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Abstract

Relation Between Geodesic Polar and Isothermal Coordinates

Mehrad Alavipour

The main result of this thesis is an asymptotic formula establishing a cor-
respondence between two at first sight unrelated systems of local coordinates on a
two-dimensional real analytic Riemannian manifold: the so-called isothermal local
parameter and the Riemann normal coordinates. This formula was stated without
proof in 1992 Fay’s memoir on analytic torsion, a weaker statement was proved in
Walsh’s 2012 PhD thesis. A survey of basic facts from differential geometry used in
our proof is also given.
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Chapter 1

Introduction

LetM be a real 2-dimensional Riemannian C∞ manifold with metric g. Let p ∈M
and (x, y) be local coordinates near p and the metric in the vicinity of p have the
form g = E(x, y)dx2 + 2F (x, y)dxdy +G(x, y)dy2. We are going to question whether
it is possible to reduce this metric to diagonal form, i.e, g = ρ−2(u, v) (du2 + dv2)

via an appropriate change of variables: u = u(x, y), v = v(x, y). The corresponding
statement has been proven under various conditions on regularity of metric coefficients
by Gauss [2]; then Korn and Lichtenstein [3], and Chern [7]. Modern presentation
could be found in Spivak [4] and Taylor [5]. Some hints for other variants of proof are
given in Kazdan [6] and a relatively recent article in Wikipedia. In the next chapter,
we shall discuss modern version of Gauss proof where the coefficients are real analytic.
In chapter three, we then give the proof of the relationship between isothermal and
geodesic polar coordinates. Finally in appendices section, we will discuss the proof
of existence of solutions for complex ODE’s, an ingredient in Gauss proof; we will
also formulate the statements of Taylor and Chern, and discuss preliminary lemmas
leading to their proofs.

1



Chapter 2

Existence of Conformal coordinates

2.1 Gauss Formulation

In this section we will prove the following theorem:

Theorem 2.1.0.1 (Gauss). Let the coefficients E, F , and G in the formula metric
be real analytic functions of x and y, in a vicinity of a point p. Then g could be made
diagonal, in this vicinity, via an appropriate real analytic change of variables:

g = λ(u, v)(du2 + dv2) = E(x, y)dx2 + 2F (x, y)dxdy +G(x, y)dy2 (2.1)

Reminder:

Definition 2.1.0.1. Function f(x, y) is called real analytic in the domain Ω ⊂ R2,
if there exists a complex analytic function f̃(z, ξ), of two complex variables z and ξ,
which is holomorphic in some vicinity of Ω̃ = { (z, ξ) | z = x+ i0, ξ = y + i0, (x, y) ∈
Ω } ⊂ C2 in C2 such that f = f̃

∣∣∣
Ω
.

Definition 2.1.0.2. (Equivalent to 2.1.01) Function f(x,y) is called real analytic in
the domain Ω ⊂ R2, if for any (x0, y0) ∈ Ω, f(x, y) =

∑∞
n,m=0 anm(x− x0)n(y − y0)m

in some open neighbourhood of (x0, y0).

Our plan of proof of Theorem 2.1.0.1 is as follows. First, recall since E > 0,
EG−F 2 > 0, g could be formally factorized as g = [α(x, y)dx+β+(x, y)dy][α(x, y)dx+
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β−(x, y)dy], where α =
√
E and β± = F±i(EG−F 2)√

E
. Clearly α is real analytic and β±

has real analytic real and imaginary parts. We are going to prove that the complex
1-form α(z, ξ)dz + β+(z, ξ)dξ, where α(z, ξ) and β+(z, ξ) are holomorphic extensions
of α(x, y) and β+(x, y) (see definition 2.1.0.1), could be made exact via multiplication
by an appropriate integrating factor Λ. Then we shall have Λ(αdz + β+dξ) = dh,
and Λ̄(ᾱdz̄ + β̄+dξ̄) = dh̄. Hence, |Λ|2|Ω̃ g = |dh|2|Ω̃ = (du)2 + (dv)2 where u =

<(h)|Ω̃ , v = =(h)|Ω̃.

Remark. Existence of integrating factor of a real 1-form in two variables easily follows
from the main theorem of ODE. (For forms with more than two variables, integrating
factor generally does not exist and criterion is given by Frobenius theorem.)

The main difficulty of this Gauss theorem is that the coefficients are complex and
the theory of ODE with real argument is not applicable; we have to apply the result
from the theory of analytic differential equations.

Proof of theorem 2.1.0.1: We will be using the following holomorphic analogue of the
main theorem of ODE: consider the initial value problem dY (z)

dz
= H(z, Y (z)), Y (z0) =

Y0; where H is a holomorphic function of two variables in the vicinity of (z0, Y0). This
problem has a unique solution defined in { z | |z − z0| < ε } ⊂ C, for some ε > 0.
(Remark: standard way to prove this is to derive it from Frobenius theorem; but there
is a simpler way using Picard contraction mapping. We will discuss both proofs in an
appendix at the end.) In our case, H(z, Y (z)) = −α(z,Y (z))

β+(z,Y (z))
and since EG−F 2 > 0, β+

never vanishes (our H is holomorphic) and we are in condition of Theorem A.0.0.1.
Due to Theorem A.0.0.1, there exists a vicinity U ⊂ C× C of a point p0(z0, Y0) such
that through each point (z, Y ) of this vicinity passes an integral curve Y = Y (z) and
z0 belongs to the domain of definition of Y . Now, consider the function h : U → C
defined by h(z, Y ) = Y (z0), where the function Y (η) is the solution to the initial value
problem

dY (η)

dη
=
−α(η, Y (η))

β+(η, Y (η))
, Y = Y (z). (2.2)

The integral curves in U are therefore level curves for function h. We have that
dh = ∂h

∂η
dη + ∂h

∂Y
dY + ∂h

∂η̄
dη̄ + ∂h

∂Ȳ
dȲ , where the last two terms are absent due to

holomorphicity of h.
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Proposition 2.1.0.1. Let ~v be a complex tangent vector to the complex integral curve
of equation (2.2) at some point p ∈ U . Then, dh(p)(~v) = 0.

Proof. Vectors ∂
∂Y
, ∂
∂η

generate the tangent space to C2 at p. Tangent space to the

integral curve Y = Y (η) is generated by the vector
(
∂
∂η

+ dY
dη

∣∣∣
p

∂
∂Y

)
1. On the other hand

dh(p) = ∂h
∂η

∣∣∣
p
dη + ∂h

∂Y

∣∣
p
dY ; thus, dh(p)(~v) = ∂h

∂η

∣∣∣
p

+ ∂h
∂Y

∣∣
p
dY
dη

∣∣∣
p

= d
dη
h(η, Y (η))|p =

d
dη

(Y (z0))|p = 0.

