
Contelog: A Formal Declarative Framework for
Contextual Knowledge Representation and

Reasoning

Ammar Abdulbasit Alsaig

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Software Engineering) at

Concordia University

Montréal, Québec, Canada

June 2022

© Ammar Abdulbasit Alsaig, 2022

� ��� �� �������������������������� ���������� ��� ��� �� � � ����������������������� ���������������������� ��� �������������������� ������������������� �� ����������������������� ����������������������� �� ����������������������� ��������������������������� �� ����������� ������������������� �� ����������� ��������������������� �� ����������� ��������������������������� ������������������ �� �� � � ��� � � �� � � � �� � � �������������������������� � � ��

��

Abstract

Contelog: A Formal Declarative Framework for Contextual Knowledge
Representation and Reasoning

Ammar Abdulbasit Alsaig Ph.D.

Concordia University, 2022

Context-awareness is at the core of providing timely adaptations in safety-critical secure

applications of pervasive computing and Artificial Intelligence (AI) domains. In the current

AI and application context-aware frameworks, the distinction between knowledge and con-

text are blurred and not formally integrated. As a result, adaptation behaviors based on

contextual reasoning cannot be formally derived and reasoned about. Also, in many smart

systems such as automated manufacturing, decision making, and healthcare, it is essential

for context-awareness units to synchronize with contextual reasoning modules to derive new

knowledge in order to adapt, alert, and predict. A rigorous formalism is therefore essential

to (1) represent contextual domain knowledge as well as application rules, and (2) efficiently

and effectively reason to draw contextual conclusions. This thesis is a contribution in this

direction. The thesis introduces first a formal context representation and a context calculus

used to build context models for applications. Then, it introduces query processing and

optimization techniques to perform context-based reasoning. The formal framework that

achieves these two tasks is called Contelog Framework, obtained by a conservative exten-

sion of the syntax and semantics of Datalog. It models contextual knowledge and infers

new knowledge. In its design, contextual knowledge and contextual reasoning are loosely

coupled, and hence contextual knowledge is reusable on its own. The significance is that

by fixing the contextual knowledge, rules in the program and/or query may be changed.

Contelog provides a theory of context, in a way that is independent of the application logic

rules. The context calculus developed in this thesis allows exporting knowledge inferred in

one context to be used in another context. Following the idea of Magic sets from Data-

log, Magic Contexts together with query rewriting algorithms are introduced to optimize

iii

bottom-up query evaluation of Contelog programs. A Book of Examples has been compiled

for Contelog, and these examples are implemented to showcase a proof of concept for the

generality, expressiveness, and rigor of the proposed Contelog framework. A variety of ex-

periments that compare the performance of Contelog with earlier Datalog implementations

reveal a significant improvement and bring out practical merits of current stage of Contelog

and its potential for future extensions in context representation and reasoning of emerging

applications of context-aware computing.

iv

Acknowledgments

First and foremost, praises and thanks to God, the Almighty, for his showers of blessings

throughout my journey to complete my research successfully.

I would like to express my deep and sincere gratitude to my research supervisors, Dr.

Vangalur Alagar and Dr. Nematollaah Shiri, for their continuous support throughout the

research. Dr. Alagar is and has been always a father, a teacher, and a motivator to me

throughout my academic journey since the beginning. His wisdom has been a savior to me

in many occasions, and has helped me in making important academic decisions. Dr. Nema-

tollaah is a big brother, he has always been there for me when I needed him. His thoughtful

comments have helped me even at both academic and personal levels. I am sincerely in-

debted to both of them, they have both been kind, helpful, wise, and understanding.

My deepest thanks to my wife Sahar El Belbesi, and my kids Wedad, Sarah, Yassir,

and Meriem and to my sister Alaa Alsaig for the support they have given me all along. My

academic performance would have never been the same without their continuous cheering.

They have been around at my highs and my lows, supported me at home and outside. No

words can describe my gratitude to them, and I can never thank them enough.

My thanks to my parents, their sacrifices are endless. Thanks for their support, prayers,

and patience. Thanks for all sort of support they have provided along the way. My deepest

sincere thanks goes to them for their unconditional love that surrounded me with the warmth

whenever I needed it.

My special gratitude to the people I lost along the journey, they have helped me but did

not last until the end. I am greatly indebted to them and to everyone helped me along the

way. It is hard to exhaustively thank everyone, thus I say to all people I love, my friends

and family, all people who happened to help me even once, thank you.

v

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Contributions . 6

2 Literature Survey 10

2.1 Motivation for Structuring the Review . 10

2.2 A Critical Review of Context Modeling . 13

2.2.1 Modeling Context Using Informal Notation 14

2.2.2 Modeling Context Using Formal Notations 18

2.3 Context-based Reasoning . 32

2.3.1 Summary of Context and Context-based Reasoning Analysis 41

3 Research Methodology of Contelog Framework 44

3.1 c-Program Components . 44

3.1.1 Key Characteristics for Context . 45

3.1.2 Key Characteristics of c-facts and c-rules 47

3.1.3 Key Features of Semantics For c-reasoner 49

3.2 User Interface, Query Processing and Evaluation Components 50

3.2.1 User Interface Component . 50

3.2.2 Query Processing Component . 51

3.2.3 Performance Evaluation Component 52

3.3 Merits of the Contelog Framework Design 53

vi

4 Context Theory 55

4.1 Tier 1: Context Schema Representation and Calculus 56

4.1.1 Containment Relationship . 57

4.1.2 Operations and Calculus . 58

4.1.3 Context Schema Lattice . 60

4.2 Tier 2: Typed Context Schema Representation and Calculus 60

4.2.1 Typed Context Schema Representation 61

4.2.2 Typed Schema Calculus . 62

4.2.3 Typed Context Schema Lattice . 62

4.3 Tier 3: Context Instance Representation and Calculus 63

4.3.1 Context Instance Representation . 64

4.4 Modeling Example . 65

4.5 Evaluation of the Context Theory . 68

5 The Contelog Framework 70

5.1 Note on Contexts . 70

5.2 The Syntax . 71

5.3 The Semantics of c-programs . 72

5.3.1 Model Theory . 73

5.3.2 Herbrand Interpretation . 73

5.3.3 Fixpoint Semantics . 75

5.4 Currency Exchange - A Complete Contelog Example And its Evaluation . . 76

5.5 Evaluation and Observations for Contelog Framework 79

6 Query Processing and Optimization Algorithms 81

6.1 Preliminaries . 82

6.1.1 Pre-processing . 82

6.1.2 Unification Conditions . 82

6.1.3 Local Unification . 83

6.1.4 Global Unification . 84

6.1.5 Inference Algorithm . 85

6.2 Goal-Independent Bottom-up Evaluation . 86

vii

6.2.1 Naive Evaluation Method . 87

6.2.2 Semi-Naive Method . 88

6.3 Magic Context: Goal-Oriented Bottom-up Evaluation 90

6.4 Issues in Extending Contelog with Magic Sets Technique 91

6.5 Magic Context Transformation . 92

6.5.1 Preamble . 92

6.5.2 The MCT Algorithm . 93

6.5.3 Running Multiple Queries . 101

7 Contelog: Case Studies 108

7.1 Building Locator Program Example . 108

7.1.1 Magic Context: Query Processing for Building Locator program Pbl 109

7.2 Access Control Program Example . 111

7.2.1 Magic Context: Query Processing for Access Control Example . . . 114

7.3 Simple Magic Box Example Program . 115

7.3.1 Magic Box Example - Scaled Up Version 118

7.3.2 Magic Context: Query Processing for Scaled-up Version of the Box

Example . 120

7.4 Context Aware Application - Active Reasoner 121

7.4.1 Context-Aware System Components 123

7.4.2 Contelog-based Context-aware System: Tilt Detector 124

7.4.3 Tilt Detector: The Electronic Circuit 124

7.4.4 Tilt Detector: The System Logic and Sequence 125

7.4.5 Tilt Detector: Contelog Instance-1, Status Detector 126

7.4.6 Tilt Detector: Contelog Instance-2, Decision Maker 127

8 Performance Evaluation 129

8.1 Algorithmic Complexity . 129

8.2 Scope of Comparison . 130

8.3 Performance Evaluation of Contelog . 131

8.4 Experiments . 132

8.4.1 Large Joins Rules . 133

viii

8.4.2 Recursive Rules . 135

8.4.3 Contextual Rules . 138

8.5 Summary of Experiments . 140

9 Conclusion and Future Work 142

9.1 Summary of Contributions . 142

9.2 Future Work . 145

Appendix A Book of Examples 148

A.1 The Direction Example . 148

A.1.1 Goal . 148

A.1.2 Overview . 148

A.1.3 Program Details . 149

A.1.4 Code . 149

A.2 Animal Classifier . 150

A.2.1 Goal . 150

A.2.2 Overview . 150

A.2.3 Program Details . 151

A.2.4 Code . 151

A.3 Animal Classifier (enriched) . 152

A.3.1 Goal . 152

A.3.2 Overview . 152

A.3.3 Code . 152

A.4 User Access Controller . 154

A.4.1 Goal . 154

A.4.2 Overview . 154

A.4.3 Program Details . 154

A.5 Diagnosis Program . 156

A.5.1 Goal . 156

A.5.2 Overview . 156

A.5.3 Program Details . 157

A.5.4 Code . 157

ix

A.6 Database Access Controller . 158

A.6.1 Goal . 158

A.6.2 Overview . 159

A.6.3 Program Details . 159

A.6.4 Code . 160

A.7 context based path finder . 161

A.7.1 Goal . 161

A.7.2 Overview . 161

A.7.3 Program Details . 162

A.7.4 Code . 162

A.8 The Navigator . 163

A.8.1 Goal . 164

A.8.2 Overview . 164

A.8.3 Program Details . 164

A.8.4 Code . 164

A.9 Money Exchanger . 167

A.9.1 Goal . 167

A.9.2 Overview . 167

A.9.3 Program Details . 167

A.9.4 Code . 167

A.10 The Translator . 168

A.10.1 Goal . 168

A.10.2 Overview . 168

A.10.3 Program Details . 168

A.10.4 Code . 168

A.11 Simple Magic Box Example . 169

A.11.1 Improved Magic Box Example . 172

A.12 Contelog-based Context-aware System: Tilt Detector 174

A.12.1 Tilt Detector: The Electronic Circuit 176

A.12.2 Tilt Detector: The System Logic and Sequence 177

A.12.3 Tilt Detector: Contelog Instance-1, Status Detector 177

x

A.12.4 Tilt Detector: Contelog Instance-2, Decision Maker 178

Appendix B Contelog Tilt Detector Implementation 181

B.1 The Controller . 181

Bibliography 185

xi

List of Figures

Figure 1.1 Illustration of the Building Locator Example 2

Figure 2.1 Schema-based explanation representation 15

Figure 2.2 Context structure as defined in Guha’s work 23

Figure 2.3 Concepts used to reason with context, full surveys can be found in

(Serafini & Bouquet, 2004) (Akman & Surav, 1996) (Strang & Linnhoff-

Popien, 2004) (Loyola, 2007) (Brézillon, 1999) 32

Figure 3.1 Components of c-programs . 45

Figure 3.2 Highlevel illustration for Contelog Framework components 46

Figure 3.3 Overview of User Interface . 50

Figure 3.4 Snapshot of the display reports shown in Contelog Framework 52

Figure 4.1 Context Toolkit Layer . 56

Figure 4.2 Snapshot of the paper submission example in (García & Brézillon,

2017) . 65

Figure 5.1 Possible formulas allowed in the Contelog framework 72

Figure 7.1 Illustration of the magic box example 116

Figure 7.2 Illustration of the scaled-up magic box example 119

Figure 7.3 Context-aware General Structure (Alagar, Mohammad, Wan, & Hnaide,

2014a) . 122

Figure 7.4 Context-aware main components with Contelog 123

Figure 7.5 Circuit for Tilt Detector . 125

Figure 8.1 Performance of Contelog on large number of facts 132

Figure 8.2 Large Joins, No Query Results . 134

Figure 8.3 Large Joins With First Argument Bound 134

xii

Figure 8.4 Large Joins with First Argument Bound 135

Figure 8.5 Recursive Rules, No Query Results - Acyclic 136

Figure 8.6 Recursive Rules No Query Results - Cyclic 136

Figure 8.7 Recursive Rules First Argument Bound - Acyclic 137

Figure 8.8 Recursive Rules First Argument Bound - Cyclic 137

Figure 8.9 Recursive Rules Second Argument Bound - Acyclic 137

Figure 8.10 Recursive Rules Second Argument Bound - Cyclic 138

Figure 8.11 Contextual Rules - No Query . 139

Figure 8.12 Contextual Rules - First Argument Bound 139

Figure 8.13 Contextual Rules - Second Argument Bound 139

Figure 8.14 Contextual Rules - Third (context) Argument Bound 140

Figure A.1 Illustration of the building locator example 148

Figure A.2 illustration of inheritance example 150

Figure A.3 illustration of inheritance example 152

Figure A.4 illustration of abstract context . 154

Figure A.5 Illustration of the diagnosis program 156

Figure A.6 Illustration of the db access controller program 158

Figure A.7 Illustration of the path finder program 161

Figure A.8 Illustration of the navigator program 163

Figure A.9 Illustration of the magic box example 171

Figure A.10 Illustration of the improved magic box example 173

Figure A.11 Context-aware main components with Contelog 175

Figure A.12 Circuit for Tilt Detector . 176

xiii

List of Tables

Table 2.1 Summary of evaluation of all research reviewed in sections Informal

Notations 2.2.1 and Formal Notations 2.2.2 *FC: Formal Conceptualization,

FM: Formal Modeling, FR: Formal Representation, FrS:Freedom of Struc-

ture, FxK:Fixed Knowledge,InK: Inferred Knowledge, SHD: Support Het-

erogeneous Data, Inn:Innumerable, Det: Detachable A: (Costa, Furtado, Pires,

Macedo, & Cardoso, 2012) (Liu, Zhang, Webb, & Li, 2015), B: (Kass, Leake, & Owens, 1986;

Leake, 2014; Mooney & DeJong, 1985; Norvig, 1983), C: (Alsaig, Mohammad, & Alsaig, 2015),

D: (Gao & Dong, 2017) , E: (Wang, Zhang, Gu, & Pung, 2004a), F: (Ejigu, Scuturici, &

Brunie, 2007), G: (Gu, Wang, Pung, & Zhang, 2004; Lee, Kim, Lee, & Lee, 2007; Shehzad,

Ngo, Pham, & Lee, 2004), H: (Mueller, 2014), I: (McCarthy, 1993; McCarthy & Buvac, 1997),

J: (Guha, 1991) , K: (Buvač & Mason, 1993), L: (Shoham, 1991), M: (Giunchiglia, 1993), N:

(Attardi & Simi, 1995), O: (Akman & Surav, 1997; for the Study of Language, for the Study of

Language, Information, & Barwise, 1989), P: (Schilit, Adams, & Want, 1994), R: (Reddy &

Gupta, 1995) , S: (Wan, Alagar, & Paquet, 2005) . 42

Table 2.2 Framework level evaluation * A: (Guha, 1991) (McCarthy, 1993), B: (Buvač &

Mason, 1993), C: (Giunchiglia, 1993), D: (Attardi & Simi, 1995), E: (Shoham, 1991), F: (Bar-

wise, 1989), G: (Akman & Surav, 1996) H: (Schilit et al., 1994), I: (Reddy & Gupta, 1995), J:

(Wan, Alagar, & Paquet, 2005), K: (Strang, Linnhoff-Popien, & Frank, 2003) 43

Table 4.1 Evaluation of Our Context Theory against the same criteria of evalu-

ation used to evaluate previous methods in section 2.3.1 69

Table 5.1 Framework level evaluation for Contelog 79

Table 6.1 Examples of queries and the corresponding query contexts 95

Table 8.1 Summary of the Complexity of Datalog programs 130

xiv

Table 8.2 Features For Comparing Evaluation Approaches 131

xv

Chapter 1

Introduction

Knowledge base (KB) is one of the main components of Expert Systems, a sub-field of

Artificial Intelligence (AI). The two main parts of KB are knowledge specification (facts and

rules) and an inference engine for reasoning. The initial set of facts are the static knowledge

of an application acquired by the system, and the rules which enable derivation of new facts

from the static knowledge. Once a new facts are derived, they are added to the initial set

of facts, and used to further generate new facts. The derivation process terminates when

no new fact is generated.

Expert Systems use KBs (general and/or specific) to solve problems in many application

domains. Examples of Expert Systems include (1) The MYCIN experiments of the Stanford

Heuristic Programming Project (Buchanan, Shortliffe, et al., 1984), (2) Rule-based Medical

Diagnosis systems (Clancey, 1983; Lamperti & Zanella, 2003), and (3) Rule-based Access

Control (Carminati, Ferrari, & Perego, 2006) Systems. The MYCIN project demonstrated

that for many of these applications, it is necessary that a fact is “valid” in a given “context”

in order to be useful. Hence, rule-based reasoner should not only be able to consider facts

but also consider the “contexts” in which those facts are true. This thesis builds on this

theme and develops a formal framework, called Contelog , for context-aware KB systems.

Context as a concept was discussed as early as 1960s in several disciplines, such as

linguistics and psychology (Kintsch & van Dijk, 1978), philosophy (Kinneavy, 1971; Moffett,

1968), and sociology (Merton, 1973). It was only in 1993 that it was introduced in the field of

AI by McCarthy (McCarthy, 1993). His intention was to generalize rules to not only cover

a specific domain but to do so in different contexts. Several other authors (Attardi & Simi,

1

Figure 1.1: Illustration of the Building Locator Example

1995; Buvač & Mason, 1993; Giunchiglia, 1993; Guha, 1991) followed his effort to formalize

context-based reasoning and introduced new theories for contextualization of knowledge.

Many theories and concepts that discuss similar concerns emerged subsequently. Some

notable ones are Situation Theory (Barwise, 1989), Temporal Logic (Lamport, 1980; Ostroff,

1989), and Reasoning in Time and Space (Alvaro et al., 2011). Albeit these great theoretical

endeavors, a formal representation of context was not studied. Consequently, contextual

information and rules could not be made explicit and expressive. As a result, these theories

remained “just theories or domain specific theories” and were not mature enough for use

in any practical application domain. As discussed in detail in Chapter 2, a review of all

works beginning from the earliest example of “Building Locator” Ackman (Akman &

Surav, 1996) to many recent publications on technology-driven Ubiquitous and Pervasive

Computing Systems (Brezillon & Abu-Hakima, 1995; Gao & Dong, 2017; Kofod-Petersen

& Mikalsen, 2005; Orsi & Tanca, 2011; Perttunen, Riekki, & Lassila, 2009), reveal that only

ad-hoc methods have been used to implement “context-dependent features”. To expose the

pitfalls on the use of notations that lack theoretically sound formal context representation,

we discuss the “Building Locator” example below. The discussion below also brings out

the several logical inconsistencies that arise when logical notations (Guha, 1991; McCarthy,

1993), although not informal, instead of disambiguating context notation, are used for

contextual problem solving. When contexts, as first class citizens are modeled independently

and separately from the rest of the facts and rules of an application, ambiguous syntax and

inconsistent interpretations disappear.

2

Building Locator Example

We use the building locator example (Akman & Surav, 1996), depicted in Figure 1.1, to

motivate the need for a concise formal context notation. The goal in “Building Locator”

example is to direct a user coming from one direction (east or west) to the building situated

at a side (left or right) of the road. Clearly, the directives to people to reach their desti-

nation buildings depend on the directions from where they are coming, as the locations of

buildings are static. At the time Akman and Surav (Akman & Surav, 1996) discussed this

problem, the context information inside the “rich context notion” cannot be separated and

represented. Consequently, they gave a simple narrative in “natural language” to present

the possible solutions for different people coming from different directions. In order to use

a formal reasoner to derive the results, we need to formally represent information involved

in the scenario including contexts. Due to the lack of any formal representation of contexts,

McCarthy (McCarthy, 1993), Guha (Guha, 1991), and Brewka (Brewka & Eiter, 2007)

used propositional logic. Following Guha (1991), we use predicate logic notation to repre-

sent contextual information. This sheds some light on the non-triviality of formalizing the

problem.

Let p(X, Y) and side(X, Z) be binary predicates, where X represents a person, Y is the

direction from which the person is coming, and Z is the side to where the person should

be going. Let from(W) and to(M) be unary context predicates (they appear in contexts

only), where W is an ordinal direction (east/west) and M is the side (right/left) of the

library with respect to a direction of W . We use McCarthy’s expression ist(C, P) that

asserts “predicate P is true in context C.” Let the contexts in the program domain be c1

and c2, where c1 = {from(east), to(right)} qualifies a person who comes from “east” and

the library is located on his/her “right”, and c2 = {from(west), to(left)} qualifies a person

who comes from “west” and the library is on his/her “left.” For example, a person who is

coming from the east is in context c1, and based on this context the library is on his right.

The symbol “ ≡′′ is used to state equivalence of the two expressions. The symbol r1 is

used to label the rules, and the symbol r1(c1) is used to label a rule r1 inside the context

c1. Program IMPL-M shown below is a possible logic programming implementation using

the notation and concepts introduced in (McCarthy, 1993). In this rather straightforward

implementation we observe the following drawbacks.

3

(1) Assertions on contexts are given as part of the facts. Because contexts are not sep-

arated from facts, there is lexical ambiguity due to the possibility of overlapping

vocabularies for facts and contexts.

(2) The rules are not purely context-based, because the contexts are parts of the facts.

Because facts are static, the rules that are static will always remain true. This means

that we lose the concept of “contextual change or dynamic context”.

(3) As a consequence of the above drawbacks, the implementation of program IMPL-M

lacks dynamism, and might lead to inconsistent (or ambiguous) interpretations.

Program: IMPL-M

1 #FACTS

2 p(john, east).

3 p(rose, west).

4 ist(c1, from(east)→ to(right)).

5 ist(c2, from(west)→ to(left)).

6 #RULES

7 r1: p(X, Y), ist(C, from(Y)→ to(Z))→ ist(C, side(X, Z))

Using the concept of “lifting rules” proposed in (Guha, 1991), we can remove some

drawback in the program IMPL-M to derive the program IMPL-G. Lifting rules allows

importing assertions from a context to another. In lifting rule lr1, the predicate p(X, Y)

ranges over the facts and the variable C ranges over the contexts. The variable “X” in

C(X) is used only to carry the information back to the problem solving context. This

would not change the content or meaning of the context. As shown in the implementation,

the assertion ist(C, p(X, Y)) can be lifted to ist(C(X), from(Y)). It lifts the assertion

p(X, Y) from a context C to the assertion from(Y) in the context C(X). This makes

the implementation “dynamic.” To clarify, using the rule r1 and the fact p(john, east),

we can conclude ist(C, p(john, east)). Because C is a variable, we can substitute c1 for C

and use the first lifting rule lr1 to conclude ist(c1(john), from(east)). This substitution

process is referred to as "entering" a context. Since c1 includes the predicate from(east), we

derive to(right), and hence ist(c1(john), to(right)). This in turn enables the second lifting

rule lr2, using which we derive ist(c1, side(john, right)). We then can use r2 to derive

4

side(john, right). That is, with respect to the direction from which john is approaching

the building, we conclude that the building is on his right. This substitution results in the

so-called "exiting" a context.

Program: IMPL-G

1 #FACTS

2 p(john, east).

3 p(rose, west).

4 #RULES

5 r1: p(X, Y)→ ist(C, p(X, Y)).

6 r2: ist(C, side(X, Y))→ side(X, Y).

7 c1: from(east)→ to(right).

8 c2: from(west)→ to(left).

9 #LIFTING RULES

10 lr1: ist(C, p(X, Y)) ≡ ist(C(X), from(Y)).

11 lr2: ist(C(X), to(Z)) ≡ ist(C, side(X, Z)).

A comparison of the implementations of IMPL-M and IMPL-G reveals that the former lacks

dynamism, while IMPL-G lacks simplicity. Both implementations, due to lack of proper

notation and formal representation of context, lack economy of representation and formal

separation of concerns. In turn, programs lack simplicity and reusability. Motivated by the

above, we propose the formal framework Contelog in which the “rich context” of McCarthy

and Guha are disassembled into (1) a formal meta-information part, which we call context

in our work , and (2) a formal specification of facts and rules, which are parts of the KB

system. They are separate, and each part can exist without the other. So, using those

separated Context and Contelog notations, the program for the building locator problem

can be concisely expressed by the following context 1.1 facts and rules in Contelog 1.2.

Listing 1.1: Program: Context of Building Locator Example

1 c1 = {from : [east], to : [right]}

2 c2 = {from : [west], to : [left]}

Listing 1.2: Contelog Program of Building Locator Example

5

1 r1: p(X, Y)@C ← p(X, Y), from(Y)@C.

2 r2: side(X, Z)@C ← p(X, Y)@C, to(Z)@C.

where P@C corresponds to the Mccarthy’s predicate ist(C, P). Later on we will justify that

our proposed framework is more general, flexible, modular, reusable, with the advantages

of the declarative and fixpoint semantics.

1.1 Contributions

The problem of “context notation” was brought up in (McCarthy, 1993), and carried

on by (Guha, 1991) in the following statement

“the careful reader of the derivation will wonder what system of logic permits

the manipulations involved, especially the substitution of sentences for variables

followed by immediate use of the results of the substitution. There are various

notation systems that can be used, e.g. quasi-quotation as used in Lisp, or

Knowledge Interchange Format (KIF) and use of back-quotes Buvac (Buvač &

Mason, 1993). But all have disadvantages. At present we are more attached to

the derivation than to any specific logical system”

Later Akman Akman and Surav (1996) postulated that the following five advantages can

be gained through a formal context representation.

• Economy of Representation: Data can be represented in different views using same

structure of knowledge base.

• Efficiency of Reasoning: By limiting down the domain of reasoning to specific context

reasoning power is increased.

• Allowance for Inconsistent knowledge: Inconsistencies can be identified and resolved

by interpreting data in different contexts.

• Resolving Lexical Ambiguity: Explicitly introducing context removes lexical ambigu-

ity.

• Removing Ambiguities of Language: Overlapping vocabularies may exist in knowledge

base but are disambiguated by context.

6

But Akman and his followers did not propose a notation. Having established the need to

have a formal representation, the first contribution of this thesis is a formal context rep-

resentation that fulfills the above postulates and yet easy to fit into a logical reasoning

system. The second contribution is the choice of contextual knowledge representation plat-

form in which contextual reasoning can be conducted. In making these contributions we

have critically studied existing literature to make diligent choices that can be extended to

meet design principles such as simplicity, generality, extensibility, and reuse.

Our context formalism captures many popular definitions, such as “context is a settings

of event, or environment specifications of event” that are used by a large volume of literature

in context-aware computing (Brézillon, 1999; et al., 2009; Strang & Linnhoff-Popien, 2004),

thus enabling them to use Contelog framework to formalize their applications. We make

our relational algebraic context notation richer than the earlier functional notation (Wan,

2006; Wan, Alagar, & Paquet, 2005). Our context formalization includes a context calculus,

and a context lattice. Keeping in mind that contextual knowledge should be reusable, we

model context separately from the Contelog program itself. That is, set of contexts can

be used for many Contelog programs. We require that the context structure is a complete

lattice, in which the meet and join operations are used to define the declarative and fixpoint

semantics of Contelog programs. This provides a theoretically sound and practically feasible

framework for representing and reasoning with contextual information.

We extend Datalog (Abiteboul, Hull, & Vianu, 1995a; Ceri, Gottlob, & Tanca, 1989)

in a conservative manner for representing contextual knowledge and reason about them.

The relational syntax of context fits well with our extension. That is, in extended Datalog

syntax these contexts are used in defining contextual facts and rules. We take advantage

of the strong theoretical base, namely, simple syntax, declarative semantics, and power-

ful query processing and optimization techniques of Datalog, and extend it conservatively

for contextual knowledge representation and contextual reasoning. That is, the syntax of

contextual rules and semantics of their evaluations do not violate those of Datalog. We

show in the thesis that the complexity of Contelog query processing is of the same order as

evaluation of Datalog queries, namely polynomial in the number of constants in D (Grau,

Horrocks, Kaminski, Kostylev, & Motik, 2020; Liang, Fodor, Wan, & Kifer, 2009).

7

Towards realizing a practical system, we have developed a context toolkit and an inter-

face for a naive user to create and run Contelog programs. By a loose coupling, the program

body (rules) can be executed by changing contextual facts. Thereby, we achieve reasoning

in different contexts. Alternately, one set of contextual facts can be imported to different

program bodies (rules get changed here). Thereby, contextual knowledge becomes reusable,

enabling different types of reasoning on one set of knowledge. From our experience in a

number of problems that we have solved (Alsaig, 2017) using the prototype system devel-

oped, we are optimistic that our approach has the potential to fill the gap between theory

and practice that has existed in the art of contextual reasoning. The above contributions

are structured in this thesis as follows.

(1) Context Theory

(a) An extensive literature survey on context representations and operations.

(b) Complete representation of context component.

(c) Context Calculus: Set of operations and semantics of contexts.

(d) Complete Theory: Context Lattice.

(2) Context-Based Reasoning

(a) A study of high volume of research on logic-based context-based reasoning.

(b) Define a link between contexts and logic in terms of rules and facts.

(c) Contelog : A conservative extension of Datalog syntax, semantics, and theories

to include Contexts as first class citizen.

(d) Provide a proof of Declarative semantics (Horn Clasues) on Contelog

(e) Develop bottom-up approach and proof of fix-point termination.

(3) Query Processing and Peformance

(a) Naive bottom-up evaluation.

(b) Semi-naive bottom-up evaluation.

(c) Magic Context: An efficient transformation approach for Contelog and Datalog.

(4) Prototyping and Testing

8

(a) Provide a book of examples that provides diverse set of Contelog programs.

(b) Provide a complete implementation of Contelog with all its features and query

processing techniques.

(c) Provide a complete implementation of Context ToolKit that helps at defining

and adding new contexts.

(d) Provide a complete implementation of Profiling Kit that measures Contelog per-

formance at several stages: reading (tokenization), scanning (syntax and seman-

tics checking), and inferencing.

(e) Provide an extensive performance testing with different engines.

The structure of the thesis is as follows: Chapter 2 provides complete literature review

on context 2.2 and on context-based reasoning 2.3. Chapter 3 provides the method-

ology and the evaluation criteria of the thesis. Chapter 4 introduces context theory

via formalization, representation, semantics, operations, and finally context-lattice.

Chapter 5, discusses Contelog framework and incrementally extends and builds its

components, which includes, syntax, semantics, declarative semantics, model theory,

and proof theory. Query Optimization techniques, and discussions on performance

optimization is introduced in Chapter 6. In Chapter 7, the applications of Contelog

engine prototype are discussed. The comparative studies to test the performance of

Contelog is provided in Chapter 8. Finally, Chapter 9 provides a conclusion of the

work and potential extensions for Contelog in the future research endeavours.

9

Chapter 2

Literature Survey

Context is a term that has been around for centuries, and it has been used in multiple

disciplines with different synonyms. It has been extensively used in the study of Philosoph-

ical discourses (Kinneavy, 1971; Wan, 2006), Natural Languages Processing (Brézillon,

1996; Wan, 2006), Linguistics (Carnap, 1947; Kintsch & van Dijk, 1978), and Psychology

(Clark & Carlson, 1981). The synonyms used in these disciplines are , event (Mueller,

2014), temporal context (Moldovan, Clark, & Harabagiu, 2005), situation (Henricksen &

Indulska, 2006), neoma (Brézillon, 1996), explanation (Brézillon, 1996), ontology (Akman

& Surav, 1997), view point (Attardi & Simi, 1995), and perspective (Giunchiglia, 1993).

Given this large diversity of literature and terms for context, it is not possible to go into

an exhaustive literature survey. In this chapter we restrict the review of literature that is

relevant to this thesis. First, we motivate the structuring for our presentation. Following it

the survey is given in detail within the restricted scope.

2.1 Motivation for Structuring the Review

Although each synonym had been used in a specific circumstance and towards diverse

purposes, all terms are faces of the same coin “context”. They all refer to the Greek

meaning of the word “context” which consists of the two words “con” and “texere”, where

the word “con” means “together” and the word “texere” means “to weave” (Wan, 2006).

Combined, it means “to weave together”. This refers to the goal of using context, namely

“to weave” circumstances together to understand the knowledge behind spoken or written

10

information. Three decades ago Ackman (Akman & Surav, 1996) suggested the use of

context in computer science. Since then, research in context has contributed to different

fields of study in computing. The following is a quick overview of the multiple directions of

research. This summary sets the stage for structuring our in-depth literature survey.

(1) Informal Approaches to Computing Applications:

• Interdisciplinary Emphasis: The nature of diversity and interdisciplinary research

can be seen in LNAI publication series “Modeling and Using Context”, proceed-

ings of CONTEXT International conference being held from 1997 (Interdisci-

plinary & Series, 1997-). More recent collection of papers in (Brèzillon & Gon-

zalez, 2014) only reinforces the practice of a variety of mostly informal notations

and views in this interdisciplinary research on context.

• Human Computer Interface Group (HCI): Early in 2001 the works of Dey, Abowd,

and Salber (Dey et al., 2001) and Winograd (Winograd, 2001) in HCI are based

on intuitive ad-hoc notations, bordering on vagueness and informality. These pa-

pers bring out also the disagreement within this group in conceptualizing and

modeling contexts.

• Pervasive Computing: Based on the survey papers (Dey, 2001; et al., 2009), it

is evident that the notion of context in pervasive computing was mostly ad-hoc.

The formalisms attempted by a few (Brézillon, 1996) are non-rigorous, either

domain-specific or application dependent . Besides, there is no consensus in

this community on what a context should be and how it should be represented

for pervasive computing application domain. While formal representation and

reasoning procedures are quite important to reason about pervasive computing

applications that involve human safety and privacy, they are not emphasized in

these works.

(2) First Attempts to Formalize Context Notation:

• Languages: The works of Dowley, Wall, and Peters (Dowley et al., 1981), Sato,

Sakurai, and Kameyama (Sato et al., 2001), Wan (Wan, 2006), and Wan, Alagar,

and Pacquet (Wan, Alagar, & Pacquet, 2005) use contexts at different levels of

11

abstraction in intensional and functional programming languages. Wan uses a

formal context representation based on functional semantics while Sato et al. uses

“place-holder” notation with λ calculus semantics. A context toolkit, based on

the context calculus of Wan (Wan, 2006), was developed subsequently and its

reuse potential in different applications such as privacy and security enforcement,

was discussed in (Alagar & Wan, 2008).

• Context-aware Computing: With the advent of the term “ubiquitous computing”

and “personalized services”, the context term re-emerged and the term “context-

aware” was born. Due to the lack of practically feasible theories and the gap

between theory and practice, many context-aware applications (Korkea-Aho,

2000) use only ad-hoc notations and application-tailored approaches to deal with

contexts. These approaches tend to solve only the specific problem the system

was made for. The introduction of dimensions by Dowley et al. (Dowley et al.,

1981) and Wan, Alagar, and Pacquet (Wan, Alagar, & Pacquet, 2005) to deal

with hidden contexts in intensional programming languages perhaps influenced

Schilit et al. (Schilit et al., 1994) to incorporate it in the development of context-

aware systems, although there is no evidence that such an attempt resulted in a

concrete syntax. Later on, the context representation formalized by Wan (Wan,

2006) was used in building context-aware systems (Alagar, Mohammad, Wan,

& Hnaide, 2014b).

(3) AI and Contextual Reasoning: Context was brought into the field of Artificial

Intelligence (AI) by McCarthy (McCarthy, 1993). Following this, his student Guha

(Guha, 1991) continued to enrich the logical framework of McCarthy with more

details and conciseness. Later, other researchers (Akman & Surav, 1996; Brézillon,

1996, 1999; Strang & Linnhoff-Popien, 2004) contributed to that basic foundation and

built logical frameworks with different flavors. The works of Weyhrauch (Weyhrauch,

1980), McCarthy (McCarthy, 1993; McCarthy & Buvac, 1997), Guha (Guha, 1991),

Akman and Surav (Akman & Surav, 1997), Shoham (Shoham, 1991), and Giunchiglia

(Giunchiglia, 1993) are some of the early ground-breaking works on logic of contexts

and context-based reasoning. In general, they either used propositional logic which

restricted the expressive power of their framework or higher order logic which over

12

complicated it, and none of them use any formal notation to represent contexts as

first class objects.

From this overview, it is evident that the literature is largely divided between works on con-

text representation (both informal and formal) and framework for reasoning with contexts.

So, we first survey the literature related to context representation, and next we survey the

literature related to contextual reasoning. In reviewing each, we restrict to mostly work

related to computing, AI, and logic. We present the methodology of the survey, and criteria

of evaluating the surveyed methods. This criteria enables us to critically evaluate the sur-

veyed methods and choose an approach that can subsume those methods in a formal way.

We present a detailed technical analysis with respect to the criteria of evaluation under each

reviewed method. Finally, we summarize our overall observations and critical comparisons

at the end of the chapter.

2.2 A Critical Review of Context Modeling

In this part of review we focus solely on context, regardless of the framework where

it may be used. That is, regardless of its applications, we look at context and try to see

how previous endeavors conceptualized it. In order to have a fair and reasonable evaluation

of the methods in the survey, a set of criteria of evaluation has been fixed. They act

as single reference point to evaluate the merits of all methods. The selected criteria of

evaluation come from the study of early work. The theoretical criteria of evaluation are

related to conceptualization, modeling, and representation and they come from (Akman &

Surav, 1996; Guha, 1991; McCarthy, 1993). The empirical criteria are that context should

be expressive, extensible and manipulable. These come from (Alagar et al., 2014b; Held,

Buchholz, & Schill, 2002a; Strang & Linnhoff-Popien, 2004). Below is an explanation and

breakdown to each criterion.

