
 An Empirical Study of Runtime Files Attached to

Crash Reports

Komal Panchal

A Thesis

in the Department of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Electrical and Computer Engineering)

at

Concordia University

Montreal, Quebec, Canada

January 2022

© Komal Panchal, 2022

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Komal Panchal

Entitled: An Empirical Study of Runtime Files Attached to Crash Reports

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of the University and meets the accepted standards with respect

to originality and quality.

Signed by the final examining committee:

Dr. D. Qiu_______________________________ Chair

Dr. A. Youssef (CIISE)_____________________ Examiner

Dr. D. Qiu_______________________________ Examiner

Dr. Abdelwahab Hamou Lhadj_______________ Supervisor

Approved by: Dr. Jun Cai

Chair of Department or Graduate Program Director

Dr. Mourad Debbabi, Interim Dean,

Gina Cody School of Engineering & Computer Science

iii

Abstract

An Empirical Study of Runtime Files Attached to Crash Reports

Komal Panchal

When a software system crashes, users report the crash using crash report tracking tools. A

crash report (CR) is then routed to software developers for review to fix the problem. A CR

contain a wealth of information that allow developers to diagnose the root causes of

problems and provides fixes. This is particularly important at Ericsson, one of the world’s

largest Telecom company, in which this study was conducted. The handling of CRs at

Ericsson goes through multiple lines of supports until a solution is provided. To make this

possible, Ericsson software engineers and network operators rely on runtime data that is

collected during the crash. This data is organized into files that are attached to the CRs.

However, not all CRs contain this data in the first place. Software engineers and network

operators often have to request additional files after the CR is created and sent to different

Ericsson support lines, a problem that often delays the resolution process.

In this thesis, we conduct an empirical study of the runtime files attached to Ericsson CRs.

We focus on answering four research questions that revolved around the proportion of

runtime files in a selected set of CRs, the relationship between the severity of CRs and the

type of files they contain, the impact of different file types on the time to fix the CR, and

the possibility to predict whether a CR should have runtime data attached to it at the CR

iv

submission time. Our ultimate goal is to understand how runtime data is used during the

CR handling process at Ericsson and what recommendations we can make to improve this

process.

v

Acknowledgments

I would like to convey my heartfelt gratitude to Dr. Wahab Hamou-Lhadj who provided

me with the incredible opportunity to conduct this research. I appreciate his faith in me, his

constant support, keeping me motivated and the fact that he keeps his door open for

constructive feedback and discussion.

I would like to express my gratitude to the entire team at Ericsson Global AI Accelerator

(GAIA) in Montreal for their valuable input and contributions to this project. More

particularly, I would like to acknowledge the great support I received from Alka Isac,

Salman Memon, Zhongwen Zhu, and Pragash Krishnamoorth. I would also want to thank

my Ericsson internship colleague Fatima Ait-Mahammed for her assistance with the

implementation of my research work.

I would also want to express my gratitude to MITACS, Ericsson GAIA and Concordia

University's Gina Cody School of Engineering and Computer Science for their financial

support.

Many thanks to everyone in Professor Hamou-Lhadj’s Lab for their friendship, inspiration,

and thought-provoking conversations. I would also like to express my gratitude to

Concordia University for their support and assistance, particularly the Concordia

University Library, which provided a wealth of literature and guidance on report writing.

vi

Words cannot express my gratitude to my parents and brother, who always supported my

decisions from thousands of miles away and always encouraged me. A very special thanks

to my friends for their loving support during my ups and downs of life, achievements, and

setbacks. Without them, none of this would be possible.

vii

Table of Contents

Chapter 1. Introduction ...1

1.1. Problem and Motivation .. 1

1.2. Problem Statement and Thesis Contributions ... 5

1.3. Thesis Outline ... 6

Chapter 2. Background and Related Work ...8

2.1. Crash Reporting at Ericsson .. 8

2.2. Literature Review .. 9

2.3. Summary ... 15

Chapter 3. Empirical Study of Crash Report Attached Files ..16

3.1. Overview ... 16

3.2. Study Setup and Results .. 17

3.2.1. Dataset ... 17

3.2.2. RQ1: What is the proportion of each type of runtime files (i.e., traces, logs,

profiling metrics, etc.) in our dataset? ... 21

3.2.3. RQ2. What is the relationship between the severity of CRs and the file types

they contain? .. 23

3.2.4. RQ3: What is the impact of file types on the time to fix the CRs? 26

Chapter 4. Prediction of CR files ..29

4.1. Approach ... 29

4.2. Feature Extraction ... 30

4.3. Training and testing ... 31

viii

4.4. Evaluation Metrics .. 32

4.5. Results ... 33

Chapter 5. Conclusion and Future Work ...34

5.1. Research Contributions ... 34

5.2. Opportunities for Further Research ... 35

ix

List of Figures

Figure 1.1. A typical process for handling crash reports at Ericsson .. 2

Figure 3.1. Data collection and analysis process ... 17

Figure 3.2. Percentage of file types in our dataset .. 22

Figure 3.3. Percentage of CRs with respect to the enclosed file type 22

Figure 3.4. Percentage of file types attached to CRs with respect to CR severity 26

Figure 4.1. Approach used to answer RQ4 ... 30

x

List of Tables

Table 3.1. Template contingency table.. 24

Table 3.2. Contingency Table for RQ2 ... 25

Table 3.3 Results of statistical analysis on the impact of file types on CR fixing time 28

Table 4.1. Prediction of CR runtime file attachments ... 33

1

Chapter 1. Introduction

1.1. Problem and Motivation

Software systems are subject to crashes and failures during operation despite the effort

spent on development and testing. Software companies use crash tracking systems to

document system crashes from the time they occur to the time they are eventually solved.

Examples of crash tracking systems include Bugzilla1, Windows Error Reporting (WER)2,

and Apple Crash Reporter3.

At Ericsson, the company in which this research study is conducted, the process of handling

system crashes involves three lines of support:

• Level 1 – Network Operator Administrators: They are responsible for reconfiguring and

restarting the system as well as collection detailed information that describes the crash.

• Level 2 – Network Operator Support Engineers: They are responsible of reviewing the

crash reports, performing root cause analysis to understand the cause of the crash and

providing a solution if the crash does not involve changes to the source code.

