . . . . . . . . . . . . . 35

3.7.5 Additional Quantitative Results . . . . . . . . . . . . . . . . . 37

4 Conclusion 38

vi



List of Figures

1 Cityscapes. A semantic segmentation dataset with 30 classes [14]. . 8

2 Multi-Head Attention Module [56]. . . . . . . . . . . . . . . . . . . . 10

1 Challenging cases. Dealing with occlusions caused by shadows,

trees, tall buildings and overpasses poses a significant challenge to RL

and SL methods alike. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Backtrack action. Four ordered frames taken from the same se-

quence. The orange lines show the ground-truth road network. Vis-

ited locations are drawn in white, and visited locations from which

the agent backtracked are drawn in green. The blue cross marks the

agent’s location. In frame 1, the agent reaches the image border and

decides to backtrack for several subsequent steps, shown in frame 2.

Backtracking continues until another viable action becomes available.

Frame 4 shows the agent turning right when reaching the junction to

explore unvisited roads. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Reward Landscape. The orange lines show the ground-truth road

network. The blue line shows the previously visited locations. The

agent’s location is in the center of the purple circle. The right image

shows the reward for the area within the purple circle, rendered as a

colour-mapped surface. Moving backwards would result in a negative

reward. In contrast, moving forward in a straight line will result in the

maximum reward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Network Architecture. The input consists of the RGB aerial image,

the intensity mask, and the semantic segmentation mask. The CNN

backbone is based on E�cientNet-v2 [52] and we use the Transformer

encoder with Multi-head Attention [56] to embed action indices. . . . 23

vii



5 Bad episodes. This figure shows that the agent can easily wander

around and move-in circles in the early episodes. . . . . . . . . . . . . 25

6 Self-supervised loss function . . . . . . . . . . . . . . . . . . . . . 26

7 Self-supervised Experiment. The orange, gray and green curves

correspond to the experiments where the self-supervised loss was ap-

plied every 16, 32, 64 steps respectively. Looking TD error and average

reward, we can conclude that increasing the self-supervision e↵ect di-

rectly increases the performance of the agent. . . . . . . . . . . . . . 28

8 Episode visualization. The agent is moving towards the left bound-

ary. The top-right heatmap shows the agent’s preference in moving

towards a direction based on the choices made in the previous ten

steps, i.e. the preferred direction is towards 135 deg. In the bottom-

right heatmap, we visualize the Q-values of the last timestep corre-

sponding to each direction. As shown, the agent’s prediction of the

reward is significantly smaller for moving backwards -since this would

incur a revisitation penalty- compared to moving forward. The bot-

tom chart shows the value of the rewards, i.e. running average (green),

discounted sum of futures(yellow), and actual(red), as a function of

time. The orange lines and purple points show the ground-truth road

network. Visited locations are drawn in white, red points indicate the

visited locations’ projections on the closest ground-truth road segment,

and visited locations from which the agent backtracked are drawn in

green. Sample videos of the training of the RL agent are included in

the supplemental material. . . . . . . . . . . . . . . . . . . . . . . . . 30

viii



9 Reward Functions. (a) Area Reward, (b) Distance Reward, (c) An-

gle Reward. In (a), the agent chose B2 as its next step of movement,

and the negative of the area between the agent’s vector of movement

and the vector of the corresponding points on the road is given as the

penalty. In (b), P1 to P3 are the three possible choices for the agent’s

next move, alongside the distances of the destination points to the

road. In (c), B1 and B2 are two possible choices for the next step,

and the angle between the vector of these movements and the optimal

directions are calculated. In this type of reward function, the objective

is to minimize the angle. . . . . . . . . . . . . . . . . . . . . . . . . . 35

10 Integrated Gradients. Attributing the prediction of the CNN back-

bone to its input features. The integrated gradients are normalized

between [0, 1]. Higher value means large contribution. . . . . . . . . . 36

ix



List of Tables

1 Quantitative comparison of JF-1 and APLS with state of the

art methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Quantitative comparison of JF-1 and APLS for each city. . . 37

x



Chapter 1

Introduction

Updating road maps is a very challenging and non-trivial task. Nowadays, maps

of road networks are being widely used in location-finding and navigation services

in mobile applications, which prompts the incentive to invest in the production of

accurate maps. Many companies spend millions of dollars to create their own maps

and sell them as a software as a service (SaaS) to other companies. Even though

there are publicly available datasets such as OpenStreetMap (OSM), there is still a

significant gap in terms of accuracy [40] to that of commercial products. In recent

years, deep learning has been successfully used to produce quality maps from high-

resolution satellite imagery [5, 6, 40, 53]. Historically, road extraction from satellite

imagery has been formulated as a semantic segmentation problem, where the objective

is to classify whether each pixel on the image is part of a road or not. Since the images

can have ultra-high resolution, each image would be split into smaller patches and

fed to the model to predict the semantic mask. After that, post-processing methods

would be used to generate road network graphs from the semantic masks [19,40,60].

Recently, [5, 53] showed that the road extraction could be solved by training a

decision function operating on smaller patches and iteratively constructing the graph,

which produced state-of-the-art results. We believe training a decision function in a

simulated environment over many trajectories can be closely modeled using a Markov

Decision Process. Our motivation for using RL modeling is that it would provide

better exploration during the training, which would result in a more robust agent. To

our knowledge, this is the first time that RL has been used for road extraction. Prior

work did not investigate RL for this problem not because it is not appropriate -road
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extraction can be naturally formulated as an RL problem- but rather because of the

complexity and intractability of the policy optimization. It is noteworthy that the two

SOTA [5, 53], are both inspired by RL and. In particular, their processing pipeline,

e.g. use of a decision function for choosing which direction to follow, resembles an

RL framework and it is acknowledged in their work.

To reformulate the problem in the reinforcement learning framework, the envi-

ronment, the state representation, the reward function, and the action space must

be carefully designed and tested. During the experiments, we realized that solving

the problem and optimizing the policy is a major challenge and requires significant

computational resources. Firstly, road extraction from high-resolution satellite im-

agery is, by definition, a large-scale problem. The resolution of the images in the

RoadTracer dataset [5] is 16384x8192 on average, which limits the application of any

deep-learning-based model only on smaller patches of the input. Consequently, this

makes it a partially-observable problem with a Long Horizon. As we discuss in Sec-

tion 3.5, it will take at least 10,000 steps for the agent to extract the road network

from a single aerial image. Thus, we can conclude that Road Extraction exhibits

all of the characteristics of a large-scale problem. As such, we allocated a signifi-

cant portion of Chapter 3 to propose an RL framework that reduces the computation

cost and increases the convergence speed when training agents on large-scale and

partially-observable environments.