(1) Formal conceptualization refers to the notation that will abstractly and sufficiently

define context theory.

(2) Formal model means that entities in context are precise, formally related, well-defined,

complete, and sound.

13

(3) Formal representation means that context is definable precisely using mathematical

notations. There is no implicit assumption on context relationships.

(4) Expressiveness has three aspects.

(a) Freedom of structure (hierarchical vs flat).

(b) Fixed Knowledge. (static information)

(c) Inferred knowledge/rules. (dynamic information).

(5) Extensibility has three aspects.

(a) Supports heterogeneous data; not limited to specific type of information.

(b) Innumerable; not limited to a specific number of entities.

(c) Detachable; can be used as a standalone component in different systems.

(6) Manipulable means that the context formal model is supported by operations that

are well-defined within the proposed context theory.

In what follows, each reviewed method is explained, then critically analyzed with respect

to the above-mentioned criteria of evaluation. At the end of this chapter a summary of the

analysis is provided in Table 2.1.

2.2.1 Modeling Context Using Informal Notation

In addition to the papers mentioned under - Informal Approaches to Computing Ap-

plications - in Section 2.1, there are several that use only informal notations for context in

several applications of computer science. They are reviewed here.

Context as Intention. Early philosophical and psychological research thought of context

as an implicit intention (Brézillon, 1996). In these studies, the context was not defined

nor was it introduced formally. There was no explicit notion of context. However, they

agree on the existence of context and how it can implicitly describe an incident. Based

on the intention concept, some researchers (Costa et al., 2012; Liu et al., 2015) have

introduced context in the study of Intention-aware computer-based recommender systems.

The intention-awareness refers to the ability of the system to know the user intention when

14

requesting a service in order that it may provide correct services in an intelligently manner.

The recommender systems use the users’ profile as intentions. By understanding the profiles,

the system infers the correct marketing strategy and materials to provide expected services.

Although the awareness concept is clear, in the design of such systems only ad-hoc informal

notations for context, intention, and awareness-centric actions that are specific to solve a

particular application have been used. These efforts lack both generality and formality. For

example, tables are used in (Costa et al., 2012), list and set of items are used in (Liu

et al., 2015), and plain textual description is used in text (Chen et al., 2002) to represent

context. These data structures are not backed-up with any theory for context. For these

reasons, methods under this category are not considered in our comparisons.

Critical Analysis of Intention Notation

References in this category: (Costa et al., 2012) (Liu et al., 2015)

In this category, context concept was not defined. The term ‘context’ was mentioned along

with other synonyms such as ‘noema’ and ‘intention’. The work in this group does not meet

any requirement in the evaluation criteria.

State1 Action Object

State3 Action Object

State2

Action
ObjectActionState4

Act
ion

Action

Action

Figure 2.1: Schema-based explanation representation

Context as Explanation. In the field of Natural Language Processing (NLP) and ‘Ex-

planation based’ learning which are studies by a large number of researchers as part of com-

puting application, “explanation” is used as a supporting information that makes a sentence

understandable. There are numerous NLP systems such as GENESIS (Mooney & DeJong,

1985), ACCEPTER (Leake, 2014), SWALE (Kass et al., 1986), and FAUSTUS (Norvig,

15

1983) that implement “explanations” as schemas. A schema structure uses “state” and “ob-

jects” structure to break down sentences in order to answer queries about input sentences.

GENESIS, for instance, is based on a technique called “explanatory schema acquisition”.

Its idea is to represent explanation as set of states, actions and objects. These three form

a “schema”. States are linked to each other in a hierarchical manner depending on which

states appeared first in the paragraph. A schema is expandable as new states/actions are

introduced in the paragraph. Regardless of how schema evolves to collect more information,

our concern is the structure of the explanation. Figure 2.1 depicts the structure of a schema

for an explanation. Explanation can only have one schema, a schema can have set of unique

states that are linked to other states/objects through actions. The literature provides no

explicit framework of notation for explanation, schema, and/or actions. The explanation

structures introduced for explanation-based learning and explanation-based NLP systems

are almost identical. Thus, we will use GENESIS structure to evaluate the explanation

representation and formalism in this category. Summary of evaluation and observations on

the structure are given in the observation and analysis section 2.3.1.

Critical Analysis of Explanation Notation
References in this category: (Kass et al., 1986; Leake, 2014; Mooney & DeJong, 1985;

Norvig, 1983)

All works in this category were inherited from the field of NLP. Although the notation is

structured, it is only informal and incomplete, because a triple is not explicitly associated

with the triple that specifies a new object, state, action. Also, other questions such as

“whether a state/object pair is unique?”, “are object/state pairs finite?”, and “can every

context be represented in this notation?”. Similar to intention, we can summarize that none

of the work we reviewed in this group have met any of our requirements.

Modeling Context Using Ontology. In this section we review only works that use

informal structures for ontology. As stated in (Guarino et al., 1998), many works use XML

16

and graph-based notation only informally to capture the hierarchical object-oriented struc-

ture and multi-sorted relations in an ontology. Although they all refer to the same basic con-

cept of ontology, they differ in how they detail their ontological trees. For instance, in a very

recent work (Gao & Dong, 2017), the authors use attributes and values for contextual infor-

mation. For example, they define user context ontology as UCA = UBI(ID, AGE, SEX),

where UCA is the user context ontology, UBI is the domain, and ID, AGE, and SEX are

attributes. This is simply an ad-hoc notation. Similarly, the work in (Wang et al., 2004a)

which is referred to as CONON project, defines context based entities only informally. The

entities introduced are user, activity, location, and computation. Due to lack of formalism,

representation, and entity-specific operations, there is lexical ambiguity that limits imple-

mentation correctness being verified. The work in (Ejigu et al., 2007) is identical to the

previous work, the only exception is that the context structure in this work starts with a

root named “Context Entity”. The works on context reported in (Borgo, Cesta, Orlandini,

& Umbrico, 2019; Gu et al., 2004; Lee et al., 2007; Shehzad et al., 2004; Umbrico, Cesta,

Cortellessa, & Orlandini, 2020) are more concerned with the “content of context” relevant

to an application, and use informal notations to describe them. The following thematic

commonalities exist among those approaches.

• Each approach addresses one specific application.

• They are concerned with content and not the representation of context.

• They use XML/Graph notation to describe the content of context.

• They mention ontology, but due to the lack of formal structure no operation on any

ontology is defined.

Critical Analysis of Ontology Notation
References in this category: (Gao & Dong, 2017) (Wang et al., 2004a) (Ejigu et al.,

2007) (Gu et al., 2004; Lee et al., 2007; Shehzad et al., 2004)

There are many papers that use ontology to introduce context. They do not offer any formal

conceptualization or notation of context. They do not provide a formal model that connects

the pieces of an ontology together. However, they are credited for their expressiveness and

17

extensibility. Although no operation has ever been provided to deal with context models

(ontology), all methods inherit operations that have been proposed on the ontology.

(1) Formal conceptualization: The review works only provide the ability to structure

context content. It does not offer a conceptualization of the context entity.

(2) Formal model: No precise definition of context is given in any of the works.

(3) Formal representation: No standard notation exists. Many implicit assumptions on

relations between contexts/ontologies exist.

(4) Expressiveness:

(a) Freedom of structure (hierarchical vs flat): All works on ontology support hier-

archies and have high level of flexibility with respect to structuring.

(b) Fixed Knowledge. (static information): An ontology can encapsulate static in-

formation.

(c) Inferred knowledge/rules. (dynamic information): Ontological rules are only in-

formal. Some of the works (Gao & Dong, 2017) do not support inferencing.

Some support inference based on the structure of the ontology and the type of

relations between the nodes.

(5) Extensibility:

(a) Supports heterogeneous data: A single ontology is domain-related and cannot

hold/deal with data from multiple domains.

(b) Innumerable: Due to informal description, an ontology has no limitation on data

it can hold. Therefore, it is innumerable.

(c) Detachable: Perhaps the most challenging aspect and major shortcoming of on-

tology is the inability of detaching contextual data from factual information.

(6) Manipulable: Ontology operations are not formal. Hence, this requirement is not met.

2.2.2 Modeling Context Using Formal Notations

Modeling Context Using Formal Concept Analysis (FCA). There were many at-

tempts to formalize context using FCA. FCA consists of its own “FCA contexts” (Sarmah,

18

Hazarika, & Sinha, 2015) that are different from contexts discussed in AI and Computing.

An FCA context consists of a set of objects, attributes, and their relationships expressed

as a binary relation. A Formal concept is a pair of two FCA contexts that share the same

objects and attributes. Formally, a FCA context is a triplet FC =< G, A, I > where G is

set of objects, A is set of attributes, I is a binary relation such that I ⊆ G×M . The binary

relation, referred to as incidence, expresses which object is linked with which attribute.

FCA context has the two well-defined operations intent and extent, also referred to as

Concept Forming Operators. Operation Intent retrieves the set of attributes associated with

a goal g, while operation extent retrieves the set of goals associated with an attribute m.

Formally,

Intent = A↑ = {y ∈ Y |for eachx ∈ A :< x, y >∈ I}

Extent = B↓ = {x ∈ X|for eachy ∈ B :< x, y >∈ I}

A formal concept is defined as the fixpoint of the above operators. That is, if applying

the intent on an FCA context F and then extent on the result produces F, then that is a

fixedpoint, i.e. formal concept. That is, a formal concept in an FCA context < X, Y, I > is a

pair < A, B >, where A ⊆ X and B ⊆ Y such that A↑ = B and B↓ = A. Also, subsconcept-

superconcept ordering, which is the relationship between a more general concept and more

specific concept, is well-defined. Particularly, for two formal concepts < A1, B1 > and

< A2, B2 > of an FCA context <X,Y,I>, we define < A1, B1 >≤< A1, B2 > iff A1 ⊆ A2

(iff B2 ⊆ B1). This definition paves the way for the definition of the concept lattice, which

contains all possible formal concepts for an FCA context closed with respect to the operators

Intent and Extent.

Using FCA, the context notion in AI and Computing can be formally represented (Alsaig

et al., 2015). In their work, they introduced FCA as a formal model to model and represent

data of wearable devices. A wearable device is a device that is used to sense vital signs

such as heart rate and temperature, and motion, then suggests a plan for best managing

exercises and monitor calories burned. Usually, those wearable devices depends on three

data components in the decision making procedure. First, the goal to be achieved by the

user. Second, the attribute on which the user should focus on to be measured, i.e. weight,

heart rate... etc. Third, the technique the user should follow to achieve their health goal.

19

The authors then constructed two different contexts, “the user context” which are the goals

and attributes, and “the technique context” which contains the attributes that should be

followed for certain goals. Using FCA, the authors used FCA-objects to represent goals,

FCA-attributes to represent attributes, and FCA-node to represent the technique. Then,

used the FCA table to construct the FCA-lattice that contains all nodes (techniques) for

all user goals and attributes to be acheived. Using the operators (intent and extent) the

suggested techniques can be calculated by traversing the tree towards the goals/attributes

defined by the user. By using these two operators all possible nodes/techniques can be

inferred.

Critical Analysis of FCA Notation

References in this category: (Alsaig et al., 2015)
FCA is credited for its set theoretical basis, and hence for well-defined operations and

expressiveness. However, the goal in FCA is to formally capture “relationships between

entities”. Below is an analysis of using FCA notation for context.

(1) Formal conceptualization: Since FCA does offer a formal notation to structure con-

cepts, it offers a forum for formal conceptualization.

(2) Formal model: FCA is silent on stating (1) whether or not sets of objects and at-

tributes are finite, (2) are the set of variables static or can dynamically be refined, (3)

what are the types and domains of variables. Hence, it does not meet this requirement.

(3) Formal representation: although it does have fixed notation, FCA provides no support

to represent context.

(4) Expressiveness:

(a) Freedom of structure (hierarchical vs flat): FCA has flexible structuring.

(b) Fixed Knowledge. (static information): It supports only static information.

(c) Inferred knowledge/rules. (dynamic information): There is no support for infer-

encing or reasoning in FCA.

(5) Extensibility:

20

(a) Supports heterogeneous data: FCA supports domain-free data and heterogeneous

data.

(b) Innumerable: FCA tree can be infinite. Hence, it is innumerable.

(c) Detachable: With the help of concepts and goals definition in FCA, “context/-

concept” can be detached from goals/attributes.

(6) Manipulable: It supports intent/extent operations that traverse the FCA tree up-

ward/downward respectively.

Context as Event. Mueller (Mueller, 2014) defined event as an action that happens at

a specific time/setting, and formalized it in propositional logic. It was not directly linked

to context. However, in the related work of event-based processing (Shanahan, 1999a)

event was defined as a situation. In these logic-based frameworks, event is treated as a

constant and formalized as the ground predicate p(a, e1, t) to mean “event e1 is true at

time t with respect to attribute a”. McCarthy who’s considered to be a key player in the

evolution of context theory has also contributed to event calculus. He first introduced the

predicate holds(c, e) (Shanahan, 1999b) to mean that “event e occurs during context c”.

That is, event and context were distinguished as separate entities. Later on, he changed it

to the is-true predicate ist(Context, Predicate), where context may be replaced by event.

Therefore, we let event to be a synonym for context.

Critical Analysis of Event Notation

References in this category: (Mueller, 2014)
Although McCarthy (Shanahan, 1999b) has worked on event, situation and finally context,

he did not use the work on event towards context. Even though it’s unstated, it looks

as though he wanted to avoid inadequacy in the event theory to be employed for context.

Also, in all papers event definition associates only the single property “time of occurrence”

(Brézillon, 1996) to event. The “time” dimension in a context is only one of many other

possible dimensions that may be necessary to capture the specific “setting” (context).

(1) Formal conceptualization: No clear conceptualization exists for context/event entity.

(2) Formal model: No precise definition exists for context/event.

21

(3) Formal representation: It does have a fixed and abstract notation, hence, event no-

tation meets this criterion.

(4) Expressiveness:

(a) Freedom of structure (hierarchical vs flat): No structuring ability or relation can

be established between events.

(b) Fixed Knowledge. (static information): Event can model flat/static information.

Hence, it meets this criterion.

(c) Inferred knowledge/rules. (dynamic information): No notion of inferencing exists

in the study of events.

(5) Extensibility:

(a) Supports heterogeneous data: Events can deal with any type of data, and hence

it supports heterogeneity.

(b) Innumerable: It does not have any limitation on data it can hold. Therefore, it

is innumerable.

(c) Detachable: Only static information can be handled. Hence, it fails to meet this

requirement.

(6) Manipulable: Some works have discussed event operations and event calculus. Hence,

this requirement is met.

Context as a Partial Mathematical Entity.

McCarthy (McCarthy, 1993) (McCarthy & Buvac, 1997) made the first attempt at formally

realizing context entity in the field of computer science. He originally proposed the idea of

incorporating context with logic. He described context as rich objects that cannot be fully

described in logic. Thus, every context is a subset of a larger context that contains it. He

also considered context as first class objects in the sense that they belong to the domain

of interpretation of a formal language. This means that the formal language of a theory

of context should contain terms denoting contexts and should allow one to pass contexts

as function arguments and to express relationships between contexts. In his view “one

context is more general than another”. Contexts in this category are incomplete abstract

22

Figure 2.2: Context structure as defined in Guha’s work

objects that partially explains the world of discourse. Technically, context is an abstract

mathematical entity with properties useful for AI. However, McCarthy’s work only included

a few highlights that intuitively motivated context formalization. It was not supported with

any particular formalism, explicit definitions, and modeling of any sort.

Guha (Guha, 1991) regarded context as a microtheory that partially explains the

world. Microtheories are theories of limited domains. They define the “context way” of

seeing the world. A microtheory has its own Language and structure. It has its own set

of facts and rules. Every theory (category) can have infinite number of microtheories that

describe it. These microtheories can only describe part of the theory rather than complete

theory. The goals of Guha’s research are similar to those of McCarthy. The extension

of Guha’s work can be concluded in his definition of context as microtheory rather than

general mathematical entities as McCarthy mentioned. Also, Guha introduced language

and structure for context. It is characterized as follows:

• Every context is a first class object

• Each context has its own language (L) and structure (CM) (context way of describing

the world)

• Context Structure (CS) is a function that assigns to every context C a language L(C),

and a structure CM(C). Figure 2.2 shows the structure of context as proposed by

Guha.

Although Guha’s framework accomplishes a substantial progress towards formalizing con-

text, it does not offer any explicit representation for context. Also, he defined a general

framework for context, but did not explicitly investigate the details of context content.

23

Buvač and Mason (Buvač & Mason, 1993), extended the work of McCarthy while

retaining the view that context is a partial and approximate mathematical entity. However,

in this work, extension is only within propositional logic framework. In this research, every

context has its own vocabulary, a set of propositional atoms that are meaningful/relevant

in/to that context. Buvač and Mason modeled context using sets of partial truths. Also,

they introduced the notion of dependent contexts, by which context-based contexts can be

defined. However, Buvač and Mason did not introduce any formalization, modeling or

representation for context.

In (Shoham, 1991), the authors introduced a new notation for viewing context, although

their definition is similar to that of McCarthy. This is the first work in which operations and

relations between contexts were introduced formally. They defined the partial order relation

(• ⊃) that is considered a weak partial ordering between contexts. The five operations on

context introduced in this research are (1) and-closed (closed under conjunction). (2) or-

closed (closed under disjunction). (3) and-or-closed (closed under both). (4) not-closed

(closed under negation). (5) simply closed if it is closed under all operations.

Critical Analysis of Mathematical Entity and Logic Notation
References in this category (McCarthy, 1993; McCarthy & Buvac, 1997) (Guha, 1991)

(Buvač & Mason, 1993) (Shoham, 1991)

The work in this category is similar in general. Some slight differences are between individual

research is highlighted in our analysis below,

(1) Formal conceptualization: All works in this group provide a clear conceptualization

of context.

(2) Formal model: Only the works (Guha, 1991) and (Buvač & Mason, 1993) discuss

modeling aspect, while others in this group do not discuss those aspects.

(3) Formal representation: No work in this group provide a formal representation and

notation for context.

(4) Expressiveness:

24

(a) Freedom of structure (hierarchical vs flat): No work has discussed the notion of

“content of a context”. In (Guha, 1991) a hierarchical structure is only implicitly

implied. Therefore, we consider this requirement unmet.

(b) Fixed Knowledge. (static information): This requirement is met by all the works

in this group.

(c) Inferred knowledge/rules. (dynamic information): Except Shoham (Shoham,

1991), all others in this category discuss inferencing contextual knowledge.

(5) Extensibility:

(a) Supports heterogeneous data: Heterogeneity is supported by all of the works

reviewed in this group except for (McCarthy, 1993; McCarthy & Buvac, 1997)

where it is highly coupled with domain.

(b) Innumerable: The theory in (Buvač & Mason, 1993) and (Shoham, 1991) is

capable of modeling infinite data. The other two works do not consider this

aspect in their study.

(c) Detachable: None of the works reviewed consider detaching contextual knowledge

from factual knowledge.

(6) Manipulable: Only the works (Guha, 1991) and (Shoham, 1991) discussed operations

and manipulation of context content.

Context as Viewpoint. Giunchiglia and Attardi research group (Attardi & Simi, 1995)

regarded context as a limited version of the world that comes from an “agent point of view”

about the world. (Giunchiglia, 1993) is the first to thoroughly compare situations with

contexts. Formally Giunchiglia defines context as a triple Ci :< Li, Ai, δi >, where Li is

the vocabulary of the context, Ai is the set of axioms that are true in the context, and

δi is the set of rules governing the inference mechanism within the context. His definition

of context as an agent view point supports the idea of having many agents looking at a

database at the same time each of whom can see a different view of the same database. The

work (Attardi & Simi, 1995) can be regarded as an extension of agents and multi-agents

concept introduced in (Giunchiglia, 1993). However, instead of defining context as a triple,

25

they introduced the notion of “view point” (vp). Their definition of view point is sets of

sentences that represent the axioms of a theory. They are the first to introduce the concept

of defining rules at a “metalevel”, outside of the context (vp). Thus, the operations between

different vp’s are carried out with metalevel rules. As in all previous works, there is a clear

absence of formal explicit structural model for context.

Critical Analysis of Viewpoint Notation

References in this category: (Giunchiglia, 1993) (Attardi & Simi, 1995)

Context was defined as a view point, perspective, or agent. Although they provided a

conceptualization and formal model for an agent, they overlooked the formalism of repre-

sentation. Below is an extensive evaluation for this notation.

(1) Formal conceptualization: All the works reviewed on viewpoints notation offer a clear

conceptualization of the context/viewpoint entity.

(2) Formal model: Viewpoints provide precise definition of vp, relations, completeness

and soundness.

(3) Formal representation: Viewpoint notation is not standard, and does not avoid im-

plicit assumptions on relations between contexts/ontologies.

(4) Expressiveness:

(a) Freedom of structure (hierarchical vs flat): The structuring ability of vp has not

been discussed in any of the reviewed works. Hence, this criterion is not met.

(b) Fixed Knowledge. (static information): All reviewed works meet this require-

ment.

(c) Inferred knowledge/rules. (dynamic information): All reviewed works support

the concept of inference.

(5) Extensibility:

(a) Supports heterogeneous data: It is unclear whether or not different datatypes

can be part of viewpoint structure.

26

(b) Innumerable: The work in (Giunchiglia, 1993) meets this requirement. However,

the second work does not support it.

(c) Detachable: Both reviewed works do not support the detachment requirement.

(6) Manipulable: No operation has been defined for viewpoints.

Context as Situation. The pioneering work of Barwise (Barwise, 1989) considered a

situation as context at a specific “time and location” in philosophical discourses. In his

view (for the Study of Language et al., 1989), situation is context in the study of languages

and philosophy. A formal structure for situation defined in Situation Theory (Seligman

& Moss, 1997) has two components (Jon & John, 1983), called infons and situation/role.

Infons are basic information units (discrete items of information) formalized as α =<<

P, a1, ..., an, ι >>, where P is an n− place relation, a1, ..., an are arguments where aj is the

jth argument in the relation P , and ι is a polarity (0, 1) which determines whether or not

relation P holds. The second component situation/role itself was not explicitly formally

defined, but introduced as the support relationship with infons. That is, a situation s is

supported by an infon α, denoted as s |= α, and this means that the situation s is true in

an infon α. For example, to describe the ‘buying’ situation between a buyer A and seller B

using the infon notation, we say A is buying from B. According to (Akman & Surav, 1996),

this can be modeled as buys =<< buying, A, B, t, loc, 1 >> where, ‘buying’ is the relation,

A,B, t(time) and loc(location), are arguments of the relation buying, and the right-most

position holds ‘1’ for true and ‘0’ for false.

Later studies, such as (Akman & Surav, 1997; McCarthy, 1963) have touched upon

situation theory for context modeling, without contributing to situation-based examples

that can be used formally in context-aware application. More recent research (Dey, Abowd,

& Salber, 2000; Henricksen & Indulska, 2006) moved away from situation theory, and called

contexts modeled using Object-Role Modeling (ORM) (Halpin, 1998) as situations. They

mapped this graph-based model to a relational model, and then mapped it into predicate

logic as situation abstraction. In this approach, the representation of situation/context is

S(v1, ..., vn) : φ, where S is the name of the situation, v1, ..., vn is a set of variables defining

the situation, and φ is a logical ground expression in which the free variables correspond to

the set{v1, ..., vn}, to say that situation S is true with respect to the set of ground atoms φ.

27

The concept of situation involves only location and time, and hence it is only a partial

view of the world. Also, it is still ambiguous in terms of structure and representation.

Perhaps, for these reasons situation-based modeling was not influential in the history of

context modeling. Also, as indicated in (Giunchiglia, 1993), “context is the most granular

concept in the information structure”, i.e. situation can be made up of several contexts,

but one context cannot be a situation. Contexts can be looked at as the building block of

the settings to form a situation. Therefore, having a formal representation for contexts is a

step forward for formalising situations.

Critical Analysis of Situation Notation
References in this category: (Akman & Surav, 1997; for the Study of Language et al.,

1989)

A detailed discussion on the “philosophical” and “technical” aspects of situation (Giunchiglia,

1993) (Mechkour, 2007) (Akman & Surav, 1997) concluded that “situation and context are

two different things”. Situation is a complete settings at specific “time” and “location”. In

one situation, there can be many contexts. For example, “being sick” can be a situation,

while “age”, “symptoms”, “complaints” are different contextual information that describe

or explain the situation. Our interest is to evaluate only the technical aspect of situation.

(1) Formal conceptualization: The work on situation notation is clearly conceptualized.

Although it was not conceptualized as context, but it has the necessary ingredients of

conceptualization such as definition, notation, and clear components.

(2) Formal model: Situations and infons and are not clearly modeled to bring out the

relationship between them. All contextual information are captured in infon including

the truth assignment of an infon at certain situation. So, the same infon cannot define

for another situation?. It is not made clear whether we can have different instances

of the same infon with different truth assignments.

(3) Formal representation: A formal representation is proposed for the “support” rela-

tionship between infon and situation. Infon has a fixed notation, however, situation

and infons component structure are not provided in the reviewed works.

28

(4) Expressiveness:

(a) Freedom of structure (hierarchical vs flat): There is no clear structure adopted

in situation theory for situation, infons, or their relation taken together. Thus,

this requirement is not met.

(b) Fixed Knowledge. (static information): All infons represent only static informa-

tion or fixed knowledge.

(c) Inferred knowledge/rules. (dynamic information): Situation and infons have the

ability to infer new situations. This requirement is met.

(5) Extensibility:

(a) Supports heterogeneous data: situation theory meets this criterion.

(b) Innumerable: situation theory supports infinite set of infons/information. Hence,

it meets this criterion.

(c) Detachable: infons can be used without a situation, but what would be assigned

in the polarity (last) argument? how many arguments can an infon have?

(6) Manipulable: no operations are defined on infons/situations.

Context as Dimension and Attributes. Following the suggestion made by Shoham

(Shoham, 1991), Schilit et al. (Schilit et al., 1994) introduced the notion of dimensions

for context, and laid the foundation of many context-aware systems development. They

conceptualized a context to have infinite number of dimensions that completely describe

a setting, although in practice only finitely many dimensions can be introduced. Because

Schilit et al. did not introduce any notation for context, only ad-hoc informal context

representations were used in system development. As observed in (Perttunen et al., 2009),

Schilit et al. is the most influential in the practical development of context-aware systems.

Due to the fact that all systems have followed the same fundamental concept of Schilit et

al. but use a variety of ad-hoc notations for context, we will not review all of them here. We

refer the interested readers to the publications (Kofod-Petersen & Mikalsen, 2005) (Wang,

Zhang, Gu, & Pung, 2004b) (Knappmeyer, Kiani, Frà, Moltchanov, & Baker, 2010) (Held,

Buchholz, & Schill, 2002b).

29

Reddy and Gupta (Reddy & Gupta, 1995) followed the concepts introduced in (Shoham,

1991), (Schilit et al., 1994) and introduced set theory and lattice structures for context rep-

resentation. With this structure they defined the binary operations union, and intersection

for a collection of contexts. They are the first ones in the literature to introduce lattice as a

formal structure to represent context dependency. Their focus was to introduce a hierarchy

of contexts, capture the multilevel relationship between contexts and how contexts can be

linked and compared with each other. Also, they introduced a method to query contexts,

considering each context as a separate database. This technique is similar to the one intro-

duced in (Giunchiglia, 1993) for a logical framework. However, Reddy and Gupta (Reddy

& Gupta, 1995) considered context and data in one database as one entity that cannot be

separated.

Wan (Wan, 2006) extended the concept of Schilit et al. (Schilit et al., 1994) to represent

context with dimensions, where each dimension is associated with a set of typed attributes.

For the sake of simplicity and practicality, only contexts with a finite set of dimensions

were considered. Moreover, each dimension is associated with only one attribute from its

domain. Wan (Wan, 2006) introduced operations on a set of contexts with this structure.

Wan, Alagar, and Paquet’s work (Wan, Alagar, & Paquet, 2005) is considered to be the

first that has a theoretical basis and yet practical. From theoretical point of view, their

work on extending Programming Language (IPL) Lucid with contexts to create the contex-

tualized IPL Lucx, was highly influenced by the work of McCarthy, Guha, and Schilit. they

demonstrated its utility in formally specifying timed systems, agent communication, and

constraint programming. Alagar et al. were the first to introduce a context toolkit, com-

prising of operators to manipulate contexts, for dynamically generating context-dependent

responses to system events in context-aware systems.

Critical Analysis of Dimension and Attribute Notation
References in this category: (Schilit et al., 1994) (Reddy & Gupta, 1995) (Wan, Alagar,

& Paquet, 2005)

A key player to the development in this version of context formalism is the research pursued

by Schilit et al. (Schilit et al., 1994). This group is the best match to our criteria of

evaluation as shown below.

30

(1) Formal conceptualization: All the works reviewed here have conceptualized context

as set of “dimension - attribute” pairs. Therefore, they all meet this criterion.

(2) Formal model: Only the work in (Reddy & Gupta, 1995) provide a precise definition

of context, relations, completeness and soundness. The other two do not provide clear

model.

(3) Formal representation: Only the work in (Wan, Alagar, & Paquet, 2005) offers

a formal representation of the context content. It provides information about its

dimension, attributes, and how different attribute types are modeled.

(4) Expressiveness:

(a) Freedom of structure (hierarchical vs flat): The only work that considers hierar-

chies and flat structures among the reviewed works is (Reddy & Gupta, 1995).

The remaining two works provide only flat structure of context.

(b) Fixed Knowledge. (static information): All works in this group provide support

for static information.

(c) Inferred knowledge/rules. (dynamic information): Only the work in (Reddy &

Gupta, 1995) considers inferring information about context.

(5) Extensibility:

(a) Supports heterogeneous data: The studies in (Schilit et al., 1994) and (Wan,

Alagar, & Paquet, 2005) do support heterogeneity. However,the study in (Reddy

& Gupta, 1995) does not discuss the data involved at all, so we are uncertain

about its support to multiple data types and domain-free information.

(b) Innumerable: In general, the context notion “ collection of dimension - attribute”

does not restrict the sets to be finite. They only restrict it when it is coupled

with an application to make its manipulation practically feasible.

(c) Detachable: The context component is clearly detachable from any reasoning

framework. Hence, this group meets this requirement.

(6) Manipulable: Only the works in (Reddy & Gupta, 1995) and (Wan, Alagar, &

Paquet, 2005) discuss context operations.

31

2.3 Context-based Reasoning

In this section we review possible reasoning frameworks to build on top of the context

component. We only look at framework level in this section regardless of how well the theory

of context was developed and employed. This will help us to match make a complete theory

of context with a complete framework of reasoning which allows dynamism in fetching and

using context, yet make the context detachable and re-usable in other frameworks.

Figure 2.3: Concepts used to reason with context, full surveys can be found in (Ser-
afini & Bouquet, 2004) (Akman & Surav, 1996) (Strang & Linnhoff-Popien, 2004) (Loyola,
2007) (Brézillon, 1999)

The goal is to investigate formal approaches that used context as a first class citizen

in a framework of reasoning. The key methods investigated are depicted in Figure 2.3. In

order to compare our work with as broad spectrum of methodologies as possible, after an

extensive study and analysis of literature we have chosen those that we consider as most

influential works in different formalization and reasoning categories.

The different conceptualization of context, introduced in Section 2.2, have led to differ-

ent reasoning frameworks. We classify those frameworks into four main categories based

on the used definition of context. The first category defines context as “an incomplete

mathematical abstract entity that is rich and cannot be fully described by logic”. The

second category considers context as “a situation, which is a complete entity at a specific

time and location”. The third category defines context as “a set of dimensions and rules

that construct the settings of an event”. Finally, the forth category defines context as “an

32

ontology”.

Context-based reasoning framework is made up of the two main components: (1) con-

text, and (2) framework of reasoning. Numerous survey papers (Serafini & Bouquet,

2004) (Akman & Surav, 1996) (Strang & Linnhoff-Popien, 2004) (Loyola, 2007) (Brézil-

lon, 1999) have studied context/reasoning with emphasis on the level of formality, richness,

expressiveness, soundness, consistency, and completeness. Motivated by different goals,

we consider different criteria of evaluation inspired from the works in (Akman & Surav,

1996) (Alagar et al., 2014b) (Schilit et al., 1994) (Serafini & Bouquet, 2004).

(1) Ability to Reuse: In the related work, only some works made clear that context can

be reused globally in different programs and applications. However, as mentioned in

(Akman & Surav, 1996) and (Bazire & Brézillon, 2005), it is required that knowledge

bases should be in one structure and it is reused by different programs and applications

without affecting one another. Hence, the first criterion is that “it must be possible to

use context with multiple programs with no side effect to the context being shared”.

(2) Ability for Multiple Reasoners to exist: It should be possible to use rules to define

and derive relationships and meta information about contexts.

(3) Local Dynamism without Global Side Effect: It must be possible to have dynamic

context locally and static context globally. This criterion comes from the ability to

reuse contexts by different programs at the same time. That is, infer new facts locally

without affecting other programs that use the same knowledge.

(4) Separating Data from Context: It must be possible to distinguish context-related

information (meta data) from other descriptions of facts/data in the system. By

definition, context is the setting that makes a piece of information understandable.

However, it is not the information itself.

(5) Representation Simplicity: It must be possible to express and construct contextual

information easily in such a way that it does not increase complexity of reasoning and

allow users to use it and comprehend it with ease.

(6) Extensibility: By definition (Johansson & Löfgren, 2009) extending a framework

33

means being able to build on top of a framework without affecting its original func-

tionality. The extension of a framework should be conservative, in the sense that the

extended framework can inherit all the features and retain the merits of the original

framework.

Logic-based Contextual Reasoning Framework (First Category). This is the first

and most influential work on context-based reasoning. It is the first attempt at realizing

context entity in the field of computer science. In (McCarthy, 1993), McCarthy originally

proposed the idea of incorporating context with logic. The main goal of McCarthy’s

research is to be able to transcend context to another context and solve the problem of

generality by moving from general context to a specific context and vise versa (McCarthy

& Buvac, 1997). Additionally, McCarthy introduced the ist(C, F) function which indicates

that context ‘C’ is true in formula ‘F’. However, he did not introduce any reasoning with

context or any other explicit operations that can deal with the context vocabularies and

language. Motivations of his research are as follows:

• Allow simple axioms for common sense phenomena, i.e. axioms for something lifted

to more specific thing.

• Treat/deal with particular circumstances which is at specific context. i.e. conversing

at specific context may include words that are of different meaning in general context.

• AI systems never get stuck with concepts as they can transcend the context they are

in. Thus, ist(C, P) is self-asserted and it is within the context ist(C ′, ist(C, P)).

Guha (Guha, 1991) regarded context as a microtheory that partially explains the world. In

his framework of reasoning every theory (category) can have infinite number of microtheories

that describe it. The goals of Guha’s research are extensions to those of McCarthy. In

the proposed framework, he formalized the concepts of “entering” and “exiting” context.

He formalized the meaning of meaningfulness of a microtheory in reasoning. The following

are the goals of his research:

• Theories put together related axioms

• Integrate different contexts by integrating different microtheories.

34

• Microtheories create multiple models for a task.

• Lifting rules are of two types:

◦ Compositional lifting: specify lifting rules for indirect predicates. For instance,

when the predicates are of different arities.

◦ Coreference lifting: no modifications needed to lift unless explicitly stated.

In summary, the concepts understood from his research are the following:

• Every context is a first class object

• ist(C, F) and presentIn(C, F) are the only functions that include a context argument.

• Every problem (program) has a specific context called the “problem solving context”,

to which every clause that does not specify any context explicitly is relevant.

• Formula F is meaningful in C iff:

◦ F uses the terms in C correctly, e.g., predicates as predicates and constants as

constants etc.

◦ F uses the terms in C with the right arities according to the language of C.

• Entering a context ’C’ means evaluating a formula ’F’ in the context ’C’ using the

language and structure of ’C’. Once entered a context, the proposed idea uses the

standard techniques of First Order Logic (FOL) and the functions ist/ispresent are

not used inside the context (when context is entered).

• Exiting a context ’C’ means to return to the problem solving context.

• Lifting rules are used to bring in rules and facts of two different contexts into the

problem solving context to reason about it. Lifting rules assume that the same con-

stants used in the two contexts to be combined mean the same thing. For example,

John in context A is the same as John in context B. This assumption washes away

the fear of conflicting facts.

In (Buvač & Mason, 1993), Buvač has extended Guha’s theory using propositional logic.

They introduced ist(K, X) to classical propositional logic, which means sentence X is true in

35

context K. Every context has its own vocabulary which are set of propositional atoms that

are meaningful in that context. In the framework, they express context using partial truths.

In (Giunchiglia, 1993), the researcher follows the same concept of McCarthy’s context

with the notion of “agent point of view”. He introduced bridging rules instead of lifting rules

to link between different contexts and to transcend axioms from context to another. His

definition of context as an agent view point supports the idea of having many agents look-

ing at database at the same time each of whom can see a different view of the same database.

In (Attardi & Simi, 1995), view point is sets of sentences that represent the axioms of

a theory. Their main relation of view point is defined as in(′A′, vp) which means an axiom

‘A’ is true in view point vp. This is very similar to McCarthy’s relation, i.e. ist(C, P) .

The authors of this work were the first to introduce the concept of defining rules outside of

the context (vp) at a “metalevel” layer. Thus, the operations of between different vp’s are

carried out with metalevel rules. These rules use vp to infer new knowledge.

In (Shoham, 1991), the researcher introduced a different way of reasoning with context

in terms of notation and meaningfulness. He introduced P C which denotes assertion (P)

holds in context (C) which can be equivalent to ist(C, P) relation introduced by McCarthy.

