Al-Powered Time Series Forecasting Frameworks For Building
Energy Management Systems

Omar Bouhamed

A Thesis
in
The Department
of
Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of
Master of Applied Science (Quality Systems Engineering) at
Concordia University
Montréal, Québec, Canada

June 2022

© Omar Bouhamed, 2022

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Omar Bouhamed
Entitled: Al-Powered Time Series Forecasting Frameworks For
Building Energy Management Systems

and submitted in partial fulfillment of the requirements for the degree of
Master of Applied Science (Quality Systems Engineering)

complies with the regulations of this University and meets the accepted standards with
respect to originality and quality.
Signed by the Final Examining Committee:

Chair
Dr. Arash Mohammads

Examiner
Dr. Zachary Patterson

Supervisor

Dr. Nizar Bouguila

Co-supervisor

Dr. Manar Amayri

Approved by
Dr. Mohammed Mannan, Graduate Program Director

2022

Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Al-Powered Time Series Forecasting Frameworks For Building Energy Management
Systems

Omar Bouhamed

Energy, as an essential aspect for socioeconomic growth, has remained an intriguing
issue for many researchers worldwide. The rising need for energy drives academics
and researchers to develop novel solutions for improved energy utilisation. The main
contribution of this thesis is two-fold. First, we introduce an occupancy prediction
framework to improve the efficiency of energy management systems in smart buildings.
Occupancy prediction heavily depends on historical occupancy-related data collected from
various sensor sources. Unfortunately, a major problem in that context is the difficulty
to collect training data. This situation inspired us to rethink the occupancy prediction
problem, proposing the use of an original principled approach based on occupancy
estimation via interactive learning to collect the needed training data. Following that,
the collected data, along with various features, was fed into several algorithms to predict
future occupancy. This fold mainly proposes a weakly supervised occupancy prediction
framework based on office sensor readings and occupancy estimations derived from an
interactive learning approach. Two studies are the main emphasis of this part. The first is
the prediction of three occupancy states, referred to as discrete states: absence, presence
of one occupant, and presence of more than one occupant. The purpose of the second
study is to anticipate the future number of occupants, i.e, continuous states. Extensive
simulations were run to demonstrate the merits of the proposed prediction framework’s
performance and to validate the interactive learning-based approach’s ability to contribute
to the achievement of effective occupancy prediction.

Second, given that an accurate electric power load forecasting framework is critical for
power utility companies as it increases control over the relevant infrastructure, resulting in
significant improvements in energy management and scheduling, we propose an encoder-
decoder model that takes advantage of the expressiveness of transformer-based encoders
to produce probabilistic forecasts. Two real-world datasets are utilized to incorporate the
performance of the proposed framework on two different types of data: hourly load data from
the power supply company of the city of Johor in Malaysia and hourly load consumption data
from one of Grenoble Institute of Technology’s buildings. The former represents aggregated
data, which makes identifying patterns and trends easier, but the latter was taken from a
single building (non-aggregated), which increases the difficulty of forecasts. The model’s
performance is discussed across multiple time horizons, including 24-hour, 1-week, and 1-
month predictions. The framework achieved notable improvements compared to the used
baseline, Amazon DeepAr, where accuracy was improved from 87.2 percent to 96.2 percent
for Malaysian data and from 52.3 percent to 68.2 percent for Grenoble data for 24 hours
ahead forecasting, from 84.7 percent to 89.7 percent for Malaysian data, and from 45.5
percent to 57.2 percent for Grenoble data for 1 month ahead forecasting.

iii

iv

Dedicated,

To you, my inspiring parents,

To my sister,

To all those I love,

for being the pillows, role models,
cheerleading squad and sounding boards

I have needed.

Acknowledgments

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Nizar
Bouguila, for the continuous support, for his patience, motivation, and immense knowledge.
His guidance helped me to present a work that I am proud of. It is very difficult to put into
words to exactly express my appreciation to him. I could not ask for a better advisor and

mentor for my thesis.

I would like to offer my special thank to my co-supervisor Dr. Manar Amayri for her

precious advice and support.

