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Abstract

Pediatric Bone Age Analysis and Brain Disease Prediction for Computer-Aided Diagnosis

Ibrahim Ali Salim, PhD

Concordia University, 2022

Recent advances in 3D scanning technology have led to a widespread use of 3D shapes in a

multitude of fields, including computer vision and medical imaging. These shapes are, however,

often contaminated by noise, which needs to be removed or attenuated in order to ensure high-

quality 3D shapes for subsequent use in downstream tasks. On the other hand, the availability

of large-scale pediatric hand radiographs and brain imaging benchmarks has sparked a surge of

interest in designing efficient techniques for bone age assessment and brain disease prediction,

which are fundamental problems in computer-aided diagnosis. Bone age is an effective metric

for assessing the skeletal and biological maturity of children, while understanding how the brain

develops is crucial for designing prediction models for the classification of brain disorders.

In this thesis, we present a feature-preserving framework for carpal bone surface denoising in the

graph signal processing setting. The proposed denoising framework is formulated as a constrained

optimization problem with an objective function comprised of a fidelity term specified by a noise

model and a regularization term associated with data prior. We show through experimental results

that our approach can remove noise effectively while preserving the nonlinear features of surfaces,

such as curved surface regions and fine details. Moreover, recovering high quality surfaces from

noisy carpal bone surfaces is of paramount importance to the diagnosis of wrist pathologies, such

as arthritis and carpal tunnel syndrome. We also introduce a deep learning approach to pediatric

bone age assessment using instance segmentation and ridge regression. This approach is com-

prised of two intertwined stages. In the first stage, we employ an image annotation and instance

segmentation model to extract and separate different regions of interests in an image. In the sec-

ond stage, we leverage the power of transfer learning by designing a deep neural network with
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a ridge regression output layer. For the classification of brain disorders, we propose an aggrega-

tor normalization graph convolutional network by exploiting aggregation in graph sampling, skip

connections and identity mapping. We also integrate both imaging and non-imaging features into

the graph nodes and edges, respectively, with the aim of augmenting predictive capabilities. We

validate our proposed approaches through extensive experiments on various benchmark datasets,

demonstrating competitive performance in comparison with strong baseline methods.
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1
Introduction

In this chapter, we start with the motivation behind this work, followed by the problem statement,

objectives of the study, and literature review. Then, we present the basic preliminaries and back-

ground material, which include a brief overview of triangular mesh representation, regression ana-

lysis, convolutional neural networks, medical image segmentation, graph convolutional networks,

and finally we conclude with the thesis contributions.

1.1 Framework and Motivation

As brands and content makers create more augmented reality experiences, the demand for tools

to create digital 3D content has been growing at a faster pace over the past few years. With the

proliferation of 3D scanners helping create 3D models, which are usually represented as triangle

meshes, there is a rising need for robust mesh denoising techniques to remove inevitable noise in

the measurements while preserving important surface features. Even with high-fidelity 3D scan-

ners, the acquired 3D models are usually contaminated by noise, and therefore a reliable mesh

denoising technique is often required. Motivated by the good performance of similarity-based im-

age denoising methods [1], we design a geometric feature-preserving framework for carpal bone

surface denoising using graph signal processing by leveraging a data-adaptive kernel similarity

matrix in conjunction with a matrix balancing procedure.

On the other hand, bone age assessment using radiographic images is commonly employed in

the diagnosis, treatment, monitoring of endocrine, genetic, and growth disorders in children. Using

the Greulich-Pyleand and Tanner-Whitehouse [2, 3], physicians can manually assess radiographs
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of hand bones. However, manual bone age assessment methods are time-consuming and rely

heavily on radiologists’ domain knowledge and experience. Recent bone age assessment methods

employ deep neural networks to learn features from hand radiographs in an end-to-end fashion,

achieving superior performance with substantially improved results in comparison with traditional

approaches.

Understanding how the brain develops is essential for designing prediction models with the goal

of classifying developmental disorders and degenerative neurological disorders characterized by

impairments in language, learning, behavior, and physical parts of life. These disorders affect

the nervous system and often occur when nerve cells in the brain or peripheral nervous system

lose function over time and ultimately die. By exploring the brain networks’ connectivity, which

represents the relationship between the brain regions of interest, we can better understand the

pathological underpinnings of neurological disorders using graph representation learning in an

effort to classify diseases automatically without manual feature extraction and selection [4].

1.2 Problem Statement

In this thesis, we briefly describe the carpal bone surface denoising, pediatric bone age assessment,

and brain disorder prediction problems.

1.2.1 Carpal Bone Surface Denoising

During the acquisition stage, 3D shapes are often contaminated by noise. The main problem in 3D

shape denoising is how we can distinguish between noise and features, especially sharp surface

features. The noise-induced degradation model is usually represented as v = u + η, where v is

the observed graph signal, u is the original, noise-free graph signal, and η is a random noise. The

noise process is often assumed to be Gaussian distributed with zero mean and same variance. The

goal of surface denoising is to recover the noise-free graph signal u from the observed graph signal

v with some a priori knowledge about the distribution of the noise process.

1.2.2 Pediatric Bone Age Assessment

Bone age assessment is vital for the diagnosis and treatment of children with suspected growth

disorders. Traditional bone age assessment methods rely heavily on expert radiologists and often

suffer from significant inter- and intra-observer variability. The recent development of convolu-

tional neural networks and their variants has provided a powerful tool to make accurate prediction

of bone age with the aim of evaluating the biological maturity of children. Bone age assessment is
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typically achieved by extracting regions-of-interest features from pediatric hand images, followed

by employing a deep learning model to estimate the bone age from these radiographs.

1.2.3 Brain Disorder Prediction

Graphs are a prevalent data representation in many real-world applications, including social net-

works, biological protein-protein interaction networks, molecular graph structures, and brain con-

nectivity networks. The human brain can be seen as an graph, where each node in the graph rep-

resents a region of interest with an associated node features vector consisting of imaging data, and

each edge represents a pairwise similarity between two adjacent nodes with an edge feature vector

comprised of non-imaging data. While graph convolution based methods have become ubiquitous

in graph representation learning, their application to disease prediction problems has not been suf-

ficiently explored, especially in the prediction of neurodevelopmental and neurodegenerative brain

disorders

Given the labels of a subset of the graph nodes, the goal of semi-supervised learning for brain

disease or disorder prediction is to predict the unknown labels of the remaining nodes. For a

binary classification problem, the label of each node i in the labelled set Dl can be represented

as a C-dimensional one-hot vector yi ∈ {0, 1}C , where C is the number of classes with 0 and 1

representing “healthy” and “diseased” status of the subjects, respectively.

1.3 Objectives

In this thesis, we aim to achieve the following objectives:

• We present a geometric framework for carpal bone surface denoising with the objective

of removing undesirable noise while preserving salient features [5]. The proposed surface

denoising framework is formulated as a constrained minimization problem, which can be

solved efficiently using the conjugate gradient method.

• We design a deep neural network architecture by leveraging instance segmentation and ridge

regression with the aim of predicting pediatric bone age [6]. Bone age assessment is often

used in clinical practice by pediatricians for the children’s skeletal maturation assessment

in an effort to quantify the difference or gap between a child’s bone age and the associated

chronological age.

• We propose an aggregator normalization graph convolutional network for with the goal of

classifying neurodevelopmental and neurodegenerative brain disorders. The objective is to

3



build a model that can learn discriminative graph node representations by incorporating both

imaging and non-imaging features into graph nodes and edges, respectively, in order to im-

prove predictive capabilities.

1.4 Literature Review

Carpal Bone Surface Denoising. In human anatomy, the wrist, also called carpus, is a complex

joint that connects the hand to the forearm. It is composed of eight carpal bones, located between

the five metacarpal bones of the hand and the radius and ulna bones of the forearm. Each carpal

bone has a distinct shape and plays a crucial functional role in the wrist stability and motion.

Carpal bones are relatively prone to injury, as force or stress can injure any of the bones. The most

commonly injured carpal bone in the human wrist is the scaphoid bone, located near the base of

the thumb. The human wrist can be rendered using triangular mesh models of the cortical bone

surface via segmentation of a computerized tomography (CT) volumetric image. Triangle meshes

offer a simple and flexible way to represent and handle complex geometric shapes. However, the

surface of a triangular mesh model reconstructed from real-world data is often corrupted by noise.

Hence, it is critical to develop effective surface denoising techniques to attenuate the inevitable

noise in measurements in order to ensure high-quality 3D shapes for use in downstream tasks. The

Laplacian mesh filtering flow is one of the simplest surface denoising methods, as it repeatedly and

simultaneously adjusts the location of each mesh vertex to the geometric center of its neighboring

vertices [7], but it tends to oversmooth the surface features.

Existing approaches to surface denoising can be divided into two main groups, namely isotropic

and anisotropic, based on how they treat noise and salient features. Wang et al. [8] introduce a

mesh denoising framework using a combination of bilateral filtering, feature detection, anisotropic

neighborhood searching, surface fitting and projection techniques. The mesh features are detected

and classified into non-feature vertices and feature vertices. Then, the corresponding anisotropic

neighborhoods for each vertex are searched by constructing a weighted dual graph. Zhu et al. [9]

develop a mesh denoising method by filtering each face normal within its piecewise smooth region

in lieu of using the anisotropic neighborhood. This is done by classifying mesh faces into several

types using a face normal tensor voting and then performing a normal filter to obtain a denoised

coarse normal field. Fleishman et al. [10] propose a bilateral mesh denoising method that utilizes

local neighborhoods to filter each mesh vertex in the normal direction. Zheng et al. [11] present

an anisotropic mesh denoising framework via normal field denoising by considering normals as a

surface signal defined over the original mesh, as well as designing a bilateral normal filter. The
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bilateral updating is cast as an optimization problem with an objective function defined as weighted

combination a smoothness term and a data term, where the weight parameter can be adjusted to

control the amount of denoising. Zhang et al. [12] design a two-stage mesh denoising framework

by applying a joint bilateral filter to the face normals and constructing a guidance normal field

that indicates surface features in the presence of noise, followed by updating the vertex positions

according to the filtered face normals.

Bone Age Assessment. Bone age, also called skeletal age, is a widely used measure for estimat-

ing the maturity of a child’s skeletal system by taking an X-ray image (radiograph) of the wrist

and comparing it to a standardized reference from an atlas. Assessment of bone age is vital for

the diagnosis and treatment of children with suspected growth disorders [13], as the difference

or gap between a child’s bone age and their chronological age might indicate a growth problem.

The objective of pediatric bone age assessment is to evaluate growth and maturity, as well as to

diagnose and manage pediatric disorders. The most commonly used methods for bone age assess-

ment in clinical practice are the Greulich-Pyleand and Tanner-Whitehouse [2, 3], which involve

left hand and wrist radiographs due in large part to the fact that most people are right-handed, and

consequently, the right hand is more likely to be injured than the left hand. The Greulich-Pyleand

method is an atlas method in which bone age is evaluated by comparing the radiograph of the pa-

tient with the nearest standard radiograph in the atlas, whereas the Tanner-Whitehouse method is

a scoring approach that relies on the systematic evaluation of the maturity of all the bones in the

hand and wrist. However, bone age assessment using the Tanner-Whitehouse method requires a

longer time than the Greulich-Pyleand method. Moreover, these traditional bone age assessment

methods are time consuming, rely on trained radiologists, and suffer from significant inter- and

intra-observer variability. To address these limitations, several automated methods have recently

been developed, including BoneXpert [14], an automated technique for assessing bone age and

bone density expressed in the Bone Health Index using conventional hand X-rays.

More recently, several deep transfer learning models have been proposed to tackle the bone

age assessment problem. Van Steenkiste et al. [15] propose an automated bone age assessment

method to assist physicians by combining a pre-trained deep convolutional neural network with

Gaussian process regression with the aim of aggregating the predictions for rotated and flipped

versions of the same radiograph in order to increase overall predictive performance. Iglovikov et

al. [16] present a deep learning approach for bone age assessment using a multi-step preprocessing

pipeline. This pipeline includes background removal by segmenting the image of the hand using a

modified version of the U-Net architecture, contrast normalization and detection of key points, the

application of affine transformations to register segmented images in a common coordinate space,
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and bone age regression and classification using pre-trained convolutional neural networks that

are trained by minimizing the mean absolute error. Inspired by the traditional Tanner-Whitehouse

method, Wu et al. [17] introduce a deep learning framework for simultaneous hand segmentation

and bone age assessment. This method is comprised of of two subnetworks: a Mask region-based

convolutional neural network (Mask R-CNN) subnetwork for pixel-wise hand segmentation from

X-ray images to avoid the distractions of other projects, and a residual attention network for hand

bone age assessment that forces the network to automatically attend to important regions. Son et

al. [18] propose an automated bone age assessment system comprised of the extraction of regions

of interest and classification of the skeletal maturity levels of the regions by converting them into

scores, which in turn are used in conjunction with the correlation matrix to predict the bone age.

Brain Disorder Prediction. Graph-structured data is prevalent real-world applications, includ-

ing social networks, biological protein-protein interaction networks, molecular graph structures,

traffic and transportation networks, and brain connectivity networks. The brain network has a

complex structure that can be modeled as a graph comprised of the brain’s regions of interest as

nodes and their connectivity as edges. Understanding how the brain develops is vital for design-

ing prediction models on graph-structured data with the aim of classifying developmental disor-

ders and degenerative neurological disorders such as autism spectrum disorder and Alzheimer’s

disease [19, 20]. Autism spectrum disorder is a neurodevelopmental condition related to brain

development that impacts how a person perceives and socializes with others, causing problems

in social interaction and communication. It begins in early childhood and affects approximately

1% of the global population, with males being approximately four times more susceptible than

females. Alzheimer’s disease is a progressive neurodegenerative disorder that primarily affects the

elderly population. Resting-state functional magnetic resonance imaging has enabled clinicians to

better identify the pathophysiology of brain disorders. The ability to distinguish between autism

spectrum disorder, Alzheimer’s disease and normal control individuals help in the characterization

of underlying causes, resulting in better diagnosis and treatment.

Graph convolutional networks (GCNs) and their variants have recently become the method of

choice in graph representation learning due to their ability to capture the graph structure [21]. Xu et

al. [22] propose a graph wavelet neural network, which is a GCN-based architecture that employs

spectral graph wavelets instead of graph Fourier bases to define a graph convolution. Zeng et

al. [23] present a graph sampling-based learning method that samples the training graph rather

than nodes or edges across the GCN layers, as well as an aggregator normalization technique for

eliminating bias in minibatch estimates. Chen et al. [24] introduce an extension of the GCN model

that employs skip connections from the input layer and identity mapping with the learnable weight
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matrix of each layer in order to mitigate the over-smoothing problem, which occurs when node

representations become indistinguishable as the network depth increases, resulting in a drop in

performance.

More recently, GCNs have demonstrated significant promise in computer-assisted diagnosis,

particularly in the prediction of brain disorders such as autism spectrum disorder and Alzheimer’s

disease [4,25–31]. Parisot et al. [4] employ spectral GCNs to tackle the disease prediction problem

on population graphs by leveraging both imaging and non-imaging information in order to boost

classification performance. Inspired by the successful inception architecture for convolutional neu-

ral networks, Kaiz et al. [25] propose InceptionGCN, a disease prediction model that leverages

spectral convolutions with different kernel sizes, resulting in improved performance over regular

GCN architectures due to its ability to capture the local and global context of heterogeneous graph

structures. Cosmo et al. [26] present an end-to-end trainable graph learning architecture for disease

prediction and classification using latent-graph learning with the aim of performing node classifi-

cation. The classification model is comprised of several graph convolutional layers, followed by

a fully connected layer to predict the patient label. Cao et al. [27] introduce a DeepGCN frame-

work for disease prediction on population graphs by integrating residual networks and a DropEdge

strategy in order to help avoid the vanishing gradient, over-fitting, and over-smoothing problems.

Wen et al. [31] propose a prior brain structure learning-guided multi-view graph convolutional

neural network for autism spectrum disorder diagnosis by exploiting graph structure learning and

multi-task graph embedding learning in an effort to improve classification performance and iden-

tify potential functional subnetworks.

1.5 Preliminaries

In this section, we present a terse overview of triangular mesh representation, conjugate gradi-

ent method, regression analysis, convolutional neural networks, transfer learning, medical image

segmentation, graph representation learning, graph convolutional networks, and brain connectivity

networks.

1.5.1 Triangular Mesh Representation

A triangle mesh M can be defined as a graph G = (V , E) or G = (V , T ), where V = {v1, . . . ,vn}
is a set of vertices, E = {eij} is a set of edges, and T = {t1, . . . , tn} is a set of triangles, as shown

in Figure 1.1. Each edge eij=[vi,vj] connects two adjacent vertices vi and vj , which are usually
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denoted by vi ∼ vj or simply i ∼ j. The neighborhood of a vertex vi, denoted by Ni, is the set

Ni = {vj ∈ V : vj ∼ vi}. (1.1)

(a) (b)

1

Figure 1.1: Vertex neighbors (left) and triangular mesh representation (right).

1.5.2 Conjugate Gradient Method

The conjugate gradient method is one of the most popular iterative algorithms for solving sparse

systems of linear equations

Ax = b, (1.2)

where x is an unknown vector, b is a known vector, and A is n × n symmetric positive-definite

matrix. Finding the solution x⋆ to this system of linear equations is equivalent to minimizing the

following quadratic function

f(x) =
1

2
x
⊺
Ax− x

⊺
b (1.3)

and setting its gradient to zero, i.e. ∇f(x⋆) = Ax⋆ − b = 0. The uniqueness of this solution

is guaranteed since the Hessian matrix ∇2f(x) = A is a symmetric positive-definite matrix. The

main algorithmic steps of the conjugate graduate method are summarized in Algorithm 1.

