
PRE-TRAINED CNN AND BI-DIRECTIONAL LSTM FOR

NO-REFERENCE VIDEO QUALITY ASSESSMENT

Doreen Duoduaah

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science in Electrical and

Computer Engineering

Concordia University

Montreal, Quebec, Canada

June 2022

© Doreen Duoduaah, 2022

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Doreen Duoduaah

Entitled: Pre-trained CNN and Bi-directional LSTM for Video Qual-

ity Assessment

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Electrical and Computer Engineering

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. William E. Lynch ————————————– Internal Examiner (Chair)

Dr. Abdessamad Ben Hamza —————————– External Examiner

Dr. Maria A. Amer —————————————– Supervisor

Approved by ————————————————————————————–

Dr Jun Cai, Graduate Program Director

July 08, 2022 ——————————————————

Dr. Mourad Debbabi, Dean

Gina Cody School of Engineering and Computer Science

Abstract

Pre-trained CNN and Bi-directional LSTM for No-Reference Video Quality

Assessment

Doreen Duoduaah

A challenge in objective no-reference video quality assessment (VQA) research is in-

corporating memory effects and long-term dependencies observed in subjective VQA

studies. To address this challenge, we propose to use a stack of six bi-directional

Long-Short Term Memory (LSTM) layers of different units to model temporal char-

acteristics of video sequences. We feed this bi-directional LSTM network with spa-

tial features extracted from video frames using pre-trained convolution neural net-

work (CNN); we assess three pre-trained CNN, MobileNet, ResNet-50 and Inception-

ResNet-V2, as feature extractors and select ResNet-50 since it showed the best per-

formance. In this thesis, we assess the stability of our VQA method and conduct an

ablation study to highlight the importance of the bi-directional LSTM layers. Fur-

thermore, we compare the performance of the proposed method with state-of-the-art

VQA methods on three publicly available datasets, KoNVid-1K, LIVE-Qualcomm,

and CVD2014; these experiments, using same set of parameters, demonstrate that our

method outperforms these VQA methods by a significant margin in terms of Spear-

man’s Rank-Order Correlation Coefficient (SROCC), Pearson’s Linear Correlation

Coefficient (PLCC), and Root Mean Square Error (RMSE).

iii

Acknowledgments

To begin with, my profound gratitude goes to my supervisor, Dr. Maria A. Amer

for her unwavering support, attention and patience throughout my studies and her

perseverance and her exceptional attention to details skills in making this possible.

I would also like to extend my appreciation to my senior colleague and friend,

Mark, for his support and advice. Not forgetting my biggest support system, my

dad and my friend, Millicent. I am highly indebted to you all and I appreciate your

contributions towards making this a reality.

iv

Table of Contents

List of Figures . vii

List of Tables . ix

1 Introduction . 1
1.1 Motivation and problem statement 1
1.2 Summary of contributions . 3
1.3 Thesis Outline . 4

2 Background Material to Deep Learning 5
2.1 Introduction . 5
2.2 Artificial neural networks . 6
2.3 ANN training (or learning) . 8
2.4 Types of ANN . 10

2.4.1 Feed-forward neural networks 11
2.4.2 Convolutional neural networks 11
2.4.3 Recurrent neural network . 13
2.4.4 Long short-term memory cells 15

3 Related Works . 18
3.1 Traditional methods . 18
3.2 Deep-learning based methods . 20
3.3 Most related work and our contributions 21

4 Proposed Method . 25
4.1 Pre-trained module . 26
4.2 Trainable module . 27

5 Implementation Details . 32
5.1 Performance measures and datasets 32
5.2 Selection of the feature extractor . 34
5.3 Model training and hyper-parameter tuning 36

6 Simulation Results and Analysis . 40
6.1 Comparison with related work . 40
6.2 Stability study . 42

v

6.3 Ablation study . 43

7 Conclusions and Future work . 46
7.1 Conclusions . 46
7.2 Future work . 47

Bibliography . 55

vi

List of Figures

2.1 A single neuron perceptron. 7

2.2 Architecture of a multi-layer perceptron (feed-forward network) with
three inputs, three fully connected hidden layers each of 4 neurons and
one output neuron. 8

2.3 2× 2 max-pooling on an input. 12

2.4 A simple CNN architecture (Figure taken from [18]). 13

2.5 Architecture of ResNet-50 CNN (Figure taken from [3]). 13

2.6 A recurrent neuron (left) and its unrolled through-time version (right)
(Figure taken from [18]). 14

2.7 A deep RNN network (Figure taken from [18]). 15

4.1 The framework of the proposed VQA method. (See Figure 4.2 for a
block diagram of an LSTM unit). 26

4.2 The contents of the unit of a single direction LSTM memory cell. FC
refers to fully connected layer. (Figure taken from [18]). 28

5.1 MOS distribution of KoNVid-1K, LIVE-Qualcomm and CVD2014 datasets. 34

5.2 Performance comparison of pre-trained networks: MobileNet, ResNet-
50 and Inception-ResNet-V2. 35

5.3 Mean squared error versus the number of epochs on the training and
validation set of: left KoNVid-1K , middle CVD2014, and right LIVE-
Qualcomm. 38

vii

6.1 Performance comparison using different number of bi-directional LSTM
layers. 44

viii

List of Tables

6.1 Comparison over 10 runs of the proposed method with VBLIINDS [58],
TLVQM [31] and VSFA [35]. 41

6.2 100 runs: Stability analysis of the proposed method, TLVQM [31] and
VSFA [35]. 43

6.3 Comparison of the proposed method with LSTM and with LSTM-
replaced. 44

ix

Chapter 1

Introduction

1.1 Motivation and problem statement

Rapid advances in digital media has led to a proliferation of video signals obtained

through entertainment, consumer electronics, security, and communication. Video

signals perceived by human end users may be subjected to different distortions, which

may have been introduced during different stages such as capturing (e.g., out-of-focus,

sharpness), compression (e.g., compression artifacts), transmission (i.e., transmission

channel induced distortions), or storage (e.g., noise). The demand to meet end-user

expectations while optimizing existing video services requires monitoring video quality

at all stages.

Video quality assessment (VQA) can be broadly grouped into subjective and ob-

jective methods. Subjective VQA is the approach where human reviewers rate the

quality of videos in experiments conducted under standard conditions [75]. The re-

viewers are trained observers, that provide quality ratings in the form of mean opinion

scores (MOS) within a specific range of values, with the lowest value indicating the

worst quality. Although this method is reliable, it is labour-intensive and thus, not

often used, especially in real-time applications. It is worth mentioning that these

1

quality scores provided by the human reviewers are also affected by human factors

such as personality, age, gender, and culture [61].

Objective VQA involves developing mathematical models and estimators to pre-

dict the visual quality of a video signal. Objective VQA methods are relatively faster,

cost-efficient, and more practical than subjective VQA. The ultimate goal of research

in this area is to achieve objective VQA scores that highly correlate with subjective

scores (MOS). Depending on the availability of the original and pristine video signal,

objective VQA can be categorized as full-reference (FR), reduced-reference (RR), and

no-reference (NR).

Full reference requires complete information on the original video signal for quality

assessment. Classical methods such as Mean Squared Error (MSE), Peak Signal-to-

Noise Ratio (PSNR), and Structural SIMilarity index (SSIM) [80] are good examples

of FR in image quality assessment (IQA). The methods ST-MAD [78] and MOVIE

index [62] are examples of FR VQA. Reduced-reference VQA methods require partial

information from the original videos, for example, the RR methods in [55] and [70]

are designed for coding and transmission distortions.

Although FR and RR have been proven to perform well, information on the orig-

inal pristine video is unavailable in practical situations. As a result, NR methods

that do not require prior information on original pristine videos are more attractive

and practical, and have been adopted in recent applications [22, 16, 86]. NR meth-

ods vary from classical mathematical approaches such as [89, 12, 6, 7], TLVQM [31],

V-CORNIA [81], and V-BLIINDS [58] to deep learning methods such as [77, 79], and

DeepSTQ [88].

Recent advances in deep learning have led to the wide-use of deep convolutional

neural networks (CNN) in standard image processing tasks such as image classifi-

cations and object detection. CNNs perform remarkably better than hand-crafted

methods for visual feature extraction by learning complex features in these tasks [13,

2

68, 17]. However, building such powerful deep models requires a large amount of data

for training. In comparison with image datasets such as ImageNet [11], MS-COCO

[42], and CIFAR [32], the VQA community cannot boast of such large datasets.

Moreover, a study conducted in [36] revealed recent challenges in objective VQA

including the lack of large datasets for modelling, the challenge of effectively incor-

porating long-term dependencies and memory effects of the human observer, and the

need to provide a general-purpose VQA, that is, assessment not specialized for specific

types of distortions.

1.2 Summary of contributions

The objectives of this thesis are 1) to develop a fast (e.g., using pre-trained CNN) and

accurate (e.g., using all video frames) algorithm for a no-reference, general-purpose

video quality assessment despite the relatively small data (videos) available to the

VQA community, 2) to efficiently model the temporal features (e.g., memory effects,

long-term dependencies) in videos (e.g., using LSTM). As a result, the contributions

of this thesis are 1) a novel VQA method consisting of a pre-trained CNN to extract

spatial features, a stack of six bi-directional LSTM layers of different units to model

temporal dependencies, and two fully connected layers to learn one video quality score

from the resulting spatio-temporal features; 2) comparison of three pre-trained CNN,

MobileNet, ResNet-50, and Inception-ResNet-V2, to extract discriminative features

for each video frame for VQA; 3) discussion of how the use of a CNN pre-trained on

the large ImageNet dataset can reduce the need for a large amount of video sequences,

unavailable in the VQA community, for training in order to build a robust CNN model

and reduce computing resources and training time; and 4) stability and ablation

studies of the proposed VQA.

3

1.3 Thesis Outline

In Chapter 2, we provide a summary of the concept of artificial neural networks, their

types and their training. A review of related works follows in Chapter 3. Chapter

4 describes the details of the proposed method. Experiments and results on three

publicly available datasets are discussed in Chapters 5 and 6, respectively. The final

chapter, Chapter 7, summarizes the findings from the experiments and presents future

work which concludes the thesis.

