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Abstract 

An Empirical Study of Runtime Files Attached to Crash Reports 

Komal Panchal 

When a software system crashes, users report the crash using crash report tracking tools. A 

crash report (CR) is then routed to software developers for review to fix the problem. A CR 

contain a wealth of information that allow developers to diagnose the root causes of 

problems and provides fixes. This is particularly important at Ericsson, one of the world’s 

largest Telecom company, in which this study was conducted. The handling of CRs at 

Ericsson goes through multiple lines of supports until a solution is provided. To make this 

possible, Ericsson software engineers and network operators rely on runtime data that is 

collected during the crash. This data is organized into files that are attached to the CRs. 

However, not all CRs contain this data in the first place. Software engineers and network 

operators often have to request additional files after the CR is created and sent to different 

Ericsson support lines, a problem that often delays the resolution process. 

In this thesis, we conduct an empirical study of the runtime files attached to Ericsson CRs. 

We focus on answering four research questions that revolved around the proportion of 

runtime files in a selected set of CRs, the relationship between the severity of CRs and the 

type of files they contain, the impact of different file types on the time to fix the CR, and 

the possibility to predict whether a CR should have runtime data attached to it at the CR 
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submission time. Our ultimate goal is to understand how runtime data is used during the 

CR handling process at Ericsson and what recommendations we can make to improve this 

process. 
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Chapter 1. Introduction 

1.1. Problem and Motivation 

Software systems are subject to crashes and failures during operation despite the effort 

spent on development and testing. Software companies use crash tracking systems to 

document system crashes from the time they occur to the time they are eventually solved. 

Examples of crash tracking systems include Bugzilla1, Windows Error Reporting (WER)2, 

and Apple Crash Reporter3. 

At Ericsson, the company in which this research study is conducted, the process of handling 

system crashes involves three lines of support: 

• Level 1 – Network Operator Administrators: They are responsible for reconfiguring and 

restarting the system as well as collection detailed information that describes the crash. 

• Level 2 – Network Operator Support Engineers: They are responsible of reviewing the 

crash reports, performing root cause analysis to understand the cause of the crash and 

providing a solution if the crash does not involve changes to the source code. 

 
1https://www.bugzilla.org/ 
2https://docs.microsoft.com/en-us/windows/win32/wer/windows-error-reporting 
3https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AnalyzingCrashReports/AnalyzingCrashRe

ports.html 
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• Level 3 – Software Designers: They review the crashes, which may necessitate changes 

to the source code. They perform root cause analysis and provide a solution, usually in 

the form of system patches.  
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Figure 1.1. A typical process for handling crash reports at Ericsson 
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Figure 1.1 shows a typical crash report process flow at Ericsson. The process is triggered 

when a system crash occurs, at which point a Level 1 support operator creates a CR that 

contains information about the incident such as a description, the impacted system 

component, the severity of the crash, and runtime data (logs and traces) that are generated 

during the crash. The CR is saved in a CR database. 

The Level 1 support operator sends a notification to a Level 2 support engineer who 

retrieves and reviews the CR and performs root cause analysis to identify the reasons behind 

the incident and potentially provides a solution. At this point, the Level 2 support engineer 

may realize that the CR does not contain sufficient information and sends a request back to 

Level 1 support to generate the missing information. This cycle might be repeated several 

times until the support engineer is satisfied with the detailed description of the incident that 

can help him/her to find the root cause and solve the problem.  

If the solution requires modifications to the source code, the CR is forwarded to a Level 3 

support line to be reviewed by a software designer. Similar to the previous situation, the 

software designer may engage in a cycle of interactions with the network support teams to 

obtain more detailed information about the incident that would help him or her uncover the 

root cause and provide a fix. 

These repeated cycles of interactions between the various support lines often delay the 

provision of fixes, which may result in inefficiencies and high costs. Our discussion with 

Ericsson domain experts revealed that the main information that developers and network 
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operators request consists of files that can provide insights into the execution of the system. 

These files are enclosed with CRs and used by developers and network operators to conduct 

root cause analysis.  

Runtime data take typically the form of logs, execution traces, and profiling metrics. 