In Chapter 2, we review some of the topics that are necessary to understand the

methods. Chapter 3 contains our contributions to solving the road extraction problem

and proposing a new framework for tractable RL. Finally, in Chapter 4 we present

our conclusion and discuss the future works.

Contributions In this work, we address the following research questions:

• How can we define the road extraction problem in the reinforcement learning

framework? Previous methods have tried to leverage some techniques from RL

in a supervised learning setting. However, designing an RL environment from

scratch has its challenges. What will the reward function be? The reward

function is the only guiding signal to the agent as to how to approach the

problem. Poorly designed reward functions cannot even guarantee convergence

to a sub-optimal solution.
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• How can we deal with partial observability of the environment? The state

representation plays a vital role as all information necessary to make a decision

must be supplied to the agent. The architecture of the agent’s network will

depend on the state representation as well. We propose a novel neural network

architecture that captures the multi-modality in the input data. Can we use

continuous action spaces? The implication of the type action space is the choice

of the optimization algorithm.

• How to make the learning process more e�cient? It is known that convergence

in RL is much slower than supervised learning due to the gradual improvement

in policy and requiring a considerable amount of sampled trajectories at each

iteration. Furthermore, we are dealing with a large-scale problem which makes

learning even more di�cult. What techniques can be used to reduce the training

time? It is imperative that we reduce the training time to the point that we can

experiment on commodity GPUs in a reasonable amount of time. We address

these issues by proposing several techniques, some of which are task-specific

and the others are task-agnostic. Specifically, we propose a self-supervised loss

function to reduce the training time and increase the performance of the agent.
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Chapter 2

Background and Related Work

In this chapter, we’ll review the basic concepts of reinforcement learning, self-supervised

learning, convolutional neural networks, and road extraction, which are necessary for

understanding our proposed method presented in Chapter 3.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning that attempts to solve

interaction-driven sequential decision-making problems. In RL, the agent is not super-

vised as to what action to take in each situation and there are no training examples

of the correct behavior. Instead, the only feedback is a scalar reward signal that

may be provided after taking an action. The objective of the agent is to learn a

decision-making policy that maximizes these rewards during its interaction with the

environment. Depending on the complexity of the problem, the reward signal can be

either frequent or very sparse. Delayed rewards are challenging because the value of

a decision is not known until further into the future. Another aspect to consider is

that the agent’s actions influence the situations it will encounter. While a particular

action may have been chosen correctly in hindsight, subsequent wrong actions can

render that choice ine↵ective. As such, assessing how much value an action can bring

is di�cult and depends on the agent’s overall performance.

For example, consider reformulating chess in an RL framework. At each time step,

we have full access to the state of the game, and all of the legal actions that can be

taken at each step are known a priori. The only feedback that we expect to receive is
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whether we have lost or captured a piece, or that the game is over. How would one

approach this problem? Without prior knowledge or strategies, we can solve this game

using RL, which shows how powerful RL can be in decision-making problems where

minimal feedback is available. While producing a sub-optimal solution is possible, the

challenges are non-trivial. In chess, there are at least 1050 positions [1] which makes

it computationally impossible for the agent to see all of them during the training.

Another question is how the value of an action can be estimated? The true impact

of an action may not be known after a handful of steps. When should we stop the

exploration and start utilizing the knowledge that we have learned? These questions

form the backbone of RL and will be addressed in the next sections.

2.1.1 Bandits Problem

A classic example in Reinforcement learning is the k-armed bandit problem [51].

Let us assume there are k slot machines where each one has a lever, and at each time

step t we can select a machine at and pull its lever. The probability of hitting the

jackpot and receiving the reward Rt di↵ers from one machine to another, and this

probability distribution is not known to us. The objective of the learning agent is

to maximize the total reward over the course of playing for T number of time steps.

One way to solve this problem is that if we had an estimate of the expected reward

given selecting a certain machine, we could always greedily select the one with the

highest expected reward. We can define this function as:

Q(a) = E[Rt | At = a] (2.1)

But how can this expectation be estimated? Through trial and error, we can try

each machine for some steps to have an estimate of the average reward. This is known

as exploration. After finding the estimations, we can always select the machine that

we expect to give us the higher reward. This step is referred to as exploitation and

utilizes the learned knowledge. The balance between exploration and exploitation is

one of the main challenges in RL, and all the optimization algorithms must address

it in some way or another. If in a learning example we did not leverage enough

exploration, we would end up with exploiting sub-optimal actions. On the other

hand, if we never utilize what has been learned and get stuck with exploring di↵erent

states then we would also end up with sub-optimal rewards. For most problems,
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exploration and exploitation are not separate stages but go hand in hand.

2.1.2 Markov Decision Processes

Reinforcement Learning environments can be formally expressed using Markov deci-

sion processes (MDPs) [51]. An MDP M is the tuple

(S,A, P,R, �)

where S is the finite state-space, A is the set of actions, P : S ⇥ A �! S is the

transition probability function which for every (s, a) 2 S ⇥ A and s0 2 S, defines

the probability of going from state s to s0 using action a. R is the reward function

R : S ⇥ A �! R, which describes the reward associated with taking action a from

state s, and a discount factor � 2 [0, 1] representing the importance of future rewards.

The sequence of interactions between the agent and MDP is called a trajectory or a

rollout :

⌧ = (s0, a0, r1, s1, a1, r2, s2, a2, r3, . . .)

After taking action at the agent receives reward rt+1 and transitions into state st+1.

The starting state is s0. If there are terminal states in MDP, states that do not

transition into any other state, then the trajectory will be finite. MDPs that always

termination at some point are called episodic. This is common in most RL problems

where at some point, we expect to reach a final state.

One important characteristic of MDPs is that they are memory-less random pro-

cesses. The probability of the next state and reward only depends on the preceding

state and action, and anything before that is unnecessary. Therefore, the Markov

property holds for the probability transition function and the reward function:

P (st | st�1, at�1) = P (st | st�1, at�1, st�2, at�2, st�3, at�3, . . .) (2.2)

R(s, a) = E[Rt | st�1, at�1] (2.3)

The solution to an MDP is a decision-making policy ⇡✓ (parameterized by theta)

that maximizes the expected return. The return for time step t is the sum of dis-

counted future rewards after step t.

Gt = Rt+1 + �Rt+2 + �2Rt+3 + . . . =
1X

k=0

�kRt+k+1 (2.4)
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As such, the objective function maximization can be formally defined as [51]:

J(⇡✓) = Ea⇠⇡✓
[G0] = Es,a⇠⇡✓

h 1X

t=0

�tR(st, at)
i

(2.5)

2.2 Self-Supervised Learning

Self-supervised learning methods have gained significant traction over the past few

years. The most critical challenge is always the data when it comes to supervised

learning. Labeling and annotating datasets is a very costly task, and one can only

go so far with the publicly available datasets. On the other hand, we have access

to unlimited unlabeled data that is not being utilized: images, videos, books, etc.

