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Abstract

Radiomics in Medical Imaging with Application to Surgical Innovation

Prabhakara Subramanya Jois

Modern surgery today has greatly improved healthcare due to technological advancements in

medical imaging. It has fostered a culture of innovation that has progressed with continuous and

incremental changes towards curing patients’ ailments. With evidence-based assessments gaining

prominence in modern surgery, Radiomics has become crucial to resolving problems through the

integration of the best scientific data with the correct clinical expertise. As a quantitative approach

to medical imaging, Radiomics uses mathematical analysis to improve the data made available to

clinicians, which greatly influences their decision-making ability. In this thesis, we focus on two

applications: pelvic bone segmentation from CT data for designing patient-specific customizable

pessaries; and quantitative assessment of breast morphology, for reconstructive breast surgeries.

For pelvic bone segmentation, we investigate several encoder-decoder network configurations

trained on limited data and use histogram based features from Radiomics to take a data-centric

view towards the problem and boost the model performance on completely unseen data through

histogram specification. Then we evaluate the performance on two publicly available CT datasets.

For assessment of breast morphology, we propose a novel metric for quantifying the overall

dissimilarity between two breast mounds, called VIMA, by using shape and size based features

from iso-contours. The methodology was experimented on 3D scans of artificial breasts and found

to be highly useful in an intra-operative setting for aiding surgeons during aesthetic breast surgeries.
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One part from the teacher, One part from self-study,
One part from colleagues, And one part from the passage of time.
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Chapter 1

Introduction

In this chapter, we provide a brief introduction to this thesis, while describing our usage of

Radiomic features with application to Surgical Innovation, and our Contributions to the target ap-

plications. Then we provide an outline of this thesis.

1.1 Surgical Innovation

Today, due to the advancements in healthcare technologies, modern surgery has greatly im-

proved healthcare for patients while fostering a culture of innovation. Here, patients seek the latest

methodologies for obtaining desirable outcomes [1]. Such consistent innovation in the field of med-

ical imaging and digital-health has led to the evolution of evidence based-medicine (EBM). Since,

the field of medicine has had a long history of using objective approaches for the scientific inquiry of

diagnosis and treatment of ailments [2], EBM was introduced as a descriptive method of educating

medical practice for enhancing a physician’s decision making ability. The EBM method naturally

evolved to prioritize objective assessment of any clinical observations, for producing evidence of

clinical effectiveness. Such evidence had to be shown explicitly, based on systemic guidelines and

questioners that tried to quantify any clinical analysis. In this context, Radiomics became crucial

for resolving clinical problems, through the integration of best scientific data with the appropriate

clinical expertise [3].

1



Figure 1.1: Illustration of Radiomics based quantitative features for tumor assessment from com-
puted tomography imaging [5].

As a quantitative approach to medical imaging, Radiomics uses mathematical analysis to im-

prove the data made available to clinicians [4, 5]. Here, handcrafted features are extracted through

the image pixel interrelationships, and spatial distribution of their intensities, to perform image anal-

ysis better, as seen in Fig. 1.1. Radiomics is also used to extract information from clinical data by

employing analysis methods from Deep learning [6]. So far numerous works of research from var-

ious domains of imaging have demonstrated the potential of Radiomics to improve diagnostic and

prognostic decision making in a clinical setting [7]. But a major challenge is present, due to a gap

between what is known and what is needed in the clinic, which produces results lacking in clinical

utility. In our work, We try to bridge that gap for two target applications.
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1.2 Contribution of this Thesis

In this thesis, we focus on the following applications, (a) pelvic bone segmentation from com-

puted tomography (CT) data for designing patient specific customizable pessaries, (b) quantitative

assessment of breast morphology from 3D data, for reconstructive breast surgeries.

For pelvic bone segmentation, we introduce an encoder-decoder network trained on limited

data, with an augmented BCE-IoU loss. Then using histogram based radiomic features, we take

a data-centric view towards the problem and boost the model performance on completely unseen

data through histogram specification. And evaluate the performance on two publicly available CT-

datasets.

For assessment of breast morphology we propose a novel metric, VIMA, using shape and size

based radiomic features from iso-contours, for quantifying the overall dissimilarity between two

breast mounds. The methodology was experimented on 3D scans of artificial breasts, and based

on feedback from three plastic surgeons VIMA was found to be highly useful in an intra-operative

setting for aiding surgeons in reducing incidence of breast asymmetry.

1.3 Outline of this Thesis

The remainder of the thesis is organized as follows: In Chapter 2 we provide background infor-

mation on some traditional and deep learning based techniques, employed in our target applications.

In Chapter 3, we present our pelvic bone segmentation work on CT-data along with its experimental

results. In Chapter 4, we present our novel methodology, VIMA, for assessing breast asymmetry

and provide measure of system usability. In Chapter 5, we conclude this thesis and discuss some

future work and research directions.
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Chapter 2

Background

In this chapter, we will briefly cover the background information related to Medical image

assessment, for improving clinical utility through radiomic features in our target applications: (a)

pelvic bone segmentation from CT data for designing patient-specific customizable pessaries, (b)

quantitative assessment of breast morphology, for reconstructive breast surgeries.

2.1 Medical Image Analysis

It is the practice of analysing an image of a body for clinical examination and medical interven-

tion, as well as a visual depiction of particular organs or tissues [8, 9]. This practice aims to expose

hidden interior structures beneath the skin and bones, as shown in Fig. 2.1, allowing for anomalies

to be detected. And for the target applications in our work, we utilize medical data obtained from

CT scans and three Dimensional (3D) scans.

CT-Scan

A CT scan is an imaging technique where a scanner with rotating X-ray tubes transmits rays

across the body. Here, the detectors within the scanner measure the ray’s attenuation through the

different layers within the body, which allows for the detection of tissues with varying densities.

Such measurements taken from multiple viewpoints are processed to produce a cross-sectional im-

age. A sufficiently resolved CT image can provide detailed information on various structures like

4



Figure 2.1: Illustration of different medical imaging modalities (modified from [9]).

vasculature, organs, bones and their surrounding tissue [10], along with other parts that are useful

for the detection and diagnosis of ailments.

3D Scanning

Three Dimensional scans are commonly used to produce three-dimensional data of any free-

form objects by generating their point clouds or triangular meshes. The 3D data is formatted into

a standard reference system, often merged with proper alignment to form a complete model. A

common 3D scanning technique involves a structured light [11] where a projector casts a sequence

of light patterns on the target object, and a camera captures an image of the deformed light pattern,

which is used to compute the depth information. Methods like time-of-flight [12] provide portability,

by using a sensor to determine the depth of an object by measuring the time taken by a signal to

return to the sensor after reflecting off the target. Unlike CT data, 3D scans provide information

only about the outer surface of a specific target.
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Since, assessment of medical data (either 2D or 3D) can only be performed after extraction of

relevant information from its regions of interest, in our work we employ 2D segmentation techniques

for the delineation process in both target applications.

