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Abstract

Bi-directional LSTM and Kalman Filter for Passenger Flow
Prediction in Bus Transportation Systems

Hannah Wood

Forecasting travel demand is a complex problem facing public transit op-
erators. Passenger flow prediction is useful not only for operators, used for
long-term planning and scheduling, but also for transit users. The time is
quickly approaching that short-term passenger flow prediction will be ex-
pected as a matter of course by transit users. To address this expectation, a
Bi-directional Long Short-Term Memory Neural Network model (BDLSTM
NN) and a Bi-directional Long Short-Term Memory Neural Network Kalman
Filter model (BDLSTM KF) predict short-term passenger flow and based
on the dependencies between passenger count and spatial-temporal features.
A comprehensive preprocessing framework is proposed leveraging historical
data and extracting bi-directional features of passenger flow. The proposed
model is based on [1] but adapted, applied, and analysed to produce opti-
mal results for passenger flow forecasting on a bus route. Building on [2], a
BDLSTM architecture is then combined with a Kalman filter. The Kalman
filter reduces the training and testing complexity required for passenger flow
forecasting. The BDLSTM-based Kalman filter produces predictions with
less uncertainty than each method alone. Evaluating the BDLSTM-based
Kalman filter with two months of real-world data, one year apart shows
positive improvements for short-term forecasting in high complexity bus net-
works. It is possible to see that the BDLSTM outperforms traditional ma-
chine and deep learning techniques used in this context.
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for allowing us to use their bus transportation data, otherwise, this study
would not be possible. Greg Vitzakis, my industry mentor, and the rest of
the BusPas team gave me excellent advice and assistance. I had a terrific
time working with them and look forward to continuing professional rela-
tionships. Thank you to all of my classmates and BusPas students. You’ve
all helped to make the long days go faster and the major tasks seem less
daunting.
I’ve met a lot of fantastic folks throughout my time in Montreal, much too
numerous to name here. Outside of school, I am surrounded by a fantas-
tic group of friends and shout out to my amazing roommates. Finally, I
would like to thank whole family for their love and support; my mom and
my grandmother have always cheered for me from the front row.

iv



Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Short and Long Term Forecasting . . . . . . . . . . . . 2
1.2.2 Methods for Predicting Passenger Flow . . . . . . . . 4
1.2.3 Combining Kalman Filter and Deep Learning . . . . . 7

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Passenger Flow Prediction in Bus Systems Using a Bi-directional
Long-Short Term Memory Neural Network 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Long-Short Term Memory Neural Network . . . . . . . 12
2.2.2 Bi-directional Long-Short Term Memory Neural Network 12

2.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Dataset Description and Feature Selection . . . . . . . 15
2.3.2 Data Extraction and Pre-Analysis . . . . . . . . . . . . 16
2.3.3 Model Training . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



2.4.1 Comparison Models and BDLSTM . . . . . . . . . . . 28

3 Passenger Flow Prediction on Bus Systems Using a Bi-directional
Long-Short Term Memory Neural Network Kalman Filter 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Combining Deep Learning models with a Kalman filter 41

3.3 Proposed Model and Framework . . . . . . . . . . . . . . . . . 42
3.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Comparison of a Single-Step Model using a LSTMKalman

filter and BDLSTM Kalman filter . . . . . . . . . . . . 47

4 Conclusion 52

A Abbreviation Table 55

List of References 56

vi



List of Figures

2.1 LSTM cell architecture . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Flowchart diagram showing the process to predict passenger

flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Sample data provided by STL . . . . . . . . . . . . . . . . . . 22
2.4 Passenger flow during October 2020 and 2021 . . . . . . . . . 23
2.6 Overview of the distribution of busload sample values for a

given line for each week in 2021 . . . . . . . . . . . . . . . . . 25
2.7 Plotting Thursday’s passenger flow sample data in 2020 and

2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Map of stops from route 26 in Laval . . . . . . . . . . . . . . . 26
2.10 Visualization of single-step BDLSTM trip predictions . . . . . 31
2.11 Performance comparison of the proposed model with compar-

ative models for route 26W, single-step passenger flow predic-
tion in 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.12 Performance comparison of the proposed model and compar-
ative models for route 26W, multi-step passenger flow predic-
tion in 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.13 Performance comparison of the proposed model and compara-
tive models for route 26W, modified sample length, multi-step
passenger flow prediction in 2020 . . . . . . . . . . . . . . . . 34

2.14 Forecast visualization of the univariate, multi-step, BDLSTM
for route 26W, using modified sample length in 2020 . . . . . 35

2.15 Learning curve of the univariate, multi-step, BDLSTM for
route 26W, using modified sample length in 2020 . . . . . . . 35

vii



2.16 Forecast visualization of the multivariate, multi-step, BDL-
STM for route 26W, using modified sample length in 2020 . . 36

2.17 Learning curve of the multivariate, multi-step, BDLSTM for
route 26W, using modified sample length in 2020 . . . . . . . 36

3.1 Operation of a LSTM Kalman filter cell . . . . . . . . . . . . . 43
3.2 Unfolded architecture of a LSTM Kalman filter . . . . . . . . 45
3.3 Unfolded architecture of a Bi-directional LSTM Kalman filter 45
3.4 Unidirectional LSTM Kalman filter learning curve . . . . . . . 49
3.5 Unidirectional LSTM Kalman filter learning curve . . . . . . . 50
3.6 LSTM Kalman filter single-step forecast . . . . . . . . . . . . 50
3.7 BDLSTM Kalman filter single-step forecast . . . . . . . . . . . 51

viii



List of Tables

2.1 Description of windows generated for model training . . . . . . 19
2.2 Performance comparison of the proposed model with other

comparative models for single-step passenger flow prediction
in 2020 and 2021 . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Performance comparison of the proposed model with other
comparative models for single-shot, multi-step passenger flow
prediction in 2020 and 2021 . . . . . . . . . . . . . . . . . . . 33

2.4 Performance comparison of the proposed model with other
comparative models for a modified sample length, multi-step
passenger flow prediction in 2020 and 2021 . . . . . . . . . . . 34

3.1 Notation of state and measurement for the discrete Kalman
filter (KF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Comparison table of a LSTM KF and a BDLSTM KF . . . . . 50

ix



Chapter 1
Introduction

1.1 Introduction

A robust public transportation system is key to e↵ectively meeting the de-
mands of any prosperous city. With a desire to urbanize and provide acces-
sibility to its growing population, any city would hope to have an a↵ordable,
high capacity, punctual and energy-e�cient public transit system [3]. A key
factor in the appreciation of public transit by users is overcrowding. User
satisfaction, coupled with the health and safety riders, is compromised when
overcrowding occurs, having the potential to deter citizens from choosing to
take public transportation [1].

Bus services are often criticized for inconsistent arrival times, over-crowding,
and ine↵ective routes as a city’s needs change. Based on [3], there is a di-
rect relationship between crowding and arrival time irregularity, and increas-
ing unwanted passenger wait times. Additionally, when buses are scheduled
based on headway, irregular arrival times can cause polarized passenger loads
for specific lines, further increasing the irregularity of arrival times and bus
bunching [3].

With more people having access to the internet through their mobile
phones and the ability to transmit real-time vehicle location, real-time bus
arrival information is becoming increasingly popular and almost expected
from transit agencies [4]. The method by which automatic vehicle location,
AVL, information is transmitted can be found in one of two forms: collected
at fixed locations (i.e., sensors at each stop) or continuously (i.e., GPS device
installed onboard). Providing customers with real-time arrival information
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positively a↵ects perceived waiting times, safety and security, impacts of
service disruptions, and general rider satisfaction [3]. Additionally, since the
emergence of COVID-19 and physical distancing, estimates of overcrowding
become useful and necessary to certain passengers.

In this work, a Bi-directional Long-Short Term Memory neural network
model (BDLSTM) and a Bi-directional Long-Short Term Memory neural
network Kalman filter model (BDLSTM KF) are proposed and applied to
short-term passenger flow prediction. Using passenger count data from the
bus system of the city of Laval, in Quebec, the proposed method learns, and
is reactive to, the unpredictability of the real-time system. The model is
trained and calibrated to predict bus ridership, providing results at multiple
time-horizons including, one-stop, half a trip and a full trip into the future.
Specifically targeting volatile, high passenger flow bus routes, the chosen trip
is Route 26 in the westward direction.

1.2 Related Work

Passenger flow prediction in transportation systems has been applied to many
modalities with many di↵erent methods. It should be noted that passenger
flow prediction is a term commonly used in the literature and will be ref-
erenced as such for the remainder of the paper [5, 6]. The passenger flow
prediction in this paper describes the narrower nomenclature of busload pre-
diction and load forecasting. Based on [1], [7], and [8] predicting passenger
load can be categorized into short and long-term forecasting. Additionally,
from [9] and [7], load forecasting can be computed using traditional methods
or methods leveraging machine learning. Lastly, the intersection between
machine learning and the Kalman filter is explored. The di↵erences between
short and long-term forecasting, a survey of machine learning methods used
for passenger flow, and an introduction to the combination of a Kalman filter
and machine learning are described below.

1.2.1 Short and Long Term Forecasting

Forecasting systems and models can be used to describe transportation, elec-
trical, health care and financial systems. Load forecasting has a long history
in diverse sectors; however, there are fewer direct applications to bus rider-
ship. The advancement of accurate sensors and the ability to handle large
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amounts of data have provided the ability to consider many factors related
to busload [10]. The existence of numerous data sources now provides many
possibilities for di↵erent modeling approaches [11]. In many simple appli-
cations of load forecasting, meaningful results are obtained with statistical
methods. Applied to transportation load prediction, machine learning and
data mining techniques are becoming increasingly popular.