This is where self-supervised learning becomes important. It provides a solution to

employing unlabeled data in supervised learning settings. In some methods, we can

manipulate the labeled data to create new learning tasks [11,21,22,42] to improve the

performance on the main objective. In other cases, unlabeled data can be directly

used for better representation learning, pre-training and weight initialization [10,24].

Recently, language models such as [17, 28, 32, 38] have seen major success by pre-

training on the unlabeled data. Some of the tricks used are masking random words

from the text and training the model to predict those words. Another method is to

predict the next word given a number of the previous words. In [21], some sequences

of frames were randomly shu✏ed and the model was trained to classify whether the

order of frames was correct. All of these methods require no extra labeling and have

shown that the model can learn better representation from the data.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) or ConvNets are a special kind of neural

network that use convolutional layers instead of linear layers [35]. Each convolution

layer consists of kernels that are convolved with the input. A 2D convolution with

kernel K with input image I is defined as:

O(m,n) =
X

j

X

i

I(m�i)(n�j) ⇤Kij (2.6)
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Convolutional layers are mostly used for images since they can be convolved over the

image with shared parameters and as a result, they are far more e�cient than the

linear layers. Each kernel can be thought of as learning aggregating specific features

from the image such as edges, patterns, shapes, etc. Due to the nature of convolution

layers, CNNs are translation-invariant. CNN models are mostly used in computer

vision tasks such as image classification, semantic segmentation, objection detection,

motion estimation, etc [31, 34, 57].

2.3.1 Semantic Segmentation

Semantic Segmentation is a computer vision task of partitioning an image into dif-

ferent categories. Formally, it can be defined as a pixel-wise classification task where

each pixel is assigned a category or label. In semantic segmentation, instances of the

same category are not distinguished. For example, if we have a dog category and

there are three dogs in an image, all of their pixels are labeled equally. Semantic

segmentation has many use-cases such as in background and foreground separation,

image filters used in mobile apps, self-driving cars, etc [41].

Figure 1: Cityscapes. A semantic segmentation dataset with 30 classes [14].
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Loss Function

Since semantic segmentation is represented as a pixel-wise classification task, the

output of the model will be a categorical distribution for each pixel. As such, we can

use the categorical cross-entropy to calculate the loss term:

L(p, y) = � 1

H ⇥W

HX

i=1

WX

j=1

|C|X

c=0

yijc log pijc (2.7)

where p, y 2 RH⇥W⇥|C| are the predicted semantic mask and ground-truth respec-

tively, and C is the set of classes.

Evaluation Metrics

All of the classification metrics can also be used for semantic segmentation. However,

two notable metrics that are widely used are:

• Intersection over Union (IoU): Also known as the Jaccard Index is defined

as the area of the intersection between the predicted segmentation map and the

ground-truth, over the area of the union between the predicted segmentation

map and the ground-truth. The range of values is between [0, 1] and higher

valeus are better.

IoU(A,B) =
A \ B

A [ B
(2.8)

• F1-score: Is the harmonic mean between precision and recall. It is most useful

when there’s an imbalance between the distribution of the classes in the dataset.

F1 = 2
Precision⇥Recall

Precision+Recall
(2.9)

2.4 Transformers

The Transformer architecture was introduced as a successor to recurrent neural net-

works (RNNs) to improve the performance on the Natural Language Processing

(NLP) tasks such as language understanding, machine translation, etc. While this

architecture is often used in NLP tasks, it can also be used in other tasks such as

computer vision [18], where we want to capture the relationships between the entities

in a sequence.
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The backbone of the Transformer architecture is the self-attention module called

Multi-Head Attention (MHA). The idea is that in order to capture the context of the

sentence, for every word in the sentence we can compare it to every other word in

sentence and extract some features. Then, we can aggregate these features to have a

global understanding of the sentence.

Figure 2: Multi-Head Attention Module [56].

2.5 Road Extraction

Over the recent years, there has been significant progress in the automatic extraction

of road networks from satellite imagery. There are two important criteria to consider

when assessing the quality of the generated road networks; Firstly, the alignment and

the topology of the generated graph compared to the ground truth are important.

Secondly, the connectivity of the graph also plays an important role since one of the

main applications of the road networks is for navigation, and having disjoint con-

nected components makes the task impossible. Traditionally, semantic-segmentation-

based methods [6, 37, 40, 61] have been proposed to generate binary segmentation

mask to segment road pixels from the background. Having the segmentation mask,
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post-processing techniques are then applied to generate the road graph. [12] used

morphological transformations to thin the road segments enough to map them to

edges. [40] used heuristics search to connect disjoint line fragments and [37] leveraged

sparse a�nity maps. In [6], the authors proposed learning a model for road orien-

tation and a model for road connectivity refinement. These methods mainly focus

on addressing the connectivity issues of the inferred graphs. More recently, another

category of methods that are iterative-based was able to produce state-of-the-art re-

sults [5,53]. In these methods, the idea is to train a decision model that starting from

a random location on the road network, iteratively traces the near unexplored roads

until it fully explores all of the roads in the city. Algorithm 1 is the pseudocode for

the overall extraction process.

Algorithm 1: Iterative Road Extraction

1 Input: Location v

2 Output: Road graph

3 S  Initialize an empty stack

4 G Initialize an empty graph

5 add v to S

6 while S 6= ; do
7 u pop from S

8 if unexplored road p near u exists then

9 add u to S

10 add p to S

11 Add edge (u, p) to G

12 return G

One major advantage of these methods is that they guarantee the connectivity of

the generated graph since the algorithm iteratively expands on the current graph at

each step. [5] trains a CNN model using an Oracle, which decides the next move. [53]

expanded upon the previous method by adding auxiliary segmentation tasks to the

model. They also introduced an exploration mechanism where the next set of moves

is determined using pixel-wise classification. One of the limitations of these methods

is the restrictive exploration. It is possible that during the training phase, not all
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the unique trajectories are explored, and as such in the inference phase, if the model

slightly deviates from the road, it will be in a scenario where it has not observed

before during the training, and this may result in unexpected behavior.