1.5.3 Regression Analysis

Regression analysis is a statistical technique for investigating the relationships between variables.

The goal of regression analysis is to determine the values of parameters for a function that cause

the function to best fit a given set of data observations.

Multiple Linear Regression. The objective of multiple linear regression is to model the linear

relationship between the explanatory (independent) variables and response (dependent) variables

y = Xβ + ε, (1.4)
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Algorithm 1 Iterative Conjugate Gradient
Input initial point x0

1: r0 = b−Ax0, p0 = r0
2: while rk ̸= 0 do
3: Construct the step size αk =

r⊺krk
p⊺
kApk

4: Construct next iteration xk+1 = xk + αkpk

5: Construct new residual rk+1 = rk + αkApk

6: Construct scalar for linear combination for next direction βk =
r⊺k+1rk+1

r⊺krk
.

7: Construct next conjugate vector pk+1 = rk+1 + βkpk

8: k = k + 1
9: end while

where y is the dependent or response vector, X is the independent or predictor data matrix, β is

an unknown vector of regression parameters to be estimated, and ε is a random error vector with

unknown variance. The rows of the predictor data matrix X correspond to observations, and its

columns correspond to predictor variables. The vector β of unknown parameters can be estimated

using least-square estimation by minimizing the following sum of squared deviations

β̂ = argmin
β

∥y −Xβ∥22, (1.5)

and it is given by β̂ = (X⊺X)−1X⊺y.

Ridge Regression. Ridge regression is a regularized regression method that aims to minimize

the following objective function

β̂R = argmin
β

∥y −Xβ∥22 + λ∥β∥2, (1.6)

where ∥y −Xβ∥22 is the residual sum of squares, ∥β∥22 is the L2-penalty (regularization) term, λ

is a regularization parameter that decides the shrinkage amount of the parameters. A larger value

of λ indicates more shrinkage.

The solution to the minimization problem for ridge regression is given by

β̂R = (X
⊺
X+ λI)−1X

⊺
y (1.7)

Ridge regression has been shown to improve the least-squares estimate when multicollinearity is

present. Using ridge regression, we can reduce overfitting and ensure achieving the generalization

by penalizing the estimates of the parameters. If these estimates are very high, the residual sum of

squares term will be reduced, but the penalty term will increase.

LASSO Regression. The Least Absolute Shrinkage and Selection Operator (LASSO) regression

is a regularized regression technique that encourages sparse models by minimizing the following
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objective function

β̂L = argmin
β

∥y −Xβ∥22 + λ∥β∥1, (1.8)

where ∥β∥1 is the L1-penalty (regularization) term that induces sparsity and λ is a regularization

parameter that controls the amount of shrinkage. As the value of λ increases, more parameters are

shrunk to zero and hence eliminated, meaning that the number parameters decreases.

1.5.4 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a deep architecture inspired by the way humans pro-

cess visual information [32]. The architecture of a CNN resembles the connectivity pattern of

neurons in the human brain, and makes use of feedforward artificial neural networks in which in-

dividual neurons are tiled in such a way that they respond to overlapping regions in the visual field.

CNNs are comprised of multiple layers that can be categorized into three types: convolutional,

subsampling (pooling), and fully-connected. A convolutional layer consists of a rectangular grid

of neurons, and applies a set of filters that process small local parts of the input where these filters

are replicated along the whole input space. Each neuron takes inputs from a rectangular section

of the previous layer; the weights for this rectangular section are the same for each neuron in the

convolutional layer. Thus, the convolutional layer is just an image convolution of the previous

layer, where the weights specify the convolution filter. A subsampling (pooling) layer takes small

rectangular blocks from the convolutional layer and subsamples it with with average or max pool-

ing to produce a single output from that block. This adds translation invariance and tolerance to

minor differences of positions of objects parts. Higher layers use more broad filters that work on

lower resolution inputs to process more complex parts of the input. Similar to a feedforward neural

network, a fully-connected layer takes all neurons in the previous layer and connects them to each

of its neurons. A CNN architecture with two convolutional layers and two subsampling layers is

illustrated in Figure 1.2.

A CNN architecture is typically composed of an input layer, an output layer, and several hidden

layers in between. These layers perform operations that alter the data with the objective of learning

features specific to the data. The most common layers are convolution, activation, pooling, and

fully-connected.

Convolutional Layers. A convolutional layer is the main building block of a CNN architecture,

and contains a set of filters (kernels) that are convolved with an image, performing element-wise

multiplications in order to create feature maps that summarize the presence of detected features

in the image. A convolution puts the input images through a set of convolutional filters, each of

which activates certain features from the images. Only a small region of neurons in the input image
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Figure 1.2: Basic architecture of a convolutional neural network.

connects to neurons in the hidden layer in a convolutional neural network. The region or filter is a

small spatially, also referred to as a kernel, is applied across the input.

Local Receptive Field. The kernels in the input image are referred to as local receptive fields.

Each connection in the filter learns a weight, representing the local receptive field of the input

image.

Weight Sharing. Convolutional layers employ a weight sharing approach to reduce the number

of parameters (weights and biases) that need to be learned. Every neuron in the hidden layer shares

the same weights of the local receptive field. The purpose of weight sharing is to not only to reduce

the model training time and cost, but also to make feature learning insensitive to feature location

in the image.

Feature Maps. A filter slides over the input image (convolution operation) to yield a feature map.

Three parameters determine the size of the feature map: depth, stride, and zero-padding. Depth is

the number of filters used in the convolution operation, where each depth learns a different feature.

Stride refers to the number of pixels by which we slide the filter across the input volume. When

the stride is set to 1, we move the filters one pixel at a time. Zero-padding refers to the process

of padding the input image with zeros around the border with the aim of applying the filter to

bordering elements of the image. The size of the filter (kernel) is usually an odd number so that it

has a central pixel.

Pooling Layers. Pooling layers are typically placed after one or more convolutional layers. Spa-

tial pooling (also called subsampling or downsampling) reduces the dimensionality of each feature

map and retains the most important information of an image. Spatial pooling can be broadly classi-

fied into three different types: Max, Average, and Sum. In practice, max-pooling has been shown to

yield better results. Similar to the convolutional layer, the pooling layer is responsible for reducing

the spatial size of the convolved feature map.
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Fully-Connected Layers: A fully-connected layer is typically a Multi Layer Perceptron (MLP)

that uses a softmax classifier in the output layer. The term “fully connected” means that every

neuron in the previous layer is connected to every neuron on the next layer. The output from the

convolutional and pooling layers represent high-level features of the input image. The purpose

of the fully-connected layer is to use these features for classifying the input image into various

classes based on the training dataset. Also, adding a fully-connected layer helps in learning non-

linear combinations of these features.

Activation Function. The purpose of the activation function is to introduce non-linearity into the

output of a neuron in a deep neural network. It decides whether a neuron should be activated or not,

and hence only the activated features are carried forward into the next layer. The reason behind

applying a non-linear activation function is that convolution is a linear operation. A commonly

used activation function is the Rectified Linear Unit (ReLU) defined as

ReLU(x) = max(0, x), (1.9)

where x is the input to a neuron. Unlike other activation functions, ReLU helps in solving the

vanishing gradient problem and also allows for faster and more effective training by mapping

negative values to zero and maintaining positive values.

1.5.5 Transfer Learning

Transfer learning refers to the transfer of knowledge from one learned task to a new task. To this

end, we take learned features from a pretrained network and transfer them to a new problem. The

vast majority of the pretrained networks are trained on a subset of the ImageNet database, which

is used in the ImageNet Large-Scale Visual Recognition Challenge. These networks have been

trained on ImageNet (a dataset of 1.2 million images) and can classify images into 1000 object

categories. Using a pretrained network with transfer learning is typically much faster and easier

than training a network from scratch.

Visual Geometry Group (VGG) Networks. VGG is a family of very deep convolutional net-

works (up to 19 weight layers), which have shown to achieve state-of-the-art accuracy on the

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) classification and localization

tasks [33]. VGG networks use very small convolutional 3 × 3 kernels with padding of 1 and

max-pooling of size 2× 2 throughout the entire network. Each convolutional layer is followed by

a ReLU activation function. The most popular configurations of VGG networks are VGG-16 and

VGG-19, which are 16 and 19 layers deep, respectively. For instance, the VGG-16 network con-

sists of 16 layers with learnable parameters: 13 convolutional layers and 3 fully-connected layers.
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The first two fully-connected layers have 4096 channels each, and the last layer has 1000 channels,

1 for each class. The input to any of the network configurations is considered to be a fixed size

224×224×3 RGB image. The only pre-processing done is normalizing the RGB values for every

pixel. This is done by subtracting the mean value from every pixel. VGG-16 is relatively large with

approximately 138 million parameters. Figure 1.3 shows the architecture of the VGG-16 network.

conv1

conv2

conv3

conv4
conv5

fc6 fc7 fc8

224 x 224 x 64

112 x 112 x 128

56 x 56 x 256

28 x 28 x 512
14 x 14 x 512

7 x 7 x 512

1 x 1 x 4096 1 x 1 x 1000

convolutional + ReLU

max pooling

fully connected + ReLU

softmax

Figure 1.3: VGG-16 architecture.

Residual Networks (ResNets). While deep neural networks have proven effective in image clas-

sification, they suffer, however, from the vanishing gradient, as well as from the degradation prob-

lem, i.e. as the network depth increases, accuracy becomes saturated and then degrades rapidly.

This means that stacking additional layers in a deep neural network results in higher training error.

To tackle these issues, Kaiming et al. [34] proposed residual networks, a family of deep convolu-

tional neural networks that are comprised of residual blocks to improve the model accuracy using

the concept of skip connections to jump over some layers. Skip connections help alleviate the prob-

lem of the vanishing gradient in deep neural networks by allowing this alternate shortcut path for

the gradient to flow through. They also allow the model to learn the identity mapping, which en-

sures that the higher layer will perform at least as good as the lower layer, and not worse. Consider

H(x) to be an underlying mapping to be fitted by a few stacked layers, with x representing the in-

puts to the first of these layers. If one hypothesizes that many nonlinear layers may asymptotically
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approximate complicated functions, then is similar to hypothesizing that they can also asymptoti-

cally approximate residual functions, i.e., H(x) − x. Thus, instead of expecting stacked layers to

approach H(x), we explicitly allow them to approximate a residual function F(x) := H(x) − x.

An illustration of residual learning is shown in Figure 1.4. A common configuration of residual

networks is ResNet-50, which is a convolutional neural network that is 50 layers deep. This pre-

trained network can classify images into 1000 object categories, and hence the network has learned

rich feature representations for a wide range of images.

x

Weight layer

Weight layer

Weight layer

⊕

ReLU

ReLU

F(x)

H(x) = F(x) + x

x
identity

Figure 1.4: Residual learning of a 3-layer block.

1.5.6 Medical Image Segmentation

Image segmentation is a commonly used technique in image processing and computer vision to

partition an image into multiple parts or regions, often based on the characteristics of the pixels in

the image. It helps in understanding the image at a much lower level (e.g., the pixel level). The task

of medical image segmentation is to label each pixel of an object of interest in medical images, and

is often used in clinical applications such as computer-aided diagnosis [35]. Recent state-of-the-art

medical image segmentation methods can be broadly classified into two main categories: semantic

segmentation and instance segmentation. The former refers to the process of partitioning an image

into semantically meaningful parts, and the goal is to assign a label to every pixel in the image. The

latter yields an object level representation by assigning instance labels to each object pixel [36].
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Deep neural networks, and in particular convolutional neural networks, have been successfully

applied to image segmentation. Two representative semantic and instance segmentation methods

are the U-Net network and mask R-CNN network, respectively.

U-Net Model. The U-Net architecture, built upon the fully convolutional network, has proven

to be effective in biomedical image segmentation [16, 37–39]. As shown in Figure 1.5, U-Net

is composed of an encoder subnetwork (contracting path) for capturing context by encoding the

input image into low-level feature representations at multiple levels and a decoder subnetwork

(expansive path) for semantically projecting these feature representations into the pixel space in an

effort to enable precise localization via transposed convolutions. Both the contracting path and the

expansive path make up 23 convolutional layers, each is followed by a ReLU activation function.

The encoder resembles the typical architecture of a convolutional neural network and consists

of two convolution layers, followed by ReLU activation function and max pooling for each con-

volution layer to capture the context of the input image in order to perform segmentation. The

convolutional layer applies a filter to an input to create a feature map that summarizes the presence

of extracted features from the input, whereas the pooling layer downsamples or reduces the size of

each feature map by a factor of 2.

On the other hand, the decoder, which also consists of five blocks, may be regarded as an op-

erator that performs the reverse of the downsampling path. Every block in the expanding path

comprises an up-convolution (i.e. upsampling the features), followed by two convolutions with

ReLU activations. The expanding path aims to provide precise estimation of localization com-

bined with contextual information from the contracting path. The goal of using U-Net is to convert

an image into a feature vector and then reconstruct the image from that vector. More precisely, U-

Net utilizes the same feature maps that are used for contraction to expand a vector to a segmented

image.

Mask R-CNN Model. Instance Segmentation is a concept closely related to object detection.

However, unlike object detection the output is a mask (or contour) containing the object instead

of a bounding box. Unlike semantic segmentation, we do not label every pixel in the image,

but rather we are interested only in finding the boundaries of specific objects. In other words,

instance segmentation identifies each instance of each object in an image, and differs from semantic

segmentation in that it does not categorize every pixel.

Mask Region based Convolutional Neural Network (Mask R-CNN) is an instance segmentation

technique, which locates each pixel of every object in the image instead of the bounding boxes,

and it is an extension of Faster R-CNN [40]. The input of Mask R-CNN is an image and the output

is a bounding box and a mask that segment each object in the image, as shown in Figure 3.2. Mask
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Figure 1.5: U-Net architecture for semantic segmentation.

R-CNN is comprised of two main stages: region proposals and then classifying the proposals

and generating bounding boxes and masks. It does so by using an additional fully convolutional

network on top of a convolutional neural network based feature map with input as feature map and

gives matrix with 1 on all locations where the pixel belongs to the object and 0 elsewhere as the

output.

• Phase 1: The initial phase includes two networks: a backbone network such as ResNet or

VGG network to extract the features and a region proposal network. These networks are

performed once per image to provide a collection of region proposals. Region suggestions

are feature map regions that contain the object.

• Phase 2: In this phase, the network predicts bounding boxes and object class for each pro-

posed region generated in Phase 1. Each proposed region might be of varying size, whereas

fully connected layers in networks always require a constant size vector to generate predic-

tions. The size of these proposed regions is determined by either the RoI pool (quite similar

to max-pooling) or the RoIAlign layer.

Using Mask R-CNN we can generate pixel-wise masks for each object in an image, thereby allow-

ing us to segment the foreground object from the background. The key point is to decouple the

classification and the pixel-level mask prediction tasks. The mask branch is a small fully-connected

network applied to each RoI, predicting a segmentation mask in a pixel-to-pixel manner. Classifi-

cation and boundary box predictions Top final predictions from Mask R-CNN Because pixel-level

16



segmentation requires much more fine-grained alignment than bounding boxes, mask R-CNN im-

proves the RoIAlign layer so that RoI can be better and more precisely mapped to the regions of

the original image. The output of the RoIAlign layer is then passed into the Mask head, which is

comprised of two convolution layers. It builds a mask for each RoI, segmenting an image pixel by

pixel.

Conv

Class
Box

ConvROIAlign

Figure 1.6: Mask R-CNN framework of instance segmentation.

1.5.7 Graph Representation Learning

Basic Notions. A graph G = (V , E) is defined as the sets of nodes (or vertices) V and edges E .

The number of nodes in a graph is denoted by N = |V|, and the number of edges by M = |E|. We

denote by A = (Aij) an N ×N adjacency matrix (binary or real-valued) whose (i, j)-th entry Aij

is equal to the weight of the edge between neighboring nodes i and j; and 0 otherwise.

The goal of graph representation learning (or graph embedding) is to map each node in the graph

to a vector in a low-dimensional vector space while preserving the structure of the original graph.

The resulting nonlinear and highly informative graph embeddings (or features) can then be used

as input to machine learning models for various downstream tasks such as node classification, link

prediction, clustering, recommendation, and graph classification. Given a graph G, the aim of

graph representation learning is to learn a mapping f : V → Rd, where d ≪ N is the dimension

of the embedding. An illustration of node embedding is shown in Figure 1.7.
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Figure 1.7: Schematic diagram of node embedding.

1.5.8 Graph Convolutional Networks

Graph neural networks have recently become the method of choice for learning from graph-

structured data, which is a ubiquitous data structure extensively used in a plethora of real-world

applications such as social networks and brain connectivity networks. Existing graph neural net-

works fall into two main categories: spatial methods and spectral methods. The former define

graph convolution in the node domain as a weighted average function over neighboring nodes sim-

ilar to the idea of convolution in traditional convolutional neural networks. The latter define graph

convolution in the graph Fourier domain using the eigenvectors of the graph Laplacian matrix.

Spatial Methods. Convolution in spatial-based graph neural networks is defined directly in the

node domain based on a node’s spatial relations (i.e. neighbors). The main idea is that a node

representation is updated by aggregating information from its neighboring nodes. The spatial graph

convolutional operation essentially propagates node information along edges. The information that

passes between neighbors and the central node in the graph is referred to as messages. During each

message-passing iteration in a graph neural network, the embedding h
(ℓ)
i of node i ∈ V is updated

according to information aggregated from its graph neighborhood Ni using two neural networks

AGGREGATE and UPDATE as follows:

m
(ℓ)
Ni

= AGGREGATE(ℓ)({h(ℓ)
j : j ∈ Ni}). (1.10)

and

h
(ℓ+1)
i = UPDATE(ℓ)(h

(ℓ)
i ,m

(ℓ)
Ni
), (1.11)
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where m
(ℓ)
Ni

is the message aggregated from the neighborhood of node i, and h
(ℓ+1)
i is the embed-

ding of node i at the (ℓ+ 1)-layer.