1https://www.bugzilla.org/
2https://docs.microsoft.com/en-us/windows/win32/wer/windows-error-reporting
3https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AnalyzingCrashReports/AnalyzingCrashRe

ports.html

2

• Level 3 – Software Designers: They review the crashes, which may necessitate changes

to the source code. They perform root cause analysis and provide a solution, usually in

the form of system patches.

N
et

w
o

rk
 O

p
er

at
o

r
A

d
m

in
 (

Le
ve

l 1
)

N
et

w
o

rk
 O

p
er

at
o

r
Su

p
p

o
rt

 (
Le

ve
l 2

)
So

ft
w

a
re

 D
e

ve
lo

p
e

r
(L

e
ve

l 3
)

System crash

Configure and
restart the system

Collect logs, traces,
and profiling

metrics

Create/Open
CR

First time
incident

Notify Level 2
Support

Retrieve and
Review CR

Root Cause
Analysis

Request to reconfigure the
system and collect more info

Missing info

Provide solution

Enough info

No code impact

Escalate incident
to Level 3

Code impact

Retrieve and
Review CR

Root Cause
Analysis

Request to reconfigure the
system and collect more info

Missing info

Provide solutionEnough info

Send info to Level 2
support

Send info to Level 3
support

Level 2

Open CR

Level 3

Figure 1.1. A typical process for handling crash reports at Ericsson

3

Figure 1.1 shows a typical crash report process flow at Ericsson. The process is triggered

when a system crash occurs, at which point a Level 1 support operator creates a CR that

contains information about the incident such as a description, the impacted system

component, the severity of the crash, and runtime data (logs and traces) that are generated

during the crash. The CR is saved in a CR database.

The Level 1 support operator sends a notification to a Level 2 support engineer who

retrieves and reviews the CR and performs root cause analysis to identify the reasons behind

the incident and potentially provides a solution. At this point, the Level 2 support engineer

may realize that the CR does not contain sufficient information and sends a request back to

Level 1 support to generate the missing information. This cycle might be repeated several

times until the support engineer is satisfied with the detailed description of the incident that

can help him/her to find the root cause and solve the problem.

If the solution requires modifications to the source code, the CR is forwarded to a Level 3

support line to be reviewed by a software designer. Similar to the previous situation, the

software designer may engage in a cycle of interactions with the network support teams to

obtain more detailed information about the incident that would help him or her uncover the

root cause and provide a fix.

These repeated cycles of interactions between the various support lines often delay the

provision of fixes, which may result in inefficiencies and high costs. Our discussion with

Ericsson domain experts revealed that the main information that developers and network

4

operators request consists of files that can provide insights into the execution of the system.

These files are enclosed with CRs and used by developers and network operators to conduct

root cause analysis.

Runtime data take typically the form of logs, execution traces, and profiling metrics.

Software developers use this data to support various software engineering tasks including

debugging, performance analysis, program comprehension, and performance analysis [28-

32]. Additionally, there exist studies that rely on runtime data to improve the CR handling

process. For example, Sabor et al. [1] introduced an approach to predict the severity of CRs

using a combination of execution traces and CR categorical features [1]. Similar studies

include the work of Koopaei et al. [20] where the authors proposed an approach based on

Hidden Markov Models and execution traces to predict duplicate crash reports. Bettenburg

et al. [33] observed that developers consider execution traces to be one of the most useful

information that developers request when fixing a bug. Schroter et al. [34] went one step

further by examining the use of traces in fixing bugs and showed that crash reports with

traces are fixed sooner than those without. They also suggested to add explicit support to

traces in bug/crash tracking systems. More studies are presented in the next chapter.

5

1.2. Problem Statement and Thesis Contributions

Existing studies focus mainly on execution traces, paying less attention to the role of logs

and profiling metrics in reducing the overhead of processing CRs. In addition, most studies

are conducted using open source systems, which are inherently less complex than industrial

systems, especially those used in large organizations such as Ericsson. In this thesis, we

conduct the first empirical study to understand the types of runtime files attached to CRs

and their impact on the CR fixing time at Ericsson. We achieve this by examining a large

number of CRs and study the attached files with the objective to answer the following

research questions:

• RQ1: What is the proportion of each type of runtime files (i.e., traces, logs, profiling

metrics, etc.) in our dataset?

• RQ2: What is the relationship between the severity of CRs and the type of files they

contain?

• RQ3: What is the impact of different file types on the CR fixing time?

• RQ4: Can we predict if a CR should have a file attached to it before the CR is relayed

to other lines of support?

Answering RQ1, RQ2, and RQ3 will help us understand the types of files that are attached

with Ericsson CRs. This will, in turn, allow Ericsson domain experts to prioritize the type

of files they need to collect during a crash. The answer to RQ4 will determine if it is possible

to develop a recommendation system that can suggest to the first support line the files they

6

should include when submitting a CR. The ultimate objective is to reduce the interaction

time between the different lines of support, which should yield a faster CR resolution time.

The answers to these questions will also help us understand better the role of runtime files

in the resolution of crashes from an industrial perspective, contributing further to the

advancement of the field of software maintenance and evolution.

1.3. Thesis Outline

The rest of the thesis is structured as follows:

Chapter 2 – Background and Related work

This chapter describes the background and related work relevant to the thesis. The crash

tracking system of Ericsson is introduced in the first section. We go over the various

components of this system. Then, we discuss the steps for reporting and resolving the crash.

In the second section, we review recent studies on handling crash reports, followed by a

discussion.

Chapter 3 – Empirical Study of CR Enclosing Files

In this chapter, we show our approach for answering RQ1, RQ2, and R3 through an

empirical study. We start by discussing the type of files that are attached to CRs. We

continue by reporting on our findings and provide insights into the usefulness of the CR

7

enclosing files in terms of the impact they have on the CR fixing time. We also examine

the relationship between the CR enclosing files and the CR severity.

Chapter 4 – Prediction of CR Enclosing Files

In this chapter, we focus on RQ4 where we investigate if we can predict the need to attach

a file while the CR is being created. To this end, we experiment with three machine learning

algorithms, namely Support Vector Machine (SVM), Random Forest (RF), and K-Nearest

Neighbor (KNN).

Chapter 5 – Conclusion and Future Work

In this chapter, we revisit the main contributions of this thesis. We conclude with comments

about this study and present opportunities for future research.