For Shoham, every assertion is meaningful in every context but same assertion might have

different truth values in different contexts. Thus, Shoham’s logic formalism is different

from the logical framework of other researchers. Also, he was first to define operations

and relations between contexts within his framework. He defined the partial order relation

(• ⊃) that is considered a weak partial ordering between contexts. That is, not every pair

of context is comparable under it. He left the concept of upper and lower context as an

open question, while in practice, he considered upper and lower as a result of the operations

(X ∧̇ Y) and (X ∨̇ Y) respectively. Hence, his framework is neither complete nor sound. He

also defined non-monotonicity by introducing "negation" defined as context "¬̇X", which is

not comparable to X under the relation (• ⊃).

36

Critical Analysis of Logic-based Reasoning Framework (First Category)
References in this category: (Guha, 1991; McCarthy, 1993) (Buvač & Mason, 1993)

(Giunchiglia, 1993) (Attardi & Simi, 1995) (Shoham, 1991)
This category is the most influential in the study of context-based reasoning. Below is the

evaluation based on our criteria of evaluation introduced earlier.

(1) Ability to Reuse: The ability to use context with multiple programs is not clear

in most of the frameworks in this group. That is, it is not clear if context is a

knowledge that can be used/reused by multiple agents/AI systems at the same time.

Also, it is not mentioned explicitly that context is a knowledge base that consists of

different contexts that can be used in different programs and by different reasoners.

Frameworks in (Giunchiglia, 1993) and (Attardi & Simi, 1995) meet this requirement

as they introduced the concept of view points to support the idea of being able to

view the same data from different perspectives or views.

(2) Ability for Multiple Reasoners to exist: The ability to model relationship between

different contexts had not been explicitly discussed. In most of the works in this

category, the relations between contexts are referred to implicitly. For example, in

(Guha, 1991; McCarthy, 1993), it is mentioned that lifting rules can be done if two

contexts are referring to the same object. However, the two questions left open and

unresolved are: (i) how to know that two contexts are referring to the same (or to

different) entities?, and (ii) how to know two contexts are related, in the first place?

Framework provided in (Attardi & Simi, 1995) in this group is an exclusion as authors

refer to metalevel layer that sets rules and link contexts together

(3) Local Dynamism without Global Side Effect: Local dynamism and context reusing is a

goal in (Guha, 1991; McCarthy, 1993). However, it is not stated clearly in the other

frameworks in the group.

(4) Separating Data from Context: For all frameworks in this group, data and context

are separated.

(5) Representation Simplicity: Simple structures are used in this group of frameworks.

However, some of them like (Guha, 1991; McCarthy, 1993) and (Attardi & Simi,

37

1995) did not provided a structure of context. Thus, we could not tell if the structure

of context is simple or not. They have only dealt with context as a “black box”. As for

the basis of the frameworks, they mostly exploit propositional and first order logic to

represent context. Some of frameworks like (Attardi & Simi, 1995) considered higher

order logic to reason with context which make it more complex

(6) Extensibility: The concept of extension is present in (Guha, 1991; McCarthy, 1993)

and (Attardi & Simi, 1995), but not considered in the other works in this group.

Situation-based Reasoning (Second Category). This category considers context as

“situation”, defined as a mathematical theory of information. A situation is defined as

limited portion of the world (over some location and time). Albeit the work in (Akman

& Surav, 1997) and (Barwise, 1989), we could not find a framework of reasoning that use

situations as context. Giunchiglia (Giunchiglia, 1993) and most other researchers in the

literature define situation as a complete state of the world at a given time which explains

why this type of extension was not influential in the history of context-based reasoning.

Critical Analysis of Situation-based Reasoning Framework (Second Category)

References in this category: (Barwise, 1989) (Akman & Surav, 1996)

Below is an evaluation of the situation-based reasoning frameworks included in the review.

(1) Ability to Reuse: The property of multiple programs/agents is not considered in this

group of framework.

(2) Ability for Multiple Reasoners to exist: They did not consider separating rules from

the contexts/situation. This is because their theory of situation has two parts “infons

and situation” which contain data and rules of context.

(3) Separating Data from Context: Dynamism was only considered by (Akman & Surav,

1996) and not in the early work on situation theory.

(4) Representation Simplicity: Separating data from situation/context was not considered

in this group of frameworks.

(5) Extensibility: There is no extension attempted in those works.

38

Context as Dimension and Attribute Reasoning (Third Category). In this cat-

egory context is conceptualized as a set of dimensions and attributes. It was introduced in

(Schilit et al., 1994). This category conceptualizes context as set of “dimension-attribute

pairs” . The framework is rather simple and flexible. Detailed evaluation is provided below.

Critical Analysis of Dimension and Attribute Reasoning Framework (Third Cat-

egory)
References in this category: (Schilit et al., 1994) (Reddy & Gupta, 1995) (Wan, Alagar,

& Paquet, 2005)

(1) Ability to Reuse: The property of multiple programs/agents is not considered in this

group of framework.

(2) Ability for Multiple Reasoners to exist: The works reviewed did not consider separating

rules from the contexts. The study in (Schilit et al., 1994) did not even consider

inferencing altogether.

(3) Local Dynamism without Global Side Effect: Dynamism was only considered in (Schilit

et al., 1994), but only for specific practical problems that have well defined context

before the run of the application. That is, they have mentioned that one of the goals

of their system is to create contexts at runtime. However, they did not say if multiple

programs running on this context knowledge will be affected by this dynamism. Thus

local dynamism is not clearly discussed.

(4) Separating Data from Context: Separating data from context was only considered in

(Reddy & Gupta, 1995), though it was mentioned only implicitly.

(5) Representation Simplicity: Works reviewed here adopted simple syntax. They have

well-defined structure for their frameworks. Hence, this requirement is met.

(6) Extensibility: The extension aspect is demonstrated in (Wan, Alagar, & Paquet,

2005), where Lucid Intentional Logic Programming Language extension is discussed

in detail.

Ontology-based Reasoning(Forth Category). In this category a context is viewed

as an ontology (Strang et al., 2003), as set of concepts and attributes. It also considers

39

every context/ontology have its own inferencing rules that can infer new facts within the

ontology. Thus, every ontology has its own inferencing engine. The focus of this approach

is the formal capturing of the interdependence of contextual information. Also, this ap-

proach considers every ontology as both the context (meta information) and the associated

data. To remedy this, some researchers have introduced the concept of contextualization

of ontologies (Bouquet, Giunchiglia, van Harmelen, Serafini, & Stuckenschmidt, 2004) to

capture the contextual information (meta info) from the ontology to be able to re-use it or

link it to another ontology. Below is an evaluation of this research.

Critical Analysis of Ontology-based Reasoning Framework (Forth Category)

References in this category: (Strang et al., 2003)

(1) Ability to Reuse: XML representation is used to represent context. However, no

formal representation of context was proposed.

(2) Ability for Multiple Reasoners to exist: Every context has its own set of inferencing

rules, which means rules and context form one entity.

(3) Local Dynamism without Global Side Effect: Ontologies consider dynamism in the

sense that nodes are created, modified and changed at runtime of applications. How-

ever, when more than one program are using the same ontology they are all affected

with this change. It is more like single database to which applications are connected.

In other words, ontology grows globally. Meaning, if a program is using an ontology

then all other programs will be aware of the changes (improvement) in the knowledge

of that ontology.

(4) Separating Data from Context: Data is included within the ontology. That is, con-

text models that are based on ontology may not be considered a meta information

because it includes a huge entity that contains everything, i.e. data, rules and meta

information.

(5) Representation Simplicity: Due to the way ontologies are structured, complex infer-

encing engines will be required to infer knowledge.

(6) Extensibility: no clear extension is manifested.

40

2.3.1 Summary of Context and Context-based Reasoning Analysis

In this section, we summarize our observations on the previous methods, from the con-

text and framework of reasoning perspectives. Table 2.1 comprehensively summarizes all

the reviewed works on context modeling and formalism. Table 2.2 compares the works from

reasoning framework level perspective. At framework level, we find that McCarthy and

Guha’s work are the most influential since it was the pioneering work on context. The

works that extended their intuition have shared the same features and properties. Fig-

ure 2.3, shows the relationship between different works in the previous endeavors. They

indeed induced a measurable step towards building a formal framework to reason about

contexts. However, the technical details were not developed. A well defined framework that

uses context and its operations in a seamless manner remained missing in all the reviewed

work.

41

Category Research
Formalism Expressiveness Extensibility

Manipulable
FC FM FR FrS FxK InK SHD Inn Det

1 Intention A × × × × × × × × × ×
2 Explanation B × × × × × × × × × ×
3 Formal Concept Analysis C ✓ × × ✓ ✓ × ✓ ✓ ✓ ✓
4 Ontology D × × × ✓ ✓ × × ✓ × ×
5 Ontology E × × × ✓ ✓ ✓ × ✓ × ×
6 Ontology F × × × ✓ ✓ ✓ × ✓ × ×
7 Ontology G × × × ✓ ✓ ✓ × ✓ × ×
8 Logical. Event H × × ✓ × ✓ × ✓ ✓ × ✓
9 Logical. Math. Entity I ✓ × × × ✓ ✓ × × × ×
10 Logical. Math. Entity J ✓ ✓ × ? ✓ ✓ ✓ × × ✓
11 Logical. Math. Entity K ✓ ✓ × × ✓ ✓ ✓ ✓ × ×
12 Logical. Math. Entity L ✓ × × ✓ ✓ ? ✓ ✓ × ✓
13 Logical. Viewpoint M ✓ ✓ × × ✓ ✓ ? ✓ ✓ ×
14 Logical. Viewpoint N ✓ ✓ × × ✓ ✓ ? ✓ × ×
15 Logical. Situation O ✓ ✓ × × ✓ ✓ ✓ ✓ × ×
16 Dimension and Attribute P ✓ × × × ✓ ? ✓ ? ✓ ×
17 Dimension and Attribute R × ✓ × ✓ ✓ ✓ ? ✓ ✓ ✓
18 Dimension and Attribute S ✓ × ✓ × ✓ × ✓ ✓ ✓ ✓

Table 2.1: Summary of evaluation of all research reviewed in sections Informal Nota-
tions 2.2.1 and Formal Notations 2.2.2
*FC: Formal Conceptualization, FM: Formal Modeling, FR: Formal Representation,
FrS:Freedom of Structure, FxK:Fixed Knowledge,InK: Inferred Knowledge, SHD: Support
Heterogeneous Data, Inn:Innumerable, Det: Detachable
A: (Costa et al., 2012) (Liu et al., 2015), B: (Kass et al., 1986; Leake, 2014; Mooney & DeJong, 1985; Norvig,
1983), C: (Alsaig et al., 2015), D: (Gao & Dong, 2017) , E: (Wang et al., 2004a), F: (Ejigu et al., 2007),
G: (Gu et al., 2004; Lee et al., 2007; Shehzad et al., 2004), H: (Mueller, 2014), I: (McCarthy, 1993; McCarthy &
Buvac, 1997), J: (Guha, 1991) , K: (Buvač & Mason, 1993), L: (Shoham, 1991), M: (Giunchiglia, 1993), N:
(Attardi & Simi, 1995), O: (Akman & Surav, 1997; for the Study of Language et al., 1989), P: (Schilit et al.,

1994), R: (Reddy & Gupta, 1995) , S: (Wan, Alagar, & Paquet, 2005)

42

Category Research
Multiple
Programs

Separate
Rules

Local
Dynamism

Separate
Data

Simplicity Extension

First Category

[a] Logic-based A ? ? ✓ ✓ × ✓
[b] Logic-based B × × ? ✓ ✓ ×
[c] Logic-based C ✓ × ? ✓ × ×
[d] Logic-based D ✓ ✓ ? ✓ ? ✓
[e] Logic-based E ? ? ? ✓ ✓ ×

Second Category

[i] Situation F × × ? × ? ?
[j] Situation G ✓ × ✓ × × ×

Third Category

[f] Dimension & Attribute H × × ? × ✓ ×
[g] Dimension & Attribute I ? × × ? ✓ ×
[h] Dimension & Attribute J × ✓ ✓ × ✓ ×

Forth Category

[k] Ontology K × × ✓ × × ?

Table 2.2: Framework level evaluation
* A: (Guha, 1991) (McCarthy, 1993), B: (Buvač & Mason, 1993), C: (Giunchiglia, 1993), D: (Attardi & Simi,
1995), E: (Shoham, 1991), F: (Barwise, 1989), G: (Akman & Surav, 1996) H: (Schilit et al., 1994), I: (Reddy &
Gupta, 1995), J: (Wan, Alagar, & Paquet, 2005), K: (Strang et al., 2003)

43

Chapter 3

Research Methodology of Contelog

Framework

Having explained what the thesis is about and why it is significant in Chapter 1, a wide

range of context concepts was surveyed and compared in Chapter 2. From this discussion,

the key features of our research methodology in designing Contelog framework are identi-

fied. In this chapter, the characteristics that govern how we design and develop Contelog

framework are explained. The term “framework” refers to the environment in which the

following four major components exist, and interact to achieve contextual programming and

contextual reasoning. These are

• the c-programming component shown in Figure 3.1, and

• the user interface component, the query processing component, and the evaluation

component shown in Figure 3.2.

In Section 3.1, the key features of the c-program components shown in Figure 3.1 are

discussed. In Section 3.2 the key features of the rest of the components are discussed.

3.1 c-Program Components

A Contelog program, as shown in Figure 3.1, has the following components:

• c-facts is a set of regular/contextual facts,

44

Figure 3.1: Components of c-programs

• c-rules is a set of regular/contextual rules,

• LOCAL CONTEXT is a subset of contexts imported from the set GLOBAL CON-

TEXT, the complete lattice of contexts of interest for an application domain, and

• c-reasoner is the reasoning engine that uses c-facts, c-rules, and the set “LOCAL

CONTEXT”.

A Contelog program with these components structured according to the syntax, explained in

Chapter 5, is called a c-program . As a result of the summary of extensive comparisons shown

in Table 2.1 and Table 2.2, the key characteristics for context representation, and the key

characteristics for an extension of Datalog were chosen. Those features are emphasized in

the following sections in order to concretely position the thesis with respect to the literature.

3.1.1 Key Characteristics for Context

Context notation, defined in Chapter 4, is a finite set of dimension-attribute_set pairs.

Each dimension is associated with a type, and the set of attributes associated with the

dimension is a subset of the typed domain. This notation extends the attribute-dimension

notation reviewed in section 2.2.2 in a rich manner. Using this notation, the two contexts

necessary for reasoning in the “Building Locator Example” are written as

c1 = {from : [east], to : [right]} c2 = {from : [west], to : [left]}

This choice of notation is best match to the criteria of evaluation shown Table 2.1. From

this summary, it is clear that context modeling and structuring are still “a work in progress”.

45

Figure 3.2: Highlevel illustration for Contelog Framework components

Considering the theoretical and empirical needs for contextual reasoning, features of context

representation are as follows:

(1) Conceptualization and Modeling: We decided to go for the same concept introduced

in (Shoham, 1991), that context is complete entity at the time of reasoning, although

it may never be complete generally. No model can adequately fulfill the conceptu-

alization introduced in this thesis, unless completeness is formally enforced. Hence,

context calculus is introduced and complete lattice of contexts is defined to introduce

closure of the contextual reasoning system.

(2) Representation: Our relational representation is much richer than the functional

model introduced in (Wan, 2006; Wan, Alagar, & Paquet, 2005).

(3) Expressiveness: Structural simplicity must be given high importance. Inferring knowl-

edge from contexts should be done in a separate layer. Therefore, we only commit

46

to freedom of structure and fixed-knowledge criteria. No previous work has met this

expressiveness requirement.

(4) Extensibility: Our context model supports heterogeneity, innumerability, and most

importantly detach-ability (separation of concerns).

(5) Manipulability: Context operations defined in this thesis manipulate contexts sepa-

rately from the KB layer. The set of contexts is closed with respect to these operations.

Consequently, all contexts are well-defined in the domain of reasoning.

(6) Reasoning: The relational syntax of context blends well with our choice of Datalog

extension. The closure property of context collection, in “GLOBAL CONTEXT”, en-

forces closure of contextual reasoning when the c-reasoner uses “LOCAL CONTEXT”.

With the above features, context become a “first class citizen” in c-programs . The context

component “LOCAL CONTEXT”, imported from “GLOBAL CONTEXT”, is independent

of the rest of the components, yet it is fully integrated with the c-reasoner. The relational

syntax of context can be represented as a predicate in a c-program such that a dimension in

context syntax is a predicate name in c-program , and the attributes of that dimension are

the attributes of the predicate in c-program , annotated with ‘@’ notation. A c-program can

pass context as an argument, and deal with its operations as a first class citizen incorpo-

rated in its syntax and semantics. Thus, many c-programs can deal with the same context

component and propose their own version of contexts internally in the program without

affecting other programs that using the same set of contexts.

3.1.2 Key Characteristics of c-facts and c-rules

After reviewing many methods and comparing their merits summarized in table 2.2 for

context-based programming, we identified Datalog (Ceri et al., 1989) as the best match.

Datalog has a declarative semantics, simple syntax, and high volume of literature. It has

been well-studied in the field of deductive database and programming languages, hence it is

well-developed. More importantly, it is sound and complete. It is believed that simplicity

of syntax, and theoretical soundness are two main features of importance for contextual

reasoning. The conservative extension of Datalog syntax, briefly introduced below, serve to

formalize the set of c-facts, and c-rules of a c-program .

47

Features of Syntax A c-fact is a proposition, having the same syntax as in Datalog. For

the “Building Locator Example” the two c-facts, written as p(john,east), p(rose,west), are

listed in a section following the list of contexts in a c-program .

A c-program may include regular rules, as in the Datalog syntax

L0 :- L1, L2, ..., Ln,

where each Li is at least a unary predicate. In addition, a c-program will include contextual

rules (c-rules). In each c-rule one or more predicates will be bound to a context. The

notation that is used for a context-based predicate is p(X̄)@C, where X̄ is a list of predicate

arguments and C is a context. The interpretation of p(X̄)@C is “p is true in context C”,

which is precisely the assertion ist(C, P) of McCarthy. This extension of Datalog rules has

two advantages. These are

• With ist(C, P) notation, it is easy to confuse with other normal predicates. Also,

since one argument is context and the other is predicate, it is easy to mix those two

arguments of different types such as putting one in place of the other. So, our notation

avoids ambiguity.

• Our notation improves readability, because with @ notation it is more natural to read

a predicate P ‘at’ context C.

Hence, regardless of the semantics, a full program may look as follows

c- program structure

1 #Contexts

2 c1 = {dim1 : [att1, att2]}

3 c2 = {dim1 : [att3, att4], dim2 : [att1]}

4 #Facts

5 q(a, b)@c2.

6 p(a, b)@c1.

7 #Rules

8 p(X, Y) : −l(X, Y).

9 p(X, Y) : −q(X, Y)@C.

10 r(X, Y)@C : −g(X), m(Y)@C.

48

3.1.3 Key Features of Semantics For c-reasoner

Model theories in mathematical logic define the semantics of formal systems. That is, it

assigns meanings/interpretations to the symbols used in the syntax of the logic programs.

However, in general logic, it is complicated as it requires the use of modern algebra as

stated in (Ceri et al., 1989). Therefore, in Contelog , the model theory of Horn Clause

(Apt & Emden, 1982; Lloyd, 1987; Van Emden & Kowalski, 1976) are used, which makes

Contelog very easy to be described in model theory. In other words, the study of semantics

of Contelog programs is restricted to Herbrand structures. By this, the results of a program

can be known in purely model-theoretic approach, without the need to provide a proof for it.

For the declarative semantics feature to exist, the importance of the completeness feature

in context theory is emphasized, i.e. ‘closed-world assumption’. As a result, if Contelog has

a declarative semantics feature, it can be described as ‘sound’ and ‘complete’.

With the above explanation, the “Building Locator” program given below can be easily

understood. A full discussion of context representation and Contelog syntactic and semantic

extensions are given in Chapters 4 and 5.

The Building Locator program in Contelog

1 #Contexts

2 c1 = {from : [east], to : [right]}.

3 c2 = {from : [west], to : [left]}.

4 #Facts

5 p(john,east).

6 p(rose,west).

7 #Rules

8 p(X, Y)@C ← p(X, Y), from(Y)@C.

9 side(X, Z)@C ← p(X, Y)@C, to(Z)@C.

49

Figure 3.3: Overview of User Interface

3.2 User Interface, Query Processing and Evaluation Com-

ponents

In this section we explain the key features of user interface component, the query process-

ing component, and the evaluation component, and motivate how they collectively interact

with each other to achieve programming and reasoning in Contelog framework. Figure 3.2

shows the interactions among these four components. Thus, Contelog framework will facil-

itate a user in constructing contexts, composing and executing c-programs , getting results

in desired formats, inputting a query and obtaining the reasoned facts that match the query,

and getting information on the performance of all executions.

3.2.1 User Interface Component

The user interface for Contelog is the communication tool between the user and all

other components of the framework as shown in Figure 3.3. Below, the main functions of

the interface are explained.

(1) Run: it is to run the engine based on the evaluation method chosen in ‘Evaluation

Method Options’.

50

(2) Apply Query: this button is to apply the query and incorporate it in the rewriting of

context/program based on our novel ‘Magic Context’ rewriting technique developed

for Contelog . This technique is explained in details in Chapter 6.

(3) Documentation: this is a complete technical documentation for the engine functions,

algorithms, and structure. More information regarding documentation is provided in

(Alsaig, 2017).

(4) Display Report: it is to display the results of the profiling engine deployed for Contelog

programs. Through this tool, the user can compare five different runs of the engine

in terms of tokenizing and reasoning runtime performance. More details on this is

provided in (Alsaig, 2017).

(5) Book of Examples: this is a drop down list that contains all ready-made examples

in the library of examples that can be added/edited or removed by super users. All

examples are provided in the book of examples in Appendix A

(6) Context and Code Boxes: those two text areas are to edit/add context or c-programs

with respect to the syntax of each.

(7) Evaluation Method Option: this is a drop down list that gives the user an option of

choosing Naive or Semi-naive evaluation techniques. Both techniques are explained

verbosely in Chapter 6.

(8) Context Wizard (Toolkit): this toolkit is for the user who are not familiar with the

syntax of the context and wants to add/manipulate it using GUI.

(9) Results: this is a text area to show all results or errors in syntax or semantics. More

on Contelog syntax and semantics is provided in Chapter 5

3.2.2 Query Processing Component

The model theory proposed in Section 3.1.3 allows the presence of a proof-theoretic

bottom-up approach to calculate all possible results of a Contelog program, and guarantee

termination with a fix-point. Bottom-up (from facts to query) and Top-down (from query

51

Figure 3.4: Snapshot of the display reports shown in Contelog Framework

to facts) are two possible approaches to query processing. In this thesis, the bottom-

up approach is the basis for implementing the query processing component. Top-down

approach is left for potential future improvement of Contelog framework.

The following three query processing techniques are all implemented in Contelog System,

and will be discussed in detail in Chapter 6.

(1) Naive Approach: Starting from facts, rules are used repeatedly to generate new facts

until no new facts are generated. The use query will filter the set of results.

(2) Semi-Naive Approach: This method starts from facts and use rules to generate new

facts, while keeping track of the used facts. This step is repeated only if generated

facts are "new", in order not to accumulate already inferred facts. Then, query filter

is used to get the set of results.

(3) Magic Context: Recognizing the given query as “the context” for inferring all relevant

facts, we construct a Magic Context from the user query, and write “magic rules” and

“dependency rules”, and finally rewrite the program in accordance with the new set

of magic rules and context. Last, based on the user’s choice the Semi-Naive or Naive

Approach is used on the rewritten program.

3.2.3 Performance Evaluation Component

In addition to the theoretical and empirical study of performance introduced in Chap-

ter 8, this component is a profiling engine that is used at each sub-component of Contelog

52

engine to measure the runtime performance of the methods used. This includes measuring

the runtime of Loading the files into the system, Tokenizing and Scannning process, and

finally the Inferencing process. For each process the time is internally being measured with

this profiling component and those measurements are displayed as a bar-chart graphic re-

port at the end of the runs as shown in Figure 3.4. It is used by the user to compare the

performance of five consecutive runs. This component is useful for comparisons between the

optimization and query techniques used for Contelog . The advantage of having a separate

profiling for each stage, i.e. loading, tokenizing, and reasoning, is to know where exactly

each method is preforming better than the other.

3.3 Merits of the Contelog Framework Design

The design of Contelog framework is motivated by the basic design principles simplicity,

formality, generality, extensibility, and reuse. Simplicity is in the economy of representation

that allows expressibility and portability while relieving ambiguity. Formality is necessary

for removing syntactic and semantic ambiguities and for sound integration with declarative

logic for reasoning. Generality has the virtue of supporting variety of typing of meta in-

formation captured in contexts. Extensibility is achieved through loose coupling of context

world with reasoning world. This separation of concern leads to both reasoning in many

context worlds and conducting different reasoning within one context world. Reuse of con-

texts and the rules are byproducts of loose coupling. One world is not aware of the other,

yet will function when they are synchronized.

Contelog framework is designed for use either as a stand alone reasoner or work syn-

chronously with a context-aware system. As a stand alone reasoner, it can be part of

Big Data (BD) analysis in applications such as medical diagnosis (Clancey, 1983; Lam-

perti & Zanella, 2003), clinical decision support (Sordo, Tokachichu, Vitale, Maviglia,

& Rocha, 2017), and advanced manufacturing (R.Karni & A.Gal-Tzur, 1990; S.C.Feng,

W.Z.Bernstein, T.Hedberg, , & Feeney, 2017). As opposed to general rule-based expert sys-

tems (Buchanan et al., 1984) used in BD, by constraining the domain of reasoning to specific

contexts, data inconsistency is relieved, and reasoning efficiency is enhanced. Contelog can

53

be linked with a context-aware system which arises in many emerging context-aware appli-

cations such as Smart City, where both context-awareness and inference of knowledge are

pivotal for making strategic decisions. Context-aware computing refers to the ability of the

system to gather information about its external environment and adapt itself accordingly.

So, it becomes essential to reason about safety aspects of adaptation in different contexts.

Recognizing that adaptation which is system (requirements) specific, and reasoning with in-

formation that is specific to contextual information, are complementary issues, the Contelog

platform might be combined to advantage with any adaptation platform in a context-aware

system. In order to verify that the system adaptations are correct with respect to its critical

requirements, it is necessary to have a feed-back loop from the adaptation unit to Contelog

. A case study on building context-aware system using Contelog is provided in Chapter 7.

Extensions of Contelog necessary for further synchronizing with context-aware systems are

explained as part of for future studies in Chapter 9.

54

Chapter 4

Context Theory

A comprehensive literature survey on context was given in chapter 2. The basis of the

proposed thesis structure was given in chapter 3. Interested readers may refer to (Alsaig,

Alagar, & Shiri, 2019b).In this chapter, we pick up those notions, generalize and enrich

to formally conceptualize the notion of context in three tiers. In Tier 1 Context Schema

is defined, in Tier 2 Typed Context Schemas are derived, and in Tier 3 Contexts are for-

malized as a set of families of Context Instances generated from typed schemas. In our

discussion, we may refer to context instances as context. For all the three tiers a uniform

representation is used, under set theoretical setting. The operations defined in Tier 1 are

inherited in successive tiers, and in particular enriched in Tier 3. For applications on our

approach readers may refer to (Alsaig, Alagar, & Shiri, 2019a). Our approach, because of

its generality and simplicity, has the potential for generating different families of contexts

for different applications within an application domain. The ability to generate different

typed context families promote a strict development and reuse of context toolkit. The merits

of context toolkit layer, shown in Figure 4.1, are the following:

• The toolkit meets the criteria of evaluation discussed in Section 2.2.

• It is both “open” and “closed” unit. It is closed in the sense that it is a stand-alone unit

within which contexts are defined, manipulated and managed. It is open in the sense

that it can be integrated with any reasoning framework. That is, the development of

the theory does not depend on or limited to a specific reasoning framework.

• Contelog users and developers of any context-aware application system can create the

55

family of contexts they want without concern on the underlying context formalism.

The user interface helps them to create context schemas, types, typed schemas and

context instances.

Figure 4.1: Context Toolkit Layer

4.1 Tier 1: Context Schema Representation and Calculus

Context schema (CS) is abstract, and its generality gives flexibility for a practical system

designer to choose attributes to be associated with a dimension. Once we fix the (non-

empty) set of dimensions D and the (non-empty) set of attributes A, the set SC (D,A) of all

CSs is fixed.

Definition 1. Formally, a context schema (CS) C over the two pair D,A is a set of pairs

defined as

C = {d : Ad | d ∈ D ∧Ad ⊆ A} ■

Example 1. A context schema Cconf for conference that specifies its date, time and location

can be defined as follows:

D = {Date, T ime, Location}

A = {a1, a2, a3, a4}

56

Cconf = {Date : {a1, a2}, T ime : {a3}, Location : {a4}}

In order to access information of an already constructed context schema, we have defined

two functions. The “DIM” function is to extract the set of dimensions in a context schema,

and the “ATT” function is to extract the set of attributes associated with a dimension in a

context schema. Formally,

DIM : SC → P(D) =⇒ DIM(C) = {d| < d, Ad >∈ C }

ATT : D× SC → P(A) =⇒ ATT (d, C) = Ad

Example 2. Applying the context schema functions on the “conference context schema” in-

troduced in Example 1, we have DIM(Cconf) = {Date, T ime, Location}., ATT (Date, Cconf) =

{a1, a2}, ATT (Time, Cconf) = {a3}, and ATT (Location, Cconf) = {a4}.

For the sake of completeness we include “Null Context Schema” and “Full Context

Schema”. If DIM(C) = ϕ, Ad = ϕ we get the Null Context Schema Cϕ. If DIM(C) = D,

Ad = A we get “Full Context Schema”.

4.1.1 Containment Relationship

McCarthy (McCarthy, 1993) postulated that “every context is contained in an outer con-

text”. Also, a context can contain an inner context. However, no formal definition for “con-

tainment relationship” exists, because of lack of formal representation. Using our context

schema formalism we can formally define containment relationship over the set SC (D,A).

Definition 2. Containment Relationship. Let C = {< d, Ad > |d ∈ D ∧ Ad ⊆ A} and

C ′ = {< d′, A′
d > |d′ ∈ D ∧ A′

d ⊆ A} be two Context Schemas in SC (D,A). We say that

C ′ is Contained in C , denoted as C ′ ⊑ C , iff:

(1) DIM(C ′) ⊆ DIM(C)

(2) ∀ d′ ∈ C ′ATT (d′, C ′) ⊆ ATT (d′, C) ■

Essentially, a context schema C ′ is contained in another context schema C if all dimen-

sions and their associated attributes that are included in C are also included in C ′. The

relation ⊑ on the set SC (D,A) is a partial order because of the following properties.

57

• reflexive: C ⊑ C is true.

• non-symmetric: If C ′ ⊑ C holds then C ⊑ C ′ is false, unless .

• transitive: If C ′ ⊑ C and C ′′ ⊑ C ′ are both true then C ′′ ⊑ C is true.

The set {SC (D,A),⊑} is a partially ordered set (POD).

Example 3. An example of containment would be another conference context schema C ′
conf

with the following dimensions and attributes:

C ′
conf = {Date : {a1}, T ime : {a3}}

Because DIM(C ′
conf) ⊆ DIM(Cconf) and A′

d ⊆ Ad forall d ∈ DIM(C ′
conf) we can say that

C ′
conf ⊑ Cconf .

4.1.2 Operations and Calculus

Not every pair of schemas in the set {SC (D, A),⊑} is related. In order to relate and

deal with every pair of schemas we are motivated to introduce the two operators “join” (⊕)

and “meet” (⊙). These two operators go hand in hand with the containment relationship.

By “joining” two context schemas we get the “smallest” context schema that contains those

two context schemas. By computing the meet of two schemas we get the “largest” context

schema that is contained in those two schemas. These operations, when implemented as part

of context tool kit in an application will enable “exporting knowledge and reasoning” across

contexts. We define three binary operations on the set SC (D,A). Let C , C ′ ∈ SC (D,A).

Definition 3. Equality (=)

=: SC (D,A)× SC (D,A)→ Bool

Using the “infix notation”,

C = C ′, if and only if C ⊑ C ′, and C ′ ⊑ C■

Definition 4. Join Operator (⊕)

Informally, the union of dimension sets and their corresponding attribute sets are calculated

58

in the result by the join operation.

⊕ : SC (D,A)× SC (D,A)→ SC (D,A)

C⊕C ′ = {< d′′, Ad′′ > |d′′ ∈ DIM(C)∪DIM(C ′) ∧ Ad′′ = {ATT (d′′, C)∪ATT (d′′, C ′}} ■

Definition 5. Meet Operator (⊙)

Informally, the intersection of dimension sets and their corresponding attribute sets are

calculated in the result by the join operation.

⊙ : SC (D,A)× SC (D,A)→ SC (D,A)

C⊙C ′ = {< d′′, Ad′′ > |d′′ ∈ DIM(C)∩DIM(C ′) ∧ Ad′′ = {ATT (d′′, C)∩ATT (d′′, C ′}} ■

Let C1, C2, C3 be three distinct context schemas in {SC (D, A),⊑}. Join (⊕) and Meet

(⊙) operators have absorption, commutative, associative, and distributive properties.

(1) absorption: if C1 ⊑ C2 then C1 ⊕ C2 = C2, and C1 ⊙ C2 = C1.

(2) commutative: C1 ⊕ C2 = C2 ⊕ C1 and C1 ⊙ C2 = C2 ⊙ C1

(3) associative: (C1 ⊕ C2)⊕ C3 = C1 ⊕ (C2 ⊕ C3) and (C1 ⊙ C2)⊙ C3 = C1 ⊙ (C2 ⊙ C3)

(4) ⊕ is distributive over ⊙ and vise versa:

• C1 ⊕ (C2 ⊙ C3) = (C1 ⊕ C2)⊙ (C1 ⊕ C3)

• C1 ⊙ (C2 ⊕ C3) = (C1 ⊙ C2)⊕ (C1 ⊙ C3)

Example 4. Applying the join and meet operations on the two conference context schemas

Cconf and C ′
conf in Example 1 and Example 3 we get two new context schemas:

Cconf ⊕ C ′
conf = {Date : {a1, a2}, T ime : {a3}, Location : {a4}}

Cconf ⊙ C ′
conf = {Date : {a1}, T ime : {a3}}

Remark. When coupling the context theory with a reasoning framework, those operations

become underlying techniques for the conjunctions operations in reasoning semantics.

59

4.1.3 Context Schema Lattice

With the join and meet operations on the POD {SC ,⊑} we claim that the set L =

(SC ,⊑,⊕,⊙) is a lattice (Grätzer, 1971). In general, the lattice L = (SC ,⊑,⊕,⊙) is

closed and distributive. It is closed because its minimum element is the null context schema

and the maximum element is the context schema composed with all dimensions in set D

and all attributes of A associated across the dimensions. It is distributive because for

x, y, z ∈ L , we can verify the two properties: (1) (x⊙ y)⊕ (x⊙ z) = x⊙ (y ⊕ z), and (2)

(x⊕y)⊙(x⊕z) = x⊕(y⊙z). These two properties have enormous consequence on the system

level. First, when the set (D,A) is fixed, the set of all context schemas in the lattice structure

is closed with respect to the join and meet operations. Consequently, no typed context and

thus context instances (defined in the later sections) are “left unaccountable”. That means,

we have a “closed world” of families of context instances and the knowledge they enclose.

This closed world property fulfills the requirement of “sufficient completeness of actions

in contexts” for ensuring safety and privacy properties at system execution stage. The

distributive property enables “simplification” of expressions that involve context instances

and hence the evaluation of “predicates” that need to be evaluated at context instances.

Definition 6. L (D,A) = (SC (D,A),⊕,⊙,⊑) is a complete lattice. ■

In the rest of the discussion we agree that D,A is fixed and simply use the notation SC for

context schema and L for the complete lattice.

4.2 Tier 2: Typed Context Schema Representation and Cal-

culus

Typed Context Schema (TCS) is a context schema in which attributes are associated

with types. Each attribute is typed in the sense that it has a domain of values with respect

to the type associated with it. Representation and calculus of schemas in TCS are inherited

from the un-typed schemas defined in Tier 1.

60

4.2.1 Typed Context Schema Representation

Let T = {T1, T2, ..., Tn} denote a finite set of types such that for each type Tx ∈ T

there exists a pair < Vx, OPx >, where Vx is a “maximal” set of values, and OPx denotes

a set of operations allowed on the set Vx. By “maximal” we mean (1) Vx does not overlap

with the set Vy of values of any other type Ty ∈ T, and (2) if V ′
x is any other set containing

the values of Tx then V ′
x ⊂ Vx. A type assignment to attributes in A is achieved through

a map (a finite function) M : A → T that associates a unique type for every attribute in

A. We denote the set of all such type assignments by AT. Two maps M1, M2 ∈ AT are

equal only if M1(a) = M2(a) for every a ∈ A. For two maps M1, M2 ∈ AT, M1 ̸= M2, it is

possible that M1 ∩M2 ̸= ∅.

Definition 7. Let M ∈ AT. With respect to M the typed version of context schema C is

denoted as C M , where

C M = {< d, AM
d > |d ∈ DIM(C), AM

d = {aM(a)|a ∈ Ad}}

Example 5. Let D = {d1, d2}, and A = {a1, a2, a3}. A context schema C1 over D and A

is defined as follows:

C1 = {d1 : {a1, a2}, d2 : {a2, a3}}

Let T be the set of types such that T = {Int, Char, Range} where each type is defined as

follows:

• Int

◦ Operations

◦ Values: (−∞, +∞)

• Char

◦ Operations: {=, After, Before}

◦ Values: [a · · · z]

• Range

61

◦ Operations: {=, After, Before, Lowest, Highest}

◦ Values: [1 · · · 10]

Let M1, M2 ∈ ATas defined below:

M1 = {a1 → Int, a2 → Char, a3 → Range}

M2 = {a1 → Int, a2 → Int, a3 → Char}

The typed attribute sets corresponding to these mappings, respectively, are {aInt
1 , aChar

2 , aRange
3 },

and {aInt
1 , aInt

2 , aChar
3 }. Thus, the typed schemas are

C M1
1 = {d1 : {aInt

1 , aChar
2 }, d2 : {aChar

2 , aRange
3 }}

C M2
1 = {d1 : {aInt

1 , aInt
2 }, d2 : {aInt

2 , aChar
3 }}

Notice that C M1
1 ̸= C M2

1 because of the different type assignment M1 and M2.