Notice that the 1-form ω(p) = α(p)dη + β+(p)dY also annihilates the complex
tangent vector ~v: ω(p)(~v) = α(p) + β+(p) dY

dη

∣∣∣
p

= α(p) + β+(p)
(−α(p)
β+(p)

)
= 0. Hence,

for any p ∈ U , ω(p) and dh(p) both have the same kernel and therefore ω(p) =

λ(p)dh(p), where λ is a complex valued function on U . (Remark: for two complex
linear functionals f1 and f2 on C2, the relation ker f1 = ker f2 implies f1 = αf2 for
some α ∈ C.) Thus, g = |λ|2|Ω̃ |dh|2|Ω̃ = |λ(x, y)|2(du2 + dv2).
Remark:

The Jacobian of the map (x, y) → (u(x, y), v(x, y)) is nonzero. Otherwise, the

linear system of equations

(
ux uy

vx vy

)(
α

β

)
=

(
0

0

)
at a point p would have a nonzero

solution ~s =

(
s1

s2

)
. This would then imply

g(~s, ~s) = |λ(p)|2
[(
ux|p s

1 + uy|p s
2
)2

+
(
vx|p s

1 + vy|p s
2
)2
]

= 0,

a contradiction!
By inverse function theorem, there exists a vicinity of point p0 in which the metric
can be written g = |λ(u, v)|2(du2 + dv2). Gauss proof completed.

1 d
dηf(η, Y (η)) = ∂f

∂η + ∂f
∂Y

dY
dη
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Chapter 3

Geodesic Polar and Conformal
Coordinates

3.1 Preliminaries Concerning differential geometry

Let v be a vector field on our Riemannian manifold M , x ∈M , and w ∈ TxM . Define
the mapping: v, w 7→ ∇wv ∈ TxM , with properties:
i) ∇ linear in both its arguments;
ii) if f is a smooth function, ∇fwv = f∇wv, and ∇wfv = (∂wf)v + f∇wv.
The value ∇wv is called the covariant derivative of v in the direction w. In local
coordinates ui, let ∇∂j∂i = Γkij∂k; the Γkij are called the Christoffel Symbols. Now, let
γ : (a, b) → M be a curve, a vector field v is parallel along γ if ∇γ̇v = 0 everywhere
along γ. A curve γ with the property ∇γ̇ γ̇ = 0 is called a geodesic. Under natural
assumption, we can say ∇w(u, v) = (∇wu, v) + (u,∇wv). From this, one can deduce
the expressions for Christoffel symbols:

Γkij =
1

2
gkl
(∂glj
∂ui

+
∂gil
∂uj
− ∂gij
∂ul

)
Γij,p = gkpΓ

k
ij =

1

2

(∂gpj
∂ui

+
∂gip
∂uj
− ∂gij
∂up

)
. (3.1)
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The equation for the geodesic curve becomes:

ük + Γkiju̇
iu̇j = 0. (3.2)

Theorem 3.1.0.1. Let x ∈ M . Then there exists ε > 0 and a neighbourhood U of
x such that ∀y ∈ U , ∀v ∈ TyM with |v| < ε there exists a geodesic γ : (−1, 1) → M

with
γ(0) = y γ̇(0) = v. (3.3)

Proof. By the existence and uniqueness theorem of ordinary differential equations,
there exists a neighbourhood W (x, 0) ⊂ TM and δ > 0 such that ∀(y, v) ∈ W , there
exists a unique geodesic γ : (−δ, δ) → M satisfying (3.3). Let a neighbourhood U

of x and ε1 > 0 be such that U × Bε1(0) ⊂ W . Now, if γ(t) satisfies (3.2) so does
γ̃(t) = γ(δt) for t ∈ (−1, 1). Letting ε = δε1, γ̃(t) is the desired geodesic.

3.2 Riemannian Normal Coordinate System

Let M be our manifold and p ∈ M . By Theorem 3.1.0.1, there exists εp such that
Bεp(p) ⊂ TpM is mapped uniquely onto a neighbourhood W ⊂ M (containing p) via
exponential map: expp(v) = γv(1), where γv(t) is the geodesic curve originating at p
and with speed v.

Lemma 3.2.0.1. The exponential map expp : TpM ⊃ V → M has nonzero Jacobian
at p.

Proof. In local coordinates xi, Taylor expanding xk(t) near t = 0, for a geodesic
originating at p with speed v, we have:

xk(t) = xk(0) + ẋk(0)t+
1

2
ẍk(0)t2 +O(t3) = xk(0) + vkt+

1

2
Γkijv

ivjt2 +O(t3).

This gives [expp(v)]k = xk(p) + vk + 1
2
Γkijv

ivj +O(|v|3); hence, ∂[expp(v)]k

∂vj

∣∣∣
v=0

= δkj .

Introducing orthonormal local coordinates u1, u2 in Bεp(p), the chart (W, exp−1
p ;ui)
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will be Riemannian normal coordinate system in neighbourhood of p. Then, we have

gij(0, 0) = δij i, j = 1, 2.

The curves (u1, u2) = (α1t, α2t) will be geodesic and one has (based on (3.2)):

Γjk,p(α
1t, α2t)αjαk = 0 p = 1, 2. (3.4)

At t = 0 we get, Γjk,p(0, 0) = 0; differentiating (3.4) with respect to t and setting
t = 0, denoting ∂Γjk,p

∂ui
:=

∂Γjk,p
∂ui

(0, 0) we get:

∂Γjk,p
∂ui

αiαjαk = 0. (3.5)

Expanding out (3.5), we get:

∂Γ11,p

∂u1
(α1)3 +

(
2
∂Γ12,p

∂u1
+
∂Γ11,p

∂u2

)
(α1)2α2 +

(
2
∂Γ12,p

∂u2
+
∂Γ22,p

∂u1

)
(α2)2α1

+
∂Γ22,p

∂u2
(α2)3 = 0, p = 1, 2. (3.6)

This gives rise to the following equations, using (3.1) (as before, ∂2gij
∂uk∂ul

:=
∂2gij
∂uk∂ul

(0, 0)):

∂Γ11,p

∂u1
= 0 =⇒ 1

2

(
∂2gp1
(∂u1)2

+
∂2g1p

(∂u1)2
− ∂2g11

∂up∂u1

)
= 0

=⇒ ∂2g1p

(∂u1)2
− 1

2

∂2g11

∂u1∂up
= 0, (3.7)