4

Chapter 2

Background Material to Deep

Learning

2.1 Introduction

Machine learning (ML) is defined as the field of study that gives computers the abil-

ity to learn without being explicitly programmed [60]. ML can be understood as a

branch of artificial intelligence that enables the development of algorithms used by

computing systems to automatically learn and improve experience from data. ML

applications includes spam detection, facial recognition, self-driving cars, fraud de-

tection, robotics and many others. The algorithms used in these applications varies

from statistical modelling techniques such as linear and logistic regression to more

complex algorithms such as decision trees, support vector machines and artificial neu-

ral networks. Artificial neural networks mimic the processing abilities of the human

brain and it is considered in most image and video processing applications.

5

2.2 Artificial neural networks

Artificial neural network (ANN) was developed inspired by the information processing

and distributed communication nodes of the network of biological neurons in the

human brain. The first architecture of ANN was introduced in [44] with the basic

building block being the artificial neuron. An artificial neuron has one or more binary

inputs and an output which is activated when a certain number of its inputs are active,

similar to how biological neurons generates an output signal when an accumulated

input signal exceeds a certain threshold. An artificial neuron can be used to compute

simple logical operations (for example, AND, OR, and NOT) when one or both of its

inputs are activated (i.e., on/off).

The perceptron, which is a slight variation of the artificial neuron, consists of

multiple number-value inputs instead of binary (on/off) values as shown in Figure

2.1. Each input has a weight (w) associated with the connection to the neuron. A

threshold (or activation) function h(s) is applied to the weighted sum of its input. A

perceptron can acts as a binary classifier. If the output of h(s) exceeds a threshold,

the function outputs the positive class, else it outputs the negative class. The output

y of the perceptron is thus computed as:

y = h(s) = h(x1w1 + x2w2 + ·+ xnwn + b), (2.1)

where xi are the inputs (also called input vector), wi are the weights (weight vector)

associated with the inputs, and b is the bias. An example of an activation function is

the unit step function defined as:

step(z) =

0 if z < 0

1 if z ≥ 0

(2.2)

6

In ANN, a perceptron is an artificial neuron using the step function as the activation

function. A perceptron is also called ”single layer perceptron”. For a dataset of

training samples and their labels (or ground truths), during training, the weights wi

are first initialized and the perceptron is fed with data and their corresponding labels.

For each predicted output, the error made by the network is calculated considering

the predicted value and the original label. The connection weights wi for each neuron

are then updated using these errors.

Figure 2.1: A single neuron perceptron.

The decision boundary of the perceptron is linear; consider two inputs x1, x2 as

a point on a plane; then the perceptron decides this point belongs to which region

(class) on the plane; and such classes separated by a line, are called linearly separable.

Hence, this makes the perceptron suitable for linearly separable data only. To solve

complex non-linear tasks, we use multi-layer perceptron. A multi-layer perceptron is

a stack of single layer perceptrons. When all the neurons of a layer are connected to

all the neurons of the previous layer, the layer is termed as a fully connected or

dense layer. A fully-connected multi-layer perceptron is shown in Figure 2.2; there

is the input layer, the output layer, and the layers between the output and input

known as the hidden layers. An ANN with more than two hidden layers is considered

7

a deep network.

Figure 2.2: Architecture of a multi-layer perceptron (feed-forward network) with three
inputs, three fully connected hidden layers each of 4 neurons and one output neuron.

2.3 ANN training (or learning)

Learning involves the adjustment of the weights in an ANN to produce the desired

results. An optimization algorithm carries out the learning process. Stochatic gra-

dient descent (SGD) based optimization algorithms are commonly used in training

ANN. These include Adaptive Moment Estimation (Adam) optimizer [30], Adagrad

[15], or Nesterov accelerated gradient (NAG) [47]. A cost (or loss) function is de-

fined to evaluate the error between the predicted output and the ground truth. The

loss function E(·) depends on the network architecture, activation function, and the

type of error chosen for the training. Common loss functions are Mean Squared Er-

ror between estimated real-valued output (in regression tasks) and ground-truth and

Cross-entropy of binary output (in classification tasks) using the probability by which

the network detects the existence of a class. The aim of the optimization algorithm

such as SGD is to minimize the loss function of a predictive model with regard to

a training dataset. For each forward pass through the ANN, the loss function is

computed using the predicted outputs and the ground truths. Back-propagation, a

differentiation algorithm introduced in [57] is then used to compute the gradients of

8

the parameters (i.e., weights and biases) in the network. This gives the contribution

of each parameter to the prediction error. The optimization algorithm then adjusts

the model’s parameters using the computed gradients. The parameters are repeat-

edly adjusted using back-propagation and the optimization algorithm (such as SGD)

during training of the ANN until the prediction error measured by the loss function

is considerably low. Using the gradient descent, each of the model weights at each

ANN layer is updated at each iteration i (that is, a complete forward and backward

pass of the ANN) as in:

wi = wi−1 + ∆wi−1 = wi−1 − α
∂E

∂wi−1

. (2.3)

Subtracting the gradient of the loss function from the weights helps update the weights

so that the loss decreases in each iteration with the learning rate α. For each itera-

tion, the learning rate which is a tunable (or optimizable) parameter (called hyper-

parameter) determines the step size at which the optimization algorithms ”moves” to

minimize the loss function. Typical values of the learning rate range from 0.000001 -

0.1.

During training, a dataset can be divided into one or more batches. A batch

may include one sample, a set of samples (called mini-batch, typically 32, 64, and

128), or all training samples. The batch size is the number of training samples to use

before the model’s internal parameters are updated. A complete pass of the ANN on

a batch size is termed as an iteration. The number of epochs is the number of times

the optimization algorithm sees the complete dataset. One epoch means that each

sample in the training dataset was used once to update the internal model parameters.

Typical values for epochs are 10, 100, 500, or higher. For example, if there are 1000

training samples and the batch size is 500, then it will take 2 iterations to complete 1

epoch. When the number of epochs is more than necessary, the ANN learns patterns

9

that are specific to the training dataset which makes the network incapable to perform

well on a new similar dataset (i.e., the network is overfitting). Therefore, to minimize

overfitting, a good approach is to train the ANN for an optimal number of epochs.

The activation function used in a single layer perceptron is the unit step function,

which is not differentiable. This means that, there is no gradient to work with when

using the back propagation algorithm. Hence, this is replaced in a multi-layer percep-

tron with non-linear and differentiable activation functions such as logistic (sigmoid)

[23], tanh [28], and ReLU [46] to enable the back-propagation algorithm to work

effectively.

2.4 Types of ANN

The task, for which an ANN is designed to solve, is a dominant factor in the archi-

tecture design of the network. The two main tasks are classification and regression.

Classification networks output a label which is chosen among a limited set of possible

outcomes (classes). Object detection is an example, where a limited number of object

classes exists; therefore, an object is assumed to belong to one of these classes. Clas-

sification problems with two possible classes (or labels) are called binary classification

tasks. Regression networks predict a real quantity (usually a continuous value). An

example of the regression task is image or video quality assessment where the input

is an image or a video and the objective is to estimate its quality value. The quality

is a continuous value, i.e., it is not chosen among a limited set of possible outcomes

and can take any value in the valid range.

There are different types of ANNs. These include feed-forward neural network

(for example, multi-layer perceptron in Figure 2.2), modular neural networks, con-

volutional neural network, radial-basis function neural network, and recurrent neural

networks. Commonly used ones are the feed-forward, convolutional, and recurrent

10

neural networks. A description of these is as follows.

2.4.1 Feed-forward neural networks

In a feed-forward network (see Figure 2.2), perceptrons are arranged in layers, where

the first layer receives inputs and the last layer produces outputs. The middle layers

are called hidden layers since they have no connection with the ”external world”.

The more hidden layers the deeper the network is. Each perceptron in one layer is

connected forward, that is, to every perceptron on the next layer. This means that

data is only ”fed forward” from one layer to the next. A perceptron has no connection

with another layer in the same layer, this means that perceptrons are independent of

each other in the hidden layer. By definition, a single perceptron is a linear binary

classifier (that is, classifies input points into two classes that are linearly separable). A

feed-forward network can classify a point into regions that are not linearly separable.

By varying the number of perceptrons in the hidden layer, the number of layers, and

the number of input and output perceptrons, a feed-forward network can classify

points into an arbitrary number of classes. In supervised learning, pairs of inputs and

their labels are fed into a feed-forward network for many cycles, so that the network

’learns’ the relationship between these inputs and labels (called training samples).

2.4.2 Convolutional neural networks

Convolution neural networks (CNN) are designed for 2-D data (for example, images)

and are usually used in image processing applications such as object detection and

instant segmentation. CNNs are neural networks in which the hidden layers include

several convolutional and pooling layers to extract deep features in addition to regular

feed-forward fully connected layers for classification.

11

Convolutional layer

A convolutional layer performs the convolution operation on 2-D inputs (usually im-

ages) by applying a filter to extract the important information in the input. The

features extracted are known as the feature map. The filter which is usually smaller

in size than the image is systematically applied by sliding the filter starting from

the top left corner of the image to the bottom left to produce the feature map. The

feature map then contains the salient features of the image. A convolutional layer

typically has multiple trainable filters where each filter outputs a single feature map.

Typical sizes of filters are 3× 3 and 5× 5. The filter coefficients are optimized during

training of the CNN to output application specific features of the input image.

Pooling layer

The pooling layer subsamples the feature maps from the convolutional layer using a

defined window size. There are no trainable parameters in the pooling layer, hence,

no learning takes place. There are different types of pooling. These include max-

pooling, average-pooling and min-pooling. The common type of pooling used is the

max-pooling. A simple 2× 2 non-overlapping max pooling is shown in Figure 2.3.

Figure 2.3: 2× 2 max-pooling on an input.

Convolution and pooling layers in CNN are needed to reduce the computational

load and memory requirement while successfully capturing the important spatial fea-

tures of an image relevant for an application. Putting everything together, a CNN

architecture includes a stack of convolutional layers interspersed with pooling layers

12

and then fully connnected layers at the end. The architecture of a CNN can be simple

as shown in Figure 2.4 or more complex, for example ResNet-50 [24] shown in Figure

2.5. A CNN learns from the input data by optimizing the weights in the filters for

the convolutional layers and the weights for the neurons in the fully connected layers.