4.2.2 Typed Schema Calculus

We refer to the set of schemas of the same type, denoted as SC M , as a family of typed

schemas. Operations defined at schema level are extended to typed schema family. They

are well-defined only within the family. That is, operations are not extended across families

of typed schemas. Thus, the operations C M1
1 ⊕ C M2

1 , C M1
1 ⊙ C M2

1 are not defined since

M1 ̸= M2. However, for typed context C M1
3 = {d2 : {aInt

1 }} we can define C M1
1 ⊕ C M1

3 and

C M1
1 ⊙ C M1

3 .

4.2.3 Typed Context Schema Lattice

For M ∈ AT a family of context schema SC M with join and meet operators is a complete

typed lattice L M . This lattice includes all possible context schemas of type M . Within

each family of schemas we can define schema operations meet, join and containment. In

addition we may be able to define additional operations induced by the operators associated

with type T induced by map M .

62

Example 6. For a set of dimensions D = {d1, d2} and a set of attributes A = {a1, a2},

let L be a context schema lattice that includes the set of context schemas defined in SC as

follows:

SC = {Cϕ, {d1 : {a1}}, {d2 : {a2}}, {d1 : {a1}, d2 : {a2}}}

Say we have applied M1 and M2 on all contexts in SC , and hence we have SC M1 and SC M2 .

Thus, we can construct two lattices that have different types, i.e. L M1 and L M2, which

are both a typed version of the general context schema lattice L

In summary we have achieved the following results:

1. If α = |AT| then there are potentially α mappings, each associating every attribute of A

to a type in T. Consequently, from one schema C ∈ SC (D,A) we can generate α different

typed schemas. Thus, for a fixed set of dimensions/attributes set (D, A) we can generate

α× β typed schemas where β = |SC (D,A)|.

2. Let SC (D,A)M = {C M |C ∈ SC (D,A), M ∈ AT}. The operations “containment”, “equal-

ity”, “join” and “meet” defined at the schema level are directly inherited by this set of typed

contexts.

3. The operations ‘containment”, “equality”, “join” and “meet” cannot be defined for

schemas that are from different typed families.

4. The context schema lattice L (D,A) becomes a typed schema lattice L (D,A)M.

4.3 Tier 3: Context Instance Representation and Calculus

In all practical applications (et al., 2009; Held, Buchholz, & Schill, 2002c) the term

“context” has been used as “meta information” annotating “certain scenarios” or “hap-

penings”. This is achieved by associating “values” (sometimes called “tags” or “events” or

“situations”) to “dimensions”. In our theory we arrive at such “contexts” as “instances” of

context schemas. The rationale is to provide a more abstract foundation from which we

can generate several “families” of context instances. The advantages include (1) levels of

abstractions to conceptualize and manipulate schemas and instances, (2) provide a strong

typing for attributes, and (3) achieve a potentially infinite number of context “families”,

where all context instances in a family will have a well-defined set of operations. This

rigorous and disciplined theory will enable the correct development of context toolkit and

63

promote reuse..

4.3.1 Context Instance Representation

A Context Instance (CI) is an instantiated TCS in the sense that the attribute names

in a TCS are substituted by values from the associated type domain. Hereafter we refer

to context instance as context. To formalize, we start with one C M be TCS of the lattice

S(D,A)M , and use the substitution notation [x/v] to mean that v is substituted for x. Let θ

be a substitution function that assigns to each typed attribute aT a value from the domain

V of values associated with T . By a substitution θ we get an instance Iθ(C M) for the typed

context schema C M as defined below:

θ : C M → I1(C M)

where DIM(Iθ(C M)) = DIM(C M), ∀ < d : AT
d >∈ C M ,∃ < d : valV >∈ Iθ(C M),

valV = {[aiθ/vi] | vi ∈ V }. That is, from each node (schema) in L (D,A) we can generate

a context instance for a fixed substitution. Because an atrribute can be substituted by

any value from its associated type domain, for each type assignment to an attribute we

get a family of contexts generated from one node in L (D,A). Therefore, in addition to

schema operations we can introduce the operations of the associated type to contexts within

a family.

Example 7. Let θ1 = {a1/1, a2/b, a3/[1 − 3]},. By applying θ1 on C M1
1 in Example 5 we

get one context I1(C M1
1) = {d1 : [1, “b”], d2 : [“b”, [1−3]]}. By applying the substitution θ2 =

{a1/100, a2/e, a3/[2 − 4]} to C M1
1 , we get another instance I2(C M1

1) = {d1 : [100, “e”], d2 :

[“e”, [2 − 4]]}. When θ3 = {a1/10, a2/20, a3/c} is applied to C M2
1 we get the new instance

I3(C M2
1) = {d1 : [10, 20], d2 : [20, “c”]} of type M2. We remark that operational consistency

exists only for contexts within each family.

Whereas the three tiers provide generality through abstraction levels, within tiers 2 and

3 we achieve regularity and extensionality. For certain types, such as “categorical types”,

categories can be incrementally defined in order to suit the needs of specific application in

tier 3. We achieve generating a large number of specialized contexts and can keep track of

64

them using the family structure. Consequently, context calculus remain formal and correct

with respect to operations associated with types.

Remark. In context-based applications, such as contextual reasoning frameworks and context-

aware applications, only context instances are used. The first two tiers are the theoretical

basis for constructing typed context instances. We assume that Tiers 1 and Tier 2 have been

accomplished already to generate Tier 3 contexts. Usually, context schemas are application-

dependant, and once they are defined only context instances are relevant afterwards.

4.4 Modeling Example

Figure 4.2: Snapshot of the paper submission example in (García & Brézillon, 2017)

Many different ad-hoc notations for modeling contexts can be found in (Interdisciplinary

& Series, 1997-). One of them (García & Brézillon, 2015, 2017) is “paper submission con-

text” shown in Figure 4.2. This notation, called contextual graph, has several ambiguities.

For instance, there are modeling ambiguities such as what is the type of information that

can be attached to each node? what does a node represent?. Also there are structural am-

biguity such as how can a hierarchical relation be structured? Finally, there are technical

and performance ambiguity such as what type of data can a contextual graph encapsulate?

what the complexity of processing such graphs? We can eliminate these ambiguities by

formally representing “paper submission context” using our 3-tier context representation.

The actors in “paper submission” process are “publisher, editor, author, and reviewer”.

They share some activities like “canceling, submitting, checking”. However, each actor is

65

independent with respect to many other activities. For instance, editor can edit a paper,

but cannot reject a paper, only a reviewer can. We explain how our approach can formalize

this contextual graph model.

Step.1 We develop the context schema after identifying a set of dimensions, a set of at-

tributes set, and a set of types. Based on the example, each actor has information such

as “name”, “date-of-last-login”, thus we have ”Info“ dimension. An actor also has unique

activities and common activities shared among all types of actors. Therefore, we have also

another two dimensions which are “Unique”, and “Common”. Therefore, we have the set of

dimensions D = {Info, Unique, Common}. The attributes of each dimension can be iden-

tified by the information that a dimension holds. “Info” dimension for instance, holds the

“name”, “lastlogindate” attributes. These attributes can simply be named anything, but we

use meaningful names to make attributes readable and comprehensible. Based on example,

each author has a list of unique activities, and a list of common activities. Therefore, both

dimensions “Unique” and “Common” should have one attribute (later will be of type list).

Therefore, our attribute set is A = {name, lastlogindate, act_common, act_unique}. The

types can be customized/user defined, or can be basic types like integer and string. The

information in our attributes are either string, integer, or list of a generic type. Therefore, we

define our set of types set as T = {string, date, common, editor, reviewer, publisher, author}.

The domain of values and operations associated with each type can be defined as follows:

• string: operations:{concat, intersect}, domain: set of alphanumeric values

• integer: operations: {+,−}, domain: (date)

• common: operations: {before, after, add, remove}, domain: list of common activi-

ties.

• editor: operations: {before, after, add, remove}, domain: list of unique activities for

editor.

• reviewer: operations: {before, after, add, remove}, domain: list of unique activities

for reviewer.

66

• publisher: operations: {before, after, add, remove}, domain: list of unique activities

for publisher.

• author: operations: {before, after, add, remove}, domain: list of unique activities for

author.

Based on the above choice the “Paper Submission Context Schema”, denoted CP S , is defined

as follows:

CP S = {Info : {name, lastlogindate}, Unique : {activities}, Common : {activities}}

Step.2 We assign types to attributes and generate typed schemas. The above schema is

general to all types of actors.The tyes are assigned as below:

• C edi
P S = {Info : {namestring, lastlogindatedate}, Unique : {activitieseditor}, Common :

{activitiescommon}}

• C rev
P S = {Info : {namestring, lastlogindatedate}, Unique : {activitiesreviewer}, Common :

{activitiescommon}}

• C pub
P S = {Info : {namestring, lastlogindatedate}, Unique : {activitiespublisher}, Common :

{activitiescommon}}

• C aut
P S = {Info : {namestring, lastlogindatedate}, Unique : {activitiesauthor}, Common :

{activitiescommon}}

Step.3 We generate context instances from the typed schema . In this level values are

“substituted” to attributes. For instance, an editor instance can be C edi
P S = {Info :

{“Jhon Dazer”, “2017−05−04”}, Common : {[submit, cancel, delete]}, Unique : {[edit, submit_notes, contact_publisher]}.

We can generate a family of instances for each type assignment.

This simple example illustrates the following advantages of our formalism.

• Precision: Ambiguities are eliminated.

• Generality: Once the first two tiers are done, in the third tier we can generate a family

of context instances. In the informal graph model only one specific context could be

shoe. Consequently, we have achieved generality.

67

• Accuracy and Completeness: We are able to generate all meaningful contexts, whereas

in the graphical notation it is possible to identify contexts that are not meaningful

and not all meaningful contexts can be represented.

4.5 Evaluation of the Context Theory

The merits of our context theory are compared below with other existing methods. We

use the same evaluation criteria stated in Section 2.3.1 for this comparison. A summary of

this evaluation is provided in Table 4.1.

(1) Formal Conceptualization (FC): Each dimension in a context represents a category

of an information related to the context, and each attribute value associated with a

dimension is a specific detail of significance to that category. Therefore, the context

notation formalizes a multi-dimensional perspective of any circumstance conceptual-

ized as context.

(2) Formal Model (FM): It is precise, typed, complete, and sound. No notational ambi-

guity, nor semantics ambiguity exists. Also, every context in the lattice is well defined

and the set of contexts in the lattice is maximal.

(3) Formal Representation (FR): The representation as a collection of ordered pairs brings

out all meaningful relations, once the set of dimensions, the set of types, and their

domains are defined.

(4) Freedom of Structure (FrK): Context theory supports both flat and hierarchical struc-

tures.

(5) Fixed Knowledge (FxK): Context instances are static information that contains con-

stants.

(6) Inferred Knowledge (InK): Once paired with an inference engine (Contelog), it is

structurally capable of collecting all knowledge that can be inferred in the contexts

enclosed by the complete lattice.

(7) Support Heterogeneous Data (SHD): The context schema allows heterogeneous types

and their values for attributes associated with the dimensions. The heterogeneity of

68

Category Research
Formalism Expressiveness Extensibility

Manipulable
FC FM FR FrS FxK InK SHD Inn Det

1 Context Theory T ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓

Table 4.1: Evaluation of Our Context Theory against the same criteria of evaluation used
to evaluate previous methods in section 2.3.1
*FC: Formal Conceptualization, FM: Formal Modeling, FR: Formal Representation, FrK:Freedom
of Structure, FxK:Fixed Knowledge,InK: Inferred Knowledge, SHD: Support Heterogeneous Data,

Inn:Innumerable, Det: Detachable

data in Tier 3 context instances is fixed to the types defined in Tier 2. Higher-order

types (structured types) can be defined in Tier 2, which can generate heterogeneous

hierarchical contexts in Tier 3.

(8) Innumerable (Inn): In theory, a context can have infinite number of dimensions. The

context theory is capable of dealing with unlimited number of dimensions and at-

tribute. However, in order to link it to a practical systems, it is mandatory to limit

the theory to finite sets of dimensions and attributes.

(9) Detachable (Det): Context theory is completely detachable from any other component.

(10) Manipulable: Using operations defined in Context Toolkit, contexts can easily be

manipulated.

69

Chapter 5

The Contelog Framework

Contelog is a Contextual Knowledge Base System (CKBS) that evaluates a given set of

facts and rules in specific contexts to derive new facts that hold true in those contexts. In this

chapter, the declarative, fixpoint, and proof theoretic semantics of Contelog programs are

developed and their equivalences are established. The framework is explained via examples

throughout the chapter. Contelog , conservatively extends the syntax and semantics of

Datalog to reason with contextual knowledge. In this setting, contextual knowledge is

reusable on its own. The significance is that by fixing the contextual knowledge, goal-

specific analysis rules may be changed, and vice versa. By providing a theory of context

(dicussed in Chapter 4), independent of the logic of the rules, we have developed a simple

and sound context calculus using which it is possible to export knowledge reasoned in one

context to another context. A more abstract and brief application of Contelog framework

can be found in (Alsaig, Alagar, & Nematollaah, 2020). In this chapter, only the theoretical

aspects of Contelog are discussed. In Chapters 6, 7, and 8, query processing algorithms,

applications, and performance optimizations are discussed.

5.1 Note on Contexts

In the rest of the thesis “context” refers to context instances discussed in Chapter 4.

When an application domain is fixed for Contelog reasoning, Context Schema, and Typed

Context Schema are done using the context toolkit to make context instances. The syntax

70

of context instances or simply context adopted from now on is,

c1 = {dimension1 : attribute−set1, dimension2 : attribute−set2, · · · dimensionn : attribute−setn}

5.2 The Syntax

A definite Contelog program P (or c-program , for short) is a finite set of facts, rules,

and contexts. Each rule r in P is an expression of the form:

L0 ← L1, L2, ..., Ln

where Li is an atom of the form p(X) or p(X)@C, and X is a list of variables and/or

constants of the right arity. We refer to an atom of the form p(X) as a normal atom, and

refer to p(X)@C as an annotated atom with context, contextual/context atom, or simply as

an annotated atom. An annotated atom is used to express contextual information, that is,

facts that are true only in specific context(s). For instance, p(X)@C states that p(X) is

true at (or in) some specific context C. A fact is a special case of a rule in which n = 0.

As in standard Datalog, we use lower case letters for predicate names, normal or context.

A lower case letter in an argument or annotation of a predicate represents a constant and

an upper case letter represents a variable. Note that we do not allow negation or function

symbols in Contelog programs.

The atomic formula L0 in r is called the rule head, while the conjunction of atoms Li(i > 0)

is called the rule body. Each Li in the body may be referred to as a subgoal. A fact in P is

a special case of a rule in which the conjunction in the body is empty. As in the standard

Datalog, we require the rule safety, that is, every normal or context variable appearing in

a rule head must also appear in the body of that rule. This essentially ensures that every

relation defined by a rule head is finite.

71

Figure 5.1: Possible formulas allowed in the Contelog framework

5.3 The Semantics of c-programs

A c-program P in Contelog can be viewed as having two components. The first compo-

nent includes the information expressed as the facts and rules, and the second one includes

the contextual information organized as a collection of context modules, which can be in-

corporated and used during query processing. In (Guha, 1991; McCarthy, 1993), they

refer to these two types of information, respectively, as the "problem solving" world and the

"context" world. The explanation in Figure 5.1 emphasizes that, for instance, a fact is true

in problem solving world (#1) or in context world (#2). Or using a rule, it indicates that

72

the facts inferred are in problem solving world (#4) or in context world (#6).

5.3.1 Model Theory

Without loss of generality, we restrict the study of semantics of c-programs to Herbrand

structures. We begin with the development of the model theory, also called the declarative

semantics. We show that every c-program in Contelog has the least model. We will then

provide a fixpoint semantics of c-program and establish its equivalence to the least model.

Finally, we propose a proof-theoretic semantics and show that it coincides with the least

model.

The Herbrand universe of a c-program P includes the set UP of all constants mentioned

in the facts and rules in P , and those mentioned in any context incorporated in P . The

Herbrand base of P , denoted as BP , is the set of all ground atoms that can be constructed

using the normal or context predicates, and the constants in UP . The Herbrand instan-

tiations of P , denoted as P ∗, contains the ground instances of every fact and rule in P

w.r.t. the normal and context atoms in BP . Since function symbols are not allowed in

c-program P , the Herbrand universe and Herbrand base of P are both finite, and hence the

instantiated program P ∗ is finite as well.

As in the standard case, a substitution θ is a function that maps every variable to a

term. In Contelog , a term is either a variable or a constant. Let L1 and L2 be two atomic

formulas, normal or with contexts. We say that L1 subsumes L2, denoted as L1 ▷ L2, if

there is a substitution θ such that L1θ = L2, i.e., applying θ on L1 yields L2. If L1 ▷ L2,

we say that L2 is an instance of L1. For example, p(1, 2, 1) and p(1, 1, 1) are both instances

of p(X, Y, X) but p(1, 1, 2) is not. As examples with contexts, p(1, 1, 1)@c1 is an instance

of p(X, X, X)@C, but not an instance of p(X, X, X)@c2 or p(X, X, X).

5.3.2 Herbrand Interpretation

A Herbrand interpretation I for a contelog P is a subset of the Herbrand base BP of P .

A ground normal atom A is true under I, denoted as I |= A, iff A ∈ I. A ground context

atom A@c is true under I iff A@c ∈ I. Let r ≡ L0 ← L1, · · · , Ln be any rule in a c-program

P , where each Li is a normal or a context atom. An interpretation I satisfies r, denoted as

I |= r, iff there exists a substitution θ such that L0θ ∈ I whenever Liθ ∈ I, for 1 ≤ i ≤ n.

73

Finally, a Herbrand interpretation I satisfies P , denoted as I |= P , iff I satisfies every rule

and fact in P . In this case, we may also say that I is a model for P .

Corollary 1. (Model Intersection Property). Let M be any non-empty collection of Her-

brand models of a Contelog program P . Then the intersections M = ⋂
i≥0{Mi | Mi |= P}

is also a Herbrand model of P .

Proof. SupposeM is not a model of P . Then there exists a ground instance A← B1, · · · , Bn

of a rule r in P that is not true inM. This means thatM includes B1,B2,·, Bn but not A.

Furthermore, B1,B2,·, Bn are contained in every model Mi in M. Thus there must exist

at least a model Mj in M that does not contain A. This in turn implies that r is not true

in Mj and hence Mj ̸|= P , which is a contradiction.

The above result yields a characterization of the intended, declarative semantics of

definite programs in Contelog , described as follows. If the collection of Herbrand models

M of P considered in the above result includes all such models of P , then M is the least

model of P . This model is an abstraction of the world described by the program and the

contexts it uses. It is established as the next corollary.

Theorem 1.1. (The Least Model). The least Herbrand model of a c-program P is the

intersection of all the Herbrand models of P . That is, MP = ⋂
i≥0{Mi | Mi |= P}.

Example 8. We use Contelog to formally program the locator example introduced in fig-

ure 1.1 of chapter 1. First, we identify the context and model it. For a person coming

from east (contextual information), the library will be on the right (contextual information)

of the person. Thus, the context contains two dimensions: the direction a person comes

from (from) and the side a person should go to (to). The dimension “from” has one at-

tribute which is the direction name that can have the values “east” or “west”. Similarly,

the dimension “to” has one attribute which is the side name that have the values “left” or

“right”. Our Contelog program Pbu has two binary predicates. One is p(X, Y) which refers

to a person X coming from a direction Y . The second is side(X, Z) which refers to person

X and the side Z on which the library is located. This information can be expressed at the

following Contelog program.

The Building Locator program in Contelog

74

1 #Contexts

2 c1 = {from : [east], to : [right]}.

3 c2 = {from : [west], to : [left]}.

4 #Facts

5 p(john,east).

6 p(rose,west).

7 #Rules

8 p(X, Y)@C ← p(X, Y), from(Y)@C.

9 side(X, Z)@C ← p(X, Y)@C, to(Z)@C.

To save space, restricting to the fact p(john, east), the context universe/lattice, Herbrand

universe, and Herbrand base are as follows.

1 LC = {c1, c2, c3(= c1 ⊙ c2), c4 = (c1 ⊕ c2)}

2 CU = {east, west, left, right}

3 UP = {john, east, west, left, right}

4 BP = {p(john, east), p(east, west), p(east, john)...} ∪{p(john, east)@c1, ..., to(east)@c1, ...}

5.3.3 Fixpoint Semantics

In this section we introduce a bottom-up, fixpoint method to evaluate programs in Con-

telog and establish its equivalence to the least model. We adapt the Elementary Production

Principle (EPP) (Abiteboul, Hull, & Vianu, 1995b; Ceri et al., 1989) from standard Data-

log to derive new facts which are logical consequences defined by the input facts and rules.

Let P be any c-program , P ∗ be the Herbrand instantiation of P , and r be a c-rule in P .

Applying the EPP on r is the process of inferring the head of r if a successful unification

exists for the body of r. INFER is a simple algorithm used in (Abiteboul et al., 1995b; Ceri

et al., 1989) that applies EPP concept on the rules and facts in a Contelog program. The

algorithms EPP, INFER, and other query processing approaches are explained in Chapter 6.

This algorithm is repeatedly applied until no more new fact can be inferred. In this case,

we say that the least fixpoint is reached. Note that since function symbols are not allowed

in Contelog , the Herbrand universe of a c-program is always finite and hence the fixpoint

is always reached in finite time.

75

The bottom-up evaluation of a c-program P can be defined as a mapping TP : 2BP →

2BP , where 2BP denotes the subsets of the Harbrand base BP . The least fixpoint of TP is

obtained at iteration n if T n
P = T n−1

P . That is,

TP
n =


ϕ if n = 0

TP (T n−1
P) if n > 0

and the least fixpoint lfp of TP is defined as:

lm(TP) =
⋃

n≥0
T n

P

The following two results ensure that (1) the fixpoint computation terminates in finite

time and (2) the least fixpoint includes all logical consequences of the input c-program .

The proofs can be easily obtained by adopting from the standard case. Moreover, as in

the standard Datalog, the number of iterations to compute the least fixpoint is polynomial

O(nk), where n is the number of constants in the Herbrand universe and k is the maximum

arity of the predicates in the input c-program .

Lemma 1.2. The TP operator is both monotone and continuous.

Theorem 1.3. The least fixpoint of TP exists and is identical to the least model of P .

5.4 Currency Exchange - A Complete Contelog Example

And its Evaluation

The currency is a context-based element. It changes based on the context of the person,

namely, the location. This is a basic context-based problem that can manifest more compli-

cated issues such as exchange rate from currency to another, the contextual-translation, and

the direction problem. Since Contelog is not equipped with functions it cannot calculate or

compute numerical equations, however it presents the base for such interesting extension.

The goal of this program is to identify the currency of the person based on the context of

this person. If this person is in USA then currency is $, if he/she is in France then it is

76

Euro, and so on. Consider the following currency contexts for the c-program (Pcu) which

define ceu, cca, cus for EURO, CAD, and USD, respectively, as follows:

The Currency Contexts for the c-program Pcu

1 ceu = {currency:[eur], location:[france]}

2 cca = {currency:[cad], location:[canada]}

3 cus = {currency:[usd], location:[usa]}

The Contelog program Pcu defined below has two binary predicates; person(X, Y) which

asserts that person X is in location Y , and loc_curr(X, Z) which asserts that person X

should use the currency Z because of his/her location. The program also defines two unary

context predicates location(Y) and currency(Z), used during the reasoning process. The

first rule r1 in the c-program below identifies different categories of individual persons based

on their contexts, and r2 infers the currency to be used by a person based on his/her category

identified by r1.

The c-program Pcu

1 person(john,canada).

2 person(mary,france).

3 person(ray,usa).

4 r1: person(X,Y)@C :- person(X,Y), location(Y)@C.

5 r2: loc_curr(X,Y)@C :- person(X,Z)@C, currency(Y)@C.

The fixpoint of the program above TPcu contains the following facts; derived facts are

preceded by **.

The facts derived from Pcu

1 person(john,canada).

2 person(mary,france).

3 person(ray,usa).

4 **person(john,canada)@cca.

5 **person(mary,france)@ceu.

6 **person(ray,usa)@cus.

7 **loc_curr(john,cad)@cca.

8 **loc_curr(mary,euro)@ceu.

77

9 **loc_curr(ray,dollar)@cus.

In the first iteration of the bottom up evaluation, we get all the facts:

T 0
Pcu

(ϕ) = {person(john, canada),

person(mary, france), person(ray, usa)}.

In the second iteration, rule r1 can be applied as some predicates in its body can be unified

with the facts obtained. For instance, person(X, Y) is unified with person(john, canada).

Passing the substitution to the next subgoal in r1, it yields location(canada)@C. Since

location(canada) is a context predicate, it is evaluated against the contexts. As this pred-

icate is contained in one of the contexts, i.e. cca, we get a hit and a substitution value.

This in turns allows inferring person(john, canada)@cca. The same process follows for other

possible hits. We thus obtain the following facts.

T 1
Pcu

(T 0
Pcu

) = {person(john, canada)@cca,

person(mary, france)@ceu, person(ray, usa)@cus}

In iteration 3, rule r2 is triggered since its first predicate person(X, Z)@C is unified with

person(john, canada)@cca which gives the next subgoal currency(Y)@cca in the rule body

to verify against the contexts. This maps Y to cad, the value of the currency dimension in

context cca, using which we infer loc_curr(john, cad)@cca. Repeating this process for all

the other facts and contexts, we obtain the following results.

T 2
Pcu

(T 1
Pcu

) = {loc_curr(john, cad)@cca,

loc_curr(mary, euro)@ceu, loc_curr(ray, usd)@cus}.

In the forth iteration, we note that T 3
Pcu

(T 2
Pcu

) = T 2
Pcu

, which means the fixpoint is reached

and the evaluation process terminates.

Remark. Although top-down evaluation approach was not developed for Contelog , it is

well-understood. Top-down approach is moving from the goal/head of the rule to prove its

body (subgoals), it is also called backward chaining. A basic method that applies the top

down approach in standard Datalog is called Query-Subquery method. In Contelog , the

same approach can be used to perform the top-down process. This method is sound and

complete.

78

Framework
Multiple
Programs

Separate
Rules

Local
Dynamism

Separate
Data

Simplicity Extension

[l] Contelog : logic-based ✓ ✓ ✓ ✓ ✓ ✓

Table 5.1: Framework level evaluation for Contelog

5.5 Evaluation and Observations for Contelog Framework

For the comparison to be fair, we apply the evaluation criteria developed in Chapter 2 to

Contelog model to assess its merits. Table Table 5.1 provides a summary of results.

(1) Reuse: Due to the loose coupling structure between context and Contelog programs,

it is easy to see to convince ourselves that multiple programs can reuse contexts, even

simultaneously, without affecting one another. The local context is the one affected

by the Contelog program which is an internal copy of the global context used by all

other programs.

(2) Ability for Multiple Reasoners to exist(Separate Rules): The structure of Contelog

supports this requirement. Contexts, facts, and rules are three different components

in Contelog program. They communicate formally through intertwined syntax and

semantics. Facts are used to define program specific absolute truths. Contexts are

used to define settings and meta-information of the program. Finally, rules are used

to use facts and context to achieve certain goal.

(3) Local Dynamism without Global Side Effect (Local Dynamism): The context within

c-program , is dynamic. Rules can be used to infer new context and add it to the

local set of contexts, and use it to infer new facts/contexts. This allows the ‘transitive

closure’ within context, which is referred to as ‘contextual recursion’. This, however,

does not affect the global context with which other Contelog programs may be paired.

(4) Separation of Data from Context (Separate Data): Facts or absolute truths within a

Contelog program is different from contextual information. This is well-supported

by the structure of Contelog program. For instance, in the domain of context-aware

systems, temperature and humidity are considered data, while meaning of this data

such as ‘hot’ or ‘humid’ is a contextual information that should be defined in context

79

component. This feature is absent in many Ontology-based context-aware systems,

where contextual information and factual information cannot be separated.

(5) Representation Simplicity (Simplicity): Contelog adopted the syntax of Datalog to

maintain simplicity. The context is added after the ‘@’ notation to avoid confusion

between predicate attributes and contextual attributes. Also, for simple reading and

intuitive understanding so contextual predicates can be read ‘the predicate p is true

AT context c’.

(6) Extensibility: Contelog is a conservative extension of Datalog. That is, it has more

features in terms of syntax and semantics, but it inherits all features of Datalog. It

can run Datalog programs without the presence of contextual information.

80

Chapter 6

Query Processing and

Optimization Algorithms

In the previous chapter, we introduced Contelog formalism and explained its inference

engine through Contelog semantics. In this chapter, we elaborate on the inference mecha-

nism for evaluating Contelog programs. The result of a Contelog program is a set of regu-

lar/contextual facts inferred from the facts, rules, and contexts in the input program. We

consider the bottom-up evaluation approach that uses substitution and unification through

which variables in the rules are mapped to constants in facts and contexts.

Given a query, essentially a conjunction of positive atoms, the query processing goal

is to find all those tuples that are logical consequences of the program and subsumed by

the query. A basic query in Contelog is simple or annotated atom. Formally, a c-query is

expressed as follows:

?− p(X, Y, ...)@C. or ?− p(X, Y,).

where X,Y,..., could be regular variables or constants, and C a context variable or instance.

The query processing uses the facts, rules, and contexts in the c-program to determine

the output tuples that can be subsumed by the input c-query . Unlike top-down evaluation

approaches, bottom-up approaches are not ”goal oriented." As a result, there are two sources

of inefficiency problems recognized and addressed for Datalog programs. The first one is

that, tuples derived at an iteration i continues to be derived at subsequent iterations. The

81

other source of inefficiency is that if the user wishes to evaluate a program to determine the

answers to a given query, the structure of the query and the binding information are not

taken into consideration until the evaluation process terminates. At that point, the out-

put tuples that are subsumed by the input query are returned and the rest are discarded.

Semi-naive method solved the first problem and the Magic Sets rewriting method solved

the second problem successfully for Datalog programs. In our context of programs in Con-

telog , we adopt the ideas used in Datalog and propose solution techniques that solve the

aforementioned two problems for efficient evaluation of Contelog programs. The results of

our numerous experiments indicate significant performance improvement. In what follows

we provide details of the proposed processing and optimization methods. The methods ex-

tend the standard unification and Elementary Production Principle (EPP) procedures that

take into account the presence of contexts. We also illustrate the steps through examples.

Performance measurement and optimization is discussed in the next chapter.

6.1 Preliminaries

6.1.1 Pre-processing

Contelog engine executes some pre-processing tasks against the context module and the

program to ensure correctness of the syntax. Details of pre-processing tasks are discussed

in the technical documentation of the engine (Alsaig, 2017).

6.1.2 Unification Conditions

In order for a non-ground atom to be unified with a fact, there are three conditions that

have to be met. (1) Both the atom and the fact must have the same signature. Predicate

signature is the predicate name (functor) and the number of attributes (arity) and context,

if any. If an atom and a fact do not have similar signature, they can’t be unified. (2) A fact

unifies with a non-ground atom only. A non-ground atom cannot be unified with another

non-ground atom, and (3) A fact unifies with a non-ground atom only if it matches its

binding pattern. That is, a predicate p(X, X)@C cannot unify with p(a, b)@c1 because the

binding of the predicate only accepts similar arguments in its attributes. Therefore, it will

only accept similar facts that respect its pattern such as p(b, b)@c2. If those three conditions

82

are met for certain non-ground atom and a fact, then the atom becomes unfiable with that

particular fact. It then uses the algorithm UCA(fact,non-ground atom) that implements

unification of the argument atoms.

Unifiability Check Algorithm (UCA)

1 Input: F: a ground atom, P: a non-ground atom

2 Output: boolean True for unifiable, False for non-unifiable

3 Method:

4

5 IF IS-FACT(F) and IS-PREDICATE(P):

6 IF functor(F) EQUALS-TO functor(P):

7 IF number-of-arguments(F) EQUALS-TO number-of-arguments(P):

8 IF number-of-contexts(F) EQUALS-TO number-of-contexts(P):

9 IF binding(F) EQUALS-TO binding(P):

10 RETURN TRUE

11 ELSE

12 RETURN FALSE

6.1.3 Local Unification

Elementary Production Principle (EPP) is the rule that applies all possible substitutions

on atoms to produce all possible ways of unification. This rule is extended to Contelog ,

to which we refer as local unification. In essence, it is applied on each subgoal in a rule

body independently. For instance, for a Contelog atom L1 = p(X, X)@C and a ground fact

L2 = p(a, a)@c1, an acceptable local unification is θ = {X → a, C → c1}. In this case,

we say L1 subsumes L2, denoted L1 ▷ L2, because there exists a substitution θ such that

L1θ = L2.

The local unification receives two inputs, a non-ground atom A and the set S of ground

facts, and performs the following three steps,

(1) Group all ground facts in S that are unifiable with A.

(2) For each unifiable fact, determine substitution θ

(3) Combine all θ’s and add it to a set of local unification related to A.

83

The Local Unification Algorithm (LU)

1 To Call: LocalUnify(FACTS, CONTEXTS, non− groundpredicate)

2 Input: Π∗: the set of all ground facts and contexts in c-program, P@C a

non-ground atom.

3 Output: LU_{P@C}: set of local unification related to P@C.

4 Method:

5

6 UNIFIABLE={}

7 FOR EACH fact in Π∗:

8 IF UCA(fact,P@C):

9 APPEND-TO(fact, UNIFIABLE)

10

11 FOR EACH fact in UNIFIABLE:

12 Determine θi

13 APPEND-TO(θi, LCp@C)

14

15 RETURN LUP @C

6.1.4 Global Unification

The global unification for Contelog is to apply one local unification for each predicate

in a rule body, making sure those unifications do not conflict. The main difference between

global and local unification is that global unification considers all variables in a rule body,

whereas the local unification considers only the variables pertinent to one predicate. A

conflict-free global unification has two main features: (1) no variable is unified twice with

different values. (2) no variable is left without substitution. If a global unification has those

two features it is accepted for inferencing, otherwise, it is skipped. In technical terms, the

global unification for a rule is a set of global θ′s resulted from the Cartesian Product of all

local unification for each predicate in a rule body for a particular rule.

The steps to accomplish the global unification is informally presented below

(1) Make a set Globalθ = θ1 × θ2 × ...× θn where θi corresponds to the local unifications

of the ith subgoal of the rule.

84

(2) For each item in Globalθ apply the unifcation on all predicates in the body of the rule.

(3) If the unification is conflict-free, add it to global unification (GU) set related to the

input c-rule, else, skip and try the next unification.

The Global Unification Algorithm (GU)

1 To Call: GlobalUnify(LUri
, BODYri

)

2 Input: LUri
= {θ1, θ2, ..., θn}: set of all local unifications related to subgoals of

ith c-rule, BODYri = subgoals of the ith c-rule.

3 Output: GUri
: set of global unification related to the ith c-rule.

4 Method:

5 θri
= θ1 × θ2 × ...× θn

6 FOR EACH item IN θri:

7 SUBSTITUTION(item, BODYri
):

8 IF CONFLICT-FREE:

9 APPEND-TO(item, GUri
)

10 RETURN GUri

6.1.5 Inference Algorithm

Inference is the process of computing the logical consequence of a rule in Contelog .

This process comes after the local and global unification. It is to make sure, first, that

each variable in the rule head is substituted. Otherwise, it is considered a violation of the

rule safety rules in Section 5.2. Second, it is to add this new fact to the set of facts of a

c-program. The steps of inference for a c-program are as follows.

(1) For each substitution in global unification, run the inference check.

(2) If success (that is, all variables have been substituted), then add this fact to the set

of inferred facts. Otherwise, move to the next substitution.

INFER

1 To Call: INFER(GUri
, ri)

2 Input: GUri, ri: the ith rule in c-program

85

3 Output: IDB: set if inferred facts.

4 Method:

5 FOR EACH item IN GUri:

6 fact = INFER(item, ri):

7 IF successful-inference(fact):

8 APPEND-TO(fact, IDB)

9 RETURN IDB

6.2 Goal-Independent Bottom-up Evaluation

This category of bottom-up evaluation does not consider any query from the user in its

evaluation process even if it prompts the user to enter query. In fact, usually systems that

follow this approach calculate all possible results for given facts and rules as a pre-processing

step before running the system. This is to avoid the wasted resources on processing the

evaluation with every new query. The evaluation continues only if the user/application

changes the facts/rules of the system.

Once this pre-processing is completed, answering any user query is a matter of searching

in the already-calculated set of tuples. Usually, the set of results are traversed using the

well-known tree-search algorithms, namely the Depth-First Search (DFS) and Breadth-First

Search (BFS), to find the matching tuples.

Due to its high cost, this approach is not used in active-reasoning systems that handle

frequent changes in the input programs (facts,rules and/or contexts). This approach, how-

ever, is useful in passive-reasoning in which it runs only few times, and find answers to user

query according to the offline/pre-processed results.

All methods under this category follow similar steps to compute results. The steps are

as follows.

(1) PREPROCESS: Run evaluation process on given set of facts/rules/contexts.

(2) QUERY-SEARCH:

• Prompt-user to enter his/her query.

• Apply DFS/BFS algorithms to find relevant tuples.

