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Abstract

Architectures and Algorithms for Content Delivery in Future Networks

Marsa Rayani, Ph.D.

Concordia University, 2022

Traditional Content Delivery Networks (CDNs) built with traditional Internet technology are

less and less able to cope with today’s tremendous content growth. Enhancing infrastructures

with storage and computation capabilities may help to remedy the situation. Information-Centric

Networks (ICNs), a proposed future Internet technology, unlike the current Internet, decouples

information from its sources and provides in-network storage. However, content delivery over in-

network storage-enabled networks still faces significant issues, such as the stability and accuracy

of estimated bitrate when using Dynamic Adaptive Streaming (DASH). Still Implementing new

infrastructures with in-network storage can lead to other challenges. For instance, the extensive

deployment of such networks will require a significant upgrade of the installed IP infrastructure.

Furthermore, network slicing enables services and applications with very different characteristics

to co-exist on the same network infrastructure.

Another challenge is that traditional architectures cannot meet future expectations for streaming

in terms of latency and network load when it comes to content, such as 360° videos and immersive

services. In-Network Computing (INC), also known as Computing in the Network (COIN), allows

the computation tasks to be distributed across the network instead of being computed on servers to

guarantee performance. INC is expected to provide lower latency, lower network traffic, and higher

throughput. Implementing infrastructures with in-network computing will helps fulfill specific

requirements for streaming 360° video streaming in the future. Therefore, the delivery of 360°
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video and immersive services can benefit from INC.

This thesis elaborates and addresses the key architectural and algorithmic research challenges

related to content delivery in future networks. To tackle the first challenge, we propose algorithms

for solving the inaccuracy of rate estimation for future CDNs implementation with in-network

storage (a key feature of future networks). An algorithm for implementing in-network storage

in IP settings for CDNs is proposed for the second challenge. Finally, for the third challenge

we propose an architecture for provisioning INC-enabled slices for 360° video streaming in next-

generation networks. We considered a P4-enabled Software Defined network (SDN) as the physical

infrastructure and significantly reduced latency and traffic load for video streaming.
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Chapter 1

Introduction

1.1. Overview

The tremendous growth of video traffic is bringing new challenges (e.g., scalability, efficiency

in content distribution) that current CDNs are less and less able to meet. CDNs are designed to

deliver requested content at a reasonable cost and at the required QoS; however, the current CDNs

face performance, reliability, and scalability challenges [5]. The ICN has emerged as an alternative

to the current IP-based Internet architecture. It offers features such as in-network storage that may

help to meet the challenges faced by the current CDNs by enhancing the infrastructure [6]. In

addition, requests for content in ICN-based CDNs can be served by several routers that are closer

to end-users than surrogate servers, thereby enhancing performance and scalability.

Unfortunately, ICN-based CDNs still face many challenges. For instance, the rate-based DASH

framework currently in use in CDNs does not function well in storage-enabled infrastructure [7]. In

DASH, video files are encoded with different qualities or bitrates. DASH enables clients to adapt to

different network conditions by requesting appropriate video segments. A DASH client computes

the Round-Trip Time (RTT) of each segment it requests and receives and then uses it to estimate

the RTT of the next segment. The quality requested for the next segment is decided accordingly.

In IP networks, the assumption is that all segments are retrieved from the same server. However,
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this assumption does not hold in an ICN, because segments might be retrieved from intermediate

routers due to the presence of in-network storage in ICN routers. Furthermore, the ICN in-network

storage feature can introduce oscillations in rate estimation thus lead to unstable streaming. The

European Telecommunication Standards Institute’s (ETSI) Multi-Access Edge Computing (MEC)

paradigm can tackle this issue. MEC provides cloud computing capabilities at the edge of mobile

networks [8]. Network-assisted rate estimation on the MEC server can help solve inaccuracy and

instability issues for rate-based adaptive streaming over core networks with in-network storage.

Yet another challenge is that the extensive deployment of ICN-based CDNs is very costly for

infrastructure providers, as it requires a significant changes, including replacing the installed IP

routers with ICN routers that have in-network storage. Network Slicing can address the aforemen-

tioned challenge by enabling the co-existence of virtual networks with different characteristics on

top of the same physical network. A slice is a set of either virtual (e.g., VMs) or physical resources

that an infrastructure provider can assign to a tenant based on the description of what the tenant re-

quires [9]. Business roles have been proposed for slicing in the 5G ecosystem. CDN providers can

rely on slicing to build a virtual core network with in-network storage on top of a physical infras-

tructure that supports traditional IP routers but does not support routers with in-network storage.

The key benefit is that content delivery can be performed over a network with traditional IP routers

or over a network with routers with in-network capability, both on top of the same infrastructure in

a flexible and cost-efficient manner, and simultaneously. Network slicing thus ensures extra profit

for CDN operators and infrastructure providers by facilitating multi-tenancy and by improving net-

work coverage to meet adaptability and flexibility requirements. Network Function Virtualization

(NFV) [10] is an emerging paradigm that makes slicing possible. NFV uses virtualization technol-

ogy to decouple a physical network’s resources from the functions running on top of it to provide

agility, flexibility, and dynamicity.

Users’ interest in improving their video streaming experience has increased considerably in the

last few years. As a result, immersive Virtual Reality (VR) and 360° video technologies are ad-

vancing tremendously. Devices such as Head-Mounted Displays (HMDs), mobile devices, PCs,
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etc., are equipped with sensors, processing, and display features that enable them to receive, pro-

cess, and stream immersive 360° videos. However, handling these steps in streaming 360° videos

is quite challenging, as it involves large amounts of data (requires higher bandwidth) and is a very

low latency-sensitive application. Leveraging computing in the network can help to improve net-

work performance and overcome the above-mentioned challenges. Software Designed Networks

(SDNs) [11] enables a technology that separates the control and data planes and allows networks

to be programmed using open interfaces. Integrating in-network computing with SDNs can enable

programmability and flexibility to improve future CDNs.

1.2. Thesis Contributions

Future network content delivery can be improved by enhancing infrastructures and addressing

the related challenges.

1.2.1 An Algorithm for Improving the Accuracy and Stability of Rate-based

Adaptive Streaming Over Networks with In-network Storage [1].

A network with in-network storage capability allows contents to be conveyed closer to end-

users. This capability has been broadly cited for its success at improving content delivery networks.

The ICN architecture offers in-network storage and has several characteristics that can help to

improve CDNs. However, ICN based CDNs still face many challenges. For instance, the rate-

based DASH framework currently used in CDNs does not function well in ICN settings. In IP

networks, the assumption is that all segments are retrieved from the same server, i.e., the surrogate

server. Unfortunately, this assumption does not hold in ICNs, because segments might be retrieved

from intermediate routers due to the presence of in-network storage in ICN routers. Furthermore,

the ICN in-network storage feature can introduce oscillations in rate estimation. In our work, we

tackle the algorithmic challenges for rate-based dynamic adaptive streaming in networks with in-

network storage. We target the accuracy of the estimated rate and the stability of the streaming in
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these networks. The goal is to maximize the QoE by ensuring a more accurate rate for the next

segment and thus stable streaming. In addition, an overall system view that includes the MEC

server is proposed.

1.2.2 An Algorithm for the Implementation of In-network Storage in Tradi-

tional IP Settings [2], [3].

The deployment of in-network storage is very costly for network providers. Furthermore, it

requires substituting the traditional IP routers with routers that have storage. Network Slicing

enables the co-existence of virtual networks with different characteristics over the same physical

network. A slice is a set of either virtual (e.g., VMs) or physical resources that an infrastructure

provider can assign to a tenant based on the description of what the tenant requires. Slicing physical

infrastructure to build a virtual network with in-network storage (i.e., an ICN core network) is

challenging and worth investigating. Embedding a core network slice with in-network storage

on top of traditional infrastructure while ensuring the profit of the infrastructure provider can be

helpful. In addition, the QoS constraints for different levels of caching are significant.

1.2.3 An Architecture for Provisioning In-Network Computing enabled Slices

for 360° Video Streaming [4].

Many applications require performance improvements that cannot be provided with the cur-

rent internet architecture, i.e., 360° video streaming and immersive services. Deploying computa-

tion functionality can help the overall performance enhancement to meet these applications’ future

needs, such as low latency and high traffic load. Furthermore, INC provides a promising solution

to flexibly managing dynamic changes. INC can reduce latency and traffic load by monitoring

network resources (i.e., telemetry), load balancing, congestion control, and reliability. Therefore,

architectures for provisioning INC-enabled slices need to be rethought and tested for the application

of 360° video streaming.
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1.3. Background Information

This sub-section presents the background information that is relevant to the domain of this

research. The background information covers content delivery networks, in-network storage and

in-network computing. Network slicing is also covered because it is a technology used in the

solutions proposed in the thesis for in-network storage and in-network computing implementation.

1.3.1 Content Delivery Networks

This sub-section covers the content delivery networks today, dynamic adaptive streaming over

HTTP as a well used method of video streaming, and the descriptions related to 360° video stream-

ing.

A) Content Delivery Networks Today

A Content Delivery Network (CDN) [12] consists of origin servers, surrogate or replica servers,

and controllers. The content is stored on the origin server, and copies of that content are distributed

over different surrogate/replica servers. The surrogate servers offload the content providers’ origin

servers by hosting the replicated content and delivering transparent and efficient content to the end-

users. The role of the controller is to redirect users’ requests to the most appropriate surrogate

server based on content availability, network conditions, cost, etc. CDNs are designed to deliver

the requested content at a reasonable cost and the required quality of experience by making the

services faster and more reliable. They have emerged to improve network performance and content

distribution by offering mechanisms and infrastructures to deliver content to many end-users. The

analysis of current CDNs reveals that, at the minimum, a CDN focuses on the following business

goals: scalability, security, reliability, responsiveness, and performance [13].

Each CDN architecture has three main components; content provider, CDN provider, and end-

users. A content provider delegates the URI namespace of the web objects. The origin server of
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the content provider holds those objects. A CDN provider is a proprietary organization or com-

pany that provides infrastructure facilities to content providers to deliver content in a timely and

reliable manner. End-users or clients are entities who access content from the content provider’s

website [14]. CDN provider uses surrogate servers at different geographical locations to distribute

content. Client requests are redirected to the nearby surrogate server, and a selected one delivers

the requested content to the end-users. Figure 1.1. illustrates CDN architectural components.

Figure 1.1: CDN architectural components.

B) Dynamic Adaptive Streaming

In the early 2000s, Hypertext Transfer Protocol (HTTP) over Transmission Control Protocol

(TCP) became the primary protocol for content delivery over the Internet [15]. Using the appli-

cation layer buffers to pay for the rate fluctuations of TCP and leveraging HTTP on top of TCP

proved beneficial for video delivery. The preliminary implementation of video delivery over HTTP
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is called progressive download. The client downloads the whole video file as the TCP connec-

tion supports. The drawback to progressive downloading is that clients with different network

connections receive the same video quality. This issue led to the appearance of Dynamic Adap-

tive Streaming over HTTP (DASH) in the mid-2000s. The critical differences between DASH

and previous protocols for streaming are: DASH is on top of TCP, while earlier protocols were

UDP-based. DASH is a client-driven approach, and the client drives the algorithm in a pull-based

manner. DASH deals with content in chunks instead of continuous video packets [16].

In the principles of DASH, video files are encoded into different versions with different qual-

ities or representation bitrates. Each video is fragmented into segments of given lengths between

2 to 10s, and the client can smoothly shift between bitrates if necessary. All the video files’ infor-

mation is described in an XML file called Media Presentation Description (MPD), including video

metadata, codec, server IP address, download URL for each segment, etc. [15]. A client starts

requesting the MPD and video segments by HTTP GET, and the requests are served using HTTP

servers. In DASH, the main goal is to prevent unwanted stalls and increase QoE for the users. A

DASH client can adapt to the different available bandwidths of the network by requesting different

bitrates. HTTP client sends an HTTP request for the first video segment using the MPD, then based

on the ABR algorithm, it selects a proper bitrate for the next segment. The client can dynamically

adapt to the fluctuating bandwidth to provide a better QoE. DASH strategies classifies into two main

categories : Rate-based (RB) or Buffer-based (BB) [17]. The main idea of RB adaptation is to use

the throughput of the last downloaded segment and estimate the throughput of the next segment to

ideally request the highest affordable quality. There are some drawbacks to the pure RB algorithms

[18]. These drawbacks include the need for rebuffing, bandwidth under-utilization, overestimation,

instability, and unfairness. Instead, the main idea of BB adaptation is to request the segment with

a proper quality based on the current buffer occupancy. The buffer is divided into different ranges

and different actions occur based on the buffer levels. For example, when the buffer level is low

(the buffer is empty or below a certain threshold), the algorithm requests the lowest quality to avoid

re-buffering. The highest quality can be requested down the road when the buffer level is above a
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certain threshold. The accumulated segments in the buffer have the effect of a cushion to absorb

small bandwidth fluctuations. On the other hand, unnecessary quality switches can happen if the

number of available qualities is high compared to buffer ranges [19]. Since ”DASH” is a standard

abbreviation, we will use it for both IP and ICN networks in this thesis. Figure 1.2 shows the DASH

principle.

Figure 1.2: DASH principle.

C) 360° Video Streaming

Due to the recent improvements in Virtual Reality (VR) technology, 360° video streaming is in-

creasingly remarked and used. The omnidirectional 360° videos deliver panoramic views and allow

users to control their observing direction throughout the video streaming [20]. 360° video stream-

ing has different actors. It involves a user who wears a Head-Mounted Display (HMD) device to

interact with the streaming video. Another actor is the content providers who produce/capture,

pre-process and stream the 360° videos. Finally, the network provider and infrastructure provider
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transmit and distribute the videos to the users.

Adopting real scenarios of 360° video streaming to current networks is highly challenging.

Some of these challenges are the higher bandwidth, lower latency requirements, and dealing with

vast amounts of data. Mobility adds extra challenges related to radio resources and bandwidth

limitations. The excessive amount of data affects the device’s energy consumption, and it is not

feasible for all devices to playback the video. Handling the streaming is highly time-sensitive

compared with traditional streaming.

1.3.2 In-Network Storage

This subsection describes Information-Centric Networks (ICNs) as a well-known architecture

with in-network storage capability. The general principles of ICNs are discussed, followed by their

routing and in-network storage characteristics. Finally, ICN architecture and video streaming in

networks with in-network storage such as ICN are presented.