2.2 Medical Image Segmentation

Medical image segmentation is an important step in the extraction and analysis of regions of

interest from medical images. The process involves dividing an image into several areas based on a

certain rule or description such as intensity level, color value or texture. Several methods on image

segmentation using traditional techniques like thresholding, edge detection, and active contours, are

presented in works like [13]. One such technique, that is easily applicable to 3D input data, is the

iso-contours method.

2.2.1 Iso-Contours

Iso-contours, also known as contour maps, can be used to assess the shape and structure of

3D data. They condense the information from a 3D function representing the input data, over a

2D region of a discrete set of closed lines. Here, the contour lines connect points of equal value

known as iso-value [14, 15, 16], thereby delineating/ segmenting them from the rest. Contour

maps carry data about measurements taken at specific locations within a defined region of space,

such as elevation on a topographical surface (as seen in Fig. 2.2). An example of contour maps

applied to craniofacial medical data can be seen in Fig. 2.3, where each contour divides points in

the underlying space based on their elevation or iso-value. Such a representation, generated using

Marching Squares, is used for the fine assessment of regions with varying elevations.

Marching Squares

Marching Squares is a popular algorithm used in the generation of iso-contours [17] within a

two-dimensional scalar field (2D array). An overview of the algorithm is shown in Fig. 2.4. Here,

contour lines are generated by:

6



Figure 2.2: Illustration of a contour map, with iso-contours for visualizing the topography [14].

Figure 2.3: Illustration of iso-contours for: (a) and (b) – same person with different expressions; (c)
– different person [15].
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Figure 2.4: Illustration of Marching squares algorithm for generation of contour lines [17].

• applying the iso-value as a threshold to the 2D scalar field, with outputs 1 or 0 corresponding

to input data being above or below the iso-value, respectively

• forming contouring cells from the binary image using every 2×2 block of pixels, for repre-

senting the entire image through grid cells

• composing the cell index values using the cell corners as bits resulting in a 4-bit index

• using the cell index to find matching contour lines from a pre-built look-up table

• applying linear interpolation to the 2D scalar values for producing contour lines along the

appropriate cell edges

Now applying this algorithm across all iso-values, give us the contour lines that describe the entire

topography of the input 3D data, which is useful for further assessment.
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Figure 2.5: Illustration of a typical CNN structure for classification task [23].

Moving on to the assessment of CT data, we again require data delineation/ segmentation for

facilitating the analysis of regions of interest. But the traditional techniques like [13] or contours

maps [16] produced from intensity-based iso-values, produce segmentation results of poor quality

and often require more intervention, due to many constraints. Since machine learning and deep

learning-based technologies have demonstrated robustness to such issues, we utilize Convolutional

Neural Networks to perform image segmentation on CT data.

2.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) today have achieved state-of-the-art performance, espe-

cially among computer vision tasks such as image classification [18, 19] and segmentation [20, 21].

This is due to their structure specifically designed for processing 2D spatial data, like images. Since

the breakthrough of AlexNet [22] in the 2012 ImageNet competition, CNNs have received serious

consideration from the imaging community, leading to constant innovation and development within

the field. Unlike traditional methods that rely on rule-based hand-crafted features for vision tasks,

CNNs learn feature representations that are robust to image noise, directly from the training data

resulting in superior performance. Even with a plethora of different CNN architectures the building

blocks usually stay the same [23, 24], and are usually comprised of – convolution layers followed

by an activation function, pooling layers and fully connected layers as seen in Fig. 2.5.

Convolutional Layer A convolution layer extracts various features from the input through the

9



Figure 2.6: Illustration of a feature map generation from convolution operation [24].

Figure 2.7: Illustration of pooling operation for reducing spacial dimension [24].

convolution operation. It involves using filters or kernels that are used to examine a subset of an

image of a particular size M × M. While, a filter is scanned over the entire input image of size N

× N, (N > M), a filter response is obtained from the dot product of coefficients between the filter

and the corresponding subset of the input. The filter response or the output is commonly known as

a feature map as it provides information about the image features like corners and edges, along with

their spacial location and orientation. By stacking layers of filters (i.e., convolutions), identifying

basic patterns from the initial layers becomes possible as shown in Fig. 2.6.
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Pooling Layers are commonly used for compressing the information after convolution opera-

tion. They down-sample the size of the convolved feature maps, as seen in Fig. 2.7, which reduces

the computational cost due to decreased number of parameters. Similar to convolution, pooling re-

quires a filer of a certain size and stride, that scans across the feature map. The two common types

of pooling operations are: Max Pooling and average pooling, performed by choosing the largest

value and average value, respectively, from a feature map. The outputs from a pooling layer are

usually vectorized and sent to the Fully connected layer for a classification task but in the case of

segmentation, the feature maps are sent to Fully Convolutional Networks.

Fully Convolutional Networks The Fully Convolution Networks (FCN) approach proposed

in [21], replaced the Fully connected layers of a CNN with an FCN before the output layer, thus

making the entire CNN architecture fully convolutional. It utilized a classification network like

AlexNet [22] as an encoder module for sub-sampling and used a decoder module with transpose

convolutional layers for up-sampling. This allows for output feature maps to be recovered at the

same resolution of the original input, which is crucial for producing segmentation maps.

CNN based Image Segmentation

CNN approaches like FCN [21], U-Net [20], and V-Net [25] have received a lot of attention

from the imaging community for their ability to perform semantic segmentation, and instance seg-

mentation. Since our target application doesn’t require the identification of different instances of

bones from CT data, we choose to perform semantic segmentation as seen in Fig. 2.8. The purpose

of semantic image segmentation is to assign a class to each pixel in an image, corresponding to its

representation. This assignment is known as a dense prediction because the CNN is predicting for

every pixel in the image, as seen in Fig. 2.9.

Task Representation: In semantic segmentation, we generate a segmentation map (Dimension:

height × width × 1), from either an RGB color image (Dimension: height × width × 3) or a gray-

scale image (Dimension: height × width × 1). Within a segmentation map, each pixel has a class

label represented by an integer. The targets are generated by one-hot encoding the class labels,

basically generating an output channel for each of the available classes, as seen in Fig. 2.10.

Here, a mask is a single channel from the target (predictions) that illuminates the parts of an

11



Figure 2.8: Illustration of semantic segmentation for predicting class labels of each pixel in the
image.

Figure 2.9: Illustration of a prediction map with semantic labels, in low resolution (in practice label
resolution will match the input resolution).

image where a specific class is present. This can be inspected by overlaying the target onto the

input, as seen in Fig. 2.11.
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Figure 2.10: Illustration of target channels for each possible class.

Figure 2.11: Illustration of target inspection through overlay onto input image.
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Chapter 3

Boosting Segmentation Performance

using Histogram Specification

In this chapter we present our first application of this thesis, which is pelvic bone segmentation

for designing pessaries. A version of this chapter was presented at the 2021 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM) 1:

• Jois PS, Manjunath A, Fevens T. Boosting Segmentation Performance across Datasets us-

ing Histogram Specification with Application to Pelvic Bone Segmentation. In 2021 IEEE

International Conference on Bioinformatics and Biomedicine (BIBM) 2021 Dec 9 (pp. 1364-

1369). IEEE.