The network uses a hierarchical learning approach where low features (such as edges,

lines, and curves) are built on to form composite high level features such as objects

and events (i.e., cars, eyes, face).

Figure 2.4: A simple CNN architecture (Figure taken from [18]).

Figure 2.5: Architecture of ResNet-50 CNN (Figure taken from [3]).

2.4.3 Recurrent neural network

Recurrent neural networks (RNN) are a class of artificial neural networks specialized

in processing sequential data such as time-series, speech, audio, text, DNA, and

video signals. The elements of a sequence are not independent of each other and

there exist an order in the sequence. RNNs are designed to process each element

considering information from past elements, thus RNNs possess memory capabilities.

The architecture of a simple recurrent neuron is similar to a feed-forward neuron

13

except it has connections pointing backwards as shown in Figure 2.6. The connections

enables the network to discover the temporal relations between the elements in the

sequence. Figure 2.7 contains a single recurrent neuron (left) and the unrolled version

(right). The unrolled neuron is basically a single neuron which has been repeated for

each time step against the time axis. The part of the recurrent neuron that preserves

some state across the time steps is called the memory cell. The memory cell’s state

at time step t, denoted ht is a function of the inputs at that time step, xt and the

previous time step’s state, ht−1. Note that the hi are the feedbacks. Here, x0, x1, x2

are the time steps inputs and y0, y1, y2 are outputs for the time steps.

Figure 2.6: A recurrent neuron (left) and its unrolled through-time version (right)
(Figure taken from [18]).

Similar to feed forward neural networks, multiple recurrent neurons can be stacked

to form layers and then a network of layers as shown in Figure 2.7. The hidden layers

in RNN receive their input from the input layer as well as the output from previous

time step. The network has two sets of weights, one for the inputs and one for

the output for previous time step. During back propagation, the RNN encounters

the vanishing gradients (where the gradients exponentially goes to zero fast) and

exploding gradients (where the gradients exponentially goes to infinity fast) problems

[53]. In addition some information is lost at each time step due to the transformations

the data go through. Hence in processing long sequences (typically more than 10 steps

long), the RNN eventually ends up with little information of the first inputs. These

challenges inspired the development of the long short-term memory (LSTM) which

14

was initially proposed in [25] and improved in [59].

Figure 2.7: A deep RNN network (Figure taken from [18]).

2.4.4 Long short-term memory cells

The architecture of an LSTM network is like the regular RNN shown in Figure 2.7.

But the LSTM has unique formulation that helps to prevent the vanishing and ex-

ploding gradients and other challenges during training. What makes this possible is

the content of the memory cell of the LSTM. For an LSTM memory cell, it’s state is

split into:

• a long-term state ct : memory state which traverses across the network for all

the time steps,

• a short-term state ht : the cell’s output for the time step.

In addition, there exist the computational units:

• ”input” gate: determines which information from the input to update the long-

term state.

• ”forget” gate: determines which information from the long-term state to dis-

card.

• ”output” gate: determines what to output using information from the input

and the long-term state.

15

The gate units provide continuous analogues of ”write”, ”reset” and ”read” operations

for the memory cell.

How the memory cell of an LSTM function? The long-term state ct, tra-

verses across all the time steps in the network and is updated using the forget and

input gates at each time step. For an input at time step t, xt, the input gate de-

termines which information from the input xt to add to ct. The forget gate decides

which memories in ct to drop before it is forwarded to the next time step memory cell.

The short-term state, ht which is also the cell’s output for the time step is obtained

by filtering the long-term state using the output gate.

In essence, for each time step, there are two outputs: ht and ct. In the next

time step, these outputs are labelled as ht−1 and ct−1, respectively. The memory cell

for this time step uses these outputs and it’s input xt to compute the corresponding

outputs (ht and ct). This is repeated for all time steps and the cycle continues.

The long-term state ct, short-term state ht, input gate, forget gate, and output

gate are all computations which have weight parameters. These weights are optimized

during training using back propagation through time (BPTT) to extract the most

potent temporal features at each time step from a sequence.

Also, the gate units and the consistent data flow called the constant error carrousel

(CEC) keep each cell stable from the vanishing or exploding gradients problem [25].

Using the long-term state which passes through all the time steps, the LSTM is able

to identify an important memory in the sequence (added by the input gate) and

stores it in the long-term state for as long as it is needed. In summary, the two key

advantages of LSTMs over regular RNN are:

1. Overcomes the vanishing and exploding gradient challenge in training RNN.

2. Has memory capabilities to handle the long-term temporal dependency in long

sequences.

16

The capabilities of the LSTM has made it very successful at capturing temporal

long-term relations in long sequential data and it is used in a range of sequence predic-

tion tasks such as machine language translations, video tagging, speech recognition,

and sentiment analysis. In this thesis, we show that LSTM can be perfectly used for

video quality assessment.

17

Chapter 3

Related Works

This chapter provides a review of existing literature in NR VQA. A typical NR VQA

method begins with features extracted from video frames. These features are then

regressed via Support Vector Regressors (SVR), Random Forests or simply aggregated

to obtain a single quality score for a video. The technique for feature extraction can

be grouped into traditional methods and deep learning methods. We provide an

overview of both approaches in the following.

3.1 Traditional methods

Traditional VQA methods use hand-crafted features obtained by assessing character-

istics of videos such as gradients [43], natural video statistics [58], motion characteris-

tics, saliency [6], and colorfulness [1]. V-CORNIA [81] uses local descriptors obtained

through the intensity characteristics of video frames. These descriptors per frame are

regressed via an SVR to obtain the frame-level quality scores. Similarly, V-BLIINDS

[58] extracts features in the discrete cosine transforms domain and uses them to train

an SVR which outputs the video quality score. A perceptual video quality metric,

VMAF [41], was developed based on Visual Information Fidelity (VIF) [65] and the

visual information loss method described in [39]. In TLVQM [31], low complexity

18

features related to motion characteristics are computed for every second frame of

a video. Based on the features computed, certain frames of the video are selected

to compute high complexity features which are related to spatial artifacts. These

complexity features are pooled to obtain a feature sequence vector for each video.

The acquired feature vectors are regressed via SVR or Random Forest Regression to

obtain the video quality score.

Some VQA methods are distortion specific. For example, [89] proposed a Lapla-

cian method to measure the amount of compression distortions present in videos to

determine video quality. The method in [12, 7], and [6] solely focus on H.264 com-

pressed videos, while [82] considers transmission-specific distortions. These methods

depend on information on video compression type and transmission channels which

may not be available in all video streams or signals.

Many researchers have proposed different pooling techniques on frame-level qual-

ity scores to obtain one quality score for the whole video. For example, simple average

pooling has been used in [41]; V-CORNIA [81] uses a hysteresis pooling method to

predict video quality after obtaining the frame-wise quality scores. Some of the tem-

poral pooling techniques in no-reference VQA have been discussed in [76]. These

include statistics such as harmonic mean, geometric mean, arithmetic mean, per-

centile, Minkowski summation, and VQPooling proposed in [52]. Minkowski summa-

tion pooling method gives the strongest influence to the most distorted frame and it

is shown in [56] to produce results with good correlation to subjective scores as well

as percentile pooling, hysteresis, and VQPooling [52]. The experiments conducted in

[56] revealed that the performance of a specific pooling technique is dependent on the

video content.

The hand-crafted features and the pooling strategies for the methods described

above have been designed based on limited knowledge of the human visual system

(HVS) and video distortions, thus, reducing these methods’ potency.

19

3.2 Deep-learning based methods

The remarkable capability of deep CNNs [13, 68, 17] to extract both low and high

level features has led to significant advances in image processing tasks such as object

detection [85, 87], image segmentation [50, 51, 45], image recognition [24, 69], and

image classification [34, 29]. What is even more interesting is that these features can

be shared across different image processing tasks.

In VQA, progress has been achieved also using CNN such as in [10] and [2]; the

method [2] uses CNN in addition to handcrafted features and the method in [10] uses

InceptionV3 [71] model for feature extraction.

Although CNN extracted features have proven more effective than hand-crafted

features, these CNN models which are deep and complex need to be trained on a large

dataset to obtain high performance and avoid overfitting. Unfortunately, compared

to IQA, the VQA community does not currently have such large datasets, hence,

the need for transfer learning. Transfer learning is a deep learning technique where

pre-trained models typically trained on large, standard, benchmark datasets for a

task are reused in other models for similar tasks. Common pre-trained models used

are ResNet-50 [24], VGG-16 [69], AlexNet [33], and InceptionV3 [73] which are all

trained on the ImageNet dataset [11]. In particular, VQA methods [77, 88, 79] use

transfer learning and have demonstrated good performance on VQA datasets. These

transfer learning based methods leverage knowledge from existing CNNs by using the

weights obtained from training the CNN on large datasets as initializers for tuning

their model parameters or by using the pre-trained CNN as feature extractors without

fine-tuning. This leads to lower training time and low generalization error. In [77],

Inception-V3 [73] and Inception-ResNet-V2 [72] are fine-tuned to obtain frame-level

feature vectors. They carried out experiments using min, average, median and max-

pooling of the frame-level feature vectors to obtain a video-level feature vector. The

20

video-level feature vectors are trained using an SVR model for video quality predic-

tion. Inception-V3 [73] demonstrated superior performance over Inception-ResNet-V2

[72]. The method in [79] obtains first, spatial frame level features using fine-tuned

AlexNet [33] and then computes the motion information of video frames using the

algorithm presented in [38]. The combined spatial and motion features are regressed

using a radial basis function (RBF) kernel and a linear kernel based regression models

to predict video quality. The method DeepSTQ [88] uses ResNet-50 [24] to extract

features from generated video frames and frame difference maps without fine-tuning

or training from scratch. The authors suggest that the frame difference maps repre-

sent the motion information and hence the temporal characteristics of videos. As a

result, they regress the spatial-temporal features obtained using an SVR to predict

the perceptual video quality.

3.3 Most related work and our contributions

In this section, we review VQA methods, [83, 40, 84, 35], most related (that is, use

CNN for spatial features extraction and RNN/LSTM for temporal feature modelling)

to our approach and discuss significance of our contributions.