A) General Principles of Information-Centric Networks

The Information-Centric Network (ICN) [21] has emerged as a future Internet architecture. ICN

introduced a new networking scheme around a decade ago, focusing on content delivery instead of

host-centric. In ICN, the required data is more significant than who is communicating or where the

data is located. All the network processes, such as transport, forwarding, caching, etc., deal with

named data instead of the locations of the data. So it can be said that ICN addresses information

by location-independent identifiers. ICN transport has been enhanced so that instead of using the

sender-receiver TCP/IP scheme, it uses pull-based transport with a connectionless and multipath

network. ICN has in-network storage capabilities to reuse data with dynamic forwarding.

There are principal elements to any architecture design in ICN. One of the elements of ICN

architecture is the structure of naming data objects which is as crucial as naming hosts for the

current Internet. Each data object should have a unique name independent of its location. Some

naming scheme has been primarily presented, such as hierarchical (very similar to the structure of
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URLs) and flat namespace [21]. Routing is about constructing a path and satisfying the request by

routing the object back to the client who requested it. Matching the name information to a source to

supply the information is defined as name resolution. The routing and name resolution components

are either integrated (coupled) or independent (decoupled). In the coupled approach, data will be

routed to the information provider, who sends back the requested content in the reverse path. While

in the decoupled one, the name resolution is not restricted to the path that data comes from.

B) ICN Routing

The vast number of works in the ICN research keeps the routing simple and focused on design-

ing other parts such as caching techniques. One of the simple routing algorithms is the shortest

path algorithm used in ICN proposals and for testing very widely. We summarize some of the rout-

ing algorithms for ICN from the literature [22]. One of the routing protocols is the Breadcrumbs

algorithm. In the Breadcrumbs, there is a table of tracked routing information in each cache. Each

entry is named a breadcrumb which tracks the time of download, the id of the cache that provides

the downloaded content, and the receiver cache where the content is forwarded to it. Requests are

forwarded based on the breadcrumb entries at each cache. In the Hash-Routing scheme, there is a

need for both edge and cache routers to implement a hash function. When an Interest arrives at the

edge router, the router calculates a hash function to find where the requested content is available. In

Characteristic Time Routing (CRT), each user has a time-to-live (TTL) based table and forward In-

terests based on the entries of that table. TTL information is populated based on the Characteristic

Time for a content which is the amount of time that content remains in that specific cache. Another

algorithm is Scooped Flooding, which is beneficial for congestion control and a case of bottleneck.

When different copies of the same content are available in the neighborhood, the congestion-aware

local search finds a less congested link and better bandwidth to download that content. In Cache

Aware Routing (CAR), the algorithm calculates the transportation cost metric for each route based

on popularity and caching strategy. The requests are optimally satisfied such that the cost and over-

all traffic of the network are minimized. Finally, in Potential Based Routing (PBR), when a node
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receives an Interest, it compares available paths to the content and finds the one with maximized

facilitated routing to forward the Interest packets.

C) ICN In-Network Storage

All nodes in ICN potentially have storage capability, and requests can be satisfied from the

nearest cache of any node that holds a copy of it. Different approaches are proposed for ICN

cache management, including homogenous, heterogeneous, off-path, on-path, cooperative, and

non-cooperative caching [23]. All the routers on the path that content passes will store the con-

tent in homogenous caching. Meanwhile, the routers on a path do not cache the same content in

a heterogeneous strategy. In an off-path approach, the Name Resolution System (NRS) is updated

about the new content arrival to the cache. In on-path caching, a request may be fulfilled locally

without informing the NRS. In cooperative caching, the routers share information about the content

after storing it with the whole network. In contrast, in non-cooperative caching, each cache decides

to cache individually without sharing its information with the network. We describe this more in

the following.

The various cashing strategies are designed based on the best possible location of the cache or

the importance of the content to be stored [22]. The first set of strategies works based on location-

based caching: caching contents on specific nodes based on specific functions. For instance, the

hash-routing scheme designed for off-path caching is one of the location-based caching strategies.

The main objective of hash-routing is to reduce cache redundancy by using the hash function,

which indicates where to store the content. Another off-path caching strategy is Cooperative in-

network Caching (CIC). In CIC, content is divided into different segments and will be cached in

different routers. To satisfy a request, there is no need to send the request to the server, and it can

be satisfied locally and cooperatively by the routers that have the related segment of the request.

The CIC is an off-path strategy because the segments are cached at the routers, which are not

available on the publisher-subscriber path. Probabilistic Caching (Probe Cache) is another strategy

that is considered an in-network caching resource management approach. The Probe Cache aims
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at maximizing the number of different contents stored in a communication route. Also, it attempts

to reduce redundancy between caches to increase the probability of finding the content. Finally, the

Breadcrumbs is a straightforward, transparent, best-effort search content caching strategy. Each

breadcrumb would be a 5-tuple entry with a global ID, which holds information such as when

content was requested or forwarded, the node’s ID, content type, and finally if the content was

pushed down or received. After the content is downloaded, every router creates a trail that maintains

the routing history. Next time, the request for the same content will be routed toward the router’s

directory.

C) ICN Architectures

There have been various ICN-oriented projects from 1999 to now [23]. Named Data Network-

ing [24] is one of the ICN projects funded by the U. S. National Science Foundation. NDN has

its root and similarities to one of the earlier projects, so-called Content-Centric Networking (CCN)

[25]. The main components of NDN architecture are as follows. (i) Interest packet, (ii) Data packet,

(iii) Pending Information Table (PIT), and (iv) Forwarding Information Base (FIB). A consumer

sends an Interest packet for the desired content by its name. Once the Interest packet reaches the

node which has the data, it will be satisfied and will traverse the reverse-path in the form of a Data

packet. Each NDN router uses a forwarding strategy module to determine if, when, and where each

Interest packet must be forwarded. All the forwarded Interests that are not satisfied yet are stored

in PIT based on their Interest names and incoming and outgoing interface(s). When an NDN router

receives an Interest, it first checks the Contest Store. The router satisfies the Interest if the content

exists by sending the data packet. Otherwise, the name of the Interest will be searched in the PIT.

If the Interest is available, the interface from which it comes will be recorded to enable symmetric

routing. Suppose the matching data entry is absence in the PIT. In that case, the request will be

forwarded to the data producer based on the available information in the FIB and also the router’s

forwarding strategy.
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D) Video Streaming in ICN

In traditional CDNs, all contents are stored in the origin server. With an increasing number of

users, a network will face many requests. Traditional CDNs (over IP) present some weaknesses

in their performance, reliability, and scalability [26]. These weaknesses are rooted in the fact that

CDNs rely on traditional Internet technology. ICN will enable CDNs to overcome their weak-

nesses thanks to its multiple inherited characteristics [27]. The simple messaging mechanism of

ICNs allows the storage medium to be highly optimized. Moreover, ICN routers can reduce the

complexity of IP tunneling and minimize the amount of translation, significantly reducing traffic.

These features will facilitate the performance of content delivery in ICNs.

Support for multicast is built into the ICN, and content delivery over an ICN can easily ben-

efit from multicast distribution across its links for improved performance. In addition, an ICN’s

secure implementation is more reliable for delivering content and prevents many of the inherent

challenges in the end-to-end traditional connection approach. Finally, every ICN router acts as a

content cache, so the requests for content do not need to traverse to the origin server and can instead

be served directly by the ICN routers. This would help meet the ongoing scalability challenge since

replicas of the same contents are stored in multiple ICN routers. Therefore, in-network storage (an

essential feature of the ICN) can play an essential role in improving content delivery. The deploy-

ment of ICN-based CDNs is attractive for greenfield CDN providers but very costly for Brownfield

providers since it requires the deployment of non-traditional routers. However, as shown in the

literature [28], Brownfield operators may incrementally obtain most of the gains expected from the

ICN without radical changes to the current traditional Internet infrastructure.

1.3.3 In-Network Computing

In this subsection, after explaining in-network computing overview, we cover Software Defined

Networks principles and P4 programming as enablers for INC.
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A) In-Network Computing Overview

INC comes with the vision of enabling computation inside the network as an alternative to

restricting computation to the servers outside the network [29]. There are two main categories of

INC, in-fabric and end-device developments. We first briefly discuss the benefits of INC, followed

by in-fabric and end-device approaches to INC realization. Last, we investigate the applications of

INC.

In-network computing provides potential performance benefits such as reducing latency, in-

creasing throughput, and reducing network load for applications with high-performance require-

ments [30]. To achieve the desired performance and satisfy various requirements, INC consists of

two general categories: in-fabric and end-device developments. In the in-fabric category, compu-

tation occurs in network devices, such as programmable switches. This approach offloads a set of

computing operations from current computing nodes, i.e., servers, to the network elements such as

switches, routers, and Network Interface Cards (NICs) [31]. This approach allows the network to

benefit from in-network computing by first capturing all traffic and having a vision of the whole

network through a switch and NIC and second by not adding additional latency to the path that

packets traverse. However, the limitations of computation and memory resources may concern this

approach to support conventional routing and switching. The main benefit of the second category of

INC, end-device, is that integration is possible without rearchitecting the entire data center (i.e., in-

cremental availability. The end-device development method also enables lower latency and higher

throughput than conventional approaches. However, this method does not provide the same latency

benefits as in-fabric deployment.

In-network computing is widely used in applications such as packet aggregation, machine-

learning acceleration, network telemetry, and stream processing. However, network devices may

face limitations on computing and storage resources. Also, the application’s correctness should not

be affected by the computation in the network. Given the trade off that the integration of In-network

computing introduces, it is crucial to find the appropriate type of computation integrated into the

network. There are three criteria to identify the suitable forms of in-network computing [31], i.e.,
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for different applications (1) significant decrease in network traffic, (2) minimal change required at

the application level, and (3) the correctness of the computation.

B) Software Defined Networks

Software-Defined Network (SDN) [11] enables the separation of the control plane (that han-

dles the network traffic) and data planes (that forwards the traffic based on the control plane’s

decisions). SDN allows networks to be programmed using open interfaces. SDN can address the

limitations of the current network infrastructure. This separation is beneficial to flexibility and

simplifying network management by balancing the network problem into a traceable piece. An

SDN architecture enables delivering a centralized and programmable network. It consists of three

main elements. A core element of SDN architecture is a controller. A controller enables man-

agement, control, automation, and policy enforcement over network (either physical or virtual)

environments. Another element is Southbound APIs which transmit information between the con-

troller and network devices (i.e., switches, routers, firewalls, and access points). The last element is

Northbound APIs which transmit information between the controller and the applications. The data

plane programmability in SDN is feasible with P4 programmable switches. P4 enables simplicity

and speed (focusing just on the requirements), scalability (maximizing data-plane resources to the

fundamental level), and data plane telemetry (monitoring real-time Inbound Network Telemetry

(INT)). Figure 1.3 illustrates the SDN architecture.

C) P4 Programming

P4 stands for Programming Protocol-independent Packet Processors, and it is the standard for

defining the programmable forwarding behavior and configuring switches [32]. Using P4 provides

reconfigurability which means programmers can change packet processing in the already deployed

switches. P4 is protocol-independent, so switches are not tied to particular network protocols.

Programmers can perform packet processing functionality independent of the underlying hardware
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Figure 1.3: SDN architecture.

because P4 is the target independent. Moreover, P4 enabled programmable has some leading char-

acteristics: agility, top-down design, visibility, less complexity, enhanced performance, etc. Figure

1.4 illustrates configuring a programmable switch by classic Openflow versus P4 program.

Figure 1.4: Configuring switch using P4 program.

16



1.3.4 Network Slicing

Network slicing enables different virtual networks’ co-exist for different verticals (e.g., e-

industry and e-health) over the same physical infrastructure [33]. A slice is a set of either virtual

(e.g., VMs) or physical resources that an infrastructure provider can assign to a tenant based on the

description of what the tenant requires. Business roles have been proposed for slicing in the 5G

ecosystem. A simplified version is described next. The Infrastructure Provider owns and offers the

physical network infrastructure. The slice providers are located on top of this infrastructure. In the

case of CDNs, slice providers offer end-to-end slices to meet requested requirements. This layer

dynamically configures and embeds the slices and does so optimally. CDN providers define the set

of requirements to be mapped to a slice to ensure the QoS for their users [34]. Network slicing

in 5G ensures extra profit for operators and infrastructure providers by facilitating multi-tenancy

and improving network coverage to meet adaptability and flexibility requirements. Slicing requires

operational capabilities to dynamically instantiate, modify and delete slices based on the tenants’

requirements. The infrastructure provider should be able to intelligently assign and reassign re-

sources to different requests to ensure that resources are used efficiently while ensuring that the

QoS violations of service reassignment and degradation are kept to an acceptable level for the slice

owners. Virtualization is one of the enablers of network slicing [35]. Each slice is dedicated to

a specific service and has different requirements. The main challenge of network slicing is thus

how to allocate the resources to meet tenant requirements while unlocking the opportunity to make

more profit for the providers who own the resources.

1.4. Thesis outline

The rest of the thesis is organized as follows. Chapter 2 discusses the requirements and provides

a critical review of the state-of-the-art. We organize the thesis into algorithmic contributions and

architectural contributions. Accordingly, for the algorithmic contribution, Chapter 3 presents the

accuracy and stability algorithm in rate adaptation streaming for networks with in-network storage.
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Chapter 4 presents the proposed algorithm for implementing in-network storage in IP settings. For

the architectural contribution, in Chapter 5, we present an architecture for provisioning in-network

computing enabled slices. Finally, we conclude this manuscript in Chapter 6 and provide future

directions for this research work.
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Chapter 2

Related works

This chapter presents a set of requirements derived from our problems. Next, we investigate the

state-of-the-art in light of these requirements.

2.1. Requirements

We categorize the requirements into two main categories: requirements specific to in-network

storage integration and requirements specific to in-network computing integration to the infrastruc-

ture. For the first category, we derive the requirements related to rate estimation in dynamic adap-

tive streaming in networks with in-network storage and the requirements specific to implementing

in-network storage. For the second category, we derive the requirements specific to provisioning

the in-network computing enabled slices. It should be noted that some of the proposed require-

ments have only architectural dimensions, while others have both architectural and algorithmic

dimensions. As for the algorithmic dimension, we consider that a given system will meet a given

requirement if the algorithm has the main objective of meeting that requirement or it is part of the

set of constraints the algorithm should satisfy. We discuss these aspects further as we present each

requirement.
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2.1.1 Requirements Specific to Networks with In-network Storage

A) Requirements Specific to Rate-based Dynamic Adaptive Streaming in Networks with In-

network Storage.