8

Chapter 2. Background and Related Work

2.1. Crash Reporting at Ericsson

A crash reporting system is used to keep track of maintenance tasks [7]. It acts as a central

repository for tracking the status of CRs, managing the information flow between the

parties involved in handling the CR, and discussing the fixes. The crash reporting system

used at Ericsson is an integrated Web-based environment for maintenance and customer

support. It has many components to allow design, maintenance, and support teams to share

information that facilitate the CR handling and analysis process [8][10].

A CR is described using mainly the following information:

• CR reference: This is a unique reference for the CR.

• CR severity: The severity of a CR, measured based on the impact of the fault on the

system functionality. The severity can be “A”, “B”, or “C” with “A” referring to the

most severe CRs. A CR of severity “A” is usually attributed to a crash that causes a

complete failure of the system (e.g., stoppage of network traffic). The CR of severity

“B” is assigned to CRs that cause important performance degradation of the system.

CR of severity “C” is for minor faults and configuration with minimum impact on

network traffic.

9

• CR Status: A CR goes through different stages from the time it is submitted to the

time it is fixed. CR status includes “registered”, “assigned”, “cancelled”, “fixed”,

etc.

• Product information: Several CR fields in Ericsson CR tracking system are used to

describe the faulty product and version that is affected by the fault.

• History data: In this field, a track of the CR handling steps including the people who

reviewed and processed the CR at various stage is kept for future reference.

In this study, we only consider CRs with the status "Finished". That is, we exclude ongoing

CRs. It should also be mentioned that we exclude duplicate CRs from the dataset. Duplicate

reports are marked as duplicate by developers.

2.2. Literature Review

Maiga et al. [10] conducted an empirical study using Ericsson data to better understand

how internal and external CR are handled. Internal CRs refer to CR that are reported

internally by testing teams, whereas external CRs refer to crashes that occur in operation.

The study focused on the percentage of internal vs. external CRs, time taken to fix the CRs,

and time to assign the CRs. To answer the research issues, they ran several statistical tests

on the Ericsson CR dataset, which covered two years of maintenance activity. The authors

showed that internal CRs account for 64% of the total reported CRs, while external CRs

account for just 36%. The authors also showed that internal CRs take less time than external

CRs using the Mann-Whitney test results. They attributed this to the fact that design teams

10

have more understanding about the system than external CR reporters, and hence were able

to provide more data that helped in solving the CRs. Finally, the authors showed that the

severity of CRs did not affect CR fixing time or assignment time.

Zimmermann et al. [11] showed that the most prevalent issue that developers face when

addressing CRs is incomplete information. By surveying developers and users, the authors

synthesized the information that makes a good CR. According to their findings, the most

useful information for developers to efficiently fix CRs is not something that is easy for

CR submitters to provide. The authors went on creating the CUEZILLA recommendation

tool to assess the quality of submitted CRs and make recommendations on how to enhance

them. CUEZILLA automatically mines historical CRs related to bugs that are fixed

successfully and use these as good examples for CR reporting.

Zhang et al. [9] assessed existing bug report analysis efforts in a survey study. Their main

contribution is a classification of bug report analysis techniques that have been studies in

recent years including optimization of bug reports, triaging of bug reports triage, bug-report

misclassification reduction strategies, bug-report severity prediction techniques, bug

localization, etc.

Bhattacharya et al. [12] conducted an empirical study to learn more about the bug fixing

procedure in Android apps and platforms. Three primary research threads were

investigated. First, the authors looked at the use of multiple metrics to analyze CRs and the

bug fixing process. By calculating CR quality metrics, the authors discovered that most

11

Android app bug reports are of high quality, with lengthy textual descriptions, steps to

reproduce errors, and explanations of expected output. A lengthy description in a CR

usually indicates a high-quality bug report, which aids in the fast resolution of the bug. The

authors also found that only 11% of the defects are fixed by the first assigned developers,

and 75% of bugs take 2 to 13 developer tosses. In the second thread, the authors conducted

a comparative study between Google Code and Bugzilla life cycles and argued that the

introduction of Bugzilla's issue tracker and modification history into Google Code

improved the bug fixing process. The last thread focused on a study of security flaws where

the authors compared the quality of app vulnerabilities to the quality of non-security bugs.

Also, the authors found that security bugs are resolved quicker than performance bugs.

An et al. [13] proposed an approach for mining information from CRs while highlighting

the challenges of existing techniques. They looked at the problem of user identification of

a CR. The authors also discussed the challenges of mapping crash reports to their

corresponding bugs to understand the distribution of crash-related bugs in the user base. A

similar study was conducted to understand the challenges of mapping CRs to bug fixes and

to investigate whether developers efficiently addressed the reported field crashes by

estimating the effort required to fix the crash.

Rastkar et al. [3] examined if current conversation-based automatic summarizers can be

used to summarize CRs. They found that the quality of the generated CR summaries is

comparable to summaries extracted from email threads and other conversations. The

authors trained a summarizer on a CR corpus and showed that their model can be used to

12

create summaries from CRs that can save time when analyzing CRs without sacrificing

accuracy.

Karim [5] performed a research study to identify the important features of CRs that CR

submitters often overlook. Then, he went on creating an automated key feature prediction

model to recommend features to CR submitters based on historical reports. Using text

classification techniques, he developed prediction models for each CR feature. The model

performed well, achieving an F1-score of 70%.

Anbalagan et al. [14] conducted an empirical analysis of CRs from an open-source project

to develop a model for predicting the project's corrective maintenance effort in terms of the

time it takes to fix the bugs. This research was based on problem reports from nine Ubuntu

versions. The author focused on user engagement in open-source project corrective

maintenance and predicted the time it would take to fix bugs. The authors found that there

a linear correlation between the number of users who report a defect and the median time

it takes to fix it.

Chen et al. [15] proposed a method for automatically extracting bug entities and their

relationships from CRs that combines Recurrent Neural Networks (RNN) with a

dependency parser. This idea was shown to be effective in extracting bug entities and their

relationships from issue reports in the studied bug repositories. The author first examined

the categorization criteria for bug entities and their relationships before introducing the

RNN models and dependency parser that were used to extract bug entities and interactions.

13

The CR description is preprocessed to extract words and then a baseline corpus is built to

manually classify the types of bug entities and relations. The author used the Bi-LSTM-

RNN model and dependency parser to predict the categories of entities and relations from

CRs.

Sarkar et al. [16] developed an automated bug triaging tool tailored to the Ericsson bug

tracking system. The author used a methodological valid time split evaluation where they

sequentially train and test on large industrial data. Simple text and categorical features of

CRs, combined with alarms and crash dumps are used for training a model.