2.5.1 Dataset

There are several large-scale datasets [5, 16, 54] that are used in the literature. Our

focus will be on the RoadTracer dataset [5] that is well studied by the previous

methods. The dataset consists of satellite images of 40 major cities such as Toronto,

New York, Paris and Chicago. The images cover inner cities, urban and sub-urban

areas and there is a balance between various roads such as highways, metropolitan

roadways and rural roads. The imagery is available through Google at 60cm/pixel

resolution, and the size of the images ranges from 8096⇥ 8096 to 24576⇥ 24576 pixel

resolution, depending on the size of the city. As for the target graph, OpenStreetMap

(OSM) which is a publicly available geographic database is used. Minor roads such as

parking lots, short service roads and tunnels are excluded. For training and testing,

the dataset is split into two sets of sizes 25 and 15 respectively.

2.5.2 Evaluation Metrics

There are several criteria to measure the quality of the inferred road graphs. Firstly,

the alignment of the road segments between the inferred graph and the ground truth

is important since it shows how accurately the topology of the roads are preserved.

Another evaluation is the connectivity of the graph. Below, we will discuss two

metrics.

Junction F1

Introduced in [5] and then refined in [53], this metric measures how well the junction

vertices in the generated graph match with the ground truth for a single city-wide

image. A junction is a vertex or an intersection in the road network that has more

than two connections. For every junction vertex v in the inferred graph GI , we

check whether it can be matched a vertex in ground truth graph GT . If a match

exists, then we classify v as a True Positive (TP). Otherwise it will be flagged as

a False Positive (FP). Similarly, for every junction vertex u in GT , if u is unpaired
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then it is considered as a False Negative (FN). Based on this definition, it will be

straightforward to calculate the precision, recall and F1 terms. Precision P = TP

TP+FP

is the fraction of generated junctions that are correctly identified, and Recall R =
TP

TP+FN
is the fraction of the true junctions that are correctly recovered. Given the

precision-recall values, the F1 score can be calculated using F1 = 2 P⇥R

P+R
which is the

harmonic mean between the precision and recall terms.

Average Path Length Similarity (APLS)

The Average Path Length Similarity metric (APLS) [54] measures the di↵erence of

the shortest paths between every pair of vertices (u, v) in the inferred graph GI and

ground truth GT . If the generated graph is accurate, we expect the length of shortest

path between (u, v) in GI and GT to be similar. Formally, the similarity metric for

two arbitrary graphs G and H is defined as:

SG�!H = 1� 1

N

X

u,v

min

✓
1,

|dG(u, v)� dH(u, v)|
dG(u, v)

◆
(2.10)

Where N is number of the all unique paths in G and dG(u, v) is distance between

u and v in graph G. If a path doesn’t exist H, then for the value of inside the

summation, the value of 1 will be considered which is the maximum error for a path.

Given this definition, APLS for a single city-wide image is defined as the harmonic

mean of the similarity values SGI�!GT and SGT�!GI :

APLS =

✓
S�1
GI�!GT

+ S�1
GT�!GI

2

◆�1

=
2

1
SGI�!GT

+ 1
SGT�!GI

(2.11)
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Chapter 3

Tractable Deep Reinforcement

Learning

This chapter is based on the conference paper ”Tractable Large-scale Deep Reinforce-

ment Learning”, Nima S., Poullis C., Under review.

3.1 Abstract

Reinforcement learning (RL) has emerged as one of the most promising and powerful

techniques in deep learning. The training of intelligent agents requires a myriad of

training examples which imposes a substantial computational cost. Consequently,

RL is seldom applied to real-world problems and historically has been limited to

computer vision tasks, similar to supervised learning. This work proposes an RL

framework for complex, partially observable, large-scale environments. We introduce

novel techniques for tractable training on commodity GPUs, and significantly reduce

computational costs. Furthermore, we present a self-supervised loss that improves

the learning stability in applications with a long-time horizon, shortening the training

time. We demonstrate the e↵ectiveness of the proposed solution on the application

of road extraction from high-resolution satellite images. We present experiments on

satellite images of fifteen cities that demonstrate comparable performance to state-

of-the-art methods. To the best of our knowledge, this is the first time RL has been

applied for extracting road networks.
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3.2 Introduction

In recent years, reinforcement learning (RL) has seen significant success in research

and applications primarily due to the introduction of deep neural networks as function

approximators [43], from robotic tasks [62] to complex games such as Dota 2 [8] and

AlphaGo [49], where world champions were defeated. Despite this progress, there are

significant challenges that hinder the application of RL in real-world applications,

especially when compared to supervised learning (SL). The main challenge is that

RL agents require more data, considerable training and are more complex to design

than SL methods. For example, training the OpenAI agent required 5000 GPUs

and AlphaGo agent 5000 TPUs. The hide-and-seek agents were trained on 31 billion

frames of data [2].

O✏ine RL methods [36] have attempted to improve e�ciency, but there is still a

significant gap between SL and RL methods. Hence, SL is the preferred framework in

cases where the problem can be expressed as a mapping from one domain to another.

In contrast, RL is primarily used for research to train agents on simple, well-defined

tasks.

In this paper, we demonstrate that with careful design considerations, RL can

successfully solve real-world problems involving complex, partially observable, large-

scale environments using commodity GPUs. We demonstrate the application of our

novel solution on the real-world problem of road extraction from high spatial resolu-

tion (HSR) remote sensing data, where all the solutions to date employ procedural

techniques or SL methods, such as semantic segmentation with deep neural networks.

Major challenges in road extraction are the considerable imbalance between the back-

ground and foreground, occlusions, high resolution of the images, and preservation of

the topology of the road segments.

Specifically, our technical contributions are,

1. An RL framework for training agents in complex, partially observable, large-

scale environments using commodity GPUs.

2. The design of an RL environment based on the road extraction, with reasoned

design decisions involving the state representation, action space and reward

structure.
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3. A self-supervised regularization loss function that improves the learning stability

of the model and the e�ciency during training.

Paper organization. The paper is organized as follows: Section 3.3 gives a brief

overview of the recent progress on improving the e�ciency of deep reinforcement

learning techniques and a brief review of the most relevant work in road extraction.

In Section 3.4 we present how we reformulate road extraction as an RL problem and

provide details on all the main components, including the environment, reward, policy

optimization, and training scheme. Finally, we present our experimental results in

Section 3.5 followed by the conclusion and future work.

3.3 Related Work

3.3.1 Tractable Reinforcement Learning

There have been several attempts to improve the e�ciency of policy optimization in

RL. Rainbow [25] combined several enhancements to DQN [43] such as Multi-step

learning [51] and Distributional RL [7] to increase both the performance and the

learning speed of the policy. [27] introduced distributed prioritized experience replay

to gather experiences from multiple actors, and [58] proposed applying augmentation

on the input to get a more accurate estimate of the Q-values. [45] proposed decoupling

the learning representation from the RL objective to reduce the learning complexity.