I would like to thank Fatma, Omar, Kamal, Ons, Ahmed, and other lab members, who
have always shared their vast knowledge as well as taken the time and effort to explain

various concepts in order to make sure I could thoroughly understand them.

Contents

List of Figures ix
List of Tables xi
1 Introduction 1
1.1 Time-series Forecasting L. 1
1.1.1 Occupancy Prediction and Energy Usage 1

1.1.2 Probabilistic Load Forecasting 2

1.1.3 Contributions 2

1.1.4 Outline 3

2 Weakly Supervised Occupancy Prediction using Training Data Collected

via Interactive Learning

2.1 Related Work

2.2 Occupancy Prediction Framework

2.2.1 Methodology

222 Casestudy

2.2.3 Occupancy estimation and interactive learning

2.2.3.1 Interactive Learning Methodology

2.24 Prediction models oL

2.2.4.1 multilayer perceptron (MLP)

2.2.4.2 RNN: LSTM & GRU & bi-LSTM

© 00 o NN O o Ot e s

2243 TightGBM . . . o oo

vi

2.3 Experimental results 9

2.3.1 Additional features extraction 10
2.3.1.1 DateTime features 10
2.3.1.2 Calendar features 10
2.3.2 Discrete prediction oo 12
2.3.2.1 Binary occupancy estimation 12
2.3.2.2 Binary occupancy predictiono 13
2.3.2.3 Multi-level occupancy estimation 14
2.3.2.4 Multi-level occupancy prediction L. 15
2.3.3 Continuous oCCUPANCY « v v v v v v b 16
2.3.3.1 Continuous occupancy estimation 17
2.3.3.2 Continuous occupancy prediction. 18

3 T-DPnet: Transformer-based deep Probabilistic network for load

forecasting 20
3.1 Related work 20
3.2 Background 21
3.2.1 Sequence models 21
3.2.1.1 Recurrent Neural Network (RNN) 22

3.2.1.2 Long Short-Term Memory (LSTM) 22

3.2.1.3 Encoder-Decoder 23

3.2.2 Transformers 23
3.2.2.1 Self-Attention L. 24

3.2.2.2 Multi-head attention.o 24

3.2.2.3 Feed forward and residential network 25

3.3 Methodology 26
3.3.1 Proposed Architecture 26
3.3.2 Processes 26
3.3.2.1 Likelihood model 26

3.3.2.2 Input vector 27

vii

3.3.2.3 Main process 28

3.3.2.4 Training vs Prediction 28

3.4 Experiments. oL 28
3.4.1 Real-world datasets L . 28

3.4.2 Evaluation Metrics L Lo o 30

3.4.3 One-day-ahead Forecasting 30

3.4.4 One-week-ahead Forecasting 31

3.4.5 Omne-month-ahead Forecasting 32

3.4.6 Discussionso 32

4 Conclusions and Future Work 35
References 37

viii

List of Figures

Figure 2.1 Smart office in Ense3, Grenoble Institute of Technology, building. . . 6
Figure 2.2 XGBoost vs LightGBM tree growth 10

Figure 2.3 Average occupancy at different time levels: (a) hourly level, (b) daily

level, and (c) monthly level. oL 11
Figure 2.4 The most frequent office events and their count. 11
Figure 2.5 Box-plots of the occupancy as a function of calendar categories. . . . 12
Figure 2.6 Binary Data distribution. 13

Figure 2.7 The framework prediction versus reality (24h ahead) for the case of

binary data (O or 1). 14
Figure 2.8 Pairplot of power vs detected__motions (avg per hour). 15
Figure 2.9 Multi-level Data distribution 15

Figure 2.10 The framework predictions for multi-level occupancy versus reality
(24h ahead). 16