In many di↵erent domains, load forecasting is commonly divided into the
short and long term. Despite these terms being commonly used, there is no
strict definition of the duration for each category [9]. While there are no strict
definitions for the meaning of short- and long-term forecasting, we categorize
the literature according to this convention in the rest of the review.

Short-Term Forecasting

Short-term forecasting in the transportation domain is a well-developed re-
search area. [8] considers passenger flow forecasting in metro systems with a
30-minute window using a radial basis function neural network. [12] catego-
rizes time prediction into eight intervals based on normal travel patterns for
their dataset, revolving around peak times. They utilize a framework based
on an attention sequence-to-sequence model for windows of 0-15 minutes,
15-30 minutes, 30-45 minutes, and 45-60 minutes in look-ahead time win-
dows. [13] used peak times, only choosing 3 consecutive days for training and
testing sets with a 2:1 ratio for training and testing. They chose 10-minute
prediction timeslots to evaluate their busload prediction algorithm using a
state-vector machine. In another study, [7] used a short-term prediction cycle
of 15 minutes in advance using a look-back window of six prediction cycles,
or 90 minutes. They were provided with 96 samples per day with which they
use a multi-task learning temporal convolutional network to predict passen-
ger demand. [14] produced an interactive multiple model filter algorithm to
train four months worth of data in 15-minute intervals to predict bus pas-
senger demand. In their study, they had daily and weekly models as well
as a model for 15-minute time horizon. [15] defined their time interval to
be 15-minutes using data from 2017 at a transfer rail station for rail. The
authors defined a one-step and two-step look-ahead prediction mechanism
using an SVR-LSTM model. [16] produces a short-term prediction for urban
rail passenger volume using a time resolution of 15-minute intervals with a
total of 67 timestamps each day. The paper outlines longer intervals of 15,
30, and 60-minute intervals using a spatial-temporal LSTM. In summary,
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short-term forecasting while not strictly defined, refers to no more than two
hours in advanced.

Long-Term Forecasting

The goals of Long-term forecasting are typically di↵erent from those of short-
term. Long-term forecasting can help with planning and coordination of
route networks, schedules, and quality of service [17]. In this vein, [17] states
that their long-term predictions, one year in advance, provide trip planners
an idea of travel demand at stations and stops. The authors further sug-
gest three models: a basic calendar model based on station or stop, with
specific days in the year being highlighted, i.e. school holidays, public holi-
days, four-day weekends; a calendar “Plus” model, highlighting 56 types of
days by means of the Cartesian product of the categorical days for a station
or stop; and lastly a Random Forest technique, applied to each station and
stop. The Random Forest technique uses random sampling with replacing
observations, called bagging, and the random selection of features, called
feature bagging [17]. [18] applies long-term forecasting to passenger demand
on airplanes. The paper extensively covers the previous traditional model to
forecast passenger flight demand using four consecutive phases: trip gener-
ation, trip distribution, mode split, and trip assignment. The model is not
considered out of date but was used as a basis for newer models such as
the direct demand model, which does not need the intensive number of fea-
tures that the previous model requires. The model used 18 years of training
and 4 years as a test set. [19] proposes a principal component analysis and
a fuzzy feed-forward neural network to handle the uncertainty of long-term
power load forecasting. The paper defines short-term to be up to 1 day and
long-term from 1-10 years.

1.2.2 Methods for Predicting Passenger Flow

In addition to the forecasting length, the literature on passenger flow fore-
casting can be divided broadly by methodological approach, a traditional
statistical analysis and computational intelligence methods. Emphasis on
the capabilities of machine learning-based methods will be described below.
To support this work, the connection between passenger flow prediction in
transportation systems and tra�c flow predictions is established.
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Classical Statistical (Traditional) Methods

The first methods for passenger flow transit prediction were based on tradi-
tional classical analysis [5]. These methods had di�culty handling the high
dimensionality and non-linear nature of passenger flow data [5, 6]. Classical
methodologies for regression prediction include traditional regression-based
models, the Kalman Filter model, Autoregressive Integrated Moving Average
model (ARIMA) and the Least Absolute Shrinkage and Selection Operator
Regression (LASSO) [2, 7, 20–26]. In [22], the researchers varied the com-
position of the Kalman filter model for rail passenger flow. The authors
proposed three variations of the model for short-term prediction using one
month’s worth of data [22]. Their results were more robust for peak periods
than non-peak periods. Time-series autoregressive integrated moving average
(ARIMA) models are commonly used for time series data. ARIMA models
can be used to gain information about data or forecast future points [7].
In [24], the authors predicted passenger flow for a railway application us-
ing a seasonal autoregressive integrated moving average, SARIMA model.
They concluded that using four months of data, their SARIMA model was
strong enough to predict monthly passenger flow on railway systems. The
work by [25] proposed a model to predict passenger rail flow that combined a
symbolic regression model with an ARIMA model. Finally, The Least Abso-
lute Shrinkage, and Selection Operator Regression (LASSO), was proposed
by [27]. LASSO was a baseline method in [26].

Machine Learning-Based Methods

Machine learning-based models have demonstrated their strengths in learning
unpredictable, space and time-dependant features required for passenger load
prediction. Applying a non-parametric regression model using previous data
can easily be applied to passenger flow prediction [9]. Commonly used models
that leverage machine learning are: Support Vector Regression, Multilayer
Perceptron, Gated Recurrent Unit, Random Forest Regressor, and notably,
the Long Short Term Memory Neural Network models [1,1,6,7,11,23,28,29].
The Multilayer Perceptron (MLP) model is a simple feed-forward neural
network that can handle simple data without many complexities. By adding
more layers, it is possible to make the model more complex; however, con-
vergence speed is traded-o↵ with more layers [6]. The Gated Recurrent Unit
(GRU) is a recurrent model that is often useful in time-series data since it
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can learn current data while considering previous data [1]. It is one of the
simplest forms of recurrent units. In an implementation by [11], the au-
thors predict subway passenger flow. The results are presented in terms of
long-term forecasting for a 1.5 hour time horizon using the GRU network.
The Long Short-Term Memory neural network (LSTM), first proposed in
1997, has many applications including short-term passenger flow forecasting.
In [17], the authors use smart card data processed by a LSTM to predict
origins and destinations in a subway network. The outcomes of the study
provide short-term predictions of 15 minutes in the future. Additionally,
in [29], researchers used a LSTM model for predicting short-term metro pas-
senger flow. The sequence of passenger flow was altered using empirical
mode decomposition and, along with the original data, was inputed to the
LSTM [29]. [17] explores the prediction of passenger flow in train stations
and bus and tram stops. In this study, they use short-term forecasting for
a horizon time between 15-30 minutes ahead. Additionally, the long-term
forecasting solution predicts passenger flows up to a year in advance.

Passenger Flow Prediction Methods Originating from Tra�c Lit-
erature

Based on the work proposed by [23,30], the authors explore the link between
approaches for tra�c speed prediction and transportation system passenger
flow. Within [23], dynamic Origin-Destination (OD) matrices processed by a
LSTM are proposed to predict passenger flow on a subway system. The au-
thors extend the study of origin destination for the flow of drivers to passenger
flow, where the readings produced by speed sensors are similar to sensors pro-
ducing trip counts between di↵erent stations or stops in the network. Using
a stacked autoencoder model to predict tra�c flow, [30], describes tra�c re-
searchers’ neural network configurations applied to the transportation sector
improves e�ciency of the transit systems. Specifically in the works by [31],
automobile tra�c flow prediction defined within the subset of the Intelligent
Transportation System (ITS). Researchers referencing passenger flow predic-
tion commonly note the evolving space of ITS, describing the similarities in
problem composition between tra�c and transportation literature [25, 32].
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1.2.3 Combining Kalman Filter and Deep Learning

Kalman filters have been used extensively as a state estimation technique ap-
plied in navigation, object-tracking and time-series forecasting [33]. Consid-
ering time-varying systems, the Kalman filter (KF) is an extremely intuitive
method for predicting the behaviour of a system given historical data. Us-
ing a series of noisy measurements, the Kalman filter outputs are calculated
in the domain of second order statistics solving the least-squares problem.
Based on its e↵ectiveness and popularity, non-linear extensions of the Kalman
filter have been proposed, such as the Extended Kalman Filter (EKF), and
the Unscented Kalman Filter (UKF).

The KF model is a low-complexity solution for time-series and state esti-
mation with notable drawbacks; where a Kalman filter is modeled as a linear
function influenced by Gaussian noise and it must be initialized with pre-
defined initial states for a transition and measurement model. Therefore, a
Kalman filter model may have di�culties capturing the dynamic behaviour
of a non-linear, real-world systems. Additionally, the Kalman filter requires
model parameters, some of which can be estimated via system modelling, the
state transition matrix, A, and the measurement matrix, H. However, some
parameters must be defined by the user. These parameters include process
noise covariance, Q, the measurement noise covariance, R, the initial mean
and covariance which vary for each application.