One of the challenges in VQA research is how to effectively model the long-term

dependencies and memory effects between video frames in the temporal domain. Re-

current Neural Networks (RNN) can handle sequences of any length and capture

long-term dependencies. RNNs are used to model time-series data where at every

time step t, the network considers input xt and the output from the previous time

step. Thus, the network processes new information considering weighted informa-

tion from outputs of previous inputs. Because of that, RNNs are said to have some

form of memory, and the part of the RNN which preserves this information across

previous time steps is called the memory cell [18]. However, in processing long se-

21

quences, deep RNNs suffer the standard vanishing gradients or exploding gradients

problem and have a short memory [5]. The Long Short-Term Memory (LSTM) has

a long-term memory and is designed to overcome the challenges of using RNNs for

long sequences [20]. LSTMs can discover long-range temporal relationships and have

yielded good performances in text classification [67], speech recognition [21], and

handwriting recognition [20]. LSTMs are generally used in long sequences and time-

series applications mainly because they perform better and converge faster during

training than deep RNNs [18].

In the related work VSFA [35], the feature maps from ’res5c’ layer of ResNet-50 [24]

are pooled using the global average and standard deviation pooling strategy to obtain

spatial feature vectors for each video frame. To model the long-term dependencies

in videos and to predict the video quality score, the authors then employ a 32 gated

recurrent units (GRU) layer; GRU is similar to LSTM but without the output gate

and thus, has fewer parameters. Therefore, the LSTM performs better than GRUs for

long and high complexity sequences [8]. In addition, the authors adopt and modify

the temporal pooling approach proposed in [63] which defines a memory element for

each video frame to obtain the overall video quality score. The authors train the

entire network of their method in an end-to-end manner. The related method in [83]

fine-tunes VGG16 [69] pre-trained CNN for feature extraction; it then employs gated

recurrent units (GRU) to model the temporal characteristics. The related methods in

[40] and [84] extract spatio-temporal features using 3D-CNN. However, as discussed

in [14], 3D-CNNs are limited in capturing discriminative features in the temporal

domain. Consequently, in addition to 3D-CNN, one 32-unit LSTM layer is used in

[84] to extract temporal features. [40] did not specify the number of LSTM layers

used. A peculiar characteristic common to the methods [83],[40], [84], and [35] is

that, more attention is given to the spatial feature extraction stage where most of

their method’s complexities lie. Specifically, they use CNN with multiple convolution

22

and pooling layers then a single layer of RNN units to regress the features learned

to a video quality score with less emphasis on the long-term dependencies in video

frames. In addition, CNN training on video data is computationally intensive. As

a result, these methods perform a partial selection of video frames during training:

[83] samples the video frames at 1 frames/second (fps) and [84] splits each video into

blocks and assume each block has the same quality as the complete video. These

techniques do not guarantee that the frames selected are keyframes and thus, well

represent the spatial and temporal characteristics of the full video.

Different than these most related VQA work, in the proposed method, we use

a pre-trained CNN as a spatial feature extractor for all video frames without any

fine-tuning. Using all frames eliminates the need to sample (key) video frames during

training, which is not a trivial task. On the other side, in using pre-trained CNN, we

minimize the need for a large amount of data (i.e., video signals) which are unavailable

in the VQA community to build a robust model. In addition, there is a significant

reduction in the complexity during training of our spatio-temporal deep model. That

is, CNN is designed mainly for images, using CNN for video applications requires

a T -fold (where T is the number of frames per video) of the regular training time,

which is highly resource-intensive and time-consuming. Not re-training and fine-

tuning the CNN can significantly cut down the computing resources and time needed.

For this, we assessed MobileNet [27], ResNet-50 [24], and InceptionResNetV2 [72] as

the spatial feature extractor and propose to use ResNet-50 [24] because it showed the

best performance.

While related work [83, 40, 84, 35] pay more attention to spatial feature extrac-

tion than temporal features modelling, we aim to balance both. Given the spatial

features extracted, we thus employ bi-directional LSTM units, which capture rela-

tions in sequences in both the forward and backward directions to model the memory

effects and long-term dependencies between video frames. We propose bi-directional

23

LSTM network consisting of four 128-unit and two 64-unit bi-directional LSTM lay-

ers with simple concatenation as the merging strategy for the forward and backward

processes.

24

Chapter 4

Proposed Method

The propose NR VQA consisting of two modules is depicted in Figure 4.1. Details

of the non-trainable and trainable modules are described in the following sections.

In summary, we use existing pre-trained CNN as a feature extractor for VQA, where

we keep all layers preceding the top-most layer (that is, the one for classification)

and apply max-pooling to the last convolutional layer. We feed this slightly modified

pre-trained CNN with individual video frames and obtain an n-dimensional vector

representing the spatial features (for example, n = 2048 for ResNet-50 [24]). We

then feed this sequence of feature vectors to a bi-directional LSTM network in order

to model the temporal characteristics between video frames in both the forward and

backward direction. The architecture of the bi-directional LSTM model was obtained

by using keras tuner [49] to tune the number of layers and units over a range of values.

We found using a stack of four 128-unit and two 64-unit bi-directional LSTM layers

to give the best results. The combined spatial and temporal features obtained are

pooled via a 32-unit and then a 1-unit fully-connected layers to output a single video

quality score.

25

Figure 4.1: The framework of the proposed VQA method. (See Figure 4.2 for a block
diagram of an LSTM unit).

4.1 Pre-trained module

Many deep CNN models have been made available along with their pre-trained weights

for feature extraction, fine-tuning or prediction. We use the pre-trained network

merely for spatial feature extraction from video frames without fine-tuning. Based

on results from the experiments we conducted (see Section 5.2), we select ResNet-

50 [24] as the CNN model for feature extraction. It is a network with 50 layers

grouped into 5 stages. All, with the exception of the first stage, consist of blocks of

convolutional layers. The network ends with a global average pooling and a 1000-unit

fully connected layer as the top-most layer for prediction. We remove this 1000-unit

fully connected layer and apply max-pooling to the last convolutional layer instead

of the average pooling. We chose max-pooling because it has the best performance

in [79, 10]. With this slight modification, the CNN results in a feature vector that we

use as an input to the LSTM network. For a video V with T frames, i.e.,

V = {I1, I2, I3, · · ·, IT}, (4.1)

we pre-process each video frame It according to the specifications provided by the

authors of ResNet-50 [24]: the frame is converted from RGB to BGR, each colour

26

channel is zero-centred with respect to the ImageNet dataset [11], and resized to

224× 224× 3 without scaling. We then feed the pre-processed frame to the modified

CNN model and the output is an n = 2048 feature vector, xt, i.e.,

xt = modified ResNet(It). (4.2)

That is, we obtain a sequence {xt} of T feature vectors per video.

4.2 Trainable module

The trainable module consists of a stack of six bi-directional LSTM layers and two

fully connected layers (see Figure 4.1). Before the LSTM network, we apply zero-

padding and then masking: Due to the varying length of videos in VQA datasets, we

zero-pad the shorter spatial feature vector sequence to match the size of the longest

feature vector sequence (representing that video with the maximum number of video

frames). This facilitate batch training of the LSTM network. Each padded sequence is

then passed through a masking layer in order to skip the padded part of the sequence

during batch training and testing of the LSTM network.

An LSTM layer has a memory cell for each time step, that is, for a T -frame

video, there are T memory cells. Each memory cell in turn has structurally identical

units. For example, the first bi-directional LSTM layer in the proposed method has

128 units for each memory cell. A unit has a long-term state ct, a short-term state

ht, a hidden state gt, and ”input” it, ”forget” ft, and ”output” ot gate as shown in

Figure 4.2. Note that lower-case indexed variables are vectors and upper-case indexed

variables are matrices. At time step t in an LSTM unit, the ”input” it, ”forget” ft,

and ”output” ot gates, and the hidden state gt, are computed as weighted addition

of the input data xt and the previous short-term state ht−1, (h0 = 0) as follows,

27

Figure 4.2: The contents of the unit of a single direction LSTM memory cell. FC
refers to fully connected layer. (Figure taken from [18]).

it = σ(Wxixt +Whiht−1 + bi),

ft = σ(Wxfxt +Whfht−1 + bf),

ot = σ(Wxoxt +Whoht−1 + bo),

gt = tanh(Wxgxt +Whght−1 + bg),

(4.3)

where σ(.) is the logistic function, Wxi, Wxf , Wxo and Wxg are the weights in connec-

tion with the input data xt, Whi, Whf , Who and Whg are the weights in connection

with the short-term state ht−1 from previous memory cell, and bi, bf , bo, bg are the

biases. The it, ft, ot and gt are vectors, each of size equal to the number of units

in the LSTM layer (for example, in a 128-units LSTM, the size is 128). The logistic

function is defined as,

σ(z) =
1

1 + e−z
, (4.4)

and the tanh function is defined as,

tanh(z) =
e2z − 1

e2z + 1
. (4.5)

28

The three gates and the hidden state are then used to compute the long-term states

ct and the short-term states ht. The long-term state for the forward process ctf , and

backward process ctb (marked c(t) in Figure 4.2 for a single direction) are computed

as in,

ctf = (ft ⊗ ct−1) + (it ⊗ gt),

ctb = (ft ⊗ ct+1) + (it ⊗ gt),
(4.6)

where ⊗ is element-wise multiplication. The corresponding short-term states htf and

htb (marked h(t) in Figure 4.2 for a single direction) which are also the unit’s output

ytf and ytb are then computed as,

ytf = htf = ot ⊗ tanh(ctf),

ytb = htb = ot ⊗ tanh((ctb),

(4.7)

where ⊗ is element-wise multiplication. The outputs from both processes are then

merged (concatenated) to obtain the final output yt of the bi-directional LSTM layer,

i.e.,

yt = ytf ⊕ ytb, (4.8)

where ⊕ is concatenation operation.

In summary, for each time step, the units in the memory cell outputs a long-term

state c(t) and a short-term state h(t) as shown in Figure 4.2. The long-term state

contains information from t = 0 to the current time step. As the long-term state

traverses through the network, at every time step, portions of the information are

dropped and updated using the forget and input gate, respectively. The short-term

state which is the final output at each time step is computed using the long-term state.

This gives the feature descriptors of an event at time step t based on information from

previous events, i.e., the long-term state c(t−1) and the previous short-term state h(t−1),

and its input xt. For more details on the structure and computations in an LSTM

29

cell see [25].