Figure 2.11 Plot of the estimation occupancy and real occupancy when considering

Random Forest. 17
Figure 2.12 Mean squared error as a function of the number of trees. 18
Figure 2.13 Continuous Data distribution (avg number of occupants per hour). . 18
Figure 2.14 Additional features impact on LightGBM predictions. 19
Figure 3.1 Folded and unfolded representations of recurrent neural network. . . 22
Figure 3.2 Long Short-Term Memory network cell 23
Figure 3.3 Encoder-decoder model. o000 24

ix

Figure 3.4 Multi-head Attention consists of several attention layers running in
parallel. e
Figure 3.5 Encoder unit architecture. L.
Figure 3.6 Architecture of T-DPnet. An Embedding layer is followed by two
paths, each of which contains: an Encoder part with stacked Transformer
encoders, each of which consists of a multi-head attention and feed-forward
network, and a Decoder part that applies a linear transformation to
the encoders’ latent variables l; 4+ and l;’+ , that generates the designed
distribution parameters. For prediction, the final emission is generated by
drawing a sample y;41 ~ K(y(t+1)|9(l;, 7) P
Figure 3.7 Illustration of a sample of Grenoble and Malaysia data (January 2018
and 2009, respectively). L
Figure 3.8 Boxplots for Grenoble and Malaysia data hourly electricity Loads vs
Day of Week. o
Figure 3.9 Boxplots for Grenoble and Malaysia data hourly electricity Loads vs
hour of day.
Figure 3.10 T-DPnet 1-day predictions versus actual values for both data sets
Figure 3.11 T-DPnet 1-week predictions versus actual values for both data sets .
Figure 3.12 T-DPnet 1-month predictions versus actual values for both data sets
Figure 3.13 T-DPnet performance to predict load during holidays.

Figure 3.14 T-DPnet performance based on day of the week.

25
25

27

29

29

30
31
32
33
33
34

List of Tables

Table 2.1

General occupancy prediction methodology. The following are the two

primary processes: 1) the Data preparation process through the generation

of specific occupancy labels for existing unlabelled data, and 2) the main

pipeline, which leverages the data created by the first step, as well as other

extracted features, to estimate occupancy for various window sizes. 5
Table 2.2 Estimation results.o oo 12
Table 2.3 Binary prediction results. 14
Table 2.4 Estimation results. 14
Table 2.5 Multi-level prediction results. L L. 16
Table 2.6 Estimation results. oo 17
Table 2.7 Number of askseach day. 17
Table 2.8 R2 score for different ML-approaches. 19
Table 3.1 Results for 1-day forecasts. 31
Table 3.2 Results for 1-week forecasts. 31
Table 3.3 Results for 1-month forecasts. 32

xi

Chapter 1

Introduction

1.1 Time-series Forecasting

It is interesting to look back at the evolution of demand in recent years, as well as the
increasingly competitive global economy [1]. The never-ending growth in demand has piqued
the interest of researchers and businesses in time series forecasting. A time series is a
collection of observations in a chronological sequence that can be as simple as a sensor
readings or as complex as the power consumption of an entire city. Time series forecasting
is an approach for predicting future events by analyzing prior patterns and assuming that
future trends would be similar to the historical ones. In other words, forecasting is the
technique of predicting future values by fitting models to past data. It involves establishing
models based on historical data and using them to make observations and guide future
strategic decisions [2]. Today, industries ranging from healthcare and finance to energy and
retail rely on time series forecasting to assess potential risk over time [3], predict product
demand [4], allocate resources [5], and a variety of other applications.

The primary focus of this thesis is on energy and buildings. Energy is becoming a major
economic problem owing to the rising demand and unsustainable energy supply, thus having
an energy-efficient building is crucial; Buildings designed to provide occupants the necessary
comfort while using the minimum required energy. Numerous research has been undertaken
to enhance the energy performance of buildings and this thesis will concentrate on two
prominent subjects in this field: occupancy prediction and probabilistic load forecasting.

1.1.1 Occupancy Prediction and Energy Usage

According to recent statistics [6], buildings account for 40% of the total energy usage in
the world. Occupants’ behavior influences significantly that energy usage. In order to
reduce energy consumption, using artificial intelligence and smart equipment, it is possible
to control HVAC and lighting devices remotely [7, 8]. However, on a daily basis, it is
required to tune the HVAC system manually. Recent research works have shown that it is
possible to save HVAC energy, by automating its control, in a given building via occupancy
detection (i.e. detecting the presence or the absence of occupants inside the building and
even inferring their number at a given point of time or within an interval) and prediction
[9, 10]. When provided accurate occupancy models, demand-driven control can utilize such
information to coordinate real-time HVAC usage, reducing energy use and maintaining
indoor thermal comfort in buildings.