Many of the above drawbacks of the Kalman filter have been mediated
by researchers by combining the KF architecture with deep learning. Deep
learning methods make it possible to take large amounts of data to learn the
system’s behaviours and a Kalman filter presents reduced number training
steps, quicker convergence, and a lower complexity model. The only notewor-
thy Kalman filter and machine learning solution in the transportation sector
predicts short-term passenger flow on the Line 3 of the Light Rail Tran-
sit system in Changchun, China. The short-term passenger flow prediction
method uses a Kalman filter and K-Nearest Neighbor approach. The time
interval is set to 15 minutes and its motivation is to handle the variation in
data at peak times. The authors’ results have stronger prediction accuracy
at time-series data volatility [34].

Based on an in-depth literature review, there is little work combining a
Kalman filter and deep learning for passenger flow prediction in the trans-
portation sector. Therefore, the described model applications below will vary
significantly from wind speed to joint estimation.
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In a paper written by [35], the authors use a feed-forward neural network
and extended Kalman filter model to predict the state-of-charge of lithium-
ion battery. They use RMSE as an error measurement to accurately model
battery characteristics at di↵erent temperatures and charge levels. Peel uses
a multivariate single-step Kalman Filter Ensemble of Neural Networks model
to estimate the number of cycles remaining before failure of an unspecified
complex system [36]. The regression challenge is met with a multi-layer per-
ceptron model and radial basis function-based networks combined through a
Kalman filter [36]. Aly proposes a hybrid model that includes a wavelet neu-
ral network, time series Kalman filter and recurrent Kalman filter for wind
speed forecasting. The wind power model is used to for time horizons at
three-hour intervals in steps of fifteen minutes using three wind power gener-
ation systems. The accuracy metrics used were R2, MAPE, and RMSE [37].
In a paper written by [38], the authors use a two-step prediction process for
air quality indicators. The authors first train a LSTM as a static prediction
model from time-series data. The Kalman filter is then used as a dynamic
adjustment model by adjusting the base time. The authors found that even
with the two-step static and dynamic modelling, their LSTM-KF proved bet-
ter results than a traditional LSTM. The authors used RMSE and R

2 as an
evaluation metric.

There are many ways to classify the instances of when a Kalman filter
and deep learning are combined. When looking at use cases of the model
it can be easily grouped into signal processing applications and non-signal
processing applications. Observing the applications for non-signal process-
ing models, the model structures can be categorised by approaches that learn
static Kalman filter parameters and those that actively regress the parame-
ters during filtering. The active regression of the parameters during filtering
are often proposed as potential online-based applications.

In summary, the primary challenge for bus passenger load prediction is
related to the complexity of predicting ridership behaviour. Typical datasets
for passenger flow prediction contain countless features with intricate geospa-
tial, and temporal dependencies [2, 17, 23]. In addition to complex feature
considerations, ridership behaviour, specifically bus ridership behaviour does
not always follow a dependable schedule. This is especially true with surges
to the system as a result of special events, the weather, or public trans-
portation breakdowns [22]. Increasingly, LSTMs are being used in many
application areas but are particularly well adapted to bus passenger flow
prediction due to their ability to handle intricate geospatial and temporal
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dependencies, learn unpredictable ridership behaviour and take non-uniform
input data [5]. Additionally, successful passenger flow forecasting systems
for transportation are heavily dependant on high computational complexity
deep learning models. With continuous real-time data, transportation agen-
cies benefit from faster output response for passenger flow prediction and
especially with reduced training and re-training time. As a result, this paper
proposes using bi-directional LSTM for multi-step passenger flow prediction
and a bi-directional LSTM Kalman filter for single-step passenger flow pre-
diction as these methods are particularly suited for capturing spatial and
temporal, forward and backward dependencies, with reduced error and in a
timely manner.

1.3 Contributions

The primary contribution of this thesis is a solution for time-series forecast-
ing applied to short-term passenger flow prediction. Among the proposed
thesis, this work has been submitted to the International Transportation Re-
search Part C: Emerging Technologies Journal. The various components of
our contribution are detailed below.

bi-directional Long-Short Term Memory neural network model
In this thesis, a bi-directional long-short term memory neural network (BDL-
STM) is proposed and applied to short-term passenger flow prediction. The
entire machine learning pipeline is introduced from data analysis and vali-
dation to model evaluation. A comparison of univariate versus multivariate,
and single-step versus multi-step models is demonstrated. Each combination
is tested against multiple comparison models to prove the strength of the
bi-directional long-short term memory neural network. Using a bus trans-
portation system, the proposed method learns and is reactive to the unpre-
dictability of the real-time system.

Bi-directional Long-short Term Memory Neural Network based
Kalman filter model The second section uses an LSTM-based Kalman
filter model to perform short-term passenger flow prediction. The structure
of the long-short term memory neural network Kalman filter model is based
on [2]. Building on the results of the first work, one of the long-short term
memory neural network sections which build up the Kalman filter is up-
dated with a bi-directional long-short term memory neural network. The
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bi-directional long-short term memory neural network forms the state equa-
tion for the Kalman filter. Experiments were carried out and the e↵ectiveness
of the real-time bi-directional LSTM-based filtering algorithm is verified.

1.4 Thesis Organization

The thesis is formatted with four chapters. The remainder is formatted as
follows. In Chapter 2, di↵erent machine learning techniques for passenger
flow forecasting are detailed. Furthermore, Chapter 2 introduces an analysis
of the data and its relevant features. Within the second chapter, the ex-
perimental framework and results, the details of the dataset, the implemen-
tation, performance metrics, comparing models, model training and results
are explained. After figuring out what techniques work best for single-step
passenger flow forecasting is determined, the following Chapter 3 presents
the selected techniques used as a foundation to build a Kalman filter. The
Kalman filter is built with a combination of long-short term memory neu-
ral networks and a bi-directional long-short term memory neural network.
Comparing the work proposed by [2] and updating a unit in his model with
a bi-directional long-short term memory neural network it is shown that the
update to [2]’s model has higher prediction accuracy when applied to short-
term passenger flow prediction. Finally, in Chapter 4, the work is concluded,
some of the challenges are explained, and recommendations are provided for
future works.
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Chapter 2
Passenger Flow Prediction in Bus

Systems Using a Bi-directional

Long-Short Term Memory Neural

Network

2.1 Introduction

In this chapter, a comprehensive machine learning pipeline is outlined and ex-
ecuted to optimize passenger flow prediction. Section 2.2 provides a complete
background of the long-short term memory neural network (LSTM) and how
forward and backward layers can be combined to produced a bi-directional
LSTM (BDLSTM). Section 2.3, delves into background information provid-
ing an analysis of the data and its features, the model training process and
the respective comparative models. This section gives an introduction to the
components and experimental setup of the Bi-directional Long-Short Term
Memory Neural Network model as proposed by [1]. The performance metrics
that are used throughout the paper are described. Lastly, in section 2.4, the
results are discussed.
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2.2 Methodology

This section is dedicated to describing the architecture of the proposed model
used to predict short-term passenger flow. It should be noted that “flow”
and “load prediction” are used synonymously and are defined as predicting
the passenger load on a bus at a given stop, provided by historical passenger
load information.

2.2.1 Long-Short Term Memory Neural Network

A long-short term memory neural network is an artificial recurrent neural
network. With time-series data it can benefit greatly from back propagation;
it is also able to selectively remember updated information and forget his-
torical information [33]. Through the gated activation function mechanism
in the cell’s architecture, it overcomes the gradient vanishing problem [39].
Pictured in Figure 2.1, the the LSTM cell can be described as a dynamic
gate that decides the influence of the previous state on the current data in-
put while learning and extracting features from the current state [40]. LSTM
formulation is described using Equation 2.1 to Equation 2.6.

Figure 2.1: LSTM cell architecture

2.2.2 Bi-directional Long-Short Term Memory Neural
Network

The Bi-directional LSTM (BDLSTM) uses two hidden layers to handle se-
quential data in both the forward and backward directions [1]. The bi-
directional LSTM is based on the bi-directional recurrent neural network [41].
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The first paper to propose such an architecture was written by [41], created
a training sequence containing two hidden layers that were connected to the
same output layer. Like the LSTM, the BDLSTM uses the same equations
2.1-2.6 for forward and backward layer outputs. The primary di↵erence be-
tween the two is the sequence of the data fed into the algorithm, either
forward or in reverse order. A LSTM network has an input layer, one or
more hidden layers, and an output layer [33]. The hidden layer is specified in
a way that the neurons update the state of the memory cells. In the input to
the model, the user must define the number of neurons equal to the feature
space. The output space decides the number of neurons in the output layer.
A schematic of a LSTM cell is displayed in 2.1.

ft = �g (Wfxt + Ufht�1 + bf ) (2.1)

it = �g (Wixt + Uiht�1 + bi) (2.2)

ot = �g (Woxt + Uoht�1 + bo) (2.3)

C̄t = tanh (Wcxt + Ucht�1 + bc) (2.4)

Ct = ft ⇥ Ct�1 + it ⇥ eCt (2.5)

ht = ot ⇥ tanh (Ct) (2.6)

The cell’s state and previous state are represented by Ct and C(t�1). A
cell takes as input xt and h(t�1) which is the input at the current time step
and the previous hidden state. These inputs are combined in a vector which
is transformed by the element-by-element sigmoid function. In equations 2.1
to 2.6, W and b are the weight matrices and bias of the forget gates that in-
fluence the degree to which the current state is a↵ected by the previous state.
The flow of information is controlled by the input gate, i. The discarding of
the current cell’s state is decided by the output gate, ot. The forget gate, ft,
is useful in resetting the memory [1].
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2.3 Experimental Setup

To validate our proposed model, real-world data from the bus system of
the city of Laval, Quebec was used as input for short-term passenger flow
prediction. In this section, the process for building the model is separated
into four sections: data extraction and validation, preprocessing, training,
and implementation. The overview of this section can be described by Figure
2.2.