The following requirements are considered to be essential for rate estimation algorithms. How-

ever, these requirements only have algorithmic dimensions.

1) Accuracy: The system should enable the estimation of a more accurate RTT compared

to the typical RTT computed solely by the client. When estimated as in IP networks (the

assumption is that the next segment will be retrieved from the same server), estimation of

the adaptation rate in ICNs is not accurate. This inaccuracy negatively affects the DASH

performance because the next segment in the ICN can be retrieved from any intermediate

storage with a copy.

2) Stability: The in-network feature can introduce a significant bitrate fluctuation in the DASH

streaming process. This bitrate fluctuation causes oscillation and decreases the QoE per-

ceived by the users. To benefit from in-network storage, the system should ensure rate

stability to prevent oscillations.

B) Requirements Specific to the implementation of In-network Storage in Traditional

Networks.

1) Dynamicity: The system should allow infrastructure providers to dynamically instantiate,

modify and delete slices with in-network storage capability based on the requirements of

the application provider.

2) QoS: The proposed model should consider the peculiarities related to the CDN applications

and enforce different QoSs for each level of caching, based on their distance.

3) In-network storage enabled slices: The proposed model should consider the peculiari-

ties related to in-network storage enabled slices (i.e., ICN slices). For example, ICN net-

work nodes have specific computing and storage capabilities, and so infrastructure providers
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should be able to harness a storage node in addition to using a computing node.

4) Profit or revenue: The model should enhance the profit or revenue of network slicing for

the infrastructure provider while satisfying various service requirements. The infrastructure

provider should be able to harness in-network storage nodes to respect the QoS of the users

while making a profit from providing this service.

2.1.2 Requirements Specific to Networks with In-network Computing

A) Requirements specific to the provisioning of INC-enabled slices for 360° video streaming

1) Latency: Provisioning INC-enabled slices for 360° video architecture should be able to

reduce the delay of video streaming. This will make it possible to meet the stringent re-

quirements of immersive services and 360° video streaming.

2) Network load: Reducing the network traffic is critical in CDNs, especially in immersive

services and 360 videos, both bandwidth-consuming applications. This thesis focuses on the

traffic reduction of video streaming applications. The architecture should be able to reduce

network traffic by integrating the INC and P4.

2.2. Related works

This section presents the state-of-the-art for content delivery in future networks. The first cat-

egory discusses networks with in-network storage, architectures and algorithms for solving the

accuracy and stability issues of rate estimation for CDNs with in-network storage. The architec-

tures and algorithms for implementing in-network storage in traditional networks are also reviewed.

In the second category, the architecture and algorithms for implementing in-network computing in

traditional networks are reviewed.
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2.2.1 Networks with In-network Storage

This sub-section discusses the research on solving accuracy and stability issues of rate estima-

tion for CDNs with in-network storage. Then in the second category, which is in-network storage

integration, the general virtual network embedding problems that share several similarities with our

problem are reviewed, followed by works that show the ICN as a virtual network over a substrate

network. We also review studies on the dynamic slicing of the substrate network, followed by a

discussion of the studies on modeling the profit and other economic aspects of network slicing and

proposed machine learning solutions for network slicing.

A) Architectures and Algorithms for Solving Accuracy and Stability Issues of Rate Estimation

for CDNs with In-network Storage

Few works help to solve the issues of accuracy and stability in CDNs over networks with in-

network storage such as ICNs. We briefly discuss the general works on network-assisted DASH

(i.e., works that do not rely on MEC). Most proposed solutions build on Server and Network As-

sisted DASH (SAND) [36]. In SAND, assisting information (information from the network used

for a more accurate estimation of the adaptation rate) is exchanged between client and network for

more accurate RTT estimation. However, no concrete procedure is proposed for this estimation, al-

though the exchange of messages is enabled between client and network. Reference [37] builds on

SAND and targets the oscillation issue of DASH over Content-Centric Networks (CCNs), a variant

of ICNs. However, it does not propose a concrete procedure for estimating a more accurate RTT.

Reference [38] is a follow-up of reference [37]. It targets scalability but does not provide a solution

to the adaptation rate challenge. An example of work that does not build on SAND is DASH-INC

[39]. It targets DASH’s rate stability issue over an ICN and does not address the rate estimation

issue. They propose a framework for transcoding and multiple throughputs. Each router stores the

highest bitrate in its content store in its model. When it receives a request for a lower rate, the router

transcodes the highest bitrate into the lower bitrate on the fly and sends it to the client. To solve the

cache oscillation problem, the authors propose increasing the observation windows to smooth out
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the rate changes. Another solution they proposed is to set the rate transitions at some predefined

intervals to restrict the oscillation. In this way, the rate could not fluctuate between the cache and

the server unless the next transition is allowed. This framework met our second requirement, rate

stability, but it does not address the adaptation rate issue.

B) Architectures and Algorithms for Implementing In-network Storage in IP Settings

1) General virtual network embedding problem

Reference [40] considers embedding nodes with computing and storage capabilities. However,

it assumes that the substrate nodes have both computing and storage capabilities, and it does not

meet any of our requirements. The authors in [41] include storage and caching (without having

ICN slices) in their effort to maximize revenue for the infrastructure provider by optimizing caching

resource allocation. They propose a new dynamic scheme for network slicing in a 5G core network,

but their model does not consider the different QoSs for varying levels of caches, nor using ICN

slices, and does not meet our second and third requirements.

In [42], the authors provide an efficient resource allocation in 5G slicing. They propose a model

to perform joint slicing of 5G and edge computing resources. Their aim is to minimize latency for

multiple classes of traffic. They evaluate their proposal based on different parameters such as the

type of traffic, tolerable latency, network topology, etc. Their results confirm that their proposal

can provide efficient resource allocation, but their model and its parameters are static over fixed

time slots and so it does not meet any of our requirements. A queuing-based system model for

5G slicing is presented in [43]. The authors studied the case when a subset of VNFs is shared by

multiple services that have different QoS requirements. The proposed heuristic is designed to make

joint VNF placement and CPU/storage allocation, with the objective of minimizing latency. While

they have different QoS levels for different services, they do not meet our second requirement of

considering CDN peculiarities. Their model can allocate storage to the slices, but it does not have

ICN slices and so does not meet our third requirement. In addition, they did not model the revenue

advantages of slicing and thus do not meet our fourth requirement.
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2) ICN as a virtual network over a substrate network

Embedding ICN virtual networks is a challenging problem that several researchers have ad-

dressed. In [44], researchers propose an information-centric virtual content network (IVCN) slic-

ing framework. The IVCN slicing use case in their model is a heterogeneous fog-enabled RAN.

Their proposed model for performance optimization on the IVCN slicing work is based on Service

Function Chaining (SFC) and is designed to optimize the mapping of VNFs and virtual content

placement to maximize the weighted hops for content storage. The performance evaluation consid-

ered different metrics (e.g., the hit rate, the average weighted hops per request on the data plane and

on the control plane, and the average content redundancy). They compared the results with other

caching schemes to show how their model outperforms them. Although they model dynamic ICN

slicing and used VNFs, they do not consider CDN peculiarities or profit. Further, the work in [45]

proposed an ICN network slice embedding solution over 5G networks without the need for any ad-

vance knowledge about the topology or resource provisioning. In [45], the authors only considered

ICN slices, as opposed to our work, where we consider two types of slices, ICN and IP. Moreover,

in [45], even though a VNF is used for the ICN slices, the embedding is not organized dynamically,

and they did not consider CDN peculiarities or profit opportunities for the infrastructure providers.

A general 5G-ICN architecture and a detailed network slicing architecture for the embedding

and deployment of models is proposed in [46]. While this work does discuss a use case on mobility

as a service, it does not cover the resource allocation problem. This work is not dynamic nor

does it consider CDN peculiarities. In [47], the authors propose a slicing framework in software-

defined information-centric networks with the aim of simplifying the computational overhead for

latency-sensitive applications. Ref. [47] considers device-to-device (D2D) networks as a solution

to improve the performance and latency for mobile users, while we consider cellular networks in a

more general way. This work did not tackle the CDN peculiarities nor the profit aspects of network

slicing.

Reference [48] proposes an architecture in which a virtual wireless ICN and a virtual traditional

wireless network co-exist on the same physical 5G wireless network. They offer a scheme to
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jointly optimize both caching and resource allocation, with the objective of maximizing profit while

addressing resource allocation for individual users. This work also assumes a 5G substrate core

network that provides both computing and storage. In addition, their substrate network is composed

of real resources, while in our case it is made up of an NFV Infrastructure (NFVI). Thus, they did

not consider either CDN peculiarities or profitability.

3) Dynamic slicing of the substrate network

To best reflect how a system can scale with human behavior and all its varied demands, it is

important to study dynamic slicing. Reference [49] proposes two heuristics for dynamic slicing

over a 5G substrate network, with the first heuristic goal being to minimize the wavelength re-

source usage in the physical network. They defined the degradation values for the virtual networks

already mapped in the physical network. Their second heuristic objective is to minimize this degra-

dation value, the number of light path re-configurations and wavelength resource usage. Their

work emphasizes the advantages of dynamic slicing, which can reduce the virtual network rejec-

tion probability. Although they mentioned that these improvements can help network providers

increase their revenue, they offered no further elaboration.

In [50], the authors tackle the problem of dynamic slicing in a 5G network and explore that

problem under the heterogeneous cloud Radio Access (H-CRAN) architecture, which is energy-

and cost-efficient compared to traditional decentralized cellular architectures. Their scheme con-

siders the tenant’s priorities, the baseband resources, fronthaul and backhaul capacities, the QoS

and the interfaces. Simulation results show that the proposed scheme provides better throughput,

fairness and QoS compared to baseline schemes. Their work is dynamic and considers different

QoSs for different services. In [51], the dynamic allocation of resources to 5G network slices is

modelled by predicting the slice bandwidth requirements. This work investigates a way to pre-

vent revenue loss to network operators. When it predicts errors, the proposed algorithm reallocates

bandwidth resources from lower priority slices to higher priority slices. To ensure the QoS, it also
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predicts the end-to-end delay and admits each flow into slices that can satisfy specific delay re-

quirements. However, this work does not consider CDN peculiarities and does not meet our second

or fourth requirements.

4) Modeling the profit of slicing over a substrate network

Several profit models have been proposed for the different dynamic slicing business model

actors over a 5G substrate network. For instance, in [52] the authors propose an algorithm that

allocates and admits requests for network slices while maximizing the infrastructure providers’

revenue and ensuring that SLAs are met. Their main contributions are their model, based on the

Semi-Markov Decision Process (SMDP), and their algorithm, based on Q-learning, which achieves

close to optimal performance. They did not consider CDN or ICN peculiarities.

Reference [53] focuses on the profit opportunities related to the network slicing market as a

means to assess the feasibility of the new 5G business model. They propose an admission control

mechanism based on bid selection, maximizing the revenue of infrastructure providers and provid-

ing a fair slice provision to competing service providers. Their evaluation is based on comparing

their results with other admission policies, such as First Come First Serve (FCFS) or Always Ad-

mit (AA) in on-demand or periodic slicing. Although their model is dynamic and considers the

profitability of slicing, it does not consider CDN or ICN peculiarities. In [54], the authors propose

a profit model for network operators to guide the deployment of each slice. Their proposed value

chain in the sliced network is designed to maximize profit and model good resource management.

While they do discuss some of the challenges, their model is not dynamic, nor does it consider

caching in an explicit manner, and so they only meet our fourth requirement.

A model that considers the profits of both the slice provider and the slice customer is presented

in [55]. These authors studied network slice dimensions along with resource pricing policies to

explore the trade-off between resource efficiency and maximizing profit. Although their model

covers profit maximization for different actors, they did not consider any different components

for the provider’s expenditures. They also did not consider storage resources, and so they only
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meet our fourth requirement. Another profit model for slicing a 5G substrate is offered in [56], in

which a profit-aware resource allocation model in a virtualized multi-tenant environment is pro-

posed. These researchers studied profit based on the number of users per slice, the coverage radius

and the maximum transmit power. They considered a radio access network, but their model is not

dynamic. A model for evaluating the profit of slicing a 5G network while setting different prices

for each class of slices is proposed in [57]. These researchers formulate the problem using fun-

damental economic principles and present an algorithm to solve it. Their simulation confirms an

improvement in providers’ profit. However, they did not consider CDN or ICN peculiarities.

A model for evaluating the profit of Radio Access Network (RAN) slicing for multiple tenants

in a 5G network is proposed in [58]. Their algorithm includes the decision making process in order

to gain additional income by granting additional capacity beyond the SLA level, and assigns a

penalty for potential SLA breaches. These researchers did not consider CDN or ICN peculiarities.

The last work we evaluate here is another effort to jointly optimize resources and revenue, offering

an auction model applied to the pricing of virtual networks to solve the problem [59]. Even though

the general problem of jointly optimizing resources and revenues is briefly discussed, this work

does not consider the peculiarities of embedding ICN slices or of having different QoS levels, and

so they only meet our first and fourth requirements.

5) Machine Learning approaches for network slicing

The authors of [60] study network slicing integrated with caching resources, which, to some

extent, is the same as having ICN core network slices with cache-enabled routers. More specifically,

a novel machine learning-based management framework for dynamic slicing and content placement

is proposed in [60]. The problem is formulated as a Markov decision process. The focus is on cache

resource provisioning, with a customized content placement algorithm to find a specific placement

for each service provider. While Ref. [60] aims to realize a proper balance between satisfying QoS

requirements and obtaining optimal resource utilization of the infrastructure providers, it does not

investigate the economic aspect of slicing (e.g., revenue, expenditure, and profit). Furthermore,
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the method of solving the problem in Ref. [60] is fundamentally different from our work, mainly

because their proposed solution relies on machine learning, whereas our work proposes a heuristic

to achieve the near-optimal solution of the developed ILP.

In another work, [61], the authors focus on a machine learning solution to solve the resource

allocation problem by designing a network slice admission control algorithm. The algorithm learns

the best acceptance policy for maximizing the infrastructure revenue. They do not discuss slicing

caching resources or ICN peculiarities. They consider satisfying QoS requirements as an SLA for

admitted slices, with the QoS remaining fixed, while in our work we impose different QoSs for dif-

ferent levels of caching. In another recent work [62], researchers study the network slicing problem

of two 5G network services, Ultra-Reliable Low Latency Communications (URLLC) and enhanced

Mobile Broad Band (eMBB). The authors of [62] formulate the network slicing problem as an op-

timization problem that aims at maximizing the data rate while satisfying the reliability constraints

of URLLC. A DRL-based framework is then proposed to solve the problem, and simulation results

illustrate that the proposed method has high reliability while satisfying URLLC constraints.