In the following, using the optimal number of layers and units obtained after

tuning the model (see Section 5.3), we describe the steps as a video sequence passes

through the proposed method. For a video with T frames, we feed ResNet-50 [24]

with its video frames and obtain a sequence of extracted spatial feature vectors. The

length of the sequence is T and each time step in this sequence is a vector of size n

(for ResNet-50 [24], n = 2048). We then feed the T sequence of spatial feature vectors

to the bi-directional LSTM network. (As explained earlier, padding and masking are

necessary when considering multiple videos with different lengths at a time). We use

four 128-unit and two 64-unit bi-directional LSTM layers. The first bi-directional

LSTM layer has 128 units and takes the T sequence of spatial feature vectors. For

each time step, we compute ytf and ytb of equation 4.7 using the n spatial feature

vector. This results in a spatio-temporal feature vector of size 128 for each of the

forward and backward process. We then concatenate the two spatio-temporal feature

vectors ytf , ytb as in equation 4.8 to obtain a T sequence of spatio-temporal feature

vectors, where each time step is a vector of size 256. The second, third and fourth

LSTM layers, in a similar manner, outputs a T sequence of spatio-temporal feature

vectors with a vector size of 256 for each time step. The fifth bi-directional LSTM

layer has 64 units and hence, outputs a T sequence of spatio-temporal feature vectors

with of size 128 for each time step. For the last 64-unit bi-directional LSTM layer,

we consider only the spatio-temporal feature vector of the last time step which is

also the final short-term state (hT) in the network. This is usually done in LSTM

networks to obtain a single vector as the final output instead of a sequence. As a

result, we obtain a spatio-temporal feature vector of size 64 for each of the forward and

backward direction, which we then concatenate to obtain a spatio-temporal feature

vector of size 128. We next feed this final 128-size spatio-temporal feature vector of

the input video to a 32-unit feed-forward fully connected layer with ReLu activation,

30

which enables the model to learn complex relations within the features. The output

is a 32-size feature vector, which we finally connect to a 1-unit fully connected layer

that outputs the video quality score.

Uni-directional LSTM preserves information from the past only. We use bi-

directional LSTM because we aim to capture temporal features from both the past

and future; also, experiments show that viewers assign the same quality score to a

video if played forward or backward in time [64].

The input to the bi-directional LSTM network is a sequence of T spatial feature

vectors, where each vector has a size n, and the output is a single vector of size equal

to the number of units in the last LSTM layer, that is, 64. This vector contains the

spatio-temporal features of the sequence.

31

Chapter 5

Implementation Details

In this chapter, first, we describe the performance measures and datasets selected for

our experiments, then, we discuss the feature extraction model selection process and

the bi-directional LSTM model training details.

5.1 Performance measures and datasets

For VQA datasets, videos are first subjectively assessed by human viewers and mean

opinion scores (MOS) are collected. VQA methods developed using these datasets

aim to predict video quality scores correlated with these MOS. The widely used

performance measures are Spearman’s Rank-Order Correlation Coefficient (SROCC)

[66], Pearson’s Linear Correlation Coefficient (PLCC) [4], and Root Mean Square

Error (RMSE) used in [31]. PLCC and SROCC indices reflect the correlation between

the objective predicted scores and the MOS, while RMSE shows the error between

these scores. It is expected that a good method should have high SROCC and PLCC

values and a small RMSE value.

For testing, we used videos with corresponding subjective quality scores in three

datasets: Konstanz Natural Video Database (KoNViD-1k)[26], Mobile In-Capture

32

Video Quality Database (LIVE-Qualcomm) [19], and Camera Video Database (CVD2014)

[48].

KoNViD-1k [26] dataset has 1200 content diverse real-world video sequences with

authentic distortions sampled from Yahoo Flickr Creative Commons 100 Million

(YFCC100m) dataset [74]. The authors do not state the exact video distortion types.

The videos are encoded at three different rates: 24, 25, and 30 fps and with 12 dif-

ferent varying resolutions. The most common resolution among the videos is 1280 x

720 pixels. The MOS range from 1 to 5, and its distribution is depicted in Figure 5.1.

The LIVE-Qualcomm [19] dataset comprises 208 videos obtained using eight mo-

bile devices such as Samsung galaxy, Apple iPhone, HTC, and Nokia lumia. The

videos in the dataset were created to model six common distortions introduced dur-

ing the capturing process. These include artifacts, color, focus, exposure, sharpness,

and stabilization. The videos have a uniform resolution of 1920 x 1080 progressive

(1080p). The MOS range from 16.6 to 73.64 and its distribution is shown in Figure

5.1.

CVD2014 [48] contains 234 videos obtained using 78 different capturing devices.

Like LIVE-Qualcomm [19], the dataset consists of videos with complex distortions

related to the video capturing process. There are two distinct video resolutions, 640

x 480 (57 videos) and 1280 x 720 (177 videos). The MOS have a wide range of -6.5

to 93.38 and their distribution is shown in Figure 5.1.

Unlike standard deep learning applications such as object detection and image

classification datasets, VQA datasets are small in size and their authors do not

explicitly specify the training and test sets for experiments. Also, the authors of

CVD2014 [48] and KoNViD-1k [26] do not group the videos per distortion type.

Consequently, video distortions in one dataset may be entirely different from those in

other datasets. Therefore, for solid evaluation, during the experiments, we randomly

split each dataset into a train and test set ratio of 0.8 : 0.2. We train our proposed

33

model using the training set and evaluate the model performance on the test set.

Figure 5.1: MOS distribution of KoNVid-1K, LIVE-Qualcomm and CVD2014
datasets.

5.2 Selection of the feature extractor

For feature extraction of video frames, taking inspiration from [35], [88], and [77], we

use the pre-trained CNN ResNet-50 [24], Inception-ResNet-V2 [72], and MobileNet

[27] trained on ImageNet [11] dataset for image classification.

MobileNet [27] has 28 layers with an input size of 224×224×3. The model uses a

standard convolution operation to combine filtered features from convolution kernels

to form new representations. This model achieves a top-5 accuracy of 89.5% on the

ImageNet [11] dataset. The model ouputs a 1024 size feature vector after applying

max-pooling to the last convolution layer.

Inception-ResNet-V2[72] is a deeper network and has 164 layers with an input size

of 299 × 299 × 3. Considering the benefits of residual connections in deep learning,

this method combines the inception architecture with residual connections, making

training faster. The model achieves a top-5 accuracy of 95.3% on the ImageNet [11]

dataset and outputs a feature vector of size 1536 after applying max pooling to the

last convolution block.

ResNet-50 [24] has 50 convolution and pooling layers, which form the baseline

architecture. Residual connections are added after each 3-layer block (residual block),

34

where a 3-layer block consists of 1 × 1, 3 × 3, and 1 × 1 convolutions. The residual

addition leads to easier and faster optimization with high accuracy. The input size is

224×224×3, and it has a top-5 accuracy of 92.1% on ImageNet [11] dataset. Applying

max-pooling to the conv 5 block which is the last convolution block outputs a 2048

size feature vector.

We implement our method in python using keras [9] deep learning framework. We

load the weights from training on the ImageNet [11] dataset for each CNN model.

We apply max-pooling to the last convolutional layer in the networks and take the

resulting output as the frame spatial feature vector. We then train the bi-directional

LSTM network in a 5-fold cross-validation for each set of the three pre-trained CNN

extracted features. Then, we compare the performance of the pre-trained networks

by considering the mean RMSE between the predicted scores and subjective MOS.

The MOS of LIVE-Qualcomm [19] and CVD2014 [48] were scaled to the same

range as KoNVID-1K [26] to enable a uniform comparison. A plot of the mean RMSE

against each pre-trained CNN is shown in Figure 5.2. It is seen that ResNet-50 [24]

Figure 5.2: Performance comparison of pre-trained networks: MobileNet, ResNet-50
and Inception-ResNet-V2.

has the lowest average RMSE across the datasets, confirming its best performance

35

among the three pre-trained networks. MobileNet has a lower mean RMSE than

Inception-ResNet-V2 on KoNVid-1K [26] dataset. However, for LIVE-Qualcomm [19]

and CVD2014 [48] datasets, Inception-ResNet-V2[72] performs better than MobileNet

[27]. It is also observed that, the LIVE-Qualcomm [19] dataset produces relatively

high RMSE values for all three pre-trained networks. Based on the results in Figure

5.2, ResNet-50 [24] was chosen as the preferred CNN model for our method. All

analyses made in the following sections are with reference to the ResNet-50 [24] as

our feature extractor.

5.3 Model training and hyper-parameter tuning

In our proposed method, the primary model for optimization is the network of the

bi-directional LSTM and the two fully-connected layers (see Figure 4.1). Using the

CNN extracted spatial features, we train the network to output a single video quality

score with a high correlation to the MOS.

We do not temporally sample the video frames but we use all frames of a video.

The frames are resized to 224× 224× 3. The number of frames of a video determines

the length of the sequence input to the LSTM network. Most videos in the Konvid-1k

[26] and LIVE-Qualcomm [19] datasets have 240 frames; consequently, the sequence

length selected for these two datasets was 240. Feature vectors of videos with less

than 240 frames were zero-padded. For CVD2014 [48], majority of the videos had

500 frames, hence, the chosen sequence length was 500.

The parameters of our network architecture are the number of layers and the

number of units per layer. The hyper-parameters of our network are: batch-size,

learning rate, kernel regularizers, and merge mode (see equation 4.8). Our objective

is to find one set of optimal values of these parameters for all three datasets. For this,

we merged the training sets of KoNVID-1K [26] and CVD2014 [48] (since both have

36

videos of same length) into one training set for parameter tuning. For the merge mode

in equation 4.8, we experimented with four modes: average, sum, multiplication, and

simple concatenation; we selected simple concatenation because it yielded the best

results in terms of the mean squared error between the predicted video quality scores

and the MOS. The rest of the parameters we tuned using the hyperband [37] search

method in keras tuner [49]. The hyperband [37] method is a sophisticated version

of random search approach where resource allocation is optimized during tuning.

That is, the method runs a model for several combination of the parameters for a

few epochs. Based on the results from these few epochs, the method selects the

best candidates for the best parameter combination model and train them further.