Spectral Methods. Spectral techniques define graph convolution using graph signal processing.

• Graph Fourier Transform: We can generalize a convolutional network for a spectral net-

work via graph Fourier transform based on the graph Laplacian matrix [21]. Suppose an

input vector x ∈ RN is a signal defined on a graph G with N nodes. If A ∈ RN×N is the

adjacency matrix associated with a graph G and D is the diagonal degree matrix, then the

normalized graph Laplacian matrix is defined as L = I − D−1/2AD−1/2. The normalized

Laplacian L admits an eigendecomposition given by L = UΛU⊺, where U = (u1, . . . ,uN)

is an orthonormal matrix whose columns constitute an orthonormal basis of eigenvectors

and Λ = diag(λ1, . . . , λN) is a diagonal matrix comprised of the corresponding eigenvalues

such that 0 = λ1 ≤ . . . ≤ λN ≤ 2 in ascending order [41]. The graph Fourier transform

of a signal x ∈ RN is defined as F(x) = x̂ = U⊺x ∈ RN , and its inverse is given by

F−1(x̂) = Ux̂.

• Spectral Filtering of Graph Signals: The convolution of a graph filter g and a graph signal

x is defined as

g ∗ x = F−1(F(g)⊙F(x)) = U(U
⊺
g ⊙U

⊺
x), (1.12)

where ⊙ denotes element-wise multiplication. Hence, applying a spectral graph filter gθ on

a graph signal x yields

gθ(L)x = gθ(UΛU
⊺
)x = Ugθ(Λ)U

⊺
x, (1.13)

where θ is a vector of learnable parameters. However, there are three limitations that pro-

hibit the spectral filter from being used in practice: the filter is not localized, the learning

complexity is O(N2) due to matrix-vector multiplication, and the number of parameters de-

pends on the input size. To tackle these limitations, the spectral filter can be approximated

using Chebyshev polynomials as follows

gθ(Λ) =
K−1∑
k=0

θkTk(Λ̂), (1.14)

where the Chebyshev polynomials are defined recursively by

Tk(x) = 2xTk−1(x)− Tk−2(x) with T0 = 1 and T1 = x (1.15)

and Λ̂ = 2Λ/λmax − I is a diagonal matrix of scaled eigenvalues with λmax denoting the

largest eigenvalue of the Laplacian matrix. Hence, the cost of the resulting filtering operation

is reduced to O(K|E|).
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1.5.9 Brain Connectivity Networks

The human brain is a network comprised of spatially distributed, but functionally linked regions

that continuously share information with each other. The goal of brain network analysis is to pre-

dict human brain diseases such as neurodegenerative diseases, which cause the brain and nerves to

deteriorate over time. Unfortunately, there is no cure for neurodegenerative diseases, but treatment

can still help. Brain networks can be modeled as graphs consisting of nodes connected by edges.

Brain connectivity can be categorized into three main types [42]:

• Anatomical Connectivity: Structural connectivity or anatomical connectivity refers to a

network of physical or structural connections linking sets of neurons or neuronal elements. In

the graph theoretical analysis of anatomical brain connectivity, the white matter connections

between regions of the brain are identified and serve as basis for the assessment of regional

connectivity profiles.

• Functional Connectivity: Functional connectivity provides statistical dependencies of neu-

ronal activation patterns of different brain regions. In other words, two regions are consid-

ered to show functional connectivity if there is a statistical relationship between the measures

of activity recorded for them.

• Effective Connectivity: Effective connectivity describes the causal influences that neural

units exert over another. While functional connectivity only describes statistical dependen-

cies between spatially segregated neuronal events, effective connectivity refers to causal

interactions.

Brain network analysis leverage graph theory to represent the brain as a graph consisting of a set of

nodes connected by edges or links. As shown in Figure 1, the brain network construction pipeline

is comprised of four main steps: computing a brain atlas, defining brain regions of interest (ROIs),

extracting the timeseries associated with ROIs, and finally estimating the functional connectivity

metrics from these timeseries [42].

• Predefined Atlases: An atlas generally accounts for a certain state of the knowledge of the

brain structures (anatomical or functional) from which well-defined entities can be distin-

guished. In other words, an atlas represents a certain labeling of brain structures. Applying

a predefined brain atlas from a single brain is not be ideal for region-based analysis due to

anatomical variability.
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• Region of Interests of Brain Images: The main goal of region of interests of brain images

is to explore the underlying signal behind brain analysis when investigating a region for

effects.

• Timeseries Signals Extraction: Timeseries are extracted from each ROI for each subject

and then used to measure the functional connectivity between pairs of nodes in graph. One

of the techniques to compute these quantities is the average of Haemodynamic response

function of the fMRI time series signals over all voxels for each region [43].

• Functional Connectivity Estimation: Functional connectivity can be estimated via the co-

variance between signals from brain ROIs from different sensors/time spots.

• Brain Functional Parcellation: ROIs can be extracted from fMRI via two methods: 1)

clustering approaches such as K-means algorithm, Ward’s algorithm, spectral clustering and

geometric clustering; and 2) dictionary learning techniques such as independent components

analysis and variants of principal components analysis [42].

Figure 1.8 shows the steps of labeled graph construction. The first step is to compute the brain atlas

directly from the data, followed by extracting brain regions from the computed atlas. The second

step is to compute time series, and then find the connectivity matrix by using correlation between

time series (i.e. correlation, partial correlation, or covariance). The last step is to construct a brain

graph (connectome) to be used as input to the deep neural network, where the nodes of the graph

are represented by regions of interest and the connectivity between edges express the links (edges)

of the graph.

Brain atlas Brain regions (ROIs) Time series Connectivity matrix

Figure 1.8: Functional connectivity construction.
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1.6 Overview and Contributions

The organization of this thesis is as follows:

• In Chapter 1, we begin with the basic concepts which we refer to throughout the thesis.

Then, we present the motivations and the goals of this research, followed by the problem

statement, the objective of this study, and literature review. We also present an overview of

triangular mesh representation, regression analysis, convolutional neural networks, medical

image segmentation, graph representation learning, and brain connectivity networks.

• In Chapter 2, we introduce a geometric feature-preserving framework for carpal bone sur-

face denoising using graph signal processing. The proposed approach is formulated as a

constrained optimization problem with an objective function consisting of a fidelity term

specified by a noise model and a regularization term associated with data prior. These terms

are weighted by a normalized mesh Laplacian, which is defined in terms of a data-adaptive

kernel similarity matrix in conjunction with a matrix balancing procedure. Minimizing such

an objective function is carried out by iteratively solving a sparse system of linear equations

using the conjugate gradient method.

• In Chapter 3, we propose a two-stage RidgeNet model for bone age assessment using in-

stance segmentation and ridge regression. In the first stage, we employ an image annotation

and segmentation model to annotate and segment the hand from the radiographic image, fol-

lowed by background removal. In the second stage, we design a regression neural network

architecture comprised of a pre-trained convolutional neural network for learning salient fea-

tures from the segmented pediatric hand radiographs and a ridge regression output layer for

predicting the pediatric bone age.

• In chapter 4, we develop an aggregator normalization graph convolutional network by ex-

ploiting not only aggregation in graph sampling, but also skip connections and identity map-

ping. The proposed graph neural network learns discriminative graph node representations

by incorporating both imaging and non-imaging features into the graph nodes and edges,

respectively, with the aim of boosting predictive capabilities.

• In Chapter 5, we present a summary of the contributions of this thesis and limitations, and

we also outline several directions for future research in this area of study.
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Carpal Bone Surface Denoising

We present a geometric framework for surface denoising using graph signal processing, which is

an emerging field that aims to develop new tools for processing and analyzing graph-structured

data. The proposed approach is formulated as a constrained optimization problem whose objective

function consists of a fidelity term specified by a noise model and a regularization term associated

with data prior. Both terms are weighted by a normalized mesh Laplacian, which is defined in

terms of a data-adaptive kernel similarity matrix in conjunction with matrix balancing. Minimizing

the objective function reduces to iteratively solving a sparse system of linear equations via the

conjugate gradient method. Extensive experiments on noisy carpal bone surfaces demonstrate the

effectiveness of our approach in comparison with existing methods. We perform both qualitative

and quantitative comparisons using various evaluation metrics.

2.1 Introduction

Recent advances in 3D scanning technology have led to an increasing use of 3D models in many

fields, including the entertainment industry, archaeology, computer vision, and medical imaging.

These models are usually captured in the form of point clouds or polygonal meshes [44], but they

are often corrupted by noise during the data acquisition stage. The main problem with 3D shape

denoising is how we can distinguish between noise and features, especially sharp surface features.

To ensure high-quality 3D shapes for use in downstream applications, it is important to develop

effective surface denoising techniques to remove inevitable noise in the measurements [7, 10, 11,

45–48].
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In recent years, a plethora of techniques have been proposed to tackle the 3D surface denois-

ing problem. Generally, surface denoising methods may be classified into two major categories:

isotropic and anisotropic. The former techniques filter the noisy data independently of direction,

while the latter methods modify the diffusion equation to make it nonlinear or anisotropic in order

to preserve the sharp features of a 3D mesh surface. The simplest surface denoising method is the

Laplacian flow, which repeatedly and simultaneously adjusts the location of each mesh vertex to

the geometric center of its neighboring vertices [7].

Most surface denoising methods are adopted from the image processing literature [1, 49–51],

including the mean, median, and bilateral filters. In particular, bilateral filtering has been used ex-

tensively in image processing applications, due in large part to its good performance in smoothing

noisy images while preserving edges. The bilateral filter takes into account the variation of image

intensities by replacing the intensity value at a pixel by a weighted average of the intensity values

from neighboring pixels. Although these filters have been successfully applied to image denoising,

it is, however, not straightforward to apply them directly to graph-structured data. Fleishman et

al. [10] proposed a bilateral mesh denoising approach that filters each mesh vertex in the normal

direction using local neighborhoods. Zheng et al. [11] applied the bilateral normal filter in a local

iterative and a global non-iterative scheme for anisotropic denoising. Sun et al. [52] introduced a

two-step mesh denoising framework. In the first step, the noisy face normals are filtered iteratively

by weighted averaging of neighboring face normals. In the second step, the mesh vertex posi-

tions are iteratively updated based on the denoised face normals. Huang and Uscher proposed a

multiscale anisotropic Laplacian (MSAL) [53], which employs the anisotropic Laplacian operator

combined with a roughness scale, and yields significantly better results than the anisotropic Lapla-

cian and the bilateral filter. Ouafdi et al. [54] introduced a probabilistic mesh denoising method

by performing an anisotropic average of neighboring vertices weighted by a Riemannian metric.

Zhang et al. [12] presented a guided mesh normal filtering framework by constructing the guidance

for joint bilateral filtering of geometry signals using a two-step process. Joint bilateral filtering is

applied to the face normals, followed by updating the mesh vertices to agree with the denoised

face normals. More recently, Yadav et al. [55] proposed a two-stage mesh denoising approach

using robust statistics. In the first stage, the face normals are filtered via bilateral normal filtering

using Tukey’s bi-weight as a similarity function. In the second stage, the mesh vertex positions are

updated using edge-to-face normal orthogonality constraints along with differential coordinates.

On the other hand, image/surface denoising via graph signal processing techniques has received

considerable attention in recent years [1, 56, 57]. A graph-based approach to image denoising and

deblurring was introduced in [1] using a data-adaptive objective function derived from a normal-
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ized graph Laplacian. Chung et al. [57] used the graph Laplacian to construct the discrete version

of heat kernel smoothing on graph-structured data, obtained by binary segmentation of the com-

puted tomography of human lung data. Also, Chung et al. [58] introduced a heat kernel regression

approach to surface smoothing using the Laplace-Beltrami eigenfunctions, which are obtained by

solving a generalized eigenvalue problem. Such an approach can, however, be prohibitively ex-

pensive, especially when the problem size is large (i.e. large matrices). Another issue with spectral

approaches is how to select the appropriate number of eigenvalues and associated eigenfunctions

to be retained.

Motivated by the good performance of the similarity-based image denoising framework pro-

posed in [1], we introduce a simple, yet effective feature-preserving approach to 3D mesh denois-

ing. The proposed method employs a normalized mesh Laplacian, which is defined in terms of a

data-adaptive kernel similarity matrix in conjunction with matrix balancing. We formulate our sur-

face denoising framework as a constrained minimization problem, which can be solved efficiently

using the conjugate gradient (CG) method. Our approach can remove the noise effectively while

preserving the nonlinear features of surfaces, such as curved surface regions, sharp edges, and fine

details. While our proposed framework is general enough to be applied to any problem involving

surface denoising, the primary focus of this work is on noise removal from carpal bone surfaces.

Further, recovering high quality surfaces from noisy carpal bone surfaces is a fundamental problem

in computational anatomy and biomechanics, and is of paramount importance to the diagnosis of

wrist pathologies, such as arthritis. Our main contributions may be summarized as follows:

• We introduce a mesh denoising approach using a data-adaptive kernel similarity matrix in

conjunction with matrix balancing.

• We formulate the proposed framework as a constrained minimization problem, and solve it

iteratively using the conjugate gradient method.

• Our experimental results show superior performance of the proposed framework over exist-

ing mesh denoising methods.

The rest of this chapter is organized as follows. In Section 2, we briefly recall some basic con-

cepts of geometry processing, followed by a general formulation of the surface denoising problem

in the graph signal processing setting. In Section 3, we present the main building blocks of our

method, and discuss in detail the algorithmic steps. In Section 4, we present experimental results

to demonstrate the competitive performance of our denoising approach on carpal bone surfaces.

Finally, Section 5 concludes the chapter and points out future work directions.
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2.2 Problem Formulation

Triangular mesh representation: A 3D shape is usually modeled as a triangle mesh M whose

vertices are sampled from a Riemannian manifold. A triangle mesh M may be defined as a graph

G = (V , E) or G = (V , T ), where V = {v1, . . . ,vn} is the set of vertices, E = {eij} is the set

of edges, and T = {t1, . . . , tm} is the set of triangles. Each edge eij = [vi,vj] connects a pair

of vertices {vi,vj}. Two distinct vertices vi,vj ∈ V are adjacent (denoted by vi ∼ vj or simply

i ∼ j) if they are connected by an edge, i.e. eij ∈ E . The neighborhood of a vertex vi is the set

v̊i = {vj ∈ V : vj ∼ vi}.

Laplacian matrix of a weighted graph: The graph G may be equipped with a nonnegative

weight function ω : V × V → R+ such that

ωij =


ωii if i = j

ωij if i ∼ j

0 o.w.

(2.1)

The Laplacian matrix L = (ℓij) of a weighted graph is defined as L = D−A, whose elements are

given by

ℓij =


di − ωii if i = j

−ωij if i ∼ j

0 o.w.

(2.2)

where A = (wij) is the weighted adjacency matrix, and D = diag(d1, . . . , dn) is the degree matrix

with di =
∑

j∼i ωij , the degree of vertex i. The normalized weighted Laplacian matrix L is defined

as

L = D−1/2LD−1/2 = I−D−1/2AD−1/2. (2.3)

Figure 2.1 displays a 3D hand model and its weighted Laplacian matrix, with weights ωij =

∥vi −vj∥, where ∥·∥ denotes the Euclidean norm. The sparsity pattern (or support) of L = (ℓij) is

the set of indices ij with ℓij ̸= 0.

The Laplacian matrix may be viewed as an operator defined on the space of graph signals u :

V → R as follows:

Lu(i) =
∑
i∼j

ωij(u(i)− u(j)), for all i ∈ V . (2.4)

In other words, Lu(i) is the sum of the weighted differences between the value of the graph signal

u at vertex i and the values at the neighboring vertices.

Since |V| = n, we may represent any graph signal u : V → R as a column vector u = (u(i)) ∈
Rn with the ith element u(i). Thus, the quadratic form of the signal u with respect to the Laplacian
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Figure 2.1: Hand model (left) and sparsity pattern plot of its weighted Laplacian matrix (right).

matrix can be expressed as

u
⊺
Lu =

∑
i∼j

ωij(u(i)− u(j))2, (2.5)

which shows that if the weights are symmetric, then the Laplacian matrix is symmetric, positive

semi-definite. So the action of the Laplacian on a signal may be viewed as measuring the smooth-

ness of that signal across the edges in the mesh.

2.2.1 Mesh Denoising Model

In all real applications, measurements are usually perturbed by noise. In the course of acquiring,

transmitting or processing a 3D model for example, the noise-induced degradation often yields a

resulting graph signal observation model, and the most commonly used is the additive one,

v = u+ η, (2.6)

where the observed graph signal v includes the original graph signal u and the random noise

process η, which is usually assumed to be Gaussian with zero mean and standard deviation σ.

Surface denoising refers to the process of recovering a 3D model contaminated by noise. The

challenge of the problem of interest lies in recovering the graph signal u from the observed signal

v, and furthering the estimation by making use of any prior knowledge/assumptions about the

noise process η.