86

6.2.1 Naive Evaluation Method

The naive method is the basic method for evaluating Contelog programs. It is an

iterative process that at each iteration step applies the EPP inference rule to derive tuples,

and terminates when no more new tuples is generated. It is called ‘naive’ because it does not

perform any optimization. A drawback of the naive method is that when a tuple is derived in

some iteration, it is derived in subsequent iterations. In Datalog, this repetitive derivations

is a source of inefficiency which is addressed by the semi-naive evaluation method.

The steps of the naive method for Contelog is as follows:

(1) For each rule, for each subgoal in the body, run the LocalUnify algorithm.

(2) For each rule, run the GlobalUnify algorithm.

(3) For each rule run INFER algorithm

(4) Add new inferred facts

(5) Combine existing facts set EDB, with the inferred facts IDB, and run step(1) again

until no more new facts are added.

Naive Evaluation Algorithm

1 To Call: NaiveEV (EDB, RULES, CONTEXTS)

2 Input: EDB (set of Facts), RULES (set of c-rules r1, r2, ..., rn), CONTEXTS (set of

contexts)

3 Output: RESULTS: set of all input/derived facts.

4 Method:

5 DO {

6 OLD-EDB = EDB

7 FOR EACH ri IN RULES:

8 # Local unification

9 FOR EACH bodyj in ri

10 LUj = LocalUnfiy(EDB U CONTEXTS,bodyj)

11

12 # Global unification for each rule

13 GU_{r_i} = GlobalUnify(LU, BODY(r_i))

87

14

15 # inference process

16 IDB = INFER(GU_{r_i}, r_i)

17

18 # combine with EDB if there are new facts inferred

19 IF IDB IS_NEW:

20 EDB = EDB U IDB

21

22 # Check termination condition

23 }WHILE (EDB!= OLD-EDB)

24 RESULTS = EDB

25 RETURN RESULTS

We remark that the naive method is an iterative process in which an atom, once derived,

will be derived at every subsequent iteration. This explains one of the two major sources

of inefficiency of the method.

6.2.2 Semi-Naive Method

The semi-naive method for Contelog programs is a step towards improving the bottom-

up evaluation. It simply uses a mechanism in the evaluation process to ensure that the

same derivation is not repeated using the same facts, contexts, and rules. The method is

described as follows.

(1) For each rule and each body predicate in the rule, run the LocalUnify algorithm on

the “un-used" facts.

(2) For each rule, run the GlobalUnify algorithm.

(3) For each rule run the INFER algorithm using only the un-used facts, and book-Keep

the ground facts used in the inference and label them as ”used"

(4) Add new inferred facts and label them as ”unused"

(5) Combine existing facts set EDB, with the inferred facts IDB, and run step(1) again

until no more new facts are added.

88

Naive Evaluation Algorithm

1 To Call: SemiNaiveEV (EDB, RULES, CONTEXTS)

2 Input: EDB (set of Facts), RULES (set of c-rules r1, r2, ..., rn), CONTEXTS (set of

contexts)

3 Output: RESULTS: set of all input/derived facts.

4 Method:

5 DO {

6 OLD-EDB = EDB

7 FOR EACH ri IN RULES:

8 # Local unification consider only unused facts/contexts

9 FOR EACH bodyj in ri

10 LUj = LocalUnfiy(EDB(unused) U CONTEXTS(unused),bodyj)

11

12 # Global unification for each rule

13 GU_{r_i} = GlobalUnify(LU, BODY(r_i))

14

15 # inference process label used facts as used in the set

16 IDB = INFER(GU_{r_i}, r_i)

17 EDB(used) = FACTS USED IN INFERENCING

18 # combine with EDB if there are new facts inferred

19 IF IDB IS_NEW:

20 EDB = EDB U IDB

21 # label new facts as unused to limit inferencing

22 EDB (unused) = IDB

23

24

25 # Check termination condition

26 }WHILE(EDB!= OLD-EDB)

27 RESULTS = EDB

28

29 RETURN RESULTS

Although semi-naive method makes a considerable performance enhancement over the

naive, it may suffer from another source of inefficiency during the evaluation process for

not considering the structure and binding information of the input query. This can result

89

in deriving ”irrelevant" tuples which will be identified and discarded only when the process

terminates. In Datalog, this problem is addressed through the Magic Sets – a rewriting

technique which restricts tuple derivations by adding new facts and rules as well as in-

jecting new subgoals in the body of existing rules. Following a similar idea, we propose a

program rewriting/transformation technique, called ”Magic Context", to avoid derivations

of irrelevant tuples for evaluating Contelog programs when there is a given query as well.

We next provide details of the proposed rewriting for Contelog .

6.3 Magic Context: Goal-Oriented Bottom-up Evaluation

Following a similar idea of the magic sets rewriting technique developed for standard

Datalog programs (Ullman, 1989), we introduce the notion of magic contexts and propose

a rewriting algorithm to avoid derivation of irrelevant tuples in a semi-naive evaluation of

queries for Contelog programs. The proposed algorithm can also be used as an alternative

to the magic sets technique for standard Datalog programs. As Contelog is a conservative

extension to Datalog, by definition, it works for both Datalog and Contelog programs.

As discussed before, the bottom-up naive evaluation of Datalog programs suffers from

two sources of inefficiency. First, a tuple derived at some iteration continues to be derived at

every subsequent iteration until the process terminates. Second, the structure and binding

information of the input query is considered only when the evaluation process terminates.

This means, potentially many tuples derived during the evaluation will be discarded at the

end for not being relevant to the query. The first problem was addressed using the semi-naive

evaluation method, which keeps track of newly generated tuples in the current iteration

compared to those derived in the previous iteration. The second source of inefficiency was

addressed through the magic sets rewriting technique, which for a given input query, it

generates a new program that includes magic facts and associated rules, such that when

evaluated, it restricts the derivations to the relevant tuples as much as possible.

Magic sets rewriting is a transformation that considers the predicate and bindings in-

formation (constants) in the user query. Two well-known rewriting techniques for Datalog

programs are Magic Set Transformation (MST) (Ceri et al., 1989; Ullman, 1990) and De-

mand Transformation (DT) (Tekle & Liu, 2010, 2011), which follow the same idea but DT

90

shows a better run-time performance (Liang et al., 2009).

6.4 Issues in Extending Contelog with Magic Sets Technique

While Magic Context is based on a similar idea of MS in Datalog, it follows a different

approach. To show this, we show that a straightforward Magic Sets technique has two

drawbacks for Contelog programs. First it affects simplicity and expressiveness, explained

as follows. To express contexts in Datalog, it is required to annotate or use special pred-

icates to express contexts and contextual predicates in Datalog syntax. This coding of

contexts in Datalog destroys the declarative and modular advantages of context structures

in Contelog for resulting in bulky expressions and loss of separation of concerns principle

in programming practices, hence making comprehension, maintenance, reuse, and manage-

ment of the program too costly. Another problem of coding a Contelog program in Datalog

is losing the “first class citizenship" status of contexts, as a result of which it is not possible

to execute a program under different sets of contexts without redoing context-coding for

every set of contexts. The second drawback is the performance which is affected negatively

because of the extra layer of coding Contelog to Datalog in order to use the MST or DT

techniques in Datalog, and finally transform the results back to Contelog . At this point,

we also need to mention a third drawback, which we elaborate later, that is losing the

advantage of concurrent query processing in a single run of Contelog programs. Motivated

by simplicity, declarative, expressiveness, efficiency, separation of contexts and programs,

and attain a higher level of abstraction, we developed the Magic Context Transformation

(MCT) method to optimize query evaluation of Contelog programs.

The idea of MCT is as follows. We view a query Q over a Contelog program P as a

context for evaluating P . Following this view, we transform Q into a context represented in

Contelog and rewrite P accordingly. We refer to this as magic context transformation (or

MCT, for short), which essentially uses magic contexts to generate a new Contelog program

which when evaluated returns the desired results more efficiently. The efficiency advantage

obtained by the MCT rewriting provides a simpler alternative solution to the magic set

rewriting technique MST for standard Datalog programs.

91

6.5 Magic Context Transformation

Given a Contelog program ΠC and a query Q, we view Q as providing a context QC for

evaluating ΠC . The intuitive idea of the Magic Context Transformation (MCT) algorithm

proposed in this work is to using Q as a context and generate a rewriting of ΠC such that

when evaluated, it restricts derivations of tuples to only those relevant to Q. Following this

view, in addition to the original contexts of ΠC , the rewritten program Π′
C generated by

MCT includes new context(s) and modified rules, defined by the query context QC , or the

magic context, as we call it. We remark that the rewritten program is equivalent to the

original program with respect to the query context QC .

Intuitively this view works because conceptually context defines an evaluation space

which restricts the search for certain facts related to the context. The proposed rewriting

modifies the rules in the program accordingly to abide by this restriction. Practically, the

proposed rewriting is a realization of a theory of contexts defined in (Guha, 1991), by

which a context is viewed as a theory that can have micro-theories that explain different

phenomena in different domains. Furthermore, a predicate can be lifted to different theories

to be evaluated accordingly with respect to its restrictions and limitations.

6.5.1 Preamble

In this section, we present some terms and concepts used in the proposed MCT algo-

rithm. They are important for understanding the features and functionalities.

Query Context. We use the terms “query context" and “magic context" interchangeably.

The following definition is implemented in the MCT algorithm using the function function

Cont(Q) that constructs the Magic Context QC . Table 6.1 illustrates this construction.

Definition 8. Let Q = p(X)@C be a query in which C or at least one of the n arguments

of p is bound. Let i1, · · · , ik be the positions of the bound arguments listed in X, where 1 ≤

ik ≤ n+1, and the argument in+1 refers to the context C when it is bound. Then, the context

of Q, denoted as QC , is defined as the set: {magici1 : [b1], magici2 : [b2], ..., magicik
: [bk]},

where bi is the ith bound value in Q. When C is a context name c, then QC includes

magicin+1 : [c].

92

Relevant and Irrelevant Rules. Not every rule in a program is relevant to a query in

the sense that it is needed to find the answers. This notion is formalized as follows.

Let ΠC be a Contelog program, Q be a query, and r be a rule in ΠC . We say that r

is relevant to Q, if it is used in the derivations of some answer tuple. We refer to the set

of all rules in ΠC that are relevant to Q as REL. Any other rule in ΠC is irrelevant to Q,

referred to collectively as the set IRREL.

Leaf Predicate. A leaf predicate (LP) is a non-ground predicate that can be unified

with a regular or contextual fact. We refer to it as leaf to express that this predicate is

the first information needed to build subsequent knowledge towards answering a query. For

instance, in path-edge program, the edge predicate is a leaf predicate. That is, the basic

building block of retrieving all paths is first “knowing the edges”.

Magic Predicate. A magic predicate (MP) is a non-ground predicate that unifies with

query contexts QC . It acts as the knowledge bridge between the query and the "relevant"

tuples to derive all the answer tuples. The set HEADS contains all MPs that are created

in the rewriting process.

Magic Rule. Given a query Q, a magic rule (MR) defines a magic predicate in HEADS

using normal predicates in the program. Such a rule is of the form:

MP (Y)@A : −MP (X)@A, LP.

where X, Y are arguments of the magic predicate with respect to the binding pattern of Q,

and A is a context variable that refers to the magic context.

6.5.2 The MCT Algorithm

In this section, we present the MCT rewriting algorithm. We will also describe the steps

of the algorithm using the following Contelog Program 6.1 as our running example.

Listing 6.1: Contelog program ΠC

1 CONTEXTS := {

2 cb = {t : [bird], fea : [can-fly]},

93

3 ca = {t : [amph], fea : [can-swim]}}.

4 ***********************************

5 a(parrot, bird).

6 a(parakeet, parrot).

7 a(toad, amph).

8 r1 : a(X, Y)@C :- a(X, Y), t(Y)@C.

9 r2 : a(X, Y)@C :- a(X, Z)@C, a(Z, Y).

10 r3 : f(X, Y)@C :- a(X, Z)@C, fea(Y)@C.

The algorithm takes as the input (1) a logic program, Datalog or Contelog , which con-

sists of a set of facts and rules, and possibly contexts, and (2) a query Q(a1, a2, · · · , an)@C

with possibly context. The output of the algorithm is a new logic program with extended

and/or modified set of facts, rules, and contexts. The MCT algorithm is presented as

follows.

The MCT Rewriting Algorithm

1 Input: A Contelog or Datalog program Π and a query Q.

2 Output: A program Π′ that is equivalent to Π with respect to Q.

3 Method:

4 1- Convert Q to a context: QC = Cont(Q).

5 2- Find the set REL of relevant rules in Π.

6 3- Generate the magic predicate corresponding to Q, and identify the set HEADS of

the relevant head predicates.

7 4- Identify the Leaf predicates in REL.

8 5- Generate the set MRs of all magic rules.

9 6- Add all predicates in HEADS to each rule in REL.

10 7- Rewrite/Replace the program and return the result Π′ = MRs ∪REL.

A detailed explanation of the steps of the proposed algorithm is as follows.

(1) Converting the query into a query context. In the first step, the input query

Q with n arguments is converted to a query context QC . This is done considering only the

bound arguments in Q, for each of which, a new dimension is assigned in QC with the same

bound value for the associated attribute. We consider only bound arguments of the query

94

Table 6.1: Examples of queries and the corresponding query contexts

Query Q QC = Cont(Q)
p(X, 4) {magic2 : [4]}
p(1, X) {magic1 : [1]}
a(X, bird)@C {magic2 : [bird]}
a(parakeet, X)@C {magic1 : [parakeet]}
p(X, Y)@cb {magicc3 : [cb]}
p(1, Y)@cb {{magic1 : [1]},

{magicc3 : [cb]}}

because it is what we need to narrow down the space of reasoning towards only relevant

tuples to those bound arguments. If i is the index of the bound attribute in the argument

list of Q, we name the newly created dimension in QC as magici or magic_i. Thus, if Q has

k ≤ n bound attributes, we will have k dimensions in QC . A Contelog query may include a

context, which could be a variable or constant. If the context in the query Q is a constant,

we will create an additional dimension magicck+1 or equivalently (magic_k+1_c).

The free variables or contexts in Q are ignored, as they do not contribute to query

answers. We will then use the function Cont(Q) that converts Q to the query context QC .

This step is explained in Example 9.

Example 9. Consider the query Q = p(a, X, Y). Since it has one bound at-

tribute, a, we have QC = {magic_1 : [a]}. For query Q = p(X, a, b)@c1, the

second and third arguments are bound and the context c1 is constant. In this

case, we have QC = {magic_2 : [a], magic_3 : [b], magicc4 : [c1]}. Table 6.1

shows QC ’s for different types of queries.

(2) Finding the rules that are relevant to the query. We proceed in a top-down

manner to determine the relevant rules.

(a) Initialize Set REL = ∅.

(b) Update Examine each rule r in the program, and update REL ← REL ∪ {r} if

the functor of the head of rule r is equal to the functor of Q, and it has same number of

arguments and contexts. If REL ̸= ∅ then do the following steps.

95

(c) Repeat: Here, REL ̸= ∅. For every r ∈ REL repeat the following steps.

(d) Termination Regard each predicate p in the body of r as a new Q. Apply step (b)

repeatedly for every predicate in r.

At this point, every rule that directly or indirectly contributes to the query is found and

added to the set REL. See Example 10.

We remark that the above process terminates because there are finitely many rules and

facts to consider.

Example 10. Using our running Program 6.1, we show how the set REL of

relevant rules is determined for the input query Q2
C1

= a(X, bird)@C.

Remove irrelevant predicates

1 # For the Contelog program ΠC:

2 1. initialize: REL = ∅

3 2. update: REL = {r1, r2}, since the head predicate of Q2
C1

matches the

heads of r1 and r2.

4 3. Repeat: for each rule r ∈ REL, we examine the subgoals A in the

body of r.If there exists a rule rA whose head predicate matches

the predicate of A, add rA to REL. This repeats until no more

rules can be added. In this example, REL = {r1, r2}.

Following the steps above, we obtain the set of relevant rules. The set REL of relevant

rules is identified by matching the predicate name, number of arguments, and the context

if applicable. Next, we identify and remove from REL those rules in the program that are

not useful considering the bound arguments of the query.

(3) Generating the magic predicate MP corresponding to the query. Using the

query context, we create the corresponding magic predicate. Let HEADS be the collection

of such MPs used to restrict the evaluation of the rewritten program given the input query.

See Example 11.

96

Example 11. Let query be QC = {magic1 : [1]}, then the corresponding MP

would be magic1(X)@A, where A is a free context variable. Similarly, if query is

QC = {magic2 : [a], magic3 : [b]}, then the MPs we have are magic2(X)@A and

magic2(X)@A. The variable(s) X is just a variable now, it is clearly identified

when used in the magic-rules introduced later as it is dependant on the binding

pattern of the context query and the fact associated with it.

(4) Finding LP in REL. The LP set contains the facts that are used to derive the answer

tuples. For ease of illustration, suppose there is only one such fact. Recall that a Contelog

program may have regular predicates and facts (as in Datalog) as well as contextual ones (as

in the so-called context world). The purpose of this step is twofold. First, to know whether

the origin of the knowledge is contextual or regular, which in turn is used to determine

the dependency among the rules in order to find other relevant information. Second, to

know which variable(s) to restrict in the original rules. To find LP facts, we consider the

rules in REL and follow a top-down approach to determine a substitution θ until reaching

a fact/context, explained as follows. This step is illustrated in Example 12.

Example 12. Let Q : p(b1, f2, ..., fn)@fn+1 be a query, where b and f ’s de-

note bound and free variables, respectively. Let ri be the ith rule in REL

and suppose its head arguments are X1, ..., Xn, Cn+1. Apply the substitution

θ = {X1/b1, ..., Xn/fn, Cn+1/fn+1} to the head of ri, and then propagate the

substitution from the head to the body (left to right subgoals), until we reach a

ground fact/context. Two cases may arise, depending on the kind of LP predicate

encountered which could be regular or contextual.

(5) Generating the magic rules. Use the magic predicates MPs and the Leaf predi-

cates, and let DEP refer to the collection of both. Recall that an LP can be either regular

97

or contextual. The main form of MR is the same for both, as follows:

MP (Y)@A : − MP (X)@A, LP

However, differences arise in the bindings Y and X. In case of a regular predicate, the

goal is to find information for a missing (free) argument, while for a context predicate, the

goal is to find the name of the context for which an LP is found. This step is explained in

Example 13.

(1) Case 1: LP is regular. Let this LP be p(X1, · · · , Xn). Let Q be a query with the head

predicate p, and with the sets of positions B = {b1, ..., bm} and F = {f1, · · · , fk} of

the bound and free arguments, respectively. There is a magic-rule in the following

form for each bound argument in Q:

magici(Z)@A :- magici(bi)@A, p(Y).

where, for a rule ri, Y is the set of free variables as they appear in the LP. The

variable bi is free, with a symbol (variable or constant) similar to the symbol in LP

that corresponds to the position of bound argument in Q which is being processed.

The set Z includes the free arguments in Y excluding those used in bi, where i is the

position of the bound argument being processed.

If Z contains more than one argument, the process of breaking the arguments is

repeated considering the new LP as magici(Z)@A, and terminates when the length

of the set of free variables in Z becomes 1. For instance, if p(X1, X2, X3) is the LP

appearing in a rule ri and Q = p(1, X2, X3), then Y = {X1, X2, X3}, i = 1, b1 = X1,

and Z = {X2, X3}. Since the length of Z is 2, the algorithm generates the following

two magic rules.

magic1(X2, X3)@A :- magic1(X1)@A, p(X1, X2, X3).

For the second magic rule, LP becomes magic(X2, X3)@A, and hence we have Y =

{X2, X3}, b1 = X2, and Z = {X3}.

98

magic1(X3)@A :- magic1(X2)@A, magic1(X2, X3)@A.

This process is repeated for each bound argument, and each new rule generated is

added to the set DEP . The predicate magici(bi)@A is also added to the set HEADS

for later use.

(2) Case 2: LP is contextual. This means that the information to be used to build up

the required knowledge in the query is in some contexts. In this case, in addition to

including the arguments contributing to the rule, the context information has to be

collected and added to the rule. The resulting rule(s) will be included in DEP . The

rewriting process in this case is exactly the same as in Case (1). The following rule

is used to identify the contributing contexts to limit query evaluation by considering

them only. The head predicate magic-ci+1(C)@A of this rule is added to HEADS.

magic-ci+1(C)@A :- magic-ci+1(bi)@A, p(Y)@C.

The rewriting algorithm, generates three sets: REL which contains all rules that are

relevant to Q, DEP which contains all new rules required to build up the knowledge per-

tinent to Q, and HEADS which contains the predicates that will be added to each rule in

REL at the final step to restrict the evaluation process.

Example 13. The steps of the LP computation for the query Q2
C1

over the

Contelog program ΠC are shown below.

Find LP for ΠC

1 # For ΠC,

2 Q2
C1

= a(X, bird)@C

3 QC = {magic2 : [bird]}

4 REL = {r1, r2}

5 # 1- find LP (top-down unification)

99

6 r1: a(X, bird)@C :- a(X, bird), t(bird)@C.

7 # in the above case we see that {\em bird} can be a regular fact or

part of a context, either of which could be considered. We consider

the former a(X,bird).

8 #2- apply the dependency rule for regular facts

9 dpr1 : magic_2(X)@A :- magic_2(Y)@A, a(X,Y).

10 #3- add dpr1 to the set DEP. add new predicate magic_2(Y)@A to the set

HEADS

11 # DEP = {dpr1}

12 # HEADS = {magic_2(Y)@A}

13

14 #If we use contextual fact in step(2). The rule would be

15 dpr1 :

16 magic_3_c(C)@A :- magic_3_c(Y)@A, t(Y)@C.

17 # similarly

18 # DEP = {dpr1}

19 # HEADS = {magic_3_c(C)@A}

(6) Modify the original program rules by adding the magic predicates to them.

In this step, all predicates in the set HEADS are injected at the beginning of each rule in

REL.

(7) Rewrite/Replace original program with the new one. The new program is the

union REL ∪DEP . The steps of the the rewriting performed are as follows.

(1) Copy the facts as provided in the original program.

(2) Add QC to the set of contexts of the program.

(3) Write all the rules in the set DEP .

(4) Write all the rules in the set REL.

The final rewritten programs for the input queries are shown below.

100

Π′
C for query Q2

C1

1 CONTEXTS = {

2 cb = {t : [bird], fea : [can-fly]},

3 ca = {t : [amph], fea : [can-swim]},

4 QC = {magic_2:[bird]}

5 *********

6 a(parrot, bird).

7 a(parakeet, parrot).

8 a(toad, amph).

9 dpr1 : magic_2(Y)@A :- magic_2(X)@A, a(X,Y).

10 r1 : a(X,Y)@C :- magic_2(Y)@A, a(X,Y), t(Y)@C.

11 r2 : a(X,Y)@C :- magic_2(Y)@A, a(X,Z)@C, a(Z,Y).

The MCT rewriting is based on the positions of the bound argument(s) in the input

query. Therefore, for each different position of a bound argument in the query, the rewriting

process explained above is repeated, and new set of dependency rules and corresponding

magic predicates are added. However, if different queries are to be processed with the

same bound argument position, it suffices to recompute only QC . This makes the proposed

rewriting to be flexible and dynamic as the context can be changed and new query can be

submitted without repeating the rewriting.

6.5.3 Running Multiple Queries

Answering a query using a rewriting method requires to perform the rewriting rewriting

to generate a program that is customized for the query. The idea to support “running

multiple queries" in Contelog (as well as in Datalog) is to be able to generate a general

rewritten program that can handle multiple queries efficiently without requiring to generate

a new program for each query. This means the resulting of this general rewriting should be

a highly optimized program that can customize itself to a posed query without performing

changing the rewritten program.

Naturally existing query processing methods for Datalog are not developed to support

contexts, and hence do not have the capability and flexibility of loosely coupled feature of

Contelog by which contexts can be changed and evaluated without the need to to change the

101

program. Using the highly optimized rewriting method of MCT, Contelog can generate a

general program that can be evaluated for a query with any bindings and do so efficiently, as

shown in the experimental results. To accomplish such a flexibility in Datalog, the program

needs to be rewritten for each query with programmer involvement in general. This is

because answering more than one query pattern needs different re-writings that need to

be appended to each other. Hence, the rewritten program is slower to process (Tekle &

Liu, 2011), harder to understand, and less optimized than the original program. Contelog

being a conservative extension of Datalog, with the use of MCT we can achieve a dynamic

universal program for both Contelog and Datalog.

In Contelog , the MCT rewriting algorithm is applied based on two conditions. (1) There

is at least one bound argument in the query, and (2) the predicate name of the query and

the position of the bound argument have not been processed before. If there is no bound

argument, the rewriting terminates at the step of removing the irrelevant rules. In that case,

it uses all the rules in REL to produce the query result. If the value of the bound attribute

is changed only and not its position, then MCT rewrites only the context by applying the

function Cont() on query and re-contextualizing the query. In this case, it does not perform

any rewriting on the rules/facts. This allows a program to evaluate multiple queries (each

viewed as a context) within a single evaluation if all the queries use the same position of

the bound argument. In Example 14, this point is illustrated, where two different queries

are processed. The only extra step required is to compute QC twice, once for each new

bound argument in the query. However, the rewriting of the program has to be done only

once since the position of the bound argument of the query is the same. This implies that

evaluation of the rewritten program will provide answers to both queries in the same single

run of the program. Example 15 shows a complete universal program for a certain query,

and shows the results that are produced with the same set of rules and only by changing

the magic-context. Similarly, Example 16 illustrates how the same approach can be used

for standard Datalog programs and allows it to have a universal program without repeating

the rewriting for each distinctive binding pattern.

Example 14. Let the query type be Q2
C1

, and consider two such queries: a(X, bird)@C

and a(X, amph)@C. These queries respectively yield the contexts cb = {t : [bird], fea :

[can-fly]} and ca = {t : [amph], fea : [can-swim]}. Using the Cont function, we get the

102

corresponding query contexts as qc1 = {magic2 : [bird]} and qc2 = {magic2 : [amph]}. Using

the above information, the rewritten program generated is as follows.

Π′
C for query Q2

C1

1 a(parrot, bird).

2 a(parakeet, parrot).

3 a(toad, amph).

4 dpr1 : magic_2(Y)@A :- magic_2(X)@A, a(X,Y).

5 a(X,Y)@C :- magic_2(Y)@A, a(X,Y), t(Y)@C.

6 a(X,Y)@C :- magic_2(Y)@A, a(X,Z)@C, a(Z,Y).

If we now have a query of the form q(X, Y, Z), a rewriting is required only once for each

position, that is, once for q(a, Y, Z), once for q(X, b, Z), and once for q(X, Y, c). When we

are able to combine these rewritings, we can answer all these queries without additional

rewriting.

The bottom-up evaluation process in Contelog is monotonic as negation is not allowed

in the rule bodies. Thus, the evaluation process is additive, in the sense that multiple

programs (along with their contexts) can be combined and evaluated simultaneously to

produce the query results. This capability is formalized as follows.

Definition 9. Let {Π1, ..., Πn} be a finite set of Contelog programs, and let R() denote the

function that runs these programs and return the results. Hence,

R(
n⋃

i=1
Πi) = R(Π1) ∪R(Π2) ∪ ... ∪R(Πn)

Using the definition above, we can say that a universal program is the union of program

rewritings such that for each unique binding of the query, there is a single rewriting present

in this union.

Definition 10. For a Contelog program ΠC and a query Qn
C with n arguments, let MCT (ΠC , Qi

C)

denote the MCT rewritten program with respect to the query Qi
C . A universal program for

Qn
C , denoted as Π′n

C , is the defined as:

Π′n
C =

n⋃
i=1

MCT (ΠC , Qi
C)

103

Using the above definitions, the program in Example 15 is a universal program for the

running program 6.1 introduced earlier.

Example 15. Let f(X, Y)@C be the query for which we want to generate the universal

program. For this, we need to generate and combine three rewritings, one for X, one for

Y , and one for C. Once we combine these three rewritings into a single universal program,

we only change the magic-context query to limit the evaluation of the resulting program to

different set of facts. This yields the following universal program:

1 magic_1(Y)@A :- magic_1(X)@A,a(X,Y).

2 magic_1(Z)@A :- magic_1(X)@A,a(X,Z).

3 a(X,Y)@C :- magic_1(X)@A,a(X,Y),type(Y)@C.

4 a(X,Y)@C :- magic_1(X)@A,a(X,Z),a(Z,Y)@C.

5 f(X,Y)@C :- magic_1(X)@A,a(X,Z)@C,f(Y)@C.

6 magic_2_c(C)@A :- magic_2_c(Y)@A,f(Y)@C.

7 a(X,Y)@C :- magic_2_c(C)@A,a(X,Y),type(Y)@C.

8 a(X,Y)@C :- magic_2_c(C)@A,a(X,Z),a(Z,Y)@C.

9 f(X,Y)@C :- magic_2_c(C)@A,magic_2_c(Y)@A,a(X,Z)@C,f(Y)@C.

10 a(X,Y)@C :- magic_3_c(C)@A,a(X,Y),type(Y)@C.

11 a(X,Y)@C :- magic_3_c(C)@A,a(X,Z),a(Z,Y)@C.

12 f(X,Y)@C :- magic_3_c(C)@A,a(X,Z)@C,f(Y)@C.

Now, for the above program consider the following set of contexts and facts:

1 #CONTEXTS

2 cbird={type:[bird],f:[canfly]}

3 camph={type:[amph],f:[canswim]}

4 #FACTS

5 a(parrot,bird).

6 a(frog,amph).

7 a(parakeet,parrot).

8 a(parrotlet,parrot).

9 a(que,parakeet).

10 a(echo,parrotlet).

11 a(tods,frog).

104

Consider the query f(X, canfly)@C. The magic context for this query is magic_context =

{magic2c : [canfly]}, which is appended to the set of contexts. The evaluation of the

resulting program yields the following tuples:

1 **magic_2_c(cbird)@magic_context.

2 **a(parrot,bird)@cbird.

3 **a(parakeet,bird)@cbird.

4 **a(parrotlet,bird)@cbird.

5 **f(parrot,canfly)@cbird.

6 **a(que,bird)@cbird.

7 **a(echo,bird)@cbird.

8 **f(parakeet,canfly)@cbird.

9 **f(parrotlet,canfly)@cbird.

10 **f(que,canfly)@cbird.

11 **f(echo,canfly)@cbird.

Note that the results are only relevant to all birds as they all can fly. Also note that frogs are

not shown in the result because they cannot fly according to the context. Now, if we change

the query to f(parrot, X)@C, then without needing additional rewriting but only changing

the magic-context to magic_context = {magic1 : [parrot]}, we obtain the desired results:

1 **magic_1(bird)@magic_context.

2 **a(parrot,bird)@cbird.

3 **f(parrot,canfly)@cbird.

The same program can also be used to answer the query f(X, Y)@cbird, which would return

all the facts that are true at a specific contexts. Using magic-context, we are able to change

in the programs above the context and achieve different results without additional rewriting.

Consequently, the MCT rewriting method proposed yields highly efficient Contelog programs

without the need for a new rewriting for every new query.

Example 16. The same approach used in Example 15 applies for standard Datalog pro-

grams. This is illustrated in the following “same generation cousins" program.

1 sgc(X,Y) :- sib(X,Y).

105

2 sgc(X,Y) :- par(X,Z), sgc(Z,Z1), par(Y,Z1).

The universal program after running the rewriting method for each binding once, and com-

bining their results is given below:

1 magic_2(X)@A :- magic_2(Y)@A,sib(X,Y).

2 magic_2(Z1)@A :- magic_2(Y)@A,par(Y,Z1).

3 sgc(X,Y) :- magic_2(Y)@A,sib(X,Y).

4 sgc(X,Y) :- magic_2(Y)@A,par(X,Z),sgc(Z,Z1),par(Y,Z1).

5 magic_1(Y)@A :- magic_1(X)@A,sib(X,Y).

6 magic_1(Z)@A :- magic_1(X)@A,par(X,Z).

7 sgc(X,Y) :- magic_1(X)@A,sib(X,Y).

8 sgc(X,Y) :- magic_1(X)@A,par(X,Z),sgc(Z,Z1),par(Y,Z1).

Now, for the above program consider the following set of facts:

1 # FACTS

2 sib(john,sole).

3 sib(chole,rams).

4 par(john,rams).

5 par(sole,rams).

6 par(rams,frank).

7 par(chole,frank).

8 par(charl,chole).

The original complete set of results for this program is as follows:

1 **sgc(john,sole).

2 **sgc(chole,rams).

3 **sgc(charl,john).

4 **sgc(charl,sole).

Consider the query sgc(john, X). The results for this query would include tuples that are

relevant to john. The magic-context for this query is magic_context = {magic_1 : [john]},

for which the program evaluation is restricted and return the following desired tuples:

1 **magic_1(sole)@magic_context.

106

2 **magic_1(rams)@magic_context.

3 **sgc(john,sole).

4 **magic_1(frank)@magic_context.

Similarly, for the same program but the query sgc(X, john), the evaluation result as expected

are as follows:

1 **magic_2(rams)@magic_context.

2 **magic_2(chole)@magic_context.

3 **magic_2(frank)@magic_context.

4 **sgc(chole,rams).

5 **sgc(charl,john).

We remark that the ”multiple query" feature in Contelog is interesting and advantages

in two aspects. First, it is based on an optimized rewriting (minimal) for each binding

pattern. Second, with the same input facts and rules and by changing only the context set

in the program, we obtain desired tuples true in the contexts specified. Besides, changes in

the query context changes the reasoning space restricted to specific facts and rules in the

program.

107

Chapter 7

Contelog: Case Studies

In this chapter, we present several case studies to highlight on the simplicity, expres-

siveness, and efficiency features of Contelog . In the first two case studies, the focus is

on inheritance and expressiveness. The third case illustrates simplicity and efficiency of

Contelog in terms of program size and use of contexts. The last case study demonstrates

practical aspects of Contelog as an active reasoner (online) in building a context-aware en-

gine as opposed to just being a passive reasoner (offline). More examples and applications

are provided in Appendix A.

7.1 Building Locator Program Example

The following is the ”building locator" c-program Pbl, introduced earlier, following by a

step-by-step illustration of its fixpoint evaluation results.

The contexts for Pbl

1 ce = {from : [east], to : [right]}.

2 cw = {from : [west], to : [left]}.

3 cn = {from : [north], to : [straight].}

The facts and rules for Pbl

1 f1 : p(1, east).

2 f2 : p(2, west).

3 f3 : p(3, north).

108

4 f4 : p(4, east).

5 f5 : p(5, north).

6 r1: p(X, Y)@C :- p(X, Y), from(Y)@C.

7 r2: b(X, Y)@C :- p(X, Z)@C, to(Y)@C.

The set T i
bl() of tuples derived by the fixpoint evaluation of this program at each step i is

shows as follows.

T 0
Pbl

(ϕ) = {p(1, east), p(2, west), p(3, north), p(4, east), p(5, north)}

T 1
Pbl

(T 0
Pbl

) = T 0
Pbl
∪ {p(1, east)@ce, p(2, west)@cw, p(3, north)@cn, p(4, east)@ce, p(5, north)@cn}

T 2
Pbl

(T 1
Pbl

) = T 1
Pbl
∪ {b(1, right)@ce, b(2, left)@cw, b(3, straight)@cn, b(4, right)@ce, b(5, straight)@cn}

T 3
Pbl

(T 2
Pbl

) = T 2
Pbl

(fixpoint is reached)

Thus, the result returned when the fixpoint evaluation of Pbl terminates is the following set

of tuples: {p(1, east), p(2, west), b(3, north), p(1, east)@ce,

p(2, west)@cw, p(3, north)@cn, p(4, east)@ce, p(5, north)@cn

b(1, right)@ce, b(2, left)@cw, b(3, straight)@cn, b(4, right)@ce, b(5, straight)@cn}.

7.1.1 Magic Context: Query Processing for Building Locator program Pbl

We next consider evaluation of the c-program Pbl for the following three c-queries:

• Q1
C = b(1, X)@C: asks for the position (left, right, straight) of the library for a person

“1" approaching the building from X (east or west) X in context C.

• Q2
C = b(X, straight)@C: asks about the people directed to “straight" with the name

of the person and the context as variables.

• Q1,3
C = b(3, Y)@cn: asks about person “3” in context cn regardless of the direction.

109

For the c-query Q1
C = b(1, X)@C, the contexts and rules of the rewriting of Pbl as well

as the evaluation results are as follows. Note that for this case and also the other c-queries

below, the set of facts used in the evaluation of the program is the same as defined initially,

and the output shown are the derived tuples that are relevant to the corresponding query.

1 ce = {from : [east], to : [right]}.

2 cw = {from : [west], to : [left]}.

3 cn = {from : [north], to : [straight]}.

4 magic_context={magic_1:[3].}

1 magic_1(Y)@A :- magic_1(X)@A, p(X,Y).

2 p(X,Y)@C :- magic_1(X)@A, p(X,Y), from(Y)@C.

3 b(X,Y)@C :- magic_1(X)@A, p(X,Z)@C, to(Y)@C.

1 **magic_1(east)@magic_context.

2 **p(1,east)@ce.

3 **b(1,right)@ce.

For the c-query Q2
C = b(X, straight)@C, the contexts and rules generated by the rewrit-

ing of Pbl as well as the output tuples returned are as follows.

1 # other contexts are unchanged

2 # ’’c" in the dimension name indicates that this information comes from context.

3 magic_context = {magic_2_c:[straight]}

1 magic_2_c(C)@A :- magic_2_c(Y)@A, to(Y)@C.

2 p(X,Y)@C :- magic_2_c(C)@A, p(X,Y), from(Y)@C.

3 b(X,Y)@C :- magic_2_c(C)@A, magic_2_c(Y)@A, p(X,Z)@C, to(Y)@C.