Figure 2.2: Flowchart diagram showing the process to predict passenger flow
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2.3.1 Dataset Description and Feature Selection

In this study, a dataset from Laval, Quebec, Canada, was obtained. Laval is
the second largest city in Quebec and a suburb of Montreal, itself the second
largest city in Canada. Given its size, Laval can be characterized as having
a sizable public transportation infrastructure. In one month, the Société de
Transport de Laval (STL) typically produces three million observations for
⇠42 routes and ⇠3,000 unique stops. All available features in the dataset can
be shown in Figure 2.3. In one month’s worth of data for a given route, STL
produces 300k observations. The dataset is comprised of automatic pas-
senger counting (APC) and automatic vehicle location (AVL) data. Before
being provided to the authors, adjustments to the data were made by STL,
for example, recalculating more accurate passenger counts and readjusting
the stop sequence.

Furthermore, each observation contains two features identifying its con-
fidence level. The first feature represents the reliability of the bus passing
by the stop. The “reliability stop” field must be “reliable,” to use the data
for modelling. The second reliability feature indicates the reliability of the
passenger flow information. To obtain reliable load information, the two re-
liability fields must be “reliable”. Both confidence features are represented
by a binary value where “1” indicates full confidence in the sample and “0”
depicts no confidence. Only data with full confidence are chosen.

Naturally, the passenger load on a bus at a particular location and time
is influenced by many external features. Features can be extracted from
Automatic Passenger Counting (APC), Automatic Vehicle Location (AVL),
and General Transit Feed Specification (GTFS) data. Adjusting the work
by [26], where the author categorizes their features to be, local basic fea-
tures, GPS features, and local demand features. The local basic features
are described from existing data infrastructure, such as the hour of the day.
GPS features typically can be found from automatic vehicle location, AVL
or general transit feed specification, GTFS data. Lastly, the local demand
features are taken from historical APC data. These features are commonly
seen in previous literature for bus passenger flow [7].

Local Basic Features

The local basic features taken from the existing data infrastructure are the
hour of the day (HOD) and the day of the week (DOW). To give an example,
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the date, 2021-03-30 13:16 will provide the HOD equal to 13; the day of the
week, Tuesday, to be equal to 2; and the week of the year is equal to 12.
When analyzing the historical data, it is clear there are patterns for hours in
a day and di↵erences in days of a week [1, 23, 26]. An obvious factor is the
morning and afternoon peaks during the week as people are commuting to
work and school [9, 10, 23].

GPS Features

Automatic vehicle location, AVL, provides an observation every 1-8 minutes.
It captures an observation if the bus stops and someone embarks or alights
from the bus. The STL provides AVL features using the NAD83 Canadian
Spatial Reference System (CSRS98), SCoPQ zone 8. The NAD83 geometric
reference system uses two axis abbreviations of “X” and “Y” respectively, us-
ing the metric system. There are three main AVL features, the coordinate in
the x-direction, the coordinate in the y-direction, and a reliability measure-
ment. The AVL reliability feature captures the relationship between the bus,
the stop and the timestamp. The stop-level reliability feature supports the
validity of the sample. The “reliability stop” field must be “reliable” in order
to consider the data. The confidence features are represented by a binary
value, where “fiable,” meaning reliable, indicates full confidence in the sam-
ple, and “pas heure,” meaning no hour information, depicts no confidence.
Only data with full confidence are chosen.

Local Demand Features

For any observation, it is possible to directly relate the ridership of a bus on
a line for a certain day over a span of multiple weeks. Mapping the same
peaks over multiple days is also possible. Therefore, taking previous average
demands as a feature can be critical for understanding future trends.

2.3.2 Data Extraction and Pre-Analysis

The transportation agency provided one AVL and one APC dataset for each
day. The two datasets were linked by a foreign key in a one-to-one rela-
tionship. In addition to the processing done by the STL, some additional
preprocessing was required before it could be used in model estimation. The
steps to analyze the provided data started by visualizing the relationships
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between all features, relevant features, and the trends of the busload for a
given time-span, trip, route, and stop. Through visualization, it was possible
to determine a typical range of busload values in 2020 and 2021 for a given
route and stop as per Figure 2.4. Additionally, the trends of the busload for a
given day of the week or month were realized. The required data preparation
consisted of filling missing values, data normalization, feature extraction, and
handling of the categorical nature of the data. The input features from the
data are normalized and fed into the model. Figure 2.5 shows the number of
passengers for each trip in the condensed network, on 26W, for one month,
there were more than 80k riders in both 2020 and 2021. Observations of the
passenger loads during the week compared to the weekends can be learned.
A visualization of the di↵erences between the days of the week can be seen
in Figure 2.6. Figure 2.7 shows the peak passenger flow for a weekday, in
2020 and 2021 (using Thursday).

Filling Missing Values

Specifically, with real-world applications, it was expected to have missing
values throughout the dataset. The missing data was visualized using a heat
map to determine the correlation between these missing values. For example,
there would also be missing busload values when there was a missing value
in the busload reliability field. There was also analysis to determine if the
missing values related to a certain route, bus, or date range. It was important
to have a cohesive and logical method to fill or remove these values. The
optimal solution was to fill missing busload values with a weighted average
of that day with the previous 3 weeks. The missing values in the arrival and
departure times were filled based on the arrival time for the stops surrounding
target stop (using distance and average speed of the bus).

Data Encoding and Normalization

Many of the values within the features of the data fall into categories, bus
stop, bus route, direction, and reliability. Many of the categorical features
are nominal, with no dependence on order. There are a few ordinal, order-
dependent, categorical features, such as the sequence of stops. Where fea-
tures contain multiple categories, encoding the data is extremely important
for computational e�ciency. Initially, one-hot encoding was applied to the
data; however, embedding was implemented due to the above drawbacks.
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The data was normalized using a Tensorflow normalization layer between [0,
1] by subtracting the mean and dividing by the standard deviation for each
feature.

Feature Extraction

The features necessary to fill the busload are the bus stop, the route and
direction, and time. The time vector was split between HOD and DOW.

2.3.3 Model Training

For each day, the network produces, on average, 100k observations. Choosing
one month provides more than three million samples. The data processed
and evaluated are for monthly data from October 2020 and 2021, individually
and together. The dataset is further reduced to analyze the agency’s busiest
route, 26 in the westward direction. A map produced using the data provided
by the STL shows the stops to be predicted, seen in Figure 2.8.

After the dataset is preprocessed, it is split into training, validation, and
test sets. The data taken to train the model is 70%, 20%, 10% for the
training, validation, and test sets. The consideration of time series data was
considered when slicing the data into windows, where the shu✏ing occurs
after the model was trained. The selected data for training was taken from
Route 26W over a month, which represents 100k sample data. There are
⇠62 stops in the chosen trip. Four key features from the discussion were
used, including hour of day (HOD), day of week (DOW), unique bus stop
identifier, and whether the trip is in-bound or out-bound.

The model is trained and performs predictions based on a window of
consecutive samples from the data. There are six di↵erent types of data win-
dows that were created for this study. The windowed dataset was created
based o↵ a sliding windows over time-series data using Keras Tensorflow’s
tf.data.Datasets. Each window considers the following: the width of the
input window (known as lookback), the width of the output window (known
as time horizon), the o↵set between input and output windows and which
features are used. There was an emphasis by STL to keep stop-level infor-
mation, therefore, the width of the windows is determined by the number
of stops to lookback and horizon. There are three types of windows corre-
sponding to single-step, multi-step, and adapted multi-step prediction: each
having a univariate and multivariate version. Table 2.1 describes the di↵er-
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ence between the six di↵erent data windows. The single-step data window
makes a single prediction one stop in advance, given data one previous stop.
The multi-step, single shot data window utilises data from the entire previ-
ous trip to predict one entire trip in the future. The multi-step, modified
sample length data window takes a trip and a half worth of data and tries to
predict the remainder of the trip. All windows were used to determine the
capabilities of the Bi-directional Long-Short Term Memory Neural Network
model.

Window Type
Input

[In # Stop(s)]
Output

[In # Stop(s)]
O↵set

# Of
Features

Single-Step
Univariate 1 1 1 1
Multivariate 1 1 1 4

Multi-Step,
Single Shot

Univariate
# Stops
In Trip

# Stops
In Trip

# Stops
In Trip

1
Multivariate 4

Multi-Step,
Modified Length

Univariate (# Stops In Trip)
/2

1
Multivariate 4

Table 2.1: Description of windows generated for model training

2.3.4 Implementation

The following defines the notation used in the rest of the paper. In previous
works, the most common performance metrics used to evaluate the perfor-
mance of a passenger flow prediction model are the root mean square error
(RMSE) and the mean absolute percentage error (MAPE) [2, 25, 26]. In the
equations, ytrue is the actual passenger flow from the agency’s dataset. Pre-
dicted passenger flow is then defined as ypred. The loss function used for this
paper is the mean squared error. Prediction quality is measured with the
root mean square error (RMSE) and the mean absolute error (MAE) as the
metric functions. In the equations below, the ytrue and ypred symbolize the
observed and predicted busload values, and n is the number of samples. The
smaller the MAE, RMSE, and MSE values, the di↵erence of prediction and
true values resemble.
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Comparison Models

Multiple models were chosen test the e�cacy of the proposed approach. Each
model was evaluated based on six di↵erent forecasting windows: single-step
univariate data window, single-step multivariate data window, multi-step
single shot univariate data window, multi-step single shot multivariate data
window, multi-step univariate with modified sample length data window, and
multi-step multivariate with modified sample length data window. These
comparisons were chosen because they are common in the literature on pas-
senger flow prediction [2, 7, 25].