When considering the noise model (2.6), our goal may be succinctly stated as one of estimating

the underlying graph signal u based on an observed signal v and/or any potential knowledge of

the noise statistics to further regularize the solution. This yields the following fidelity-constrained
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optimization problem
min
u

R(u)

s.t. ∥v − u∥2 ≤ σ2
(2.7)

where R is a given regularization functional, which often defines the particular emphasis on the

features of the achievable solution. In other words, we want to find an optimal solution that yields

the smallest value of the objective function among all solutions that satisfy the constraints. Using

Lagrange’s theorem, the minimizer of (2.7) is given by

û = argmin
u

{
∥v − u∥2 + βR(u)

}
, (2.8)

where β is a nonnegative regularization parameter, which is often estimated or chosen a priori. A

critical issue, however, is the choice of the regularization functional R, which is often driven by

geometric arguments. A commonly used functional is the mesh Laplacian quadratic form defined

as a (squared) weighted vector norm

R(u) = ∥u∥2L = u
⊺
Lu. (2.9)

2.3 Method

In this section, we present the main components of the proposed surface denoising framework, and

describe in detail its algorithmic steps. The flowchart of our approach is illustrated in Figure 2.2.

Kernel matrix Matrix balancing

Figure 2.2: Flowchart of our proposed surface denoising method, where v is the noisy graph signal
and u⋆ is the estimated signal.

Kernel similarity: Using the Gaussian kernel, we define the kernel weight matrix S = (sij) as

sij = exp

(
−∥vi − vj∥2

2h2

)
, (2.10)

where vi is the ith vertex of the noisy mesh, vj are the neighboring vertices of vi, and h is the

bandwidth parameter of the Gaussian kernel. Each edge weight sij is a similarity measure whose
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value is large when i is closer to j. We define the kernel similarity weight matrix as follows:

K =
S+ S⊺

2
, (2.11)

which is a symmetric, non-negative matrix. Further, all of its off-diagonal elements are positive.

Sinkhorn matrix balancing: Applying the Sinkhorn matrix balancing procedure [59] to the ker-

nel similarity weight matrix K yields a symmetric non-negative doubly stochastic filtering matrix

W given by

W = C−1/2KC−1/2, (2.12)

where C is a diagonal scaling matrix [60]. It should be noted that since the filtering matrix W

is doubly stochastic, its largest eigenvalue is equal to 1 with associated eigenvector e = 1/
√
n,

where 1 is a vector of all ones. In other words, the filtering matrix preserves the DC component of

a graph signal (i.e. We = e).

Normalized mesh Laplacian: We define the normalized mesh Laplacian matrix as

L = I−W = I−C−1/2KC−1/2, (2.13)

which is symmetric, positive semi-definite. The Laplacian matrix L can be interpreted as a data-

adaptive high-pass filter, enabling us to incorporate a variety of filters in the data term as well the

regularization term.

From (2.13), it is easy to see that if λ is an eigenvalue of W, then 1 − λ is an eigenvalue of

L. In particular, 0 is an eigenvalue of L with associated eigenvector e. The eigenvalues of L may

be viewed as graph frequencies. Moreover, the eigenvectors associated with the smallest eigenval-

ues have smooth oscillations and capture well the large-scale properties of a shape. As shown in

Figure 2.3, the (non-trivial) eigenvectors of L encode important information about the global ge-

ometry of a shape. Notice that the eigenvectors associated with larger eigenvalues oscillate more

rapidly. Blue regions indicate small values of the eigenvectors and red colors regions indicate large

values, while green and yellow regions in between.

2.3.1 Surface Denoising Approach

We formulate our surface denoising framework as a constrained optimization problem by mini-

mizing the following cost function

C(u) = ∥v − u∥2I+αL + β∥u∥2L
= (v − u)

⊺
(I+ αL)(v − u) + βu

⊺
Lu,

(2.14)
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Figure 2.3: Visualization of four eigenvectors of the normalized mesh Laplacian matrix. From left
to right: a 3D hand model Gouraud shaded and color-coded by the values of the second, eighth,
fifteenth and twentieth eigenvectors.

where v is the noisy graph signal and u is the estimated signal. The non-negative parameters α

and β are often estimated or chosen a priori. Note that the first term is a weighted error between

the input and its estimate, and minimizing such an error yields a solution as close as possible to the

input. Minimizing the second term, on the other hand, yields a smooth solution. Further, I + αL

is a symmetric, positive-definite matrix.

The cost function C(u) can be minimized by finding its gradient and setting it to zero

∇C(u) = −2(I+ αL)(v − u) + 2βLu = 0, (2.15)

resulting in the following system of linear equations(
I+ (α + β)L

)
u =

(
I+ αL

)
v. (2.16)

Since I + (α + β)L is a symmetric, positive-definite matrix, the system (2.16) can be efficiently

solved using iterative methods such as the CG method, which is a commonly used iterative algo-

rithm for solving sparse systems of linear equations.

2.3.2 Algorithm

The objective of 3D mesh denoising is to remove noise while preserving features. Our proposed

surface denoising approach consists of two major steps, as illustrated in Figure 2.2. In the first

step, we compute the normalized mesh Laplacian using kernel similarity and matrix balancing.

In the second step, we iteratively solve a sparse system of linear equations using the CG method.

It should be noted that the proposed algorithm consists of both outer and inner iterations. The
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outer iterative process is used to compute the normalized mesh Laplacian, while the inner iterative

process is employed to solve the constrained minimization problem. Algorithm 2 summarizes the

main algorithmic steps of our approach.

Algorithm 2 Feature-Preserving Mesh Denoising
Input Noisy graph signal v

1: û(0) = v
2: k = 0.
3: while not converged do
4: Compute the kernel similarity weight matrix K from û(k) using (2.10)-(2.11)
5: Apply Sinkhorn matrix balancing to K to get the diagonal matrix C
6: Compute the Laplacian matrix L = I−C−1/2KC−1/2

7: Solve the linear system in (2.16) using conjugate gradient to estimate û(k+1).
8: Set u⋆ = û(k+1)

9: k = k + 1
10: end while
return u⋆

Output Estimated signal u⋆

2.4 Experiments

In this section, we evaluate through extensive experiments the performance of our proposed mesh

denoising approach on carpal bone surfaces [61]. As shown in Figure 2.4, the carpal bones of

the right wrist in a healthy male are the capitate, hamate, lunate, pisiform, scaphoid, trapezium,

trapezoid, triquetrum. Since the trapeziometacarpal joint of the thumb is a common site of os-

teoarthritis, the first metacarpal bone is also considered in our analysis. The forearm’s radius and

ulna bones, which support the many muscles that manipulate the bones of the hand and wrist, are

also depicted in Figure 2.4.

Implementation details: All experiments were performed on a desktop computer with an Intel

Core 2 Duo running at 3.40 GHz and 16 GB RAM; and the proposed mesh denoising algorithm

was implemented in MATLAB. The parameters α and β are chosen as the inverse of the minimum

and maximum of the mesh degree values, respectively (i.e. α = 1/dmin and β = 1/dmax). The

kernel bandwidth parameter h is estimated using the median absolute deviation (MAD) as follows:

h = 1.4826
n∑

i=1

MAD
j∼i

(vi − vj), (2.17)

where MAD(x) = median(∥x − median(∥x∥)∥) is a measure of spread that represents expected

absolute-error loss, and is robust to outliers.

31



Figure 2.4: Carpal bone anatomy of a healthy male from a palmar view. The carpus consists
of eight carpal bones, which are arranged in proximal and distal rows. The proximal row con-
tains scaphoid (Sp), lunate (Ln), triquetrum (Tq) and pisiform (Pf), while the distal row contains
trapezium (Tm), trapezoid (Td), capitate (Cp), and hamate (Hm). The distal row adjoins the five
metacarpals (Mc1-5) of the wrist. The radius (Rd) and ulna (Un) are also shown.

Baseline methods: We compare the effectiveness of our proposed technique with several state-

of-the-art approaches, including bilateral mesh denoising (BMD) [10], multiscale anisotropic

Laplacian (MSAL) method [53], guided mesh normal denoising (GMD) [12], and robust and high

fidelity mesh denoising (RMD) [55].

2.4.1 Results

We performed extensive experiments on various carpal bone surfaces, including right metacarpal,

scaphoid, left metacarpal, left hamate, lunate and pisiform, as shown in Figure 2.5.

We generate the noisy carpal bones models by setting the standard deviation of the noise to 0.5ℓ̄

and 0.7ℓ̄ of the mean edge length ℓ̄ given by

ℓ̄ =
1

|E|
∑
eij∈E

∥eij∥, (2.18)

where ∥eij∥ = ∥vi − vj∥ if i ∼ j, and ∥eij∥ = 0 otherwise. More precisely, a vertex vi of a noisy

mesh is given by the additive random noise model:

vi = ui + σ(ηi ⊙ ni), (2.19)
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Figure 2.5: Carpal bones models.

where ηi are i.i.d. Gaussian random vectors (i.e. ηi is a 3-dimensional vector containing pseudo-

random values drawn from the standard normal distribution N(0, 1)), ni is the unit normal vector

at the noise-free vertex ui, and ⊙ denotes the Hadamard product between two vectors (i.e. the

elements of the vector ηi ⊙ ni are obtained via element-by-element multiplication of the vectors

ηi and ni).

Qualitative Comparison

The visual comparison was performed with the most prevalent methods of 3D mesh denoising,

including BMD [10], MSAL [53], GMD [12] and RMD [55]. In Figure 2.6, the noisy right

metacarpal model is generated by adding a Gaussian noise with standard deviation σ = 0.5 to

the vertices of the ground truth mesh along the vertex normals. As can be seen, the output results

of BMD, MSAL, GMD and RMD still contain a considerable amount of noise in some regions

of the denoised model, while the proposed approach removes well the noise and at the same time

preserves the surface details. Figure 2.7 displays the denoising results on the noisy scaphoid, left

metacarpal and left hamate models with a noise standard deviation σ = 0.5 proportional to the

mean edge length of the mesh. Notice again that the proposed approach preserves well the edges,

while RMD tends to over-smooth the features. Further, the noise is mostly eliminated using our

approach removes without affecting flat regions. Further, the sharp features are well preserved, as

depicted in the enlarged views, which show that the geometric structures and the fine details of the
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denoised carpal bone models are very well preserved.

Figure 2.8 shows the denoising results on the noisy scaphoid, lunate and pisiform models with

a higher noise standard deviation σ = 0.7 proportional to the mean edge length of the mesh.

As can be seen, RMD removes relatively well the noise but does not preserve the sharp features.

The other baseline methods do not remove well the noise and also tend to over-smooth the sharp

regions, while our approach effectively removes the noise without creating any edge flips. While

RMD yields comparable results to our approach, it does not, however, preserve edges with the

same effectiveness.

In all the experiments, we observe that our approach is able to suppress noise while preserving

important geometric features of the carpal bone surfaces in a fast and efficient manner. This better

performance is in fact consistent with a large number of 3D models used for experimentation.
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Figure 2.6: Surface denoising results on the noisy right metacarpal model corrupted by Gaussian
noise with σ = 0.5. The magnified views of denoised models show that our method outperforms
the baselines in preserving the surface features.

Quantitative Comparison

To quantify the difference between the ground truth and estimated model, we use three different

measures, namely the mean orientation error metric, face-normal error metric, and face quality

metric [55].
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Figure 2.7: Surface denoising results on the noisy scaphoid, left metacarpal and left hamate mod-
els. The noise standard deviation is set to σ = 0.5.
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Figure 2.8: Surface denoising results on the noisy scaphoid, lunate and pisiform models. The noise
standard deviation is set to σ = 0.7.
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Let M = (V , T ) and M̂ = (V̂ , T̂ ) be the original and denoised models with vertex sets V =

{vi}ni=1 and V̂ = {v̂i}ni=1, and triangle sets T = {tj}mj=1 and T̂ = {t̂j}mj=1, respectively.

Mean orientation error metric: The orientation error between the original model and the de-

noised one can be measured using the mean orientation error metric given by

Eo =
1

m

m∑
j=1

∠(n(tj),n(t̂j)), (2.20)

where n(tj) and n(t̂j) are the unit faces normals of tj and t̂j , respectively. The symbol ∠ denotes

the angle between two unit vectors, and is defined as the inverse cosine of their dot product.

Face-normal error metric: To quantify the performance of the proposed approach, we compute

the L2 face-normal error metric given by

Ef (M, M̂) =
1

area(M̂)

∑
t̂j∈T̂

area(t̂j)∥n(tj)− n(t̂j)∥, (2.21)

where area(t̂j) is the area of t̂j , and area(M̂) is the total area of the denoised mesh.

Face quality metric: The quality of mesh faces can be measured using the ratio of the

circumradius-to-minimum edge length given by

Q =
1

|T |
∑
t∈T

rt
ℓt
, (2.22)

where rt and ℓt are the circumradius and minimum edge length of the associated triangle, respec-

tively. In the ideal case, every face of the mesh should be an equilateral triangle with a quality

index equal to Q = 1/
√
3.

The values of these metrics for our approach and the baselines methods are reported in Table 2.1.

For fair comparison, we set the number of iterations to 5 for all the methods. Our approach yields

better or competitive results in terms of Eo and Ef for all models. Moreover, the values of Q

for our method are lower than those of the baseline methods. The L2 face-normal errors for the

left metacarpal, scaphoid, lunate, right metacarpal and left hamate are shown graphically in Fig-

ures 2.9-2.13. As can be seen in these figures, our method yields the best overall results, indicating

the consistency with the subjective comparison.

Runtime Analysis

Most mesh denoising techniques perform filtering using a two-stage process by first filtering the

face normals and then updating the vertex positions to match the filtered face normals, resulting in
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Figure 2.9: L2 face-normal errors for the left metacarpal model.
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Figure 2.10: L2 face-normal position errors for the scaphoid model.

a computationally expensive process, particularly for large 3D meshes. Our method is, however,

fast and simple to implement. Table 2.2 shows the runtime of our algorithm for different carpal

bone models. By comparison, the runtimes (in seconds) per iteration for RMD, which is the best

performing baseline method, are 2.555, 2.3004, 2.292 and 2.167 for the right metacarpal, scaphoid,
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Figure 2.11: L2 face-normal errors for the lunate model.
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Figure 2.12: L2 face-normal errors for the right metacarpal model.

left metacarpal and left hamate, respectively. This strongly indicates that our algorithm not only

performs well at removing undesirable noise from bone surfaces, but is also computationally effi-

cient.
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Figure 2.13: L2 face-normal errors for the left hamate model.

Table 2.1: Quantitative comparison results.

Model Method Eo Ef × 10−3 Q

BMD 1.503 2.679 2.868
Right metacarpal MSAL 1.506 2.495 6.852
|F | = 27912 GMD 1.503 2.183 7.973
|V | = 13958 RMD 1.503 2.686 4.700

Ours 1.470 1.011 1.623
BMD 1.506 7.770 5.226

Scaphoid MSAL 1.530 16.838 2.247
|F | = 29408 GMD 1.457 13.332 7.940
|V | = 14706 RMD 1.453 3.976 1.888

Ours 1.465 2.966 1.678
BMD 1.510 5.652 2.449

Left metacarpal MSAL 1.512 3.275 1.592
|F | = 26858 GMD 1.503 2.845 1.669
|V | = 13431 RMD 1.485 2.554 6.404

Ours 1.462 1.716 1.452
BMD 1.494 3.855 13.354

Left hamate MSAL 1.506 2.445 5.597
|F | = 28792 GMD 1.386 1.811 4.663
|V | = 14398 RMD 1.418 1.847 2.826

Ours 1.422 1.461 1.702
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Table 2.2: Runtime (in seconds) per iteration and number of iterations used for denoising different
models.

Model Vertices Faces Time (sec.) Niter

Right metacarpal 13958 27912 0.284 5
Scaphoid 14706 29408 0.286 10
Left metacarpal 13431 26858 0.487 5
Left hamate 14398 28792 0.213 10

2.5 Conclusion

In this chapter, we presented a feature-preserving approach to surface denoising using a data-

adaptive similarity in conjunction with matrix balancing. The proposed framework is formulated

as a constrained minimization problem. The solution to this problem is estimated iteratively us-

ing the conjugate gradient method in an effort to recover sharp features from noisy surfaces. The

qualitative and quantitative evaluation results demonstrate that our approach offers superior per-

formance over existing mesh denoising techniques.
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Pediatric Bone Age Assessment

Bone age is an important measure for assessing the skeletal and biological maturity of children.

Delayed or increased bone age is a serious concern for pediatricians, and needs to be accurately

assessed in a bid to determine whether bone maturity is occurring at a rate consistent with chrono-

logical age. In this chapter, we introduce a unified deep learning framework for bone age assess-

ment using instance segmentation and ridge regression. The proposed approach consists of two

integrated stages. In the first stage, we employ an image annotation and segmentation model to

annotate and segment the hand from the radiographic image, followed by background removal. In

the second stage, we design a regression neural network architecture composed of a pre-trained

convolutional neural network for learning salient features from the segmented pediatric hand ra-

diographs and a ridge regression output layer for predicting the bone age. Experimental evaluation

on a dataset of hand radiographs demonstrates the competitive performance of our approach in

comparison with existing deep learning based methods for bone age assessment.

3.1 Introduction

Bone age assessment is a fundamental problem in the diagnosis and treatment of children and ado-

lescents with suspected growth disorder [13]. It is often used in clinical practice by pediatricians

for the children’s skeletal maturation assessment in an effort to determine the difference between

a child’s bone age and a chronological age [62]. This difference influences the decisions taken by

clinicians to predict the child’s accurate age and often leads to errors in managing the diagnosis of

children with skeletal dysplasias, and metabolic and endocrine disorders [63].
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The assessment of bone age has been traditionally performed using the Greulich-Pyle (GP) and

Tanner-Whitehouse (TW) methods [2, 3], which are based on left hand and wrist radiographs. In

the GP method, the bones in the hand and wrist radiographs are compared to the bones of a stan-

dard atlas, while the TW method relies on a scoring system that examines the level of skeletal

maturity for twenty selected regions of interest in specific bones of the hand-wrist and a numerical

score is then assigned to selected hand-wrist bones depending on the appearance of certain well-

defined maturity indicators. However, these manual methods suffer from substantial inter- and

intra-observer variability, rely on trained radiologists, and are time consuming [64,65]. To circum-

vent these issues, several automated bone age assessment approaches based on image processing

and computer vision techniques have been proposed, including BoneXpert [14], which makes use

of conventional radiographs of the hand according to the GP and TW methods. While BoneXpert

is an automatic method, it does, however, require some manual analysis, particularly for X-ray

images with low quality.