2
∂Γ12,p

∂u1
+
∂Γ11,p

∂u2
= 0 =⇒

∂2gp2
(∂u1)2

+
∂2g1p

∂u1∂u2
− ∂2g12

∂up∂u1
+

1

2

(
∂2gp1
∂u2∂u1

+
∂2g1p

∂u2∂u1
− ∂2g11

∂u2∂up

)
= 0

=⇒ 2
∂2g1p

∂u1∂u2
− 1

2

∂2g11

∂u2∂up
+

∂2g2p

(∂u1)2
− ∂2g12

∂u1∂up
= 0, (3.8)
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2
∂Γ12,p

∂u2
+
∂Γ22,p

∂u1
= 0 =⇒

∂2gp2
∂u2∂u1

+
∂2g1p

(∂u2)2
− ∂2g12

∂u2∂up
+

1

2

(
∂2gp2
∂u1∂u2

+
∂2g2p

∂u1∂u2
− ∂2g22

∂u1∂up

)
= 0

=⇒ 2
∂2g2p

∂u1∂u2
− 1

2

∂2g22

∂u1∂up
+

∂2g1p

(∂u2)2
− ∂2g12

∂u2∂up
= 0, (3.9)

∂Γ22,p

∂u2
= 0 =⇒ 1

2

(
∂2gp2
(∂u2)2

+
∂2g2p

(∂u2)2
− ∂2g22

∂up∂u2

)
= 0

=⇒ ∂2g2p

(∂u2)2
− 1

2

∂2g22

∂u2∂up
= 0. (3.10)

Putting p = 1 in (3.7) and p = 2 in (3.10):

∂2g11

(∂u1)2
− 1

2

∂2g11

(∂u1)2
= 0

∂2g22

(∂u2)2
− 1

2

∂2g22

(∂u2)2
= 0

⇒
∂2g11

(∂u1)2
(0, 0) =

∂2g22

(∂u2)2
(0, 0) = 0. (3.11)

Putting p = 2 in (3.7) and p = 1 in (3.8):

∂2g12

(∂u1)2
− 1

2

∂2g11

∂u1∂u2
= 0

2
∂2g11

∂u1∂u2
− 1

2

∂2g11

∂u2∂u1
+

∂2g21

(∂u1)2
− ∂2g12

(∂u1)2
= 0


⇒ ∂2g12

(∂u1)2
=

1

2

∂2g11

∂u1∂u2
;

3

2

∂2g11

∂u1∂u2
= 0

⇒ ∂2g11

∂u1∂u2
(0, 0) =

∂2g12

(∂u1)2
(0, 0) = 0. (3.12)
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With p = 1 in (3.10) and p = 2 in (3.9):

∂2g21

(∂u2)2
− 1

2

∂2g22

∂u2∂u1
= 0

2
∂2g22

∂u1∂u2
− 1

2

∂2g22

∂u1∂u2
+

∂2g12

(∂u2)2
− ∂2g12

(∂u2)2
= 0


⇒ ∂2g21

(∂u2)2
=

1

2

∂2g22

∂u1∂u2
;

3

2

∂2g22

∂u1∂u2
= 0

⇒ ∂2g22

∂u1∂u2
(0, 0) =

∂2g12

(∂u2)2
(0, 0) = 0. (3.13)

Put p = 2 in (3.8) and p = 1 in (3.9):

∂2g12

∂u1∂u2
− 1

2

∂2g11

(∂u2)2
+

∂2g22

(∂u1)2
= 0

∂2g12

∂u1∂u2
− 1

2

∂2g22

(∂u1)2
+

∂2g11

(∂u2)2
= 0.

Rearranging,

∂2g12

∂u1∂u2
− 1

2

∂2g11

(∂u2)2
− 1

2

∂2g22

(∂u1)2
= −3

2

∂2g22

(∂u1)2

∂2g12

∂u1∂u2
− 1

2

∂2g22

(∂u1)2
− 1

2

∂2g11

(∂u2)2
= −3

2

∂2g11

(∂u2)2
. (3.14)

Using expression for Gaussian Curvature

K =
∂2g12

∂u1∂u2
− 1

2

∂2g11

(∂u2)2
− 1

2

∂2g22

(∂u1)2
,

we obtain

∂2g22

(∂u1)2
(0, 0) =

∂2g11

(∂u2)2
(0, 0) = −2

3
K(0, 0)

∂2g12

∂u1∂u2
(0, 0) = K(0, 0)− 1

3
K(0, 0)− 1

3
K(0, 0) =

1

3
K(0, 0). (3.15)

9



It then follows that:

g11(u1, u2) = 1− 1

3
K(0, 0)(u2)2 + o((u1)2 + (u2)2)

g12(u1, u2) =
1

3
K(0, 0)u1u2 + o((u1)2 + (u2)2) (3.16)

g22(u1, u2) = 1− 1

3
K(0, 0)(u1)2 + o((u1)2 + (u2)2).

3.3 Relation Between Geodesic Polar and Conformal

Coordinates

Let (α, β) be Riemann Normal coordinates in a vicinity of a point p ∈ M . Intro-
ducing the complex parameter ζ = α + iβ = reiθ, the (r, θ) are called geodesic polar
coordinates. In terms of conformal parameter z, the conformal metric takes the form:

g = ρ−2(z, z̄)|dz|2, (3.17)

whereas in normal coordinates we have:

g = E(dα)2 + 2Fdαβ +G(dβ)2, (3.18)

where, (using (3.16))

E = 1− 1

3
K(0, 0)β2 + o(α2 + β2)

F =
1

3
K(0, 0)αβ + o(α2 + β2) (3.19)

G = 1− 1

3
K(0, 0)α2 + o(α2 + β2).

In terms of complex parameter ζ, let the metric in geodesic polar coordinates has the
form:

g = λ(ζ, ζ̄)|dζ + µdζ̄|2. (3.20)

10



Let us now express µ and λ in terms of E,F and G:

λ(dζ + µdζ̄)(dζ̄ + µ̄dζ) = λ|dζ|2 + λµ̄dζ2 + λµdζ̄2 + λ|µ|2|dζ|2

= λ(dα2 + dβ2) + λµ̄(dα2 + 2idαdβ − dβ2)

+ λµ(dα2 − 2idαdβ − dβ2) + λ|µ|2(dα2 + dβ2); (3.21)

comparison with (3.18) gives:

λ+ λµ̄+ λµ+ λ|µ|2 = E (3.22)

λ− λµ̄− λµ+ λ|µ|2 = G (3.23)

λµ̄− λµ = −iF. (3.24)

Subtracting (3.23) from (3.22) and then dividing by 2 we get:

λµ̄+ λµ =
E −G

2
; (3.25)

adding (3.25) to (3.24):