Software developers use this data to support various software engineering tasks including 

debugging, performance analysis, program comprehension, and performance analysis [28-

32]. Additionally, there exist studies that rely on runtime data to improve the CR handling 

process. For example, Sabor et al. [1] introduced an approach to predict the severity of CRs 

using a combination of execution traces and CR categorical features [1]. Similar studies 

include the work of Koopaei et al. [20] where the authors proposed an approach based on 

Hidden Markov Models and execution traces to predict duplicate crash reports. Bettenburg 

et al. [33] observed that developers consider execution traces to be one of the most useful 

information that developers request when fixing a bug. Schroter et al. [34] went one step 

further by examining the use of traces in fixing bugs and showed that crash reports with 

traces are fixed sooner than those without. They also suggested to add explicit support to 

traces in bug/crash tracking systems. More studies are presented in the next chapter. 
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1.2. Problem Statement and Thesis Contributions 

Existing studies focus mainly on execution traces, paying less attention to the role of logs 

and profiling metrics in reducing the overhead of processing CRs. In addition, most studies 

are conducted using open source systems, which are inherently less complex than industrial 

systems, especially those used in large organizations such as Ericsson. In this thesis, we 

conduct the first empirical study to understand the types of runtime files attached to CRs 

and their impact on the CR fixing time at Ericsson. We achieve this by examining a large 

number of CRs and study the attached files with the objective to answer the following 

research questions: 

• RQ1: What is the proportion of each type of runtime files (i.e., traces, logs, profiling 

metrics, etc.) in our dataset?   

• RQ2: What is the relationship between the severity of CRs and the type of files they 

contain? 

• RQ3: What is the impact of different file types on the CR fixing time? 

• RQ4: Can we predict if a CR should have a file attached to it before the CR is relayed 

to other lines of support? 

Answering RQ1, RQ2, and RQ3 will help us understand the types of files that are attached 

with Ericsson CRs. This will, in turn, allow Ericsson domain experts to prioritize the type 

of files they need to collect during a crash. The answer to RQ4 will determine if it is possible 

to develop a recommendation system that can suggest to the first support line the files they 
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should include when submitting a CR. The ultimate objective is to reduce the interaction 

time between the different lines of support, which should yield a faster CR resolution time. 

The answers to these questions will also help us understand better the role of runtime files 

in the resolution of crashes from an industrial perspective, contributing further to the 

advancement of the field of software maintenance and evolution.  

1.3. Thesis Outline 

The rest of the thesis is structured as follows: 

Chapter 2 – Background and Related work 

This chapter describes the background and related work relevant to the thesis. The crash 

tracking system of Ericsson is introduced in the first section. We go over the various 

components of this system. Then, we discuss the steps for reporting and resolving the crash. 

In the second section, we review recent studies on handling crash reports, followed by a 

discussion. 

Chapter 3 – Empirical Study of CR Enclosing Files 

In this chapter, we show our approach for answering RQ1, RQ2, and R3 through an 

empirical study. We start by discussing the type of files that are attached to CRs. We 

continue by reporting on our findings and provide insights into the usefulness of the CR 
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enclosing files in terms of the impact they have on the CR fixing time. We also examine 

the relationship between the CR enclosing files and the CR severity.  

Chapter 4 – Prediction of CR Enclosing Files 

In this chapter, we focus on RQ4 where we investigate if we can predict the need to attach 

a file while the CR is being created. To this end, we experiment with three machine learning 

algorithms, namely Support Vector Machine (SVM), Random Forest (RF), and K-Nearest 

Neighbor (KNN).  

Chapter 5 – Conclusion and Future Work 

In this chapter, we revisit the main contributions of this thesis. We conclude with comments 

about this study and present opportunities for future research. 
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Chapter 2. Background and Related Work 

2.1. Crash Reporting at Ericsson 

A crash reporting system is used to keep track of maintenance tasks [7]. It acts as a central 

repository for tracking the status of CRs, managing the information flow between the 

parties involved in handling the CR, and discussing the fixes. The crash reporting system 

used at Ericsson is an integrated Web-based environment for maintenance and customer 

support. It has many components to allow design, maintenance, and support teams to share 

information that facilitate the CR handling and analysis process [8][10]. 

A CR is described using mainly the following information: 

• CR reference: This is a unique reference for the CR. 

• CR severity: The severity of a CR, measured based on the impact of the fault on the 

system functionality. The severity can be “A”, “B”, or “C” with “A” referring to the 

most severe CRs. A CR of severity “A” is usually attributed to a crash that causes a 

complete failure of the system (e.g., stoppage of network traffic). The CR of severity 

“B” is assigned to CRs that cause important performance degradation of the system. 

CR of severity “C” is for minor faults and configuration with minimum impact on 

network traffic.  
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• CR Status: A CR goes through different stages from the time it is submitted to the 

time it is fixed. CR status includes “registered”, “assigned”, “cancelled”, “fixed”, 

etc. 

• Product information: Several CR fields in Ericsson CR tracking system are used to 

describe the faulty product and version that is affected by the fault. 

• History data: In this field, a track of the CR handling steps including the people who 

reviewed and processed the CR at various stage is kept for future reference.  