The recent trend in bone age assessment is geared toward automated methods using deep neu-

ral networks to learn features from hand radiographs at various levels of abstraction. This trend

has been driven, in part, by a combination of affordable computing hardware, open source soft-

ware, and the availability of large-scale datasets [66–68]. Several deep learning based models have

been recently proposed to tackle the bone age assessment problem [15–17,69–74], achieving good

performance with substantially improved results. Spampinato et al. [69] presented a BoNet archi-

tecture comprised of five convolutional layers, one deformation layer, one fully connected later,

and a linear scalar layer. They showed that BoNet outperforms fine-tuned convolutional neural

networks for assessing bone age over races, age ranges and gender. Lee et al. [70] designed a deep

learning model to detect and segment the hand and wrist prior to performing bone age assessment

with a fine-tuned convolutional neural network. Larson et al. [71] applied a fifty-layer residual net-

work to estimate bone age, achieving comparable performance to that of trained human reviewers.

However, their model is not effective at predicting the bone age of patients younger than two years.

In this chapter, we propose an integrated deep learning based framework, called RidgeNet, for

bone age assessment using instance segmentation and ridge regression. We develop a regression

network architecture for bone age assessment using a pre-trained deep learning model in con-

junction with a regularized regression output layer. The main contributions of this work can be

summarized as follows:

• We present an image annotation and segmentation model to annotate and segment the hand

from the radiographic image with a minimum number of annotated images, followed by

background removal.
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• We leverage the power of transfer learning with fine-tuning to learn salient features from the

segmented radiographs.

• We design a regression neural network architecture with a ridge regression output layer for

predicting the bone age.

• We show through extensive experiments the competitive performance of the proposed ap-

proach in comparison with baseline methods.

The rest of this chapter is organized as follows. In Section 2, we review important relevant

work. In Section 3, we introduce a two-stage approach for bone age assessment using instance

segmentation and ridge regression. In the first stage, we employ an image annotation and instance

segmentation model to extract and separate different regions of interests in an image. In the second

stage, we leverage the power of transfer learning by designing a deep neural network with a ridge

regression output layer. Section 4 presents experimental results to demonstrate the competitive

performance of our approach compared to baseline methods. Finally, Section 5 concludes the

chapter and points out future work directions.

3.2 Related Work

The basic goal of bone age assessment is to evaluate the biological maturity of children. To achieve

this goal, various bone age prediction methods based on deep learning have been proposed. Tong

et al. [72] presented an automated skeletal bone age assessment model using convolutional neural

networks and support vector regression with multiple kernel learning by combining heterogeneous

features from X-ray images, race and gender. Van Steenkiste et al. [15] integrated a pre-trained

convolutional neural network with Gaussian process regression in order to refine the estimated

bone age by exploiting variations in the predictions. The Gaussian process regression is used to es-

timate a vector of prediction scores for rotated and mirror images of a single radiograph. Iglovikov

et al. [16] proposed deep learning based regression and classification models using convolutional

neural networks by applying image segmentation via U-Net, a fully convolutional network that

extracts regions of interest (ROIs) from images and predicts each pixel’s class [38]. With the ex-

ception of the last two layers, the regression model proposed in [38] is similar to the classification

one, where each bone age is assigned a class. In the last layer of the classification model, probabil-

ities obtained from the softmax layer are multiplied by a vector of bone ages uniformly distributed

over integer values. Wu et al. [17] designed a network architecture consisting of an instance seg-

mentation model and a residual attention network. The instance segmentation model segments the
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hands from X-ray images to avoid the distractions of other objects, while the residual attention

network forces the network to focus on the main components of the X-ray images. Liu et al. [74]

replaced the encoder of U-Net with a pre-trained convolutional neural network to perform image

segmentation, followed by applying a ranking learning technique instead of regression to assess

bone age. Similarly, Pan et al. [75] introduced a U-Net based model, which consists of image

segmentation, feature extraction, and ensemble modules. More recently, Liu et al. [76] proposed

a bone age assessment model, which is trained on multiclassifiers based on ensemble learning, to

predict the optimal segmentation threshold for hand mask segmentation. In [77], a region-based

feature connected layer from the essential segmented region of a hand X-ray is introduced in order

to predict bone age using deep learning models.

While these deep learning based approaches have yielded competitive results in bone age as-

sessment, they suffer, however, from high model complexity, often require a pre-processing image

alignment step, and do not distinguish between important from less-important predictors in the

regression model. In addition, the U-Net architecture and its variants suffer from the large seman-

tic gap between the low- and high-level features of the encoder and decoder subnetworks, leading

to fusing semantically dissimilar features and hence resulting in blurred feature maps throughout

the learning process and also adversely affecting the output segmentation map by under- and/or

over-segmenting regions of interest (ROIs).

3.3 Method

Bone age prediction is typically achieved by extracting ROI features from pediatric hand images,

followed by using a learning model to estimate the bone age of these radiographs. Our algorithm

is divided into two stages. In the first stage, we carried out an image preprocessing step for ra-

diographs using image annotation and segmentation. In the second stage, we trained the proposed

deep learning model using the segmented radiographs to evaluate the proposed model’s perfor-

mance.

3.3.1 Image Annotation and Segmentation Model

This preprocessing step aims at extracting regions of interest from radiographs using image anno-

tation and instance segmentation.

Image Annotation: We use the VGG image annotator1 to define regions in an image and create

textual descriptions of those regions for image segmentation purposes. The annotations can be
1http://www.robots.ox.ac.uk/ vgg/software/via/via-2.0.4.html
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manually done using rectangles, circles, ellipses, polygons, lines, or points, and then converted to

common objects in context (COCO) dataset format, which is the commonly used format for object

detection and instance segmentation algorithms. As shown in Figure 3.1, the annotated hand is

obtained using a polygonal region shape.

Image Annotation

Figure 3.1: Image annotation using VGG image annotator.

Instance Segmentation: Instance segmentation refers to the task of detecting and delineating

each distinct object of interest appearing in an image, and includes identification of boundaries

of the objects at the detailed pixel level. Several instance segmentation techniques have been

recently proposed, including mask region-based convolutional neural network (Mask R-CNN),

which locates each pixel of every object in the image instead of the bounding boxes [40]. The

input to the Mask R-CNN algorithm is an image and the output is a bounding box and a mask

that segment each object in the image, as shown in Figure 3.2. Mask R-CNN consists of two

main stages. The first stage scans the image and generates proposals about the regions where there

might be an object. The second stage classifies the proposals and generates bounding boxes and

masks. These two stages are connected to a backbone network that uses residual neural network

in conjunction with feature pyramid network for feature extraction. The feature pyramid network

constructs a high-level feature pyramid and recognizes objects at different scales. In addition to

using a region-of-interest (RoI) pooling, which performs max pooling on inputs of non-uniform

sizes and produces a small feature map of fixed size, Mask R-CNN employs an ROIAlign layer that

aligns the extracted features with the input in a bid to avoid any quantization of the RoI boundaries

or bins.

For radiograph segmentation, we leverage Mask R-CNN that was trained on the COCO dataset.

The given annotated images are split into two disjoint subsets: the training set for learning, and
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Figure 3.2: Instance segmentation using Mask R-CNN.

the test set for testing. We used the pre-trained weights of some layers of Mask R-CNN as initial

weights. More specifically, we trained the region proposal network, classifier and mask heads

layers of Mask R-CNN and freezed the other hidden layers to speed-up the training of the network.

The trainable weights generated after training are used to perform instance segmentation. The

flowchart for image segmentation and background removal is depicted in Figure 3.3. As can be

seen, the detected part of the image (whole hand) is classified as a foreground with a very high

accuracy, while the rest of the radiograph image is classified as a background. Note that the red

colored hand and the dotted rectangle represent the bounding box and mask, respectively.

Mask-RCNN Background Removal

Figure 3.3: Image segmentation using Mask R-CNN, followed by background removal.
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3.3.2 Bone Age Assessment Model

The proposed bone age assessment model uses the pre-trained VGG-19 convolutional neural net-

work with a ridge regression output layer, as illustrated in Figure 3.4. The VGG-19 network

consists of 19 layers with learnable weights: 16 convolutional layers, and 3 fully connected lay-

ers [33]. Each convolutional layer uses a 3 × 3 kernel with stride 2 and padding 1. A 2 × 2

max-pooling is performed with stride 2 and zero padding. As shown in Figure 3.4, the proposed

architecture consists of five blocks of convolutional layers, followed by a global average pooling

(GAP), a fully connected layer of 1024 neurons, a dropout layer, a ridge regression layer, and

single regression output. Each of the first and second blocks is comprised of two convolutional

layers with 64 and 128 filters, respectively. Similarly, each of the third, fourth and fifth blocks

consists of four convolutional layers with 256, 512, and 512 filters, respectively. The GAP layer,

which is widely used in object localization, computes the average output of each feature map in

the previous layer and helps minimize overfitting by reducing the total number of parameters in the

model. GAP turns a feature map into a single number by taking the average of the numbers in that

feature map, and helps identify where deep neural networks pay attention. Similar to max pooling

layers, GAP layers have no trainable parameters and are used to reduce the spatial dimensions of a

three-dimensional tensor.

Ridge regression, on the other hand, is a regularized regression method that shrinks the estimated

coefficients towards zero. More specifically, given a response vector y ∈ Rn and a predictor matrix

X ∈ Rn×p, the ridge regression coefficients are defined as

β̂ = arg min
β∈Rp

{
∥y −Xβ∥22 + λ∥β∥22

}
, λ ≥ 0 (3.1)

where λ is a tuning parameter that controls the strength of the penalty term and decides the shrink-

age amount of the coefficients. A larger value of λ indicates more shrinkage. In practice, the

hyperparameter λ is often estimated using cross-validation.

The solution to the ridge regression equation (3.1) is given by

β̂ = (X
⊺
X+ λI)−1X

⊺
y, (3.2)

which reduces to the linear regression estimate when λ = 0. Unlike linear regression which does

not differentiate “important” from “less-important” predictors in a model, ridge regression reduces

model complexity and prevents over-fitting by producing new estimators that are shrunk closer to

the “true” parameters.

The ridge regression layer computes the mean square error (MSE) given by

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (3.3)
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Figure 3.4: Architecture of the proposed regression network.

where n is the number of responses, yi is the target output, and ŷi is the network’s prediction for

response i.

The goal of the ridge regression layer is to find the optimal values of the regression coefficients,

while avoiding the multicollinearity issue that frequently occurs in multiple linear regression. Mul-

ticollinearity in a regression model is a statistical phenomenon that arises when some predictor

variables in the model are correlated with other predictor variables, leading to increased variance

of the regression coefficients and hence making them unstable. In order to mitigate the multi-

collinearity issue, ridge regression is usually used not only to reduce model complexity, but also

to prevent over-fitting by adding a regularization term in an effort to ensure a smaller variance in

resulting parameter estimates. Motivated by these nice properties of ridge regression, we design a

ridge regression layer and incorporate it into our proposed network architecture with the goal of

circumventing both the multicollinearity and over-fitting issues.

3.4 Experiments

In this section, we conduct extensive experiments to evaluate the performance of the proposed

RidgeNet model in bone age assessment. The effectiveness of RidgeNet is validated by performing

a comprehensive comparison with several baseline methods.

Dataset: The effectiveness of RidgeNet is evaluated on the Radiological Society of North Amer-

ica (RSNA) bone age dataset [68]. RSNA consists of 14,236 hand radiographs of both male and

female patients. The radiographs were acquired from Stanford Children’s and Colorado Children’s

Hospitals at different times and under different conditions, and there are 12,611 images in the train-

ing set, 1,425 images in the validation set, and 200 images in the test set. Sample hand radiographs

from the RSNA dataset are shown in Figure 3.5. As can be seen, the images were acquired at

different times and under different conditions with varying size, background, contrast, brightness,

and hand orientation. The training set contains 5778 radiographs of female patients and 6833 ra-
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diographs of male patients. As shown in Figure 3.6, the bone ages for male and female patients are

not uniformly distributed.

Figure 3.5: Sample radiograph images from the RSNA dataset.

Implementation details: All the experiments were performed on Google Colaboratory, a free

Jupyter notebook environment with 2 CPUs Intel(R) Xeon(R) 2.2GHz, 13GB RAM, and an

NVIDIA Tesla K80 GPU accelerator. The algorithms were implemented in Python using Keras

with Tensorflow backend. We used data augmentation to improve network accuracy and avoid

overfitting by expanding the size of a training dataset. This is usually done by creating modified

versions of the input images in the dataset through random transformations, including horizontal

and vertical flip, brightness and zoom augmentation, horizontal and vertical shift augmentation,

and rotation. For image annotation, we chose 80 images with different scales and orientations,

and we used a polygon region shape to annotate the hand in each radiograph. Since we used the

COCO dataset format for annotation, the annotated images are saved in JavaScript Object Notation

(JSON) format for our custom dataset of segmented hand radiographs.

49



0 5 10 15 20
Bone age (years)

0

200

400

600

800

1000

1200

Nu
m

be
r o

f r
ad

io
gr

ap
hs

Male
Female

Figure 3.6: Bone age distributions of male and female patients in the training set.

For feature extraction, we use the pre-trained VGG-19 convolutional neural network with input

image size 512 × 512 × 3, and rectified linear unit (ReLU) as an activation function. For ridge

regression, the regularization parameter is λ = 10−4, which was obtained via cross-validation.

The proposed regression network was trained for 160 epochs using Adam optimizer with initial

learning rate of 10−4 and batch size of 32, and using the mean square error as a loss function.

The learning rate was multiplied by factor of 0.8 automatically when validation loss plateaued for

3 epochs. The value of MSE is computed as the average of the squared differences between the

predicted and actual values.

The MSE values are recorded at the end of each epoch on the training and/or validation sets.

The performance of the RidgeNet model over training epochs on the training and validation sets is

evaluated using the mean absolute error (MAE) metric, as shown in Figure 3.7. As can be seen,

the RideNet model has comparable performance on both training and validation sets, indicating

the higher predictive accuracy of the proposed model.

Performance evaluation metrics: The performance of a regression model is usually assessed

by applying it to test data with known target values and comparing the predicted values with the

known values. To this end, we use mean absolute error (MAE), root mean square error (RMSE),

and root mean squared percentage error (RMSPE) as evaluation metrics, which are defined as

follows:

MAE =
1

N

N∑
i=1

|yi − ŷi| (3.4)
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Figure 3.7: Model training history.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (3.5)

RMSPE =

√√√√ 1

N

N∑
i=1

(yi − ŷi
yi

)2

(3.6)

where N is the number of samples in the test set, yi is the actual (ground truth) value, and ŷi is the

model’s predicted value. A small value of an evaluation metrics indicates a better performance of

the model.

Baseline methods: We compared the effectiveness of the proposed model with several deep

learning based approaches, including a pre-trained convolutional neural network with Gaussian

process regression [15], an instance segmentation model with residual attention network [17], re-

gression/classification models [16], and U-Net based model [75]. The regression model presented

in [16] is similar to the classification model, expect for the lat two layers and also the fact that

a bone age is assigned a class. The penultimate layer is a softmax layer that returns a vector of

probabilities for all the classes. In the last layer, these probabilities are multiplied by a vector of

bone ages uniformly distributed over an interval of length equal to the total number of classes.

The U-Net based model [75] consists of image segmentation, feature extraction, and ensemble

modules.
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3.4.1 Results

In this subsection, we report the prediction results obtained by our proposed approach on the RSNA

bone age test set, and provide a comparison analysis with baseline methods. Figures 3.8-3.10 show

the predicted bone age versus the actual bone age for both genders, males, and females, respec-

tively, on the test set. The solid line depicts the actual bone age, while the dot points represent

the predicted values. As can be seen, the predicted values align pretty well along the solid line,

indicating a strong agreement between the actual bone age and predicted one. It is important to

point out that the plot for both genders in Figure 3.8 shows a noticeable variation in skeletal age

prediction between 84 and 156 months. This variation is due largely to the fact that girls mature

faster than boys during the early and mid-puberty stage (7- to 13-year old girls compared with 9-

to 14-year old boys), and hence skeletal maturation changes occur earlier in females than in males.

Notice also that there is little variation in skeletal age prediction during infancy (birth to 10-month

old girls and birth to 14-month old boys), toddlers (10-month to 2-year old girls and 10-month to

3-year old boys), pre-puberty (2- to 7-year old girls and 3- to 9-year old boys) compared to late

puberty (13- to 15-year old girls and 14- to 16-year old boys) and post-puberty (14- to 17-year old

girls and 17- to 19-year old boys).
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Figure 3.8: Predicted bone age vs. actual bone age for both genders on the RSNA test set.

The bar plots of the MAE values obtained by RidgeNet and the baseline methods for both gen-

ders are displayed in Figure 3.11, which shows that the proposed approach performs the best,
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Figure 3.9: Predicted bone age vs. actual bone age for male patients on the RSNA test set.
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Figure 3.10: Predicted bone age vs. actual bone age for female patients on the RSNA test set.

yielding the lowest MAE of 6.38 months. Similarly, the bar plots shown in Figures 3.12 and 3.13

for male and female patients, respectively, indicate that RidgeNet substantially outperforms both

the regression and classification models. As can be seen in these figures, the proposed approach

yields the best overall results. In addition, it is worth pointing out that gender-specific regression
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by RidgeNet yields lower MAE values, with a MAE of 5.27 months for females and a MAE of

3.75 months for males compared to a MAE of 6.38 months for both sexes.
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Figure 3.11: MAE results for RidgeNet and baseline methods for both genders on the RSNA test
set.
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Figure 3.12: MAE results for RidgeNet and baseline methods for male patients on the RSNA test
set.