Mahfoodh et al. [17] suggested a risk estimation method that can predict a quantifiable

software risk value, allowing developers to improve software availability, security, and

project management. This study used the number of bug-fixed samples for each priority

category to determine the actual bug-fix time average, which was then combined with the

last bug-fix time projected value to get the risk percentage of the bug-fix time prediction.

This study used one crash report dataset to assess software components, yielding risk

ratings ranging from 27.4 percent to 84 percent.

Xia et al. [18] looked at the impact of CR field reassignments on issue fixing experience.

They contacted the developers of the subject software project to figure out the causes

behind reassignment of CR fields. Three broad root causes were identified in the study:

fresh CR correction, going through the procedure, and admin batch tasks. According to the

researchers Around 80% of CRs have their field reassigned. Furthermore, the author

14

concluded from the overall data that CRs with field reassignments took longer to fix than

those without.

Early detection of duplicate crash reports can reduce the amount of time required to process

the CRs. CrashAutomata, a model proposed by Koopaei et al. [20], detects duplicate CRs

using automata. The authors created a representative model using historical CRs and a

combination of n-grams of varying lengths and automata to depict stack traces.

CrashAutomata produces very good precision and recall results for Firefox CRs, higher

than comparative tools. In a follow-up study, Koopaei et al. [21] improved CrashAutomat

by introducing the use of Hidden-Markov Models (HMMs). The new approach resulted in

an increase of the true positive rate by 10% over CrashAutomata.

From the same research lab as Koopaei et al., Sabor et al. [2] suggested a feature extraction

strategy that reduces feature size while retaining the most important categorization

information. They used this approach for the automatic prediction of duplicate reports. The

author used a trace abstraction strategy in this investigation, replacing stack traces of

function calls with traces of packages.

Dhaliwal et al. [23] conducted an empirical study on CRs gathered for Mozilla Firefox to

determine the influence of CR grouping and the features of an efficient grouping. The

author proposed a grouping technique to minimize bug resolving time, where each group

comprises CRs generated by just one type of problem. Bug fixing time was decreased by

5.3% because of this effective grouping. A two-level method to CR categorization was

15

presented. To construct crash types, the first level of grouping groups CRs based on the

method signature of stack traces. A comprehensive comparison of stack traces is performed

at the second level to establish a sub-group. The similarity of the two CRs was determined

by comparing the 10 first frames of the CRs stack traces. When numerous bugs are

collectively related to the same crash type, the author determined that it takes longer to fix

the issue than when the bug is uniquely linked to one or more crash types.

2.3. Summary

The analysis of crash/bug reports has been an active research topic for the last decade.

Techniques that can reduce or predict the time it takes to fix crashes are needed to reduce

the maintenance overhead. Existing techniques focus on various aspects of CRs. This thesis

complements these techniques by examining how runtime files including execution traces,

logs, and profiling metrics, are used in an industrial setting to reduce the time and effort of

solving crashes. To our knowledge, this is the first time that a study that focuses solely on

the importance on various runtime files in the processing of CRs from an industrial

perspective is conducted.

16

Chapter 3. Empirical Study of Crash Report

Attached Files

3.1. Overview

Our main goal in this thesis is to gain a better understanding of the runtime files attached

to the CRs and their impact on the CR resolution process. This is particularly important in

a large company such as Ericsson where the various development teams may be logging

different things (network devices, nodes, software applications, performance metrics, etc.).

Adding to this, it is known that the practice of logging and tracing lacks guidelines and

common practices in software engineering [24].

With the help of domain experts working on a large product at Ericsson, we conducted an

empirical study of runtime files attached to many CRs of an active Ericsson project with

the objective to answer the following four research questions:

• RQ1: What is the proportion of each type of runtime files (i.e., traces, logs, profiling

metrics, etc.) in our dataset?

• RQ2: What is the relationship between the severity of CRs and the type of files they

contain?

• RQ3: What is the impact of different file types on the CR fixing time?

17

• RQ4: Can we predict if a CR should have a file attached to it before the CR is relayed

to other lines of support?

3.2. Study Setup and Results

Figure 3.1 shows the process of collecting the data and addressing the research questions

RQ1, RQ2, and RQ3. RQ4 is deferred to the next chapter. First, we extract data from the

Ericsson CR database. We then mine the reports to extract the files enclosed with the CRs.

The input of domain experts is needed throughout the process to help understand the data

and interpret the results.

Figure 3.1. Data collection and analysis process

3.2.1. Dataset

We collected CRs of an active software product at Ericsson. The CRs cover almost two

years of development. These CRs went through different lines of support until they were

fixed. With the help of Ericsson experts, we wrote queries to extract CR information such

as the CR heading, description, severity, the submitter, as well as the attached files. For

 RQ1

 RQ2

 RQ3

Extract fixing time

and severity

CR

Database

Attached

Files

Extract types

of files

18

each file, we retrieved the file name, the date at which the file was attached to the CR, the

user who submitted the file, and the file size. Note that one CR may contain more than one

file attached to it. In our dataset, the total number of files is five times larger than the

number of CRs.

Ericsson developers use different types of files. For example, a file may contain

performance indicators, which are profiling metrics collected at the time of the crash.

Another file may contain execution information of a given process. Unfortunately, there is

no mechanism that distinguishes between the different types of enclosed files in the CRs.

To address this, with the help of Ericsson experts, we manually analyzed the file attached

to the CRs in our dataset. For each file, we reviewed the associated description. For some

files, we had to open them and read their content. We also used the file name to infer

information that may help us identify the type of runtime data it represents. Based on this,

we developed a set of rules that can be automatically used to identify the type of files in

other CRs or CRs of other systems. These rules use the file name, the CR description

provided by the crash reporter in the CR, and e-mail threads (records of discussions that

took place between the various lines of support). Some of these rules combine keywords

extracted from all these sources. We find cases where file names alone are used as the main

source for identifying the file type, which suggests that software developers at Ericsson use

some sort of naming convention to label files. However, these conventions are not

documented or enforced in the CR raising process, justifying the need for the rules that we

have developed in the context of this project. These rules are implemented as regular

19

expressions after validating them with Ericsson experts. We wrote a script that implements

these regular expressions. The script takes the file description, file name, and email threads

as input and return the file type as output. In the future, we intend to apply advanced data

mining techniques to create rules that can generalize to CRs of other Ericsson systems. The

rules are not included in this thesis for confidentiality reasons.