1. A simple linear regression model is a strong baseline to compare any
future approach. The linear model is comprised of the mean function
and the variance function. Data to be assumed to be independent and
have a Gaussian distribution. [42]

2. In comparison to the linear functions described above, a multilayer per-
ceptron model is an interconnected network of small processing units
called nodes [43]. The interconnection of simple computation can be
aggregated together to solve higher complexity problems [44]. Com-
prised of at least three layers, the MLP model the simplest neural net-
work yet proven e↵ective in the fields of speech recognition and image
recognition [45].

3. A convolutional neural network, CNN, gets its name from the matrix
operations called convolutions. Each CNN cell is built with four layers,
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which includes convolutional layer, non-linearity layer, pooling layer
and fully-connected layer [46]. Convolutional neural networks are often
at a disadvantage with time-series data because they do not consider
temporal dependencies.

From [1], the comparison of the models does not use any masking layer
or middle layers. The linear regression model uses a dense layer without an
activation function, the MLP model uses two hidden layers. However, the
number of nodes in the CNN and LSTMs is adapted via grid search. The
total number of features in the input data equal to the number of nodes per
layer to emulate the number of stops for the route specified.
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Figure 2.3: Sample data provided by STL
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Figure 2.4: Passenger flow during October 2020 and 2021
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Figure 2.5: Publicly available reference for Route 26 produced by STL
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Figure 2.6: Overview of the distribution of busload sample values for a given
line for each week in 2021
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Figure 2.7: Plotting Thursday’s passenger flow sample data in 2020 and 2021

Figure 2.8: Map of stops from route 26 in Laval
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Figure 2.9: Distribution of busload sample for trip 26W in 2020 and 2021
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2.4 Results

Using Route 26W, the following section provides a comparison of commonly
used models for passenger flow prediction in literature. Similar to [1], the
models proposed for the initial analysis are the Feed-forward Neural Network,
the Long-Short Term Neural Network, and the Stacked Bi-directional/Unidirectional
Long Short-term Memory Neural Network (shortened to BDLSTM). The
Convolution Neural Network was added to provide additional information
pertaining to the performance of the proposed model.

In this work, it should be noted that in both single-step models and
multi-step models, the dataset is windowed with each timestamp representing
a stop within each trip. Each window considers the number of stops of
historical data to be considered in order to predict a specified number of
stops into the future, commonly known as time-horizon.

The models present results trained on data from 2020 and 2021. As per
the global COVID-19 pandemic, the ridership behaviour is novel in compar-
ison to pre-COVID, historical data. Despite being trained with data during
COVID, the predicted passenger flow can reflect the culture-shift and lifestyle
changes associated with post-COVID living. Factors associated with a new
behaviour including an increase in remote work, hybrid work, online/phone
appointments and distance learning. Furthermore, the trained model is based
on a route with the highest ridership.

2.4.1 Comparison Models and BDLSTM

Route 26 in the westward direction is used for model testing. It was used
because not only is it the route with the most amount of trips, but it is the
most frequented route by passengers in the network for the observed dates.
The comparison models are to prove that the di↵erence in performance is
significant and an BDLSTM should be further investigated.

Single-Step Modelling

The analysis for the single step models can be divided into two separate
categories:

1. Single-step univariate models

2. Single-step multivariate model
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In both forms of single-step modelling, the pre-processing step batches
the data into windows of 62 consecutive inputs and labels at a time. A single
step model makes predictions one stop into the future.

It is important to note that the linear regression model and dense models
are single-input single-step models. The model makes predictions one stop
into the future based on a single stop in advance. The CNN, “vanilla” LSTM
and BDLSTM are multi-input single step models. The model makes predic-
tions one stop into the future based on a look-back of the number of stops
in the line.

Seven models were defined for comparison: the Linear Regression model,
the Support Vector Regression model (SVR), the Random Forest Regres-
sor model (RF), the Multilayer Perceptron model (MLP), the Convolutional
Neural Network (CNN), a Gated Recurrent Unit model (GRU), a simple
LSTM, LSTM, against the Bi-directional LSTM, BDLSTM. The results for
one route with the comparison models are shown in Table 2.2 for October
2020 and October 2021. The results of the proposed BDLSTM is empha-
sized. The results show that the BDLSTM outperforms the comparative
models. The linear regression method has a calculated MAE of 3.119 and
an RMSE value of 4.475 for the univariate case and a RMSE of 4.771 and a
MAE of 3.556 for the multivariate case. The MLP model performs similarly
to that of the linear regression model. With a RMSE and MAE of 4.471
and 3.200 for the univariate case and a RMSE of 4.515, and MAE of 3.226.
These models are single-input single step models. They perform as expected.
There is no significant di↵erence between the two. Noteably, the Random
Forest regression models perform similarly to these simpler models. The
Support Vector Regression models show lower error rate than that of the RF
regression models. The CNN model provides an RMSE of 4.038 but a much
lower MAE term of 2.591. The CNN multivariate outperforms the univariate
model. This is to be expected as there is more input data to observe where
the RMSE is 4.000 and the MAE is 2.591. The CNN model outperforms the
MLP and the linear regression models, this is to be expected because the
CNN model has a longer look-back by the previous trip. The simple LSTM
model performs better than the CNN model. This is to be expected because
it is able to handle the time-series data more e�ciently. In both univariate
and multi-variate cases, the vanilla LSTM slightly outperforms the CNN.
Comparing the simple LSTM to that of the proposed stacked bi-directional
LSTM is quite significant. However, to the vanilla or simple LSTM and the
BDLSTM, it is assumed that the simple gate structure and the single layer
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implementation could be the cause. The simple LSTM model also does not
outperform the BDLSTM with an MAE value of 3.845 and an RMSE value
of 2.423. The BDSTM multivariate had the lowest MAE and MSE values
of all models with 2.663 and 1.385, respectively. In summary, the BDLSTM
model is the strongest method for short-term passenger flow prediction.

Comparing the results between 2020 and 2021, the prediction error in
consistently higher in the 2021 dataset. Based on Figure 2.9, the busload at
each stop is significantly higher in October 2021 than that of the previous
year. The increase in passenger flow in 2021 from 2020 can be attributed to
world events, specifically the global COVID-19 pandemic. With the added
passenger count at each stop in 2021, increases the volatility and polarizes
the data between stops.

Model Specifications 2020 2021
Model Data Type RMSE MSE RMSE MSE

Linear
Univariate 4.475 3.189 8.202 5.758
Multivariate 4.771 3.557 8.493 6.091

Dense
Univariate 4.472 3.201 8.117 5.675
Multivariate 4.516 3.226 7.798 5.505

SVR
Univariate 5.470 3.547 8.278 5.207
Multivariate 4.891 3.701 7.098 5.461

RF
Univariate 4.603 3.225 7.460 4.998
Multivariate 4.083 2.797 7.294 4.903

CNN
Univariate 4.038 2.648 7.149 4.845
Multivariate 4.000 2.591 7.044 4.812

RNN
Univariate 4.009 2.546 7.041 4.661
Multivariate 4.000 2.591 7.037 4.656

Vanilla LSTM
Univariate 3.846 2.423 6.984 4.585
Multivariate 3.296 2.279 6.843 4.410

BDLSTM
Univariate 2.751 1.479 2.279 1.183
Multivariate 2.663 1.385 2.161 1.141

Table 2.2: Performance comparison of the proposed model with other com-
parative models for single-step passenger flow prediction in 2020 and 2021
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Figure 2.10: Visualization of single-step BDLSTM trip predictions

Figure 2.11: Performance comparison of the proposed model with compara-
tive models for route 26W, single-step passenger flow prediction in 2020

Multi-Step Modelling, Single shot

The analysis for the multi-step models can be divided into two separate
categories:
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1. Multi-step univariate models

2. Multi-step multivariate model

The model must learn to predict a range of future values in a multi-step
prediction. In both forms of multi-step modelling, the pre-processing step
batches the data into windows of 62 consecutive inputs and labels at a time.
As a result, unlike a single step model, which predicts only a single future
busload value, a multi-step model predicts a sequence of busload values one
full trip in advance. This multi-step model performs single shot predictions
where an entire trip worth of time series data is predicted at once.

The results of one route with the comparison models are shown in Table
2.3 for October 2020 and 2021.

As expected the performance of the models in multi-step prediction are
worse than those of the single-step prediction. This is due to the nature of
the single shot prediction where we are predicting all the features across all
output time steps given a look-back of a previous trip. Using the comparative
models it is possible to see in Figure 2.17. Even with the advanced proposed
models, the multi-step models have higher MAE. It can be hypothesized
that the multi-step predictor inevitably introduces errors, with multi-step
modelling, each subsequent prediction causes compounding errors change
the input distribution for future prediction steps.