The evaluation results using the RMSE and RMSPE metrics are shown in Table 3.1. As can be

seen, RidgNet yields the lowest RMSPE value in the case of both genders.

Figure 3.14 shows the actual and predicted bone ages of some segmented images from the test

set. As can be seen, the predicted bone ages are quite comparable to the actual bone ages, indicating

the effectiveness of the proposed RidgeNet model in bone age assessment.
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Figure 3.13: MAE results for RidgeNet and baseline methods for female patients on the RSNA
test set.

Table 3.1: Evaluation results for RidgeNet on the RSNA test set using the RMSE and RMSPE
metrics.

Gender RMSE RMSPE
Both 8.70 2.71
Males 7.00 3.06
Females 7.49 3.08

3.4.2 Feature Visualization and Analysis

Understanding and interpreting the predictions made by a deep learning model provides valu-

able insights into the input data and the features learned by the model so that the results can be

easily understood by human experts. To visually explain the predictions obtained by the pro-

posed RidgeNet model, we apply Smooth Grad-CAM++, an enhanced gradient weighted class

activation mapping [78] that highlights the most influential features affecting the predictions of

the model on various radiographs from different skeletal maturation stages, including pre-puberty,

early and mid-puberty, late puberty, and post-puberty. Gradient weighted class activation map-

ping produces heat maps via a linear weighted combination of the activation maps to highlight

discriminative image regions, indicating where the deep neural network bases its predictions. The

Smooth Grad-CAM++ method combines concepts from Grad-CAM [79], SmoothGrad [80] and

Grad-CAM++ [81] to produce improved, visually sharp maps for specific layers, subset of feature

maps and neurons of interest.

Figure 3.15 shows the class activation maps for RidgeNet using Smooth Grad-CAM++ for fe-

male (top) and male (bottom) patients at the pre-puberty, early and mid-puberty, late puberty, and

55



Actual age: 82 Actual age: 18 Actual age: 168

Predicted age: 85.9 Predicted age: 20.1 Predicted age: 167.5

Actual age: 192 Actual age: 34 Actual age: 88

Predicted age: 190.5 Predicted age: 36.3 Predicted age: 91.3

Actual age: 192 Actual age: 30 Actual age: 82

Predicted age: 194.5 Predicted age: 33.8 Predicted age: 82.8

Figure 3.14: Actual and predicted bone age of sample images from the test RSNA dataset. The
first row displays images of both genders, while the second and the third row show the images of
males and females, respectively

post-puberty stages. As can be seen, Smooth Grad-CAM++ highlights the regions of the radio-

graphs that play a significant role in bone age assessment for different age categories. The red

regions contribute the most to the predictions obtained by RidgeNet, and the deep blue color indi-

cates the lowest contribution. In the early and mid-puberty stage, for instance, the class activation

map emphasizes the metacarpal bones and proximal phalanges. In the post-puberty stage, the Rid-
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geNet model focuses on carpal bones, meaning that they have the greatest impact on the regression

results. These results are consistent with what radiologists consider the most suitable indicators of

skeletal maturity during the different phases of postnatal development [13].

Bone age 36 months 108 months 180 months 204 months

Bone age 69 months 144 months 180 months 216 months

Figure 1: Sample of class attention maps for male (upper rows) and female (lower rows) in the major skeletal maturity.

1

Figure 3.15: Smooth Grad-CAM++ heat maps for female (top) and male (bottom) patients at the
pre-puberty, early and mid-puberty, late puberty, and post-puberty stages.

3.4.3 Age Assessment on chest X-rays

In order to further assess the effectiveness of our age prediction approach, we evaluate the proposed

model on the National Institutes of Health (NIH) chest X-ray dataset [82], which is comprised of

112,120 X-ray images with different ages from 30,805 unique patients. We evaluate the proposed

model on 7,240 patients in the age range of 0 to 20 years old. The dataset is randomly partitioned

into training (70%), validation (10%) and testing (20%). Sample X-ray images from the NIH

datsets are shown in Figure 3.16, and the evaluation results using the MAE, RMSE and RMSPE

metrics are reported in Table 3.2.

Figure 3.17 shows the actual and predicted ages of some images from the NIH chest test set. As

can be seen, the proposed model yields relatively good results, which we plan to further improve

as future work.
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Figure 3.16: Sample X-ray images from the NIH chest dataset.

Table 3.2: Evaluation results for RidgeNet on the NIH chest X-ray test set using the MAE, RMSE
and RMSPE metrics.

Gender MAE RMSE RMSPE
Both 52.21 61.03 2.56
Males 46.61 55.96 2.75
Females 44.20 53.79 2.13

3.5 Conclusion

In this chapter, we presented a two-stage approach for bone age assessment using instance seg-

mentation and ridge regression. The proposed framework uses instance segmentation to extract a

region of interest from radiographs and background removal to avoid all extrinsic objects, followed

by a regression network architecture with a ridge regression output layer that returns a single, con-

tinuous value. We also used dropout regularization to improve the generalization ability, and we

shuffled the training data before each epoch to help detect overfitting issues and increase the model

performance. We showed through extensive experiments on the RSNA dataset that the proposed

RidgeNet model significantly outperforms existing deep learning based methods for bone age as-
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Actual age: 108 Actual age: 180 Actual age: 216

Predicted age: 127.47 Predicted age: 138.95 Predicted age: 143.24

Actual age: 60 Actual age: 144 Actual age: 156

Predicted age: 140.09 Predicted age: 160.72 Predicted age: 129.13

Actual age: 84 Actual age: 144 Actual age: 228

Predicted age: 123.77 Predicted age: 144.61 Predicted age: 179.83

Figure 3.17: Actual and predicted age of sample image from the test NIH dataset in months. The
X-ray images of both genders are shown in the first row, while the second and third rows display
the X-ray images for males and females, respectively

sessment, achieving the lowest mean absolute error for male and female patients, as well as for

both genders.
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Classification of Developmental and Brain Disorders

While graph convolution based methods have become the de-facto standard for graph representa-

tion learning, their applications to disease prediction tasks remain quite limited, particularly in the

classification of neurodevelopmental and neurodegenerative brain disorders. In this chapter, we

introduce an aggregator normalization graph convolutional network by leveraging aggregation in

graph sampling, as well as skip connections and identity mapping. The proposed model learns dis-

criminative graph node representations by incorporating both imaging and non-imaging features

into the graph nodes and edges, respectively, with the aim to augment predictive capabilities. We

benchmark our model against several recent baseline methods on two large datasets, ABIDE and

ADNI, for the prediction of autism spectrum disorder and Alzheimer’s disease, respectively. Ex-

perimental results demonstrate the competitive performance of our approach in comparison with

recent baselines in terms of several evaluation metrics, achieving relative improvements of 50%

and 13.56% in classification accuracy over graph convolutional networks on ABIDE and ADNI,

respectively.

4.1 Introduction

Understanding how the brain develops is vital to designing prediction models and formulating

treatments for a variety of developmental disorders and degenerative neurological diseases such

as autism spectrum disorder and Alzheimer’s disease, which are devastating illnesses that have

touched the lives of millions of families around the world, not only in personal anguish, but also

in soaring healthcare costs [83]. Autism spectrum disorder is a neurodevelopmental disability that
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affects how a person communicates, learns and socializes with others, whereas Alzheimer’s disease

is a chronic neurodegenerative brain disorder that slowly destroys brain cells, causing memory loss

and cognitive decline over time.

Graph-structured data is ubiquitous in a wide range of real-world application domains, including

social networks, biological protein-protein interaction networks, molecular graph structures, and

brain connectivity networks. Graphs provide a flexible way to inherently represent real-world

entities as a set of nodes and their interactions as a set of edges. A case in point: for brain analysis in

populations and diagnosis, we model populations as graphs, where each node represents a subject

with an associated node feature vector obtained from imaging data, and each edge represents a

pairwise similarity between two subjects with an edge feature vector acquired from non-imaging

data.

In recent years, there has been a surge of interest in extending deep learning approaches to non-

Euclidean domains thanks, in large part, to the prevalence and increasing proliferation of graph-

structured data [21,23,24,84]. Advances in deep learning have spawned significant efforts to facil-

itate, for instance, the clinical diagnosis of brain diseases. Graph convolutional networks (GCNs),

which generalize convolutional neural networks to graph-structured data by leveraging spectral

graph theory and its extensions, have gained popularity in graph representation learning [21] for

their ability to capture the graph structure. GCN uses a layer-wise propagation rule based on a

first-order approximation of spectral graph convolutions, where the feature vector of each graph

node is updated by applying a weighted sum of the features of its immediate neighboring nodes.

Wu et al. [84] introduce a simple graph convolution by removing the nonlinear transition functions

between the layers of graph convolutional networks and collapsing the resulting function into a

single linear transformation via the powers of the normalized adjacency matrix with added self-

loops for all graph nodes. However, this simple graph convolution acts as a low-pass filter, which

attenuates all but the zero frequency, causing oversmoothing. Zeng et al. [23] propose a graph

sampling based learning method by sampling the training graph in lieu of nodes or edges across

GCN layers, as well as eliminating biases in minibatch estimation via aggregator normalization

techniques. Chen et al. [24] present an extension of the GCN model using skip connections from

the input layer and identity mapping with the learnable weight matrix of each layer in a bid to

alleviate the oversmoothing problem, which is a common effect of increasing the network depth.

The primary objective of graph convolution based methods is to learn node representations that

encode structural information about the graph. These learned node representations can then be

used as input to machine learning models for downstream tasks such as node classification whose

goal is to predict the most probable labels of nodes in a graph. For instance, in brain diagnosis
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tasks, which is the focus of this work, we want to classify subjects as diseased or healthy by pre-

dicting the node labels in a population graph. Graph convolution based methods have recently

become prevalent in the biomedical and medical imaging domains [85–89] due largely to the fact

that neuroimaging provides valuable information about the diagnosis and progression of brain dis-

eases. Built on top of graph signal processing approaches [90], GCNs have shown promising

results in metric learning and classification tasks on brain connectivity networks [91, 92]. Ktena

et al. [91] propose to learn a graph similarity metric using a siamese graph convolutional neural

network in a supervised fashion, yielding encouraging results in individual subject classification

and manifold learning tasks. Similarly, Ma et al. [92] introduce a higher-order siamese graph con-

volutional neural network for multi-subject brain analysis in health and neuropsychiatric disorders

by incorporating higher-order proximity in graph convolutions, with the goal of characterizing the

community structure of brain connectivity networks and learning the similarity among magnetic

resonance imaging (fMRI) brain connectivity networks extracted from multiple subjects. While

GCNs have also been successfully used in the prediction of developmental and brain disorders such

as autism spectrum disorder (ASD) and Alzheimer’s disease (AD) [4,27,28], they are prone to the

oversmoothing problem, where learned node representations become similar due to repeated graph

convolutions as the network depth increases. In other words, when the number of GCN layers

increases, the learned node representations tend to converge to indistinguishable feature vectors,

resulting in performance degradation and less expressiveness; and hence the model becomes less

aware of the graph structure.

In order to overcome the aforementioned issues, we propose an aggregator normalization graph

convolutional network (AN-GCN) with skip connections and identity mapping for the detection of

neurodevelopmental and neurodegenerative brain disorders by integrating both imaging and non-

imaging features into the graph nodes and edges, respectively. We formulate the disease prediction

problem as a semi-supervised node classification on population graphs. The main contributions of

this work can be summarized as follows:

• We propose a novel graph convolutional aggregation approach with skip connections and

identity mapping for node classification by effectively integrating into the graph both imag-

ing and non-imaging information.

• We employ an aggregator normalization mechanism for feature propagation in an effort to

eliminate bias in minibatch estimation.

• We show through experimental results that our model yields competitive performance in

comparison with strong baselines on two large benchmark datasets.
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The remainder of this chapter is organized as follows. In Section 2, we review important relevant

work. In Section 3, we present the problem formulation as a semi-supervised node classification

task, and then we introduce a two-stage graph convolutional aggregation framework for disease

prediction. In the first stage, we construct a population graph comprised of a node set and an edge

set with complementary imaging and non-imaging data, respectively. Each graph node represents

a subject with an associated feature vector extracted from imaging data, and each edge captures

similarities between a pair of subjects with non-imaging data integrated into the edge weight. In

the second stage, we design an aggregator normalization graph convolutional network architecture

by leveraging skip connections, identity mapping and aggregation in graph sampling. In Section

4, we present experimental results to demonstrate the competitive performance of our approach

in comparison with graph-based methods for brain disease prediction. Finally, we conclude in

Section 5 and highlight some promising directions for future work.

4.2 Related Work

The basic objective of node classification in populations and diagnosis is to predict the most prob-

able labels of nodes in a population graph, where each subject is represented by a node and each

edge encodes the pairwise similarity between a pair of connected nodes. To achieve this objective,

various graph convolution based methods have been proposed with the aim of distinguishing be-

tween diseased patients and healthy controls by predicting the node labels (i.e. clinical status of

subjects). In semi-supervised node classification, the amount of labeled nodes for model training is

typically small and the goal is to predict the labels of a large number of unlabeled nodes by learning

a prediction rule from both labeled and unlabeled nodes in order to improve model performance.

Graph Convolutional Networks. GCNs have recently become the model of choice in semi-

supervised node classification tasks [21]. GCN uses an efficient layer-wise propagation rule, which

is based on a first-order approximation of spectral graph convolutions. The feature vector of each

graph node is updated by essentially applying a weighted sum of the features of its neighboring

nodes. Xu et al. [22] introduce a graph wavelet neural network, which is a GCN-based architecture

that uses spectral graph wavelets in lieu of graph Fourier bases to define a graph convolution.

Despite the fact that spectral graph wavelets can yield localization of graph signals in both spatial

and spectral domains, they require explicit computation of the Laplacian eigenbasis, leading to a

high computational complexity, especially for large graphs.

While GCNs have shown great promise, achieving state-of-the-art performance in semi-

supervised node classification tasks, they are prone to oversmoothing the node features. In fact,
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the neighborhood aggregation scheme (i.e. graph convolution) of GCN is tantamount to apply-

ing Laplacian smoothing [93], which replaces each graph node with the average of its immediate

neighbors. Therefore, repeated application of GCN yields smoother and smoother versions of the

initial node features as the number of the network’s layers increases. As a result, the node fea-

tures in deeper layers will eventually converge to the same value, and hence become too similar

across different classes. Wu et al. [84] introduce a simple graph convolution by removing the non-

linear transition functions between the layers of graph convolutional networks and collapsing the

resulting function into a single linear transformation via the powers of the normalized adjacency

matrix with added self-loops for all graph nodes. However, this simple graph convolution acts as

a low-pass filter, which attenuates all but the zero frequency, causing oversmoothing. Significant

strides have been made toward remedying the problem of oversmoothing in GCNs [24,94,95]. Xu

et al. [94] propose jumping knowledge networks, which employ dense skip connections to connect

each layer of the network with the last layer to preserve the locality of node representations in

order circumvent oversmoothing. In [95], a normalization layer, which helps avoid oversmooth-

ing by preventing learned representations of distant nodes from becoming indistinguishable, has

been proposed. This normalization layer is performed on intermediate layers during training, and

the aim is to apply smoothing over nodes within the same cluster while avoiding smoothing over

nodes from different clusters. Chen et al. [24] design a deep graph convolutional with initial resid-

ual and identity mapping to tackle the problem of oversmoothing by adding an identity matrix to

the learnable weight matrix and skip connections from the initial feature matrix.

Disease Prediction. GCNs have recently shown great potential in neuroimaging and computer

aided diagnosis, especially in the prediction of brain diseases such as autism spectrum disorder

and Alzheimer’s disease [4,25–30]. Using a graph convolutional neural network model consisting

of a fully convolutional GCN with several hidden layers activated via the Rectified Linear Unit

function, Parisot et al. [4] introduce a disease prediction framework. It involves modeling a pop-

ulation as a graph with nodes representing subjects and edges encoding the similarity between a

pair of subjects by combining imaging and non-imaging information in order to improve model

classification performance with the goal of distinguishing between patients with autism spectrum

disorder and healthy controls, as well as predicting whether a patient with mild cognitive impair-

ment will convert to Alzheimer’s disease. The graph nodes are associated with imaging-based

features, while non-imaging data is integrated into the edge weights. To learn an adaptive graph

representation for GCN learning, Zheng et al. [28] integrate graph learning and graph convolution

to develop an end-to-end multimodal graph learning approach for disease prediction via a multi-

modal fusion module, which fuses the features of each modality by leveraging the correlation and
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complementarity between the modalities. Cao et al. [27] introduce a deep learning model using

a multi-layer GCN in conjunction with residual neural networks to tackle the vanishing gradi-

ent problem, and the DropEdge technique [96] to alleviate overfitting and oversmoothing, which

are two major challenges in developing deep GCNs for node classification. Similar to Dropout

technique that randomly sets the outgoing edges of hidden units to zero at each update of the

training phase, DropEdge can be regarded as an extension of Dropout to graph edges. Inspired

by the Inception network in convolutional neural networks, Kazi et al. [25] propose an Inception

graph convolutional network for disease prediction tasks with complementary imaging and non-

imaging multi-modal data by leveraging spectral convolutions with different kernel sizes, showing

improved performance over regular GCN architectures. Cosmo et al. [26] present an end-to-end

trainable graph learning architecture for dynamic and localized graph pruning with the aim to

build a node classification model consisting of few graph convolutional layers, followed by a fully

connected layer to predict the patient label. Building upon GCNs, Jiang et al. [97] introduce a hier-

archical GCN model for graph embedding learning of brain network and brain disorders prediction

by hierarchically learning deep representations from functional fMRI brain connectivity networks

in order to improve classification performance for disease diagnosis. Pan et al. [29] propose a

diagnosis classification framework that incorporates self-attention graph pooling and graph convo-

lutional networks by extracting features from the non-Euclidean brain network, as well as fusing

both imaging and non-imaging information with the aim to detect inter-group heterogeneity and

intra-group homogeneity regarding brain activities. While these approaches have shown promising

results in brain disease prediction tasks, they are, however, prone to the issue of oversmoothing.