3.1 Introduction

Pelvic Organ Prolapse (POP) 2 is a disorder in which the uterus, rectum or bladder descends into

the vaginal canal due to ligament and pelvic muscle weakness [27]. The different stages of POP

are showcased in Fig. 3.1. On average one out of ten women around the world will suffer from this

ailment [28]. Its reconstructive surgery aims to repair the pelvic floor and restore the position of

the organs to their original state. This includes the employment of a vaginal mesh, which has been
1This work was supported by Mitacs Accelerate Project-IT20604 [26].
2Warning: the following sections contain graphic images, that some people may find disturbing.
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Figure 3.1: Illustration of different stages of pelvic organ prolapse [27].

linked to several medical problems and has been the subject of several lawsuits previously [29]. The

latest clinical therapy for POP is an intravaginal device called Pessary [30], which suffers from a

failure rate of 40% due to its generic form, which is also not a good match to the female pelvic

anatomy, as shown in Fig. 3.2. Its poor design and performance are a result of the limited data

on patient-specific pelvic anatomy. Here, segmentation of pelvic bone becomes key to extracting

patient-specific anatomical measures, that aid in designing patient-specific pessaries [26].

In this context Computerized tomography (CT) imaging becomes crucial as it aids in the clinical

diagnosis of diseases and planning of pelvic surgeries. Several methodologies have been proposed

for the segmentation of the pelvis with the emergence and advancements of deep learning for digital

healthcare. But in a low data scenario, the lack of abundant data needed to train a Deep Neural

Network is a significant bottleneck. Due to this, boosting the performance of networks trained on

limited data through Radiomics becomes essential for accurate segmentation of the pelvis.

The automated results from the segmentation task injects digitized data into the decision making

process and aid physicians in the early detection of pelvic injury, which expedites surgical planning

and helps to reduce the complications caused by pelvic fractures [31]. In pelvic CT data, structures

like the bone marrow and bone surface relatively appear as dark and bright regions due to their

low and high densities compared to the surrounding tissues. However, given the variations in im-

age brightness and contrast between different CT datasets, as illustrated in Fig. 3.3, distinguishing

pelvic bone structures from the image background becomes cumbersome and leads to erroneous

segmentation outputs. These issues indicate a need for a novel solution to develop a simple yet

effective methodology for the accurate segmentation of pelvic bones from varying CT data.
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Figure 3.2: Illustration of different pessaries with generic shapes [30].
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TCIA (a1)

VHBD (b1)

Figure 3.3: (a1) and (b1) – illustrate the segmentation outputs, for input images from TCIA and
VHBD, respectively.

Recent literature has seen many applications for the segmentation of the pelvis from CT imaging

data. Traditional methods such as thresholding and region growth [32], deformable surface model

[33], and others, have been commonly used to perform bone segmentation. However, these ap-

proaches often suffer from low accuracy due to varying image properties such as intensity, contrast,

and the inherent variations between the texture of the bone structures (bone marrow and surface

boundary) and the surrounding tissues. To overcome these challenges, supervised methods such as

statistical shape models (SSM) and atlas-based deep learning (DL) methods have made significant

contributions to segmentation tasks. Wang et al. [34, 35] suggested using a multi-atlas segmenta-

tion with joint label fusion for detecting regions on interest from CT images. Yokota et al. [36]

showcased a combination of hierarchical and conditional SSMs for the automated segmentation of
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3.3 Prior Art

3.3.1 Encoder Module

In simple terms, an encoder takes the input image and generates a high-dimensional feature vec-

tor aggregated over multiple levels. We deploy a choice of the following well-known architectures

as the encoder module:

ResNet

Residual networks (ResNet) introduced residual mappings to solve the vanishing gradient prob-

lem in deep neural networks [18]. ResNets are easy to optimize and gain accuracy even with deeper

models.

Inception V3

Inception Networks are computationally efficient architectures, both in terms of the model pa-

rameters and their memory usage. Adapting the Inception network for different applications while

ensuring that changes do not impede its computational efficiency is difficult. Inception V3 intro-

duced various strategies for optimizing the network with ease of model adaptation capabilities [19].

EfficientNet

Conventional methods make use of scaling to increase the accuracy of the models. The models

are scaled by increasing the depth/width of the network or using higher resolution input images.

EfficientNet results from a novel scaling method that uses a compound coefficient to uniformly

scale the network across all dimensions [42].

3.3.2 Decoder Module

The decoder module is responsible for generating a semantic segmentation mask using the ag-

gregated high-dimensional features extracted by the encoder module. We make use of the popular

U-Net model specially designed for medical imaging as the decoding module [20].
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3.3.3 Histogram Specification

Histogram specification, or histogram matching, is a traditional image processing technique [43]

that matches the input image’s histogram to a reference histogram. Histogram specification involves

computing the cumulative distribution function (CDF) of histograms from both the target and the

reference, following which a transformation function is obtained by mapping each intensity level

from the target’s CDF to the level in the reference CDF as shown below,

1. we compute the CDF T (rk) from the input’s histogram equalized transformation,

T (rk) = (L− 1)
∑k

i=0 pr(ri) =
(L−1)
MN

∑K
i=0 ni

2. we then compute the transformation function for the output, G(zq) = (L− 1)
∑q

j=0 pz(zj)

3. for all T (rk) we find the closest corresponding values in G(zq) from Step 2

4. If more than one zq satisfies T (rk) = G(zq), we choose the smallest value and store all the

mappings from r to z, through the inverse transform zq = G−1(T (rk)).

5. using values from Step 4, we map every histogram equalized pixel from the reference,

T (rk), to the corresponding zq of the target’s equalized histogram

where, r and z are the intensity levels of input (reference image) and output(target image);

k = q = 0, 1, 2, ..., L− 1; L is number of possible intensity levels; MN is number of image pixels;

ni is number of pixels with intensity ri;

In this work, we construct the reference histogram from the training set and use it to modify (pre-

process) the test data, before performing the segmentation task(Shown in Sec. 3.4.3).

3.3.4 Datasets

The input data preparation and label annotation were done using the tools from Image-J software

[44]. A summary of TCIA–cancer imaging archive [45] and VHBD–Visible human project [46]

datasets, its image resolution, number of images used in this study, and the respective data-splits for

training-validation-testing, are shown in Table 3.1.
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Table 3.1: An overview of the datasets used in this work.

Dataset Resolution Train-set Val-set Test-set
# Images (%) (%) (%)

TCIA [45] 512 x 512 407 58 117
582 (70%) (10%) (20%)

VHBD [46] 512 x 512
– –

167
167 (100%)

VHBD-2 [46] 512 x 512 116 17 34
167 (70%) (10%) (20%)

3.3.5 Performance Measures

To quantify the quality of segmentation, we compute standard performance measures for seg-

mentation tasks commonly used in literature, specifically, the mean Dice coefficient (mDice) and

mean Intersection over Union (mIoU) [47, 48]. For a given segmentation output (A) and the ground

truth (B), the Dice coefficient is given by Dice = 2 |A ∩ B|
|A| + |B| , which can be interpreted as a weighted

average of the precision and recall, and IoU = |A ∩ B|
|A ∪ B| , (also known as Jaccard index) is commonly

used for comparing the similarity between sets (A) and (B), while penalizing their diversity.