We identified five types of files, which we present here and discuss in more details in what

follows:

• Node Dumps (NDs)

• Key Performance Indicators (KPIs)

• Execution Traces

• User-defined Logs

• Post-mortem Dumps (PMDs)

Type 1 – Node Dumps (NDs): At Ericsson, a ND file is required whenever a system crash

is reported in a CR. A ND file contains the output of a set of commands that are executed

on the node, providing us with a snapshot of the state of the node. This file is important for

understanding what went wrong. Sometimes, the problem is due to a configuration issue.

The content of a ND may help spot such issues by first lines of support, i.e., without having

to relay to other lines of support.

Type 2 - Key Performance Indicators (KPIs): A KPI file provides information on the

performance of the system through performance counters. For example, a KPI file may

20

show the degradation of the network, which can help network operators identify the cause

of the problem.

Type 3 - Execution traces: Execution traces are used to find a causal relationship between

the system artifacts. Examples includes traces of function calls, inter-process

communication traces, distributed traces, etc. Tracing requires instrumentation of the

system, which consists of insertion of probes in places of interest. Using a trace, an analyst

can replay the execution of the system to understand and diagnose the problem.

Type 4 - User-defined Logs: Complex telecom networking systems such as the ones

developed at Ericsson are composed of many hardware and software platforms. It is

common for developers to insert logging statements that would help them later to diagnose

challenging problems. A logging statement typically contains a timestamp, a process id, a

verbosity level, a logging function, a log message, and variables. Developers go through

the log messages to debug the system and perform root cause analysis.

Type 5 - Post-mortem Dumps (PMDs): They contain whatever data is available in

memory when a system crashes, including the processes that were executing at the moment

of incident, the data exchanged between processes, etc. PMDs are rarely structured and may

contain data related to multiple processes or even components.

21

3.2.2. RQ1: What is the proportion of each type of runtime files (i.e., traces, logs,

profiling metrics, etc.) in our dataset?

Objectives: The answer to this question can help Ericsson’s development teams understand

the type of files that are used the most and that should be given priority. This is because

generating these files infers an overhead and cost. Collecting all attached file types for

each incident may turn out to be unproductive. This is particularly important in the context

of runtime data analysis where one needs to develop parsers and analysis tools that are

tailored towards a particular type of file.

Variables: For each file type Ti {ND, KPI, Log, Trace, PMD}, we use as variables the

number of files of type Ti, the number of CRs that contain files of type Ti. We also need

the total number of files and CRs to compute the ratios.

Method: To answer this research question, we use descriptive statistics. More precisely,

we measure the ratio of the number of files of type Ti to the total number of files and the

ratio of the number of CRs that contain logs of file type Ti to the total number of CRs.

Results:

Figure 3.2 shows the percentage of each file type in our dataset. As we can see, NDs are

the most files that are collected. This is expected since NDs contain information about

nodes after a crash occurs. It is also common to have multiple ND files for one crash report.

22

Figure 3.2. Percentage of file types in our dataset

Figure 3.3. Percentage of CRs with respect to the enclosed file type

NDs, 50.67%

KPI, 5.70%

Log, 15.88%

PMD,
19.67%

Trace, 8.08%

PMD, 41.74%

Trace, 13.56%

Log, 30.95%

KPI, 13.75%

23

PMDs and Logs occupy the second and third position with 19.67% and 15.88% of all the

file types. Traces and KPI files are used the least. This could be due to the fact that these

two types of files incur an additional overhead when generating. For example, tracing

requires an instrumentation tool and settings, which may deter users from generating this

type of file. The same applies to KPI files that contain profiling metrics.

Figure 3.3 shows the percentage of CRs with respect to the type of files they contain. Note

that we excluded Node Dumps from this analysis since Node Dumps are collected for every

crash. The figure shows that PMDs and Logs are the most used files, which clearly supports

the idea that traces and KPIs, which reveal a different perspective than PMDs and Logs,

receive less attention in problem diagnosis.

3.2.3. RQ2. What is the relationship between the severity of CRs and the file types

they contain?

In this research question, we examine if there is a relationship between the severity of the

CRs and the type of files they contain. As mentioned in Chapter 2, the severity of a CR

reflects the impact of the fault on the system functionality. The severity can be “A”, “B”,

or “C” with “A” being the most severe CRs.

We want to establish whether the severity of a CR impacts the type of files that are attached

to this CR. For this part, we state the following null hypothesis:

• H01: The type of files that is attached to a CR is not dependant on the CR severity?

24

Variables: We use as variables the number of CRs with file type Ti and the severity level

of the CRs (A, B, C). Note that we exclude node dumps from this analysis as well.

Method: To answer the research question, we build the contingency table with two

qualitative variables, the CR severity (A, B, C) and the CR file type. The contingency table

template is shown in Table 3.1. For example, in cell (A, KPI), we include the number of

CRs that contain only files of type KPI (or KPI and node dumps since we are ignoring node

dumps in this study). The last column shows the number of CRs that contain more than one

of the file types.

Table 3.1. Template contingency table

Severity KPI Log Trace PMD
More than one
of these types

A

B

 C

We use the Pearson’s chi-squared independence test to accept or reject the null hypothesis

H01. The test is commonly used to examine the relationship between two independent

qualitative variables, which are in our study, the CR severity and the CR attached file type.

The result is considered statistically significant at alpha = 0.05. If p-value < 0.05 then we

reject the null hypothesis H01 and conclude that the severity of the CRs and the types of

files attached to the CRs are dependant.

25

Results:

Table 3.2. Contingency Table for RQ2

Severity KPI Log Trace PMD
More than one
of these types

A 3.57% 37.50% 7.14% 32.14% 19.64%

B 7.78% 14.39% 7.34% 41.56% 28.93%

C 19.64% 21.43% 5.36% 19.64% 33.93%

Table 3.2 shows the percentage of each file type with respect to severity. Note that we show

the percentages instead of the real values for confidentiality reasons. To compute the Chi-

square test, we used the real value and not the percentages. We found that the p-value is <

0.00001. The result is significant at p-value < 0.05. Therefore, we reject the null hypothesis

H01 and conclude that there is a relationship between the CR severity and the file types.