In this study, we only consider CRs with the status "Finished". That is, we exclude ongoing 

CRs. It should also be mentioned that we exclude duplicate CRs from the dataset. Duplicate 

reports are marked as duplicate by developers. 

2.2. Literature Review 

Maiga et al. [10] conducted an empirical study using Ericsson data to better understand 

how internal and external CR are handled. Internal CRs refer to CR that are reported 

internally by testing teams, whereas external CRs refer to crashes that occur in operation. 

The study focused on the percentage of internal vs. external CRs, time taken to fix the CRs, 

and time to assign the CRs. To answer the research issues, they ran several statistical tests 

on the Ericsson CR dataset, which covered two years of maintenance activity. The authors 

showed that internal CRs account for 64% of the total reported CRs, while external CRs 

account for just 36%. The authors also showed that internal CRs take less time than external 

CRs using the Mann-Whitney test results. They attributed this to the fact that design teams 
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have more understanding about the system than external CR reporters, and hence were able 

to provide more data that helped in solving the CRs. Finally, the authors showed that the 

severity of CRs did not affect CR fixing time or assignment time.  

Zimmermann et al. [11] showed that the most prevalent issue that developers face when 

addressing CRs is incomplete information. By surveying developers and users, the authors 

synthesized the information that makes a good CR. According to their findings, the most 

useful information for developers to efficiently fix CRs is not something that is easy for 

CR submitters to provide. The authors went on creating the CUEZILLA recommendation 

tool to assess the quality of submitted CRs and make recommendations on how to enhance 

them. CUEZILLA automatically mines historical CRs related to bugs that are fixed 

successfully and use these as good examples for CR reporting.  

Zhang et al. [9] assessed existing bug report analysis efforts in a survey study. Their main 

contribution is a classification of bug report analysis techniques that have been studies in 

recent years including optimization of bug reports, triaging of bug reports triage, bug-report 

misclassification reduction strategies, bug-report severity prediction techniques, bug 

localization, etc. 

Bhattacharya et al. [12] conducted an empirical study to learn more about the bug fixing 

procedure in Android apps and platforms. Three primary research threads were 

investigated. First, the authors looked at the use of multiple metrics to analyze CRs and the 

bug fixing process. By calculating CR quality metrics, the authors discovered that most 
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Android app bug reports are of high quality, with lengthy textual descriptions, steps to 

reproduce errors, and explanations of expected output. A lengthy description in a CR 

usually indicates a high-quality bug report, which aids in the fast resolution of the bug. The 

authors also found that only 11% of the defects are fixed by the first assigned developers, 

and 75% of bugs take 2 to 13 developer tosses. In the second thread, the authors conducted 

a comparative study between Google Code and Bugzilla life cycles and argued that the 

introduction of Bugzilla's issue tracker and modification history into Google Code 

improved the bug fixing process. The last thread focused on a study of security flaws where 

the authors compared the quality of app vulnerabilities to the quality of non-security bugs. 

Also, the authors found that security bugs are resolved quicker than performance bugs. 

An et al. [13] proposed an approach for mining information from CRs while highlighting 

the challenges of existing techniques. They looked at the problem of user identification of 

a CR. The authors also discussed the challenges of mapping crash reports to their 

corresponding bugs to understand the distribution of crash-related bugs in the user base. A 

similar study was conducted to understand the challenges of mapping CRs to bug fixes and 

to investigate whether developers efficiently addressed the reported field crashes by 

estimating the effort required to fix the crash.  

Rastkar et al. [3] examined if current conversation-based automatic summarizers can be 

used to summarize CRs. They found that the quality of the generated CR summaries is 

comparable to summaries extracted from email threads and other conversations. The 

authors trained a summarizer on a CR corpus and showed that their model can be used to 
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create summaries from CRs that can save time when analyzing CRs without sacrificing 

accuracy.  

Karim [5] performed a research study to identify the important features of CRs that CR 

submitters often overlook. Then, he went on creating an automated key feature prediction 

model to recommend features to CR submitters based on historical reports. Using text 

classification techniques, he developed prediction models for each CR feature. The model 

performed well, achieving an F1-score of 70%. 

Anbalagan et al. [14] conducted an empirical analysis of CRs from an open-source project 

to develop a model for predicting the project's corrective maintenance effort in terms of the 

time it takes to fix the bugs. This research was based on problem reports from nine Ubuntu 

versions. The author focused on user engagement in open-source project corrective 

maintenance and predicted the time it would take to fix bugs. The authors found that there 

a linear correlation between the number of users who report a defect and the median time 

it takes to fix it.  