2λµ̄ =
E −G

2
− iF =⇒ µ̄ =

E −G− 2iF

4λ
. (3.26)

Putting the expression for µ into (3.22) we have:

λ+
E −G− 2iF

4
+
E −G+ 2iF

4
+

(E −G)2 + 4F 2

16λ
= E

⇒ λ2 −
(E +G

2

)
λ+

(E −G)2 + 4F 2

16
= 0

⇒ λ =

(
E+G

2

)
+
√

(E+G)2

4
− (E−G)2+4F 2

4

2
=
E +G+ 2

√
EG− F 2

4
. (3.27)
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To express µ and λ in terms of ζ, we use (3.19), (3.26), and (3.27):

λ(ζ, ζ̄) =
1

4

(
2− 1

3
K(0, 0)(α2 + β2) + o(α2 + β2)

+ 2

√
1− 1

3
K(0, 0)(α2 + β2) +

1

9
K(0, 0)α2β2 − 1

9
K(0, 0)α2β2 + o(α2 + β2)

)

=
1

4

[
2− 1

3
K(0, 0)(α2 + β2) + 2

(
1− 1

6
K(0, 0)(α2 + β2)

)
+ o(α2 + β2)

]

=
1

4

[
4− 2

3
K(0, 0)(α2 + β2) + o(α2 + β2)

]
= 1− 1

6
K(0, 0)(α2 + β2) + o(α2 + β2)

= 1− 1

6
K(0, 0)ζζ̄ + o(|ζ|2) (3.28)

µ(ζ, ζ̄) =

1
4

(
1
3
K(0, 0)(α2 − β2 + 2iαβ) + o(α2 + β2)

)
(

1− 1
6
K(0, 0)(α2 + β2) + o(α2 + β2)

)
=

1

4

(
1

3
K(0, 0)(α2 − β2 + 2iαβ) + o(α2 + β2)

)(
1 + o(α2 + β2)

)
=

1

12
K(0, 0)(α2 − β2 + 2iαβ) + o(α2 + β2)

=
1

12
K(0, 0)ζ2 + o(|ζ|2) (3.29)

To find relation between conformal and geodesic polar coordinates, we have to relate
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equation (3.20) with (3.17); to this end, let us express (3.20) in terms of z and z̄:

g = λ(z, z̄)(dζ + µdζ̄)(dζ̄ + µ̄dζ)

= λ(z, z̄)

[
∂ζ

∂z
dz +

∂ζ

∂z̄
dz̄ + µ(z, z̄)

(
∂ζ̄

∂z
dz +

∂ζ̄

∂z̄
dz̄

)]
[
∂ζ̄

∂z
dz +

∂ζ̄

∂z̄
dz̄ + µ̄(z, z̄)

(
∂ζ

∂z
dz +

∂ζ

∂z̄
dz̄

)]
= λ(z, z̄)

(
∂ζ

∂z
+ µ(z, z̄)

∂ζ̄

∂z

)(
∂ζ̄

∂z
+ µ̄(z, z̄)

∂ζ

∂z

)
(dz)2

+ λ(z, z̄)

(
∂ζ

∂z
+ µ(z, z̄)

∂ζ̄

∂z

)(
∂ζ̄

∂z̄
+ µ̄(z, z̄)

∂ζ

∂z̄

)
dzdz̄

+ λ(z, z̄)

(
∂ζ

∂z̄
+ µ(z, z̄)

∂ζ̄

∂z̄

)(
∂ζ̄

∂z
+ µ̄(z, z̄)

∂ζ

∂z

)
dz̄dz

+ λ(z, z̄)

(
∂ζ

∂z̄
+ µ(z, z̄)

∂ζ̄

∂z̄

)(
∂ζ̄

∂z̄
+ µ̄(z, z̄)

∂ζ

∂z̄

)
(dz̄)2 = ρ−2(z, z̄)|dz|2. (3.30)

Hence, we obtain: (
∂ζ

∂z
+ µ(z, z̄)

∂ζ̄

∂z

)(
∂ζ̄

∂z
+ µ̄(z, z̄)

∂ζ

∂z

)
= 0 (3.31)∣∣∣∣∂ζ∂z + µ(z, z̄)

∂ζ̄

∂z

∣∣∣∣2 +

∣∣∣∣∂ζ∂z̄ + µ(z, z̄)
∂ζ̄

∂z̄

∣∣∣∣2 =
ρ−2

λ
(z, z̄). (3.32)

Proposition 3.3.0.1. In a vicinity of P , normal coordinates could be chosen in such
a way that ∂ζ

∂z
is real and nonzero and we have the relations:

∂ζ

∂z̄
+ µ(z, z̄)

∂ζ̄

∂z̄
= 0 (3.33)∣∣∣∣∂ζ∂z + µ(z, z̄)

∂ζ̄

∂z

∣∣∣∣2 =
ρ−2

λ
(z, z̄). (3.34)

Proof. Since the transformation (x, y) 7→ (α(x, y), β(x, y)) is orientation preserving,
αxβy − αyβx > 0. Hence, ∂ζ

∂z

∣∣
P
6= 0; otherwise at point P we would have αx = −βy,

αy = βx, and thus

∣∣∣∣∣αx αy

βx βy

∣∣∣∣∣ = −β2
y − β2

x ≤ 0, a contradition! Now, let us choose our

coordinate axes in such a way that the curves θ = 0 and =z = 0 have the same unit

13



tangent vector at point P . Then we shall have αy|P = βx|P = 0; αx|P and βy|P both
nonzero and having the same sign. This would then imply ∂ζ

∂z
(P ) is also real and, in

a vicinity of P the second factor in (3.31) is zero.

Based on our choice of coordinate axes in previous proposition, we have:

Theorem 3.3.0.1. Given a point P ′ in a vicinity of P , let z(P ) = z and z(P ′) = z′.
In terms of geodesic polar coordinates, let ζ(P ) = 0 and ζ(P ′) = reiθ. Then there is
the following relation as P ′ → P :

ρ(z, z̄)reiθ = (z′ − z)− (∂z log ρ)(z′ − z)2 +

[
(∂z log ρ)2 − 1

3
ρ−1∂2

zzρ

]
(z′ − z)3

−

[
1

3
∂2
zz̄ log ρ

]
(z′ − z)2(z′ − z) +O(r4). (3.35)

Proof. For simplicity, let z = 0 represent the coordinate of P and z that of P ′.
Consider the Taylor expansion

ζ(z, z̄) = 0 + ζz̄(0)z̄ + ζzz̄(0)zz̄ +
1

2
ζz̄z̄(0)z̄2 +

1

6
ζz̄z̄z̄(0)z̄3 +

1

2
ζz̄z̄z(0)z̄2z

+ ζz(0)z +
1

2
ζzz(0)z2 +

1

2
ζzzz̄(0)z2z̄ +

1

6
ζzzz(0)z3 +O(r4). (3.36)

We will show that all terms in the first line of (3.36) are zero. Using (3.33), we have
ζz̄(0) = −µ(0)ζ̄z̄(0) and hence, using (3.29), we get ζz̄(0) = 0. Differentiating (3.33)
with respect to z, we get:

ζz̄z = −µz ζ̄z̄ − µζ̄z̄z.