3.4 Experimental Validation

3.4.1 Network Training

The network implementations were based on the documentation from [49]. The encoder module

pre-trained on the ImageNet [50] dataset was employed to improve the generalization capability on

unseen data and achieve faster convergence. For the base-model, we use ResNet-34 [18] as the

encoder and a U-Net decoder. We initialize the base-model with random weights (rnwt) and train

without any data-augmentation (noaug) on images from [45], using an Nvidia RTX 2070 GPU, and

an ADAM optimizer with a learning rate of 0.001, momentum of 0.9 and a weight decay of 0.0001,

for 40 epochs. We chose a 70% : 10% : 20% split of the data (shown in the first row of Table 3.1),

where the 70% was utilized for training and the 10% of the data was utilized for validation. The

remaining 20% for testing was completely unseen during training. About 50 passes of random
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image batches, of size eight, from the training set, were used in each epoch. The model was then

validated on the 10% data to evaluate the performance based on binary-cross-entropy loss (BCE)

and record the corresponding weights. After training, the weights that gave the best performance on

the validation set were selected for the base-model, which was then evaluated on the unseen test-

sets, i.e., 20% of [45] and 100% of [46], respectively. The base model’s performance is showcased

in the first row of Table 3.2.

Extending beyond the base-model, data augmentation (aug) was performed using horizontal

and vertical flips, affine transforms, image intensity modulation and blurring, for increasing training

data size and to help reduce over-fitting. In addition, we try to find the best overall segmentation

performance and generalization capability to completely unseen data, through further extension of

the base-model with different configurations, using the following:

• encoder modules using ResNet-34 [18], Inception V3 [19] and EfficientNet-B0 [42], initial-

ized with ImageNet weights (imwt) for transfer learning

• re-configuration of input data, or not, to the pre-trained model’s format and its pre-processing

functions (ppr), for extraction of better features

• loss functions like Dice loss, IoU loss and combined BCE-IoU loss, in place of BCE loss

(seen below), for propagating strong gradients for better optimization and learning

LBCE(y, p̂) = −(y ∗ log(p̂) + (1− y) ∗ log(1− p̂)) (1)

LDice(y, p̂) = 1− 2yp̂ + 1

y + p̂ + 1
(2)

LIoU (y, p̂) = 1− y ∩ p̂ + 1

y ∪ p̂ + 1
(3)

LBCE IoU = λBCE + (1− λ) IoU (4)
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In equations (1) to (3) y is the ground-truth and p̂ is the model prediction. In (2) and (3) we

ensure that the functions are not undefined when p̂ = y = 0, by adding 1 to the numerator and

denominator. And in (4) we use a convex combination of BCE and IoU losses, where λ was set to

0.5.

3.4.2 Results

The detailed comparisons of the different U-Net configurations’ segmentation performance on

test-sets with 95% confidence intervals are shown in Table 3.2. The segmentation outputs from both,

the least-performing (base-model) and the best-performing (seen in Fig. 3.4, a fine-tuned U-Net

configuration with EfficientNet-B0 encoder [42] pre-trained on ImageNet, with data-augmentation

and input re-configuration, optimized using augmented BCE-IoU loss) DL models, are showcased in

Figs. 3.5 (a) &(b). The predicted outputs are overlaid onto the ground-truth and color-coded (yellow

- TP; black - TN; green - FP; red - FN) for visualizing the quality of segmentation. The results shown

in Figs. 3.6(b2) &(c2) illustrate the desired effect on segmentation due to histogram specification.

The reduction in the number of pixels labelled as FPs & FNs, and improvement in the number of

TPs from the overlays decisively show the significance of pre-processing test-data, which boosts

the model’s segmentation performance. Furthermore, the comparative results tabulated in the last

two columns of Table 3.2, along with the two sample t-test for the mean dice coefficient (mDice)

between the best model (✰) and every other model configuration, on the histogram matched test

data (proposed methodology), gives evidence for the statistical significance of the proposed method

with the exception of a U-Net configuration with Inception Net-V3 encoder [19] pre-trained on

ImageNet, with data-augmentation and input re-configuration, optimized using BCE loss function.

3.4.3 Discussion

Since EfficientNet is a state-of-the-art, the optimized network that achieved superior results

on the ImageNet dataset, with a relatively small number of the trainable parameters due to the

compound scaling approach [42], choosing it as the encoder module yields superior segmentation

performance compared to other configurations.

For histogram specification, since one needs only a single reference histogram, we take a clustering
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Input (a) (b)

Figure 3.5: Pelvic bone segmentation on TCIA data using: (a) Base U-Net with random weight
initialization for ResNet-34 encoder, with no data-augmentation, optimized using BCE loss (least
performing); and (b) fine-tuned U-Net with ImageNet weight initialization for EfficientNet-B0
encoder, with data-augmentation and input reconfiguration, optimized using combined BCE-IoU
loss (best performing), are overlaid onto the binary ground-truth; yellow - TP; black - TN; green -
FP; red - FN.

approach and choose the cluster centre from all the feature vectors (histograms) of the training set.

Since the cluster centre is the mean of all cluster points (vectors), we compute the average histogram

from the entire training set as the reference. Using histogram specification as a pre-processing step

for the test data serves an important purpose, as it converts the distribution of the test data into a

form seen by the network during training, as shown in Figs. 3.6(a1) to (c1). Due to the lack of access

to large datasets, the proposed method was validated on the datasets that were available during the

experimentation phase.

On analyzing the data shown in Table 3.3, the proposed methodology’s overall performance

on the test-sets surpassed several state-of-the-art techniques that were trained on similarly sized

datasets, except for Liu et al. [41] who performed training on approximately 270,000 images. Since

data drives any model, the proposed methodology (trained only on 407 images) shows room for

further improvement in segmentation under the availability of larger datasets.

3.4.4 Ablation Study

Images from [45, 46], with the data splits shown in rows 1 and 3 of Table 3.1, are used for

training. The best-model was trained on the joint data whose test-data performance is shown in

Table 3.2 (♣). The results showed that training the model on joint data degrades the performance

on both datasets. The data imbalance and the varying image tonal distributions play a significant
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TCIA (a1) (a2)

VHBD (target) (b1) (b2)

H-VHBD (c1) (c2)

Figure 3.6: Performance in segmentation with histogram specification: (a1-c1) show the respec-
tive histograms of the input images; (a2-c2) show the pelvic bone segmentation overlaid on the
ground-truth; and (b2-c2) decisively show the improvement in segmentation from matching target’s
histogram to the reference. yellow - TP; black - TN; green - FP; red - FN.
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Table 3.2: Performance comparison of different U-Net configurations, with 95 % confidence in-
tervals, for pelvic bone segmentation on test sets from TCIA, VHBD, and H-VHBD, i.e., VHBD
after histogram specification. Along with p-value for showcasing the statistical significance of best
performing model against other configurations.