3.3.2 Road Extraction

In recent years, with the success of CNNs, several semantic segmentation-based meth-

ods formulated the problem as a supervised pixel classification where road pixels are

separated from the background. Consequently, post-processing techniques need to be

applied to generate topological networks. [61] used Dilated Convolutions to capture

the global information without sacrificing the resolution. [37] improved the feature

aggregation flow by generating sparse a�nity maps, and [6] proposed learning the

road orientation and a model for the road connectivity refinement. One limitation

of this formulation is that incorporating information about the spatial relation of

pixels is non-trivial. As such, the primary focus in these methods has been on the
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model’s architecture to incorporate the interdependencies of the pixels and preserve

the topology of the road segments.

Another category of methods focus on the iterative extraction of the road network

[5] where the objective is to output the road network as a graph, which is its natural

representation. Starting from a small patch of the aerial image, a CNN-based decision

function predicts the direction of the move to the neighbour patches and extends the

graph. [5] trains the CNN model using an Oracle, which decides the next move. [53]

introduced an exploration detector where the set of its next moves are predicted by

the model using pixel-wise classification. One of the limitations of these methods is

the restrictive exploration. At each step, the next move for the decision function is

generated on the fly based on the ground-truth graph. During the inference phase,

if the model slightly deviates from the road, it will face an unfamiliar scenario that

has not been observed before during the training. This error can accumulate and

have detrimental e↵ects on the tracking the road. [5] attempted to address this using

graph matching techniques. In contrast, [53] uses segmentation and junction cues.

We argue that training the model in an RL framework addresses this issue where the

model is guided only by rewards based on how close it is to the road, and exploration

and exploitation can be tuned or incorporated into the policy. The agent will have

explored many di↵erent trajectories during every policy iteration and becomes better

at each step. This formulation also gives us the ability to specialize in corner cases

where roads are close to each other or occlusion occurs.

Figure 1: Challenging cases. Dealing with occlusions caused by shadows, trees, tall

buildings and overpasses poses a significant challenge to RL and SL methods alike.
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3.4 Method

In this section, we describe the iterative graph construction algorithm [5] and explain

how we formulate this in an RL framework. Furthermore, we propose a set of policy

improvement techniques, including a self-supervised regularization loss function.

3.4.1 Formulation

The topological structure of road networks can be naturally represented as a graph

where the nodes correspond to intersections and junctions, and the edges correspond

to straight-line road segments. We reformulate the road extraction problem as an it-

erative graph construction, which intuitively can be considered analogous to a Depth-

First Search (DFS). Starting from a node corresponding to a road location, the agent

moves to a neighbouring location after choosing an action from a finite set of actions,

and thus, iteratively constructs the graph representing the road network. The agent

maintains a record of the visited nodes to avoid revisitation. In case of a dead-end

road, the agent can backtrack to its previous location and explore other unvisited

neighbours, if any. The objective is for the agent to return to its starting location

after having visited all roads.

We design the RL environment in way that each environment is tied to a single

aerial image associated with a city. In what follows, we describe the components of

the environment.

3.4.2 State Representation

The state is represented as aerial images of urban areas. Due to the large-scale nature

of the data, the agent has access to only a tiny patch of the aerial image at each step.

Therefore, in this context, the state refers to the approximation of the state of the

system. A state is associated with an actual location c = (x, y), representing the

agent’s location on the global scale. The state consists of an RGB image patch IW⇥H

c

of size W ⇥H centred around c. To approximate the information of the observation

history, we annotate the agent’s previous movements onto the patch, which provides

information about the overall trajectory of the movement. Additionally, the last L

actions AL of the agent are included as part of the current state. Hence, the state is
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defined as,

S =< c, IW⇥H

c
, AL >

Our emphasis on including multiple sources for providing temporal information is

that occlusion by tall building and trees (Figure 1) is challenging and can lead the

agent to misidentify a dead-end and leave a whole area unexplored. Finally, to decou-

ple the representation learning from RL, we trained a separate segmentation-based

model to generate road and junction masks, which are added as features to the state

representation.

3.4.3 Action Space

Two distinct actions must be considered to replicate the DFS behaviour: a) tran-

sitioning to the next location, i.e. to neighbouring vertices on the graph (Figure

3), and b) backtracking to the previous location when reaching a dead-end (Figure

2). Consequently, we define the action space A as having two discrete components

A =< ab, ad >, where ab is a binary flag indicating whether a backtrack action

should occur, and ad is the direction of the next movement expressed in degrees

i.e. ad 2 [0, 2⇡]. If the agent chooses to backtrack, then the value of ad is ignored.

Otherwise, the agent moves forward in the direction of ad with step-size s.

3.4.4 Reward Function

Our approach requires a substantial number of steps (>10000) to capture all roads.

Due to this (very) long time horizon, we adopt potential-based reward shaping func-

tions [44] to reduce the reward horizon. Di↵erent reward functions can produce similar

results; however, the computational cost for training can di↵er significantly. The re-

ward function must also be designed to maximize the RL objective and construct an

accurate road graph. The rewards act as a guide for the agent when constructing the

road network graph. Based on the action’s component ab, two di↵erent scenarios are

considered: the agent performs a) a regular movement or b) backtracks.

Movement Reward.

When transitioning to a next location, the reward function rmovement is defined as,

rmovement = ralign + rdivergence + rrevisit (3.1)

19



Figure 2: Backtrack action. Four ordered frames taken from the same sequence.

The orange lines show the ground-truth road network. Visited locations are drawn

in white, and visited locations from which the agent backtracked are drawn in green.

The blue cross marks the agent’s location. In frame 1, the agent reaches the image

border and decides to backtrack for several subsequent steps, shown in frame 2.

Backtracking continues until another viable action becomes available. Frame 4 shows

the agent turning right when reaching the junction to explore unvisited roads.

where ralign penalizes for deviations from the road while encouraging it to move in

the right direction and is given by,

ralign = ↵⇥ (�dagent) + � ⇥ ltraversed (3.2)

dagent is the distance between the agent and the closest location on the road, thus the

goal is to minimize this distance or equivalently maximize �dagent. ltraversed is the

length of the traversed road in the previous movement and is in the range of [0, s]
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depending on the angle between the vector of movement and the road segment. ↵

and � are weighting hyperparameters. If ↵ = 0, the agent cannot recover from a bad

position to return closer to the road. If � = 0, then the agent will tend to move in a

zig-zag fashion since the priority would be to only minimize the distance. rdivergence

is a penalty when moving farther away from one road segment and closer to another.

Although performing this move increases the �dagent penalty -which is preferred- the

penalty is negligible in cases like highways where the lanes are very close to each

other. Figure 3 shows a visualization of the reward landscape.

Backtrack Reward.