4.3 Method

In this section, we introduce our notation and formulate the disease prediction problem as a semi-

supervised node classification task on population graphs, which are used to model pairwise re-

lations (edges) between subjects (nodes). Each graph node and edge weight are associated with

complementary imaging and non-imaging data, respectively. Then, we present the main building

blocks of the proposed network architecture for graph representation learning and semi-supervised

node classification.

4.3.1 Preliminaries and Problem Statement

Basic Notions. Let G = (V , E) be a graph, where V = {1, . . . , N} is the set of N nodes and

E ⊆ V × V is the set of edges. We denote by A = (Aij) an N × N adjacency matrix (binary
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or real-valued) whose (i, j)-th entry Aij is equal to the weight of the edge between neighboring

nodes i and j, and 0 otherwise. We also denote by X = (x1, ...,xN)
⊺ an N × F feature matrix of

node attributes, where xi is an F -dimensional row vector for node i.

Learning latent representations of nodes in a graph aims at encoding the graph structure into

low-dimensional embeddings, such that both structural and semantic information are captured.

More precisely, the purpose of network/graph embedding is to learn a mapping φ : V → RP that

maps each node i to a P -dimensional vector zi, where P ≪ N . These learned node embeddings

can then be used as input to learning algorithms for downstream tasks, such as node classification.

Problem Statement. Given the labels of a subset of the graph nodes (or their corresponding final

output embeddings), the objective of semi-supervised learning is to predict the unknown labels of

the other nodes. More specifically, let Dl = {(zi, yi)}Nl
i=1 be the set of labeled final output node

embeddings zi ∈ RP with associated known labels yi ∈ Yl, and Du = {zi}Nl+Nu

i=Nl+1 be the set

of unlabeled final output node embeddings, where Nl + Nu = N . Then, the problem of semi-

supervised node classification is to learn a classifier f : V → Yl. That is, the goal is to predict the

labels of the set Du.

It is important to note that for multi-class classification problems, the label of each node i (or

its final output embedding zi) in the labeled set Dl can be represented as a C-dimensional one-hot

vector yi ∈ {0, 1}C , where C is the number of classes with 0 and 1 representing “healthy” and

“diseased” status of the subjects, respectively.

4.3.2 Proposed Model

We now describe our proposed model, a two-stage approach for graph representation learning

and semi-supervised node classification. The aim is to learn discriminative node embeddings for

computer aided diagnosis. In the first stage, we construct a population graph, which is a vital

step in designing a GCN-based prediction model since GCNs rely on the affinity matrix between

subjects to update their layer-wise feature propagation rules. Hence, to fully exploit the expressive

power of GCNs, an appropriately constructed graph that accurately explains the similarity between

subjects is of paramount importance in graph representation learning, especially in computer aided

diagnosis tasks. In the second stage, we introduce a disease prediction model by leveraging graph

convolutional aggregation in conjunction with skip connections and identity mapping.
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Population Graph Construction

Following the population graph construction in graph convolutional networks for disease predic-

tion [4], we also combine both imaging and non-imaging data in our proposed approach. More

specifically, we model a population as a graph consisting of nodes representing subjects and edges

capturing pairwise similarities between subjects. Each node has a feature vector extracted from

imaging data, whereas each edge weight represents phenotypic (i.e. non-imaging) data. The graph

construction is shown in Figure 4.1, where the nodes are associated with imaging-based feature

vectors, while phenotypic (non-imaging) information is incorporated as edge weights.
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Figure 4.1: Graph construction from N subjects using imaging and non-imaging data. For imaging
data, we employ Automated Anatomical Labeling (AAL) to perform brain parcellation.

Let {M1, . . . ,MT} be a set of T non-imaging phenotypic measures such as a subject’s age or

gender. The adjacency matrix A = (Aij) of a population graph comprised of N subjects is defined

as

Aij = K(i, j)
T∑
t=1

d(Mt(i),Mt(j)), (4.1)

where K(i, j) = similarity(Si, Sj) denotes a kernel similarity between subjects Si and Sj (i.e. edge

weight between graph nodes i and j), and d is a pairwise distance between phenotypic measures.

The kernel similarity measure K(i, j) is given by

K(i, j) = exp
(
− ρ(xi,xj)

2

2σ2

)
, (4.2)

where σ is a smoothing parameter, which determines the width of the kernel, and ρ is the correlation
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distance between feature vectors xi and xj for nodes i and j, respectively,

ρ(xi,xj) = 1− (xi − x̄i)(xj − x̄j)
⊺

∥xi − x̄i∥∥xj − x̄j∥
, (4.3)

with x̄i = (xi1/N)1⊺ and x̄j = (xj1/N)1⊺ denoting row vectors whose elements are all equal to

the mean of the components of xi and xj , respectively, and 1 is an N -dimensional column vector

of all ones.

The pairwise distance between phenotypic measures is defined depending on the kind of phe-

notypic data incorporated in the graph. Most phenotypic data can be classified into two main

categories: qualitative (e.g. subject’s gender) and quantitative (e.g. subject’s age). For qualitative

data, the distance measure is defined as

d(Mt(i),Mt(j)) =

{
1 if Mt(i) = Mt(j)

0 otherwise.
(4.4)

and for quantitative data, it is given by

d(Mt(i),Mt(j)) =

{
1 if |Mt(i)−Mt(j)| < τ,

0 otherwise.
(4.5)

where τ is a given threshold.

Disease Prediction Model

Graph convolutional networks learn a new feature representation for each node such that nodes

with the same labels have similar features [21].

Feature Diffusion. We denote by Ã = A+ I the adjacency matrix with self-added loops, where

I is the identity matrix. The layer-wise feature diffusion rule of an L-layer GCN is given by

S(ℓ) = ÂH(ℓ), ℓ = 0, . . . , L− 1, (4.6)

where Â = D̃− 1
2 ÃD̃− 1

2 is the normalized adjacency matrix with self-added loops, D̃ = diag(Ã1)

is the diagonal degree matrix, and H(ℓ) ∈ RN×Fℓ is the input feature matrix of the ℓ-th layer with

Fℓ feature maps. The input of the first layer is the original feature matrix H(0) = X.

Aggregated Feature Diffusion. Inspired by the aggregation mechanism in graph sampling [23],

we define a layer-wise aggregated feature diffusion rule for node features in the ℓ-th layer as fol-

lows:

S(ℓ) = (Â⊙ Γ)H(ℓ), (4.7)
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where ⊙ denote element-wise matrix multiplication, and Γ = (γij) is an N × N aggregation

matrix. Each element γij is an aggregator normalization constant given by

γij =
Ci

Cij

, (4.8)

where Ci and Cij denote the number of times the node i ∈ V or edge (i, j) ∈ E appears in the

subgraphs of G = (V , E), respectively. These subgraphs are obtained by running the GraphSaint

sampler repeatedly before the training starts [23].

Learning Node Embeddings. Motivated by the good performance of graph sampling and iden-

tity mapping in alleviating the oversmoothing problem in graph representation learning [23, 24,

84, 98, 99], we propose an aggregator normalization graph convolutional network (AN-GCN) by

leveraging aggregation in graph sampling, as well as skip connections and identity mapping. The

output feature matrix H(ℓ+1) of our proposed AN-GCN model is obtained by applying the follow-

ing layer-wise propagation rule

H(ℓ+1) = σ

((
1− αℓ

)
(Â⊙ Γ)H(ℓ)

+ βℓ(Â⊙ Γ)H(ℓ)
(
I+W(ℓ)

)
+ αℓX+ βℓX

(
I+W(ℓ)

))
,

(4.9)

where αℓ and βℓ are nonnegative hyper-parameters in the interval [0, 1] and are often fine-tuned via

grid search, and σ(.) is a point-wise non-linear activation function such as ReLU(.) = max(0, .).

The use of skip connections ensures that the final representation of each node retains at least

a percentage αℓ of feature data from the input layer, while identity mapping not only imposes

regularization on the learnable weight matrix in order to avoid over-fitting, but it is also beneficial

to semi-supervised learning tasks where training data is limited [100].

Model Prediction. The embedding matrix Z = H(L) of the last layer of AN-GCN contains the

final output node embeddings, and captures the neighborhood structural information of the graph

within L hops. This final node representation can be used as input for node classification. To this

end, we apply a softmax classifier as follows:

Ŷ = softmax(Z), (4.10)

where Ŷ ∈ RN×C is the matrix of predicted labels for graph nodes, and C is the total number

of classes. The softmax classifier is a generalization of the binary logistic regression classifier

to multiple classes, and as the name suggests it uses the softmax function that turns a vector of C
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real-valued class scores into a vector of C normalized positive scores that sum to 1. In other words,

the softmax classifier returns probability scores for all classes.

Model Training. For semi-supervised multi-class classification, the neural network weight param-

eters are learned by minimizing the cross-entropy loss function

L = −
∑
i∈Yl

C∑
c=1

Yic log Ŷic, (4.11)

over the set Yl of all labeled nodes, where Yic is equal 1 if node i belongs to class c, and 0 other-

wise; and Ŷic is the (i, c)-element of the matrix Ŷ from the softmax function, i.e. the probability

that the network associates the i-th node with class c. During training, the network parameters are

updated using the Adam optimizer [101].
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Figure 4.2: Schematic layout of the proposed AN-GCN architecture.

4.4 Experiments

In this section, we conduct several experiments to assess the performance of the proposed AN-

GCN model on two standard datasets for disease prediction. More specifically, we address the

disease prediction problem as a semi-supervised node classification task, and the goal is predict the

label (i.e. clinical status) of a test node (i.e. subject) in a population graph as diseased or healthy,

where only a small number of nodes are labeled. The effectiveness of our model is validated

through experimental comparison with strong baseline methods. While presenting and analyzing

our experimental results, we aim to answer the following main research questions (RQs):

• RQ1: How does AN-GCN perform in comparison with state-of-the-art disease prediction

models?

• RQ2: How does AN-GCN alleviate the oversmoothing problem?

• RQ3: What is the effect of hyperparameters on the performance of AN-GCN?
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4.4.1 Experimental Setup

Datasets

We evaluate the proposed model on two large datasets, namely ABIDE and ADNI.

• ABIDE Dataset: The Autism Brain Imaging Data Exchange (ABIDE)1 initiative aggre-

gates resting-state functional magnetic resonance imaging (rs-fMRI) and phenotypic data of

1112 subjects from various international brain imaging laboratories. We select a set of 871

subjects, consisting of 403 ASD patients and 468 healthy controls (HCs). As a result of the

different acquisition sites, the ABIDE dataset is heterogeneous, and the aim is to separate

ASD subjects from healthy controls.

• ADNI Dataset: The Alzheimer’s Disease Neuroimaging Initiative (ADNI)2 is a North

American multisite study designed to develop clinical, neuroimaging techniques, biochemi-

cal and genetic biomarkers for the early detection and tracking of patients with Alzheimer’s

disease (AD), as well as subjects with mild AD, normal subjects, and subjects with mild cog-

nitive impairment (MCI). ADNI has recruited more than 1700 adults, aged 55 to 90 years,

from over 50 sites across the United States and Canada for its four studies (ADNI-1, 2, 3 and

-GO). We select a set of 573 participants, comprised of 402 HC individuals and 171 MCI

subjects. The aim is to predict whether an MCI subject will convert to AD.

Data Preprocessing

For fair comparison, we follow the same data preprocessing procedure laid out in the GCN base-

line [4]. For preprocessing of the ABIDE dataset, we use the Configurable Pipeline for the Analysis

of Connectomes (C-PAC), which includes skull stripping, slice timing correction, motion correc-

tion, global mean intensity normalization, nuisance signal regression, band-pass filtering (0.01-

0.1Hz), and registration of fMRI images to a standard anatomical space. Then, the mean timeseries

for a set of cortical and subcortical regions of interest (ROIs) extracted from the Harvard Oxford

atlas are computed and standardized using z-score normalization to ensure the timeseries distribu-

tions have mean zero mean and unit variance. The goal of z-score normalization is to transform

timeseries to be on a similar scale in an effort to improve the performance and training stability

of the model. Subsequently, we compute N connectivity matrices using the Pearson’s correla-

tion coefficient between the representative rs-fMRI timeseries of each ROI in the Harvard Oxford

atlas. Since z-scores are not necessarily normally distributed, we apply Fisher z-transformation,
1http://preprocessed-connectomes-project.org/abide/
2http://adni.loni.usc.edu/
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which is the inverse hyperbolic tangent function that converts Pearson’s correlation coefficient to

a normally distributed variable. In other words, the correlation matrices are Fisher transformed

in order to convert the skewed distribution of the correlation coefficient into a distribution that is

approximately normal. It is also worth pointing out that the variance of the Fisher transformed

distribution is independent of the correlation, whereas the variance of the sampling distribution

of the correlation coefficient depends on the correlation. For the edge weights of the population

graph on the ABIDE datset, we incorporate the subject’s gender, age and acquisition site as as

phenotypic measures. For the ADNI dataset, we parcellate each 3D brain volume into N ROIs

using Automated Anatomical Labeling (AAL), followed by computing the connectivity matrices

between timeseries. The edge weights of population graph on the ADNI dataset consist of the

subject’s gender and age as phenotypic measures. Since the correlation matrix is symmetric, it

suffices to use either its upper or lower triangular part. Hence, we take the upper triangular part

and vectorize it to obtain a feature vector whose dimension is then further reduced using recursive

feature elimination via a ridge classifier.

Performance Evaluation Metrics

A classification model’s performance is normally evaluated by applying it to test data with known

target values and comparing the predicted values to the known values. We use Accuracy (Acc),

Area Under Curve (AUC), Recall, Precision, F1 score, Matthews Correlation Coefficient (MCC),

and Cohen’s kappa (κ) as evaluation metrics, which are defined as

Acc =
TP + TN

TP + TN + FP + FN
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 =
2× Precision × Recall

Precision + Recall
,

MCC =
TP × TN − FP × FN√

(TP + FP)(TN + FP)(TP + FN)(TN + FN)
,

and

κ =
2× (TP × TN − FP × FN)

(TP + FP)× (TN + FP) + (TP + FN)× (TN + FN)
,

where TP, FP, TN and FN denote number of true positives, false positives, true negatives and false

negatives, respectively.
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The F1-score is defined as the harmonic mean of precision and recall. The harmonic mean is

more intuitive than the arithmetic mean when computing a mean of ratios. The F1-score will only

be high if both precision and recall have high values. This is due to the fact that the harmonic mean

of two numbers is always closer to their minimum.

We also use AUC, the area under the receiving operating characteristic (ROC) curve, as a metric.

AUC summarizes the information contained in the ROC curve, which plots the true positive rate

versus the false positive rate, at various thresholds. Larger AUC values indicate better performance

at distinguishing between healthy and diseased subjects. An uninformative classifier has an AUC

equal to 50% or less. An AUC of 50% corresponds to a random classifier (i.e. for every correct

prediction, the next prediction will be incorrect), whereas an AUC score smaller than 50% indicates

that the classifier performs worse than a random one.

Baseline Methods

We evaluate the performance of the proposed AN-DGCN model against various graph convolu-

tional based methods for computer aided diagnosis, including GCN for disease prediction [4],

multi-modal graph learning (MMGL) for disease prediction [28], DeepGCN for autism spectrum

disorder identification from multi-site resting-state data [27], InceptionGCN for disease predic-

tion [25], latent-graph learning (LGL) for disease prediction [26], edge-variational graph con-

volutional network (EV-GCN) for uncertainty-aware disease prediction [102], down-sampling and

multi-modal learning (DS-MML) for identifying autism spectrum disorder [29], hierarchical graph

convolution network (HI-GCN) for brain disorders prediction [97], brain connectivity via graph

convolution network (BN-GCN) for Alzheimer’s Disease [103], and mutual multi-scale triplet

graph convolutional network (MMTGCN) for brain disorders classification [30]. We also com-

pare our model to logistic regression, gradient boosting, and tensor-train, high-order pooling and

semi-supervised learning-based generative adversarial network (THS-GAN) [104].

Implementation Details

All experiments are carried out on a Linux workstation running Intel(R) CPU 2.40 GHz and 128-

GB RAM with an V100-SXM2 16-GB GPU. The proposed model is implemented in PyTorch

and trained for 150 and 100 epochs on the ABIDE and ADNI datasets, respectively, using Adam

optimizer with a learning rate of 10−3. The values of the hyperparameters αℓ and βℓ are set to 0.1

and 0.3 for the ABIDE dataset, and 0.1 and 0.2 for the ADNI dataset, respectively, via grid search

with cross-validation on the training set. We use a stratified 10-fold cross-validation strategy. We

also set the number of layers for our model to L = 10. The training is stopped when the validation
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loss does not decrease after 10 consecutive epochs. The values of the cross-entropy metric are

recorded at the end of each epoch on the training set. The performance comparison plots of AN-

GCN and GCN over training epochs on the training set of the ABIDE dataset are visualized in

Figure 4.3, which shows that both models yield comparable training loss values. However, as

the number of epochs increases, our model yields lower training loss values, indicating better

predictive accuracy.
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Figure 4.3: Model training history comparison between GCN and our AN-GCN model on the
ABIDE dataset.