This strategy is repeated until an overall best model is attained. We provided the

hyperband [37] search method with these range of values: number of LSTM layers:

1− 8; number of fully-connected layers: 2, number of units: 32 - 2048; batch size: 16,

32, and 64; learning rate: 0.0000001− 0.1 (we used the Adam [30] optimizer); and L2

kernel regularizers: 0.0 − 0.1 (we used L2 loss function). Subsequently, we obtained

the optimal architecture parameter values: number of LSTM layers = 6 (see also

Figure 4.1), number of units 128, 64, 32, and the optimal hyper-parameters values:

batch-size = 32, kernel regularizers = 0.1, learning rate = 0.00015.

The number of epochs, a parameter of the network optimizer (in our case Adam

[30]) needs also to be set. Recall that VQA datasets are not divided by their authors

into training, validation, and test sets. For us to observe the effect of number of

epochs on the learning of our model on a dataset, we split its training set into a

training subset and a validation subset in the ratio of 0.8 : 0.2. Then, we trained our

model on KoNVid-1K [26] and CVD2014 [48] for 60 epochs and on LIVE-Qualcomm

[19] for 100 epochs. Presented in Figure 5.3 are the learning curves from the model

training.

These curves show the progress of the model performance in terms of the training

37

Figure 5.3: Mean squared error versus the number of epochs on the training and
validation set of: left KoNVid-1K , middle CVD2014, and right LIVE-Qualcomm.

and validation error (that is, MSE between predicted quality and MOS) as we increase

the number of epochs. From the graphs, it is seen that, the training and validation

error decreases for a certain number of epochs until there is no significant changes

in the error, indicating no overfitting, that is, no bias of our model to a particular

dataset. There are more fluctuations in the training and validation error for LIVE-

Qualcomm [19] than KoNVid-1K [26] and CVD2014 [48]. In fact, initial training

of the model on LIVE-Qualcomm [19] using 5-fold cross-validation on the training

set yielded poor performance irrespective of how many times the model parameters

were tweaked. This was not unexpected since as stated in [35] and shown in [84],

the videos in LIVE-Qualcomm [19] dataset pose challenges for both human viewers

and subjective VQA models. Also, the LIVE-Qualcomm dataset [19] has video frames

with high resolution 1920×1080 (compared to 1280×720 in KoNVid-1K dataset [26]);

on the other side, CNN models downsample input images (for example, in ResNet-50

[24] to 224 × 224). Such strong downsampling might affect accuracy. Hence, similar

to [84], our model weights obtained from training on KoNVid-1K [26] training set

were used to train on the LIVE-Qualcomm [19] train set for 100 epochs.

After obtaining the optimal number of epochs using the training and validation

subsets, we trained our model on the whole training set of each dataset. The training

time for KoNVid-1K [26] training set with 960 videos for 60 epochs was 2 hrs, 5

mins and 40 seconds on a NVIDIA Quadro RTX 8000 GPU of 260W capacity. To

estimate the testing time for a single video, we applied our model on a 240 frames

38

video with resolution 540 × 960; predicting its video quality took 8 seconds, that is,

30 frame/second (FPS).

39

Chapter 6

Simulation Results and Analysis

6.1 Comparison with related work

We compare the performance of our model on the three datasets with three no-

reference VQA methods, V-BLIINDS [58], TLVQM [31], and VSFA [35], whose im-

plementation details and code are publicly available. The codes of the related works

[40, 83, 84] are not publicly available, hence, we could not compare to them. Also, we

note that each of these three related works carry out simulations under different se-

tups: [83] samples videos in KoNVid-1K [26], CVD2014 [48] and LIVE-Qualcomm [19]

at one frame per second and resizes the frames to 448× 448. They run their method

ten times and report the mean correlation coefficients between the predicted scores

and the subjective scores. The method in [84] conducts experiments on KoNVid-

1K [26] and LIVE-Qualcomm [19] datasets. They select 90% and 80% of videos in

KoNVid-1K [26] and LIVE-Qualcomm [19] respectively as the training set, run the

method one time, and report the model performance on the remaining videos in the

datasets.

We train and evaluate V-BLIINDS [58], VSFA [35], and TLVQM [31] codes strictly

following the requirements specified by the authors. In V-BLIINDS [58], Image Nat-

40

uralness Quality Index, NIQE, Natural Scene Statistics, NSS, and motion charac-

teristics of videos are computed in MatLab. Using SVR, the extracted features are

trained to predict the video score. VSFA’s [35] method is implemented in python us-

ing Pytorch [54]. Their architecture involves ResNet-50 [24], a fully connected layer

and a GRU layer. The model was trained for 2000 epochs using a learning rate of

0.00001, and a batch size of 16. In TLVQM [31], low and high complexity features

are computed in Matlab. Training and testing using the features computed are done

in python using an RBF-kernel SVR with parameters, gamma = 0.1, epsilon=0.3

(again, as provided by the authors).

For comparison, in VQA literature, some related work train and test in a single

run [84, 2], while others do multiple random splits and hence multiple runs [35, 83,

31, 79]. We decided to train and test using multiple random splits in 10 runs, making

sure to use the same train/test set for each method. We report the mean of the

PLCC, SROCC, and RMSE indices from the 10 runs in Table 6.1. The best results

are in bold.

Table 6.1: Comparison over 10 runs of the proposed method with VBLIINDS [58],
TLVQM [31] and VSFA [35].

Konvid-1K LIVE-Qualcomm CVD2014

Method PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE

V-BLIINDS 0.432 0.433 0.576 0.532 0.557 11.028 0.342 0.342 20.224

VSFA 0.723 0.720 0.454 0.722 0.723 8.255 0.718 0.711 14.100

TLVQM 0.731 0.732 0.441 0.772 0.760 8.389 0.714 0.691 14.869

OURS 0.808 0.795 0.407 0.786 0.766 8.339 0.868 0.858 12.019

The values in Table 6.1 shows that our method outperforms all compared meth-

ods in terms of the mean PLCC and SROCC. For the RMSE metric, VSFA [35]

slightly outperforms our method on the LIVE-Qualcomm [19] dataset. VSFA [35]

and TLVQM [31] have similar performance characteristics. However, TLVQM [31]

has overall better mean values than VSFA [35]. Our method has a substantial in-

41

crease in performance on all datasets over TLVQM [31]. Considering the mean PLCC,

our method improved by 10.54% on KoNVid-1K [26], 1.8% on LIVE-Qualcomm, and

21.6% on CVD2014 [48] over TLVQM [31].

With regards to the comparison of our method’s performance on the different

datasets used, it is seen that LIVE-Qualcomm [19] proved challenging, evident by

our method having its lowest performance on the dataset. This could be attributed

to videos in LIVE-Qualcomm [19] having a higher resolution (1920 × 1080) than the

others. The drastic resizing into 224 × 224 for spatial feature extraction by the pre-

trained CNN may have hindered the model’s ability to capture the complete spatial

characteristics of the videos.

6.2 Stability study

To assess the stability of the proposed method, we conduct 100 runs on 100 random

train/test splits of each dataset for VSFA [35], TLVQM [31] and our method making

sure to use the same train/test split for each method. We did not include V-BLIINDS

[58] in this experiment because it showed inferior performance as per Table 6.1. We

evaluate the changes in each method’s performance as the input data changes by

reporting the mean and standard deviation (STD) of PLCC, SROCC and RMSE

metrics. The results are shown in Table 6.2. It is seen that our method has the

best mean values for all three metrics, but more importantly, has clearly, the lowest

STD across all three datasets for all three metrics. On KoNVid-1K [26] dataset (the

largest), the margin between the STD of our method and TLVQM [31] is between

0.006 − 0.02, while that of VSFA [35] is between 0.03 − 0.058. Although neural

networks are known to be very stochastic in nature, it is seen that our method is

more stable than TLVQM [31] and VSFA [35].

42

Table 6.2: 100 runs: Stability analysis of the proposed method, TLVQM [31] and
VSFA [35].

Dataset Method PLCC (±STD) SROCC (±STD) RMSE (±STD)

KoNVid-1K

VSFA [35] 0.615 (±0.068) 0.576 (±0.083) 0.469 (±0.063)

TLVQM [31] 0.715 (±0.032) 0.719 (±0.031) 0.404 (±0.053)

OURS 0.812 (±0.020±0.020±0.020) 0.803 (±0.025±0.025±0.025) 0.399 (±0.033±0.033±0.033)

LIVE-Qualcomm

VSFA [35] 0.646 (±0.091) 0.669 (±0.077) 8.254 (±1.578)

TLVQM [31] 0.717 (±0.081) 0.730 (±0.070) 8.204 (±1.576)

OURS 0.754 (±0.047±0.047±0.047) 0.735 (±0.053±0.053±0.053) 8.299 (±1.361±1.361±1.361)

CVD2014

VSFA [35] 0.632 (±0.081) 0.596 (±0.094) 15.214 (±1.423)

TLVQM [31] 0.706 (±0.067) 0.677 (±0.080) 15.138 (±1.413)

OURS 0.852 (±0.034±0.034±0.034) 0.857 (±0.048±0.048±0.048) 12.929 (±1.350±1.350±1.350)

6.3 Ablation study

We conducted an ablation study to highlight the importance of the bi-directional

LSTM module in the proposed method. We replace the bi-directional LSTM sub-

module by wrapping the mask layer and 32-unit fully connected layer in a keras

time-distributed layer. The time-distributed layer allows a layer to apply the same

weight to each step of a time series, similar to how LSTMs work except it has no

memory cell. This process results in a 2-dimensional output. This 2-D output for

each video sequence is flattened to obtain a 1-D linear vector which is fed into the

last fully connected layers that outputs the video quality score. The time-distributed

and flatten layers used in this part of the experiment are similar to convolution or

pooling layers [9]. We run the new version of the proposed method ten times, and

we report the results in Table 6.3. As expected, the bi-directional LSTM is central

to the performance of our method. In Table 6.3, we see a huge difference between

the correlation indices of the full proposed method and the LSTM-replaced version.