U-Net Configurations TCIA VHBD H-VHBD p-value

mIoU mDice mIoU mDice mIoU mDice (✰ v/s)

Res34-rnwt-noaug-
bce (base model)

0.788 ±
0.033

0.867 ±
0.025

0.131 ±
0.033

0.186 ±
0.037

0.774 ±
0.021

0.865 ±
0.015

< 0.001

Res34-imwt-aug-bce 0.919 ±
0.007

0.957 ±
0.004

0.746 ±
0.028

0.840 ±
0.021

0.900 ±
0.004

0.947 ±
0.002

< 0.001

Res34-imwt-aug-dice 0.925 ±
0.007

0.960 ±
0.004

0.523 ±
0.039

0.645 ±
0.038

0.907 ±
0.005

0.951 ±
0.002

0.043

Res34-imwt-aug-bce-
iou

0.922 ±
0.007

0.959 ±
0.004

0.790 ±
0.018

0.877 ±
0.012

0.906 ±
0.004

0.950 ±
0.002

0.008

IncepV3-imwt-aug-
bce

0.876 ±
0.012

0.932 ±
0.007

0.663 ±
0.026

0.784 ±
0.019

0.906 ±
0.006

0.950 ±
0.003

0.032

IncepV3-ppr-imwt-
aug-bce

0.921 ±
0.011

0.957 ±
0.007

0.808 ±
0.014

0.890 ±
0.009

0.913 ±
0.005

0.954 ±
0.002

0.612

IncepV3-ppr-imwt-
aug-iou

0.921 ±
0.011

0.957 ±
0.006

0.757 ±
0.019

0.856 ±
0.013

0.901 ±
0.008

0.947 ±
0.004

0.004

EffiB0-imwt-aug-bce 0.923 ±
0.007

0.959 ±
0.004

0.835 ±
0.015

0.906 ±
0.010

0.901 ±
0.006

0.947 ±
0.003

< 0.001

EffiB0-ppr-imwt-aug-
bce-iou (✰)

0.924 ±
0.008

0.960 ±
0.004

0.836 ±
0.011

0.909 ±
0.006

0.914 ±
0.005

0.955 ±
0.002

—

ABLATION STUDY
(♣)

0.913 ±
0.007

0.954 ±
0.004

0.679 ±
0.047

0.801 ±
0.032

0.873 ±
0.013

0.931 ±
0.007

< 0.001

* Encoder module - Res34, IncepV3, EffiB0 are ResNet-34, Inception Net-V3, EfficientNet-B0, having 24.43 M; 29.89 M;
and 10.07 M (M - Million) number of trainable parameters, respectively.

* Encoder Weights - rnwt and imwt are random weights and Imagenet weights, respectively.
* Augmentation - aug and noaug means training with and without data-augmentation, respectively.
* Loss - bce, dice, iou are the Binary Cross Entropy loss, Dice Loss and IoU loss, respectively.
* ppr- configure input to the pre-trained backbone’s format.
* Grey background - indicates improvement due to histogram-specification based pre-processing.
* p-value- two sample t-test for the mean dice coefficient (mDice) between best model (✰) and every other model configu-

ration, on the histogram matched test data (proposed methodology).
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Table 3.3: Overall performance comparison for pelvic bone seg-
mentation with state-of-the-art techniques.

Methodology Dataset (# Test Images) mIoU mDice

Yokota et al. [36] Private (100) — 0.928
Chu et al. [37] Private (318) — 0.941
Chang et al. [40] Private (∼3420) — 0.949
Liu et al. [41] DS‡(∼63K) — 0.984

Proposed method TCIA,VHBD (284) 0.919 0.957
(DS‡) KITS19, CERVIX, ABDOMEN, MSD T10, COLONOG, CLINIC; Train:Test
≈ 270K: 63K; K = 103

role in influencing the segmentation performance. And by using the proposed methodology, the

model overcomes data imbalance and generalizes well to unseen datasets, which boosts its overall

segmentation performance.

3.5 Conclusion

In this chapter, we showcased a novel methodology for the automated segmentation of pelvic

bones from axial CT images. We addressed the unmet need for superior pelvic bone segmentation

methodology for images with varying brightness and contrast by using histogram specification. This

simple yet powerful approach to pre-processing the test-data improved segmentation performance

by a significant margin, with the quantitative results confirming its validity. Through our approach,

the encoder-decoder configuration overcame a significant hurdle of varying intensity distributions

in CT images, which led to superior segmentation quality. Moreover, after validating the results

on publicly available TCIA and VHBD datasets, the proposed methodology is highly competent

with-respect-to existing state-of-the-art techniques. Lastly, the segmentation outputs from particular

sections of the female pelvic bone (proprietary information under a Non Disclosure Agreement with

FemTherapeutics Inc.), were processed for computing the patient-specific anatomical features and

producing a shape-prior (dependent on the accuracy of segmentation output), that was highly useful

in designing patient-specific customizable pessaries.

27



Chapter 4

VIMA

In this chapter, we introduce Volumetric and Iso-contour based Morphological Asymmetry

(VIMA) score and visualization scheme 1 2, for the quantitative and qualitative assessment of

breasts in 3D [51]. The acronym was inspired by the Sanskrit word “ Vimā ” meaning: dimen-

sion, measure out and make ready. The proposed method (a quantitative metric and visualization

scheme) is aimed at making ready the hard to obtain digital information of the breast(s) measured

in an intra and perioperative setting, for increasing the observer’s dimension for decision making,

which has a profound impact on the outcome of aesthetic breast surgeries.

4.1 Introduction

One of the standard approaches for treating breast cancer today is a mastectomy [52], the com-

plete surgical removal of the breast tissue, as shown in Fig 4.1. This invasive procedure, although

life-saving, is commonly known to have a profound negative impact on a breast cancer survivor’s

emotional well-being, body image, and quality of life [53]. Due to this, the present-day treatment for

breast cancer encompasses the removal of cancerous tissue and the surgical reconstruction and mod-

ification of the breast(s) to a form that appears satisfying to the patient [54]. Despite the growing

demands for aesthetic and reconstructive breast surgeries, until recent times, the breast morphol-

ogy and the reconstruction outcomes were evaluated purely via naked eye assessment and simple
1This work was supported by Mitacs Accelerate Project - IT25828 [51].
2A version of this chapter was submitted to the U.S. Patent Office by OpAI Innovations Inc.
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Figure 4.1: Illustration of natural and surgically induced breast asymmetry.

anthropometry (tape measurements). Even with the availability of photogrammetry and hand-held

3D depth sensing, there is a dearth of fully automated commercially available perioperative (pre,

intra, and postoperative) assessment techniques that can assess patients’ breast surface and volume

[55, 56]. While most existing methods for automated assessment of breasts rely on 3D data ob-

tained from time-of-flight sensors on any standalone or hand-held 3D scanners, their reliance on

linear-measurements disables them from capturing important data from the entire breast mound.

In this work, we propose a methodology using Radiomics for providing: (a) 3D visualization and

location of the regions that contribute to the overall asymmetry; (b) type of asymmetry; and (c) the

exact quantity of a specific type of asymmetry, between the two breast contours, for aiding plastic

surgeons in reducing the incidence of breast asymmetry during aesthetic breast surgeries.