2.2.2 Networks with In-network Computing

Very few works have focused on using in-network computing for infrastructure provisioning.

To the best of our knowledge, this thesis is the first attempt to harness INC for 360° video streaming

service provisioning.

A) Architectures and Algorithms for In-network Computing Integration.

Most of the papers reviewed in this section use a P4-enabled SDN-based network as an in-

frastructure. The SDN infrastructure enables programmability and dynamic network management

with the critical goal of reducing delay. For example, in [63], the authors presented ZipLine, an

approach to design and implement compression at line speed using a P4-enabled network. They

evaluated their system by measuring throughput, latency, and compression measurements in real-

world scenarios. In [64], the authors propose an architecture that benefits from INC to achieve
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a better performance in terms of high-throughput and low-latency in industrial IoT systems. The

architecture is an Information-Centric Network (ICN) powered mobile edge architecture. The crit-

ical tasks are offloaded to the ICN devices, while the rest go to the Multi-access Edge Computing

(MEC). The ICN, as a networking scheme, decouples information from its sources and provides

in-network storage in all the routers. They evaluated the feasibility of their architecture using two

industrial use cases, in-network robotic motion and in-network fire detection. They did not discuss

traffic reduction in the network.

The authors of [65] focused on tile-based panoramic live video streaming leveraging in-network

resources. They studied the benefit of moving transcoders near the end-users. This work measured

cache hits, tile size, and traffic. However, it did not consider the specific challenges related to 360°

videos, such as latency.

In [66], the authors used In-band Network Telemetry (INT) and presented an SDN-based net-

work where network statistics were gathered and used for network control and slice management.

The presented system can improve the QoS by reducing the delay. The INT layer in this model

is implemented using the click modular router. It can act as a source, intermediate, or sink node.

The communications between the source and sink nodes and the Application Handler are via an

API that gathers statistics about the flow. To satisfy the required level of QoS, dynamic slicing

can reconfigure the network slices based on live statistics about the INT layer. Although this work

presents the framework as an addition to the SDN architecture, they do not propose a complete

architecture and do not meet our requirement about reducing the network load. Authors in [67]

proposed a new architecture over 5G networks to stream video using SDN-assisted IP multicasting.

The service model selectively duplicates and forwards a video upstream at SDN switches instead

of a central selective forwarding unit. This is managed by bandwidth and delay-aware multicast

trees maintained by the SDN controller. Their evaluation results show that the proposed model

reduces delay and overall network resource utilization. At the same time, bottlenecks are avoided

between uploading peers. The SDN controller has complete control over the network traffic and

the switch queues. A network provider with SDN infrastructure can implement centralized path
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computation over network slices that fulfill stated bandwidth requirements with minimum latency.

The presented architecture is only proposed and evaluated based on scalable video streaming and

did not consider network load requirements. The authors of [68] also used SDN controller knowl-

edge of the network to reduce delays for the use case of 360° video streaming. In this model, the

SDN controller keeps updated statistics of the available paths for each node that joins the SDN

network. Each connection is given a rank based on the delays. The flow allocation is performed

based on the delay ranks to establish a balanced multi-path connection. Their evaluation shows

that their proposed model increases the QoE of 360° video streaming users by reducing playback

stalls and improving network efficiency and scalability; however, they do not consider network load

reduction using INC.

SDN-based networks are used in another paper [69] to improve content delivery and increase

the end-user QoE. They explored a multimedia gateway acting as a complementary element of

the OpenFlow controller. This gateway uses its statistics from the network and routes multimedia

traffic to be delivered via different paths from other flows, prioritizing the flows and allocating the

required bandwidth to the different flows. This work does not cover dynamic bandwidth allocation

and it does not consider latency. The authors in [70] aim at increasing QoS in video streaming

over SDN-based networks. They propose a framework that uses the network’s information for load

balancing and to avoid bottlenecks when congestion occurs. The framework is based on a new

design of Openflow controller, which continuously monitors the loads of each node to detect an

overload and perform load balancing. Their results illustrate that the framework improves the QoE

of the video streaming to end-users; however, they only considered video streaming cases over

a single server and did not consider reducing the latency. The authors of [71] proposed an elastic

system architecture with a five-layer abstraction for interactive video applications. Interactive video

application is a generic term for videos in cloud gaming and Virtual Reality (VR), as well as 360°

videos. These videos have stringent latency requirements, which require a very limited elapsed

time between user instruction and workflow modification. A model for efficient task representation

is designed to increase system flexibility in this work. The system performance is analyzed using
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a set of novel latency measurement metrics. The results show that measured end-to-end latency

satisfies the restrictions of most interactive video applications provided by an edge. This work does

not discuss the network load or the efficiency of network resource usage at the edge.

2.3. Conclusion

In this chapter, we first derived a set of architectural and algorithmic requirements from our

problem and then surveyed the literature accordingly. Table 2.1 provides a summary of the reviewed

architectural and algorithmic papers. For each paper, we show the requirements that are met and

those that are not met. None of the reviewed papers satisfy all our requirements.
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Table 2.1: Related Work Evaluation.
(met!, not met ✗)

Related works
Requirements Algorithmic Requirements Architectural Requirements

Accuracy Stability Dynamicity QoS storage-enabled slices Profit Latency Load
[36] ! ✗

[37] ✗ !
[38] ✗ ✗

[39] ✗ !
[40] ✗ ✗ ✗ ✗

[41] ! ! ✗ ✗

[42] ✗ ✗ ✗ ✗

[43] ! ✗ ✗ ✗

[44] ! ✗ ! ✗

[45] ! ✗ ! ✗

[46] ✗ ✗ ! ✗

[47] ! ✗ ! ✗

[48] ! ✗ ! ✗

[49] ! ✗ ✗ !

[50] ! ✗ ✗ !

[51] ! ✗ ! ✗

[52] ! ✗ ✗ !

[53] ! ✗ ✗ !

[54] ✗ ✗ ✗ !

[55] ✗ ✗ ✗ !

[56] ✗ ✗ ✗ !

[57] ! ✗ ✗ !

[58] ! ✗ ✗ !

[59] ! ✗ ✗ !

[60] ! ✗ ! ✗

[61] ! ✗ ! ✗

[62] ! ✗ ✗ ✗

[63] ! ✗

[64] ! ✗

[65] ✗ !

[66] ! ✗

[67] ! ✗

[68] ! ✗

[69] ✗ !

[70] ✗ !

[71] ! ✗
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Chapter 3

Algorithm for Rate-based Adaptive

Streaming in Networks with In-network

Storage

1

3.1. Introduction

Information-centric based CDNs face many challenges. For instance, the rate-based DASH

framework currently in use in CDNs does not function well in ICN settings. A DASH client com-

putes the RTT of each segment it requests and receives and then uses it to estimate the RTT of the

next segment. The quality requested for the next segment is decided accordingly. In IP networks,

the assumption is that all segments are retrieved from the same server, i.e., the surrogate server.

Unfortunately, this assumption does not hold in ICNs because segments might be retrieved from

intermediate routers due to the presence of caches in ICN routers. Furthermore, the ICN in-network

caching feature can introduce oscillations in rate estimation. In this chapter, we tackle these issues

1This chapter is based on a published paper: Rayani, Marsa, Roch H. Glitho, and Halima Elbiaze. ”ETSI multi-
access edge computing for dynamic adaptive streaming in information-centric networks.” Globecom 2020-2020 IEEE
global communications conference, 2020.
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by using the ETSI’s MEC paradigm. MEC provides cloud computing capabilities at the edge of

mobile networks. This chapter first proposes an overall system view that includes the MEC server.

Next, we put forward a mathematical formulation and a novel rate adaptation algorithm in the pro-

posed system that includes a MEC server and an ICN. Finally, the evaluation scenario and results

show that our suggested rate adaptation algorithm, which relies on MEC capabilities, leads to a bet-

ter Quality of Experience (QoE) for end-users due to a more accurate and stable RTT estimation.

We conclude the chapter in the last section.

3.2. Overall System View

Fig. 3.1 shows a high-level view of the system model. The considered system is organized in

five layers: (i) the MEC-enabled DASH clients, (ii) the Radio Access Network, (iii) the DASH

MEC application, (iv) the MEC-enabled ICN edge router and (v) the CDN surrogate server.

DASH enabled clients are located at the bottom layer. They interact with the MEC edge server

and routers located in layer 3 and 4 respectively. These connections are enabled through the 5G

Radio Access Network (RAN). RAN is mainly composed of base stations and is illustrated in

layer 2 of Fig. 3.1. Each base station allocates available radio resources in a proportionally fair

manner to clients [72]. Beyond the RAN, interactions between DASH clients and both the MEC

edge server and the ICN core network are wired. The MEC layer consists of a MEC application

that computes the accurate RTTs with the RTT calculator, stores them in the RTT repository, and

manages the requests for RTTs using the RTT request handler. The content delivery is done over

an ICN core network (the fourth layer). The ICN core network is composed of MEC-enabled ICN

edge routers. In the ICN, the edge routers are the first set of routers to receive the requests in the

network. Finally, the videos reside on the CDN surrogate servers in the fifth layer, connected to the

ICN core network. The functioning of the three main components is described in detail here.
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Figure 3.1: High-level view of the system model.

A) MEC-enabled DASH Client

After receiving the MPD, the DASH client starts sending its requests for video segments to

the surrogate servers through the MEC-enabled ICN edge router. To determine the proper quality

for each segment, the client can communicate with the DASH MEC application. It obtains the

RTT from the MEC application. This RTT may be a previously-stored one, or it may have been

estimated by the traditional method if none has been stored.

B) DASH MEC Application

The DASH MEC application subscribes to notifications for the time tags whenever a request

for a video segment (or the video segment itself) crosses the MEC-enabled ICN edge routers. It

uses these time tags to compute the accurate RTTs and store them in the repository. Whenever the

DASH MEC application receives a request for the most accurate RTT, the RTT request handler

checks the repository to find a stored RTT for that segment from previous rounds. Suppose the
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RTT is not available in the repository. In that case, the DASH MEC application replies with the

calculated RTT, which is less accurate for the client.

C) MEC-enabled ICN Edge Router

First, the router receives a subscription from the DASH MEC application. The request for the

segment then traverses the MEC-enabled ICN edge router. As soon as this happens, the router

notifies the DASH MEC application about the time tag of the request’s arrival. Finally, the request

is satisfied, and the data packet of the segment traverses the edge router again. Upon receiving the

data packet, the MEC-enabled ICN edger router notifies the time tag of the segment’s arrival at the

DASH MEC application.

The envisioned scenario includes a MEC-enabled DASH client who uses DASH MEC applica-

tion assistance to perform a more stable adaptive streaming. The DASH MEC application assists

the client by providing a more accurate RTT, allowing the DASH algorithm to make better-informed

decisions and thus be better adapted to network conditions. To illustrate this scenario, we introduce

a sequence diagram showing the interactions of the main components as depicted in Fig. 3.2. The

client requests and receives the MPD (Fig 3.2: actions 1 and 2). The client informs the DASH

MEC application about the video session that is in the process (actions 3 and 4). The DASH MEC

application now subscribes to the ICN edge router for the video to receive the notifications required

for RTT calculation (actions 5 and 6). The client decides on the quality of the first segments based

on the default value in the adaptation algorithm (action 7) and then sends the request and receives

the data packet for that segment (action 7). After requesting and receiving the segment (actions 8

and 9), the ICN router notifies the arrival time of the request and the retrieval time of the data packet

for that specific segment to the DASH MEC application (action 10). Next, the RTT calculator in

the DASH MEC application can calculate the RTT based on the time tags (action 11). Then, the

client pulls the RTT to decide on the quality of the next segment (action 12). Upon receiving the

request for the RTT, the DASH MEC application checks its repository to fetch more accurate RTTs

from the previous runs for the same segment. If no accurate RTT is available, the DASH MEC
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Figure 3.2: Illustrative sequence diagram.

application sends the calculated RTT to the client (actions 13 and 14). The adaptation algorithm

can now decide on the next segment’s quality based on the received RTT (action 15). This loop

continues until the whole video is downloaded segment by segment. After completing the video,

the subscription between the DASH MEC application and the ICN edge router is ended (actions 16

and 17).

3.3. Problem Formulation

Our DASH video streaming system operates over time slot t. We assume that we have a video v

consisting of s ∈ Sv(t) segments at time t. Each segment is available at different quality with equal

playback duration. We denote by Qs(t) the set of qualities available for the given video segments

at time t. We write qmax
s (t) ∈ Qs(t), qmin

s (t) ∈ Qs(t) for the representations with the highest and

lowest qualities in Qs(t). We define q↑s(t) and q↓s(t) for the representations with the next higher and

lower qualities, respectively. Let Rj
qs(t) refer to the request for segment s with quality qs by client

j at time t. The arrival time of the request Rj
qs(t) by client j to the ICN edge router is defined as

A(t) . This edge router is the same one that passes the requested segment to client j due to the
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symmetric routing in ICN. Therefore, we consider D(t) as the retrieval time of the segment s by

client j.

In ICN, some contents will be retrieved from the intermediate caches; if they are not available

the request will traverse all through the network to the servers. We define a binary variable to map

the clients to surrogate servers which have the requested video segments such that xj,k(t) = 1 if

client j is allocated to server k at time t, and xj,k(t) = 0 otherwise. We define the base stations by

b ∈ BS. The data transmission between the base station b and server k and different clients goes

through a shared link. It is to be noted that Wb,k(t) refers the spectrum allocated (in number of

resource blocks) in the frequency domain, at time slot t. We also assume that clients are stationary

throughout this work. Tb,j(t) is capacity of the links and it is computed as follows where the SNR

is Signal to Noise Ratio:

Tb,j(t) = BW ∗ log(1 + SNR) (3-1)

Table 3.1 lists the notations of our model along with their descriptions.

There are four major factors that can significantly affect the quality of experience perceived by

DASH clients [73]: video quality, startup delay, stalling time and bitrate switching. In our model,

we aim to consider above factors to improve QoE. The main goal of CDNs is to achieve optimal

QoE for end users by maintaining QoE metrics at an acceptable level.