Clearly, the powerful memory and long-term dependency modelling capabilities of

LSTM units helps to predict video quality scores that correlates highly with subjective

43

Table 6.3: Comparison of the proposed method with LSTM and with LSTM-replaced.
Dataset PLCC SROCC RMSE

KoNVid-1K
w 0.8082 0.7956 0.4070

w/o 0.1783 0.1667 1.3271

LIVE-Qualcomm
w 0.7864 0.7657 8.3393

w/o 0.0809 0.0837 49.100

CVD2014
w 0.8680 0.8587 12.020

w/o 0.2629 0.2610 50.780

scores.

Additionally, we analyze the performance of the proposed method by removing

one bi-directional LSTM layer at a time. That is, we run the proposed method using

just the first bi-directional LSTM layer, then using the first 2, then the first 3 and so

on up to using the 6 layers. We run these experiments 10 times using the previously

obtained optimal hyper-parameter values (see Section 5.3). We report the changes in

the mean PLCC, SROCC and RMSE values in Figure 6.1.

Figure 6.1: Performance comparison using different number of bi-directional LSTM
layers.

From Figure 6.1, a gradual increase in the number of bi-directional LSTM layers

improves the model’s performance by an increase in the correlation indices and re-

duction in the squared error values. That is, the deeper we go, the better the model

44

performance. In fact, in the beginning stages of the implementation of the proposed

method, we found three 1024-unit bi-directional LSTM layers (a total of 3072 LSTM

units) to be adequate during training. However, during the testing stage, the model

performed poorly, indicating high level of overfitting. This situation influenced our

decision to go deeper by increasing the number of layers while minimizing the model’s

width by reducing the number of units (We used a total of 640 LSTM units distributed

across 6 layers).

Increasing the number of layers in a neural network allows the network to learn

features at more different abstract levels. However, it must be noted that, going

deeper increases computation time and more importantly, the risk of overfitting [71].

Our aim of tuning the architecture of the network is to achieve the optimal number of

layers which is just right to approximate the underlying function in the data used and

possess the ability to generalize well. And for that reason, we found six bi-directional

LSTM layers to achieve satisfactory performance.

45

Chapter 7

Conclusions and Future work

7.1 Conclusions

In this thesis, we propose a general-purpose no-reference video quality assessment

method using pre-trained CNN for spatial feature extraction and a stack of six bi-

directional LSTM layers of different units, to model temporal dependencies in video

signals. We assess three pre-trained CNNs with publicly available weights, MobileNet

[27], Inception-ResNet-V2 [72], and ResNet-50 [24] to extract spatial features from

video frames. We employ bi-directional LSTMs to model the temporal characteris-

tics of videos given the extracted features per frame. The performance of the pro-

posed method is compared with no-reference VQA methods, V-BLIINDS [58], VSFA

[35], and TLVQM [31] on KoNVid-1K [26], LIVE-Qualcomm [19], and CVD2014

[48] datasets. Experimental results show that our method significantly outperforms

related work in terms of the correlation coefficient between the predicted objective

scores and the subjective MOS scores. Additionally, we conduct an ablation study

which validates the importance of the bi-directional LSTM units and also, assess the

high stability of the proposed method in comparison with other VQA methods.

46

7.2 Future work

Results from the experiments conducted revealed that, the LIVE-Qualcomm [19]

dataset was a challenge to work with, and although the performance of our method

on the dataset is acceptable, it could be improved. In future work, we would like to

dig deeper into analyzing the model’s performance on LIVE-Qualcomm [19] dataset

and ways to improve it, for example, by detection and exclusion of ”bad” samples.

In addition, we will explore the option of selecting keyframes for each video for

feature extraction in order to decrease temporal redundancy, for example, by simply

skipping every other frame or by non-uniform sampling.

Also, despite the remarkable ability of discriminative features extraction of pre-

trained CNN models, inevitably it may generate non-discriminative features for some

new classes beyond the dataset they were pre-trained on. In such cases, ”memory

selection” module can be useful to select those hard cases for the pre-trained model.

The selected memory can be used to adjust the LSTM network, instead of updating

the backbone model.

We will also look at the option of normalizing the MOS between 0 and 1 for all

datasets during training in order to have a uniform range of predicted quality scores

irrespective of the dataset the model is trained on.

47

Bibliography

[1] M. Agarla, L. Celona, and R. Schettini. “An efficient method for no-reference
video quality assessment”. In: Journal of Imaging 7.3 (2021), p. 55.

[2] S. Ahn and S. Lee. “Deep blind video quality assessment based on temporal hu-
man perception”. In: 25th IEEE International Conference on Image Processing
(ICIP). 2018, pp. 619–623.

[3] L. Ali et al. “Performance evaluation of deep CNN-based crack detection and
localization techniques for concrete structures”. In: Sensors 21.5 (2021), p. 1688.

[4] J. Benesty et al. “Pearson correlation coefficient”. In: Noise reduction in speech
processing. Springer, 2009, pp. 1–4.

[5] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term dependencies with
gradient descent is difficult”. In: IEEE transactions on neural networks 5.2
(1994), pp. 157–166.

[6] H. Boujut et al. “No-reference video quality assessment of H. 264 video streams
based on semantic saliency maps”. In: IS&T/SPIE Electronic Imaging. Vol. 8293.
2012, pp. 8293–28.

[7] T. Brandao and M.P. Queluz. “No-reference quality assessment of H. 264/AVC
encoded video”. In: IEEE Transactions on Circuits and Systems for Video Tech-
nology 20.11 (2010), pp. 1437–1447.

[8] R. Cahuantzi, X. Chen, and S. Güttel. “A comparison of LSTM and GRU
networks for learning symbolic sequences”. In: arXiv preprint arXiv:2107.02248
(2021).

[9] F. Chollet et al. Keras. https://keras.io. 2015.

[10] Z.L. Chu, T.J. Liu, and K.H. Liu. “No-Reference Video Quality Assessment by
A Cascade Combination of Neural Networks and Regression Model”. In: IEEE
International Conference on Systems, Man, and Cybernetics (SMC). 2020, pp. 4116–
4121.

48

https://keras.io

[11] J. Deng et al. “Imagenet: A large-scale hierarchical image database”. In: IEEE
conference on computer vision and pattern recognition. 2009, pp. 248–255.

[12] M. Dimitrievski and Z. Ivanovski. “No-reference quality assessment of highly
compressed video sequences”. In: IEEE 15th International Workshop on Mul-
timedia Signal Processing (MMSP). 2013, pp. 266–271.

[13] J. Donahue et al. “Decaf: A deep convolutional activation feature for generic
visual recognition”. In: International conference on machine learning. PMLR.
2014, pp. 647–655.

[14] Q. Dou et al. “Automatic detection of cerebral microbleeds from MR images via
3D convolutional neural networks”. In: IEEE transactions on medical imaging
35.5 (2016), pp. 1182–1195.

[15] J. Duchi, E. Hazan, and Y. Singer. “Adaptive subgradient methods for online
learning and stochastic optimization.” In: Journal of machine learning research
12.7 (2011).

[16] V. Frants et al. “Blind visual quality assessment for smart cloud-based video
storage”. In: IEEE International Conference on Smart Cloud (SmartCloud).
2018, pp. 171–174.

[17] L. Gatys, A. Ecker, and M. Bethge. “A Neural Algorithm of Artistic Style”. In:
Journal of Vision 16.12 (2016), pp. 326–326.

[18] A. Géron. Hands-on machine learning with Scikit-Learn, Keras, and Tensor-
Flow: Concepts, tools, and techniques to build intelligent systems. ” O’Reilly
Media, Inc.”, 2019.

[19] D. Ghadiyaram et al. “In-capture mobile video distortions: A study of subjective
behavior and objective algorithms”. In: IEEE Transactions on Circuits and
Systems for Video Technology 28.9 (2017), pp. 2061–2077.

[20] A. Graves et al. “A novel connectionist system for unconstrained handwriting
recognition”. In: IEEE transactions on pattern analysis and machine intelli-
gence 31.5 (2008), pp. 855–868.

[21] A. Graves and N. Jaitly. “Towards end-to-end speech recognition with recurrent
neural networks”. In: International conference on machine learning. PMLR.
2014, pp. 1764–1772.

[22] Z. Guan et al. “A novel objective quality assessment method for video confer-
encing coding”. In: China Communications 16.4 (2019), pp. 89–104.

49

[23] J. Han and C. Moraga. “The influence of the sigmoid function parameters on
the speed of backpropagation learning”. In: International workshop on artificial
neural networks. Springer. 1995, pp. 195–201.

[24] K. He et al. “Deep residual learning for image recognition”. In: IEEE conference
on computer vision and pattern recognition. 2016, pp. 770–778.

[25] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural com-
putation 9.8 (1997), pp. 1735–1780.

[26] V. Hosu et al. “The Konstanz natural video database (KoNViD-1k)”. In: IEEE
Ninth international conference on quality of multimedia experience (QoMEX).
2017.

[27] A.G. Howard et al. “Mobilenets: Efficient convolutional neural networks for
mobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

[28] B. Karlik and A. V. Olgac. “Performance analysis of various activation functions
in generalized MLP architectures of neural networks”. In: International Journal
of Artificial Intelligence and Expert Systems 1.4 (2011), pp. 111–122.

[29] A. Karpathy et al. “Large-scale video classification with convolutional neural
networks”. In: IEEE conference on Computer Vision and Pattern Recognition.
2014, pp. 1725–1732.

[30] D.P Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In:
International Conference on Learning Representations (Poster). 2015.

[31] J. Korhonen. “Two-level approach for no-reference consumer video quality as-
sessment”. In: IEEE Transactions on Image Processing 28.12 (2019), pp. 5923–
5938.

[32] A Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In:
Master’s thesis, University of Tront (2009).

[33] A. Krizhevsky, I. Sutskever, and G.E. Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information pro-
cessing systems 25 (2012).

[34] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: nature 521.7553
(2015), pp. 436–444.

[35] D. Li, T. Jiang, and M. Jiang. “Quality assessment of in-the-wild videos”. In:
27th ACM International Conference on Multimedia. 2019, pp. 2351–2359.

50

[36] D. Li, T. Jiang, and M. Jiang. “Recent advances and challenges in video quality
assessment”. In: ZTE Communications 17.1 (2019), pp. 3–11.

[37] L. Li et al. “Hyperband: A novel bandit-based approach to hyperparameter opti-
mization”. In: The Journal of Machine Learning Research 18.1 (2017), pp. 6765–
6816.