Figure 3.3 shows the distribution of the file types based on the CR severity. The data varies

depending on the severity. The figure shows that the most severe CRs (CR with severity

“A”) have logs as the most important files. This may be explained by the fact that logs

contain information introduced by developers and therefore can be very useful in debugging

these systems. It should be noted that CRs with severity “A” are almost always sent to

developers to provide fixes. CRs of severity “B” rely on PMDs and more than one type to

help diagnose the problems. The least severe CRs contain a combination of all file types.

We found that in all CRs, traces seem to receive the least attention.

26

Figure 3.4. Percentage of file types attached to CRs with respect to CR severity

3.2.4. RQ3: What is the impact of file types on the time to fix the CRs?

Objective: For this question, we analyze the impact of file types on the time it takes to

solve the CR. The fixing time of a CR is measured in days. The answer to this question is

useful to understand whether including a certain file type would improve the resolution

process of CRs. For example, knowing that a CR that contains a PMD takes less time than

a CR that does not have a PMD would encourage Ericsson designers to collect PMDs if

they are available when a crash occurs.

To answer this question, we run a statistical test for each file type Ti {KPI, Log, Trace,

PMD}. We state the following null hypothesis:

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

A B C

P
er

ce
n

ta
ge

 o
f

fi
le

 t
yp

es

CR Severity

KPI

Logs

Trace

PMD

More than one type

27

H02: There is no statistically significant difference between the fixing time of CRs with

file type Ti and that of CRs that do not have files of type Ti.

Variables: We use as independent variables the fixing time of a CR, which is in days and

the file type Ti {ND, KPI, Log, Trace, PMD}. Unlike the other two questions, we do

include node dumps in this question. In other words, we want also to know if the presence

of a node dump file impacts the fixing time.

Method: We compute the non-parametric Mann-Whitney test to compare the CR fixing

time with respect to the file type Ti attached to the CR and analyze. We use the Mann-

Whitney test because we cannot assume that the data follows a normal distribution. The

result of the test is considered as statistically significant at alpha = 0.05. Therefore, if p-

value < 0.05, we reject the null hypothesis H02 and conclude that the fixing time of CRs

with file type Ti is significantly different from the fixing time of CRs without file type Ti.

Results:

Table 3.3 shows the results of the statistical tests. As we can see from the table, there is a

statistically significant difference between CRs that contain Node Dumps and those that do

not in terms of the fixing time. The same applies to KPI, Log, and Trace file types. The

corresponding p-values are less than 0.05. However, we did not find a statistical difference

between CRs with PMDs and those that do not.

28

Table 3.3 Results of statistical analysis on the impact of file types on CR fixing time

Log Type p-value H0

Node Dumps 0.006273 < 0.05 Reject

KPI 0.000293 < 0.05 Reject

Log 8.761203e-05 < 0. 05 Reject

Trace 0.0102392 < 0.05 Reject

PMD 0.6895507 > 0.05 Do not reject

In other words, the fact that a CR contains a PMD does not necessarily result in a faster

resolution. This may be due to the fact that PMDs are memory dumps and may contain a

large amount of unstructured data related to different parts of the system. Interpreting this

data is usually a challenging task. Ironically, in RQ1, we found that PMDs are the most

collected runtime data. Based on this finding, we suggest to review the relevance of PMDs

for fixing CRs for improved efficiency and cost saving. The current practice of collecting

PMDs whenever a crash occurs may not be productive.

29

Chapter 4. Prediction of CR files

In this chapter, we answer the fourth research question that was introduced in the previous

chapter, which consists of:

• RQ4. Can we predict if a CR should have a file attached to it before the CR is relayed

to other lines of support?

Predicting whether additional files need to be attached during the creation of a CR is an

important step towards reducing the time and effort it takes to solve the CR. We can

implement a recommendation system that recommends to the CR reporter whether a file

should be attached or not. This will reduce the number of interactions between the various

lines of supports.

4.1. Approach

To answer this question, we use machine learning techniques. Our approach uses a two-

phase process: Training and validating the models (shown in Figure 4.1). We build a

training model that learns from past CRs that can later be used in the second phase to

predict the inclusion of attached files (the inference phase). These two phases are

discussed in more details in what follows.

30

Figure 4.1. Approach used to answer RQ4

4.2. Feature Extraction

With the help of Ericsson domain experts, we selected the following features of crash

reports to use for classification. Some features contain categorical values. We used one-hot

encoder [38] to convert these features to numerical values.

• Submitter Priority: It is the severity of the defect and the CR’s priority (i.e., A, B, or C).

• Priority Rate: This is an internal priority assigned to the CR.

• Observation Fault: It represents the fault type.

• Faulty Product Design Responsible Office: This field represents the team within

Ericsson that is responsible for the defective product. This field changes as the CR is

reassigned over the course of its life.

• Node Level Name: The node level product name.

• Node Level Product Number: The product number at the node level that is affected by

the failure.

• Faulty product: This fields refers to the faulty product.

• Product affected system area: This field represents the functionality that is affected by

the failure.

Train/validate ML
models

Models
CR DB

Select CR categorical
features

Build a feature
table

31

4.3. Training and testing

We use three machine learning algorithms to predict whether a CR should have a file

attached to it. These are Support Vector Machine (SVM) [35], Random Forest (RF) [37],

and K-Nearest Neighbor (KNN) [36].

SVM is a classification algorithm that uses a hyperplane to differentiate different classes

of examples in high-dimension space. KNN is a lazy learning algorithm based on instances.

KNN returns the K most similar instances to a feature vector when given one. As a result,

the method provides the K closest relevant instances based on the value of (K), which is a

fixed variable that defines the number of returned neighbours. RF is a machine learning

technique based on the decision tree algorithm. The model was created using a logic-based

approach.

We use ten-fold cross-validation to test the model. This method randomly shuffles the

dataset and divides it into 10 folds. The training is done using 90% of the data, which results

in a model that is later tested with the remaining 10%. The approach is repeated 10 times

by choosing different folds each time. The accuracy of the classification algorithm is the

average accuracy obtained using the 10-fold cross-validation.

32

4.4. Evaluation Metrics

We used precision, recall, and F1-score to assess the performance of the algorithms. These

metrics are used extensively in the literature, which are calculated as follows:

• Precision = TP/(TP + FP).

• Recall = TP/(TP + FN).