Using (3.29) and (3.36), we conclude

µ(z, z̄) =
1

12
K(0, 0)

(
ζ2
z̄ (0)z̄2 + 2ζz̄(0)ζz(0)z̄z + ζ2

z (0)z2 + . . .
)

+ o
(
|z|2
)

≡ Az2 +Bzz̄ + Cz̄2 + higher order terms. (3.37)

Hence, ζz̄z(0) = 0. Differentiating (3.33) with respect to z̄, we get:

ζz̄z̄ = −µz̄ ζ̄z̄ − µζ̄z̄z̄.

14



Again, using (3.37) ζz̄z̄(0) = 0. Differentiating further,

ζzz̄z̄ = −µzz̄ ζ̄z̄ − µz̄ ζ̄z̄z̄ − µz̄ ζ̄z̄z − µζ̄zz̄z̄
ζz̄z̄z̄ = −µz̄z̄ ζ̄z̄ − 2µz̄ ζ̄z̄z̄ − µζ̄z̄z̄z̄.

It follows from differentiation of (3.29):

µzz̄ = const.(ζzζz̄ + ζζz̄z) + terms vanishing at z = 0 (3.38)

µz̄z̄ = const.(ζz̄z̄ζ + ζ2
z̄ ) + terms vanishing at z = 0. (3.39)

Hence,
µzz̄(0) = µz̄z̄(0) = 0 ⇒ ζzz̄z̄(0) = ζz̄z̄z̄(0) = 0

Next, we will show that the terms in the second line of (3.36) are nonzero. Plugging
z = 0 into (3.34), along with the fact that λ(0) = 1 (using (3.28)), we get:

ζ2
z (0) = ρ−2(0) ⇒ ζz(0) = ρ−1(0). (3.40)

Differentiating (3.34) with respect to z, we get:

(ζzz + µz ζ̄z + µζ̄zz)(ζ̄z̄ + µ̄ζz̄) + (ζz + µζ̄z)(ζ̄z̄z + µ̄zζz̄ + µ̄ζzz̄)

=
−2ρ−3ρzλ− λzρ−2

λ2
. (3.41)

Differentiating (3.28) we get

λz = const.(ζz ζ̄ + ζζ̄z) + terms vanishing at z = 0. (3.42)

Using

ζ̄z(0) = ζz̄(0) = 0 ζ̄z̄(0) = ζz(0) = ρ−1(0) µ̄(0) = µ(0) = 0

ζ̄z̄z(0) = ζz̄z(0) = 0, (3.43)

we have,
ζzz(0) = −2ρ−2(0)ρz(0). (3.44)
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Applying ∂z to (3.41), we get:

(ζzzz + µzz ζ̄z + 2µz ζ̄zz + µζ̄zzz)(ζ̄z̄ + µ̄ζz̄) + (ζ̄z̄z + µ̄zζz̄ + µ̄ζz̄z)

(ζzz + µz ζ̄z + µζ̄zz) + (ζzz + µz ζ̄z + µζ̄zz)(ζ̄z̄z + µ̄zζz̄ + µ̄ζzz̄) + (ζz + µζ̄z)

(ζ̄z̄zz + µ̄zzζz̄ + 2µ̄zζzz̄ + µ̄ζzzz̄) =
−λzzρ−2 + 2λzρ

−3ρz
λ2

+
2λλ2

zρ
−2

λ4
+

2λ−2λzρ
−3ρz +

(
2

λ

)
(3ρ−4ρ2

z − ρ−3ρzz). (3.45)

Applying ∂zz to (3.28), we get:

λzz = const.
(
ζzz ζ̄ + 2ζz ζ̄z + ζζ̄zz

)
+ terms vanishing at z = 0

⇒ λzz(0) = 0.

Using (3.43) along with

ζ̄zz(0) = ζz̄z̄(0) = 0 ζ̄z̄zz(0) = ζzz̄z̄(0) = 0, (3.46)

plugging z = 0 into (3.45), one obtains:

ζzzz(0)ρ−1(0) = 2(3ρ−4(0)ρ2
z(0)− ρ−3(0)ρzz(0))

=⇒ ζzzz(0) = 6ρ−3(0)ρ2
z(0)− 2ρ−2(0)ρzz(0). (3.47)

Applying ∂zz to (3.33) we get:

ζz̄zz = −µzz ζ̄z̄ − 2µz ζ̄z̄z − µζ̄z̄zz
=⇒ ζz̄zz(0) = −µzz(0)ζ̄z̄(0) = −µzz(0)ρ−1(0). (3.48)

Applying ∂zz to 3.29, we get:

µzz =
1

6
K(0, 0)(ζ2

z + ζζzz) + terms vanishing at z = 0. (3.49)
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Using expression for curvature

K = 4ρ2∂2
zz̄ log ρ, (3.50)

we have,

ζz̄zz(0) =
(−1

6

)
4ρ(0)2 ∂2

zz̄ log ρ
∣∣
(0,0)

ρ(0)−2ρ(0)−1 =
−2

3
ρ(0)−1 ∂zz̄ log ρ|(0,0) . (3.51)

It then follows that

ρ(0)ζz(0) = 1

1

2
ρ(0)ζzz(0) = − ∂z log ρ|(0,0)

1

6
ρ(0)ζzzz(0) = ρ(0)−2ρz(0)2 − 1

3
ρ(0)−1ρzz(0) =

(
∂z log ρ|(0,0)

)2 − 1

3
ρ(0)−1 ∂zzρ|(0,0)

1

2
ρ(0)ζz̄zz(0) = −1

3
∂zz̄ log ρ|(0,0) .