(1) Segment Quality

Segment quality has the highest direct impact on the QoE perceived by the client. The average

video quality over |Sv(t)| downloaded segments from the caches or surrogate servers by

client j at time t is obtained using the following relation:

q̄j(t) = 1/|Sv(t)|
|Sv(t)|∑
s=1

K∑
k=1

qs(t).xj,k(t) (3-2)

(2) Startup Delay
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Table 3.1: Key Notations

Notation Description
tv Total duration of video v.
s ∈ Sv(t) Segments of video v at time t.
qs(t) ∈ Qs(t) Quality of segment s of video v at time t.
qmax
s (t) Representation of segment s with the highest quality at

time t .
qmin
s (t) Representation of segment s with the lowest quality at

time t.
q↑s(t) Representation of segment s with the next higher quality

at time t : q↑s ̸= qmax
s .

q↓s(t) Representation of segment s with the next lower quality
at time t: q↓s ̸= qmin

s .
j ∈ J(t) Set of clients at time t.
Rj

qs(t) Request generated by client j for the segment s with
quality qs at time t .

Wk(t) Allocates spectrum in number of resource blocks at the
base station connected to server k at time t.

A(t) Arrival time of the segment s request at time t.
D(t) Retrieval time of the segment s at time t.
k CDN surrogate Server.
Tb,j(t) Capacity of wireless links between client j and base sta-

tion b at time t
Ths(t) Throughput of wired links while downloading segment s

at time t.
Bmax

j (t) Maximum buffer level for the client j at time t.
Bj(t) Buffer level for the client j at time t.
Qj QoE perceived by the client j.
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This is the time it takes video segments to fill the client’s buffer to a target level after its

arrival. The client experiences delay as the waiting time from their click to the start of the

requested video. While startup delay has a lower impact on the QoE compared to other fac-

tors, to minimize the startup delay our algorithm considers a minimum quality for the first

segment to fill the buffer [74], a measure which will be described in the next section.

(3) Stalling Time

A stall occurs in video streaming when the client’s buffer has emptied before the current

video segments have finished playing. Stalls cause playback to be interrupted until further

video segments are loaded in the buffer. We formulate the buffer level of client j at time t as

follows.

Bj(t) = xj,k(t).(Bj(t− 1) + (Ths(t)− qs(t))), (3-3)

(4) Bitrate Switching

Bitrate switching for client j at time t is considered as the difference between the two con-

secutive downloaded segments [75] as follows:

Fj(t) =

|Sv(t)|∑
s=1

K∑
k=1

qs(t).xj,k(t)− qs−1(t).xj,k(t− 1) (3-4)

With the model parameters described, the objective function of our model is defined as follows.

We assume that each client will download the total segments of a video each time he request it.

The objective function (5) maximizes the QoE of DASH over ICN while considering the average

quality and bitrate switching parameters; α and β are the weighting parameters. We can tune the

objective function using these weighting parameters, for instance, to take into account that the av-

erage segment quality has the highest direct impact on the QoE than the bitrate switching we can

use α > β or to highlight bitrate switching as an important metric as the average segment quality

in ICN we can use α = β
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Maximize Qj(t) = α.q̄j(t)− β.Fj(t) (3-5)

Subject to:
K∑
k=1

xj,k(t) ≤ 1, (3-6)

J(t)∑
j=1

xj,k(t).⌈qs(t)/(Tb,j(t)⌉.Wb,k(t) ≤ Wb,k(t), ∀ 1 ≤ k ≤ K, ∀ 1 ≤ s ≤ |Sv|, ∀ 1 ≤ b ≤ BS

(3-7)

0 ≤ Bj(t) ≤ Bmax
j (t), (3-8)

Constraint (6) states that at time t, the ICN DASH client is allocated to only one server for down-

loading the segments. Constraint (7) enforces that in time t the total resources allocated to the

clients by the base station do not exceed the available resources. Finally, constraint (8) guarantees

that limited or no stalling occurs during streaming.

We verify the NP-hardness of the special case of our problem at time t by the mapping our

problem to the multidimensional knapsack problem (MDKP) as follows: consider m items

{c1, c2, . . . , cm} and K knapsacks, and a case of MDKP in which there are m copies available for

each item. The problem is allocating items to knapsacks for objective of maximizing the profit,

while satisfying the constraints that each item should appear in exactly one of the allocated copies.

Maximum capacity of each knapsack is a maximum of one item. Now, the set of m items and K

knapsacks are mapped to the set of clients and servers and the profit maximization in the MDKP

is corresponding to the QoE maximization/objective function in our model. Each copy of the

item matches the allocation of the corresponding client to a given server. The mapping satisfies

the constraint that each client allocates to exactly one server. Since the MDKP is NP-hard [76],

therefore this validates NP-hardness of our problem when we consider all time slots. Also the

quality of segments is from a discrete set which verifies the hardness of the problem formulation.
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3.4. Rate Adaptation Algorithm

In this section, we describe our rate adaptation algorithm to improve users’ QoE. This algorithm

is designed to achieve higher accuracy and stability in the rate estimation process while avoiding

stalls and startup delays. In this proposed algorithm, the accurate RTT of each segment is computed

by the RTT calculator and stored in an RTT repository on the MEC layer. The goal is to eventually

re-use it as more accurate RTT in future video sessions when the same segment is requested. When

a client wants to determine the quality of the next segment, the previously-stored RTT may no

longer be completely accurate when it is used again, it is still much more accurate than the one

estimated in the traditional way, as shown by the results of our simulations.

The rate adaptation algorithm runs on the client side. It also runs over snapshot which is the

time that takes the algorithm to decide about the quality of the next segment based on RTT of

previously downloaded segments. The algorithm takes the segments and the segments’ quality as

its input. The output of the algorithm is the quality of the next segment to be downloaded by the

client. The algorithm starts by iterating over all the segments. To avoid any startup delay, we

consider minimum quality for the first segment of the video. This will allow the buffer to fill to a

certain level to start the streaming.

For subsequent segments, the RTT of each previously downloaded segment is obtained using

the function getRTT (). The getRTT () function takes as its input the segments along with the

arrival time of the request for that segment and the departure time of that segment from the same

router. This function returns the most accurate RTT available for that segment which is available

in the repository. If there was no RTT available from the previous runs of the same video it will

calculate it using the two timestamps it has as input and returns the value: RTT [s] = D(t)−A(t).

The algorithm then uses that RTT and calculates the throughput using the size of the segment

with the quality of qs(t). Next, the algorithm reacts to the comparison of segment quality and the

throughput of the previously downloaded segment by selecting a lower or higher quality for the

next segment.
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Algorithm 3.1: ICN Rate Adaptation Algorithm

3.5. Performance Evaluation

This section describes the simulation scenarios used for performance evaluation of our rate

adaptation algorithm, followed by the obtained results. The results in this chapter are all applicable

to the fixed aspects of CDN delivery. This is due to the fact that the proposed solutions rely on ETSI

MEC which caters to both fixed and wireless networks. However, we perform the current validation

in a wireless environment, since wireless environments are known to be more challenging than their

fixed counterparts.

3.5.1 Evaluation Scenario

We have implemented our proposed solution in a realistic simulation scenario using an extended

version of ndnSIM that supports DASH, AMuSt ndnSIM [77]. The dataset for the experiment is

the Big Buck Bunny (BBB) dataset [78]. The video has two seconds segment lengths with a
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resolution of 1280*720 pixels and five different representations with AVC codec. The MPD file

that is included in this dataset is based on the ICN URI namespace. We considered the maximum

transmission power of 3.6∗105mW for our base stations, with a loss exponent value of ω = 2. The

total LTE downlink resource blocks at each base station follow the uniform distribution U [50, 100]

[79] per timeslot. In all scenarios, when the first client requests the segments, all the segments are

retrieved from the surrogate servers. These segments are stored in the caches on the paths based

on the cache size and random policies. When other clients retrieve the video later, some of the

segments may be downloaded from the nearest caches.

We simulate DASH over ICN with the aforementioned general settings performed by a different

number of clients who request the same video (BBB). The video resides in 12 CDN surrogate

servers connected to the ICN network. We considered a rectangular area of 400m×1km, in which

the base stations and the mobile clients are distributed randomly. There are 60 ICN routers between

the clients and the servers with random topology. The virtual payload data rate of the links is

considered 1 Mbps and the random policy is used for intermediate caches with capacity of 30. We

run the test with 10, 20, 30, 40 and 50 clients to investigate the behavior of the model when the

number of clients increases. Figure 3.3 illustrates our network topology in the simulations.

3.5.2 Results and Discussion

To compare our results we simulate a DASH over ICN from the literature [80] run it with our

topology and same settings. Used it as a baseline and we call it normal DASH for comparison. A

normal/traditional DASH over ICN is when the adaptation algorithm decides on the quality of the

next segment based on the previous segment’s RTT (estimated RTT) without any constraints over

stalling events or startup delay. Our proposed DASH provides the client with more accurate RTTs

in the MEC repository from the previous run(s) of the same segment while imposing constraints to

avoid stalling events and startup delay. The results are taken over 20 times of simulation runs to

achieve a higher confidence interval.

We start by comparing the average quality of the two methods when different numbers of the
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Figure 3.3: Simulation topology.

client are performing DASH. The results are derived with respect to the same simulation settings

and the same topology for our work and the baseline. Figure 3.4 indicates the average segment

quality for normal DASH in ICN compared to our proposed DASH in ICN with 10, 20, 30, 40

and 50 clients. The simulation results confirm the higher average quality of the segments in our

method; which leads to a better quality video playout and higher QoE for the users.

Next, we compare our method with literature (normal DASH), considering the bitrate switching

for each set of clients during the whole streaming process. Figure 3.5 depicts the magnitude of the

bitrate switching for each set of clients in traditional DASH compared with our proposed DASH.

In traditional DASH, the number of switches is much higher than that of our method, which has

significantly fewer switches. Fewer switches increase the QoE perceived by end users because

there are less oscillations and smoother playout.

Finally, we compare two methods, considering the stalling time. Figures 3.6 depicts the stalling

time for each segment of the video for the last client in normal DASH while stalling is prevented

in our method. In order to evaluate these figures, the most tolerable level of stalling event based on

previous studies which is 3 seconds [81] is added to the figures. In traditional DASH the duration
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Figure 3.5: Bitrate switching in two DASH methods for five set of clients.

and frequency of the stalling times are high and exceeded the threshold many times while our

method has no stalls.

There are 60 ICN routers with caching capability between each set of clients and servers. We

used random caching policy in the simulation so some segments with different qualities randomly

are cached throughout the network. When segments with better qualities are caches in the nearby

caches to the clients, the stalling events decrease. Due to the caching replacement randomness and

misunderstanding of the network condition some cases such as the second scenarion in figure 3.6
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with 20 clients experience more stalling. It happens that the requested segments are not available

in the nearby caches, this causes depleting the buffer resulting in re-buffering and more stalling

events. We can say that fewer stalls ensure smoother playout and increase the QoE perceived by

end users.
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Figure 3.6: Stalling events in normal DASH.

3.6. Conclusion

This chapter addresses the main challenges faced by rate-based DASH in in-network storage

enabled CDNs, namely accuracy, and stability in rate estimation. We introduce an overall system

view that includes an ETSI MEC server. In addition, we propose a novel rate adaptation algorithm.

We evaluated the results by conducting a set of experiments and compared them with results from

the state of the art. Our method performed better than the traditional approach in the simulations.

It provides higher accuracy and stability in the rate estimation. The results show that our method

offers improvements in the QoE metrics in rate-based DASH for information centric based CDNs.
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Chapter 4

An Algorithm for Implementing In-Network

Storage in IP Settings 1

4.1. Introduction

The tremendous growth of video traffic is bringing new challenges (e.g., scalability and con-

tent distribution efficiency) that current CDNs are less and less able to meet. CDNs are designed

to deliver requested content at a reasonable cost and at the required QoS. However, CDNs face

challenges in terms of performance, reliability, and scalability [82]. ICNs have inherited an in-

network storage feature, so requests for content in ICN-based CDNs would not need to go to sur-

rogate servers as in IP-based CDNs. Instead, they could be served by several routers that are

usually closer to end-users than to surrogate servers, thereby enhancing performance and scala-

bility. Unfortunately, while they are attractive for Greenfield CDN providers, the deployment of

ICN-based CDNs is very costly for Brownfield providers, as it requires the deployment of cache-

enabled routers. We rely on slicing to build a virtual ICN core network (i.e., a core network with

in-network storage) on top of a physical infrastructure that supports traditional IP routers but does

1This chapter is based on two published papers:[1] Rayani, Marsa, et al. ”Ensuring Profit and QoS When Dynami-
cally Embedding Delay-Constrained ICN and IP Slices for Content Delivery.” IEEE Transactions on Network Science
and Engineering 9.2 (2021): 769-782; and [2] Rayani, Marsa, et al. ”Slicing virtualized EPC-based 5G core network
for content delivery.” IEEE Symposium on Computers and Communications (ISCC). IEEE, 2018.
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not support ICN routers with in-network caching. We assume that storage is available in the phys-

ical infrastructure. The key benefit is that traditional IP-based CDNs and ICN-based CDNs can

co-exist on the same infrastructure in a flexible and cost-efficient manner. The basics of network

slicing and ICNs are discussed next. The rest of this chapter is organized as follows.

After our discussion of the overall system view, we present our problem formulation and de-

scribe the proposed dynamic slicing algorithm. Next, we present the performance evaluation and

finally, in the last subsection, we conclude this chapter.

4.2. Overall System View

Network slicing can be performed statically or dynamically. With static slicing, each slice re-

serves a fixed amount of resources for its complete life cycle. Static slicing leads to an inefficient

utilization of resources, as it does not allow the allocation of resources to adapt to the changing re-

source demands of slices. In contrast to static slicing, dynamic slicing facilitates such adaptability.

Dynamic slicing allows for an efficient use of infrastructure resources with possible cost-based and

profit-oriented optimizations. We aim to dynamically allocate resources for a set of traditional IP

and ICN core network slices over a substrate network. We consider that resource allocation is done

on a snapshot basis, where a snapshot represents the aggregated resource demand of slices over a

specific time period. To embed each slice, resource allocation is conducted at the beginning of each

snapshot. We do not impose any restrictions on the duration of a snapshot. It can be on the order of

seconds, minutes or hours. We solve the problem in consecutive snapshots to show the dynamicity

of the provisioning process of network slicing. For instance, a provider may divide the 24 hours

of a day into three snapshots based on the incoming traffic pattern of the network. To adapt to the

traffic demand fluctuations, the provider may consider the beginning of a snapshot as the time when

the traffic elevates. Thus, the size of the requested slices can be proportional to the traffic demand

at that snapshot. This approach therefore does not restrict the providers with any specific length for

a snapshot and instead leads to a dynamic configuration based on the incoming traffic pattern.
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The substrate network offers computing and storage resources. Each network slice is formed

by a set of VNFs. A traditional IP core network slice only contains traditional IP routers, and thus

only contains computing VNFs. In contrast, an ICN core network slice contains cache-enabled

routers, capable of caching content. Each cache-enabled ICN router is formed by one computing

and one storage VNF, and thus each ICN slice includes a mixture of computing and storage VNFs.