• F1_score = 2*Precision*Recall / (Precision + Recall)

• Accuracy = (TP+TN)/(TP+FP+FN+TN)

Where TP (True Positive) is the number of CRs that are classified properly. FP (False

Positive) represents the number of CR for which the algorithm wrongly predicted that an

attachment is needed. FN (False Negative) represents the number of CRs that have file

attached files, but the algorithm missed. TN (True Negative) represents the number of CRs

that do not have files attached to them and that the algorithm predicted properly.

33

Table 4.1. Prediction of CR runtime file attachments

 SVM RF KNN

Precision: 75% 81% 76.8%

Recall: 88.5% 87.5% 88%

F1_Score: 81% 84% 82%

Accuracy: 70.3% 76% 72%

4.5. Results

Table 4.1 shows the results of applying SVM, RF, and KNN. All algorithms perform

relatively well. However, Random Forest yields best results with an F1-score of 84%. The

precision and recall are 81% and 87.5%, respectively. Our comparative study of the

different classifications techniques reveals that RF outperforms the other techniques when

predicting the presence of files in CRs. These results are very promising and suggest that

we can develop a recommendation system that predict if a file should be attached to a CR,

which may reduce the number of interactions between the various lines of support.

34

Chapter 5. Conclusion and Future Work

5.1. Research Contributions

In this thesis, we conducted an empirical study on the runtime files attached to Ericsson

CRs. We used a dataset of CRs covering two years of development. We show that there are

five type of files that are used to diagnose the problem that led to system failures. These

are: Node Dumps, Logs, KPIs, traces, and PMDs. In addition to Node Dumps, we found

that logs and PMD files are used the most. We also found that all file types have an impact

on the CR fixing time except PMDs.

Additionally, we found that despite their usefulness, traces and KPIs are used the least. We

conjectured that this could be due to the fact that these types of runtime data require an

overhead when generating them.

Further, we investigated whether we can predict if a CR should contain a file during the

creation of the CR. This is important for reducing the time it takes to fix the CR. We used

three machine learning algorithms – SVM, KNN and RF – and found that RF performs the

best with an F1-score of 84%.

35

5.2. Opportunities for Further Research

Future work should focus on three main directions:

We should investigate whether we can predict the type of file that should be included with

the CR. By doing so, we can build a comprehensive tool that not only predicts the presence

or absence of a file but also the type needed. We can use other features of the CRs such the

CR description and headings, combined with multi-class classification algorithms for this

purpose.

Another future direction is to apply this research to predict other important features of a

CR such as the steps to reproduce the CR. We found that many CRs that we analyzed did

not have these steps despite the fact many research studies showed that steps to reproduce

are the most needed by developers

Furthermore, we need to conduct a user study with Ericsson domain experts to understand

the impact of this research. More particularly, we are interested in a qualitative analysis

that can reveal more on the way Ericsson uses traces, KPIs, logs and PMDs. We also would

like to investigate if one type of files may be suitable for a certain category of crashes more

than another one.

Finally, the application of more advanced machine learning methods is another prospective

direction for advancement. For our research, we used supervised machine learning

algorithms. More advanced machine learning methods, such as deep learning methods,

36

could be used in the future to increase the prediction accuracy of the current methodology.

We can also calculate how much time can be saved by using our method, and use this as

one of our criteria for assessing the effectiveness of a recommendation system for file

prediction. This will make the crash report more thorough, and the developer will request

less information throughout the CR handling process, resulting in a more effective and

efficient CR handling process.

37

Bibliography

[1]. K. K. Sabor, M. Hamdaqa, and A. Hamou-Lhadj, “Automatic prediction of the severity

of bugs using stack traces and categorical features,” Information and Software

Technology, vol. 123, 2020.

[2]. K. K. Sabor, A. Hamou-Lhadj, and A. Larsson, “DURFEX: A feature extraction

technique for efficient detection of duplicate bug reports,” in Proc. of the 2017 IEEE

International Conference on Software Quality and Reliability (QRS'17), 2017 pp. 240–

250.

[3]. S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization of bug reports,”

IEEE Transactions on Software Engineering, vol. 40, no. 4, pp. 366–380, 2014.

[4]. C. Weiss, R. Premraj, T. Zimmermann and A. Zeller, "How Long Will It Take to Fix

This Bug?," in Proc. of the 4th International Workshop on Mining Software Repositories

(MSR'07), 2007.

[5]. M. R. Karim, "Key Features Recommendation to Improve Bug Reporting," in Proc. of

the International Conference on Software and System Processes (ICSSP), 2019, pp. 1-4.

[6]. O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Marcus, G. Bavota, and V.

Ng, "Detecting missing information in bug descriptions," in Proc. of the 11th Joint

Meeting on Foundations of Software Engineering (ESEC/FSE'17), 2017, pp. 396-407.

38

[7]. T. Zimmermann, R. Premraj, J. Sillito, and S. Breu, "Improving bug tracking systems,"

in Proc. of the 31st International Conference on Software Engineering - Companion

Volume, 2009, pp. 247-250.

[8]. L. Hribar and D. Duka, "Reporting and removing faults in telecommunication software,"

in Proc. of the 34th International Convention MIPRO, 2011, pp. 593-599.

[9]. J. Zhang, X. Y. Wang, D. Hao, B. Xie, L. Zhang, and H. Mei, “A survey on bug-report

analysis,” Science China Information Sciences, vol. 58, no. 2, pp. 1–24, 2015.

[10]. A. Maiga, A. Hamou-Lhadj, M. Nayrolles, K. K. Sabor and A. Larsson, "An empirical

study on the handling of crash reports in a large software company: An experience

report," in Proc. of the 31st IEEE International Conference on Software Maintenance and

Evolution (ICSME), 2015, pp. 342-351.

[11]. T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter and C. Weiss, "What

Makes a Good Bug Report?," Transactions on Software Engineering, vol. 36, no. 5, pp.

618-643, 2010.

[12]. P. Bhattacharya, L. Ulanova, I. Neamtiu and S. C. Koduru, "An Empirical Analysis of

Bug Reports and Bug Fixing in Open Source Android Apps," in Proc. of the 17th

European Conference on Software Maintenance and Reengineering (CSMR'13), 2013,

pp. 133-143.

[13]. L. An and F. Khomh, "Challenges and Issues of Mining Crash Reports," in Proc. of the

IEEE 1st International Workshop on Software Analytics (SWAN), 2015, pp. 5-8.