Hence,

ρ(0)ζ(z, z̄) = z − ∂z log ρ|(0,0) z
2 +

[(
∂z log ρ|(0,0)

)2 − 1

3
ρ(0)−1 ∂zzρ|(0,0)

]
z3

−
(

1

3
∂zz̄ log ρ|(0,0)

)
z2z̄ +O

(
|z|4
)
.
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Appendix A

Two Proofs for Existence of Complex
ODE

Theorem A.0.0.1. Let f : C×C ⊃ U → C be holomorphic. Then, in a neighbourhood
W of any point z0, there exists a holomorphic function φ :W → C such that

φ′(z) = f(z, φ(z)) φ(z0) = w0. (A.1)

Proof. There are two ways to prove this theorem: Frobenius method and fixed point
iterations; although the latter is simpler. We will present both cases here:

• Frobenius method:
We need the following Lemma:

Lemma A.0.0.1. Let U ⊂ Rm, V ⊂ Rn (open) ; s0 ∈ U ; fj ∈ C∞(U × V ;Rn);
j = 1, . . . ,m. Then, there exists a unique solution α : W ⊂ Rm → Rn, defined
in a neighbourhood W of s0, to the initial value problem:

∂α

∂tj
= fj(t1, . . . , tm, α(t)) α(s0) = x, (A.2)

if and only if in a neighbourhood of (s0, x) ∈ U × V the following condition is
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satisfied:

∂fj
∂ti
− ∂fi
∂tj

+
n∑
h=1

∂fj
∂xh

fhi −
n∑
h=1

∂fi
∂xh

fhj = 0 i, j = 1, . . . ,m. (A.3)

Proof. =⇒: Consider the distribution ∆ of m-planes in Rm+n as follows: Let
vj =

(
∂
∂tj

+
∑n

k=1 f
k
j

∂
∂xk

)
1. Then ∆p = l.h. at point p of {vj}mj=1. We claim this

this distribution is integrable if condition (A.3) is satisfied. Indeed by simple
computation (using Einstein notation):

[vi, vj] =

(
∂

∂ti
+ fki

∂

∂xk

)(
∂

∂tj
+ fhj

∂

∂xh

)
−
(
∂

∂tj
+ fhj

∂

∂xh

)(
∂

∂ti
+ fki

∂

∂xk

)
=

∂

∂ti
∂

∂tj
+
∂fhj
∂ti

∂

∂xh
+ fhj

∂

∂ti
∂

∂xh
+ fki

∂

∂xk
∂

∂tj
+ fki

∂fkj
∂xk

∂

∂xh

+ fki f
h
j

∂

∂xk
∂

∂xh
− ∂

∂tj
∂

∂ti
− ∂fki
∂tj

∂

∂xk
− fki

∂

∂tj
∂

∂xk
− fhj

∂

∂xh
∂

∂ti

− fhj
∂fki
∂xh

∂

∂xk
− fhj fki

∂

∂xh
∂

∂xk
=
∂fhj
∂ti

∂

∂xh
− ∂fki
∂tj

∂

∂xk
+ fki

∂fhj
∂xk

∂

∂xh

− fhj
∂fki
∂xh

∂

∂xk
=

(
∂fkj
∂ti
− ∂fki
∂tj

)
∂

∂xk
+

(
fhi
∂fkj
∂xh
− fhj

∂fki
∂xh

)
∂

∂xk

≡
n∑
k=1

(
∂fkj
∂ti
− ∂fki
∂tj

+
n∑
h=1

fhi
∂fkj
∂xh
−

n∑
h=1

fhj
∂fki
∂xh

)
∂

∂xk
.

According to Frobenius Criterion (see Appendix B) we must have [vi, vj] =∑
αC

α
ijvα, which will then be satisfied.

⇐=: If α exists then,
[
d
dti
, d
dtj

]
α = 0; hence, dfj

dti
− dfi

dtj
= 0. Now,

dfj
dti

=
∂fj
∂ti

+
n∑
k=1

∂fj
∂xk

∂αk(t)

∂ti
=
∂fj
∂ti

+
n∑
k=1

∂fj
∂xk

fki

dfi
dtj

=
∂fi
∂tj

+
n∑
k=1

∂fi
∂xk

∂αk(t)

∂tj
=
∂fi
∂tj

+
n∑
k=1

∂fi
∂xk

fkj ;

1If ψ : Rm → Rm+n is defined by ψ(t) = (t, A(t)), then dψ
(

∂
∂ti

∣∣
x

)
= ∂

∂ti

∣∣
ψ(x)

+∑n
k=1

∂Ak

∂ti
∂
∂xk

∣∣
ψ(x)

.
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so we arrive at (A.3). To show uniqueness, suppose α(t) and α̃(t) satisfy (A.2).
Then,

∂

∂tj
(
α(t)− α̃(t)

)
= 0⇒ α(t)− α̃(t) = Const. ∈ Rn

α(s0)− α̃(s0) = x− x = 0⇒ Const. = 0⇒ α(t) = α̃(t).

Back to the proof of the theorem, denote z1 = x+ iy, z2 = x′ + iy′; let us write
f(z1, z2) as f(x, y, x′, y′) = u(x, y, x′, y′) + iv(x, y, x′, y′). We are looking for a
holomorphic function φ(z) = φ1(x, y) + iφ2(x, y) such that φ′(z) = φ1

x(x, y) +

iφ2
x(x, y) = u(x, y, φ1(x, y), φ2(x, y)) + iv(x, y, φ1(x, y), φ2(x, y)). This gives rise

to the following sets of equations:

∂φ1

∂x
= u(x, y, φ1(x, y), φ2(x, y)) =

∂φ2

∂y

−∂φ
1

∂y
= v(x, y, φ1(x, y), φ2(x, y)) =

∂φ2

∂x

By simple computation using n = m = 2 in Lemma A.0.0.1; x := t1, y :=

t2; f1 :=

(
u(x, y, φ1(x, y), φ2(x, y))

v(x, y, φ1(x, y), φ2(x, y))

)
, f2 :=

(
−v(x, y, φ1(x, y), φ2(x, y))

u(x, y, φ1(x, y), φ2(x, y))

)
we

see this set satisfies condition (A.3):

i = 2, j = 1 :
∂f1

∂y
− ∂f2

∂x
+
∂f1

∂x′
f

(1)
2 +

∂f1

∂y′
f

(2)
2 −

∂f2

∂x′
f

(1)
1 −

∂f2

∂y′
f

(2)
1 =(

uy

vy

)
−

(
−vx
ux

)
+

(
ux′(−v)

vx′(−v)

)
+

(
uy′u

vy′u

)
−

(
−vx′u
ux′u

)

−

(
−vy′v
uy′v

)
=

(
0

0

)
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i = 1, j = 2 :
∂f2

∂x
− ∂f1

∂y
+
∂f2

∂x′
f

(1)
1 +

∂f2

∂y′
f

(2)
1 −

∂f1

∂x′
f

(1)
2 −

∂f1

∂y′
f

(2)
2 =(

−vx
ux

)
−

(
uy

vy

)
+

(
−vx′u
ux′u

)
+

(
−vy′v
uy′v

)
−

(
ux′(−v)

vx′(−v)

)

−

(
uy′u

vy′u

)
=

(
0

0

)

This completes the proof using Frobenius method.