Our objective is to enable the dynamic resource allocation of slices in order to create the highest

profit for the infrastructure provider while still meeting the QoS requirements for content delivery.

Figure 4.1 depicts our overall architecture: a physical substrate network that offers computing

resources and storage; ICN core network slices with cache-enabled routers and traditional IP core

network slices; an ICN-based CDN built on the ICN core network slice; and a traditional IP-based

CDN built on the IP core network slice. These computing resources may be traditional IP routers,

and the storage can be available in the network or even in servers at the edge.

The reader should note that these slices may be used by other applications that have require-

ments similar to those of content delivery. At the beginning of a snapshot we admit all the slices’

requests accumulated during the previous snapshot. We assume that the number of slices that can

be allocated simultaneously does not surpass the maximum number of slices allowed for the infras-

tructure. Each slice request includes the VNF instances, their types and their resource demands,

as well as the links between the VNFs and their bandwidth demands. A slice may be requested

over consecutive snapshots with the same set of VNF instances and the same set of links, but with

different resource and bandwidth demands. Accordingly, we allocate infrastructure resources for

each slice in a snapshot t on a First Come First Serve (FCFS) basis.

We do not allow for a partial embedding, meaning that each slice will be fully served and

embedded at a given snapshot when admitted by the infrastructure provider.Our model considers

the following mechanisms with which to adapt to changes: (1) allocate resources to a new set

of admitted slices, (2) de-allocate resources for VNFs removed from past slices that remain in

snapshot t, and (3) migrate VNFs from past slices that remain in snapshot t to new infrastructure

nodes. We present our system model below.
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Figure 4.1: High-level architecture.

(1) Substrate Network: We represent the substrate network as an undirected graph IG = (N,L)

where N is a set of nodes, with each node n representing a computing resource or storage

resource at the substrate network and where L is a set of edges linking them. An edge

(n, n′) ∈ L linking nodes n and n′ represents a logical communication link between them.

Each node n has a type kn ∈ K, where K = {computing, storage}. We use Rn to refer to

the resource capacity of node n. We employ ctn and ctn,n′ to denote the cost of one resource

unit at node n and one unit of network bandwidth over the edge (n, n′) in snapshot t. We use

Bt
nn′ and dtnn′ to represent the bandwidth capacity and delay, respectively, of edge (n, n′) in

snapshot t.

(2) Slices: We define St as the set of two different types of slices (IP slice and ICN core network

slice) to map to the substrate network in snapshot t. Each slice st ∈ St includes a set of

VNFs V t
s to map to the substrate network nodes. We associate a set of user crowds U t

s and a

set of given surrogate servers W t
s to a slice st ∈ St.
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We build a graph SGt
s = (H t

s, E
t
s) to represent slice st, in which H t

s is a set of nodes defined

as H t
s = V t

s ∪U t
s ∪W t

s and Et
s = Et

(s,V ) ∪Et
(s,U) ∪Et

(s,W ) is a set of edges that link nodes in

H t
s. E

t
(s,V ) are edges that exist between the VNFs in slice s. Et

(s,U) denotes the set of edges

that exist between users and VNFs in slice s. Et
(s,W ) denotes the set of edges connecting the

VNFs and CDN surrogate servers in snapshot t. The parameter kv ∈ K is used to represent

the type of VNF v ∈ V t
s . For instance, a traditional IP network slice only offers computing-

type VNFs. Instead, since an ICN slice relies on cache-enabled routers, it has both computing

and storage types of VNFs. We use rtv to refer to the resource demand of a VNF v ∈ V t
s in

snapshot t. Each link (v, v′) ∈ Et
s requires btvv′ bandwidth units in snapshot t. Table 4.1 lists

the notations used in this section.

Figure 4.2 and 4.3 illustrate our slice graphs to clarify the definitions of different types of slices

and the relation between the user crowds, slice and surrogate servers. The IP core network slice

graph is illustrated in Fig. 4.2 which is made of routers with computing capabilities, surrogate

servers and user crowds. Figure 4.3 shows the ICN core network slice graph, which is a network

of routers with storage and computing capabilities, surrogate servers and user crowds connected to

the slice.
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Table 4.1: Key Notations.

Notation Description
IG = (N,L) NFVI graph with nodes N and edges L linking them.
n ∈ N A node in NFVI.
(n, n′) ∈ L An edge in L.
kn A type of node n ∈ N .
Rn Resource capacity of a node n ∈ N .
ctn Cost of one resource unit at node n ∈ N in snapshot

t ∈ T .
ctnn′ Cost of one unit of network bandwidth over the edge

(n, n′) ∈ L in snapshot t ∈ T .
Bnn′ Bandwidth capacity of edge (n, n′) ∈ L.
dtnn′ Delay of edge (n, n′) ∈ L in snapshot t ∈ T .
St Set of slices in a snapshot at time t ∈ T .
SGt

s = (H t
s, E

t
s) Graph of slice s with VNFs H t

s and edges Et
s linking

them.
V t
s Set of VNFs in slice s in snapshot t ∈ T .

U t
s Set of user crowds in slice s in snapshot t ∈ T .

W t
s Set of surrogate servers in slice s in snapshot t ∈ T .

Et
S,V Set of edges between VNFs in slice s in snapshot t ∈ T

Et
S,U Set of edges between VNFs and user crowds in slice s in

snapshot t ∈ T .
Et

S,W Set of edges between VNFs and surrogate servers in slice
s in snapshot t ∈ T .

v VNF v ∈ H t
s.

(v, v′) ∈ Et
s An edge in Et

s.
kv Type of VNF v ∈ V t

s .
rtv Resource demand of a VNF v ∈ V t

s in snapshot t ∈ T .
btvv′ Bandwidth demand for the link (v, v′) ∈ Et

s in snapshot
t ∈ T .

SGt
s′ = (H t

s′ , E
t
s′) Graph of sub-slice s′ with VNFs H t

s′ and edges Et
s′ link-

ing them.
Mkv Bandwidth consumed in migrating the VNF of type kv.
ctmig,v Migration cost of the VNF v ∈ V t

s in snapshot t ∈ T .
ctrea,v Reassignment penalty of the VNF v ∈ V t

s in snapshot
t ∈ T .

Dt
s′ Maximum tolerable delay between a crowd of users and

the surrogate server for each sub-slice s′.
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Figure 4.2: Illustration of IP slice graph.

Figure 4.3: Illustration of ICN slice graph.
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4.3. Problem Formulation

Here we develop our problem formulation. Given that we use a linear objective function along

with linear constraints and integer decision variables, our formulation leads to an ILP [83] by

defining the following decision variables:

xt
nv =

 1, if slice VNF v ∈ V t
s is placed at infrastructure node n ∈ N in snapshot t

0, otherwise.
(4-1)

yt
vv′nn′ =

 1, if slice link (v, v′) ∈ Et
s is mapped to infrastructure link (n, n′) ∈ L in snapshot t

0, otherwise.
(4-2)

Operational cost: The operational cost has four different components, defined as follows.

(1) Deployment cost (Ct
dep): Represents the cost of resources over infrastructure nodes, allocated

for VNFs in snapshot t, and given by:

Ct
dep =

∑
st∈St

∑
n∈N

∑
v∈V t

s |kv=kn

ctnr
t
vx

t
nv (4-3)

(2) Communication cost (Ct
com): Represents the cost of the network bandwidth in the core slices

in snapshot t, expressed as:

Ct
com =

∑
st∈St

∑
v,v′∈Et

s

∑
n,n′∈L

ctnn′btvv′y
t
vv′nn′ (4-4)

(3) Migration cost (Ct
mig): Represents the cost of migrating VNFs from one infrastructure node
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to another while switching from snapshot t− 1 to t, given by:

Ct
mig =

∑
st∈St

∑
v∈V t−1

s ∩V t
s

∑
n∈N

∑
n′∈N

xt
n′vx

t−1
nv ctmig,v (4-5)

where ctmig,v is the migration cost of node v ∈ V t
s in snapshot t ∈ T.

(4) Reassignment cost (Ct
rea): Any Migration between snapshots t−1 and t of two VNFs implies

a QoS violation. This QoS violation in turn implies a penalty from the infrastructure provider

to the slice owner. We refer to this penalty as the reassignment cost/penalty, obtained as

follows:

Ct
rea =

∑
st∈St

∑
v∈Vs

t−1∩Vs
t

∑
n∈N

∑
n′∈N

xt
n′vx

t−1
nv ctrea,v (4-6)

where ct(rea,v) represents the reassignment cost of node v ∈ V t
s in snapshot t ∈ T .

The expenditure of the infrastructure provider in snapshot t can be calculated as:

EXP t = Ct
dep + Ct

com + Ct
mig + Ct

rea (4-7)

The revenue of an infrastructure provider is a weighted aggregation of deployment, communication

and migration costs in snapshot t and can be calculated as:

REV t = β(Ct
dep + Ct

com + Ct
mig) (4-8)

By subtracting the expenditure from the revenue, the profit of the infrastructure provider P t gener-

ated by allocating resources for a set of slices can be calculated as:

P t = REV t − EXP t (4-9)

The objective of our problem is to maximize the overall profit to be gained by provisioning
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slices over a snapshot t for the infrastructure provider who owns the resources:

max P t (4-10)

Constraints: The following constraints are considered in our problem. Each VNF instance

should be mapped to one infrastructure node, as indicated in constraint (9):

∑
n∈N |kv=kn

xt
nv ≤ 1; ∀v ∈ V t

s , s
t ∈ St, t ∈ T (4-11)

Constraint (10) ensures that each slice link should be mapped to one infrastructure link:

∑
(n,n′)∈L

ytvv′nn′ ≤ 1; ∀(v, v′) ∈ Et
s,V , s

t ∈ St, t ∈ T (4-12)

Constraint (11) ensures that the number of VNFs placed over an infrastructure node does not exceed

its capacity: ∑
st∈St

∑
v∈V t

s |kv=kn

rtv.x
t
nv ≤ Rn; ∀n ∈ N, t ∈ T (4-13)

Constraint (12) is imposed so that the bandwidth capacity of an infrastructure link is not exceeded:

∑
st∈St

∑
(v,v′)∈Et

s

Bt
alloc +Bt

mig ≤ Bnn′ ; ∀(n, n′) ∈ L, t ∈ T (4-14)

where Bt
alloc and Bt

mig are given by:

Bt
alloc = btvv′y

t
vv′nn′

and

Bt
mig = xt

nvx
t−1
n′vMkv
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We assume that the locations of user crowds and surrogate servers are known in advance, specified

by matrices P and Q, respectively, given by:

pnv ∈ P =


1, if v ∈ U t

s is located at n ∈ N

0, otherwise

qnv ∈ Q =


1, if v ∈ W t

s is located at n ∈ N

0, otherwise

We thus link variables xt
nv and ytvv′nn′ to edges in Et

s,U and Et
s,W as follows:

ytvv′nn′ = xt
nvpn′v′ ;

∀st ∈ St, (v, v′) ∈ Et
s,U , (n, n

′) ∈ L, t ∈ T,

ytvv′nn′ = xt
nvqn′v′ ;

∀st ∈ St, (v, v′) ∈ Et
s,W , (n, n′) ∈ L, t ∈ T.

We link the variables xt
nv and ytvv′nn′ for edges (v, v′) in Et

s,V via the following constraint:

ytvv′nn′ = xt
nvx

t
n′v′ ;

∀st ∈ St, (v, v′) ∈ Et
s,V , (n, n

′) ∈ L, t ∈ T (4-15)
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Given that Constraint (4-13) is not linear, we linearize it as follows:

ytvv′nn′ ≤ xt
nv;

∀st ∈ St, (v, v′) ∈ Et
s,V , (n, n

′) ∈ L, t ∈ T,

ytvv′nn′ ≤ xt
n′v′ ;

∀st ∈ St, (v, v′) ∈ Et
s,V , (n, n

′) ∈ L, t ∈ T,

ytvv′nn′ ≥ xt
nv + xt

n′v′ − 1;

∀st ∈ St, (v, v′) ∈ Et
s,V , (n, n

′) ∈ L, t ∈ T.

To reflect different QoS for different levels of caching, we consider a maximum latency Dt
s′ im-

posed to meet users’ demands in snapshot t. For an ICN network core slice, the threshold needs

to be met when serving a user from a storage VNF or from the surrogate server. For a traditional

IP network slice, the threshold needs to be met when serving users from the surrogate server. To

formulate this difference, we define SGt
s′ = (H t

s′ , E
t
s′) as a sub-graph of SGt

s with H t
s′ ⊂ H t

s

and Et
s′ ⊂ Et

s. SGt
s′ represents the flow from one cache or the flow from the original server to a

crowd of users. The sub-graphs s′t ∈ S ′t represent the sub-slices. The maximum latency for each

sub-slice is then imposed by the following constraint:

∑
v,v′∈Et

s′

∑
n,n′∈L

dtnn′ .btvv′ .y
t
vv′nn′ ≤ Dt

s′ ; ∀s′t ∈ S ′t (4-16)

4.4. Dynamic Slicing Algorithm

Our problem shares several similarities with the VNE problems. Exact, approximation and

heuristic algorithms have been employed to solve VNE problems as ways to solve the challenge
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of resource allocation. However, VNE problems are known to be NP-hard [84]. As a result, in

large-scale scenarios, deriving optimal solutions becomes unfeasible, leading to the development

of algorithms.

To solve our problem, we introduce a heuristic that aims to place slices where they will create

the highest possible profit for the infrastructure provider. The heuristic is run at the beginning of

each snapshot and has four phases. It iterates over the set of slices to place its corresponding VNFs

while considering resource capacity (n.cap), the bandwidth requirement (Bwdreq) and the QoS

limits (QoS[s]). We describe the details of the heuristic below. The corresponding algorithm is

presented in the four phases of Algorithm 1.