1 **magic_2_c(cn)@magic_context.

2 **p(3,north)@cn.

3 **p(5,north)@cn.

4 **b(3,straight)@cn.

5 **b(5,straight)@cn.

110

For the c-query Q1,3
C = b(3, Y)@cn, the contexts and rules generated by the rewriting

of Pbl as well as the output tuples returned are as follows.

1 # other contexts are unchanged

2 # ’’c" in the dimension name indicates that this information comes from context.

3 # Two dimensions are used: one points to first argument magic_1 and the

otherpoints to the context.

4 magic_context = {magic_1:[3],magic_3_c:[cn]}

1 # to limit the reasoning, two MP predicates are used, one for each dimension

(bound argument).

2 magic_1(Y)@A :- magic_1(X)@A, p(X,Y).

3 p(X,Y)@C :- magic_3_c(C)@A, magic_1(X)@A, p(X,Y), from(Y)@C.

4 b(X,Y)@C :- magic_3_c(C)@A, magic_1(X)@A, p(X,Z)@C, to(Y)@C.

1 **magic_1(north)@magic_context.

2 **p(3,north)@cn.

3 **b(3,straight)@cn.

The above program is a simple navigation example that can show case the expres-

siveness and simplicity of Contelog to solve context-based reasoning problems. The same

settings can be taken to a larger scale scenarios to solve smart-rooms, smart-gates, and other

context-based decision problems. In addition, through “universal programs" explained in

Section 6.5.3, multiple and concurrent queries can be processed and answered simultane-

ously without increasing the complexity of the program.

7.2 Access Control Program Example

This example illustrates an application of Contelog to support file system access control

in the contexts of users. The dimensions in the context include types of users and the access

privileges associated with each type. A user may have more than one type and hence he/she

may inherit more than one privilege based on the contexts. In this example, the context

defines the role of the users in a computer system. Therefore, a context in this application

has three dimensions: (1) type: describes the type of the users. (2) priv: describes the

111

privilege of a user of a particular type, and (3) com: describes the privilege common in all

contexts. There are two main contexts from the users’ perspective: the admin context ca

and regular context cr. The greatest lower bound (meet) of the contexts lattice is cg and

their least upper bound (join) defines the super-user context cs. The context and other

information of the access control program Pac in Contelog are shown below.

Access control program Pac

1 # Contexts

2 ca = {type(admin), priv(admin-priv), com(guest)}.

3 cr = {type(regular), priv(regular-priv), com(guest)}.

4 # Note also the implied contexts: cg = ca ⊙ cr and cs = ca ⊕ cr.

5

6 # Facts

7 f1 : u(john, admin).

8 f2 : u(john, user).

9 f3 : u(rose, guest).

10

11 # Rules

12 r1 : u(X, Y)@C :- u(X, Y), type(Y)@C. # to select context according to type

13 r2 : u(X, Y)@C :- u(X, Y)@C, u(X, Z)@W. # if one user has more than one context

14 r3 : priv(X, Y)@C :- u(X, Z)@C, priv(Y)@C. # to infer privilege based on context

15 r4 : superpriv(X, Y)@M :- priv(X, Z)@C, priv(X, Y)@W.

16 # according to formula #11 in Table 1, it derives superpriv(X,Y) as the join of C

and W.

17 r5: guest(X, Y)@M:- u(X, Y), com(Y)@C, com(Y)@W

18 # according to formula #8 in Table 1, this derives guest(X,Y) as the meet of C

and W.

The bottom-up evaluation of Pac is described as follows:

T 0
Pac

(ϕ) = {u(john, admin), u(john, user)

, u(rose, guest)}

Using rule r1 and contexts ca and cr, the evaluation derives the contexts of users. Also

112

using r5, we derive guest(rose, guest)@cg(ca ⊙ cr), and hence:

T 1
Pac

(T 0
Pac

) = T 0
Pac
∪

{u(john, admin)@ca, u(john, user)@cr,

guest(rose, guest)@cg}

Since users are inferred in contexts, the rules r2 and r3 are triggered,

T 2
Pac

(T 1
Pac

) = T 1
Pac
∪

{priv(john, admin-priv),

priv(admin, regular-priv)}

Rule r3 infers privileges of users, which in turn triggers firing rule r4. We thus have:

T 3
Pac

(T 2
Pac

) = T 2
Pac
∪

{superpriv(john, admin-priv)@cs

where (cs = ca ⊕ cr)}

T 4
Pac

(T 3
Pac

) = T 3
Pac

(fixpoint is reached)

The least fixpoint evaluation of Pac returns the collection of the tuples mentioned above:

{u(john, admin), u(john, user), u(rose, guest),

u(john, admin)@ca, u(john, user)@cr, priv(john, adminpriv),

priv(admin, employeepriv), guest(rose, guest)@cg,

superpriv(john, adminpriv)@cs}

113

7.2.1 Magic Context: Query Processing for Access Control Example

Consider the query Q2
C = priv(X, admin)@C, which asks for all employees with the

privilege “admin". The initial contexts and the one defined by the query are shown below,

followed by the rewritten c-program generated by the proposed MCT algorithm.

New Program For c-query Q2
C :: priv(X, admin)@C

1 # Contexts

2 ca = {type:[admin],priv:[adminpriv],com:[guest].}

3 cr = {type:[regular],priv:[regularpriv],com:[guest].}

4 magic_context = {magic_2:[admin].}

1 # Facts

2 u(john,admin).

3 u(john,regular).

4 u(rose,guest).

5 u(roy,admin).

6 u(roy,regular).

7 # Rules - irrelevant rules are discarded by the algorithm.

8 u(X,Y)@C :- magic_2(Y)@A,u(X,Y), type(Y)@C.

9 u(X,Y)@C :- magic_2(Y)@A,u(X,Y)@C, u(X,Z)@W.

10 priv(X,Y)@C :- magic_2(Y)@A, u(X,Z)@C, priv(Y)@C.

1 # Results

2 **u(john,admin)@ca.

3 **u(roy,admin)@ca.

User authentication is a mandatory component for a wide range of applications. This

authentication is based on user roles and privileges which may change at run-time depending

on the user’s context. For instance, a user in building A can access certain files, and a user

who has been promoted to a position X can have access to certain data. All these changes

need to be secured, verified, and assured to maintain security and safety of the data being

shared among the staff/users of a system. As illustrated in the above example Contelog is

114

a declarative, simple, and yet powerful framework to support such applications efficiently.

7.3 Simple Magic Box Example Program

This example is used in different literature (Akman & Surav, 1996; Benerecetti, Bouquet, &

Ghidini, 2000) to bring out the importance and motivate contextual reasoning. We use this

example here to illustrate (1) practicality, (2) flexibility, (3) simplicity, and (4) expressive

power of Contelog programming. The example describes a box that is divided from top into

2 × 3 matrix, as shown in Figure A.9(b). It considers only three faces of the box, namely

the top, front, and side. Each face of the box has its own view which is analogous to view

points. Figure A.9(a) illustrates the actual view with respect to each those faces of the box.

The following list establishes some notation to describe the box:

• l: means left square

• c: means center square

• r: means right square

The top face is described as a matrix, where a1 refers to the top left corner, and b1 refers

to the bottom left corner, and so on. To understand the relative positioning of the squares

with respect to three faces, say with respect to b1, we see from the top it is b1, from front

it is l, and from the side it is r. The rule in the game is that the box contains only two

balls and someone can see the balls from any face in any square unless it is blocked by the

second ball as it is the case in the front side.The idea is to figure out the position of the

balls on the top view of the box by only knowing the position of the balls on the side and

the front faces.

In (Benerecetti et al., 2000), authors used a propositional logic-based framework, called

MCS, to model and solve this problem. A program they define express all possible situations

of the balls and boxes as a list of rules. They define two rules for each square in the face

stating where the wall would be from the top view. That is, for the left square of the side

face, the rules define two cases: whether the ball ‘exist’ or it ‘does not exist’. A snippet of

MCS example for the side face is shown below:

115

1 2 3
a

b

l c r

l
r

top

side

front

side top front

a

b

1 2 3

l cr l r

(a)

(b)

Figure 7.1: Illustration of the magic box example

MCS Magic Box V(1) Example

1 (1)ist(side, l) ⇐⇒ ist(Top, “(a1 ∨ a2 ∨ a3)”)

2 (2)ist(side,¬l) ⇐⇒ ist(Top, “¬(a1 ∨ a2 ∨ a3)”)

3 (3)ist(side, r) ⇐⇒ ist(Top, “(b1 ∨ b2 ∨ b3)”)

4 (4)ist(side,¬r) ⇐⇒ ist(Top, “¬(b1 ∨ b2 ∨ b3)”)

The balls are presented as a set of facts “{l, r}". The above rules have “hard coded” all

possible situations, and can deal with any number of balls within the same structure/number

of boxes. However, if the number of boxes changes, which we will examine in the next

example, the number of rules increases exponentially.

The goal of this example is to illustrate contextual information and reasoning to solve the

puzzle. The information in this example is the three faces (regarded as view points), namely,

top, front, and side. Since top is inferred, only front and side are explicitly expressed in the

following description.

Magic Box Example

1 side = {’l’:[’ball’], ’r’:[’ball’]}.

2 front = {’l’:[’ball’]}.

3 top = {}.

116

A context here describes the location of a ball, or to be more specific, which squares contain

balls. For instance, in the context front, dimension ‘l’describes the left square of the face,

and its attribute is ‘ball’, that asserts it contains a ball. The other positions are not specified

since they contain no balls. The rules that define each square of the top face are laid out

below.

Magic Box Example Program in

1 f1 : s(side).

2 r1: a1(X)@top :- l(X)@C, l(X)@W, C!=W,s(C).

3 r2: a2(X)@top :- l(X)@C, c(X)@W, C!=W,s(C).

4 r3: a3(X)@top :- l(X)@C, r(X)@W, C!=W,s(C).

5 r4: b1(X)@top :- r(X)@C, l(X)@W, C!=W,s(C).

6 r5: b2(X)@top :- r(X)@C, c(X)@W, C!=W,s(C).

7 r6: b3(X)@top :- r(X)@C, r(X)@W, C!=W, s(C).

Rule r1 is used to infer whether or not there is a ball in the square a1 in the top face.

It asserts: if there is a ball in the left of the side face and there is one in the left of the

front face, then a ball is located in a1. Other rules are similar but differ in positions of the

squares. A rule is defined for each square in the top face, and hence there are six rules.

The inequality C! = W is to look at different faces. Also, the fact s(side) is to restrict

the context variable C to the side face. This will ensure that the context variables in the

rules refer to desirable contexts. The following is the result of executing this program which

shows the squares in the top face that contain balls.

Results of Magic Box Example 2-balls

1 {s(side), a1(ball)@top, b1(ball)@top}

Now, let us increase the context front = {l : [ball], c : [ball]}, which means we are adding

one more ball. The result of the fixpoint evaluation of the modified program is as follows:

Results of Magic Box Example 3-balls

1 # note that the results context show the location of the ball in the top view

context, i.e., in square-a1, square-b1, and square-b2.

2 {s(side), a1(ball)@top, b1(ball)@top, b2(ball)@top}

117

7.3.1 Magic Box Example - Scaled Up Version

In this section, how Contelog help to provide a solution to the magic box example.

We will also illustrate the scalability advantage of Contelog over the MCS solution as the

number of boxes increases in the range 6 to 12, assuming that the rules of the game remains

the same. Refer to Figure A.10 for a scaled-up version of the problem by a factor of 2.

Note that if we use the same concept introduced in (Benerecetti et al., 2000), we need

eight rules to express the side face, since each square in the face requires two rules, i.e.,

for existing and non-existing cases. The top left square of the side face is expressed by the

following two rules:

MCS code for the Magic Box Example Version 2 (V2)

1 (1)ist(sidet, l) ⇐⇒ ist(Top, “(a1 ∨ a2 ∨ a3)”)

2 (2)ist(sidet,¬l) ⇐⇒ ist(Top, “¬(a1 ∨ a2 ∨ a3)”)

This also increases the size of the solution to the problem by a factor of 2, which is expected

for limited expressive disadvantage of the propositional logic. However, using Contelog ,

we only need to make a few changes in the program and the context modules, explained

as follows. First, we add two more contexts, sideb and frontb. This is needed because a

new layer in the box has been added, and Contelog uses contexts to describe boxes. If we

have three layers, then three types of context should be defined for each fact. Also, some

facts are added to restrict the unification process within the rule. For instance, the facts

s(sidet) and s(sideb) are added so that the predicate s(C) in the rules helps in restricting

the domain of variable C to the contexts sidet and sideb. The context and program modules

are shown below.

The facts and rules of the Magic Box Example V2

1 # Contexts

2 sidet={r:[ball]}.

3 sideb={r:[ball]}.

4 frontt={l:[ball]}.

5 frontb={c:[ball]}.

6 top = {}.

118

1 2 3
a

b

l c r

l
r

top

side-b

front-bfront-t

side top front

a

b

1 2 3

l cr l r

(a)

(b)

side-t

Figure 7.2: Illustration of the scaled-up magic box example

Magic Box Example V2 i Contelog

1 f1 : s(sidet).

2 f2 : s(sideb).

3 f3 : f(frontt).

4 f4 : f(frontb).

5 r1: a1(X)@top :- l(X)@C, l(X)@W, C! = W, s(C), f(W). # s(C) and f(W) are added to

6 r2: a2(X)@top :- l(X)@C, c(X)@W, C! = W, s(C), f(W). # restrict the contexts to be

7 r3: a3(X)@top :- l(X)@C, r(X)@W, C! = W, s(C), f(W). # unified with the variable.

8 r4: b1(X)@top :- (X)@C, l(X)@W, C! = W, s(C), f(W). # letter s and f are used for

9 r5: b2(X)@top :- r(X)@C, c(X)@W, C! = W, s(C), f(W). # the side and front contexts,

10 r6: b3(X)@top :- r(X)@C, r(X)@W, C! = W, s(C), f(W). # respectively.

Results of the Magic Box Example V2

1 # Results

2 {s(sidet), s(sideb), f(frontt), f(frontb), b1(ball)@top, b2(ball)@top}

We remark that using MCS, the number of rules required to express the above example

119

compared to the number of rules required to solve the simple scenario shown in “scaled-up

magic box A.11” in (Benerecetti et al., 2000) indicate the problem of exponential growth by

MCS solution, whereas when using Contelog to solve the same problem, we simply add two

context declarations without changing the rules. This will then show scalability advantage

of Contelog over alternative solutions to handle large data sets.

7.3.2 Magic Context: Query Processing for Scaled-up Version of the Box

Example

We now illustrate the MCT rewriting technique for the Magic Box problem when a c-

query provided. This example clearly shows suitability and effectiveness advantage of MCT

Magic with magic-contexts for producing programs of sizes similar to the original program.

in comparison to other rewriting methods.

Consider the query Q1
C = b1(ball)@C, which asks to find the balls in box (b1) regardless

of the context. The context and rule modules of the resulting c-program is provided below

together with the output tuples.

New Program For c-query Q1
C = b1(ball)@C

1 # Context: same as the contexts in the original program.

2 sidet={r:[ball]}.

3 sideb={r:[ball]}.

4 frontt={l:[ball]}.

5 frontb={c:[ball]}.

6 top={box:[noball]}. # an initialization value

7 magic_context = {magic_1:[ball]}

REWRITTEN PROGRAM:

1 # Facts

2 s(sidet).

3 s(sideb).

4 f(frontt).

120

5 f(frontb).

6 # Rules - There is only one rule relevant to the query; the rest are discarded by

MCT.

7 b1(X)@top :- magic_1(X)@A,r(X)@C,c(X)@W,C!=W,s(C),f(W).

1 # Results

2 **b1(ball)@top.

The significance of solving the magic-box problem using Contelog is twofold. First, it

shows how intuitive it is to solve a well-known problem considered in related literature.

Second, it shows how simple it is to take the problem to the next level, scale it up by

increasing the number of layers and/or balls, while the size of the resulting c-program

literally remain minimal. Another remark to add here is that the examples presented in

this chapter demonstrate capability of Contelog to handle different application scenarios

with ease due to its modular and loosely coupled features, allowing to evaluate programs

with different contexts efficiently. In the following section we further illustrate suitability

of Contelog in different applications.

7.4 Context Aware Application - Active Reasoner

Contelog inference engine is a passive-reasoner due to two main reasons. The first reason

is the fact that it is monotonic, as negation is not allowed in Contelog . This is because active

reasoners maybe faced with changes in the input facts, which in turn affects the derivations

of output tuples being dependent on the order of facts/rules fired. The second reason is that

its evaluation process is bottom-up. That means the program evaluation must complete and

terminate to know what facts to be inferred. This could be prohibitive in terms of running

time for real-life applications with high volume of data, when instant response is expected

by users in an active fashion. Therefore, in general, logic-based knowledge bases may be

considered as or believed not to be suitable for context-aware applications and systems.

The Contelog experience suggests the belief may not be true anymore, argued as follows.

Due to its loose-coupling and magic-context features, Contelog can be used as an ac-

tive context-aware system. The loose-coupling between facts/rules and contexts makes it

121

Figure 7.3: Context-aware General Structure (Alagar et al., 2014a)

possible for the application to easily add new contexts and generate new facts/actions with-

out changing the program. Thus, monotonicity is maintained, yet conflicting facts can be

present and true in different contexts. This indicates a major advantage of Contelog over

non-contextual, logic-based frameworks and engines. The MCT query optimization method

developed for Contelog provides significant performance improvements, in particular when

the selectivity ratio of the input query is high. That is, when the number of desired answer

tuples to the number of all tuples is small. Finally, the features of supporting multiple

queries, combined programs, and local dynamism of Contelog discussed earlier in Chap-

ters 6, 3 allow collaboration of multiple Contelog engine instances to arrive at single goal

for an application. Figure 7.3 is the general structure of context-aware systems adopted

from (Alagar et al., 2014a) that we will use in our case study. In Section 7.4.1, we briefly

introduce the components of a context-aware system for Contelog . In Section 7.4.2, we

show the components of Contelog based context-aware system that performs “tilt detection

and adaptation". In the remaining subsections we discuss the implementation aspects of

the tilt detection systems.

122

Figure 7.4: Context-aware main components with Contelog

7.4.1 Context-Aware System Components

Following the architecture proposed in (Alagar et al., 2014a) for context-aware systems,

we use Contelog to present the components of such system. As any context-aware system,

there are main components that were developed/assembled to accomplish the task. Those

components are as follows (illustrated in Figure A.11):

(1) Sensor: This is the device responsible for monitoring the contextual changes in an

environment.

(2) Actuator: This unit is the electronic circuit that carries out the adaptation actions,

such as open gate, start the alarm, etc.

(3) Contelog Engine Instances: One or more instances of Contelog that infers decisions

according to the input context, and facts/rules of the system.

(4) Application (Control Unit): This unit orchestrates the actions/information among

sensors, actuators, and Contelog instances.

123

(5) Application (Adaptation Unit): This unit decides the adaptation actions based on the

incoming data from Contelog programs.

7.4.2 Contelog-based Context-aware System: Tilt Detector

This context-aware system detects inclination in surfaces using a Mercury-based Sensors

to read the tilting, and sends it to the control unit to take the proper action. Those type of

systems are very critical in several applications (Fraden, 2004). Some details are as follow.

• Roll Sensing: Inclination management using sensors provides a roll over or tip over

warning for applications like construction equipment and lift vehicles that operate in

rugged terrains.

• Automotive uses: Sensing inclination has been used by Automobile manufacturers for

lighting controls (for example, trunk lid lights), ride control (horizontal and vertical

inclination), and anti-lock braking systems.

• Fall alarms: Work performed in confined space (such as a welder inside a tank) raises

special safety concerns. Such context-aware systems are used to sound an alarm if a

worker falls over.

• Bombs: A slight tilt can trigger a bomb. Context-aware systems are used to sense

and trigger safety action in case of this inclination.

Although the system idea is simple, it has far more crucial applications and usages.

This motivated us to use Contelog , a logic-based framework to monitor such changes in

contexts and infer the recommended actions to take. The beauty of using Contelog is that

it enjoys a sound and complete proof procedure with inferred results being verifiable as well

as explainable. The latter is not elaborated on here but is important when the application

include large number of rules and facts.

7.4.3 Tilt Detector: The Electronic Circuit

We have implemented the circuit using Raspberry Pi Model B Microcomputer. The

complete circuit is provided in Figure A.12. It consists of four main components explained

as follows:

124

Figure 7.5: Circuit for Tilt Detector

• The Microcomputer: It represents the controller where the logic of the application,

controlling, and adaptations are performed. The application is programmed using

python. Full implementation of the controlling unit is provided in Appendix B.

• Alarm: A device that produces sound when instructed by the controller, which is

basically when the tilt sensor is tilted.

• LED: This is to indicate another danger, used to trouble shoot in case a signal is

coming from the sensor but still the alarm does not go-off.

• Sensor: As explained earlier, Mercury-based tilt sensor to sense any inclination in

surfaces.

7.4.4 Tilt Detector: The System Logic and Sequence

The controller constantly reads signals from the sensor. In case, a tilt/change is read,

it communicates with the first Contelog instance, to which we refer as “status detector".

Based on the “status detector” results, the controller communicate with the second Contelog

instance, that we call “decision maker”, in order to make the proper action. The commu-

nication between the control unit, and the two instances of Contelog is through a RESTful

125

API that interfaces through web services. After receiving the results from the “decision

maker”, there are two actions that can be made, either to set or release the alarm. This

whole process is depicted in Figure A.11.

7.4.5 Tilt Detector: Contelog Instance-1, Status Detector

This program takes context from the controller unit as an input-context. As it receives

the context, it is triggered to run evaluation and infer results. Those results are communi-

cated back to the controller. The c-program for this is given below, which recommends the

action to be taken on the alarm. However, the controller will not take this action until it

verifies the status of the alarm from Contelog Instance-2.

Basically, Status Detector consists of four contexts {c1, c2, c3, c4} all having the same

context schema. Each context defines a certain setting and the recommended action in

the case of this setting. The context consists of two dimensions “position” and “alarm”.

Position dimension can be “tilt”, “notilt”, “nuetral”, which are the three settings of the

sensor. Tilt means it is inclined, notilt means horizontal, and neutral means it is stable for

a long time. The context-aware system will treat neutral and notilt with the same reaction.

The alarm dimension can be “set” to recommend for setting the alarm off or “released” to

turn the alarm off. For instance, if a sensor is in context “c1” (defined below), then it is on

an inclined surface, and the alarm needs to be on. The context “input” is the input to the

status detector Contelog program. It changes/re-entered by the controller, and every time

it does, the program re-evaluatesthe context against the facts and rules.

The fact is sensor(1)@input, which links the sensor name (in case we have more than

one sensor) to the input context related to it. In our case we have one input context and

one sensor.

The program has one rule that infers the recommended actions “recommend(X,Y)@C”

based on the predicates:

• sensor(S)@C: unifies with the fact sensor(1)@input.

• position(X)@C: unifies with the position of the input context.

• position(X)@W: unifies with the position of program contexts (c1-c4).

• alarm(Y)@W: recommends the action based on the contexts from (c1-c4).

126

1 # Contexts

2 c1={position:[tilt],alarm:[set]}

3 c2={position:[notilt],alarm:[set]}

4 c3={position:[notilt],alarm:[released]}

5 c4={position:[nuetral],alarm:[released]}

6 input={position:[tilt],alarm:[set]}

7 # Facts to link the sensor to the input context

8 sensor(1)@input.

9 # Rules

10 recommend(X,Y)@C :- sensor(S)@C,position(X)@C, position(X)@W,alarm(Y)@W.

7.4.6 Tilt Detector: Contelog Instance-2, Decision Maker

This program takes context from the controller unit as an input-context. As it receives

the context, it is triggered to run evaluation and infer results. Those results are communi-

cated back to the controller. The goal of this program is to direct the action to be taken

after confirming the status of the alarm. That is , if it is “ON” and the action to take is

“ON”, this c-program will not take any action to avoid wasting resources. However, it takes

action only if the action to be taken is different from the status of the alarm.

Basically, this Decision Maker program consists of three contexts all having the same

context schema. Each context defines a certain setting and the case, and action to be taken.

Status dimension can be “set” or “released”, which indicates the status of alarm within this

context. The “action” dimension can also be “set” or “released”. Finally, the case dimension

can be “tilt”, “notilt”, or “nuetral”, which indicates the context of the sensor. The context

“input” is the input to the decision maker Contelog program as an input from the status

detector Contelog program through the control unit. It changes/re-entered by the controller,

and every time it does, the program re-evaluates the context against the facts and rules.

The fact is sensor(1)@input, which links the sensor name (in case we have more than

one sensor) to the input context related to it. In our case we have one input context, and

one sensor.

The program has one rule that infers the action to take “take_action(X)@W” based on

the predicates

127

• sensor(S)@C: unifies with the fact sensor(1)@input.

• recommended(X,Y)@C: unifies with the input context coming from the controller

passed by “status detector” Contelog program.

• status(Y)@W: unifies with the position of program contexts (release1,release2,setoff).

• action(E)@W: unifies with the action dimension in the contexts (release1,release2,setoff).

• case(Y)@W: unifies with the case dimension in contexts (release1,release2,setoff).

1 # Contexts

2 release1={status:[set],action:[release],case:[nottilt]}

3 release2={status:[set],action:[release],case:[nuetral]}

4 setoff={status:[released],action:[set],case:[tilt]}

5 input={recommend:[tilt,released]}

6 # Facts to link the sensor to the input context

7 sensor(1)@input.

8 # Rules

9 take_action(X)@W :-

sensor(S)@C,recommend(X,Y)@C,status(Y)@W,action(E)@W,case(X)@W.

The above system is fully implemented and is made available in the Book of Examples

provided in Appendix B, along with all other case studies discussed in this chapter. The

Book of Examples is made world available through the web (Alsaig, 2017) in particular

to researchers and practitioners in database and context-aware systems. We welcome any

comments on the examples provided. More comment more on the significance of “active

Contelog for context-aware reasoning systems” in Section 9.2.

128

Chapter 8

Performance Evaluation

In this chapter, we evaluate and report the performance of Contelog . We briefly present

the complexity. We then study and compare its scalability and efficiency. The data sets we

used for performance evaluation are borrowed from two well-known case studies presented

in (Liang et al., 2009) and (Brass & Stephan, 2017). We compare Contelog against

several different implementations of Datalog including DLV, Iris, and XSB. The results

of our numerous experiments show that the semi-naive method improves the performance

over the naive method, then show semi-naive with the magic context rewriting significantly

improves the query processing performance. These improvement results are comparable to

those reported in the Datalog related literature.

8.1 Algorithmic Complexity

The complexity of evaluating Datalog programs has been studied thoroughly (Ceri et

al., 1989; Grau et al., 2020; Greco & Molinaro, 2015; Liang et al., 2009; Tekle & Liu, 2011).

The study considers three different complexity measures: data size in the number of input

tuples, program size in the number of rules, and the combined data-program complexity.

A summary of these results is shown in Table 8.1. Contelog complexity can be looked at

from theoretical and practical perspectives. Since Contelog is a conservative extension of

Datalog, and, as in Datalog, uses the Herbrand structures and models as the semantics

basis, its complexity class remains the same as Datalog. In essence, the Herbrand universe

of a Contelog program is made up of the union of the constants in the program and the

129

constants and context names in the context lattice. The Herbrand base of a program is

the collection of all ground atoms with and without context annotations. However, because

in real world application the number of contexts in comparison to the number of facts is

negligible,i.e. very small, the increase of the number of constants/ground predicates in the

Herbrand universe, and Herbrand base, respectively, is by a constant factor. Therefore,

Contelog has the same order of magnitude as Datalog,i.e. it terminates in polynomial time.

From the practical side, we can measure and compare their performance using measures

such as execution time and program size. In the next section, we present the performance

results of our experiments.

8.2 Scope of Comparison

In this section, we compare the semi-naive and magic context implementations of Con-

telog with the implementations of Datalog, shown in Table 8.2. It should be mentioned that

we found not implementation of Datalog or its extensions for context based reasoning. We

compare our Contelog implementation with the following systems/engines and the features

listed:

(A)Contelog : semi-naive, indexing, and Magic Contexts.

(B) SDT: bottom-up with Subsumptive Demand Transformation as proposed in

(Tekle & Liu, 2011).

(C) XSB (Sagonas, Swift, & Warren, 1999) with magic sets.

(D) OntoBroker (Decker, Erdmann, Fensel, & Studer, 1999): Ontology-based

bottom up evaluation with magic sets.

(E) Iris (Bishop & Fischer, 2008): optimized implementation of Datalog with

magic sets, tabling, and optimized indexing techniques.

(F) DLV (Alviano et al., 2010): bottom-up evaluation with optimized magic

sets and premises reordering techniques.

Program Type Data Complexity Program Complexity Combined Complexity

General PTIME-complt EXPTIME-complt EXPTIME-complt

Linear NLOGSPACE-complt PSPACE-complt PSPACE-complt

Table 8.1: Summary of the Complexity of Datalog programs

130

Systems Semi-naive indexing tabling MST/DT Contexts MCT
Contelog ✓ ✓ × × ✓ ✓
SDT ✓ ✓ ✓ DT × ×
XSB ✓ ✓ × MST × ×
Ontobroker ✓ ✓ ✓ Optimized

MST
× ×

Iris ✓ ✓ ✓ Optimized
MST

× ×

DLV ✓ ✓ ✓ Optimized
MST

× ×

Table 8.2: Features For Comparing Evaluation Approaches

For (C), (D), (E), and (F), we managed to get the corresponding original implementations.

For (B), the original implementation (Tekle & Liu, 2011) was not available, however,

following the description in their paper, we developed a running system and used it in our

comparison with Contelog and other engines listed above.

8.3 Performance Evaluation of Contelog

Before we compare Contelog to other systems, we evaluate and report its performance

with respect to implementations of different evaluation methods of naive, semi-naive, and

MCT, we developed in this research. We use the ”building locator" and “magic box" pro-

grams for this comparison. In the experiments, we used input data sets with the number

of tuples varying from 500 to 10,000,000 tuples, as indicated in a figure legend. That is, for

the building locator example, we consider 500 to 10,000,000 people coming from different

directions to locate the library building, and for the magic box example, the range of boxes

we consider in these experiments is from 500 to 10,000,000. Figure 8.1 shows the evaluation

time in seconds for each input size. As expected, it can be seen that the performance of

semi-naive evaluation method is far better than the naive method. The results also show

that the performance is further improved when using the MCT rewriting method intro-

duced in Chapter 6. It is important to note, however, that memory utilization has almost

doubled when using semi-naive. This is due to the use of indexing and storage structures to

keep track of newly derived tuples. The figure illustrates that Contelog with MCT shows

131

Figure 8.1: Performance of Contelog on large number of facts

a great advantage in performance over the semi-naive without MCT. Since Contelog with

semi-naive and MCT is the most efficient when compared to other Contelog versions, we

consider this implementation and features when comparing to other systems.

8.4 Experiments

We follow the approach from (Liang et al., 2009) to ensure that our comparisons are

correct and fair. Also, the same tests were run on the same machine to build upon one

reference point to ensure fairness of the results. The goal is to compare the performance of

the MCT method against previous approaches in different settings, such as large sets, cyclic

and acyclic data, large joins, and recursive rules. Through the experiments and results, we

will illustrate performance superiority of the MCT rewriting method compared to previous

ones.

The data sets of tuples used as inputs in our performance evaluation experiments are

randomly generated and the same sets are used for evaluating all the methods mentioned.

These data sets contain 50000, 100000, 250000, 500000, and 1000000 tuples. The parameter

timeout is the time we set to terminate an evaluation process if it runs for too long. The

parameter memory-out shows the system ran out of main memory and the current process

cannot continue. We set the timeout limit to 3600 seconds and the memory limit to 8 GB.

For each test settings we perform 10 runs and report the average in the results. Also,

132

for each experiments, the following tests were conducted:

• No query: this means that no query was considered. Hence, rewriting technique is

irrelevant, and the performance depends on semi-naive and the level of optimization

on tabling, dynamic indexing, and premises re-ordering.

• Query with two arguments: The reason why we make it on two different categories is

because the binding pattern highly affects the quality of the rewriting for the previous

methods, but not for Contelog . Those tests showcase this.

• Recursive Data: We consider both cyclic and acyclic data in our experiments. This is

to insure that the rewriting method is able to produce the answer tuples and efficiently

retrieve relevant tuples from cyclic data.

• Context-based programs: We used three different binding patterns to carry out the

tests in this category. The query in this category is in the form Q(X, Y)@C. The

first binds the first argument, the second query binds the second, and the third binds

the context. Because the other engines considered do not support contexts, we have

defined context as regular facts and made some changes to the program to correctly

use those contexts.

8.4.1 Large Joins Rules

In order to evaluate the performance of the various rewriting and evaluation methods

on large joins, we use the following program that includes non-recursive rules, each of

which uses two binary predicates. The base relations are c2, c3, c4, d1, and d2, and the

derived relations are a1, b1, and b2. For the query, we considered the following binding

combinations: Q(f,f), Q(f,b), Q(b,f), where f means free argument and b means bound.

Πlarge

1 r1 : a1(X,Y) :- b1(X,Z), b2(Z,Y).

2 r2 : b1(X,Y) :- c1(X,Z), c2(Z,Y).

3 r3 : b2(X,Y) :- c3(X,Z), c4(Z,Y).

4 r4 : c1(X,Y) :- d1(X,Z), d2(Z,Y).

133

Figure 8.2: Large Joins, No Query Results

Figure 8.3: Large Joins With First Argument Bound

Results of Large Joins - No query. The summary of results of this set of experiments

is shown in Figure 8.2. As can be seen, the results show that Ontobroker and DLV performed

the best. This is because they are highly optimized to handle bottom-up evaluations. At

the level of the program, they apply re-ordering of premises, and minimizing. Also, they

have incorporated dynamic indexing, and apply tabling techniques in addition to heuristic

algorithms to find common results and avoid repetitions. The performance of Contelog is

not as good since it is using simple indexing techniques in addition to semi-naive approach.

This can be addressed through more sophisticated indexing to be devised and employed for

Contelog .

Results of Large Joins - First Argument Bound. The summary of results of this

set of experiments is shown in Figure 8.3. As indicated by the results, due to the rewriting

techniques of MCT, Contelog competes well and even beats Ontobroker and DLV, noting

that they have better indexing and tabling techniques. The reason why Contelog performs

much better in these experiments is because the MCT rewriting technique generates pro-

grams whose sizes are almost half of those produced by other systems, making Contelog

perform faster scans through facts and rules to produce the results. Also, Contelog removes

134

Figure 8.4: Large Joins with First Argument Bound

irrelevant rules and hence, many facts are not even considered during query processing for

not being relevant.

Results of Large Joins - Second Argument Bound. The summary of results of this

set of set of experiments is shown in Figure 8.4. These experiments show similar findings

as in the previous one. However, a major advantage of MCT is that binding patterns do

not change or affect the rewriting technique and the program size. Hence, Contelog show

consistent performance while this is not true for all other engines. For instance, the results

for Ontobroker in the last column (for 1,000,000 tuples) almost doubled when compared to

the previous results only because of the binding change in the query.

8.4.2 Recursive Rules

For the category of recursive tests, the programs are the “edge-path" and the “same

generation cousins" programs provided below. The data selected for this example can be

both acyclic and cyclic. For instance, the dataset p(1,2), p(2,3), p(1,3) is cyclic, and the

reasoner will infer all possible combination of p(X,Y).

Listing:

1 # edge-path program Π1
recursion

2 r1 : p(X,Y) :- e(X,Y).

3 r2 : p(X,Y) :- p(X,Z), e(Z,Y).

4

5 # same generation cousins program Π2
recursion

6 r1: sgc(X,Y) :- sib(X,Y).

7 r2: sgc(X,Y) :- par(X,Z), sgc(Z,Z1), par(Y,Z1).

135

Figure 8.5: Recursive Rules, No Query Results - Acyclic

Figure 8.6: Recursive Rules No Query Results - Cyclic

Results of Recursive Rules - No Query - Acyclic. The summary of results of this set

of experiments is shown in Figure 8.5. This test and second one are the heaviest tests in our

experiments. This is because recursive rules take up large memory and time to compute.

Similar to large joins, Ontobroker and DLV show best performance due to their indexing

and tabling techniques. Iris and XSB show least performance in this set of tests.

Results of Recursive Rules - No Query - Cyclic. The summary of results of this set

of experiments is shown in Figure 8.6. Similar to the previous test, Ontobroker and DLV

show best performance due to their indexing and tabling techniques. Although Contelog is

not highly optimized when there is no input query, it has consistently passed all the tests

with a steady increase.

Results of Recursive Rules - First Argument Bound - Acyclic. The summary of

results of this set of experiments is shown in Figure 8.7. Contelog ranked top in this test.

As explained earlier, it is an advantage of the MCT rewriting technique that it does not

consider binding patterns in rules as it deals with individual bound argument of the query

and restricts each rule to the magic context.

136

Figure 8.7: Recursive Rules First Argument Bound - Acyclic

Figure 8.8: Recursive Rules First Argument Bound - Cyclic

Figure 8.9: Recursive Rules Second Argument Bound - Acyclic

Results of Recursive Rules - First Argument Bound - Cyclic. The summary of

results of this set of experiments is shown in Figure 8.8. Here too, Contelog ranks top.

XSB could not pass the test. All engines including Contelog show reduced performance by

a constant factor when compared to the Acyclic tests.

Results of Recursive Rules - Second Argument Bound - Acyclic. The summary

of results of this set of experiments is shown in Figure 8.9. The performance of Contelog

is similar to the case with first argument bound. However, the other engines performance

have been severely impacted.