1.1.2 Probabilistic Load Forecasting

Since electricity cannot be stored in large quantities and must be supplied as needed, it
has become critical for electric power companies to forecast demand ahead of time. Load
forecasting is a crucial component in the decision-making processes of the energy industries,
whether for fulfilling the demand or for planning and operations [11].

Several studies and methodologies, varying from statistical to machine learning methods,
have been established in recent years to improve the process of load forecasting. However,
most of these studies are focusing on point forecasting which frequently fails the electric
power companies since it ignores the big picture (it neglects information on the uncertainty).
Another significant issue is that the majority of solutions are based on recurrent networks or
convolutional models. RNNs are notoriously difficult to train due to the gradient vanishing
and exploding problem, and despite the development of various variations, such as LSTM
and GRU, the concerns remain unresolved [12]. In the case of convolutional-based models,
the use of convolutional filters resulted in several modeling restrictions, particularly when
modeling long-term and complex relationships in sequence data [13].

This inspired the recent research trend of embracing Transformer-based solutions for
time series forecasting. Transformers are models based on a multi-headed attention
mechanism that processes the entire sequence of data [14]. Unlike recurrent networks,
which analyze their input sequentially, transformers revolve around attention metrics that
extend back in time to learn dependencies in the sequence such as seasonality, rendering
them suitable to handle longer sequences, overcoming the vanishing gradient problem that
impedes Recurrent Networks in the long-term prediction.

1.1.3 Contributions
The contributions of this thesis are as follows:

1 Weakly Supervised Occupancy Prediction using Training Data Collected
via Interactive Learning:

The recent prediction studies have shown that the performance of data-driven models
depends mainly on three factors [15]: 1) quality of the training data used to learn
the models, 2) selection of the input features, and 3) prediction algorithms used
for models development. The goal of this study is to develop a non-intrusive,
privacy-preserving, and low-cost occupancy prediction unified framework, that takes
simultaneously these three factors into account, via some features and information
extracted from sensors such as temperature, power consumption, motion detection,
humidity, and CO2 data. Different machine/deep learning techniques were considered
for prediction. Machine/deep learning has attracted substantial attention from the
research community and demonstrated great potential in many energy and building
applications. Yet, its use to make accurate occupancy predictions requires large
amounts of labeled data. However, labeling occupancy data is cumbersome since
it generally needs the involvement of the occupants. In the first study in chapter 2,
this problem was tackled by proposing a labeling approach based on an interactive
occupancy estimation technique that was previously proposed in [16]. Thus, the
prediction framework will be mainly based on a mix of manually and probabilistically
labeled training sets which can be viewed as a weakly supervised [17] prediction
approach. To the best of the authors’ knowledge, it is the first time that a weakly-
supervised framework is proposed for occupancy prediction, i.e, the use of small but

high-quality labeled data collected via the interactive learning approach to provide
reliable future occupancy predictions. This work [18] was published in Recent
Advances in Imaging and Sensing 2022: special issue of Sensors.

iz T-DPnet:Transformer-based deep Probabilistic network for load forecast-
ing:
In chapter 3, a novel parallel encoder-decoder model that takes advantage of the
expressiveness of transformer-based encoders to produce probabilistic forecasts is
proposed. The model is called T-DPnet, as in a Transformer-based Deep Probabilistic
network. In this work, short- and medium-term load forecasting for various datasets
is thoroughly investigated in order to incorporate the performance of the proposed
framework and demonstrate that it outperforms many existing models. A part of
this work was accepted in ITISE 2022 (8th International Conference on Time Series
and Forecasting), and an extension was submitted to IEEE Transactions on Industrial
Informatics.