Chen et al. [15] proposed a method for automatically extracting bug entities and their 

relationships from CRs that combines Recurrent Neural Networks (RNN) with a 

dependency parser. This idea was shown to be effective in extracting bug entities and their 

relationships from issue reports in the studied bug repositories. The author first examined 

the categorization criteria for bug entities and their relationships before introducing the 

RNN models and dependency parser that were used to extract bug entities and interactions. 
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The CR description is preprocessed to extract words and then a baseline corpus is built to 

manually classify the types of bug entities and relations. The author used the Bi-LSTM-

RNN model and dependency parser to predict the categories of entities and relations from 

CRs. 

Sarkar et al. [16] developed an automated bug triaging tool tailored to the Ericsson bug 

tracking system. The author used a methodological valid time split evaluation where they 

sequentially train and test on large industrial data. Simple text and categorical features of 

CRs, combined with alarms and crash dumps are used for training a model.  

Mahfoodh et al. [17] suggested a risk estimation method that can predict a quantifiable 

software risk value, allowing developers to improve software availability, security, and 

project management. This study used the number of bug-fixed samples for each priority 

category to determine the actual bug-fix time average, which was then combined with the 

last bug-fix time projected value to get the risk percentage of the bug-fix time prediction. 

This study used one crash report dataset to assess software components, yielding risk 

ratings ranging from 27.4 percent to 84 percent. 

Xia et al. [18] looked at the impact of CR field reassignments on issue fixing experience. 

They contacted the developers of the subject software project to figure out the causes 

behind reassignment of CR fields.  Three broad root causes were identified in the study: 

fresh CR correction, going through the procedure, and admin batch tasks. According to the 

researchers Around 80% of CRs have their field reassigned. Furthermore, the author 
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concluded from the overall data that CRs with field reassignments took longer to fix than 

those without. 

Early detection of duplicate crash reports can reduce the amount of time required to process 

the CRs. CrashAutomata, a model proposed by Koopaei et al. [20], detects duplicate CRs 

using automata. The authors created a representative model using historical CRs and a 

combination of n-grams of varying lengths and automata to depict stack traces. 

CrashAutomata produces very good precision and recall results for Firefox CRs, higher 

than comparative tools. In a follow-up study, Koopaei et al. [21] improved CrashAutomat 

by introducing the use of Hidden-Markov Models (HMMs). The new approach resulted in 

an increase of the true positive rate by 10% over CrashAutomata.  

From the same research lab as Koopaei et al., Sabor et al.  [2] suggested a feature extraction 

strategy that reduces feature size while retaining the most important categorization 

information. They used this approach for the automatic prediction of duplicate reports. The 

author used a trace abstraction strategy in this investigation, replacing stack traces of 

function calls with traces of packages.  

Dhaliwal et al. [23] conducted an empirical study on CRs gathered for Mozilla Firefox to 

determine the influence of CR grouping and the features of an efficient grouping. The 

author proposed a grouping technique to minimize bug resolving time, where each group 

comprises CRs generated by just one type of problem. Bug fixing time was decreased by 

5.3% because of this effective grouping. A two-level method to CR categorization was 
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presented. To construct crash types, the first level of grouping groups CRs based on the 

method signature of stack traces. A comprehensive comparison of stack traces is performed 

at the second level to establish a sub-group. The similarity of the two CRs was determined 

by comparing the 10 first frames of the CRs stack traces. When numerous bugs are 

collectively related to the same crash type, the author determined that it takes longer to fix 

the issue than when the bug is uniquely linked to one or more crash types. 

2.3. Summary 

The analysis of crash/bug reports has been an active research topic for the last decade. 

Techniques that can reduce or predict the time it takes to fix crashes are needed to reduce 

the maintenance overhead. Existing techniques focus on various aspects of CRs. This thesis 

complements these techniques by examining how runtime files including execution traces, 

logs, and profiling metrics, are used in an industrial setting to reduce the time and effort of 

solving crashes. To our knowledge, this is the first time that a study that focuses solely on 

the importance on various runtime files in the processing of CRs from an industrial 

perspective is conducted.  
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Chapter 3.  Empirical Study of Crash Report 

Attached Files 

3.1. Overview 

Our main goal in this thesis is to gain a better understanding of the runtime files attached 

to the CRs and their impact on the CR resolution process. This is particularly important in 

a large company such as Ericsson where the various development teams may be logging 

different things (network devices, nodes, software applications, performance metrics, etc.). 

Adding to this, it is known that the practice of logging and tracing lacks guidelines and 

common practices in software engineering [24].  