4.2 Background

According to the World Health Organization, breast cancer is the most common form of cancer,

affecting one in every eight women in North America. In 2018 alone the estimated mortality due

to breast cancer was over 600,000 [57]. Treatment for breast cancer is normally dependent on the

type of cancerous tissue and its stage. It usually involves chemotherapy, invasive surgery, and/or
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Figure 4.2: Plaster cast of the torso for quantifying breast morphology from the mold [58].

radiation therapy. A common method used to remove existing cancerous tissue, and reduce the

chance of developing cancer in the future is prophylactic mastectomy. Here, one or both breasts are

usually removed in order to reduce the risk of development or recurrence of breast cancer [52].

Studies like [53] have provided compelling evidence for the negative effects of procedures like

mastectomy on a breast cancer survivor’s quality of life, body image and emotional well-being.

Hence, breast reconstructive surgery is an important component of the treatment process, for im-

proving a patient’s self-esteem. Here, reconstructive surgeries are typically performed to improve

the patient’s breast morphology, described in terms of shape, size, position, symmetry and appear-

ance [54], but any dissatisfaction with the surgical outcome results in revision (additional surgeries).

During any revision, a surgeon will try to modify the post-reconstructive breast morphology until

the patient is satisfied with the outcome. For any given reconstructive or revision procedure the final

result is heavily dependent on a surgeon’s experience and ability to predict the outcome, based on

naked-eye assessment and qualitative evaluation of the patient’s breast morphology.

Although there has been a growing interest in the usage of an objective and quantitative assess-

ment of breast morphology, it is dependent on direct anthropometry, or manual tape-based mea-

surements like [55, 56]. Another common manual technique is the use of mesh/plaster cast [58]

(shown in Fig. 4.2). This involves physically pressing a cast against the subject’s torso area in a

careful manner to procure an inverted mould of the torso. The inverted mould is used to quantify

the subject’s breast morphology. However, the use of a mesh/plaster case is both time consuming

and non-feasible during surgery. Techniques like [58, 59] include the use of the water test. In a
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Figure 4.3: Water displacement test for estimating breast volume [59].

water test, the subject’s breast mounds are individually inserted into water containers. The approx-

imate volume of the breast is determined based on the amount of water displaced from the water

container (as shown in Fig. 4.3). This test, is both impractical in a real life setting during and after

surgery, and can only provide volumetric measurements, without any information on the shape and

position of the breast mounds.

Due to the advancements in medical image processing and computer vision, techniques like 3D

scanning through image-photogrammetry have found their use in the morphological assessment of

breasts during surgical planning [58, 60, 61]. Their non-invasive nature makes data acquisition and

processing relatively easy and makes it possible to compute approximate values for breast mea-

surements, size and volume [62, 63, 64]. But they are not fully automated as the landmark points

have to be entered manually into the software tool by trained personnel, before performing any

assessment, similar to [65]. The linear measurement based assessment methodologies in [66, 67],

not only requires manual intervention for selecting the landmark points before producing the linear

measurements but its assessment methodology was performed on scans from the Vectra system by

Canfield, which is known to consume a lot of time before producing 3D data of the patient’s breasts,

as it employs photogrammetry for data acquisition (issues confirmed by the authors of [66] ) .

Works like [67, 66] are not feasible in an intraoperative setting due to manual intervention for

landmark annotation, and the lack of portable 3D scanners [68] and [69], respectively, as they suffer

from the inability to capture the intraoperative data needed for assessment, while the patient is in
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Figure 4.4: Illustration of breast symmetry assessment using BCCT score [65].

a supine position. The works proposed in [70] can capture the necessary patient data even from

the supine position, but like the previous works, don’t quantify breast dissimilarity in an automated

fashion. And while, the work proposed by S. Amini et al., [71], showcases a combination of Fi-

nite Element Analysis and AR visualization for performing breast symmetry assessment, it fails to

quantify the exact position and amount of breast tissue needed to improve the overall symmetry.

This method is also not contact free, as it needs a special marker that is placed in contact with the

patient’s breast, for aiding data calibration and localization, which reduces its overall clinical utility

during surgery.

Today the state of the art methods [65, 66, 67], for performing a digital assessment of breast

morphology (seen in Figs. 4.4, 4.5 and 4.6, respectively), still rely on linear measurements to de-

scribe the breast morphology and ascertain their dissimilarity, without taking into account the entire

3D surface of the individual breast mounds. This leads to the loss of useful information that is

critical for making real-time adjustments during breast surgeries. And due to the lack of such infor-

mation, the surgeons still have to rely on their naked eyes for guessing the amount of dissimilarity

in volume and shape, between the two breasts, during surgery.

4.3 Proposed Methodology

We propose VIMA, (Volumetric and Iso-contour based Morphological Asymmetry) Score and

visualization scheme, for the quantitative and qualitative assessment of breasts. The assessments

are performed with the help of the breast boundaries and the location of the Sternal Notch on the
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Figure 4.5: Illustration of state-of-the art digital anthropometry for breasts [66].

Figure 4.6: Illustration of breast analyzing tool (BAT) for symmetry analysis [67].

3D surface of the female torso.

4.3.1 Iso-countours

Similar to a topographical map seen in 2.2.1, we use marching squares algorithm [72], to com-

pute the iso-contours [73] form the point cloud data, by using contour lines, (5) to describe the

topography of the breast mounds, as showcased in Fig. 4.7.

Contour lines from breast surface S(X,Y, Z) ∈ IR3 are:

{(X,Y ) | C(X,Y ) = Z }, Z ∈ [0, zmax] (5)

As 2D planar sections of the 3D breast surface, the iso-contours are parallel to the XY-plane.

The contour lines from each iso-value (Z varying from lowest to the highest elevation, i.e., 0 to

zmax) are used to generate binary masks by filling the areas inside the iso-contours as seen in

33



Figure 4.7: Iso-contours generated from input point cloud data.

Figure 4.8: Illustration for generating binary masks from iso-contours at different iso-values or
levels.

Fig. 4.8. In this work, we choose the right breast mound (image left) as the reference and the left

breast mound (image right) as the target, as seen in Fig. 4.9. But in practice, the reference and target

will be defined by the patient and observer based on personal preference.
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Figure 4.9: Functional Illustration of flipping the reference breast, along the median line [-90 deg
line from key-point], onto the target breast and color coding of the overlay: black - is the image
background or TN; yellow - regions present in both reference and target [similarity] or TP; green
- region present in reference but absent in target [dissimilarity] or FN; red - region absent in the
reference but present in the target [dissimilarity] or FP.

Then, at every iso-value Z we split the iso-contour into reference (right breast) and target (left

breast), and flip the reference contour R(X,Y ) onto the target T (X,Y ) along the median line, given

by (6), and color code the results to visualize the dissimilarity, as shown in Fig. 4.9, and repeat the

process for all iso-values,

{(X,Y ) | {R(X,Y ), T (X,Y )} ∈ C(X,Y ) = Z }, Z ∈ [0, zmax]

{R′
(X,Y ) = R(−X + 2D,Y )} (6)

where R
′

is the flipped reference contour; and D is the x-intercept of the median line, y = 3π
2 mx+c;

and (mx,my) are the coordinates of the sternal notch.