Multi-step Modelling, Modified Sample Length

The analysis for the multi-step models can be divided into two separate
categories:

1. Multi-step univariate models

2. Multi-step multivariate model

As presented, based on Table 2.4, it is possible to see that there is no sig-
nificant improvement between the multi-step linear model and the proposed
multi-step BDLSTM model for passenger flow forecasting. This is to be ex-
pected because the nature of a single shot multi-step model. Expecting to
predict the passenger flow for an entire trip provided data from the previ-
ous trip, is unrealistic because each trip throughout a day, month and year
varies. A slight modification of the multi-step prediction method is predict-
ing the 3/4 of the next trip given the entire previous trip and the start of
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Model Specifications 2020 2021
Model Data Type RMSE MSE RMSE MSE

Linear
Univariate 4.597 3.386 8.202 5.758
Multivariate 4.711 3.525 8.290 5.960

Dense
Univariate 4.607 3.424 8.069 5.796
Multivariate 4.528 3.336 7.824 5.644

CNN
Univariate 4.422 3.209 7.660 5.567
Multivariate 4.417 3.197 7.414 5.387

Vanilla LSTM
Univariate 4.354 3.143 7.497 5.449
Multivariate 4.318 3.1300 7.414 5.387

BDLSTM
Univariate 7.657 5.576 7.657 5.576
Multivariate 4.379 3.163 7.407 5.371

Table 2.3: Performance comparison of the proposed model with other com-
parative models for single-shot, multi-step passenger flow prediction in 2020
and 2021

Figure 2.12: Performance comparison of the proposed model and comparative
models for route 26W, multi-step passenger flow prediction in 2020

the current trip. Based on the results in Table 2.4 it is possible to see the
significant improvement, 3 passenger closer to the actual values using the
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modified multi-step prediction method.

Model Specifications 2020 2021
Model Data Type RMSE MSE RMSE MSE

Linear
Univariate 4.452 3.165 7.921 5.569
Multivariate 4.630 3.375 8.167 5.776

Dense
Univariate 4.462 3.222 7.865 5.521
Multivariate 4.444 3.200 7.750 5.494

CNN
Univariate 4.144 2.838 7.228 5.002
Multivariate 4.239 2.929 7.366 5.126

Vanilla LSTM
Univariate 3.834 2.505 7.256 4.988
Multivariate 3.895 2.562 6.857 4.716

BDLSTM
Univariate 3.673 2.301 5.643 3.456
Multivariate 3.665 2.264 5.065 3.278

Table 2.4: Performance comparison of the proposed model with other com-
parative models for a modified sample length, multi-step passenger flow pre-
diction in 2020 and 2021

Figure 2.13: Performance comparison of the proposed model and comparative
models for route 26W, modified sample length, multi-step passenger flow
prediction in 2020

34



Figure 2.14: Forecast visualization of the univariate, multi-step, BDLSTM
for route 26W, using modified sample length in 2020

Figure 2.15: Learning curve of the univariate, multi-step, BDLSTM for route
26W, using modified sample length in 2020
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Figure 2.16: Forecast visualization of the multivariate, multi-step, BDLSTM
for route 26W, using modified sample length in 2020

Figure 2.17: Learning curve of the multivariate, multi-step, BDLSTM for
route 26W, using modified sample length in 2020
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Chapter 3
Passenger Flow Prediction on Bus

Systems Using a Bi-directional

Long-Short Term Memory Neural

Network Kalman Filter

3.1 Introduction

Passenger flow prediction is a widely researched topic within the public trans-
portation sector. Applying passenger flow forecasting for bus systems is based
on a multitude of factors including a particular trip, time of day and day of
the week. Increasing the reliability of passenger flow prediction on buses
could not only support capacity and planning for agencies but could pro-
vide valuable information for passengers. In this chapter, the objective is to
optimize passenger flow prediction by designing a comprehensive evaluation
setup and propose a novel Bi-directional Long-Short Term Memory Neural
Network Kalman filter model (BDLSTM KF) based on the implementation
of a Long-Short Term Memory Neural Network Kalman filter by [2]. The
remainder of the chapter is organized as follows, Section 3.2 provides a com-
plete background of the Kalman filter (KF), its tuning parameters and how
deep learning can be combined with a Kalman filter. Section 3.3, describes
the details of the dataset, the respective comparison models and the pro-
posed model and its training process. The performance metrics that are
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used throughout the paper are described. Lastly, in section 3.4, the results
are discussed.

3.2 Methodology

This section provides pertinent background information on the Kalman filter
and combining deep learning techniques with a Kalman filter. The Kalman
filter is an extremely popular state estimation technique used in navigation,
object-tracking and time-series forecasting [33]. The novel use cases of com-
bining deep learning and a Kalman filter overall produce models with less
uncertainty than each method alone [22,47].

3.2.1 Kalman filter

One of the most well-known Bayesian filter theories is the Kalman filter,
which is a linear optimal status estimate approach. The Kalman filter was
created by RE Kalman in 1960. When it was created its applications were
primarily for signal processing for communications [48]. A Kalman filter
can be used in any situation when you have ambiguous information about a
dynamic system and want to make an educated guess about what it will do
next. Even in the presence of noise, the Kalman filter is usually extremely
good at figuring out what actually happened. It is a versatile and e↵ective
tool for merging data in the face of uncertainty [49].

Since the publication of [48], there have been many applications from nav-
igation, orbit calculations, integrated dynamic positioning, microeconomics
and image processing [50]. With its vast applications, the Kalman filter’s
standard approach is known to be a fast, e�cient and strong anti-interference
method for dynamic systems. With the many di↵erent applications, the
Kalman filter has been adapted through di↵erent configurations and as-
sumptions. The well-known configurations beyond the discrete Kalman filter
(KF), are the Extended Kalman filter (EKF) and the Unscented Kalman
filter (UKF) [50].

The Kalman filter algorithm uses time-series noisy measurements, to pro-
duce estimates of future states of a system. A series of measurements provides
a more accurate forecast than that of a singular measurement. The Kalman
filter equations can be categorized into two groups: time update equations
and measurement update equations. The time update equations describe the
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Represents Symbol Description Represents Symbol Description

State

~xt State vector

Measurement

~zt
Measurement
vector

x̂t�1 Previous state — NA

x̂
0
t

Predicted
current state

— NA

x̂ Current state ẑt
Current
measurement

A
State transition
matrix

H
Measurement
matrix

wk
Process
noise vector

vk
Measurement
noise vector

Table 3.1: Notation of state and measurement for the discrete Kalman filter
(KF)

prediction phase, the Kalman filter produces estimates of the current state
variables and error covariance to obtain a priori estimates for the next step.

A dynamic system can be represented by a Kalman filter via a state and
measurement equation. The state and measurement notation varies from im-
plementation to implementation. State and measurement are represented by
xt and zt, respectively. Each of the state variables are defined by the Kalman
filter state equation 3.1. The estimate of the initial state is commonly called
the measurement or observation, defined by a similar equation 3.2. Table
3.1, shows the definitions of each of the components in the system state
equation and the measurement equation. It should be noted that based on
the linear and Gaussian assumptions of the system, wk and vk are assumed
to be independent, positive definite, zero-mean Gaussian white noise vec-
tors. Furthermore, Table 3.1 details the notation of state and measurement
throughout the Kalman filter model. The state transition matrix, A, relates
the previous state and the current step state. The measurement matrix, H,
relates the state, xk to the measurement, zk.

xk = Axk�1 + wk, p(w) N(0, Q) (3.1)

zk = Hxk + vk, p(v) N(0, R) (3.2)

In every time step t, the KF produces a new estimate xt using only
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the previous estimate xt�1 and the new measurement yt. As a result, the
computational complexity of the KF does not grow in time. The prediction
stage is structured with the following equations:

x
�
k = Axk�1 (3.3)

P
�
k = APk�1A

T +Q (3.4)

where A is the state transition matrix, P is the error covariance matrix
and Q is the process noise covariance. The prime superscript on the the
state or covariance variables defines a priori estimate given the prior time
step. Similarly as mentioned in Table3.1, the equivalent variables without
superscripts refer to posteriori estimates given the observations at that time
step. The Kalman filter’s initial step allows for the recursive inclusion of all
points in the series, resulting in each state estimate having some dependence
on all previous state estimates. The smoothness of the resultant series is
a↵ected by the process noise covariance matrix in 3.1, with low covariance
values increasing the degree of smoothing.

Second, the update step updates the state estimate with the measure-
ments. The update stage is given by:

Kk = P
�
k H

T (HP
�
k H

T +R)�1 (3.5)

xk = x
�
k +Kk(zk �Hxk) (3.6)

P
�
k = (I �KkH)P�

k (3.7)

where Kk is the Kalman gain, H is the measurement matrix that maps
from state to measurement space, R is the measurement noise covariance and
zk is an measurement at time k.

The Kalman gain calculated in 3.5 can be considered as providing a
weighting between the measurements and the previous state estimates. Think-
ing about the Kalman gain, K, in practice, the actual measurement, zk, is
more “trusted,” as the measurement error covariance, R, approaches zero,
while the predicted measurement, Hx̂k, is less trusted. Meanwhile, as the
error covariance, Pk, approaches zero, the actual measurement, zk, becomes
less and less trusted, whereas the predicted measurement, Hx̂k, becomes
more and more trusted.
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Filter Parameters and Tuning

Beyond the theoretical applications of the filter, it is common practice to
take sample data to determine a baseline for the measurement covariance,
R, and the process covariance, Q before applying the filter [49]. The process
to determine these parameters is often done o✏ine and is commonly known
as system identification.