The heuristic takes the infrastructure graph IG(N,E) that comes with node types (n.type), the

node capacity (n.cap), and the bandwidth capacity (Bwdcap) as its first input. Its second input is

the slice graph SG(Nv, Ev), which has information about the VNF slice types (v.type), the VNF

demands (v.req), the bandwidth demand (Bwdreq) and the QoS thresholds. The final results of

the heuristic are the placement of the slice functions on the infrastructure nodes n, (x) and the

placement of the links between them, (y).

The heuristic starts by iterating over all the slices. The subslices() function takes the slice

as its input and returns an array of corresponding sub-slices sorted in ascending order of their

QoS thresholds. This sorting occurs because the heuristic prioritizes the placement of sub-slices

with more stringent QoS requirement. The heuristic then iterates over the sorted list of sub-slices

(subsliceToMap). For each sub-slice the function V NF () returns all the VNFs. The phase one of

the heuristic begins, which forms a set of potential nodes for each VNF in which to place them. A

set of potential nodes is first formed for each of the functions belonging to that specific sub-slice.

The potential nodes are infrastructure nodes where the functions can be placed. The placement on

these nodes will satisfy the following set of constraints: be of a same type (computing or storage),

have an adequate node resource (n.cap) and link bandwidth capacity (Bwdcap), and finally, if

the delay incurred by using them (TotalDelay) satisfies the QoS requirement. To verify the de-

lay constraint, the delay() function is used; it returns the delay between the infrastructure node in
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question and the crowds of users to be served. For a specific function in a sub-slice and an infras-

tructure node in question, if the delay is smaller than the QoS threshold, the infrastructure node is 

considered as a potential node.

Algorithm 4.1: Dynamic Slicing Algorithm

After forming the set of potential nodes, we calculate the profit for each node by using the

calculateProfit() function. If we find a potential node for a function, phase 2 starts. In this

phase, the heuristic finds the potential node that has the maximum profit (n̂) and places the VNF

on it. At this stage, the placement decision for the node (x) and link (y) will be updated. Fol-

lowing the placement, the amount of resource requirements (v.req) and the bandwidth demand

(Bwdreq) of the function will be deducted from the node resources (n.cap) and the bandwidth ca-

pacity (Bwdcap) of the infrastructure. The VNF is now removed from the set of VNFs to map. If

all the VNFs in a sub-slice are placed, that sub-slice can be removed from the set subslicesToMap.

62



If all the sub-slices in a slice are mapped, the slice will be removed.

If there is no potential node for the selected VNF in a sub-slice, we enter phase 3 and reconsider

the decisions of previously placed functions inside the same and other sub-slices. This phase makes

some infrastructure nodes available to be a potential node for the placement. The previous function

(v′) is obtained, along with the infrastructure node (n′) where the preceding function was placed,

using functions PreviousV NF () and Infra(). After removing the VNFs from the infrastructure

node where they were previously placed, we add that node to a set of rejected nodes to prevent

placing the same function on the same node again. We then update the infrastructure resources.

One VNF can be in more than one sub-slice at a time, and so it is necessary to check if the

removed VNF belongs to another sub-slice in phase 4. If there are dependent sub-slices they must

be mapped again. To determine if a previous function has any other dependent VNFs after it in its

sub-slice, the getDependingV NFs() function is used to identify and return any dependent VNFs.

These dependent VNFs must be added to the set of VNFs to be mapped again. The infrastructure

resources also need to be updated after the removal. These phases are all performed iteratively until

a feasible placement is found.
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4.5. Performance Evaluation

This section presents our evaluation scenario followed by results and discussion of the simula-

tion.

4.5.1 Evaluation Scenario

In the dynamic network slicing experiment, our model aims to: (1) evaluate the proposed al-

gorithm in terms of the quality of the solution and the execution time; (2) study the profit that

an infrastructure provider can achieve by re-configuring the placements when the slicing process

evolves over time; and (3) investigate the effect of QoS violation penalties on infrastructure provider

profits.

The evaluation parameters were selected from the literature. We built onto the WonderNetwork

[85] to construct the substrate network used in our evaluation. The WonderNetwork is a network

provider that operates over a network of 230 servers in different locations in several countries.

We considered locations of this network in the US as our infrastructure’s nodes. This gives our

substrate network a total of 60 nodes with 3600 (logical) links between them spread all over the

US, with 20 storage resources at the edge [86] and the remaining set of core routers, all offering
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computing resources.

The WonderNetwork provides hourly ping delay in real time for each pair of nodes in the

network. We considered the latency of the links among substrate nodes to map to the delay of the

ping time for each snapshot (dtnn′), obtained from global statistics data from the WonderNetwork.

The cost of infrastructure resources (ctn) for each infrastructure node was found to be in the price

range of 8.7 to 18.4 $/kWh, which is within the real-world hourly electricity price range for US

states, obtained from real data in [87]. We assumed that each edge has 10 Mbps of bandwidth

capacity (Bt
nn′), and that the bandwidth unit cost (ctnn′) for all edges is equal to 0.155 $/GB [87].

We considered the presence of two classes of core slices in the system, ICN and Traditional

IP. For the ICN slices, the VNF types are both storage and computing (because ICN routers are all

cache-enabled). For the Traditional IP slices, only computing VNFs are present. In the experiment

for the process of live migration, a VM is hosting a function in its running state (e.g., memory and

a virtual disk) and should be transferred [88]. We consider that the virtual machine hosting the

slices’ VNFs is a medium-sized server with 2 CPUs, a disk size of 40 GB and 4 GB of memory

[89]. The bandwidth consumed in migrating (Mkv ) a VNF from one node to another is equal to the

aggregation of its memory and disk size, i.e., 44GB. The migration cost ctmig,v is equal to the cost

of the bandwidth consumed during the migration: 44 ×0.155 [89].

The maximum tolerable delay between the user crowds and the surrogate servers in each sub-

slice ranges within 150 to 200 ms [90]. The lifetime of each slice is assumed to be 24 hours in our

scenario. We set the reassignment penalty to $2, which is around one third of the function migration

cost (see Table 4.2). We note that for small values of reassignment penalty, our proposed algorithm

tends to do as many reassignments as possible to maximize the profit. This, as a result, leads to a

poor quality of service. On the other hand, if the reassignment penalty is set to large values, the

proposed algorithm tries to maintain the quality of service without making any profit. Thus, the

reassignment penalty is key to realize the trade-off between making profit and maintaining quality

of the service (to be further examined later, in Section 4.5.2).

For our simulation we consider that a special event, for instance, the Super Bowl, is happening
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in the US and causing occasional spikes in traffic over consecutive hours of the day. Based on this

event, the traffic is increasing and concentrated during the simulated hours so that SPs instantiate

requests for more slices in order to scale and meet the demand. The number of user crowds is

selected randomly from [1, 10], each containing multiple users. The number of users within each

crowd is on the order of the size of the considered wide area network (WAN) spanning several US

cities. Table 4.2 lists the simulation scenario parameters.

Table 4.2: Summary of Simulation Parameters.

Prameter Value
Infrastructure Netwrok

Substrate nodes 60
Substrate links 3600

Delay of each link between nodes of substrate (ms) [9-63]
Cost of substrate resources for each node ($/kWh) [8.7-18.4]

Substrate bandwidth capacity (Mbps) 10
Bandwidth unit cost $/GB 0.155

Slice
Class of slices ICN and IP

Number of VNFs 10-120
Number of sub-slices 12-80

Number of slices 2-12
Migration cost for VNFs ($) 6.82

Reassignment penalty ($) 2
Maximum tolerable delay for each sub-slice (ms) 150-200

4.5.2 Results and Discussion

Here, we evaluate the performance of our heuristic for dynamic slicing by showing different

plots of our obtained results and comparing them with an optimal solution from CPLEX and another

solution from the literature (MPSP) [91]. The slicing algorithm is implemented in JAVA. All the

tests were run using a machine with a 7-core 2.3 GHz Intel®3615QM CPU and 8GB memory.

First we compare our heuristic with the optimal solution obtained by solving the ILP model in

CPLEX. Figure 4.4 shows the profit resulting from dynamic slicing in the six consecutive snapshots

for the optimal and for the proposed heuristic solution. We observe that our heuristic leads to very
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Figure 4.4: Profit (in $) of the optimal vs. the heuristic results.

high quality results in all cases, and reaches near optimal (with a maximum gap of 18% ) between

the heuristic and the optimal results.

We used a heuristic [91] from the literature, Maximizing the Profit of SP (MPSP) as a baseline

from which to compare our dynamic slicing heuristic. The authors model profit and introduce a

pricing policy to maximize it for infrastructure providers using 5G dynamic slicing. We compare

the expenditures, revenues and profits of MPSP against our heuristic in Fig. 4.5,4.6 and 4.7, respec-

tively, when traffic spikes and the number of admitted slices increases. The results confirm that

our heuristic outperforms MPSP (by 33%), and that substantial gains for the InPs can be achieved

by using the proposed heuristic. Our heuristic achieves such a high performance because it re-

considers its past decisions and migrates the functions or reassigns them to achieve a better profit.

These changes become more significant when more slice requests are admitted to the system, as

the number of possible migrations or reassignments increases.

We analyze the impact of different QoS violation penalties (Ct
rea,v) on the profitability of in-

frastructure providers in network slicing. In Fig. 4.8, we plot the profits for different numbers of

slices for the heuristic solution. Focusing on our objective function components, migration costs

and reassignment costs, we can say that different values of QoS violation penalties can have a vary-

ing impact on the number of required migrations, and eventually on the amount of the profit. The
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Figure 4.5: Expenditure (in $) vs. number of slices.
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Figure 4.6: Revenue (in $) vs. number of slices.

lower the penalty, the greater the preference for a placement that maximizes profit by incorporating

a higher number of migrations. A dynamic slicing policy for the infrastructure provider that con-

siders a penalty for QoS violation will discourage a provider from incorporating a high number of

migrations.

Table 4.3 shows the computational time of MPSP, our heuristic and the optimal solution. Note

that we could not obtain optimal results for the 12 slices due to the long run time. We can observe

from Table 4.3 that the execution times of our proposed heuristic are not only much shorter than

those of the CPLEX model, but they also grow linearly with respect to the number of slices. We also
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note that our heuristic computational time is very close to that of the MPSP, as our heuristic adds

a couple of milliseconds to migrate and reassign the placements of VNFs to realize near-optimal

profit. These few milliseconds allow our heuristic to outperform the MPSP execution times in cases

that require fewer migrations or reassignments (6 slices, 8 slices), and to perform very closely in

other cases.
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Table 4.3: Execution Times.

MPSP Proposed Heuristic Optimal
2 slices 0.24 s 0.37 s 240 s
4 slices 0.45 s 0.51 s 350 s
6 slices 1.27 s 0.95 s 3480 s
8 slices 1.30 s 1.28 s 10090 s

10 slices 1.18 s 1.56 s >32100 s
12 slices 1.63 s 1.83 s ——

4.6. Conclusion

This chapter proposed a complete framework targeting the creation of two types of slices, com-

posed upon a content provider’s request and which are placed over a physical infrastructure. Lever-

aging ICNs in-network storage advantages, our solution is tailored to a VNF placement context

where ICN-based and traditional IP slices are dynamically created over a physical infrastructure for

content delivery. We presented an Integer Linear Programming model and propose a cost-efficient

dynamic slicing algorithm. The objective is to maximize the profit of infrastructure providers while

meeting the different QoS requirements for different parts of each slice. In addition to the impact of

profit maximization, the impacts of QoS violation and reassignment penalties on the infrastructure

provider are also analyzed. The results are compared to the state of the art and an optimal solution,

and show that the proposed algorithm is very promising, offering a near-optimal solution obtained

in a very short time.
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Chapter 5

An Architecture for Provisioning

In-Network Computing Enabled Slices 1

5.1. Introduction

Recent advancements in networking and computation have led to a significant increase in de-

mand for 360° video streaming. Delivering 360° videos to end-users while providing a high user

Quality of Experience (QoE) is very challenging. Changes to the viewport made by the user can

cause motion sickness and make the immersive experience very undesirable when latency is in-

volved. Extremely low latency is one of the critical requirements for an immersive experience.

Moreover, 360° videos are high bandwidth- and computing resource-consuming applications that

deal with an enormous amount of data (i.e., 25 Mbps of bandwidth and a 40 ms latency for early-

stage or current 360° video streaming). These requirements make the provisioning of INC-enabled

slices for 360° video streaming extremely challenging [92].

In-network computing is expected to provide lower latency, lower network traffic, and higher

throughput. Therefore, the delivery of 360° video and immersive services can benefit from in-

network computing. For instance, moving transcoding and head movement prediction algorithms
1This chapter is based on: Rayani, Marsa, et al. ”An Architecture for Provisioning In-Network Computing Enabled

Slices for 360° Video Streaming Services in Next Generation Networks.” submitted to IEEE Communication Magazine,
2022.

71



to the network could reduce latency and bandwidth consumption. Moreover, running advanced

compression algorithms such as context-based predictive algorithms for lossless compression, pre-

fetching, and pre-caching in the network can also reduce bandwidth utilization for 360° video

streaming.

This chapter proposes and validates an architecture for provisioning INC-enabled slices for 360°

video streaming services in next-generation networks. We assume the next-generation networks

considered in this chapter are SDN- and P4-enabled.

The second section presents the overall architecture, followed by the simulations, their results

and our evaluation. The proof-of-concept prototype and measurements are presented in the fourth

section. Finally, we summarize this provisioning architecture in the last section.

5.2. Overall Architecture

Figure 5.1 depicts the proposed architecture. From the business model perspective, the 360°

video service providers rely on the slices offered by the infrastructure provider. The key novelty

of the architecture is that the slices are INC-enabled. The architecture comprises three layers (the

Slice Embedding Layer, the Adaptation Layer, and the Physical Resource Layer) and a repository.

The architectural modules and procedures are presented next.

5.2.1 Architectural Modules

There are three modules in the slice embedding layer (sub-layer (a)). Together, they form the

Slice Engine: Slice Embedding Service, Node Resource Service, and Telemetry Service. The Slice

Embedding Service module is the most critical architecture module accessible via a REST API. The

Representational State Transfer (REST) architectural style is used to design the interfaces between

the layers. REST provides a uniform and lightweight interface based on the existing web technolo-

gies. The Slice Embedding Service is in charge of the slice embedding procedure. This module

relies on the Node Resource Service and Telemetry modules to get the most updated information
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about the infrastructure nodes and links, respectively. We aim at a heterogeneous environment, so

we need an adapter layer. In the middle, the Adaptation layer (sub-layer (b)) interacts with het-

erogeneous physical resources and offers a homogeneous interface to the Embedding layer. The

Physical Infrastructure Provider in the bottom sub-layer (c) offers physical resources. This is an

SDN network with P4-enabled switches. There is also a Repository to which the Embedding layer

has access and which contains the P4 programs.