The backtrack action must only be used when reaching a dead-end where no roads

are left unexplored, and therefore no available options. The reward for this action is

defined as,

rbacktrack =

8
<

:
�dagent if backtracking is justified

rbt penalty, otherwise
(3.3)

If the backtracking action is correct, the agent is given a reward of �dagent. Based
on our experiments, giving a fixed positive reward leads to abuse the backtracking

action. As such, the reward is proportional to the distance of the agent from the

road.

Figure 2 shows an example of the backtracking action in four ordered frames

taken from the same sequence. The orange lines show the ground-truth road net-

work, visited locations are drawn in white, and visited locations from which the

agent backtracked are drawn in green. The blue cross marks the agent’s location.

Frame 1 shows the agent reaching an image border and after that in frame 2 choosing

the backtracking action for several steps. At frame 3, it reaches the junction and

chooses to turn right to explore unvisited roads.

3.4.5 Learning

To learn the policy, we adopt Double Q-learning (Double DQN), which is a model-

free o↵-policy algorithm [55]. O↵-policy algorithms are sample-e�cient compared to

on-policy since generated experiences can be re-used several times at di↵erent stages
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Figure 3: Reward Landscape. The orange lines show the ground-truth road net-

work. The blue line shows the previously visited locations. The agent’s location is in

the center of the purple circle. The right image shows the reward for the area within

the purple circle, rendered as a colour-mapped surface. Moving backwards would

result in a negative reward. In contrast, moving forward in a straight line will result

in the maximum reward.

of policy evaluation. Moreover, Double DQN is a simple method with few hyper-

parameters, reducing the computational cost for fine-tuning. Moreover, in Double

DQN bootstrapping is naturally used for the Temporal Di↵erence (TD) update rule,

on the other hand, partial bootstrapping should be used for the on-policy algorithms

due to the long time horizon of the problem.

Network Design

One factor in the design of the architecture is dealing with the multi-modality in the

input space. To learn the image representation, we use E�cientNet-V2 [52] since

it provides a good trade-o↵ between speed and accuracy. We use the Transformer

encoder with Multi-head Attention to embed action indices. Learning temporal in-

formation regarding the previous action is useful since, most of the time, we have

repeated actions when the agent is moving in a fixed direction or backtracking from

a dead-end location. To extract the representation, the class-token technique [18] is
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Figure 4: Network Archi-

tecture. The input con-

sists of the RGB aerial im-

age, the intensity mask, and

the semantic segmentation

mask. The CNN backbone

is based on E�cientNet-v2

[52] and we use the Trans-

former encoder with Multi-

head Attention [56] to em-

bed action indices.

used to fuse information from all of the inputs. We use LayerNorm to normalize the

activation statistics when fusing the image and action representations.

To learn the segmentation and junction masks, we used DDRNet [26]; a lightweight

architecture specialized for road scenes. We modified this network to add BlurPool

[59] for anti-aliasing purposes since road masks are tiny, and essential information

(especially at the center where the agent is located) could be lost during the down-

sampling layers. To train the model, we use cross-entropy with the addition of clDice

[48] to emphasize the skeleton and the road segments’ topology.

3.4.6 Policy Optimization

Distributed Data Collection. We leverage a distributed data collection pipeline

similar to [27]. Several environments are initialized with the aerial image of a unique

city and each environment has an experience replay bu↵er where the gathered data

is stored. This distributed pipeline significantly increases the diversity of experience

data and has also been shown to increase the performance in the learning phase

[27, 33]. Additionally, we use a priority replay bu↵er where experiences with higher

TD error are more likely to be sampled during the optimization phase.
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Long Time Horizon.

One of the main challenges of this type of vision task is the long time horizon. Due

to the scale of the problem, it can take at least 10,000 steps for the agent to extract

the complete graph. In the worst-case scenario, the agent will aimlessly wander

without exploring any new area. Due to the size of the observation space and memory

constraints, we can store at most 9,000 observations. As a result, it is imperative to

introduce new termination conditions that would end a bad episode prematurely. For

example, if the agent gets an average reward below a certain threshold for the last

n actions, we terminate the episode. This termination threshold must be tuned. If

the threshold is low, it produces low-quality experiences where the agent is far o↵

the track. In contrast, if it is set too high, it prevents exploration. Adding the early

termination mechanism introduces a side-e↵ect: the expected length of an episode

depends entirely on the agent’s performance. Therefore, having long-length episodes

becomes improbable since if the agent deviates from the road at any point, the episode

will terminate. Consequently, having experiences from later stages of the extraction

process becomes rare. For instance, backtracking can only be invoked when the agent

reaches a dead-end which can take a while for the agent to reach those areas from its

starting location. We address this by adding an Undo and Resume functionality to

the environment where at the end of a terminated episode, with a given probability,

we entirely reverse the changes of the last m steps and resume from there as the

starting point of the next episode, thus, the agent does not have to start from scratch

again. One issue with adding the resume functionality is that the samples stored in

the bu↵er will become highly correlated if the agent fails at a certain spot several

times. However, since we are using a prioritized replay bu↵er with a high degree of

prioritization, samples with high errors are more likely to be used in the optimization

step, making it unlikely that the agent would get stuck in an area for an extended

period.

Self-supervised Loss. Inspired by self-supervised methods [10,11,22], we introduce

an auxiliary self-supervised loss that would make the agent more robust to pertur-

bations in the input by augmenting the data and minimizing the di↵erence between

the output of the model on the augmented data and the output on the unperturbed

data. Formally, the loss is given by,

Lsl := kq↵(s)� r(q(t(s)))k22 (3.4)
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Figure 5: Bad episodes. This figure shows that the agent can easily wander around

and move-in circles in the early episodes.

Where q is the agent, s is the state, and t and r are transformation functions.

Specifically, t can be a spatial transformation such as rotation, random shift, or a

pixel augmentation such as adding noise or blurring. In the case this changes the

orientation of the actions, the reverse transformation r in combination with t must

be applied to compensate for the changes. The ↵ symbol means that the gradient flow

from q(s) is stopped. In contrast to [11], we do not use a predictor on top of the model.

Instead, to avoid collapsed solutions, we apply the self-supervised loss once for every

k optimization iterations on the main RL objective, where k is a hyperparameter.

3.5 Experiments

3.5.1 Dataset

We evaluate our method using the dataset introduced by [5]. The dataset consists

of aerial images from 40 cities worldwide, collected using the Google Maps API at

a 60cm/pixel resolution. The road network is collected and processed from Open-

StreetMap using OSMnx [9], enabling us to access information such as the type and
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Figure 6: Self-supervised loss function

width of the road. The dataset is split into 25 and 15 images for train and test,

respectively.