Using sample measurement data, calculating the measurement covariance,
R for the sample, provides some initial values for the variance of the measure-
ment error. However, it is shown by [49], that choosing poor initialization
parameters for the filter can cause the filter to diverge or underperform.

The determination of the process covariance, Q, is generally more chal-
lenging because it is not possible to directly observe the system that is to be
estimated. In the literature [2] it’s described how it’s possible to “inject,”
enough uncertainty into the process by choosing a proper value for Q.

In the case of non-linear models, often the choice is less deterministic [51].
For example, this noise source is often used to represent the uncertainty in
the process model. Sometimes a very poor model can be used simply by
“injecting” enough uncertainty via the selection of Q. Certainly in this case
one would hope that the measurements of the process would be reliable.
In either case, whether or not we have a rational basis for choosing the
parameters, superior filter performance (statistically speaking) can often be
obtained by “tuning” the filter parameters and state prediction parameters.
Tuning is usually performed o↵-line, frequently with the help of another
(distinct) Kalman filter [52].

3.2.2 Combining Deep Learning models with a Kalman
filter

Estimating state variables of a dynamic systems, the Kalman filter is com-
monly used. An extremely attractive attribute of the Kalman filter is that
it is a lightweight algorithm that requires only previous state information
to make an intelligent prediction about the system’s current state. The
primary disadvantages of the Kalman filter model are its model parameter
initialization and state estimation assumptions. These two disadvantages are
addressed through an LSTM-based Kalman filter model.

Addressing the estimation of Kalman filter parameters requires a strong
understanding of the system to be modelled, which is not always possible [52].
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There are diverse application scenarios for the Kalman filter, and there has
been significant work done to optimize state parameter estimation. Recently,
deep learning-based approaches have been applied to the Kalman filter to per-
form originally ambiguous parameter selection. There are two main lines of
research that combine deep learning and Kalman filter models for temporal
regularisation. It is common to categorise the approaches as those that learn
static Kalman filter parameters and those that actively regress the parame-
ters during filtering. In both cases, choosing parameters based on learnt data
greatly improves the likelihood of the filter converging [2].

State estimation, the goal of the Kalman filter, can easily be extended to
time-series forecasting where sequential data can be represented by a series
of states. Recurrent neural networks were specifically created for analyzing
sequential data often applied to time-series forecasting [15]. Introducing a
gate mechanism to the traditional recurrent neural network, the LSTMmodel
is capable of learning long-term dependencies within the data. Therefore,
using an LSTM model as a component to perform state estimation is a logical
application.

3.3 Proposed Model and Framework

The proposed model could be considered as a hybrid of both categories. The
Long-Short Term Memory Neural Network-based Kalman filter, LSTM KF,
actively regresses the Kalman parameters using historical data and non-linear
methods. In [2], the author proposes three distinct Kalman filters, one to
predict process covariance, Q, one to predict the measurement covariance,
R and one to predict the transition function, F . The goal of the proposed
Kalman filter and Neural Network hybrid is to use the simplicity of a Kalman
filter without having to specify a transition function, F or a fixed process or
measurement covariance matrices Q or R.

3.3.1 Model

Taking on the assumptions that the new measurements are noisy estimate
of the underlying LSTM modules to predict the internals of the Kalman
filter cell structure, where H is assumed to be the identity matrix, leaving
equations 3.8-3.9 to define the LSTM KF model. An architecture diagram
in Figure 3.1, provides insight on the internals of the cell of the LSTM KF.
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Figure 3.1: Operation of a LSTM Kalman filter cell

yt = f(yt�1) + wt, wt N(0, Q) (3.8)

zt = yt + vt, vt N(0, R) (3.9)

Before using the LSTM-based Kalman filter to predict passenger flow,
the appropriate model should be built first. To form the nonlinear transfer
function of the state, xk, the error covariance matrix, Q, and the observation
noise covariance matrix, R, need to be chosen. The preparation procedures
for the LSTM-based KF are discussed at a given time step:

• The LSTMf takes the previous busload prediction and outputs an up-
dated prediction value.

• The LSTMQ takes the current predicted value of the busload from the
LSTMf and predicts a value for the process covariance.

• The LSTMR is unique as it takes single-step multivariate values as an
input and outputs a predicted value for the measurement covariance.

The element-wise exponential is taken from the outputs of the LSTM cells
and they are translated into a batched diagonal tensor prior to future calcu-
lations.

Prediction
The prediction step is slightly modified from the original Kalman filter to
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include the outputs of the LSTM layers. In equation 3.10, the f is modeled
by the LSTMf module. Prior to the matrix calculations in equation 3.12,
the Jacobian of f with respect to the newly predicted state, ŷ�k is taken. In
equation 3.12, the capital letters represent matrices, where Qt is the output
of the LSTMQ. The initial value of Pk�1 is set as a trainable matrix with
normal distribution.

ŷ
�
t = f(ŷt�1) = LSTMF (ŷt�1) (3.10)

F = Jf (ŷt�1) (3.11)

P
�
t = FPt�1F

T +Qt (3.12)

Update
Provided the assumption that the incoming measurements are noisy esti-
mates of the underlying state, equation 3.5 defined by the Kalman filter
turns into 3.13, setting H equal to the identity matrix. The value Rt repre-
sents the output of LSTMR. To calculate the Kalman gain, in the equation
3.13, K, the value P

�
t is calculated in the prediction step. The value zt in

equation 3.14 is the observed measurement at time, t. In the last equation
of the update step, equation 3.15, P�

t is calculated in the prediction step, I
is the identity matrix and Kt is calculated earlier.

Kt = P
�
t (P�

t +Rt)
�1 (3.13)

yt = y
�
t +Kk(zt � y

�
t ) (3.14)

P
�
t = (I �KtH)P�

t (3.15)

Throughout the prediction and update process, the end result is to pro-
duce a new prediction of the busload one time horizon ahead, as denoted as
ŷt.

3.3.2 Experiments

In this section, extensive testing is described and the performance of the
proposed model by [2] is presented against that of a combined BDLSTM KF.
Real-world data from the Société de Transport de Laval’s, STL, bus system
is used for short-term passenger load forecast to validate the proposed model.
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Figure 3.2: Unfolded architecture of a LSTM Kalman filter

Figure 3.3: Unfolded architecture of a Bi-directional LSTM Kalman filter

Datasets and Input Features

The dataset used in the LSTM-based Kalman filter is a single step dataset.
The single-step dataset is identical to that used in Chapter 2. The chosen
single-step dataset is multivariate. The multivariate dataset uses 4 key fea-
tures, including hour of day (HOD), day of week (DOW), unique bus stop
identifier, and whether the trip is in-bound or out-bound. The data was win-
dowed based on the width, time o↵set and input/label features. The dataset
was created based o↵ a sliding windows over time-series data using Keras
Tensorflow’s tf.data.Datasets. The width of the input window is equivalent
to the number of stops in a particular trip. The output window or time
horizon, is equal to one, in this single step model. The windows are split
into feature and output pairs. The data represents Route 26W, for a month,
which represents 100k data samples. There are 62 stops in the chosen trip.
The data taken to train the model is 70%,20%, 10% for the training, vali-
dation, and test sets. The considerations of time series data was taken into

45



account when slicing the data into windows, where the shu✏ing occurs after
the model was trained.

Machine Configurations

In all experiments, a Processor Intel(R) Core(TM) i9-10850K CPU 3.60GHz
machine was used.

Hyperparameter Tuning and Model Training Configurations

In this section, the hyper-parameters/implementation used for each method
compared are described. Based on the Kalman filter model, it is mandatory
to initialize model parameters prior to training.

Hyperparameter Tuning The proposed LSTM-based Kalman filter
model has many trainable and tunable parameters. Experimentation is re-
quired to identify the optimal weights which is known as hyperparameter
tuning. The learning rate and the dropout rates for each layer were tuned
based on model performance metrics, mean absolute error. Leveraging Keras
Tensorflow’s TensorBoard provides a thorough visualization of the tunable
parameters, known a the HParams dashboard. Based on the grid search
method, the number of neurons in the LSTM cell are chosen to be 256.

Model Training Configurations Before the model is trained, it is nec-
essary to initialize all parameters that are initially independent of data. The
first are the instances of the LSTM cells involved. The initialization not
only includes creating the instances of the cells but also getting the initial
state provided a batch size. Additionally, as a default value, the bias of the
forget gate at initialization is set to 1.0. Based on Keras Tensorflow, each
cell state would be zero-filled; this includes LSTMF , the state transition ma-
trix, LSTMQ, the transition noise covariance matrix, and the measurement
covariance matrix, LSTMR. For each of the LSTM cells, there are the corre-
sponding weight and bias vectors that are initialized to a normal distribution.
These weights and bias vectors are trainable matrices to be tuned in testing.
The initialization of these vectors follow [2] recommendations. The purpose
of the weight and bias vectors are to properly shape the output matrix act-
ing as a dense layer. Finally, an error covariance P had to be initialized to
perform the first prediction step. This matrix was initialized with a normal
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distribution based on the output feature space. The regression loss function
applied to the data is the mean squared error, based on multiple authors
of deep learning-based Kalman filters, the mean square error is commonly
used [2, 33, 38]. As mentioned above, in the modified LSTM Kalman filter,
there are trainable matrices, weights and biases declared in the initializa-
tion. These trainable parameters correspond to the output of the LSTMs as
well as the error covariance matrix. The model is trained based on its mean
squared error. To iteratively update the trainable network weights the Adam
optimizer in Keras Tensorflow was used.The Keras implementation of LSTM
was used with batch length equal to that of the trip size for 150 epochs.