With the help of domain experts working on a large product at Ericsson, we conducted an 

empirical study of runtime files attached to many CRs of an active Ericsson project with 

the objective to answer the following four research questions: 

• RQ1: What is the proportion of each type of runtime files (i.e., traces, logs, profiling 

metrics, etc.) in our dataset?   

• RQ2: What is the relationship between the severity of CRs and the type of files they 

contain? 

• RQ3: What is the impact of different file types on the CR fixing time? 
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• RQ4: Can we predict if a CR should have a file attached to it before the CR is relayed 

to other lines of support? 

3.2. Study Setup and Results 

Figure 3.1 shows the process of collecting the data and addressing the research questions 

RQ1, RQ2, and RQ3. RQ4 is deferred to the next chapter. First, we extract data from the 

Ericsson CR database. We then mine the reports to extract the files enclosed with the CRs. 

The input of domain experts is needed throughout the process to help understand the data 

and interpret the results.  

  

 

 

 

Figure 3.1. Data collection and analysis process 

3.2.1. Dataset 

We collected CRs of an active software product at Ericsson. The CRs cover almost two 

years of development. These CRs went through different lines of support until they were 

fixed. With the help of Ericsson experts, we wrote queries to extract CR information such 

as the CR heading, description, severity, the submitter, as well as the attached files. For 
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each file, we retrieved the file name, the date at which the file was attached to the CR, the 

user who submitted the file, and the file size. Note that one CR may contain more than one 

file attached to it. In our dataset, the total number of files is five times larger than the 

number of CRs. 

Ericsson developers use different types of files. For example, a file may contain 

performance indicators, which are profiling metrics collected at the time of the crash. 

Another file may contain execution information of a given process. Unfortunately, there is 

no mechanism that distinguishes between the different types of enclosed files in the CRs.  

To address this, with the help of Ericsson experts, we manually analyzed the file attached 

to the CRs in our dataset. For each file, we reviewed the associated description. For some 

files, we had to open them and read their content. We also used the file name to infer 

information that may help us identify the type of runtime data it represents. Based on this, 

we developed a set of rules that can be automatically used to identify the type of files in 

other CRs or CRs of other systems. These rules use the file name, the CR description 

provided by the crash reporter in the CR, and e-mail threads (records of discussions that 

took place between the various lines of support). Some of these rules combine keywords 

extracted from all these sources. We find cases where file names alone are used as the main 

source for identifying the file type, which suggests that software developers at Ericsson use 

some sort of naming convention to label files. However, these conventions are not 

documented or enforced in the CR raising process, justifying the need for the rules that we 

have developed in the context of this project. These rules are implemented as regular 
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expressions after validating them with Ericsson experts. We wrote a script that implements 

these regular expressions. The script takes the file description, file name, and email threads 

as input and return the file type as output. In the future, we intend to apply advanced data 

mining techniques to create rules that can generalize to CRs of other Ericsson systems. The 

rules are not included in this thesis for confidentiality reasons. 

We identified five types of files, which we present here and discuss in more details in what 

follows: 

•  Node Dumps  (NDs) 

• Key Performance Indicators (KPIs) 

• Execution Traces 

• User-defined Logs 

• Post-mortem Dumps (PMDs) 

Type 1 – Node Dumps (NDs):  At Ericsson, a ND file is required whenever a system crash 

is reported in a CR. A ND file contains the output of a set of commands that are executed 

on the node, providing us with a snapshot of the state of the node. This file is important for 

understanding what went wrong. Sometimes, the problem is due to a configuration issue. 

The content of a ND may help spot such issues by first lines of support, i.e., without having 

to relay to other lines of support. 

Type 2 - Key Performance Indicators (KPIs):  A KPI file provides information on the 

performance of the system through performance counters. For example, a KPI file may 



20 

 

show the degradation of the network, which can help network operators identify the cause 

of the problem.  

Type 3 - Execution traces: Execution traces are used to find a causal relationship between 

the system artifacts. Examples includes traces of function calls, inter-process 

communication traces, distributed traces, etc. Tracing requires instrumentation of the 

system, which consists of insertion of probes in places of interest. Using a trace, an analyst 

can replay the execution of the system to understand and diagnose the problem.  

Type 4 - User-defined Logs: Complex telecom networking systems such as the ones 

developed at Ericsson are composed of many hardware and software platforms. It is 

common for developers to insert logging statements that would help them later to diagnose 

challenging problems. A logging statement typically contains a timestamp, a process id, a 

verbosity level, a logging function, a log message, and variables. Developers go through 

the log messages to debug the system and perform root cause analysis. 