39

[14]. P. Anbalagan and M. Vouk, “On predicting the time taken to correct bug reports in open

source projects,” in Proc. of the IEEE 25th International Conference on Software

Maintenance (ICSM'09), 2009, pp. 523–526.

[15]. D. Chen, B. Li, C. Zhou and X. Zhu, "Automatically Identifying Bug Entities and

Relations for Bug Analysis," 2019 IEEE 1st International Workshop on Intelligent Bug

Fixing (IBF), 2019, pp. 39-43.

[16]. A. Sarkar, P. C. Rigby and B. Bartalos, "Improving Bug Triaging with High Confidence

Predictions at Ericsson," 2019 IEEE 25th International Conference on Software

Maintenance and Evolution (ICSME), 2019, pp. 81-91.

[17]. H. Mahfoodh and Q. Obediat, "Software Risk Estimation Through Bug Reports Analysis

and Bug-fix Time Predictions," in Proc. of the International Conference on Innovation

and Intelligence for Informatics, Computing and Technologies (3ICT), 2020, pp. 1-6.

[18]. X. Xia, D. Lo, M. Wen, E. Shihab and B. Zhou, "An empirical study of bug report field

reassignment," in Proc, of the 2014 Software Evolution Week - IEEE Conference on

Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE), 2014,

pp. 174-183.

[19]. P. Ramarao, K. Muthukumaran, S. Dash and N. L. Bhanu Murthy, "Impact of Bug

Reporter's Reputation on Bug-Fix Times," in Proc. of the International Conference on

Information Systems Engineering (ICISE), 2016, pp. 57-61.

[20]. N. E. Koopaei, A. Hamou-Lhadj, “CrashAutomata: An Approach for the Detection of

40

Duplicate Crash Reports Based on Generalizable Automata,” in Proc. of the 25th Annual

International Conference on Computer Science and Software Engineering

(CASCON'15), 2015, pp. 201–210.

[21]. N. E. Koopaei, S. Islam, A. Hamou-lhadj, and M. Hamdaqua, “An Effective Method for

Detecting Duplicate Crash Reports Using Crash Traces and Hidden Markov Models,” in

Proc. of the 26th nnual International Conference on Computer Science and Software

Engineering (CASCON'16), pp. 75–84, 2016.

[22]. Y. Zhai, W. Song, X. Liu, L. Liu and X. Zhao, "A Chi-Square Statistics Based Feature

Selection Method in Text Classification," in Proc. of the 9th International Conference on

Software Engineering and Service Science (ICSESS), 2018, pp. 160-163.

[23]. T. Dhaliwal, F. Khomh and Y. Zou, "Classifying field crash reports for fixing bugs: A

case study of Mozilla Firefox," in Proc. of the 27th IEEE International Conference on

Software Maintenance (ICSM'11), 2011, pp. 333-342.

[24]. K. H. Patel, “The Sense of Logging in the Linux Kernel,” Master's thesis, Concordia

University, 2020.

[25]. K. K. Sabor, A. Hamou-Lhadj, A. Trabelsi, J. Hassine, "Predicting bug report fields using

stack traces and categorical attributes," in Proc. of the 29th Annual International

Conference on Computer Science and Software Engineering (CASCON'19), 2019, pp.

224-233.

[26]. D. El-Masri, F. Petrillo, Y-G. Guéhéneuc, A. Hamou-Lhadj, A. Bouziane, "A Systematic

41

Literature Review on Automated Log Abstraction Techniques," Information and

Software Technology (IST), vol. 122, 2020.

[27]. A. V. Miranskyy, A. Hamou-Lhadj, E. Cialini, A. Larsson, "Operational-Log Analysis

for Big Data Systems: Challenges and Solutions," IEEE Software, vol. 33, no. 2, pp. 52-

59, 2016.

[28]. S. He, Q. Lin, J-G. Lou, H. Zhang, M. R. Lyu, D. Zhang, "Identifying impactful service

system problems via log analysis," in Proc. of the 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE'18), 2018, pp. 60–70.

[29]. A. Nandi, A. Mandal, S. Atreja, G. B. Dasgupta, S. Bhattacharya, "Anomaly Detection

Using Program Control Flow Graph Mining from Execution Logs," in Proc. of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD'16), 2016, pp. 215–224.

[30]. Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J-G. Lou, C. Li, Y. Wu, R. Yao, M.

Chintalapati, D. Zhang, "Predicting Node failure in cloud service systems," in Proc. of

the 26th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE'18), 2018, pp. 480–

490.

[31]. A. Hamou-Lhadj, T. Lethbridge, "Summarizing the Content of Large Traces to Facilitate

the Understanding of the Behaviour of a Software System," in Proc. of the International

42

Conference on Program Comprehension (ICPC'06), 2006, pp. 181-190.

[32]. N. Ezzati-Jivan, Q. Fournier, M. R. Dagenais and A. Hamou-Lhadj, "DepGraph:

Localizing Performance Bottlenecks in Multi-Core Applications Using Waiting

Dependency Graphs and Software Tracing," in Proc. of the IEEE 20th International

Working Conference on Source Code Analysis and Manipulation (SCAM), 2020, pp.

149-159.

[33]. N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and T. Zimmermann, “What

makes a good bug report?,” in Proc. of the 16th ACM SIGSOFT International

Symposium on Foundations of Software Engineering (FSE'16), 2008, pp. 308-318.

[34]. A. Schroter, N. Bettenburg, and R. Premraj, “Do stack traces help developers fix bugs?,”

in Proc. of 7th IEEE Working Conference on the Mining Software Repositories (MSR),

2010, pp. 118-121.

[35]. I. Steinwart, A. and Christmann (2008). Support Vector Machines. 1st edition, New

York: Springer (Information science and statistics). doi: 10.1007/978-0-387-77242-4.

[36]. P. Cunningham, and S. J. Delany, S. J. (2021) “K-Nearest Neighbour Classifiers - a

Tutorial,” ACM Computing Surveys (CSUR), 54(6), 2021, pp. 1–25.

[37]. R. Genuer, and J.-M. Poggi. Random Forests with R. Cham: Springer Use R! Book

Series, 2020.

[38]. F. Pedregosa et al., “Scikit-Learn: Machine Learning in Python,” Journal of Machine

43

Learning Research, Volume 12, 2011, pp. 2825–2830.

[39]. K. Jolly. Machine learning with scikit-learn quick start guide: classification, regression.

and clustering techniques in python. Packt Publishing, Birmingham, UK, 2018.