4.3.2 Breast Volume

To compute the individual volumes of the reference and target breast mounds V1 and V2, re-

spectively, we add their surface areas form each iso-value, and find the overall volume difference
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Figure 4.10: Illustration for visualization of qualitative information, detailing: volume difference,
in cubic centimeters, between the reference and target breast mounds; base-width and base-height
of the respective breast mounds; and color coded visualization of dissimilarity between both breast
mounds. Here, the green and red regions indicate tissue mass that needs to be added or removed,
respectively, to the target breast mound for reducing the overall asymmetry.

VDIFF and volume ratio Vr as shown in (7),

V1 =

zmax∑
i=0

area{R(X,Y ) = i} V2 =

zmax∑
i=0

area{T (X,Y ) = i}

VDIFF = |V1 − V2| Vr =
min(V1, V2)

max(V1, V2)

(7)

4.3.3 Asymmetry Score

Unlike existing works from recent literature that rely on simple linear measurements, the pro-

posed methodology, VIMA, utilizes the entire 3D morphology and the individual volumes of both

the breast mounds. In Fig. 4.10, we illustrate the overlapping of the iso-contours from the reference

onto the target for visualizing the dissimilarity through color coding. Measuring dissimilarity be-

tween between two 2D surfaces is similar to measuring quality of segmentation map with respect

to the ground truth, hence, we use the Jaccard Index [48], commonly known as Intersection-over-

Union (IoU) for assessment.

Instead of computing the IoU at every iso-value, and then averaging the results for producing a

single measure of dissimilarity, we can compute the overall TP, TN, FP, FN across all iso-values;

and find the overall dissimilarity between two breast mounds from (8), which is then used to com-

pute the V IMA score using a convex combination of IOUoverall and volume Vr with λ empirically
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Figure 4.11: Intersection over Union

set to 0.75 as seen in (9).

For R
′
(X,Y ) overlaid onto T (X,Y ):

T (X,Y ) = i

0 1

R
′
(X,Y ) = i

0 tni(0, 0) fpi(0, 1)

1 fni(1, 0) tpi(1, 1)

TP, TN, FP, FN =

zmax∑
i=0

tpi, tni, fpi, fni

IOUoverall =
TP

TP + FP + FN
(8)

Using Vr from (7) and IOUoverall from (8) we compute the VIMA score:

V IMA = 1 − [ λ(IOUoverall) + (1− λ)Vr ], where λ = 0.75 (9)

4.4 Experimental Setup

The proposed methodology was applied to point cloud data obtained from 3D scans of artifi-

cial breasts. The point clouds were acquired by employing the Scandy Pro application [74] on an

iPhone 11 with an integrated time-of-flight sensor. The data was then exported to MeshLab for data
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Figure 4.12: Illustration for first experiment (EXP1): black - (TN) is the background; yellow - (TP)
regions present in both reference and target; green - (FN) need to add tissue volume of 82.32 cc;
red - (FP) need to remove tissue volume of 37.51 cc;

inspection, sternal notch selection, and delineation of breast boundaries and stored as .pcl files. Two

experiments were designed to evaluate the proposed method. For the first experiment (EXP1), 3D

scans of breast mounds with volumes 260 ccs and 215 ccs were used as the reference and target,

respectively. For the second experiment (EXP2) scans of two breasts of equal volume (215ccs) with

different orientations with respect to the median line, were used.

The iso-contour visualizations were showcased to plastic surgeons for validation. Due to the

restrictions caused by the COVID-19 pandemic, and the scheduling issues with doctors, our study

sample only comprises three surgeons (from the US and Canada) that specialized in plastic and

reconstructive surgeries. As part of the validation, their feedback on the method of assessment

for quantifying breast asymmetry was documented based on a custom questionnaire inspired by

the Likert Scale [75]. It is similar to the standardized psychometric scale method and consists of

questions, each having a five-point scale value (1 to 5), with 1 and 5 corresponding to Strongly

disagree and Strongly agree, respectively. Questions 1,3,5 each contribute towards the sum, with its

: scale value; and questions 2,4,6 each contribute a quantity of 5 - scale value to the sum. The result

is then divided by the total sum (30) to produce the final utility score (UScore).
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Figure 4.13: Illustration for second experiment (EXP2): black - (TN) is the background; yellow -
(TP) regions present in both reference and target; green - (FN) need to add tissue volume of 51.76
cc; red - (FP) need to remove tissue volume of 50.72 cc;

Table 4.1: VIMA Experimentation.
EXPERIMENT Reference (vol in cc) Target(cc) VDIFF (cc) IOUoverall (%) Vr(%) VIMA(%)

EXP1 259.77 214.95 44.82 59.69 82.76 34.13
EXP2 214.95 213.91 1.04 62.62 99.41 28.18

4.5 Results

The quantitative results obtained from applying the VIMA methodology (5)-(9) to both exper-

iments EXP1 and EXP2 are tabulated in Table 4.1. The results from the last column quantify the

amount of dissimilarity between the two breasts in each experiment. The visualizations from VIMA

on experiments EXP1 and EXP2 are respectively showcased in Figs. 4.12 and 4.13. It highlights

the advantage of VIMA over conventional techniques by specifying – (a) regions that contribute

to breast asymmetry; (b) quality or nature of dissimilarity i.e., dissimilarity due to lack or excess

of breast tissue at the specific region; and (c) the amount or quantity of breast tissue at the target

region. The overall utility based on surgeon’s feedback is tabulated in Table 4.2, where VIMA was

found to be highly useful and easy to follow.

4.6 Discussion

On analysing the data in Table 4.1, the proposed methodology showcases that the breasts from

EXP2 are more symmetrical due to a lower VIMA score, as opposed to the breasts from EXP1.
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Table 4.2: Likert assessment for VIMA visualization.
VIMA Utility Questions \ Subjects S1 S2 S3
I think I would use it frequently 5 4 5
I think it is hard to follow 1 2 1
I think it is well integrated as a methodology 4 3 4
I would not require technical support to use it 2 1 2
It is better than linear measures 5 5 4
It is hard to track changes peri-operatively 1 2 1

SUM 25 22 24
UScore(%) 83.34 73.34 80

The minor variations in the volume measures can be attributed to the interpolation operation in

the marching squares algorithm, used in the generation of iso-contours. The visualizations from

Figs. 4.12 and 4.13 highlight the efficacy of VIMA, especially in EXP2 by showcasing that even

with breasts of the same volume, a person can have asymmetry due to change in the overall shape.

This is further complemented by VIMA’s ability to locate, delineate and measure breast regions that

contribute towards asymmetry, and provide an absolute measure through the VIMA Score. Based

on assessments from Table 4.2, we can deduce that the methodology was found by surgeons to be

very easy to follow and of high utility for decision making during surgery. While the Likert assess-

ment serves as a validation (informal) for the proposed methodology, a clinical trial is necessary to

establish VIMA as a new baseline within the research community.