137

Figure 8.10: Recursive Rules Second Argument Bound - Cyclic

Results of Recursive Rules - Second Argument Bound - Cyclic. The summary of

results of this set of experiments is shown in Figure 8.10. Contelog shows consistent results

in comparison to the cyclic test with the first argument bound. However, all other engines

rewriting have been highly impacted and resulted in reduced performance.

8.4.3 Contextual Rules

For this category of tests, we used the animal-inheritance program (Πcontext), shown

below, which includes recursion and dependency on contexts. In this program, a combina-

tion of the derived predicates a(X, Y)@C and f(X, Y)@C are used with the query bindings

Q(f, b)@f , Q(b, f)@f , and Q(f, f)@b.

Πcontext

1 r1 : a(X, Y)@C :- a(X, Y), t(Y)@C.

2 r2 : a(X, Y)@C :- a(X, Z)@C, a(Z, Y).

3 r3 : f(X, Y)@C :- a(X, Z)@C, fea(Y)@C.

We remark that except for Contelog , none of the other evaluation methods employed

or implemented in our experiments supported context representation and reasoning. One

of our objectives in the experiments was to study the performance of Contelog with large

number of tuples and/or large number of contexts. So, we generated and used two sets of

data, one in which the number of tuples was fixed to 1000 but with dynamic set of contexts

ranging from 50,000 to 106, and the other in which the number of context was fixed to 1000

but with dynamic set of tuples ranging from 50,000 to 106.

138

Figure 8.11: Contextual Rules - No Query

Figure 8.12: Contextual Rules - First Argument Bound

Figure 8.13: Contextual Rules - Second Argument Bound

Contextual Rules - No Query. The summary of results of this set of experiments is

shown in Figure 8.11. Although Contelog is the only engine that have contexts, it did not

rank the top since there was no query. We have dealt with contexts in other programs as

arguments and facts. There are other ways that we can implement this by using function

symbols, but we noticed adverse impacts on the performance on other engines when using

function symbols, so we decided not to use function symbols.

Contextual Rules - First Argument Bound. The summary of results of this set of

experiments is shown in Figure 8.12. In this test as all previous tests with queries, Contelog

ranks at the top.

139

Figure 8.14: Contextual Rules - Third (context) Argument Bound

Contextual Rules - Second Argument Bound. The summary of results of this set of

experiments is shown in Figure 8.13. Contelog in this test shows consistent results, unlike

other engines.

Contextual Rules - Third (Context) Argument Bound. The summary of results

of this testset is shown in Figure 8.14. We referred to the context as a third argument,

because this is how we used it in engines that don’t support context. Contelog ranks at the

top, while performance of DLV and Ontobroker are adversely impacted by the addition of

the third argument.

8.5 Summary of Experiments

We summarise our findings and observations as follows. First, in evaluation of all pro-

grams that contained no-query, which means generating all the tuples, DLV and Ontobroker

ranked as the top. This is because both systems use the optimization techniques such as

indexing, tabling, and re-ordering, to enhance the bottom-up evaluation. Contelog did

not perform at its best as it is not equipped with such techniques. Second, for all query-

dependant and rewritten programs using magic-context, Contelog ranked the top. DLV

and Ontobroker ranked second and other systems fell far behind. Third, number of ar-

guments and the binding patterns show high impact on the quality and performance of

the rewritten program for all reviewed systems, but not for Contelog . In fact, Contelog

shows steady performance for all binding patterns. Finally, Contelog ranked as the top for

all query-dependant programs and ranked low for programs with no-query. This indicates

opportunity for Contelog for considerable improvement by optimizing the semi-naive tech-

niques to compete with DLV and Ontobroker. However, even with current implementation

140

of Contelog , it shows high potential and in fact best performance among the other systems

in query-dependant contextual and non-contextual programs.

141

Chapter 9

Conclusion and Future Work

In this chapter, we summarise the significant contributions of this thesis. We highlight

what Contelog can achieve and how it can be further improved. We comment on how

Contelog provides a theory for representing and reasoning with contexts in an efficient and

practical manner. Finally, we present a list of topics for future work, in particular those

that can be pursued to further improve Contelog towards using it as a back-end reasoner

to support real-world, context-aware applications and as a context-aware knowledge base

system.

9.1 Summary of Contributions

In this thesis, we introduced Contelog , a full-fledged logic framework and established

its model theory and fixpoint semantics. The framework is fully implemented as a running

prototype system, and its performance is evaluated using a different programs with varying

number of tuples.

Contelog is a conservative extension of Datalog with context, in which contexts are

represented and reasoned with as first class citizens, and enjoys powerful query processing

and optimization techniques. A key advantage feature of Contelog over other proposals

for context representation and reasoning is the "loosely-coupled" connection between the

context world and problem solving world (also called the reasoning world). Through this

feature, we achieve additional advantages in context-based reasoning at both theoretical and

practical levels. At the theory level, Contelog provides separation between the problems

142

of context representation and contextual reasoning. We provide a formal representation of

context by introducing a theory for context lattice and an associated calculus, using which

it performs desired reasoning over the context world in divers applications.

The entire contextual information can be modeled using context entity alone. However,

as in real life, context by itself does not mean much unless it is linked to events in a world

where it is needed and used. The proposed formalism developed for Contelog extends the

syntax and semantics of Datalog. Therefore, Contelog with a high degree of freedom, can

reason within a context, outside a context, or use contextual information in problem solv-

ing world. Therefore, Contelog achieves the transcendence property of context described

by McCarthy. At practical level, the loose coupling between context and reasoning worlds

provides opportunities for parallel reasoning, where multiple applications (reasoners) can

use the same context(s) world without affecting each other. This independence is an ad-

vantage over ontology-based reasoners. Also, any optimization technique, theoretically or

practically, will not affect the context world in the reasoning process. This design allows

for future improvements, yet keeps the conceptual structure of the framework intact. In

summary, Contelog theoretically and practically implements essential features of context-

aware and context-based reasoners as suggested in major related literature, e.g., (Akman

& Surav, 1996; Giunchiglia, 1993; Guha, 1991; McCarthy, 1963). Below, we highlight what

Contelog has achieved.

• Contelog implements the function is-true ist(C, P) introduced in (McCarthy, 1993)

and the viewpoint function in(‘A′, vp) introduced in (Attardi & Simi, 1995) as an

atomic predicate p@c.

• Contelog achieves simplicity and declarative semantics by conservatively extending

Datalog.

• Being a conservative extension of Datalog, Contelog can also process standard Datalog

programs efficiently without context notation.

• The theoretical concepts of entering and exiting contexts introduced in (Guha, 1991)

has been practically implemented in Contelog . The concepts “enter", “exit",“roll-

up",“roll-down",“push", and “pull", that appeared in different works in the literature

143

are all realized in Contelog through the rules in problem solving context. A Contelog

rule can infer something in a context, thus achieving the effects of “enter"/“push"/“roll-

down". Also, it can infer something in problem solving context using contextual in-

formation, achieving the effect of “exit"/“pop"/“roll-up".

• Contelog actually achieves the “separation of concerns" and the “loose coupling" fea-

tures introduced in (Akman & Surav, 1996; McCarthy, 1963) by separating the

program components from the contexts module.

• It allows coexistence of possible “conflicting knowledge" introduced in (Akman &

Surav, 1996; Attardi & Simi, 1995) by being able to reason in different contexts.

• Contelog assumes that contexts are “complete" for the purpose of reasoning, although

they are not globally complete. The context theory assumes existence of a complete

lattice of contexts for the problem solving world. It contains all possible contexts

that can be constructed using the available contextual information. The underlying

lattice provides the sense of “necessary completeness" and “closed world assumption"

considered in many applications. Nevertheless, it does not violate the fact that context

is a rich concept that may not be globally complete.

• It fulfills the evaluation aspects proposed in (Benerecetti et al., 2000).

• Contelog is formal, expressive, generic, yet flexible and simple framework. We illus-

trated these features in the magic box example and its improved version.

• Contelog is equipped with a novel and efficient rewriting method, called the Magic

Context Transformation (MCT), that generates programs and can achieve the same

efficiency provided by Magic Sets for standard Datalog programs. Also, because the

size of the rewriting generated by MCT is small, it can process any query efficiently

using contexts without requiring rewriting.

• Due to the efficiency of the MCT rewriting technique, Contelog can be used as an

active reasoner as shown in Chapter 7. This makes Contelog , to the best of our

knowledge, the first rule-based logic framework, with sound and complete proof pro-

cedures for context-aware reasoning.

144

• Using the separation of concerns between contexts and application logic, multiple

programs with different facts can use the same contexts, or multiple contexts can be

used by the same program. This makes Contelog suitable for providing opportunities

for concurrent or parallel context-aware computations.

9.2 Future Work

Contelog is in its infancy and can be further improved along the following directions.

The current implementation lacks indexing and tabling mechanisms (also called memoing

in XSB) that can help speed up query processing even further. Our current implementation

of Contelog uses a simple tokenizing method and does not benefit from sophisticated run-

time optimization methods, such as indexing or multi-threading, for better memory and

CPU utilization. We have not developed top-down query processing technique for Contelog

. One reason is the proposed MCT rewriting together with the semi-naive evaluation meth-

ods achieved the efficiency and goal-oriented nature of top-down query processing. Despite

this developing a top-down proof procedure may prove to be useful. One way to do this

is using a meta-programming approach and build an interpreter in XSB for Contelog pro-

grams and associated contexts. This requires extension of unification to context variable

or names in the rules and facts. We expect the performance of a desired top-down solution

to be comparable to the MCT with semi-naive evaluation. This expectation remains to be

assessed. Below, we list some of the venues that can be pursued towards real rule-based,

context-aware, knowledge-base system.

(1) Performance:

• Following the ideas presented in (Ferreira & Rocha, 2005), investigate parallel

computing in the implementation of the Contelog engine to further boost-up its

performance.

• Implement optimized tabling and indexing techniques to enhance the perfor-

mance of fetching data (facts/contexts,) as done for engines such as XSB, YAP,

DLV, and Push, as noted in (Brass & Stephan, 2017).

(2) Expressiveness:

145

• Enhance the expressiveness of Contelog by allowing function symbols in contexts.

• Allow more data types, such as ‘string’, ‘lists’, and ‘dictionaries’ to describe data

in contexts.

• Extend Contelog with negation to allow negated facts that can induce stratified

programs and result in the development of stratified evaluation.

• Extend with uncertainty. Many real world applications require to represent and

deal with uncertain information. It would be interesting to study extensions of

Contelog to support applications with different notions and theories of uncer-

tainty, such as probability, possibility, and fuzzy. Such applications might con-

sider including a contextual probabilistic predicate ispt(C, P, Pr). Such an ex-

tended Contelog might be expressive in describing expert systems, e.g., MYCIN

(Riguzzi, 2013)

• Currently Contelog works under the closed world assumption. It would be inter-

esting to extend it for open-world assumption.

(3) Reasoning:

• Implement top-down query processing techniques for Contelog . This would al-

low tracing, drawing the proof-tree/derivation tree corresponding a given query.

While the process is a one-step-at-a-time fashion, it is suitable top provide ex-

planation and details of tuple derivations.

(4) Integration:

• Provide integration through APIs or endpoints for applications and systems to

connect to Contelog and benefit from it.

• Integrate Contelog with Big Data management and reasoning. Big Data sources

will provide one or more global data sets, each containing all possible related

contexts. A public application can use the Contelog reasoner to choose relevant

data sets to its purposes.

• Investigate the design and implementation of a software tool to convert ontol-

ogy or XML files to our context representation, and convert the source code to

Contelog for reasoning.

146

(5) Applications:

• Investigate how to couple Contelog with current context-aware AI applications

such as autonomous vehicles, ubiquitous computing, and Internet of Things (IoT)

systems used to build SMART cities.

147

Appendix A

Book of Examples

A.1 The Direction Example

Figure A.1: Illustration of the building locator example

A.1.1 Goal

the goal of this program is to show the ability of contelog to perform context based

reasoning by giving the person the correct direction based on his/her context.

A.1.2 Overview

This program direct the person to where the library is based on the side he/she coming

from. For simplicity, people can only come from two sides, namely east/west.

148

A.1.3 Program Details

the program consist of two contexts and two regular predicates. The contexts are:

(1) a context that defines a person coming from the east, and should be directed to the

right to reach the library.

(2) a context that defines a person coming from the west, and should be directed to the

left to reach the library.

Thus, these two contexts contain two dimensions “from” and “to”, each of which has one

attribute that defines the direction. Specifically, from dimension has the attribute “Ordinal

Direction” with the domain of values [east,west], and to dimension has the attribute “Side”

with the domain of values [right,left].

The program has two regular binary predicates: per(X,Y) where X is the name of the

person, and Y is the ordinal direction he/she is coming from, and lib(X,Z) where X is the

name of the person and Z is the direction of the library based on context.

A.1.4 Code

A.1.4.1 Context

1 cw= from:[west],to:[left]}

2 ce= from:[east],to:[right]}

A.1.4.2 Program

1 #FACTS:

2 per(1,east).

3 per(2,west).

4 per(3,north).

5 #RULES:

6 per(X,Y)@C:-per(X,Y),from(Y)@C.

7 lib(X,Y)@C:-per(X,Z)@C,to(Y)@C.

8

9 #--- RESULTS ---#

149

10 per(1,east).

11 per(2,west).

12 per(3,north).

13 **per(1,east)@ce. #the starred facts are the inferred ones.

14 **per(2,west)@cw.

15 **lib(1,right)@ce.

16 **lib(2,left)@cw.

A.2 Animal Classifier

Figure A.2: illustration of inheritance example

A.2.1 Goal

the goal of this program is to show that contelog inherit the recursive reasoning from

Datalog and it can reason using recursive rules.

A.2.2 Overview

The program classifies the animals and their descendants and give their features based

on their context.

150

A.2.3 Program Details

The program contains two regular predicates and two contexts. The context defines the

animal type and its features through the dimensions “type” and “f” respectively. The “type”

dimension has an attribute "name of type" which has the domain of values [bird,amphibians].

The “f” dimension has an attribute "feature of animal" which has the domain of values

[canfly,canswim].

The program contains two regular binary predicates: animal(X,Y) and feature(X,Z).

“X” is the name of the animal, “Y” is the type of animal, “Z” is the feature of the animal.

A.2.4 Code

1 # CONTEXT

2 cb= {type:[bird],f:[canfly]}

3 ca= {type:[amphibian],f:[canswim]}

4

5

6 # FACTS:

7 animal(parrot,bird).

8 animal(frog,amphibian).

9 animal(parakeet,parrot).

10 animal(tods,frog).

11 # RULES:

12 animal(X,Y)@C:-animal(X,Y),type(Y)@C.

13 animal(X,Y)@C:-animal(X,Z), animal(Z,Y)@C.

14 feature(X,Y)@C:-animal(X,Z)@C,f(Y)@C.

15

16 # --- RESULTS --- #

17 animal(parrot,bird).

18 animal(frog,amphibian).

19 animal(parakeet,parrot).

20 animal(tods,frog).

21 **animal(parrot,bird)@cb.

22 **animal(frog,amphibian)@ca.

23 **animal(parakeet,bird)@cb.

151

24 **animal(tods,amphibian)@ca.

25 **feature(parrot,canfly)@cb.

26 **feature(frog,canswim)@ca.

27 **feature(parakeet,canfly)@cb.

28 **feature(tods,canswim)@ca.

A.3 Animal Classifier (enriched)

animal

cantalk

very_smallbig_beaks

carnivorous

birds frogs

canfly canswim

carinvorous parrots

parrotlets parakeets

very_bigpoisonous

goldenfrogs toads

falcon

aggressive

Figure A.3: illustration of inheritance example

A.3.1 Goal

the goal of this program is to show that contelog inherit the recursive reasoning from

Datalog and it can reason using recursive rules in a more sophisticated scenario.

A.3.2 Overview

The program classifies the animals and their descendants and give their features based

on their context. It also assigns features to childs based on inheritance. However, there are

some specific features to childs that parents don’t share.

A.3.3 Code

152

1 # CONTEXT

2 cbird= {type:[bird],f:[canfly],level:[a]}

3 camph= {type:[amphibian],f:[canswim],level:[a]}

4 cparrot={type:[bird],f:[cantalk],name:[parrot]}

5 cparakeet={type:[parrot],f:[small],name:[parakeet]}

6 ctod={type:[frog],f:[big],name:[toad]}

7 cyfrogs={type:[frog],f:[poisonous],name:[yellowfrog]}

8 cplet={type:[parrot],f:[bigbeaks],name:[parrotlet]}

9 cfalcons={type:[bird],f:[carnivorous],name:[falcon]}

10

11 # FACTS:

12 animal(parrot,bird).

13 animal(parakeet,parrot).

14 animal(parrotlet,parrot).

15 animal(falcon,bird).

16 animal(frog,amphibian).

17 animal(toad,frog).

18 animal(yellowfrog,frog).

19 # RULES:

20 animal(X,Y)@C:-animal(X,Y),type(Y)@C,level(a)@C.

21 animal(X,Y)@C:-animal(X,Y),type(Y)@C,name(X)@C.

22 animal(X,Y)@C:-animal(X,Z), animal(Z,Y)@C.

23 feature(X,Y)@C:-animal(X,Z)@C,f(Y)@C.

24

25 # --- RESULTS ---#

26 animal(parrot,bird).

27 animal(frog,amphibian).

28 animal(parakeet,parrot).

29 animal(tods,frog).

30 **animal(parrot,bird)@cb.

31 **animal(frog,amphibian)@ca.

32 **animal(parakeet,bird)@cb.

33 **animal(tods,amphibian)@ca.

34 **feature(parrot,canfly)@cb.

153

35 **feature(frog,canswim)@ca.

36 **feature(parakeet,canfly)@cb.

37 **feature(tods,canswim)@ca.

A.4 User Access Controller

Figure A.4: illustration of abstract context

A.4.1 Goal

show the ability of contelog to perform operations (join/meet) on the contexts in the

program.

A.4.2 Overview

The program assignes privileges to users based on their context and the roles/privileges

defined in them. If a user has an admin and viewer roles he can have both of their privileges

and can be identified as super user.

A.4.3 Program Details

Two contexts are included in this program. The viewer context ‘cv’ and the admin

context ‘ca’. Both contexts has the following schema: role:[name of role], priv:[name of

priv]. The attribute name of role has the domain of values [viewer,admin] while the priv

has the domain [canedit, canview].

The program contains two regular binary predicates: user(X,Y) and priv(X,Z), where:

• X: name of user

154

• Y: role of user

• Z: priv of user

1 # CONTEXT

2 cv= {role:[viewer],priv:[canview]}

3 ca= {role:[admin],priv:[canedit]}

4

5 # FACTS:

6 user(john,admin).

7 user(mike,viewer).

8 user(john,viewer).

9

10 # RULES:

11 # The user X of role Y is at context C if the role(Y) is in C

12 user(X,Y)@C:-user(X,Y),role(Y)@C.

13 # The user X of role Y is at the join of contexts C and W if the same user has

two different roles at two different contexts

14 user(X,Y)@C+W:-user(X,Y)@C,user(X,Z)@W,Y!=Z.

15 # The privilege Y for is assigned for the user X based on the context defined

from rule 1

16 priv(X,Y)@C:-user(X,Z)@C,priv(Y)@C.

17 # The privilege Y from the join of contexts W and C is assigned to user X

18 priv(X,Y)@C+W:-priv(X,Z)@C,priv(X,Y)@W,Z!=Y.

19

20

21 # --- RESULTS --- #

22 user(john,admin).

23 user(mike,viewer).

24 user(john,viewer).

25 **user(john,admin)@ca.

26 **user(mike,viewer)@cv.

27 **user(john,viewer)@cv.

28 **user(john,admin)@ca+cv.

29 **user(john,viewer)@cv+ca.

30 **priv(john,canedit)@ca.

155

31 **priv(mike,canview)@cv.

32 **priv(john,canview)@cv.

33 **priv(john,canview)@ca+cv.

34 **priv(john,canedit)@cv+ca.

A.5 Diagnosis Program

Diagnosis Program

Patient Context

Disease Ais
patient context

in A?

is
patient context

in B?

is
patient context

in C? Disease B

Disease C

Disease Context

P3 P2 P1

NONO

YESYESYES

NO

Undiagnosed

context-based
diagnosis

Figure A.5: Illustration of the diagnosis program

A.5.1 Goal

To show the exprissive power of contelog using the inequalities (built in predicate) and

containment relation checker in the rules body.

A.5.2 Overview

Using containment/inclusion concept, the patient can be diagnosed if all symptomps

and vital (patients’ context) signs are included in the disease context.

156

A.5.3 Program Details

The context of this program is richer than previous ones. There are two different cate-

gories of context: patients’ context, and disease context. Patient context has the following

schema: fever : [degree], bs : [degree], bp : [degree], symp : [nameofsymptom]. It can also

be any subschema of this schema. Example: fever : [degree], symp : [nameofsymptom] is

a patient context.

The disease context has the following schema:

fever : [degree], bs : [degree], bp : [degree], symp : [nameofsymptom].

the domain of ‘degree’ attribute is [low,normal,high]. The domain of ‘name of symptom’

attribute is [any possible symptoms].

The program consist of two regular unary predicates: patient(X) and diagnosis(Y). X

is the name of patient and Y is the name of the diagnosis (disease).

A.5.4 Code

1 # CONTEXT

2 p1={fever:[high],symp:[headache]}

3 p2={bs:[high],symp:[dehydration]}

4 p3={bp:[high],symp:[chestpain]}

5 meningitis={bs:[normal],bp:[normal],fever:[high],symp:[headache]}

6 diebeties={bs:[high],bp:[normal],fever:[normal],symp:[dehydration]}

7 heart=\{bs:[normal],bp:[high],fever:[normal],symp:[chestpain]}

8

9 # FACTS:

10 # patients are assigned to a specific context already.

11 patient(john)@p1.

12 patient(rod)@p2.

13 patient(derek)@p3.

14

15 # RULES:

16 # if patient context is included in the disease context he/she is assigned a

potential diagnosis.

157

17 diagnosis(X)@W:-patient(X)@C,symp(Y)@W,C<W,C!=W.

18

19 # --- RESULTS --- #

20 patient(john)@p1.

21 patient(rod)@p2.

22 patient(derek)@p3.

23 **diagnosis(john)@meningitis.

24 **diagnosis(rod)@diebeties.

25 **diagnosis(derek)@heart.

A.6 Database Access Controller

DB Access Controller

User
Context

A?

User
Context

B?

Role 1

Role 2

Access 1

Access 2

Query Builder

Context-based
Access

Controller

Roles Context

User Context

Access Context

Figure A.6: Illustration of the db access controller program

A.6.1 Goal

manage database access based on the context of the user in a more complex settings.

158

A.6.2 Overview

The program controls the access of the user considering different contexts. It is different

if a user location is within the premise or if it is a night or morning. Different context

roles are attached to different locations/status. Upon this information the user is assigned

different contexts and thus given an access to the database upon that.

A.6.3 Program Details

the program has two regular predicates: query(X,Y,Z,E,O,T) and p(X). the query pred-

icate is constructed if a person has access based on his/her context.

• X is the name of the person

• Y is the first column in the table of the query

• Z is the second and so on for all the rest.

The context of the program has 3 categories.

(1) the user context: which defines the settings of the user through the location, role

and time dimensions. The schema of this context is location:[loc], role:[role name],

’time’:[daynight]

(2) the role context: which defines the privilege allowed for a user at a specific settings.

The schema is similar to user context with the following addition priv:[privilege name].

(3) the privilege context: which defines the access information that the user allowed to

see with the a specific role context. The schema is ’access’:[col,col,col,col,col].

Where the domains for attributes are:

• loc=[inhospital,outhospital]

• role name=[user,dr,unknown]

• time=[morning,night]

• priv=[allpriv,viewpriv,userpriv]

• col=[name,address,phone,dob,history]

159

A.6.4 Code

1 # CONTEXT

2 allpriv={access:[name,address,phone,dob,history]}

3 userpriv={access:[name,address,phone,dob,none]}

4 drpriv={access:[name,phone,dob,history,none]}

5 nursepriv={access:[name,history,none,none,none]}

6 viewpriv={access:[name,none,none,none,none]}

7 rc1={location:[in_hospital],role:[dr],time:[morning],priv:[allpriv]}

8 rc2={location:[out_hospital],role:[dr],time:[morning,night],priv:[viewpriv]}

9 rc3={location:[in_hospital],role:[user],time:[morning],priv:[userpriv]}

10 rc4={location:[out_hospital],role:[user],time:[morning],priv:[userpriv]}

11 uc1={location:[out_hospital],role:[unknown],time:[morning]}

12 uc2={location:[out_hospital],role:[dr],time:[morning]}

13 uc3={location:[in_hospital],role:[dr],time:[morning]}

14

15 # FACTS

16 p(john)@uc2.

17 p(derek)@uc3.

18

19 # RULES:

20 p(X)@C:-p(X)@M,M<W,priv(C)@W.

21 query(O,X,Y,Z,E,T)@C:-p(O)@C,access(X,Y,Z,E,T)@C.

22

23

24 # --- RESULTS --- #

25 p(john)@uc2.

26 p(derek)@uc3.

27 **p(john)@viewpriv.

28 **p(derek)@allpriv.

29 **query(john,name,none,none,none,none)@viewpriv.

30 **query(derek,name,address,phone,dob,history)@allpriv.

160

A.7 context based path finder

Context-Based Path Finder

path 4

path 1

path 3path 2

path4 context
direction:east to west
horz level: 2
vert level: any

pa
pb

pcpd

pd context
can go:west and north
horz level: 2
vert level: 2

pb context
can go:west and south
horz level: 1
vert level: 2

pa context
can go:west and south
horz level: 1
vert level: 1

pc context
can go:west and north
horz level: 2
vert level: 1

Figure A.7: Illustration of the path finder program

A.7.1 Goal

Add context-sensitivity to a traditional datalog problem and see the differences and the

ability of contelog to express and solve that.

A.7.2 Overview

Every person has a context that allows him to take specific directions based on the

context of the roads. If a person context matches or lined up with the road, a person can

move from node to another through that road. If not, however, there is no path.

161

A.7.3 Program Details

The program has two types of contexts: the road context, and the person context. The

road context has the following schema: dir:[ordinal,ordinal],level:[level number],vlevel:[level

number]. The person context has the following schema: cango:[ordinal,ordinal],plevel:[level

number], pvlevel:[level number] where: ordinal values domain = [e,w,s,n] level, plevel, vlevel

and pvlevel = [natural number set (N)]

The road context as described as three dimensions: dir, level and vlevel. ‘dir’ is to

describe the direction from->to. so the first argument should be the ordinal direction of

the source and the second argument should be the ordinal direction of the target. This

describes the road direction. level and plevel are to determine the coordinates of the line in

the map.

the person context has also three dimensions cango, plevel and pvlevel. plevel and

pvleve are just to set the current coordinates of the person in the map. However, cango is

to determine which direction can a particular person go.

The idea of the rules of the program is to see the cango predicate in the person context,

and see if the roads that he has access to line up with the settings of the person and his

directions.

A.7.4 Code

1 # CONTEXT

2 rb1={dir:[w,e],level:[1]}

3 rb2={dir:[s,n],vlevel:[2]}

4 rb3={dir:[n,s],vlevel:[1]}

5 rb4={dir:[e,w],level:[2]}

6 pa={cango:[e,s],plevel:[1],pvlevel:[1]}

7 pb={cango:[s,w],plevel:[1],pvlevel:[2]}

8 pc={cango:[e,n],plevel:[2],pvlevel:[1]}

9 pd={cango:[n,w],plevel:[2],pvlevel:[2]}

10

11 # FACTS:

12 p(john,0,0,0)@pb.

13

162

14 # RULES:

15 p(X,W,M,C)@M:-p(X,D,F,U)@W,cango(Z,E)@W,dir(E,T)@C,

16 cango(T,Z)@M,level(Y)@C,plevel(Y)@W.

17 p(X,W,M,C)@M:-p(X,D,F,U)@W,cango(Z,E)@W,dir(Z,T)@C

18 ,cango(E,T)@M,level(Y)@C,plevel(Y)@W.

19 p(X,W,M,C)@M:-p(X,D,F,U)@W,cango(Z,E)@W,dir(T,E)@C,

20 cango(Z,T)@M,pvlevel(O)@M,vlevel(O)@C.

21 p(X,W,M,C)@M:-p(X,D,F,U)@W,cango(Z,E)@W,dir(T,Z)@C,

22 cango(T,E)@M,pvlevel(O)@M,vlevel(O)@C.

23

24 # --- RESULTS --- #

25 p(john,0,0,0)@pa.

26 **p(john,pa,pc,rb3)@pc.

27 **p(john,pc,pd,rb4)@pd.

28 **p(john,pd,pb,rb2)@pb.

29 **p(john,pb,pa,rb1)@pa.

A.8 The Navigator

EastWest

The Navigator

Figure A.8: Illustration of the navigator program

163

A.8.1 Goal

To show more complex program with more than categories of context and multiple

predicates.

A.8.2 Overview

the program navigates the person based on the street context in the map. If there is a

blockage, if it is one direction, are all factors that affect the navigation result. The person

has also a context that might affect the navigation, if he is onfoot or by car.

A.8.3 Program Details

the program has 7 regular predicates, all of them are unary predicates. predicates are

defined as follows:

• p(X) person name ‘X’

• ped(X) pedistrian name ‘X’

• route(X) a route for a person ‘X’

• drive(X) person ‘X’ is a driver (coming by car).

• better(X) a better route for person ‘X’

• best(X) the best route for person ‘X’.

As for contexts, the program uses two categories of contexts: street context and person

context. The street context defines the street direction, status and traffic. The person

context defines the method by which the person is coming, and the direction he/she is

coming from.

A.8.4 Code

1 # CONTEXT

2 r1= {oneway:[n,e],status:[notblocked],traffic:[low]}

3 r2= {oneway:[n,w],status:[notblocked],traffic:[high]}

4 r3= {oneway:[w,n],status:[notblocked],traffic:[no]}

164

5 r4= {bidirection:[yes],status:[notblocked],traffic:[no]}

6 onfoot1= {method:[onfoot],ordinal:[e]}

7 onfoot2= {method:[onfoot],ordinal:[w]}

8 bycar3= {method:[bycar],ordinal:[e]}

9 bycar4= {method:[bycar],ordinal:[w]}

10

11 # FACTS:

12 # the symbol $ means a user defined predicate. The following four instructions

makes a category cperson for some contexts

13 $cperson(onfoot1).

14 $cperson(onfoot2).

15 $cperson(bycar3).

16 $cperson(bycar4).

17 # the road category of contexts

18 $croad(r1).

19 $croad(r2).

20 $croad(r3).

21 $croad(r4).

22 p(ammar)@onfoot1.

23 p(ahmad)@bycar3.

24 p(amr)@bycar4.

25

26 # RULES

27 # if a person in context C comes onfoot then hes a pedistrian

28 ped(X)@C:-p(X)@C,method(onfoot)@C,$cperson(C).

29 # there is a route for a pedistrian if the road is not blocked.

30 route(X)@W:-ped(X)@C,status(notblocked)@W,$croad(W).

31 # a person is determined as a driver if he is in bycar context.

32 drive(X)@C:-p(X)@C,method(bycar)@C,$cperson(C).

33 # there is a route for the driver if the direction of the street matches the

direction the driver wants to go to. and if the street is not blocked

34 route(X)@C:-drive(X)@W,ordinal(Y)@W,oneway(Y,ANY)@C,$croad(C),status(notblocked)@C.

35 route(X)@C:-drive(X)@W,ordinal(Y)@W,oneway(ANY,Y)@C,$croad(C),status(notblocked)@C.

36 # a better route is determined if there is a low traffic in the street context.

37 better(X)@C:-route(X)@C,traffic(low)@C,drive(X)@W.

165

38 # a best route is determined if there is no traffic at all in the street context.

39 best(X)@C:-route(X)@C,traffic(no)@C,drive(X)@W.

40

41

42 # --- RESULTS --- #

43 $cperson(onfoot1).

44 $cperson(onfoot2).

45 $cperson(bycar3).

46 $cperson(bycar4).

47 $croad(r1).

48 $croad(r2).

49 $croad(r3).

50 $croad(r4).

51 p(ammar)@onfoot1.

52 p(ahmad)@bycar3.

53 p(amr)@bycar4.

54 **ped(ammar)@onfoot1.

55 **drive(ahmad)@bycar3.

56 **drive(amr)@bycar4.

57 **route(ammar)@r1.

58 **route(ammar)@r2.

59 **route(ammar)@r3.

60 **route(ammar)@r4.

61 **route(amr)@r3.

62 **route(ahmad)@r1.

63 **route(amr)@r2.

64 **better(ahmad)@r1.

65 **best(amr)@r3.

166

A.9 Money Exchanger

A.9.1 Goal

show how simple and compact it is to right a useful real context based program. Also,

to show how results get richer using the same rule only with richer contexts.

A.9.2 Overview

this program shows the currency of the country based on the location/context of the

person.

A.9.3 Program Details

context contains the dimensions ‘currency’, and ‘location’. They have the attributes

‘name of currency’ and ‘name of location’ respectively.

the program uses the predicates: person(X,Y) and percontext(X,Y,Z) where X is name

of the person, Y is the location of the person and Z is the currency used in that location.

A.9.4 Code

1 # CONTEXT

2 c1={currency:[euro],location:[france]}

3 c2={currency:[dollar],location:[usa]}

4 c3={currency:[cad],location:[canada]}

5

6 # FACTS:

7 person(ammar,canada).

8 person(zaki,france).

9

10 # RULES:

11 percontext(X,Y,Z)@C:-person(X,Y),location(Y)@C,currency(Z)@C.

12 # --- RESULTS ---#

13 person(ammar,canada).

14 person(zaki,france).

15 **percontext(ammar,canada,cad)@c3.

167

16 **percontext(zaki,france,euro)@c1.

A.10 The Translator

A.10.1 Goal

show the ability of contelog to use recursion, context operators, and user defined relations

in one program.

A.10.2 Overview

program has some translations in context. These context based translations can be both

translated to a common language through which a cross translation can be performed

A.10.3 Program Details

A.10.4 Code

1 # CONTEXT

2 cf1={meaning:[door,dar]}

3 cf2={meaning:[sky,asaman]}

4 ca1={meaning:[door,bab]}

5 ca2={meaning:[sky,samaa]}

6

7 # FACTS:

8

9 word(door).

10 word(sky).

11 $arabic(ca1).

12 $arabic(ca2).

13 $farsi(cf1).

14 $farsi(cf2).

15

16 # RULES:

17

168

18 english_arabic(X,Y)@C:-word(X),meaning(X,Y)@C,$arabic(C).

19 english_farsi(X,Y)@C:-word(X),meaning(X,Y)@C,$farsi(C).

20 arabic_farsi(Y,Z)@C+W:-english_arabic(X,Y)@C,english_farsi(X,Z)@W.

21 all_translations(X,Y)@C:-word(X),meaning(X,Y)@C.

22 across_translation(X,Y)@C+W:-all_translations(Z,X)@C,all_translations(Z,Y)@W,C!=W.

23

24 # --- RESULTS --- #

25 word(door).

26 word(sky).

27 $arabic(ca1).

28 $arabic(ca2).

29 $farsi(cf1).

30 $farsi(cf2).

31 **english_arabic(door,bab)@ca1.

32 **english_arabic(sky,samaa)@ca2.

33 **english_farsi(door,dar)@cf1.

34 **english_farsi(sky,asaman)@cf2.

35 **all_translations(door,dar)@cf1.

36 **all_translations(door,bab)@ca1.

37 **all_translations(sky,asaman)@cf2.

38 **all_translations(sky,samaa)@ca2.

39 **arabic_farsi(bab,dar)@ca1+cf1.

40 **arabic_farsi(samaa,asaman)@ca2+cf2.

41 **across_translation(dar,bab)@cf1+ca1.

42 **across_translation(bab,dar)@ca1+cf1.

43 **across_translation(asaman,samaa)@cf2+ca2.

44 **across_translation(samaa,asaman)@ca2+cf2.

A.11 Simple Magic Box Example

This example is used several times in the literature (Akman & Surav, 1996; Benerecetti et

al., 2000) to bring out the importance of contextual reasoning. For our work, this example

illustrates (1) practicality, (2) flexibility, (3) simplicity, and (4) expressive power. The exam-

ple describes a box that is divided from top into 2× 3 matrix in Figure A.9(b). It considers

169

only three faces of the box, namely the top, front, and side. Each face of the box has its

own view which is analogous to view points. Figure A.9(a) illustrates the actual view w.r.t.

each those faces of the box. The following list establishes some notation to describe the box:

• l: means left square

• c: means center square

• r: means right square

The top face is described as a matrix, where a1 means the top left corner of the top face

in means the bottom left corner, and so on. To understand the relative positioning of the

squares with respect to three faces, say with respect to b1, we see from the top it is b1, from

front it is l, and from the side it is r. The rule in the game is that the box contains only

two balls and someone can see the balls from any face in any square unless it is blocked by

the second ball as it is the case in the front side.The idea is to figure out the position of the

balls on the top view of the box by only knowing the position of the balls on the side and

the front faces.

In (Benerecetti et al., 2000), they have used a framework named MCS that is based on

propositional logic to model and solve this problem. Their program expresses all possible

situations of the balls and boxes as a list of rules where they define two rules for each square

in the face stating where would be the ball from the top view. That is, for the left square

of the side face, the rules define if the ball ‘exist’, and if the ball ‘does not exist’ cases. A

snippet of MCS example for the side face is shown below:

MCS Magic Box V(1) Example

1 (1)ist(side, l) ⇐⇒ ist(Top, “(a1 ∨ a2 ∨ a3)”)

2 (2)ist(side,¬l) ⇐⇒ ist(Top, “¬(a1 ∨ a2 ∨ a3)”)

3 (3)ist(side, r) ⇐⇒ ist(Top, “(b1 ∨ b2 ∨ b3)”)

4 (4)ist(side,¬r) ⇐⇒ ist(Top, “¬(b1 ∨ b2 ∨ b3)”)

where the balls are given as set of facts “{l, r}”. As the above set of rules considers “hard

code” all possible situations, they can deal with any number of balls within the same

170

1 2 3
a

b

l c r

l
r

top

side

front

side top front

a

b

1 2 3

l cr l r

(a)

(b)

Figure A.9: Illustration of the magic box example

structure/number of boxes. However, if the number of boxes changes, which we will examine

in the next example, the number of rules increases exponentially.