[38] R. Li, B. Zeng, and M.L. Liou. “A new three-step search algorithm for block
motion estimation”. In: IEEE transactions on circuits and systems for video
technology 4.4 (1994), pp. 438–442.

[39] S. Li et al. “Image quality assessment by separately evaluating detail losses
and additive impairments”. In: IEEE Transactions on Multimedia 13.5 (2011),
pp. 935–949.

[40] Y. Li et al. “Video quality assessment with deep architecture”. In: IEEE In-
ternational Conference on Artificial Intelligence and Computer Applications
(ICAICA). 2021, pp. 268–271.

[41] Z. Li et al. “Toward a practical perceptual video quality metric”. In: The Netflix
Tech Blog 6.2 (2016).

[42] T. Lin et al. “Microsoft COCO: Common objects in context”. In: European
conference on computer vision. Springer. 2014, pp. 740–755.

[43] W. Lu et al. “A spatiotemporal model of video quality assessment via 3D gra-
dient differencing”. In: Information Sciences 478 (2019), pp. 141–151.

[44] W.S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in ner-
vous activity”. In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–
133.

[45] L. Mou, Y. Hua, and X. Zhu. “Relation matters: Relational context-aware fully
convolutional network for semantic segmentation of high-resolution aerial im-
ages”. In: IEEE Transactions on Geoscience and Remote Sensing 58.11 (2020),
pp. 7557–7569.

[46] V. Nair and G.E. Hinton. “Rectified linear units improve restricted boltzmann
machines”. In: Icml. 2010.

[47] Y. Nesterov. “A method for unconstrained convex minimization problem with
the rate of convergence O (1/kˆ 2)”. In: Doklady an ussr. Vol. 269. 1983, pp. 543–
547.

51

[48] M. Nuutinen et al. “CVD2014 — A database for evaluating no-reference video
quality assessment algorithms”. In: IEEE Transactions on Image Processing
25.7 (2016), pp. 3073–3086.

[49] T. O’Malley et al. Keras Tuner. https://github.com/keras-team/keras-
tuner. 2019.

[50] I. Oksuz et al. “Deep learning-based detection and correction of cardiac MR
motion artefacts during reconstruction for high-quality segmentation”. In: IEEE
Transactions on Medical Imaging 39.12 (2020), pp. 4001–4010.

[51] S. Pang et al. “Spineparsenet: spine parsing for volumetric MR image by a two-
stage segmentation framework with semantic image representation”. In: IEEE
Transactions on Medical Imaging 40.1 (2020), pp. 262–273.

[52] J. Park et al. “Video quality pooling adaptive to perceptual distortion severity”.
In: IEEE Transactions on Image Processing 22.2 (2012), pp. 610–620.

[53] R. Pascanu, T. Mikolov, and Y. Bengio. “On the difficulty of training recurrent
neural networks”. In: International conference on machine learning. PMLR.
2013, pp. 1310–1318.

[54] A. Paszke et al. “Pytorch: An imperative style, high-performance deep learning
library”. In: Advances in neural information processing systems 32 (2019).

[55] M.H. Pinson and S. Wolf. “A new standardized method for objectively measur-
ing video quality”. In: IEEE Transactions on broadcasting 50.3 (2004), pp. 312–
322.

[56] S. Rimac-Drlje, M. Vranjes, and D. Zagar. “Influence of temporal pooling
method on the objective video quality evaluation”. In: IEEE International Sym-
posium on Broadband Multimedia Systems and Broadcasting. 2009, pp. 1–5.

[57] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal represen-
tations by error propagation. Tech. rep. California Univ San Diego La Jolla Inst
for Cognitive Science, 1985.

[58] M.A. Saad, A.C. Bovik, and C. Charrier. “Blind prediction of natural video
quality”. In: IEEE Transactions on Image Processing 23.3 (2014), pp. 1352–
1365.

[59] H. Sak, A. Senior, and F. Beaufays. “Long short-term memory based recurrent
neural network architectures for large vocabulary speech recognition”. In: arXiv
preprint arXiv:1402.1128 (2014).

52

https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner

[60] A.L. Samuel. “Some studies in machine learning using the game of checkers.
II—Recent progress”. In: IBM Journal of research and development 11.6 (1967),
pp. 601–617.

[61] M.J. Scott et al. “Do personality and culture influence perceived video quality
and enjoyment?” In: IEEE Transactions on Multimedia 18.9 (2016), pp. 1796–
1807.

[62] K. Seshadrinathan and A.C. Bovik. “Motion tuned spatio-temporal quality as-
sessment of natural videos”. In: IEEE transactions on image processing 19.2
(2009), pp. 335–350.

[63] K. Seshadrinathan and A.C. Bovik. “Temporal hysteresis model of time varying
subjective video quality”. In: IEEE international conference on acoustics, speech
and signal processing (ICASSP). 2011, pp. 1153–1156.

[64] H.O. Shahreza, A. Amini, and H. Behroozi. “No-reference video quality assess-
ment using recurrent neural networks”. In: IEEE 5th Iranian Conference on
Signal Processing and Intelligent Systems (ICSPIS). 2019, pp. 1–5.

[65] H.R. Sheikh and A.C. Bovik. “Image information and visual quality”. In: IEEE
Transactions on image processing 15.2 (2006), pp. 430–444.

[66] D.J. Sheskin. “Spearman’s rank-order correlation coefficient”. In: Handbook of
parametric and nonparametric statistical procedures 1353 (2007).

[67] M. Shi, K. Wang, and C. Li. “A C-LSTM with word embedding model for news
text classification”. In: IEEE/ACIS 18th International Conference on Computer
and Information Science (ICIS). 2019, pp. 253–257.

[68] K. Simonyan, A. Vedaldi, and A. Zisserman. “Deep inside convolutional net-
works: visualising image classification models and saliency maps”. In: Interna-
tional Conference on Learning Representations. 2014.

[69] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-
scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[70] R. Soundararajan and A.C. Bovik. “Video quality assessment by reduced refer-
ence spatio-temporal entropic differencing”. In: IEEE Transactions on Circuits
and Systems for Video Technology 23.4 (2012), pp. 684–694.

[71] C. Szegedy et al. “Going deeper with convolutions”. In: IEEE conference on
computer vision and pattern recognition. 2015, pp. 1–9.

53

[72] C. Szegedy et al. “Inception-v4, inception-resnet and the impact of residual con-
nections on learning”. In: Thirty-first AAAI conference on artificial intelligence.
2017.

[73] C. Szegedy et al. “Rethinking the inception architecture for computer vision”.
In: IEEE conference on computer vision and pattern recognition. 2016, pp. 2818–
2826.

[74] B. Thomee et al. “The new data and new challenges in multimedia research”.
In: arXiv preprint arXiv:1503.01817 1.8 (2015).

[75] T. Tominaga et al. “Performance comparisons of subjective quality assessment
methods for mobile video”. In: IEEE Second international workshop on quality
of multimedia experience (QoMEX). 2010, pp. 82–87.

[76] Z. Tu et al. “A comparative evaluation of temporal pooling methods for blind
video quality assessment”. In: IEEE International Conference on Image Pro-
cessing (ICIP). 2020, pp. 141–145.

[77] D. Varga. “No-reference video quality assessment based on the temporal pooling
of deep features”. In: Neural Processing Letters 50.3 (2019), pp. 2595–2608.

[78] P.V. Vu, C.T. Vu, and D.M. Chandler. “A spatiotemporal most-apparent-
distortion model for video quality assessment”. In: 18th IEEE International
Conference on Image Processing. 2011, pp. 2505–2508.

[79] C. Wang, L. Su, and W. Zhang. “COME for no-reference video quality as-
sessment”. In: IEEE Conference on Multimedia Information Processing and
Retrieval (MIPR). 2018, pp. 232–237.

[80] Z. Wang et al. “Image quality assessment: from error visibility to structural
similarity”. In: IEEE transactions on image processing 13.4 (2004), pp. 600–
612.

[81] J. Xu et al. “No-reference video quality assessment via feature learning”. In:
IEEE international conference on image processing (ICIP). 2014, pp. 491–495.

[82] F. Yang et al. “No-reference quality assessment for networked video via primary
analysis of bit stream”. In: IEEE Transactions on Circuits and Systems for
Video Technology 20.11 (2010), pp. 1544–1554.

[83] F. Yi et al. “Attention Based Network For No-Reference UGC Video Quality
Assessment”. In: IEEE International Conference on Image Processing (ICIP).
2021, pp. 1414–1418.

54

[84] J. You and J. Korhonen. “Deep neural networks for no-reference video quality
assessment”. In: IEEE International Conference on Image Processing (ICIP).
2019, pp. 2349–2353.

[85] C. Zhang and J. Kim. “Object detection with location-aware deformable convo-
lution and backward attention filtering”. In: IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2019, pp. 9452–9461.

[86] Y. Zhang et al. “Blind video quality assessment with weakly supervised learning
and resampling strategy”. In: IEEE Transactions on Circuits and Systems for
Video Technology 29.8 (2018), pp. 2244–2255.

[87] Y. Zhang, J. Lu, and J. Zhou. “Objects are different: Flexible monocular 3D
object detection”. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021, pp. 3289–3298.

[88] W. Zhou and Z. Chen. “Deep local and global spatiotemporal feature aggrega-
tion for blind video quality assessment”. In: IEEE International Conference on
Visual Communications and Image Processing (VCIP). 2020, pp. 338–341.

[89] K. Zhu et al. “A no-reference video quality assessment based on laplacian pyra-
mids”. In: IEEE International Conference on Image Processing. 2013, pp. 49–
53.

55

	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and problem statement
	Summary of contributions
	Thesis Outline

	Background Material to Deep Learning
	Introduction
	Artificial neural networks
	ANN training (or learning)
	Types of ANN
	Feed-forward neural networks
	Convolutional neural networks
	Recurrent neural network
	Long short-term memory cells

	Related Works
	Traditional methods
	Deep-learning based methods
	Most related work and our contributions

	Proposed Method
	Pre-trained module
	Trainable module

	Implementation Details
	Performance measures and datasets
	Selection of the feature extractor
	Model training and hyper-parameter tuning

	Simulation Results and Analysis
	Comparison with related work
	Stability study
	Ablation study

	Conclusions and Future work
	Conclusions
	Future work

	Bibliography