Type 5 - Post-mortem Dumps (PMDs): They contain whatever data is available in 

memory when a system crashes, including the processes that were executing at the moment 

of incident, the data exchanged between processes, etc. PMDs are rarely structured and may 

contain data related to multiple processes or even components. 
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3.2.2. RQ1: What is the proportion of each type of runtime files (i.e., traces, logs, 

profiling metrics, etc.) in our dataset?    

Objectives: The answer to this question can help Ericsson’s development teams understand 

the type of files that are used the most and that should be given priority. This is because 

generating these files infers an overhead and cost. Collecting all attached file  types for 

each incident may turn out to be unproductive. This is particularly important in the context 

of runtime data analysis where one needs to develop parsers and analysis tools that are 

tailored towards a particular type of file.  

Variables: For each file type Ti {ND, KPI, Log, Trace, PMD}, we use as variables the 

number of files of type Ti, the number of CRs that contain files of type Ti. We also need 

the total number of files and CRs to compute the ratios. 

Method: To answer this research question, we use descriptive statistics. More precisely, 

we measure the ratio of the number of files of type Ti to the total number of files and the 

ratio of the number of CRs that contain logs of file type Ti to the total number of CRs. 

Results: 

Figure 3.2 shows the percentage of each file type in our dataset. As we can see, NDs are 

the most files that are collected. This is expected since NDs contain information about 

nodes after a crash occurs. It is also common to have multiple ND files for one crash report.  
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Figure 3.2. Percentage of file types in our dataset 

 

 

Figure 3.3. Percentage of CRs with respect to the enclosed file type 
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PMDs and Logs occupy the second and third position with 19.67% and 15.88% of all the 

file types. Traces and KPI files are used the least. This could be due to the fact that these 

two types of files incur an additional overhead when generating. For example, tracing 

requires an instrumentation tool and settings, which may deter users from generating this 

type of file. The same applies to KPI files that contain profiling metrics. 

Figure 3.3 shows the percentage of CRs with respect to the type of files they contain. Note 

that we excluded Node Dumps from this analysis since Node Dumps are collected for every 

crash. The figure shows that PMDs and Logs are the most used files, which clearly supports 

the idea that traces and KPIs, which reveal a different perspective than PMDs and Logs, 

receive less attention in problem diagnosis.  

3.2.3. RQ2. What is the relationship between the severity of CRs and the file types 

they contain? 

In this research question, we examine if there is a relationship between the severity of the 

CRs and the type of files they contain. As mentioned in Chapter 2, the severity of a CR 

reflects the impact of the fault on the system functionality. The severity can be “A”, “B”, 

or “C” with “A” being the most severe CRs.  

We want to establish whether the severity of a CR impacts the type of files that are attached 

to this CR. For this part, we state the following null hypothesis: 

• H01: The type of files that is attached to a CR is not dependant on the CR severity?  
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Variables: We use as variables the number of CRs with file type Ti and the severity level 

of the CRs (A, B, C). Note that we exclude node dumps from this analysis as well. 

Method: To answer the research question, we build the contingency table with two 

qualitative variables, the CR severity (A, B, C) and the CR file type. The contingency table 

template is shown in  Table 3.1. For example, in cell (A, KPI), we include the number of 

CRs that contain only files of type KPI (or KPI and node dumps since we are ignoring node 

dumps in this study). The last column shows the number of CRs that contain more than one 

of  the file types.  

Table 3.1. Template contingency table  

Severity KPI Log Trace PMD 
More than one 
of these types 

A      

B      

 C      

 

We use the Pearson’s chi-squared independence test to accept or reject the null hypothesis 

H01. The test is commonly used to examine the relationship between two independent 

qualitative variables, which are in our study, the CR severity and the CR attached file type. 

The result is considered statistically significant at alpha = 0.05. If p-value < 0.05 then we 

reject the null hypothesis H01 and conclude that the severity of the CRs and the types of 

files attached to the CRs are dependant.  
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Results: 

Table 3.2. Contingency Table for RQ2 

Severity KPI Log Trace PMD 
More than one 
of these types 

A 3.57% 37.50% 7.14% 32.14% 19.64% 

B 7.78% 14.39% 7.34% 41.56% 28.93% 

C 19.64% 21.43% 5.36% 19.64% 33.93% 

 

Table 3.2 shows the percentage of each file type with respect to severity. Note that we show 

the percentages instead of the real values for confidentiality reasons. To compute the Chi-

square test, we used the real value and not the percentages. We found that the p-value is < 

0.00001. The result is significant at p-value < 0.05. Therefore, we reject the null hypothesis 

H01 and conclude that there is a relationship between the CR severity and the file types.  