4.4.2 Experimental Results and Analysis

In order to answer RQ1, we report the classification performance of AN-GCN and baseline meth-

ods in Table 4.1 using seven evaluation metrics, including average accuracy, AUC and F1-score.

Each metric is averaged across all test samples. As can be seen, the results show that our model

outperforms all the baseline methods on the ABIDE dataset, achieving relative improvements of

50.33%, 34.10%, 50.33%, 12.25% and 50.33% over GCN in terms of accuracy, AUC, F1-score,

recall and precision, respectively. The relative improvements over GCN are significant in terms

of κ and MCC. Compared to the strongest baseline, our model outperforms DS-MML by relative

improvements of 10.60%, 5.28% and 11.70% in terms of accuracy, AUC and recall, respectively.

Similarly, we report the performance comparison results of our model and baseline methods

on the ADNI dataset in Table 4.2, which also shows that AN-GCN performs better than all the

competing baselines. Our model yields relative improvements of 15.61%, 8.66%, 14.13% and

15.70% over GCN in terms of accuracy, AUC, F1-score and precision, respectively. Moreover,
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Table 4.1: Performance comparison of our model and baseline methods on the ABIDE dataset us-
ing various evaluation metrics (%). Boldface numbers indicate the best classification performance.

Accuracy AUC F1-score Recall Precision κ MCC
Method

Logistic Regression 61.03 68.05 70.19 88.42 58.4 19.85 25.13
Gradient Boosting 59.97 62.04 62.24 63.48 61.34 19.53 19.67
GCN [4] 64.63 72.23 64.63 86.33 64.63 26.64 30.16
InceptionGCN [25] 72.69 72.81 79.27 - - - -
EV-GCN [102] 80.83 84.98 81.24 - - - -
LGL [26] 84.69 84.46 - - - - -
HI-GCN [97] 66.50 72.10 - 65.30 - - -
MMGL [28] 86.95 86.84 - - - - -
DeepGCN [27] 73.71 75.20 69.68 - - - -
DS-MML [29] 87.62 92.00 - 86.76 - -

AN-GCN (Ours) 96.91 96.86 97.16 96.91 97.00 93.76 93.86

AN-GCN significantly outperforms GCN in terms of recall, κ and MCC. In addition, our model

outperforms the strongest baseline (i.e. BCN-GCN) by relative improvements of 5.76% and 4.36%

in terms of accuracy and AUC, respectively.

Table 4.2: Performance comparison of our model and baseline methods on the ADNI dataset using
various evaluation metrics (%). Boldface numbers indicate the best classification performance.

Accuracy AUC F1-score Recall Precision κ MCC
Method

Logistic Regression 58.71 51.61 68.80 58.71 59.67 04.48 04.04
Gradient Boosting 65.21 68.57 65.21 71.83 65.21 29.52 29.95
GCN [4] 84.98 89.32 84.89 58.82 84.98 60.37 62.58
HI-GCN [97] 75.40 75.60 - 66.40 - - -
BCN-GCN [103] 92.90 93.00 - - - - -
MMTGCN [30] 86.00 90.30 - 86.90 - - -
THS-GAN [104] 85.71 85.35 87.27 88.89 85.71 - -

AN-GCN (Ours) 98.25 97.06 96.89 98.25 98.33 95.68 95.84

In order to visually compare the performance of the proposed model to the baseline methods,

we use box plots across all the folds on the ABIDE and ADNI dataset using accuracy and AUC as

evaluation metrics, as shown in Figures 4.4 and 4.5. A box plot is a simple method for graphically

depicting groups of numerical data through their quartiles, and it is commonly used to assess and

compare the shape, central tendency, and variability of sample distributions, as well as to identify
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outliers. The box and whiskers show how the data is spread out. On each box, the central line

represents the median, and the bottom and top edges of the box indicate the first and third quartile,

respectively. The whiskers extend from the edges of the box to the lower and upper inner fences

to show the range of the data. The fences are defined in terms of the inter-quartile range, and any

value that falls outside the fences in considered as an outlier.

Figure 4.4 shows that our model outperforms the competing baselines in terms of the accuracy

and AUC metrics for all the 10-folds. The higher the accuracy and AUC scores, the better the

model distinguishes between patients suffering from ASD and healthy controls. As can be seen

in Figure 4.4, the distribution of our model has less variability than GCN, gradient boosting and

logistic regression in autism spectrum disorder prediction tasks. For instance, the median accuracy

score for AN-GCN on the ABIDE dataset indicates significant difference in performance between

our model and the three baseline methods. In addition, the box for AN-GCN is short, meaning

that the accuracy values consistently hover around the average accuracy. However, the boxes for

three baselines are taller, implying variable accuracy and AUC values compared to AN-GCN. We

can also observe that the whisker is longer on the lower end of the box for GCN, indicating the

distribution of both accuracy and AUC values is negatively skewed. For our AN-GCN model, the

whisker lengths are short and roughly of the same length, indicating lower standard deviation and

data symmetry, respectively.

Similarly, the box plots shown in Figures 4.5 indicate that our AN-GCN model outperforms the

three baseline methods on the ADNI dataset in terms of both accuracy and AUC metrics. Interest-

ingly, the box plot for GCN exhibits an outlier for accuracy values, as well as longer whiskers for

AUC values. In addition, the box for the logistic regression is much taller than the other methods,

indicating high variability in accuracy and AUC values. Gradient boosting also exhibits an outlier

for AUC values.

We also evaluate the performance of our model against competing baselines using the precision-

recall (PR) and receiver operating characteristic (ROC) curves on both ABIDE and ADNI datasets.

The PR curve summarizes the trade-off between the true positive rate and the positive predictive

value for a predictive model using different probability thresholds. Precision is a measure of result

relevancy, while recall is a measure of how many truly relevant results are returned. A high area

under the PR curve represents both high recall and high precision, where high precision relates

to a low false positive rate, and high recall relates to a low false negative rate. Moreover, a PR

curve that is closer to the upper left indicates a better performance. On the other hand, the ROC

curve summarizes the trade-off between the true positive rate and false positive rate for a predictive

model using different probability thresholds. The area under the ROC curve (AUC) is a measure
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Figure 4.4: Comparative box plots of our model and baseline methods on the ABIDE dataset using
accuracy and AUC scores over all cross-validation folds.

of discrimination in the sense that a model with a high AUC suggests that the model is able to

accurately predict the value of an observation’s response. Moreover, an ROC curve that is closer

to the upper right indicates a better performance (i.e. true positive rate is higher than false positive

rate).

Figures 4.6 and 4.7 show that our model yields the best performance compared to the baselines

on both ABIDE and ADNI datasets. As can be seen, the PR (resp. ROC) curve of our model

is much closer to the upper right (resp. left) than the corresponding curves for the baselines,

indicating the better performance of AN-GCN in disease prediction tasks. In the ROC curves,
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Figure 4.5: Comparative box plots of our model and baseline methods on the ADNI dataset using
accuracy and AUC scores over all cross-validation folds.

the diagonal dashed line, which depicts a random algorithm (i.e., random guessing of classes),

divides the ROC space. Points above the diagonal represent good classification results (better than

random), points below the line poor results (worse than random). Notice that the ROC curves of

the logistic regression and gradient boosting are closer to the diagonal line on the ABIDE dataset,

indicating poor classification performance.

Overall, our AN-GCN model outperforms GCN and the other baselines significantly and con-

sistently across all datasets, achieving state-of-the-art results in terms of various performance eval-

uation metrics. In particular, our model improves over the GCN baseline by a big margin. Another

78



0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

LR (AP = 63.05%) 
GB (AP = 64.02%)
GCN (AP = 76.88%) 
AN-GCN (AP = 99.00%)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

LR (AUC = 51.27%)
GB (AUC = 55.67%)
GCN (AUC = 91.47%)
AN-GCN (AUC = 99.08%)

Figure 4.6: Precision-Recall and ROC curves of our model and baseline methods on the ABIDE
dataset. Average precision (AP) and AUC values are enclosed in parentheses.

key observation is that AN-GCN also outperforms DeepGCN, yielding relative improvements of

31.47%, 28.80% and 39.44% over GCN in terms of accuracy, AUC and F1-score, respectively, on

the ABIDE dataset.

4.4.3 Parameter Sensitivity Analysis

In order to answer RQ2 and RQ3, we analyze the sensitivity of our disease prediction model to

the choice of the number of network layers and the batch size. As the number of network layers
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Figure 4.7: Precision-Recall and ROC curves of our model and baseline methods on the ADNI
dataset. Average precision (AP) and AUC values are enclosed in parentheses.

plays an important role, we first study how the performance changes as a function of the network

depth. Then, we study the performance variation for our model with respect to the batch size on

both ABIDE and ADNI datasets.

Mitigating the Oversmoothing Problem. To evaluate the robustness of our approach to over-

smoothing, we study the performance variation for our multi-layer AN-GCN model on the ABIDE

and ADNI datasets with respect to the number of layers. Figure 4.8 shows how the node classifi-

cation accuracy changes with the network’s depth. As can be seen, the performance of AN-GCN
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does not significantly degrade compared to GCN when the number of layers increases. Moreover,

the performance gap between AN-GCN and GCN becomes quite noticeable when the network’s

depth rises. Hence, the classification performance of AN-GCN remains relatively stable as we

increase the number of layers, demonstrating the robustness of our model against oversmoothing.

This is largely due to the fact that the aggregation scheme of the proposed approach leverages

residual connections to help alleviate the oversmoothing problem.
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Figure 4.8: Performance comparison of AN-GCN and GCN on the ABIDE (top) and ADNI (bot-
tom) datasets as we increase the number of layers.

Effect of Batch Size. We test the performance of our model using different values for the batch

size on the ABIDE and ADNI datasets. As shown in Figure 4.9, the classification accuracy in-
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creases rapidly at the beginning (i.e. for smaller batch sizes), reaching the highest value when the

batch size is equal to 1000, and then slowly starts to decline on the ABIDE dataset or slows down

on the ADNI dataset. This indicates that the batch size also plays an important role. In fact, we can

observe that using a large batch size to train our model allows computational speedups from the

parallelism of GPUs, but a larger batch size leads to poor generalization. It should also be pointed

out that the drawback of using a smaller batch size is that the model is not guaranteed to converge

to the global optimum.
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Figure 4.9: Sensitivity analysis of our model to the batch size on the ABIDE and ADNI datasets.

4.5 Conclusion

In this chapter, we introduced an end-to-end graph convolutional aggregation model by learning

discriminative node representations from a population graph, consisting of subjects as nodes and

edges as connections between subjects, with the goal to predict the status of each subject (i.e. dis-

eased or healthy control) using imaging and non-imaging features associated to the graph nodes

and edges, respectively. The proposed framework leverages skip connections and identity map-

ping, as well as aggregation in graph sampling in a bid to alleviate the problem of over-smoothing

in graph convolutional networks. We demonstrated through extensive experiments that our model

outperforms existing graph convolutional based methods for disease prediction on two large bench-

mark datasets, achieving significant relative improvements in classification accuracy over GCN and

other strong baselines.
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5
Conclusions and Future Work

This thesis has presented several solutions to the carpal bone surface denoising, pediatric bone

age assessment, and brain disorder prediction problems. We formulated our proposed surface de-

noising method as a constrained optimization whose objective function is comprised of a fidelity

term specified by a noise model and a regularization term associated with data prior. We solved

this constrained minimization problem iteratively using the conjugate gradient method, which is a

commonly used iterative algorithm for solving sparse systems of linear equations. We also devel-

oped a unified deep learning framework for bone age assessment using instance segmentation and

ridge regression in order to detect if bone maturity occurs at a rate compatible with the chrono-

logical (actual) age. We developed a regression network architecture for bone age assessment

using a pre-trained deep learning model in conjunction with a regularized regression output layer.

For radiograph segmentation, we leveraged Mask R-CNN, a region-based convolutional neural

network for instance segmentation. In addition, we proposed an aggregator normalization graph

convolutional network for developmental and brain disease prediction. We employed an aggrega-

tor normalization mechanism for feature propagation in an attempt to eliminate bias in minibatch

estimation. We integrated both imaging and non-imaging features into the graph structure and

formulated the disease prediction problem as a semi-supervised node classification on popula-

tion graphs. Experimental results demonstrated that the proposed approaches outperform existing

baseline methods in the literature. In Section 5.1, we summarize the contributions made in each

of the previous chapters, as well as the conclusions obtained from the associated research work.

In Section 5.2, we discuss the limitations of the proposed approaches. Finally, we point out future

research directions related to this thesis in Section 5.3.
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5.1 Contributions of the Thesis

5.1.1 Carpal Bone Surface Denoising

In Chapter 2, we developed a feature-preserving approach to carpal bone surface denoising. The

proposed method is formulated as a constrained optimization problem whose regularized objective

function includes a fidelity term determined by a noise model and a regularization term specified

by the prior data. Minimizing the fidelity terms yields a solution as close as possible to the input,

while minimizing the regularization term yields a smooth solution. Both terms are weighted by a

normalized mesh Laplacian, which is defined in terms of a data-adaptive kernel similarity matrix

together with matrix balancing. The qualitative and quantitative evaluation results demonstrated

that our approach offers superior performance over existing mesh denoising techniques.

5.1.2 Pediatric Bone Age Assessment

In Chapter 3, we introduced a unified framework for pediatric bone age assessment by leveraging

instance segmentation and ridge regression. We presented a hand segmentation and annotation

model for radiographic images, followed by background removal. In order to learn salient features

from the segmented radiographs, we designed a regression neural network architecture composed

of a pre-trained convolutional neural network. Extensive experiments demonstrated the competi-

tive performance of the proposed framework in comparison with baseline approaches for bone age

assessment.

5.1.3 Classification of Developmental and Brain Disorders

In Chapter 4, we proposed an aggregator normalization graph convolutional network with skip con-

nections and identity mapping with the goal to detect neurodevelopmental and neurodegenerative

brain disorders, as well as to predict the status of each subject (i.e. diseased or healthy control). We

formulated the disease prediction problem as a semi-supervised node classification on population

graphs. The proposed approach learns discriminative graph node representations by incorporating

both imaging and non-imaging features into the nodes and edges of the graph, respectively. Each

graph node represents a subject with an associated feature vector extracted from imaging data, and

each edge captures similarities between a pair of subjects with non-imaging data integrated into

the edge weight. We demonstrated through extensive experiments that our proposed model out-

performs strong baselines on two large benchmark datasets for the prediction of autism spectrum

disorder and Alzheimer’s disease.
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5.2 Limitations

While the proposed denoising method is able to remove undesirable noise while preserving im-

portant geometric features of carpal bone surfaces in an effective manner, it does, however, rely

on a matrix balancing procedure, which requires matrix inversion to find the filtering matrix. The

limitation may reduce the computational efficiency of our surface denoising algorithm, particularly

on large meshes with thousands of nodes.

For bone age assessment, the main limitation of using Mask R-CNN for instance segmentation

is that it treats part of the background in an image as foreground, resulting in inaccurate target

segmentation. Also, Mask R-CNN often fails to detect objects when motion blur is present. On

the other hand, the proposed aggregator normalization graph convolutional network for disease

prediction employs first-order graph convolutions; thereby, it does not capture long-range depen-

dencies between subjects in a population graph. Using multi-hop neighborhoods for node feature

aggregation can help not only in capturing the long-range dependencies between subjects, but also

in alleviating the oversmoothing problem, where repeated graph convolutions make learned node

embeddings indistinguishable.

5.3 Future Work

Several interesting research directions, motivated by this thesis, are discussed below:

5.3.1 Graph Convolutional Networks for Carpal Bone Surface Denoising

We plan to explore the use of graph convolutional networks (GCNs) for carpal bone surface de-

noising. The main idea is to learn a graph representation for each surface patch, followed by graph

convolution, face normal refinement of the surface patches, and a vertex updating scheme defined

in terms of neighboring faces and denoised face normals. We also intend to incorporate edge-aware

filters to tackle data-driven geometry processing problems.

5.3.2 Graph Convolutional Networks for Brain Age Prediction

Understanding how the brain develops is vital to designing prediction models for a multitude of

developmental disorders and degenerative neurological disorders such as autism spectrum disorder,

Alzheimer’s disease, dementia and multiple sclerosis. The gap between the estimated brain age and

the chronological age of a patient can help predict the risk of these disorders with good accuracy

in seemingly healthy patients. To address this challenging problem of brain age estimation, we
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plan to use populations graphs in conjunction with a higher-order aggregator normalization graph

convolutional network (AN-GCN) by integrating both imaging and nonimaging features into the

graph nodes and edges, respectively. We also intend to explore the robustness of the AN-GCN

architecture to node noise and edge sparsity in a bid to estimate the generalizability of graph

convolutional networks to real clinical settings. The key idea is to perform brain age estimation by

fitting a model that predicts the chronological age for healthy subjects in the training set, and then

applying it to the remaining population in the test set.

5.3.3 Spatial-Temporal Graph Convolutional Networks for Gait Recognition

Abnormal gaits are typically caused by geriatric degenerative and neurological disorders, such as

Alzheimer’s disease, Parkinson’s disease and stroke, and can result in a lower quality of life for

patients [105]. The human body skeleton can be modeled as a graph, where body joints represent

nodes and bones represent edges. We aim to apply spatial-temporal graph convolutional networks

to skeleton-based abnormal gait recognition. More precisely, we intend to model the structural

information between body joints along both the spatial and temporal dimensions by defining a gait

sequence as an undirected graph. To this end, we plan to tackle the gait recognition problem from

a short sequence of 2D joint detections by exploiting spatial and temporal relationships. The edge

set of the graph consists of spatial and temporal connections. The former include both direct and

indirect kinematic dependencies in each frame, while the latter link each joint to its counterpart in

the neighboring frames.
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