• Fixed point method: For this method first we have to identify our Banach space,
on which to perform contraction mapping. Consider the polydisc Dρ = { zi |
|zi− ai| < ρ, i = 1, 2 } and let A(Dρ) = H(Dρ)∩C(D̄ρ), equipped with the Sup
norm: ‖f‖ρ = sup

z∈Dρ
|f(z)|.

Lemma A.0.0.2. A(Dρ) is a Banach space.

Proof. Any g ∈ A(Dρ) has the integral representation:

g(z1, z2) =
−1

4π2

∫
|ζ1−a1|=ρ

dζ1

∫
|ζ2−a2|=ρ

dζ2
g(ζ1, ζ2)

(ζ1 − z1)(ζ2 − z2)
. (A.4)

Let {gk}∞k=1 be a Cauchy sequence in A(Dρ). Then this sequence converges
uniformly in D̄ρ to g∗ ∈ C(D̄ρ). Hence, with the integral representation one can
pass the limit inside the integral, so that g∗ will have the integral representation
(A.4). The right hand side is obviously holomorphic with respect to z1, z2 and
therefore g∗ ∈ A(Dρ).

Now consider Dε centered at (z0, w0); let H b U , (z0, w0) ∈ H,
L1 = sup

(ξ,z1)∈H
(ξ,z2)∈H
z1 6=z2

|f(ξ,z1)−f(ξ,z2)|
|z1−z2| ; and define M = {ψ(z, v) ∈ A(Dε) | ∀(z, v) ∈

Dε, |ψ(z, v) − v| ≤ L0ε }, where L0 = sup
(z,v)∈H

|f(z, v)|. (M is a closed subset

of A(Dε) and hence complete.)
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Proposition A.0.0.1. For ε sufficiently small, 1)M 6= ∅; 2) The Picard map
ψ(z, v) 7→ [Pψ](z, v) = v +

∫ z
z0
f(ξ, ψ(ξ, v))dξ: i) is well defined for ψ ∈ M ii)

P(M) ⊂M iii) P : M →M is contracting.

Proof. There exists r1, r2 such that D(z0, r1) × D(w0, r2) ⊂ H. Choose ε such
that ε < min{ r1, r2,

1
L1
} and for all v ∈ D(w0, ε), D(v, L0ε) ⊂ D(w0, r2).

1)Obvious! (pick ψ(z, v) = v.) 2) i) Follows easily from the bound on ε. ii) This
follows from the estimate:

|[Pψ](z, v)− v| =
∣∣∣∣∫ z

z0

f(ξ, ψ(ξ, v))dξ

∣∣∣∣ ≤ L0|z − z0| < L0ε.

iii) Again,

|[Pψ1](z, v)− [Pψ2](z, v)| =
∣∣∣∣∫ z

z0

f(ξ, ψ1(ξ, v))− f(ξ, ψ2(ξ, v))dξ

∣∣∣∣
≤ |z − z0|L1 sup

(ξ,v)∈Dε
|ψ1(ξ, v)− ψ2(ξ, v)|

< εL1 ‖ψ1 − ψ2‖ε .

Then, the Picard map has a fixed point: ψ(z, v) = v +
∫ z
z0
f(ξ, ψ(ξ, v))dξ. For

fixed w0, φ(z) = ψ(z, w0) is the solution to the initial value problem (A.1), which
depends holomorphically on w0. This completes Picard proof.
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Appendix B

Proof of Frobenius Theorem

Theorem B.0.0.1 (Frobenius). Let v1, v2, . . . , vr be C∞ vector fields, in a vicin-
ity of 0, in Rn. There exists a coordinate chart (U ; yk) in a neighbourhood of 0

such that ∂
∂yi

=
∑r

j=1 aijvj, i=1,. . . ,r (aij an invertible matrix), if and only if
v1(0), v2(0), . . . , vr(0) are linearly independent and [vi, vj] =

∑
α c

α
ijvα, i, j = 1, . . . , r.

Proof. ⇒: We proceed by induction on n. Case n = 1 is obvious: the l.i. set contains
one vector field v; simply set ∂

∂y1
= v. Now assume the statement holds for dimensions

less than n. Choose a coordinate system yi such that v1 = ∂
∂y1

(see [11]), and after
subtracting by a multiple of ∂

∂y1
, we may assume vi =

∑n
j=2 aij

∂
∂yj
, i = 2, . . . , r.

When y1 = 0, vi’s lie in Rn−1. By induction hypothesis, let’s choose our coordinates
yi(i = 2, . . . , n) such that aij = 0 for i = 2, . . . , r and j > r, when y1 = 0. Now,

∂ail
∂y1

= v1viy
l =
[
v1, vi

]
yl =

r∑
α=2

Cα
1ivαy

l =
r∑

α=2

Cα
1iaαl i = 2, . . . , r l = 2, . . . , n.

For a fixed l > r, applying the ODE theorem with initial conditions, this system has
a unique solution ail = 0 in a neighbourhood of 0.
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⇐:[ ∂
∂yi

,
∂

∂yj

]
= 0⇒

[∑
k

aikvk,
∑
l

ajlvl

]
= 0⇒

∑
k

∑
l

[
aikvk, ajlvl

]
= 0

⇒
∑
k

∑
l

aik(vkajl)vl + aikajlvkvl − ajl(vlaik)vk − ajlaikvlvk

=
∑
k

∑
l

aikajl
[
vk, vl

]
+
∑
k

∑
l

(
ail(vlajk)− ajl(vlaik)

)
vk = 0

⇒
[
vk, vl] =

∑
α

Cα
klvα.

To check for linear independence of vi’s in a neighbourhood of 0, suppose
∑

i bivi = 0.

Since vi =
∑

k ãik
∂
∂yk

, we have ãTb = 0. Now, det ãik 6= 0⇒ b =


b1

b2

...
br

 = 0.
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Appendix C

Formulation of Statements of Taylor
and Chern

In this chapter, we formulate the theorems of Taylor and Chern, and discuss prelimi-
nary lemmas that lead to their proofs.

C.1 Taylor Formulation

Theorem C.1.0.1 (Taylor). Let M be a 2-D Riemannian manifold with metric g =

E(x, y)dx2 + 2F (x, y)dxdy + G(x, y)dy2. Suppose E, F, and G are C∞ functions of
their arguments. Then in a vicinity of a point p ∈ M , there exist C∞ isothermal
coordinates u(x, y) and v(x, y), in which the metric takes the form g = λ(u, v)

(
du2 +

dv2), for some λ ∈ C∞.