4.7 Conclusions

In this chapter, we showcased a new methodology using Radiomics called VIMA (Volumetric

and Iso-contour based Morphological Asymmetry) for performing the quantitative assessment of

breast morphology, for aiding plastic surgeons in reducing the incidence of breast asymmetry from

aesthetic breast surgeries. Unlike existing works from recent literature, that rely on linear measure-

ments for describing the breast morphology to compute breast asymmetry, the proposed methodol-

ogy takes into account the entire shape and volume of the individual breast mounds and highlights

the exact regions that contribute to asymmetry. VIMA was found by surgeons to be very easy to

understand and highly useful for making decisions during breast surgeries.
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Chapter 5

Conclusions and Future work

This chapter we summarize our work and provide some future directions for this thesis.

5.1 Conclusions

In this thesis, we explored Radiomics in medical imaging by applying the best scientific data to

the relevant clinical expertise, for improving utility and decision-making in a clinical setting. We

focused on two applications: pelvic bone segmentation from CT data for designing patient-specific

customizable pessaries; and quantitative assessment of breast morphology, for breast surgeries.

For pelvic bone segmentation, we investigated several encoder-decoder network configurations

trained on limited data and use histogram based features from Radiomics to take a data-centric

view towards the problem and boost the model performance on completely unseen data through

histogram specification. Then we evaluated the performance on two publicly available CT datasets.

For the assessment of breast morphology, we proposed a novel metric for quantifying the overall

dissimilarity between two breast mounds, called VIMA, by using shape and size based features from

iso-contours. The methodology was experimented on 3D scans of artificial breasts and found to be

highly useful in an intra-operative setting for aiding surgeons in sculpting patients’ breasts during

aesthetic and reconstructive breast surgeries.
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5.2 Future Work

Some possible directions for future works in pelvic-bone segmentation are:

Deep learning based Image Enhancement

In our segmentation work, a 1 × 256 feature vector representing the image tonal distribution

(histogram) was used for morphing the unseen data. Hence, deep learning based single image

contrast enhancement (SICE) technique [76] can be employed for producing better morphing of

tonal values. This could lead to even higher segmentation performance for networks trained on

limited data.

Attention Mechanisms

Similar to a focusing mechanism in human vision, attention mechanisms [77, 78] in deep learn-

ing can be utilized in the segmentation pipeline. These methods suppress the information from the

unimportant regions of an image and inform the network on where to focus. This aids the network

in capturing rich features, which can further improve the segmentation performance.

Better loss function

In our segmentation work we utilized a weighted sum of BCE and IOU loss function. Since,

most loss functions focus on pixel level classification error, structural priors like [79] could be

incorporated to better train the model for achieving high correlation between ground truth and pre-

dictions.

Possible direction for future work in assessment of breast dissimilarity is:

Automated localization and segmentation using Gaussian Curvature

Techniques like Mean and Gaussian curvature filtering [80] can be employed for the automated

detection and localization of sternal notch and nipple-areolar complex. Furthermore, projections of

the curvature response can be utilized for segmenting breast boundaries in an automated fashion.
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E. Kitzler, N. A. Papadopulos, H.-G. Machens et al., “Objective breast symmetry evaluation

using 3-d surface imaging,” The Breast, vol. 21, no. 2, pp. 152–158, 2012.

[68] K. Minolta, “Vivid 3d digitizer,” https://www.upc.edu/sct/ca/documents equipament/d 288

id-715.pdf, 2002.

[69] C. Scientific, “Vectra XT 3D Imaging Systems,” https://www.canfieldsci.com/imaging-

systems/vectra-xt-3d-imaging-system/, 2022.

[70] Y. Yang, D. Mu, B. Xu, W. Li, X. Zhang, Y. Lin, and H. Li, “An intraoperative measure-

ment method of breast symmetry using three-dimensional scanning technique in reduction

mammaplasty,” Aesthetic Plastic Surgery, vol. 45, no. 5, pp. 2135–2145, 2021.

[71] S. Amini and M. Kersten-Oertel, “Augmented reality mastectomy surgical planning prototype

using the hololens template for healthcare technology letters,” Healthcare Technology Letters,

vol. 6, no. 6, p. 261, 2019.

[72] C. Maple, “Geometric design and space planning using the marching squares and march-

ing cube algorithms,” in 2003 international conference on geometric modeling and graphics,

2003. Proceedings. IEEE, 2003, pp. 90–95.

50

https://www.upc.edu/sct/ca/documents_equipament/d_288_id-715.pdf
https://www.upc.edu/sct/ca/documents_equipament/d_288_id-715.pdf
https://www.canfieldsci.com/imaging-systems/vectra-xt-3d-imaging-system/
https://www.canfieldsci.com/imaging-systems/vectra-xt-3d-imaging-system/


[73] H. R. R. Courant, R. Courant, H. Robbins, I. Stewart et al., What is Mathematics?: an elemen-

tary approach to ideas and methods. Oxford University Press, USA, 1996.

[74] “Scandy pro: 3d scanning,” https://www.scandy.co/.

[75] “Likert scale,” https://en.wikipedia.org/wiki/Likert scale.

[76] J. Cai, S. Gu, and L. Zhang, “Learning a deep single image contrast enhancer from multi-

exposure images,” IEEE Transactions on Image Processing, vol. 27, no. 4, pp. 2049–2062,

2018.

[77] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention network for scene

segmentation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, 2019, pp. 3146–3154.

[78] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu, “Ccnet: Criss-cross attention

for semantic segmentation,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2019, pp. 603–612.

[79] S. Zhao, B. Wu, W. Chu, Y. Hu, and D. Cai, “Correlation maximized structural similarity loss

for semantic segmentation,” arXiv preprint arXiv:1910.08711, 2019.

[80] M. M. Kawale, G. P. Reece, M. A. Crosby, E. K. Beahm, M. C. Fingeret, M. K. Markey, and

F. A. Merchant, “Automated identification of fiducial points on 3d torso images,” Biomedical

Engineering and Computational Biology, vol. 5, pp. BECB–S11 800, 2013.

51

https://www.scandy.co/
https://en.wikipedia.org/wiki/Likert_scale

	List of Figures
	List of Tables
	Introduction
	Surgical Innovation
	Contribution of this Thesis
	Outline of this Thesis

	Background
	Medical Image Analysis
	Medical Image Segmentation
	Iso-Contours
	Convolutional Neural Networks


	Boosting Segmentation Performance using Histogram Specification
	Introduction
	Proposed Methodology
	Prior Art
	Encoder Module
	Decoder Module
	Histogram Specification
	Datasets
	Performance Measures

	Experimental Validation
	Network Training
	Results
	Discussion
	Ablation Study

	Conclusion

	VIMA
	Introduction
	Background
	Proposed Methodology
	Iso-countours
	Breast Volume
	Asymmetry Score

	Experimental Setup
	Results
	Discussion
	Conclusions

	Conclusions and Future work
	Conclusions
	Future Work

	Bibliography