Figure 3.3 shows the distribution of the file types based on the CR severity. The data varies 

depending on the severity. The figure shows that the most severe CRs (CR with severity 

“A”) have logs as the most important files. This may be explained by the fact that logs 

contain information introduced by developers and therefore can be very useful in debugging 

these systems. It should be noted that CRs with severity “A” are almost always sent to 

developers to provide fixes. CRs of severity “B” rely on PMDs and more than one type to 

help diagnose the problems. The least severe CRs contain a combination of all file types. 

We found that in all CRs, traces seem to receive the least attention.  
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Figure 3.4. Percentage of file types attached to CRs with respect to CR severity 
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H02:  There is no statistically significant difference between the fixing time of CRs with 

file type Ti and that of CRs that do not have files of type Ti. 

Variables: We use as independent variables the fixing time of a CR, which is in days and 

the file type Ti {ND, KPI, Log, Trace, PMD}. Unlike the other two questions, we do 

include node dumps in this question. In other words, we want also to know if the presence 

of a node dump file impacts the fixing time. 

Method: We compute the non-parametric Mann-Whitney test to compare the CR fixing 

time with respect to the file type Ti attached to the CR and analyze. We use the Mann-

Whitney test because we cannot assume that the data follows a normal distribution. The 

result of the test is considered as statistically significant at alpha = 0.05. Therefore, if p-

value < 0.05, we reject the null hypothesis H02 and conclude that the fixing time of CRs 

with file type Ti is significantly different from the fixing time of CRs without file type Ti.  

Results: 

Table 3.3 shows the results of the statistical tests. As we can see from the table, there is a 

statistically significant difference between CRs that contain Node Dumps and those that do 

not in terms of the fixing time. The same applies to KPI, Log, and Trace file types. The 

corresponding p-values are less than 0.05. However, we did not find a statistical difference 

between CRs with PMDs and those that do not.  
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Table 3.3 Results of statistical analysis on the impact of file types on CR fixing time 

Log Type p-value H0 

Node Dumps 0.006273 < 0.05 Reject 

KPI 0.000293 < 0.05 Reject 

Log 8.761203e-05 < 0. 05 Reject 

Trace 0.0102392 < 0.05 Reject 

PMD 0.6895507 > 0.05 Do not reject 

 

In other words, the fact that a CR contains a PMD does not necessarily result in a faster 

resolution. This may be due to the fact that PMDs are memory dumps and may contain a 

large amount of unstructured data related to different parts of the system. Interpreting this 

data is usually a challenging task. Ironically, in RQ1, we found that PMDs are the most 

collected runtime data. Based on this finding, we suggest to review the relevance of PMDs 

for fixing CRs for improved efficiency and cost saving. The current practice of collecting 

PMDs whenever a crash occurs may not be productive. 
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Chapter 4. Prediction of CR files 

 

In this chapter, we answer the fourth research question that was introduced in the previous 

chapter, which consists of:  

• RQ4. Can we predict if a CR should have a file attached to it before the CR is relayed 

to other lines of support? 

Predicting whether additional files need to be attached during the creation of a CR is an 

important step towards reducing the time and effort it takes to solve the CR. We can 

implement a recommendation system that recommends to the CR reporter whether a file 

should be attached or not. This will reduce the number of interactions between the various 

lines of supports.  

4.1. Approach 

To answer this question, we use machine learning techniques. Our approach uses a two-

phase process: Training and validating the models (shown in Figure 4.1). We build a 

training model that learns from past CRs that can later be used in the second phase to 

predict the inclusion of attached files (the inference phase). These two phases are 

discussed in more details in what follows. 
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Figure 4.1. Approach used to answer RQ4 

4.2. Feature Extraction 

With the help of Ericsson domain experts, we selected the following features of crash 

reports to use for classification. Some features contain categorical values. We used one-hot 

encoder [38] to convert these features to numerical values. 

• Submitter Priority: It is the severity of the defect and the CR’s priority (i.e., A, B, or C). 

• Priority Rate: This is an internal priority assigned to the CR. 

• Observation Fault: It represents the fault type. 

• Faulty Product Design Responsible Office: This field represents the team within 

Ericsson that is responsible for the defective product. This field changes as the CR is 

reassigned over the course of its life.  

• Node Level Name:  The node level product name. 

• Node Level Product Number:  The product number at the node level that is affected by 

the failure.  

• Faulty product: This fields refers to the faulty product. 

• Product affected system area: This field represents the functionality that is affected by 

the failure. 
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4.3. Training and testing 

We use three machine learning algorithms to predict whether a CR should have a file 

attached to it.  These are Support Vector Machine (SVM) [35], Random Forest (RF) [37], 

and K-Nearest Neighbor (KNN) [36]. 

SVM is a classification algorithm that uses a hyperplane to differentiate different classes 

of examples in high-dimension space. KNN is a lazy learning algorithm based on instances. 