The following lemmas are needed to construct the proof.

Lemma C.1.0.1. On a 2-D Riemannian Manifold with metric g = E(x, y)dx2 +

2F (x, y)dxdy + G(x, y)dy2, in a vicinity of a point p, suppose there exists local co-
ordinate transformation (x, y) → (u(x, y), v(x, y)) such that λ(u, v)(du2 + dv2) =
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E(x, y)dx2 + 2F (x, y)dxdy +G(x, y)dy2. Then, the following equations hold:

ux =
1√

EG− F 2

(
Evy − Fvx

)
uy =

1√
EG− F 2

(
Fvy −Gvx

) (C.1)

vx =
1√

EG− F 2

(
Fux − Euy

)
vy =

1√
EG− F 2

(
Gux − Fuy

) (C.2)

Proof. With the law of transformation of g between local coordinates {xi(α)} and

{xi′(β)}: g
(β)
i′j′ = g

(α)
ij

∂xi
(α)

∂xi
′
(β)

∂xj
(α)

∂xj
′

(β)

, we have

AT

(
λ 0

0 λ

)
A =

(
E F

F G

)
,

where A =

(
ux uy

vx vy

)
. Hence,

λ2(detA)2 = EG− F 2 =⇒ detA =

√
EG− F 2

λ
;

AT =

(
E F

F G

)
A−1

(
1
λ

0

0 1
λ

)
=

1√
EG− F 2

(
Evy − Fvx Fux − Euy
Fvy −Gvx Gux − Fuy

)

and we have our sets of equations. Note A is the Jacobian matrix of transformation
whose determinant has to be positive (to preserve orientation).

Denote x := u1, y := u2; and g11 = E, g12 = g21 = F, g22 = G; and det g =

EG− F 2. Introducing the operator ∆:

∆φ =
1√

det g

∂

∂uj

(√
det ggjk

∂φ

∂uk

)
.

Lemma C.1.0.2. Suppose u and v satisfy equations (C.1) and (C.2); and E, G, F
∈ C2. Then, ∆u = ∆v = 0.
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Proof.

∂2u

∂x∂y
− ∂2u

∂y∂x
= 0⇒ ∂

∂x

[
1√

det g

(
Fvy −Gvx

)]
− ∂

∂y

[
1√

det g

(
Evy − Fvx

)]
= 0;

gjk =
1

det g

(
G −F
−F E

)
⇒ ∆v =

1√
det g

∂

∂x

[
−1√
det g

(
Fvy −Gvx

)]
+

1√
det g

∂

∂y[
1√

det g

(
Evy − Fvx

)]
.

So we have
(
−
√

det g
)
∆v = 0⇒ ∆v = 0. Similar calculation shows ∆u = 0.

The next lemma is to ensure the positivity of Jacobian:

Lemma C.1.0.3. Suppose u and v satisfy (C.1) and (C.2). The Jacobian of A will be
strictly positive at a point (x0, y0) if and only if ∇ v|(x0,y0) = (vx(x0, y0), vy(x0, y0)) 6= ~0.

Proof. Denote (x, y) := (x1, x2). Then,

detA = uxvy − uyvx =
1√

EG− F 2

(
Evy − Fvx

)
vy −

1√
EG− F 2

(
Fvy −Gvx

)
vx

=
1√

EG− F 2

(
Gv2

x − 2Fvxvy + Ev2
y

)
=
√
EG− F 2gjkvxjvxk > 0 if and only if ∇v 6= 0.

From these lemmas, we see to construct isothermal coordinates in a vicinity of p
one has to find a function v such that

∆v = 0 and ∇v 6= ~0 in a vicinity of p. (C.3)

Once v is constructed, u can also be determined using equations (C.1). The existence
of v that satisfies (C.3) is discussed in Taylor.
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C.2 Chern Formulation

Definition C.2.0.1. A function f : R2 ⊃ D → R is Hölder continuous of order γ
(0 < γ < 1) if there exists a constant K such that |f(x1) − f(x2)| < K|x1 − x2|γ

∀x1, x2 ∈ D. Such a function is called a Cγ function. If, in addition, all its nth

derivatives are Cγ, it is called a Cn+γ function.

Theorem C.2.0.1 (Chern). Let M be a 2-D Riemannian manifold with the metric
g = E(x, y)dx2 + 2F (x, y)dxdy + G(x, y)dy2, whose coefficients are Cγ. Then, in a
vicinity of a point p, there exist C1+γ isothermal coordinates u(x, y) and v(x, y) in
which the metric takes the form g = λ(u, v)

(
du2 + dv2), for some λ ∈ Cγ.

To carry out the proof, let us denote w = u(x, y) + iv(x, y). Then, using ∂z =
1
2

(
∂x − i∂y

)
and ∂z̄ = 1

2

(
∂x + i∂y

)
, we have:

wz =
ux + vy

2
+
i(vx − uy)

2

wz̄ =
ux − vy

2
+
i(vx + uy)

2
.

(C.4)

Using (C.1) (to make substitution for u) we get:

2wz̄
√
EG− F 2 =

[
− F + i

(√
EG− F 2 −G

)]
vx +

(
E −

√
EG− F 2 + iF

)
vy;

2wz
√
EG− F 2 =

[
− F + i

(√
EG− F 2 +G

)]
vx +

(
E +
√
EG− F 2 − iF

)
vy.

Calculation then shows

wz̄
wz

= σ, where σ =
E −G+ 2iF

E +G+ 2
√
EG− F 2

; (C.5)

and (using (C.4) and (C.5)) the Jacobian is

detA = uxvy − uyvx = |wz|2 − |wz̄|2 = |wz|2
(
1− |σ|2

)
. (C.6)
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Now, since

|σ|2 =
(E −G)2 + 4F 2

E2 +G2 + 6EG+ 4(E +G)
√
EG− F 2 − 4F 2

=
(E −G)2 + 4F 2

(E −G)2 + 4F 2 + 8EG− 8F 2 + 4(E +G)
√
EG− F 2

=
µ

µ+ ν
< 1,

where µ = (E −G)2 + 4F 2, ν = 8(EG− F 2) + 4(E +G)
√
EG− F 2; the Jacobian is

strictly positive at a point p if wz(p) 6= 0.
To prove the existence of isothermal coordinates, one therefore has to prove the

existence of a function w that satisfies (C.5) (with |σ| < 1) such that wz 6= 0 in a
vicinity of p. Then we shall have g = λ(w, w̄)dwdw̄ = λ(u, v)(du2 + dv2), where

λ =

√
EG− F 2

|wz|2
(
1− |σ|2

) .
This proof is explained at length in [4].
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