The goal of the example is to exercise the context to solve the puzzle by a contextual

reasoner. The contextual information in this example is the three faces (view points).

Namely, top, front, and side. Since top is inferred, only front and side are modeled in the

following description.

Context of Magic Box Example

1 side = {’l’:[’ball’], ’r’:[’ball’]}

2 front = {’l’:[’ball’]}

3 top = {}

Where the content of the context only describes where the ball is located, specifically in

which square. For instance, in front context, ‘l’ is a dimension that describes the left square

of the face, and its attribute is ‘ball’ which means it contains a ball. The other positions

are not mentioned because they contain no balls. Now that contexts have been defined, the

rules that defines each square of the top face is laid out below.

c-program for Magic Box Example

1 f1 : s(side).

171

2 r1: a1(X)@top← l(X)@C,l(X)@W,C!=W,s(C).

3 r2: a2(X)@top← l(X)@C,c(X)@W,C!=W,s(C).

4 r3: a3(X)@top← l(X)@C,r(X)@W,C!=W,s(C).

5 r4: b1(X)@top← r(X)@C,l(X)@W,C!=W,s(C).

6 r5: b2(X)@top← r(X)@C,c(X)@W,C!=W,s(C).

7 r6: b3(X)@top← r(X)@C,r(X)@W,C!=W,s(C).

Rule r1 is to infer whether or not there is a ball in the square a1 in the top face. It asserts

“if there is a ball in the left of the side face, and there is a ball in the left of the front

face, then ball is located in a1.” Other rules are similar but differ in the positions of the

squares. A rule is defined for each square in the top face, and so there is a total of six rules.

The inequality C! = W is to look at different faces. Also, the fact s(side) is to restrict the

context variable ‘C’ to only side face. This will ensure that the context variables in the

rules refer to desirable contexts. The result of executing this program shows the squares in

the top face at which the balls are, as shown below.

Results of Magic Box Example 2-balls

1 {s(side),a1(ball)@top,b1(ball)@top}

Here, we change the front context to front = {l : [ball], c : [ball]}, which means increasing

one more ball. The results in this case are as follows:

Results of Magic Box Example 3-balls

1 {s(side),a1(ball)@top,b1(ball)@top,b2(ball)@top}

A.11.1 Improved Magic Box Example

To show the scalability, and expressiveness of Contelog , let us consider this example

again, but we increase the number of boxes to twelve instead of six. This means increasing

the problem by a factor of ‘2’ as shown in Figure A.10, assuming that the rules of the game

remains the same.

First, if the same concept introduced in (Benerecetti et al., 2000) is used, the side face

will require eight rules to express it, as each square in the face requires two rules, i.e. the

172

1 2 3
a

b

l c r

l
r

top

side-b

front-bfront-t

side top front

a

b

1 2 3

l cr l r

(a)

(b)

side-t

Figure A.10: Illustration of the improved magic box example

assertion and the negations. The top left square of the side face is expressed with two rules

as follows,

MCS Magic Box V(2) Example

1 (1)ist(sidet, l) ⇐⇒ ist(Top, “(a1 ∨ a2 ∨ a3)”)

2 (2)ist(sidet,¬l) ⇐⇒ ist(Top, “¬(a1 ∨ a2 ∨ a3)”)

It is clear that the solution to the problem has also been increased by a factor of ‘2’, which

is intuitive as one of the propositional logic disadvantage is the lack of expressiveness, and

hence the rules are expressing all possible cases.

However, in Contelog only few changes in the code and context are required. First, we

added two more contexts:sideb, and frontb. This addition is because new layer in the box

has been added, and Contelog uses context to describe boxes. If we have three layers then

three types of context for each face should be defined. Also, some facts are added to restrict

the unification within the rule. For instance, the facts s(sidet), and s(sideb) are added so

that the predicate s(C) in the rules helps in restricting the substitution of the variable C

to the contexts, sidet and sideb. The context and code are shown below.

173

Context of Magic Box Version(2) Example

1 sidet = {r : [ball]}

2 sideb = {r : [ball]}

3 frontt = {l : [ball]}

4 frontb = {c : [ball]}

5 top = {}

c-program for Magic Box Version(2) Example

1 f1 : s(sidet).

2 f2 : s(sideb).

3 f3 : f(frontt).

4 f4 : f(frontb).

5 r1: a1(X)@top← l(X)@C, l(X)@W, C! = W, s(C), f(W). # s(C), and f(W) are added to

6 r2: a2(X)@top← l(X)@C, c(X)@W, C! = W, s(C), f(W). # restrict the contexts to be

7 r3: a3(X)@top← l(X)@C, r(X)@W, C! = W, s(C), f(W). # unified with the variable.

8 r4: b1(X)@top← (X)@C, l(X)@W, C! = W, s(C), f(W). #‘s’ only considers ‘side’

9 r5: b2(X)@top← r(X)@C, c(X)@W, C! = W, s(C), f(W). #contexts, while ‘f’

10 r6: b3(X)@top← r(X)@C, r(X)@W, C! = W, s(C), f(W). #considers ‘front’

The results become as follows.

Results of Magic Box Version(2) Example

1 {s(sidet), s(sideb), f(frontt)

2 , f(frontb), b1(ball)@top, b2(ball)@top}

A.12 Contelog-based Context-aware System: Tilt Detector

In this section we present context-aware system based on Contelog engine. As any

context-aware system, there are main components that were developed/assembled to ac-

complish the experiment. Those components are as follows (illustrated in Figure A.11):

(1) Sensor: this is the device responsible for monitoring the contextual changes in an

environment.

174

Figure A.11: Context-aware main components with Contelog

(2) Actuator: this unit is the electronic circuit that carries out the action in reality such

as open gate, start the alarm,... etc.

(3) Contelog Engine Instances: one or more instance of Contelog that infer the decision

according to the input context, and facts/rules of the system.

(4) Application (Control Unit): this unit orchestrates the actions/information among

sensors, actuators, and Contelog instances.

This context-aware system detects inclination in surfaces using a Mercury-based Sensors

to read the tilting, and sends it to the control unit to take the proper action. Those type

of systems are very critical in several applications (Fraden, 2004). Some of these are the

following.

• Roll Sensing: Inclination management using sensors provides a rollover or tip over

warning for applications like construction equipment, and lift vehicles that operate in

rugged terrains.

• Automotive uses: Sensing inclination has been used by Automobile manufacturers for

lighting controls (for example, trunk lid lights), ride control (horizontal and vertical

175

Figure A.12: Circuit for Tilt Detector

inclination), and anti-lock braking systems.

• Fall alarms: Work performed in confined space (such as a welder inside a tank) raises

special safety concerns. Such context-aware systems are used to sound an alarm if a

worker falls over.

• Bombs: A slight tilt can trigger a bomb. Context-aware systems are used to sense

and trigger safety action in the case of this inclination.

Although the system idea is simple, it has far more crucial applications and usages. This

motivated us to use Contelog a Formal-based, logic-based method to monitor such changes

in context and infer the recommended actions to take. The beauty of using Contelog is that

it is sound and complete, hence, the inferred results are formally verified.

A.12.1 Tilt Detector: The Electronic Circuit

We have implemented the circuit using Raspberry Pi Model B Microcomputer. The

complete circuit is provided in Figure A.12. The circuit consists of four main components

explained as follows:

• The Microcomputer: It represents the controller, the logic of the application and the

176

controlling is performed here. The application is programmed using python. Full

implementation of the controlling unit is provided in Appendix B.

• Alarm: A device that produces sound when given instruction to do so by controller.

Basically when the tilt sensor is tilted.

• LED: This is to indicate another danger, used to trouble shoot in case a signal is

coming from the sensor, but still the alarm does not go-off.

• Sensor: As explained earlier, Mercury-based tilt sensor to sense any inclination in

surfaces.

A.12.2 Tilt Detector: The System Logic and Sequence

The controller constantly reads signals from the sensor. In case, a tilt/change is read, it

communicates with the first Contelog instance, we refer to as, “status detector”. Based on

the “status detector” results, the controller communicate with the second Contelog instance,

that we call “decision maker”, in order to make the proper action. The communication

between the control unit, and the two instances of Contelog is through a RESTful API that

interfaces through web services. After receiving the results from the “decision maker”, there

are two actions that can be made, either set/release the alarm. Set to start the alarm, and

release to stop it. This whole process is depicted in Figure A.11.

A.12.3 Tilt Detector: Contelog Instance-1, Status Detector

This program takes context from the controller unit as an input-context. As it receives

the context, it is triggered to run evaluation and infer results. Those results are communi-

cated back to the controller. This c-program is given below. The goal of this program is to

recommend the action to be taken on the alarm. However, the controller won’t take this

action until it verifies the status of the alarm from Contelog Instance-2.

Basically, Status Detector consists of four contexts {c1, c2, c3, c4} all having the same

context schema. Each context defines a certain setting and the recommended action in

the case of this setting. The context consists of two dimensions “position” and “alarm”.

Position dimension can be “tilt”, “notilt”, “nuetral” which are the three settings of the

sensor. Tilt means it is inclined, no tilt means horizontal, nuetral means it is stable for a

177

long time. The context-aware system will treat nuetral and notilt with the same reaction.

The alarm dimension can be “set” to recommend for setting the alarm off or “released” to

turn the alarm off. For instance, if a sensor is in context “c1” (defined below), then it is on

an inclined surface, and the alarm needs to be on. The context “input” is the input to the

status detector Contelog program. It changes/re-entered by the controller, and every time

it does, the program re-evaluate the context against the facts and rules.

The fact is sensor(1)@input which links the sensor name (in case we have more than

one sensor) to the input context related to it. In our case we have one input context, and

one sensor.

The program has one rule that infers the recommended actions “recommend(X,Y)@C”

based on the predicates:

• sensor(S)@C: unifies with the fact sensor(1)@input.

• position(X)@C: unifies with the position of the input context.

• position(X)@W: unifies with the position of program contexts (c1-c4).

• alarm(Y)@W: recommends the action based on the contexts from (c1-c4).

1 # CONTEXT

2 c1={position:[tilt],alarm:[set]}

3 c2={position:[notilt],alarm:[set]}

4 c3={position:[notilt],alarm:[released]}

5 c4={position:[nuetral],alarm:[released]}

6 input={position:[tilt],alarm:[set]}

7 # Facts to link the sensor to the input context

8 sensor(1)@input.

9 # Rules

10 recommend(X,Y)@C:-sensor(S)@C,position(X)@C, position(X)@W,alarm(Y)@W.

A.12.4 Tilt Detector: Contelog Instance-2, Decision Maker

This program takes context from the controller unit as an input-context. As it receives

the context, it is triggered to run evaluation and infer results. Those results are communi-

cated back to the controller. The goal of this program is to direct the action to be taken

178

after confirming the status of the alarm. That is , if it is “ON” and the action to take is

“ON”, this c-program won’t take any action to avoid wasting resources. However, it only

takes action if the action to be taken is different than the status of the alarm.

Basically, Decision Maker program consists of three contexts all having the same context

schema. Each context defines a certain setting and the case, and action to be taken. Status

dimension can be “set” or “released” which indicates the status of alarm within this context.

The “action” dimension can also be “set” or “released”. Finally, the case dimension can be

“tilt”, “notilt”, or “nuetral” which indicates the context of the sensor. The context “input”

is the input to the decision maker Contelog program as an input from the status detector

Contelog program through the control unit. It changes/re-entered by the controller, and

every time it does, the program re-evaluates the context against the facts and rules.

The fact is sensor(1)@input which links the sensor name (in case we have more than

one sensor) to the input context related to it. In our case we have one input context, and

one sensor.

The program has one rule that infers the action to take “take_action(X)@W” based on

the predicates

• sensor(S)@C: unifies with the fact sensor(1)@input.

• recommended(X,Y)@C: unifies with the input context coming from the controller

passed by “status detector” Contelog program.

• status(Y)@W: unifies with the position of program contexts (release1,release2,setoff).

• action(E)@W: unifies with the action dimension in the contexts (release1,release2,setoff).

• case(Y)@W: unifies with the case dimension in contexts (release1,release2,setoff).

1 # CONTEXT

2 release1={status:[set],action:[release],case:[nottilt]}

3 release2={status:[set],action:[release],case:[nuetral]}

4 setoff={status:[released],action:[set],case:[tilt]}

5 input={recommend:[tilt,released]}

6 # Facts to link the sensor to the input context

7 sensor(1)@input.

179

8 # Rules

9 take_action(X)@W:-sensor(S)@C,recommend(X,Y)@C,status(Y)@W,action(E)@W,case(X)@W.

180

Appendix B

Contelog Tilt Detector

Implementation

In this appendix, we explain the controller implementation for tilt detector application

that was developed using Contelog . The program, context and hardware components are

verbosely explained in Section 7.4.2.

B.1 The Controller

1 # those libraries are the important libraries to communicate with Raspberry Pi 3

hardware.

2 import RPi.GPIO as GPIO

3 import time

4 import requests

5 import json

6 from gpiozero import Button

7

8

9 def contact_contelog(alarm_status,program_name,input_context):

10 #defining the url to conect to Contelog endpoint

11 api_url= "https://e8c6-142-119-80-31.ngrok.io/contelogapp/system/api/"

12 # set the type of encoding

13 headers = {’content-type’: ’application/json’}

181

14 # this information is the login info to use Contelog endpoint

15 # the program_name variable is the a program saved in the database of

Contelog, it will be retrieved upon the reception of this request. The

variable input_context is the input information sensed from the sensor and

passed to Contelog.

16 data = {’data’:{’username’: ’tilt_app’, ’password’: ’Abc@1234’, ’program’:

program_name, ’context’:input_context}}

17 # those parameters are used to allow the api to be used in this session - it

is only for authentication purposes.

18 params = {’sessionKey’: ’9ebbd0b25760557393a43064a92bae539d962103’, ’format’:

’json’, ’platformId’: 1}

19

20 input_data= {"code":"anycode.","context": "\n input={action:[" + action +

"],alarm:[" + btn_status + "]}", "runoption":"Naive Method",

"name_of_file":"ammar_example"}

21

22 response = requests.post(api_url, data=json.dumps(data), headers=headers)

23 print(response)

24

25 return {’success’: False, ’errorMsg’: "ERROR", ’result’:

str(response.content)}

26

27

28 def setAlarmStatus(newstatus):

29 """ This function to set the alarm status """

30 global ALARM_STATUS

31 ALARM_STATUS= newstatus

32 return ALARM_STATUS

33

34 def getAlarmStatus():

35 """ This function to get the alarm status """

36 return ALARM_STATUS

37

38 def pushalarm_func(channel):

182

39 """ this function is the main function that runs the infinite while loop that

keeps monitoring the sensor and orchestrate between the two Contelog

systems """

40 ALARM_STATUS= getAlarmStatus()

41 print(ALARM_STATUS)

42

43 if ALARM_STATUS == "release":

44 setAlarmStatus("set")

45 else:

46 setAlarmStatus("release")

47 triggerPIN = 21

48 tiltPIN=26

49 togglePIN = 4

50 setAlarmStatus("release")

51 # the following instructions are to set the pins on the Raspberry Pi 3.

52 GPIO.setmode(GPIO.BCM)

53 GPIO.setup(triggerPIN,GPIO.OUT)

54 GPIO.setup(tiltPIN,GPIO.IN)

55 GPIO.setup(togglePIN,GPIO.IN,pull_up_down=GPIO.PUD_UP)

56 # this is to control the response time and the monitoring time of the

sensor

57 GPIO.add_event_detect(togglePIN,GPIO.RISING,

58 callback=pushalarm_func,bouncetime=300)

59 print(" set ")

60 buzzer = GPIO.PWM(triggerPIN,1000)

61 while True:

62 # this is to check if signal sent to from the mercury sensor is on or off.

63 i = GPIO.input(togglePIN)

64 if GPIO.input(tiltPIN):

65 GPIO.output(triggerPIN,False)

66 buzzer.stop()

67 print("No Tilt Detected ")

68 while GPIO.input(tiltPIN):

69 # this is to keep monitoring the signal

70 time.sleep(0.2)

183

71 else:

72 GPIO.output(triggerPIN,True)

73 buzzer.start(10)

74 print("ALERT ALERT ALERT")

75 print("TILT DETECTED BE CAREFUL!")

76 print("ALARM status is ", ALARM_STATUS)

77 # send the request to the first system

78 action = contact_contelog(ALARM_STATUS, "status detector", "tilt")

79 # send the request to the second system according to the first system

80 decision = contact_contelog(action, "decision maker", "tilt")

81 print(decision)

82 setAlarmStatus(decision)

184

References

Abiteboul, S., Hull, R., & Vianu, V. (1995a). Foundations of databases: the logical level.

Addison-Wesley Longman Publishing Co., Inc.

Abiteboul, S., Hull, R., & Vianu, V. (1995b). Foundations of databases: the logical level.

Addison-Wesley Longman Publishing Co., Inc.

Akman, V., & Surav, M. (1996). Steps toward formalizing context. AI magazine, 17 (3),

55.

Akman, V., & Surav, M. (1997). The use of situation theory in context modeling. Compu-

tational Intelligence: An International Journal, 13 (3), 427–438.

Alagar, V., Mohammad, M., Wan, K., & Hnaide, S. A. (2014a). A framework for developing

context-aware systems. EAI Endorsed Transactions on Context-aware Systems and

Applications, 1 (1).

Alagar, V., Mohammad, M., Wan, K., & Hnaide, S. A. (2014b, 9). A framework for devel-

oping context-aware systems. EAI Endorsed Transactions on Context-aware Systems

and Applications, 14 (1). doi: 10.4108/casa.1.1.e2

Alagar, V., & Wan, K. (2008, October). Context based enforcement of authorization for

privacy and security. In Proc. of the first ifip wg 11.6 working conference on policies

& research in identity management (idman 2007), lncs-ifip publications (Vol. 261,

p. 25-38).

Alsaig, A. (2017). Contelog engine and documentation: A prototype environment for reason-

ing with contexts. http://www.contelog.com. Retrieved from http://www.contelog

.com

Alsaig, A., Alagar, V., & Nematollaah, S. (2020). Contelog: A declarative language for

modeling and reasoning with contextual knowledge. Knowledge-Based Systems, 207 ,

185

http://www.contelog.com
http://www.contelog.com

106403. doi: https://doi.org/10.1016/j.knosys.2020.106403

Alsaig, A., Alagar, V., & Shiri, N. (2019a). Declarative approach to model checking for

context-aware applications. In P. C. Vinh & A. Rakib (Eds.), Context-aware systems

and applications, and nature of computation and communication. Cham: Springer

International Publishing.

Alsaig, A., Alagar, V., & Shiri, N. (2019b). Formal context representation and calculus

for context-aware computing. In P. Cong Vinh & V. Alagar (Eds.), Context-aware

systems and applications, and nature of computation and communication (pp. 3–13).

Cham: Springer International Publishing.

Alsaig, A., Mohammad, M., & Alsaig, A. (2015, 04). Enhancing wearable systems by

introducing context-awareness and fca. In (p. 264-271). doi: 10.1007/978-3-319-29236

-6_26

Alvaro, P., Marczak, W., Conway, N., Hellerstein, J., Maier, D., & Sears, R. (2011).

Dedalus: Datalog in time and space. Datalog Reloaded, 262–281.

Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., & Terracina, G. (2010). The

disjunctive datalog system dlv. In International datalog 2.0 workshop (pp. 282–301).

Apt, K., & Emden, M. (1982, 07). Contributions to the theory of logic programming. J.

ACM , 29 , 841-862. doi: 10.1145/322326.322339

Attardi, G., & Simi, M. (1995). A formalization of viewpoints. Fundamenta informaticae,

23 (2, 3, 4), 149–173.

Barwise, J. (1989). The situation in logic (Vol. 17). Center for the Study of Language

(CSLI).

Bazire, M., & Brézillon, P. (2005). Understanding context before using it. In International

and interdisciplinary conference on modeling and using context (pp. 29–40).

Benerecetti, M., Bouquet, P., & Ghidini, C. (2000). Contextual reasoning distilled. Journal

of Theoretical and Ex-perimental Artificial Intelligence, I2 (3), 279-305.

Bishop, B., & Fischer, F. (2008). Iris-integrated rule inference system. In International

workshop on advancing reasoning on the web: Scalability and commonsense (area

2008).

Borgo, S., Cesta, A., Orlandini, A., & Umbrico, A. (2019). Knowledge-based adaptive

agents for manufacturing domains. Engineering with Computers, 35 (3), 755–779.

186

Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., & Stuckenschmidt, H. (2004).

Contextualizing ontologies. Web Semantics: Science, Services and Agents on the

World Wide Web, 1 (4), 325 - 343. Retrieved from //www.sciencedirect.com/

science/article/pii/S1570826804000125 (International Semantic Web Confer-

ence 2003) doi: http://dx.doi.org/10.1016/j.websem.2004.07.001

Brass, S., & Stephan, H. (2017). Experiences with some benchmarks for deductive databases

and implementations of bottom-up evaluation. arXiv preprint arXiv:1701.00627 .

Brewka, G., & Eiter, T. (2007). Equilibria in heterogeneous nonmonotonic multi-context

systems. In Aaai (Vol. 7, pp. 385–390).

Brézillon, P. (1996). Context in human-machine problem solving: A survey. LIP, 6 (1996),

029.

Brézillon, P. (1999). Context in problem solving: a survey. The Knowledge Engineering

Review, 14 (1), 47–80.

Brezillon, P., & Abu-Hakima, S. (1995). Using knowledge in its context: Report on the

ijcai-93 workshop. AI magazine, 16 (1), 87.

Brèzillon, P., & Gonzalez, A. I. (2014). Context in computing: A cross-disciplinary approach

to modeling real world. Springer-Verlag, Berlin.

Buchanan, B. G., Shortliffe, E. H., et al. (1984). Rule-based expert systems (Vol. 3).

Addison-wesley Reading, MA.

Buvač, S., & Mason, I. A. (1993). Propositional logic of context. In Aaai (pp. 412–419).

Carminati, B., Ferrari, E., & Perego, A. (2006). Rule-based access control for social

networks. In On the move to meaningful internet systems 2006: Meersman, robert

and tari, zahir and herrero, pilar (eds.) (pp. 1734–1744). Berlin, Heidelberg: Springer

Verlag. Retrieved from http://dx.doi.org/10.1007/11915072_80 doi: 10.1007/

11915072_80

Carnap, R. (1947). Meaning and necessity. Chicago University Press, Enlarged Edition,

1956.

Ceri, S., Gottlob, G., & Tanca, L. (1989). What you always wanted to know about datalog

(and never dared to ask). IEEE Transactions on Knowledge and Data Engineering,

1 (1), 146–166.

Chen, Z., Lin, F., Liu, H., Liu, Y., Ma, W.-Y., & Wenyin, L. (2002, Sep 01). User

187

//www.sciencedirect.com/science/article/pii/S1570826804000125
//www.sciencedirect.com/science/article/pii/S1570826804000125
http://dx.doi.org/10.1007/11915072_80

intention modeling in web applications using data mining. World Wide Web, 5 (3),

181–191. Retrieved from https://doi.org/10.1023/A:1020980528899 doi: 10

.1023/A:1020980528899

Clancey, W. J. (1983). The epistemology of a rule-based expert system—a framework for

explanation. Artificial intelligence, 20 (3), 215–251.

Clark, H. H., & Carlson, T. B. (1981). Context for comprehension. In Attention and

performance (pp. 313–330). Lawrence Erlbaum Associates, Hillside, NJ.

Costa, H., Furtado, B., Pires, D., Macedo, L., & Cardoso, A. (2012). Context and intention-

awareness in pois recommender systems. In 6th acm conf. on recommender systems,

4th workshop on context-aware recommender systems, recsys (Vol. 12, p. 5).

Decker, S., Erdmann, M., Fensel, D., & Studer, R. (1999). Ontobroker: Ontology based

access to distributed and semi-structured information. In Database semantics (pp.

351–369). Springer.

Dey, A. K. (2001). Understanding and using context. Personal and ubiquitous computing,

5 (1), 4–7.

Dey, A. K., Abowd, G. D., & Salber, D. (2000). A context-based infrastructure for smart en-

vironments. In Managing interactions in smart environments (pp. 114–128). Springer.

Dey, A. K., Abowd, G. D., & Salber, D. (2001). A conceptual framework and a toolkit

for supporting the rapid prototyping of context-aware applications. Human-Computer

Interaction, 16 , 97-161.

Dowley, D., Wall, R., & Peters, S. (1981). Introduction to montague semantics. Reidel

Publishing Company.

Ejigu, D., Scuturici, M., & Brunie, L. (2007). An ontology-based approach to context

modeling and reasoning in pervasive computing. In Pervasive computing and com-

munications workshops, 2007. percom workshops’ 07. fifth annual ieee international

conference on (pp. 14–19).

et al., C. B. (2009). A survey of context modelling and reasoning techniques. Pervasive

and Mobile Computing.

Ferreira, M., & Rocha, R. (2005). Coupling optyap with a database system. In Iadis ac.

for the Study of Language, C., for the Study of Language, I. U. C., Information, & Barwise,

J. (1989). Situations and small worlds.

188

https://doi.org/10.1023/A:1020980528899

Fraden, J. (2004). Handbook of modern sensors: physics, designs, and applications (Vol. 3).

Springer.

Gao, Q., & Dong, A. (2017). A conditional context-awareness ontology based personalized

recommendation approach for e-reading. In Robotic computing (irc), ieee international

conference on (pp. 365–370).

García, K., & Brézillon, P. (2015). A contextual model of turns for group work. In

International and interdisciplinary conference on modeling and using context (pp.

243–256).

García, K., & Brézillon, P. (2017). Contextual graphs for modeling group interaction.

In International and interdisciplinary conference on modeling and using context (pp.

151–164).

Giunchiglia, F. (1993). Contextual reasoning. Epistemologia, special issue on I Linguaggi

e le Macchine, 16 , 345–364.

Grätzer, S. (1971). Lattice theory: First concepts and distributive lattices. W. H. Freeman,

San Francisco.

Grau, B. C., Horrocks, I., Kaminski, M., Kostylev, E. V., & Motik, B. (2020). Limit datalog:

A declarative query language for data analysis. ACM SIGMOD Record, 48 (4), 6–17.

Greco, S., & Molinaro, C. (2015).

Gu, T., Wang, X. H., Pung, H. K., & Zhang, D. Q. (2004). An ontology-based context

model in intelligent environments. In Proceedings of communication networks and

distributed systems modeling and simulation conference (Vol. 2004, pp. 270–275).

Guarino, N., et al. (1998). Formal ontology and information systems. In Proceedings of fois

(Vol. 98, pp. 81–97).

Guha, R. V. (1991). Contexts: a formalization and some applications (Vol. 101). Stanford

University Stanford, CA.

Halpin, T. (1998). Object-role modeling (orm/niam). In Handbook on architectures of

information systems (pp. 81–103). Springer.

Held, A., Buchholz, S., & Schill, A. (2002a). Modeling of context information for pervasive

computing applications. Proceedings of SCI , 167–180.

Held, A., Buchholz, S., & Schill, A. (2002b). Modeling of context information for pervasive

computing applications. Proceedings of SCI , 167–180.

189

Held, A., Buchholz, S., & Schill, A. (2002c). Modeling of context information for pervasive

computing applications. Proceedings of SCI , 167–180.

Henricksen, K., & Indulska, J. (2006). Developing context-aware pervasive computing

applications: Models and approach. Pervasive and mobile computing, 2 (1), 37–64.

Interdisciplinary, & Series, I. C. (1997-). Modeling and using context. Lecture Notes in

Artificial Intelligence (LNAI), Springer.

Johansson, N., & Löfgren, A. (2009). Designing for extensibility: An action research study

of maximizing extensibility by means of design principles (B.S. thesis).

Jon, B., & John, P. (1983). Situation and attitudes. Cambridge, MA: Mit press.

Kass, A., Leake, D., & Owens, C. (1986). Swale: A program that explains. Explanation

patterns: Understanding mechanically and creatively, 1 (1), 232–254.

Kinneavy, J. L. (1971). A theory of discourse: The aims of discourse. ERIC.

Kintsch, W., & van Dijk, T. (1978). Cognitive psychology and discourse: Recalling and

summarizing stories. Current Trends in Text Linguistics, de Gruyter, Berlin, 61–80.

Knappmeyer, M., Kiani, S. L., Frà, C., Moltchanov, B., & Baker, N. (2010). Contextml:

A light-weight context representation and context management schema. In Wireless

pervasive computing (iswpc), 2010 5th ieee international symposium on (pp. 367–372).

Kofod-Petersen, A., & Mikalsen, M. (2005). Context: Representation and reasoning. Special

issue of the Revue d’Intelligence Artificielle on" Applying Context-Management.

Korkea-Aho, M. (2000). Context-aware applications survey. Department of Computer

Science, Helsinki University of Technology.

Lamperti, G., & Zanella, M. (2003). Rule-based diagnosis. In Diagnosis of active systems:

Principles and techniques (pp. 193–233). Dordrecht: Springer Netherlands.

Lamport, L. (1980). Sometime is sometimes not never: On the temporal logic of programs.

In Proceedings of the 7th acm sigplan-sigact symposium on principles of programming

languages (pp. 174–185).

Leake, D. B. (2014). Evaluating explanations: A content theory. Psychology Press.

Lee, K.-C., Kim, J.-H., Lee, J.-H., & Lee, K.-M. (2007). Implementation of ontology

based context-awareness framework for ubiquitous environment. In Multimedia and

ubiquitous engineering, 2007. mue’07. international conference on (pp. 278–282).

Liang, S., Fodor, P., Wan, H., & Kifer, M. (2009). Openrulebench: An analysis of the

190

performance of rule engines. In Proceedings of the 18th international conference on

world wide web (pp. 601–610).

Liu, R., Zhang, X., Webb, J., & Li, S. (2015). Context-specific intention awareness through

web query in robotic caregiving. In Robotics and automation (icra), 2015 ieee inter-

national conference on (pp. 1962–1967).

Lloyd, J. W. (1987). Foundations of logic programming. In Symbolic computation.

Loyola, W. (2007). Comparison of approaches toward formalising context: Implementation

characteristics and capacities. Electronic Journal of Knowledge Management, 5 (2),

203–214.

McCarthy, J. (1963). Situations, actions, and causal laws (Tech. Rep.). DTIC Document.

McCarthy, J. (1993). Notes on formalizing context (Tech. Rep.). Stanford University.

McCarthy, J., & Buvac, S. (1997). Formalizing context (expanded notes).

Mechkour, S. (2007). Overview of situation theory and its application in modeling context.

In Seminar paper.

Merton, R. K. (1973). The sociology of science: Theoretical and empirical investigations.

University of Chicago press.

Moffett, J. (1968). Teaching the universe of discourse. ERIC.

Moldovan, D., Clark, C., & Harabagiu, S. (2005). Temporal context representation and

reasoning. In International joint conference on artificial intelligence (Vol. 19, p. 1099).

Mooney, R., & DeJong, G. (1985). Learning schemata for natural language processing.

Urbana, 51 , 61801.

Mueller, E. T. (2014). Commonsense reasoning: an event calculus based approach. Morgan

Kaufmann.

Norvig, P. (1983). Frame activated inferences in a story understanding program. In Ijcai

(pp. 624–626).

Orsi, G., & Tanca, L. (2011). Context modelling and context-aware querying. In Datalog

reloaded (pp. 225–244). Springer.

Ostroff, J. S. (1989). Temporal logic for real-time systems (Vol. 40). Research Studies Press

Advanced Software Development Series.

Perttunen, M., Riekki, J., & Lassila, O. (2009). Context representation and reasoning in

pervasive computing: a review. International Journal of Multimedia and Ubiquitous

191

Engineering, 4 (4).

Reddy, M., & Gupta, A. (1995). Context interchange: a lattice based approach. Knowledge-

Based Systems, 8 (1), 5–13.

Riguzzi, F. (2013). Mcintyre: A monte carlo system for probabilistic logic programming.

Fundamenta Informaticae, 124 (4), 521–541.

R.Karni, & A.Gal-Tzur. (1990). Paradigms for knowledge-based systems in industrial

engineering. Journal of Artificial Intelligence in Engineering, 5 (3), 126-141.

Sagonas, K., Swift, T., & Warren, D. (1999, 02). Xsb as an efficient deductive database

engine. ACM SIGMOD Record, 23 . doi: 10.1145/191843.191927

Sarmah, A. K., Hazarika, S. M., & Sinha, S. K. (2015). Formal concept analysis: current

trends and directions. Artificial Intelligence Review, 44 (1), 47–86.

Sato, M., Sakurai, T., & Kameyama, Y. (2001). A simply typed context calculus with

first-class environments. In Proceedings of flops’01: the 5th international symposium

on functional and logic programming (pp. 359–374).

S.C.Feng, W.Z.Bernstein, T.Hedberg, J., , & Feeney, A. (2017). Towards knowledge manage-

ment for smart manufacturing. ASME Journal of Computingand Information Science

in Engineering, 17 (3), 1-40.

Schilit, B., Adams, N., & Want, R. (1994). Context-aware computing applications. In

Mobile computing systems and applications, 1994. wmcsa 1994. first workshop on

(pp. 85–90).

Seligman, J., & Moss, L. S. (1997). Situation theory. Handbook of logic and language,

239–309.

Serafini, L., & Bouquet, P. (2004). Comparing formal theories of context in ai. Artificial

intelligence, 155 (1), 41–67.

Shanahan, M. (1999a). The event calculus explained. In M. J. Wooldridge & M. Veloso

(Eds.), Artificial intelligence today: Recent trends and developments (pp. 409–430).

Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://doi.org/

10.1007/3-540-48317-9_17 doi: 10.1007/3-540-48317-9_17

Shanahan, M. (1999b). The event calculus explained. In Artificial intelligence today (pp.

409–430). Springer.

Shehzad, A., Ngo, H. Q., Pham, K. A., & Lee, S. (2004). Formal modeling in context aware

192

https://doi.org/10.1007/3-540-48317-9_17
https://doi.org/10.1007/3-540-48317-9_17

systems. In Proceedings of the first international workshop on modeling and retrieval

of context.

Shoham, Y. (1991). Varieties of context. Artificial intelligence and mathematical theory of

computation: papers in honor of John McCarthy, 393–408.

Sordo, M., Tokachichu, P., Vitale, C. J., Maviglia, S. M., & Rocha, R. A. (2017). Mod-

eling contextual knowledge for clinical decision support. In Amia annual symposium

proceedings (published 2018) (p. 1617-1624).

Strang, T., & Linnhoff-Popien, C. (2004). A context modeling survey. In Workshop pro-

ceedings.

Strang, T., Linnhoff-Popien, C., & Frank, K. (2003). Applications of a context ontology

language. Proceedings of SoftCOM 2003 , 14–18.

Tekle, K. T., & Liu, Y. A. (2010). Precise complexity analysis for efficient datalog queries.

In Proceedings of the 12th international acm sigplan symposium on principles and

practice of declarative programming (pp. 35–44).

Tekle, K. T., & Liu, Y. A. (2011). More efficient datalog queries: subsumptive tabling

beats magic sets. In Proceedings of the 2011 acm sigmod international conference on

management of data (pp. 661–672).

Ullman, J. D. (1989). Bottom-up beats top-down for datalog. In Proceedings of the eighth

acm sigact-sigmod-sigart symposium on principles of database systems (pp. 140–149).

Ullman, J. D. (1990). Principles of database and knowledge-base systems. USA: W. H.

Freeman & Co.

Umbrico, A., Cesta, A., Cortellessa, G., & Orlandini, A. (2020). A holistic approach

to behavior adaptation for socially assistive robots. International Journal of Social

Robotics, 1–21.

Van Emden, M. H., & Kowalski, R. A. (1976, oct). The semantics of predicate logic as a

programming language. J. ACM , 23 (4), 733–742. Retrieved from https://doi.org/

10.1145/321978.321991 doi: 10.1145/321978.321991

Wan, K. (2006). Lucx: Lucid enriched with context (Unpublished doctoral dissertation).

Concordia University.

Wan, K., Alagar, V., & Pacquet, J. (2005). An architecture for developing context-aware

systems. In Proceedings of 2nd international workshop on modeling and retrieval of

193

https://doi.org/10.1145/321978.321991
https://doi.org/10.1145/321978.321991

context (marc2005) (p. 48-62). LNCS, Springer-Verlag, Vol. 3946.

Wan, K., Alagar, V., & Paquet, J. (2005). A context theory for intensional programming. In

Workshop on context representation and reasoning (crr05), paris, france.(july 2005).

Wang, X. H., Zhang, D. Q., Gu, T., & Pung, H. K. (2004a). Ontology based context model-

ing and reasoning using owl. In Pervasive computing and communications workshops,

2004. proceedings of the second ieee annual conference on (pp. 18–22).

Wang, X. H., Zhang, D. Q., Gu, T., & Pung, H. K. (2004b). Ontology based context model-

ing and reasoning using owl. In Pervasive computing and communications workshops,

2004. proceedings of the second ieee annual conference on (pp. 18–22).

Weyhrauch, R. (1980). Prolegomena to a theory of mechanized formal reasoning. Journal

of Artificial Intelligence, 13 (1), 133-176.

Winograd, T. (2001). Architecture for context. Human-Computer Interaction, 16 , 401-419.

194