KNN returns the K most similar instances to a feature vector when given one. As a result, 

the method provides the K closest relevant instances based on the value of (K), which is a 

fixed variable that defines the number of returned neighbours. RF is a machine learning 

technique based on the decision tree algorithm. The model was created using a logic-based 

approach.  

We use ten-fold cross-validation to test the model. This method randomly shuffles the 

dataset and divides it into 10 folds. The training is done using 90% of the data, which results 

in a model that is later tested with the remaining 10%. The approach is repeated 10 times 

by choosing different folds each time. The accuracy of the classification algorithm is the 

average accuracy obtained using the 10-fold cross-validation.  
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4.4. Evaluation Metrics  

We used precision, recall, and F1-score to assess the performance of the algorithms. These 

metrics are used extensively in the literature, which are calculated as follows: 

• Precision = TP/(TP + FP). 

• Recall = TP/(TP + FN).  

• F1_score = 2*Precision*Recall / (Precision + Recall) 

• Accuracy = (TP+TN)/(TP+FP+FN+TN) 

Where TP (True Positive) is the number of CRs that are classified properly. FP (False 

Positive) represents the number of CR for which the algorithm wrongly predicted that an 

attachment is needed. FN (False Negative) represents the number of CRs that have file 

attached files, but the algorithm missed. TN (True Negative) represents the number of CRs 

that do not have files attached to them and that the algorithm predicted properly. 
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Table 4.1. Prediction of CR runtime file attachments 

 SVM RF KNN 

Precision:  75% 81% 76.8% 

Recall:  88.5% 87.5% 88% 

F1_Score:  81% 84% 82% 

Accuracy:  70.3% 76% 72% 

 

4.5. Results 

Table 4.1 shows the results of applying SVM, RF, and KNN. All algorithms perform 

relatively well. However, Random Forest yields best results with an F1-score of  84%. The 

precision and recall are 81% and 87.5%, respectively. Our comparative study of the 

different classifications techniques reveals that RF outperforms the other techniques when 

predicting the presence of files in CRs. These results are very promising and suggest that 

we can develop a recommendation system that predict if a file should be attached to a CR, 

which may reduce the number of interactions between the various lines of support. 

 

 

  



34 

 

Chapter 5. Conclusion and Future Work 

 

5.1. Research Contributions 

In this thesis, we conducted an empirical study on the runtime files attached to Ericsson 

CRs. We used a dataset of CRs covering two years of development. We show that there are 

five type of files that are used to diagnose the problem that led to system failures. These 

are: Node Dumps, Logs, KPIs, traces, and PMDs. In addition to Node Dumps, we found 

that logs and PMD files are used the most. We also found that all file types have an impact 

on the CR fixing time except PMDs.  

Additionally, we found that despite their usefulness, traces and KPIs are used the least. We 

conjectured that this could be due to the fact that these types of runtime data require an 

overhead when generating them.  

Further, we investigated whether we can predict if a CR should contain a file during the 

creation of the CR. This is important for reducing the time it takes to fix the CR. We used 

three machine learning algorithms – SVM, KNN and RF – and found that RF performs the 

best with an F1-score of 84%.  
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5.2. Opportunities for Further Research  

Future work should focus on three main directions: 

We should investigate whether we can predict the type of file that should be included with 

the CR. By doing so, we can build a comprehensive tool that not only predicts the presence 

or absence of a file but also the type needed. We can use other features of the CRs such the 

CR description and headings, combined with multi-class classification algorithms for this 

purpose.  

Another future direction is to apply this research to predict other important features of a 

CR such as the steps to reproduce the CR. We found that many CRs that we analyzed did 

not have these steps despite the fact many research studies showed that steps to reproduce 

are the most needed by developers 

Furthermore, we need to conduct a user study with Ericsson domain experts to understand  

the impact of this research. More particularly, we are interested in a qualitative analysis 

that can reveal more on the way Ericsson uses traces, KPIs, logs and PMDs. We also would 

like to investigate if one type of files may be suitable for a certain category of crashes more 

than another one.  

Finally, the application of more advanced machine learning methods is another prospective 

direction for advancement. For our research, we used supervised machine learning 

algorithms. More advanced machine learning methods, such as deep learning methods, 



36 

 

could be used in the future to increase the prediction accuracy of the current methodology. 

We can also calculate how much time can be saved by using our method, and use this as 

one of our criteria for assessing the effectiveness of a recommendation system for file 

prediction. This will make the crash report more thorough, and the developer will request 

less information throughout the CR handling process, resulting in a more effective and 

efficient CR handling process. 
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