3.5.2 Evaluation metrics

We evaluate our method based on two sets of metrics. The first set is based on

the obtained reward and characteristics of the episodes during training and testing.

Specifically, we are interested in the average reward and the episode’s length; the

average reward is a good measurement of the alignment of the extracted graph with

the ground truth, and episode length shows how far the agent went without triggering

the stopping conditions.

The second set is to measure the overall quality of the final graph. We use the

junction-metric [53] to measure the accuracy of the junction, and APLS [20] for the

connectivity of the graph.
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3.5.3 Design decisions

Designing the environment in tandem with the policy and the optimization techniques

is a significant challenge. Design choices relating to the environment include the action

space, reward function and space representation. The type of action space directly

influences the choice of the policy algorithm. We experimented with both on-policy

and o↵-policy methods and experimentally confirmed that o↵-policy methods are

indeed more e�cient. Early experiments primarily used DQN [43] as the baseline,

and the smaller number of hyperparameters made it easier to focus on the design of

the environment. A full list of hyperparameters is provided in Appendix B.

3.5.4 Ablations on Self-supervised Loss

We measure the impact of the self-supervised loss with di↵erent frequency updates,

while other hyperparameters remain fixed. Figure 10 shows that the agents gain on

average a higher reward per episode which implies that the alignment quality of the

road network has increased. Furthermore, there is a noticeable relationship to the

TD loss.
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Figure 7: Self-supervised Experiment. The orange, gray and green curves cor-

respond to the experiments where the self-supervised loss was applied every 16, 32,

64 steps respectively. Looking TD error and average reward, we can conclude that

increasing the self-supervision e↵ect directly increases the performance of the agent.
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3.5.5 Early Termination

One limitation of the iterative construction design (Section 3.4) is that backtracking

causes the agent to move to its previous location and not necessarily where it wants

to. If the previously taken actions were not optimal, for example, moving around

in circles and going back and forth, it would result in the agent repeating all those

movements while backtracking. This makes it challenging to extract essential tempo-

ral information (intensity mask and action embedding) and degrades the e↵ectiveness

of the optimization updates. Thus, it is necessary to end an episode early if the av-

erage reward received is below a certain threshold. Figure 5 shows examples where

the agent got trapped in certain areas and could not escape.

3.5.6 Reward Function

We used several shaping functions in our reward function which needed several ex-

periments to be fine-tuned. To facilitate the design process, we developed a rendering

tool to visually observe if the reward cues are working as expected. Surprisingly,

compared to the evaluation metrics we already had, this gave us more information

as to how change the function, and in some cases help us find out bugs in our code.

Figure 8 is a frame of an episode that gives information regarding the quality of the

graph, changes in the distribution of the Q-values and the history of movements. A

summary of our experiments with the reward functions is provided in Appendix C.

3.5.7 Comparisons with state-of-the-art results

We compare our method to state-of-the-art road extraction methods [5, 6, 40, 53].

Table 1 shows the results of the comparisons. Our proposed RL method can achieve

competitive results compared to the state-of-the-art supervised-learning techniques.

Due to memory constraints, we could only train our agent on 40% of the training data

without post-processing. We believe gearing towards more complex policies such as

SAC [23] for the continuous control part of the problem could yield better results.
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Figure 8: Episode visualization. The agent is moving towards the left boundary.

The top-right heatmap shows the agent’s preference in moving towards a direction

based on the choices made in the previous ten steps, i.e. the preferred direction

is towards 135 deg. In the bottom-right heatmap, we visualize the Q-values of the

last timestep corresponding to each direction. As shown, the agent’s prediction of

the reward is significantly smaller for moving backwards -since this would incur a

revisitation penalty- compared to moving forward. The bottom chart shows the

value of the rewards, i.e. running average (green), discounted sum of futures(yellow),

and actual(red), as a function of time. The orange lines and purple points show

the ground-truth road network. Visited locations are drawn in white, red points

indicate the visited locations’ projections on the closest ground-truth road segment,

and visited locations from which the agent backtracked are drawn in green. Sample

videos of the training of the RL agent are included in the supplemental material.
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Method JF-1 APLS

DeepRoadMapper [40] 29.05 21.27

RoadTracer [5] 52.19 -

ImprovedConnectivity [6] 55.21 56.89

VecRoad [53] 63.13 64.59

Ours 53.25 55.97

Table 1: Quantitative comparison of JF-1 and APLS with state of the art

methods.

3.6 Conclusion

We present an RL framework for complex, partially observable, large-scale environ-

ments and introduce novel techniques for tractable training of RL agents on com-

modity GPUs. We demonstrate the e↵ectiveness of our approach and its significant

reduction of computational costs on road extraction. Road extraction from aerial im-

ages is reformulated as an RL problem where the agent iteratively constructs a road

network graph by traversing road locations on the image. Our self-regularization

loss addresses instabilities typically caused by the long-time horizon. Furthermore,

we discussed several design considerations, including introducing the backtracking

action for training the RL agent, and presented experiments of their e↵ect on the

agent’s learning. Our extensive experiments showed that although we addressed a

significantly more complex learning task using RL, we achieved comparable perfor-

mance with state-of-the-art SL methods on the extracted road networks’ accuracy

using commodity GPUs. To the best of our knowledge, this is the first time RL has

been successfully applied to the complex real-world problem of road extraction, where

the challenges are partially-observable, large-scale environments and long-time hori-

zons. In the future, we intend to explore the use of an additional multi-task semantic

segmentation loss. Thus, the CNN backbone will be conditioned on both taking ac-

tions for the RL agent and classifying pixels into road/non-road pixels, which we

believe will improve the accuracy of the results and further reduce the computational

cost of the training.
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3.7 Appendix

3.7.1 Discrete and Continuous Action Representation

To further improve the performance and training cost of the agent, we experimented

on representing the ad action component as a continuous space. This would enable us

to employ more advanced policy-optimization algorithms such as SAC [23] that are

more stable and e�cient compared to the Double DQN. Since the SAC is designed

only for continuous spaces and we have both discrete and continuous components,

some modifications are needed. We follow [13, 15] to design a Hybrid-SAC suitable

for hybrid action spaces and the conditional entropy of ad|ab is also added to the

original entropy term. The architecture of the actor and critic models is similar to

Figure 4, and we followed the same process as [58] for weight sharing and frequency

of the critic’s updates.