1.1.4 Outline

The remainder of the thesis is structured as follows. In chapter 2, the occupancy prediction
framework is introduced along with an explanation of interactive learning. Extensive
simulations are shown to demonstrate the merits of the proposed prediction framework’s
performance and to validate the interactive learning-based approach’s ability to contribute
to the achievement of effective occupancy prediction. Chapter 3, provides the needed
background on the key concepts underlying the most used architectures for time-series
forecasting, transformers, and their different mechanisms. A comparison to the state-of-the-
art models is shown to incorporate the performance of the proposed framework compared
to its peers to provide accurate probabilistic forecasts. Finally, chapter 4 provides the
concluding remarks and the future research directions.

Chapter 2

Weakly Supervised Occupancy
Prediction using Training Data
Collected via Interactive Learning

2.1 Related Work

Occupancy prediction is a challenging task due to the stochastic nature (i.e. mainly
Markovian) of occupants’ behavior [19, 20, 21] and the constraints to obtain training data.
In recent years, an increasing number of researchers have used ML methods to create
occupancy models. In [22], the behaviour of occupants in a housing complex adjusting
thermostat settings and heating system operations was investigated. Then, using machine
learning methods such as clustering and decision trees, the occupant behaviour pattern
was determined. In [23], the authors developed a statistical machine learning framework,
based on random forests, to predict heating load and cooling load of residential buildings
with the objective of learning the occupants behaviour patterns. In [24], using a complex
sensor network, the authors investigated the relationship between ambient conditions and
the number of occupants. CO2 and acoustic metrics have the strongest link with the number
of occupants due to the huge number of open offices. Three machine-learning algorithms
(Hidden Markov Models, ANN, and SVM) were used to predict the occupancy schedule in
a typical day during the test. Some other approaches have been based on the use of sensory
data, use of electrical appliances, and water usage, and have deployed mainly machine
learning (ML) techniques [25, 26].

2.2 Occupancy Prediction Framework

The purpose of this section is to go over the occupancy prediction framework in depth. The
section begins by presenting the overall prediction methodology, followed by a description
of the case study under consideration. Finally, the used occupancy estimation approach
to generate training data, which was previously proposed and successfully tested in [16], is
briefly introduced.

Table 2.1: General occupancy prediction methodology. The following are the two primary
processes: 1) the Data preparation process through the generation of specific occupancy
labels for existing unlabelled data, and 2) the main pipeline, which leverages the data
created by the first step, as well as other extracted features, to estimate occupancy for
various window sizes.

Data prepeartion

Labels from interaction with the user process

R)

Y
\
N . N k= 7 ‘ 2
(D \/ occupancy \ /

I estimation

& 1 >
SN\
= \| Estimation Validation

7/
=N J

Oceupancy estimation model
Raw Data (CO2, Supervised Interactive Learning

motion, power, ...)

y 2 months labels

= Qv L E\J L

r’e

S

tto t+24
Historical
features (i.e, Min, Max, = Occupancy prediction model prediction Validation
St y

d, ...y for one year

engineering foatures (124 %01) occupancy (12411) Galendar (ttot+24)

2.2.1 Methodology

Due to occupancy’s stochastic nature, its short-term prediction for individual rooms remains
a challenging task. This study aims to develop a concrete occupancy prediction model by
applying machine/deep learning techniques. However, in order to reach the occupancy
prediction part, a crucial process is required: the data preparation. Therefore, this study
is mainly divided into two steps (As shown in Fig. 2.1): 1) Data preparation process, and
2) Occupancy prediction, the main pipeline.
The first step of occupancy labels preparation is necessary due to the privacy constraints in
the case of occupancy prediction problem which makes it challenging compared with load,
weather, and solar energy forecasting [27], for instance. To address this issue, first, a feature
selection process was carried out on the various raw data acquired by sensor to select the
most relevant information. Thereafter, relying on the selected raw data, occupancy data was
generated by applying a supervised learning model with an interactive learning approach
that depends on a spread rate concept, to validate the quality of generated data, during
one year in the office case study[16] (This part is illustrated by the upper part of Fig. 2.1).
Thereafter, once the occupancy estimations are available (provided from the first step),
we proceed with the next step: the establishment of the occupancy prediction model (the
main pipeline). However, most of the time, occupancy measurements are insufficient to
build an accurate and efficient prediction model for at least 24 hours ahead of time; thus,
to improve the prediction process, various prior knowledge and engineering features (e.g.,
the calendar, the office events such as meetings and presentations which most of the time
shows an increase in occupancy, the weather and others like the avg/minimum/maximum
occupancy values for the past days, etc.) were introduced.