Text
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Service

Telemetry 
Service

Slice 
Embedding 

Service

Adapter

  

SDN Controller

Sub-layer (a): 
Embedding layer

Sub-layer (b): 
Adaptation layer
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Physical  Resources

In-network 
computing 
programs 
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Physical Infrastructure Provider 
P4-enabled SDN  Switches

Slice Engine

REST API

360 Video Service Provider

End Users

Figure 5.1: Proposed architecture.

5.2.2 Procedures

There are essentially two procedures: a) slice embedding and b) in-network processing en-

abling.
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A) Slice Embedding Procedures

The 360° video service provider sends a request for a slice to the Slice Embedding Service. The

Slicing procedure starts upon receiving the slice request. This request consists of the routers and

their links, with their CPU and bandwidth requirements, respectively. Next, the Slice Embedding

Service requests the CPU and links’ statistics from the Node Resource Service and the Telemetry

Service, respectively. The Embedding algorithm then decides to embed the slice based on the

availability of infrastructure resources prior to sending the notification of the slice creation to the

Slice Provider. Several algorithms in the literature can be used to input the slice characteristics and

create the slice [93]. SDN controller slicing modules, such as the ONOS, can also implement their

slice embedding modules i.e., VPLS.

B) In-network Computing Enabling Procedure

The Slice Embedding Service runs an algorithm to choose a P4 program from the Repository,

such as a transcoder. The Slice Embedding Service then runs another algorithm to decide the

placement of the P4 program on the infrastructure switches. The algorithm inputs are a set of

components implemented as P4 programs, i.e., different types of transcoders, compressors, and

overlay ads on the video. Other inputs include the set of infrastructure nodes and end-users with

different requirements. The algorithms then decide to place the components on the infrastructure

nodes based on objectives such as improving the QoS, the cost, or reducing the network load. To the

best of our knowledge, no such algorithm exists today because the problem of in-network enabling

of slices has not yet been considered in the literature. In our prototype, we have implemented a

straightforward algorithm (described later). Note that all the Slice Embedding requests go through

the Adapter, thus covering heterogeneous types of physical infrastructure.
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5.3. Simulation

The goal of these simulations is first to compare INC-enabled slices vs. traditional slices, and

second, to investigate the gain depending on the locations of INC in the network.

5.3.1 Simulation Scenario

For the simulation, we used a Mininet emulator to set up a P4-enabled SDN infrastructure,

which is the Physical Resources layer of the proposed architecture sub-layer (c). Mininet provides

an emulator to build programmable SDN infrastructures supporting realistic user traffic at scale.

We ran our experiments over a real-world topology that is part of internet topologies in the real

world, taken from the Topology Zoo. The simulation topology is illustrated in Fig. 5.2. The

simulations were run on a machine with dual 2X8-Core 2.50GHz Intel Xeon CPU E5-2450v2 and

40GB of memory. The network includes P4-enabled switches with an equal CPU and a link’s

bandwidth of 10 Mbps. A 360° video is streamed from the server, containing 3600 frames. We

placed the transcoder in specific slice switches to run and compare different scenarios. We used

a P4 link monitoring program that enables the host to monitor the network’s links’ utilization for

the performance evaluation. This monitoring program uses a probe packet processed to pick up the

egress link utilization at each hop.

We consider and measure the following metrics: (i) Average latency and (ii) Bandwidth uti-

lization, the most fundamental QoS parameters for video streaming. The proposed architecture

is evaluated based on two different test cases. Test case 1 focuses on 360° video streaming per-

formed with one client and one server when only the client has the transcoding capability. Test

case 2 focuses on transcoding inside the network. In test case 2, to show the impacts of changing

the placement of INC, we vary the transcoder placement and evaluate the latency and bandwidth

utilization. We run each simulation ten times to guarantee the precision of the results.
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Figure 5.2: Scenario and topology.

5.3.2 Simulation Results

Here we elaborate on the role of provisioning INC-enabled slices and the locations of the INC

in supporting 360° video streaming to achieve lower latency and traffic load. Fig. 5.3 depicts the

average end-to-end latency for various transcoder placement scenarios, starting from the client to

different switches inside the network. The transcoder location starts from the client and moves to

s1, s2, s3, and s4, each closer to the server. The result confirms that transcoding inside the INC-

enabled slices can achieve lower average latency. Fig. 5.3 also verifies that placing the transcoder

inside the network closer to the server reduces the average latency. The average target latency

for an immersive experience (such as 360° video streaming) is 10-100 ms [94]; thus, our latency

obtained by integrating in-network computing does not exceed this target and thus satisfies the QoS

requirements.

Next, we investigate the network load by providing valuable insights into the bandwidth uti-

lization for different scenarios in Fig. 5.4. For the scenario of when the transcoder is placed on the

client, we observe that there is a high bandwidth utilization in all links, resulting in high network

load. However, the figure confirms that having a P4 transcoder inside the network is beneficial in

lowering bandwidth utilization. We can conclude from this figure that in-network computing effec-

tively decreases the network load by reducing bandwidth utilization by 96% for the best placement

of the P4 transcoder. Another recommended network SLA for video streaming is to ensure a frame

loss below 0.5%, which our results met.
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Figure 5.3: Average latency for different scenarios.

5.4. Proof of Concept Prototype

The proof of concept prototype and measurements are presented to show the feasibility of the

proposed architecture and evaluate its performance . The goal of the prototype implementation and

measurements is to compare the 360° video streaming on INC-enabled slices vs. traditional slices.

We also emphasize the advantages of varying the placement of INC inside the network.

5.4.1 Prototype Description

We implement a slicing program to embed the requested slice using Python. There are two dif-

ferent approaches to add extensions to P4 to execute complex operations that P4 does not support:

i) using native primitives and ii) using external instances. We have selected the external instances

approach, as no modifications are required to the P4 syntax, semantics, and P4 front-end compiler.

Externs also reduce modification risks in a switch pipeline, since they are implemented outside the

switch core. The transcoder implemented in this work is the first P4 extern transcoder that compiles

on the BMV2 switches of the programmable data plane of the SDN network. The P4 transcoder

extern is stored in the Repository and will be placed on the selected BMV2 switches using the

algorithm inside the Slice Engine.
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Fig. 5.5 presents the prototype architecture to implement a simplified version of INC-enabled

slice provisioning for the use case of 360° video streaming. We used an SDN network consisting

of BMV2 P4-enabled switches for the infrastructure, and a Bitmovin video player for the video

streaming client. The Slice Embedding Service was implemented using Python. The client-server

web application interacts with Mininet through a REST API. A Node.js-based module is used for

the adapter layer to ensure all the heterogeneous infrastructures can be connected to our prototype.

Finally, the Repository is implemented using MongoDB and includes a P4 transcoder.

The 360° streaming application was implemented in a prototype. First, a slice request is re-

ceived using a web browser. Next, the slice embedding module is used to embed the slice based

on the available infrastructure resources. The prototype then uses a simplified random selection

algorithm to place the transcoder on a switch of a created slice. Finally, the client connected to the

slice starts to stream a 360° video.

5.4.2 Performance Metrics

The video streaming delay and slice provisioning delay were used as performance metrics to

evaluate the proposed architecture’s performance and compare traditional slices vs. INC-enabled
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Figure 5.5: Prototype architecture.

slices.

Video Streaming Delay: Defined as the time when the 360° video streaming starts over a

created slice and the time the acknowledgment message of streaming completion is received. We

analyze this metric in different test cases to show the advantage of INC when we have the P4

transcoder inside the network.

Slice Provisioning Delay: Measured from the time a request is sent by the web application for

the provisioning of slices, to the time the acknowledgement message of the slices being provisioned

is received. This delay includes the time taken for processing the application’s request, uploading

the extern package of the transcoder on the selected switches, and creating the slices.

5.4.3 Measurements and Results

This subsection presents and evaluates the performance and results based on the specified met-

ric. Figure 5.6 shows the video streaming delay for traditional slices versus INC-enabled slices. It

can be observed that the delay of video streaming significantly decreases in INC-enabled slices that

have the transcoder inside the network. We obtained the delay over INC-enabled slices in different
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scenarios where the placement of the INC varies. For instance, when the transcoder is placed over

the closest switch to the server, we have nearly 30 times less delay of the video streaming compared

to a traditional slice.

Figure 5.7 shows the slice provisioning delay to compare the effect of in-network computing in

different scenarios. It can be observed that for all scenarios with in-network computing, the time

taken to create a slice on top of the infrastructure and place the transcoder inside the network is

very close to the time taken to provision the slice when the transcoder is at the client-side. On

comparing the scenarios with and without in-network computing, it can be seen that the slight

difference between the obtained delay is the time taken to select the switch inside the network and

compile the transcoder package on top of it. Provisioning the slices with a transcoder inside the

network takes nearly 1% more time than the case of having a transcoder at the client.
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Figure 5.6: Video streaming delay for traditional slice vs. INC-enabled slices in different scenarios.

5.5. Conclusion

In this chapter we proposed a novel architecture for provisioning INC-enabled slices for 360°

video streaming in next-generation networks. We used P4-enabled infrastructure to benefit from the
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Figure 5.7: Slice provisioning delay for different scenarios.

P4’s main characteristics such as agility, top-down design, visibility, less complexity, and enhanced

performance. We ran extensive simulations for different scenarios to evaluate the architecture us-

ing different performance metrics such as average delay and bandwidth utilization. Finally, a proof

of concept prototype was built and the architecture’s feasibility was demonstrated by assessing its

performance. Our results confirmed that INC effectively decreases the network load by reducing

bandwidth utilization (a 96 % decrease for the best placement of the transcoder) and lower aver-

age latency. The proof of concept prototype measurements show that the gains in terms of video

streaming latency could go up to 30 times.
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Chapter 6

Conclusions and Future Work

6.1. Conclusions

The tremendous growth of content over the internet brings new challenges such as scalability

and efficiency in content delivery that traditional CDNs are less and less able to meet. In this

Ph.D. thesis, we approached these challenges in two complementary ways: architecturally and

algorithmically. For the algorithmic contribution, we addressed the accuracy and stability issues

in rate adaptation in infrastructures with in-network storage in chapter 3. The proposed algorithm

enables more accurate and stable rate adaptation streaming over an enhanced infrastructure with

in-network storage such as ICNs.

Another challenge is that the extensive deployment of infrastructures with in-network storage

is very costly for infrastructure providers, as it requires a significant investment in installing routers

with in-network storage.. Network Slicing can tackle this issue by enabling virtual networks’ to

co-exist with different characteristics on top of the same physical network. An algorithm for imple-

menting in-network storage (a key feature of future networks) in IP settings for CDNs is proposed

in chapter 4. The objective of the proposed algorithm is to maximize the profit of infrastructure

providers while meeting the different QoS requirements for different parts of each slice. In addition

to the impact of profit maximization, the effects of QoS violation and reassignment penalties on the
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infrastructure provider are also analyzed. To enhance infrastructures with in-network computing for

CDNs, we proposed an architecture for provisioning INC-enabled slices for 360° video streaming

in chapter 5. We considered a P4-enabled SDN network as a physical infrastructure. A high-level

description of the proposed architecture with its corresponding procedures is presented. The pro-

posed architecture enables the provisioning of INC-enabled slices for CDNs. The first proposed P4

transcoder and using it in a network are another advantage of this architecture..

6.2. Future work

This thesis presented architectures and algorithms to improve content delivery in future net-

works. Several research directions remain for future advances in this area.

6.2.1 Rate Adaptation Streaming Algorithm

In a future work, we will further improve the accuracy of our proposed rate estimation algo-

rithm by considering collaborative edge servers instead of single edge servers, for example. Im-

provements can also be achieved by incorporating machine learning approaches to the algorithm

proposed in chapter 3. According to [95], introducing the concept of reinforcement learning at

the client side allows the DASH parameters to be changed on the fly. In addition, more accurate

rate estimation can be achieved by predicting the bandwidth characteristics, especially in networks

with in-network storage. Taking into account information gathered from network-assisted DASH

in decision-making processes can improve the accuracy and stability of the rate adaptation. Most

of the proposed solutions in the literature are for DASH over HTTP and they do not consider the

in-network storage challenge for adaptive streaming.

6.2.2 In-network Storage Implementation

An interesting future research direction for the algorithm proposed in chapter 4 would be to

exploit machine learning to solve the problem of in-network storage implementation for CDNs.
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The authors of [96] have shown that a DRL-based approach can outperform Q-learning in slicing

networks with in-network storage resources (e.g.,in ICNs). DRL algorithms also work well where

real datasets are available. There are some important aspects to consider when choosing an appro-

priate ML algorithm for the problem at hand. The definition and the design of the reward function

in reinforcement learning are especially important. In addition, it is critical to investigate the effect

of the slow convergence issue of DRL algorithms in this problem. Another research direction is to

explore the advantages of a DRL-based dynamic slicing mechanism from the economic aspect, and

to design a DRL algorithm that can learn with a good convergence rate using real-world datasets to

achieve satisfactory results in increasing the profit of infrastructure providers [97].

6.2.3 Provisioning In-Network Computing Enabled Slices

Although the architecture proposed in chapter 5 aims at handling heterogeneity through the

adaptation layer, the environment we used in the prototype is relatively homogeneous. Therefore,

the first item for future work will be to use a heterogeneous environment with routers from different

manufacturers. This will help in the design of a full-fledged adaptation layer. This paper has

focused on the specific case of 360° video streaming. However, our vision is the provisioning of

INC-enabled slices for a much wider range of services. Other use cases will be considered in the

future. Furthermore, we will also consider extending P4 packages through new primitives.

Another interesting future research direction is to explore the algorithms for the placements of

P4 packages over INC-enabled physical infrastructure. The problem is very challenging as there

are different applications with P4 packages. Some of these P4 packages might be shared by several

applications while others may not. Placing these packages on different switches to meet objectives

such as QoS and cost may be compromising and will require sophisticated algorithms. Another

future research avenue is the management layer of the architecture. While slice management is

well covered in the state of the art, the slices that are considered are usually not INC-enabled.
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