In our experiments, SAC failed to produce any meaningful results. At some point

in the training, the policy would become deterministic and only choose the backtrack

action, even though that resulted in a very high penalty. Our analysis showed that

the magnitude of the local gradient coming to the actor through the critic would

eventually converge to zero. As a result, the actor gets tiny gradient updates and

cannot recover from that state. We tried many methods proposed in the literature to

alleviate the issue, such as using orthogonal initialization [29], increasing the actor’s

learning rate, and changing the e↵ect of the entropy term. However, this only delayed

the collapse and did not solve the issue entirely. We believe there are still possible ways

to address this, such as using orthogonal regularization [4] to preserve the gradient

magnitude and using biases for the discrete component.
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3.7.2 Implementation Details

Table 2 summarizes the hyperparameters employed by our proposed solution.

Component Hyperparameter Setting(s)

Action Scheme Step-size s 10

Number of directions ad 16 / 32

Reward Function ↵ 2

� 1

rdivergence -35

rrevisit -25

rbt penalty -55

Clipping [�55,1]

Early Termination Reward Window 10

Threshold -5

State Representation W ⇥H 256⇥ 256

L 10

Undo & Resume Undo steps m 15

Full-reset probability 0.1

Network Action embedding size 16

MLP layers 128 x 3

Feature vector size 96

Experience Bu↵er Capacity 9000

Prioritization ↵ 0.8

Importance-sampling � 0.4! 1

Policy Discount � 0.75 / 0.8

Target update freq 25

n step 3

✏-greedy 0.3! 0.05

Regularization freq 0.125

Update per step 0.2
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Optimizer Adam

Learning rate 0.0005

Weight decay 0.0001

Epsilon 1e-8

Batch size 128

add

Table 2: Hyperparameters.

3.7.3 Reward Functions

We experimented with many reward functions for the ralign reward (Section 3.5.6,

where the objective is to keep the agent as close to the road as possible. The re-

ward functions were based on di↵erent characteristics such as area (Figure 9a), angle

(Figure 9b), and distance (Figure 9c). The Area Reward is a penalty that is given

based on the area between the agent’s vector of movement and the corresponding

road segment. The Angle Reward is a penalty defined as the negative of the angle

between the agent’s vector of movement and the optimal direction of movement. Fi-

nally, the Distance Reward is the negative of the distance between the agent and the

road. One side e↵ect of the Area reward is that the penalty decreases as the agent

moves orthogonal to the road since the area in-between shrinks. This is an undesir-

able property since we want to keep the agent close to the road. As such, this type

of reward must be coupled with traversal rewards such as llength discussed in Section

3.5.6. Our experiments found this type of reward to be very unstable, as it can vary

significantly between di↵erent actions. One disadvantage of the Angle Reward that

we found is that irrespective of what action is taken, it does not di↵erentiate between

the cases where the agent is very close to the road or is very far from it. We desire

that the agent should receive a much higher penalty when it is farther from the road.

As such, we chose the Distance Reward as one of the shaping functions used in the

reward function.
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(a) (b) (c)

Figure 9: Reward Functions. (a) Area Reward, (b) Distance Reward, (c) Angle

Reward. In (a), the agent chose B2 as its next step of movement, and the negative of

the area between the agent’s vector of movement and the vector of the corresponding

points on the road is given as the penalty. In (b), P1 to P3 are the three possible

choices for the agent’s next move, alongside the distances of the destination points to

the road. In (c), B1 and B2 are two possible choices for the next step, and the angle

between the vector of these movements and the optimal directions are calculated. In

this type of reward function, the objective is to minimize the angle.

3.7.4 Interpretability Analysis

We performed several interpretability analysis using [50] to visualize how much each

pixel in the image contribute to the final prediction. We took advantage of this to

find the optimal input resolution and reduce the computational and storage costs.
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Figure 10: Integrated Gradients. Attributing the prediction of the CNN backbone

to its input features. The integrated gradients are normalized between [0, 1]. Higher

value means large contribution.
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3.7.5 Additional Quantitative Results

Table 3 summarizes the evaluation of our method on each city in the test set.

City JF-1 APLS

Amsterdam 46.72 47.16

Boston 53.29 56.96

Chicago 56.52 60.17

Denver 52.36 58.76

Kansas City 54.72 58.84

Los Angeles 59.16 55.46

Montreal 54.02 58.40

New York 53.48 57.48

Paris 54.61 57.63

Pittsburgh 48.83 50.71

Salt Lake City 52.49 50.72

San Diego 49.15 52.69

Tokyo 54.09 55.64

Toronto 52.81 57.76

Vancouver 56.42 61.09

Table 3: Quantitative comparison of JF-1 and APLS for each city.
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Chapter 4

Conclusion

In this thesis, we introduced a reinforcement learning solution to road extraction from

high-resolution satellite imagery. We designed an RL environment from scratch and

addressed the challenges of the task such as partial observability, large-scale input,

long-time horizon, and high computational cost through design choices and novel

techniques that makes it possible to perform tractable training of RL agents on com-

modity GPUs. We designed and tested several reward functions based on reward

shaping to reformulate the iterative graph construction algorithm. The agent’s novel

neural architecture is capable of learning from both image and categorical features

using CNN and NLP methods. Our proposed self-regularization loss results in better

and more stable representation learning without requiring additional data or extra su-

pervision. Furthermore, we discussed several design considerations, including a novel

backtracking action for training the RL agent and presented experiments of their ef-

fect on the agent’s learning. We demonstrate the e↵ectiveness of our approach and

its significant reduction of computational costs on road extraction. Our experiments

showed that although we addressed a significantly more complex learning task using

RL, we achieved comparable performance with state-of-the-art supervised learning

methods on the extracted road networks’ accuracy using commodity GPUs. To the

best of our knowledge, this is the first time RL has been successfully applied to the

complex real-world problem of road extraction.

Possible future directions and extensions of this work are as follows:

• To improve the accuracy of the generated maps, we intend to explore the use
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of an additional multi-task semantic segmentation loss. Thus, the agent will

be conditioned on both estimating the action values for the RL objective and

classifying pixels into road/non-road pixels, which we believe will improve the

accuracy of the results and further reduce the computational cost of the training.

• In Section 3.7.1 we leveraged SAC, a more complex o↵-policy algorithm, that

supports both hybrid action spaces and better exploration. However, the de-

signed pipeline failed to converge to a solution. In our experiments, the critic

that is responsible for estimating the q-values, always diverged at some point

during the training. We hypothesize that it may be possible to address this

issue by using a similar, but on-policy algorithm, like PPO [47]. The main

di↵erence between the critics in SAC and PPO is that in PPO, the critic is

responsible for estimating the advantage of the action, as opposed to its actual

value. Using advantage functions was shown to greatly reduce the variance of

estimation [46]. We believe this can lead to a more stable training process.

• Our framework and design choices can be extended to other applications of deep

learning in remote sensing such as weather forecasting, land cover mapping,

and object tracking [3, 30, 39]. We believe using an RL solution can be more

appropriate when designing a supervised learning solution is non-trivial.
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