Accuracy Score and Metrics

In this section, a detailed description for the accuracy metrics used through-
out the experiments is left the same from the above chapter which is the
Root Mean Squared Error (RMSE) and the mean absolute error (MAE).
Throughout all experiments, MAE is used as an evaluation metric.

RMSE =

vuut 1

n

nX

t=1

(ytrue � ypred)2 (3.16)

MAE =
1

n

nX

t=1

|ytrue � ypred| (3.17)

3.4 Results

In this section, the results of the proposed Bi-directional Long Short-Term
Memory Neural Network Kalman filter are analyzed and compared with the
original proposed model by [2]. To observe the properties of the proposed
model, extensive study of temporal feature learning, spatial feature learning,
and model robustness is carried out.

3.4.1 Comparison of a Single-Step Model using a LSTM
Kalman filter and BDLSTM Kalman filter

The primary benefit of the proposed LSTM based Kalman filter is its abilities
to choose Kalman filter parameter from historical data. Once the Kalman
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filter parameters are chosen, the complexity of the Kalman filter model is ex-
tremely low at O(n3) referencing the naive/brute force computation scheme.
As the dataset extends beyond theoretical pre-cleaned datasets, the actual
application of passenger flow can be considered. The transportation agency,
STL, is a forward-thinking agency who hopes to support the municipal gov-
ernment towards the ”Smart City,” title. The computational complexity be-
comes a topic of discussion when considering the emergence of public-facing
IoT devices. These in-field devices could communicate its predictions in real-
time based on its environment. Having a highly accurate, low complexity
algorithm would be beneficial to IoT computational capacities often having
limited resources and low-power. The re-training of the bias and weights can
be updated via LTE connection instead of performing the training on-board
the IoT device.

The proposed model boasts accessibility to the model’s internal parame-
ters, the cells’ weights and biases. Access to lower level components of the
LSTM cells provides a higher level of control. Weights are the true values
associated with each feature, and they indicate how important that feature
is in forecasting the final result. Bias, also known as a y-intercept in a re-
gression equation, is used to shift the activation function to the left or right.
Unlike the models used in the previous chapter, which are trained on se-
ries of batched data, the LSTM cell is the logic to process single step data.
Additionally, the layer configuration of multiple cascaded LSTM cells ben-
efits from having ensemble neural network configuration. Ensemble neural
networks are multiple distinct models combined together to obtain better
generalization [53].

The model proposed by [2], takes very little time to converge. As oppose
to training of a traditional neural network, during training, the model is
learning Kalman filter parameters. The Kalman filter parameters which are
based on historical data and outputted by the LSTM cells. The output
parameter values are expoentialized and fixed to the diagonal, the overall
variance of these values is limited. Furthermore, the covariance matrices
produced by the LSTM cells are responsible for deciding the noise of the
system; where the LSTM cell could decide that the new measurement is
completely disregarded. The likelihood of that occurring is unlikely based
on the size and validation process of the historical dataset. The convergence
speed of the model is an asset for the real-world application to be provided
to the transportation agency.

An end-to-end bi-directional-LSTM based model is proposed and trained
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to exploit temporal information prior to and following the current timestep.
The bi-directional aspect of training is to form a more complete representa-
tion of the sequential data. Based on many proposed bi-directional model
publications, the bi-directional feature applied recurrent neural network al-
lows the prediction mechanism to see the future and be trained as such. The
connections between a bi-directional recurrent unit allows for prior and later
hidden states enable the model to learn temporal information before and
after the current frame.

Bi-directional Advantage Convergence Speed Trade O↵

Despite the improvement to the performance metrics between the unidirec-
tional LSTM-KF and the bi-directional LSTM-KF, a significant di↵erence
can be noted in convergence speed while training. To further understand this
observation, two learning curves for the LSTM KF are shown in 3.6. Drawing
a comparison to the the previous chapter, learning curves of the BDLSTM
and the LSTM KF are pictured in Figure 3.5 The number of epochs is a
hyperparameter that specifies how many times the learning algorithm will
run through the entire training dataset. The unidirectional model has the
ability to converge near 35 epochs, whereas, the bi-directional model doubles
the training time nearing 70 epochs.

Figure 3.4: Unidirectional LSTM Kalman filter learning curve
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Figure 3.5: Unidirectional LSTM Kalman filter learning curve

Model Dataset Type RMSE MAE
Time To
Converge

Unidirectional
Validation 9.921 5.072

4.5h
Test 9.554 4.797

Bi-directional
Validation 9.482 5.750

5.5h
Test 9.192 4.564

Table 3.2: Comparison table of a LSTM KF and a BDLSTM KF

Figure 3.6: LSTM Kalman filter single-step forecast
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Figure 3.7: BDLSTM Kalman filter single-step forecast
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Chapter 4
Conclusion

To incentivize a city to improve the e�ciency of their transportation systems
is not challenging when it reduces carbon emissions, removes congestion from
the roads and improves the public’s commuting experience. Passenger flow
forecasting is a heavily studied topic by transportation researchers [17]. Pre-
dicting the passenger load on a given system provides necessary insight for
transportation agencies in the areas of route planning, route optimization
and overall understanding of ridership behaviours. Optimizing a given trans-
portation system improves a city, making it more desirable to live and work
in. While budgeting and streamlining a city’s infrastructure is a continu-
ous challenge, improving bus systems, removes cars from the road, reducing
carbon emissions and congestion [9]. In summary, the typical application for
passenger flow forecasting is to understand bus ridership behaviour, for route
planning, and improvements to scheduling [17]. The short-term forecasting
supports passengers through trip planning and daily operation [9].

This thesis investigates the use of a BDLSTM and BDLSTMKalman filter
to predict the busload at a given stop on a route in Laval, Canada. Large
bus system datasets produced by the Société de Transport de Laval (STL),
describes the behaviour of the citizens of Laval and the requirements on the
bus system. Verified and validated data by the agency, informative features,
and multi-year data, the proposed model was able to learn the behaviour of
any proposed route in the bus network. An analysis of the data is presented,
delving into the available features of the dataset and their relevance. To
handle real-world data, filling missing values, the procedure and thought
process was described. Presenting a comparison of the 2020 and 2021 data,
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noting the significant di↵erence between lockdown pandemic data and non-
lockdown pandemic data. Specifically, the passenger flow increase from 2020
to 2021 and the polarization of data surround the daily peaks. Furthermore,
an analysis of the proposed route, Route 26W, its feeders and how the route
fluctuates over various time intervals: a day, week and month. Resources
from STL are also presented, providing a visualization of the chosen route
on a map.

Beyond data analysis, multiple models were used as a baseline to com-
pare the e↵ectiveness of preprocessing steps, pertinent features, and poten-
tial time horizons. A comparison of single-step and multi-step models was
demonstrated for the prediction of passenger flow. The multi-step predic-
tion included a simple one-shot multi-step prediction and a multi-step model
with a time horizon of five stops in advance. As expected, single-step models
significantly outperform multi-step models, however, multi-step models that
predict less than one whole trip in advanced have improved performance.
Comparing a vanilla LSTM to that of the proposed bi-directional method
highlights the relationship between passenger flow and time. Shown in Table
2.3 using recurrent unit models can successfully learn complex spatial and
temporal features. Using direct analysis, it is confirmed that using input
data from the previous trip is su�cient to predict for the following trip.

In the first chapter, a lower complexity, single-step model initially pro-
posed by [2] is adapted and tested. The paper by [2], introduces a novel
configuration of a LSTM-based Kalman filter. The model boasts learning
Kalman filter parameters based on historical data using LSTM models. It
was observed that once trained, the Kalman filter has a lower computa-
tional burden than that of modern neural networks.Provided the intentions
of the transportation agency partner, a solution requiring less computational
power is appealing and beneficial. Based on the above work, the e�cacy
of bi-directional LSTMs, when applied to passenger flow prediction of bus
systems, it is only reasonable to apply the improvements of the bi-directional
to the LSTM-based Kalman filter. Proposing the bi-directional Long-Short
Term Memory Neural Network Kalman filter not only improves the perfor-
mance metrics, but it also improves convergence speed. On average, the
LSTM KF converges 3x faster than any of the proposed models of the first
chapter. This reduces the computational complexity required when updating
and training the model with new data.

With ride sharing and mobility for hire applications, learning short-term
dependencies and behaviours of transit users is a pressing tactic to maintain
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and grow bus ridership. Adding value to the above work for the Société de
Transport de Laval (STL), future work would include designing and devel-
oping a means to access real-time data from the agency and applying the
proposed models to an online learning application.
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Appendix A
Abbreviation Table

Abbreviation Description
APC Automatic passenger count
AVL Automatic vehicle location
BDLSTM NN Bi-directional Long Short-Term Memory Neural Network model
CNN Convolutional Neural Network
DOW Day of the week
GRU Gated Recurrent Unit
GTFS General Transit Feed Specification
HOD Hour of the day
ITS Intelligent Transportation Systems
KF Kalman filter
LSTM NN Long Short-Term Memory Neural Network model
MAE Mean absolute error
MLP Multilayer Perceptron model
MSE Root mean squared error
OD Origin Destination Matrix
RF Random Forest Regression model
RMSE Mean squared error
STL Société de transport de Laval
SVR Support Vector Regression model
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