2.2.2 Case study

Teorridor .
office_CO2_concentration corridor
* 1 [TrTmerr TR L service Ratch o

El l cupboard ll I
NN LN LA

Toffice _for_heater

outdoor

nebulosity
solar_radiation

Figure 2.1: Smart office in Ense3, Grenoble Institute of Technology, building.

The testbed setup is at the Grenoble Institute of Technology as illustrated in Fig. 2.1 and
described in [28]. It is an office that accommodates a professor and three Ph.D. students.
The office has regular visits during the week, with a lot of meetings and presentations. The
setup includes different sensing networks that monitor indoor and outdoor temperature,
humidity, motion detection, CO2 concentration, and acoustic pressure. It also contains
a web application with a consolidated database for continual data retrieval from various
sources. Statistical features were extracted from the raw sensory data. Then, the most
relevant features were selected employing information gain [29]. The list of features F' that
will be used in this work is: motion counting, acoustic pressure (from microphone), power
consumption, CO2 concentration and door position.

2.2.3 Occupancy estimation and interactive learning

For the case of supervised learning methods in general, and for the estimation of the number
of occupants in particular, the problem of the acquisition of accurate target values arises,
i.e. the labeling issue. Many of the known and efficient solutions in the literature are based
on image processing, information extracted from camera feeds, which is still not acceptable
in many locations when it comes to respecting occupants’ privacy. Only recently, a few
works have proposed occupancy estimation approaches using non-intrusive sensors, with
minimal impact on the persons involved. One of the most successful approaches, based on

the concept of interactive learning, has been proposed in [16]. Interactive Learning (IL) is
a supervised learning methodology that involves exchanging information with the user to
collect a training data set related to a specific context [29]. IL, with a minimal number of
interactions, i.e, asks, ensures the collection of good quality data with accurate labels.This
approach, proposed in [29], has been successfully applied to estimate the occupancy in office
rooms, using different sensors and avoiding the use of cameras [16]. Besides, the concept of
interactive learning allows us to evaluate and improve the quality of the database [30].

2.2.3.1 Interactive Learning Methodology

Interactive learning estimates the number of occupants by questioning occupants when
relevant, limiting the number of interactions, and maximizing the information usefulness
about the actual occupancy [16]. Occupancy estimation algorithms make use of information
gathered from occupants as well as common sensors. The interactive learning approach is
primarily dependent on interaction methodology to determine when it is necessary to 'ask’
the occupants. The ask is a question displayed on the screen with its order, date, and time
i.e. (Questionl, 05/09/2019 15:42:12 How many occupants in last 30 minutes? (0...7)), while
in a response area, there are different options to answer, defined according to a minimum
and a maximum possible number of occupants with a timeout of 3 hours for each question.
Four criteria have been taken into account to determine the interaction time. The first one
is the density of the neighborhood, which is defined as the number of existing records (i.e.
vectors of sensor features) in the neighborhood of a potential ask (i.e. interaction with the
occupant). The second criterion is the classifier estimation error in the neighborhood of
the potential ask which leads to the concept of neighborhood quality that was defined in
[30] via a novel concept called spread rate. This methodology is based on the following.
If the classifier estimation error is too high for a record, this record is removed from the
neighborhood. However, an acceptable estimation error leads to updating the training set
with the new record. The third criterion is based on the minimum class weight, which
consists of the minimum acceptable number of records for each class. The fourth criteria of
spread rate is a global measure of data quality (instead of counting the records, it checks
how records are globally distributed). In the IL methodology, the number of occupants is
then determined using supervised learning (ex., Random Forest, linear regression, etc.).

2.2.4 Prediction models

The observations about the occupancy are collected at regular time intervals and are time
series. The occupancy prediction problem can be stated as follows. Let X! denote the
occupancy during the tth time interval. Given a sequence {X'} of observed occupancy
data, t = 1,2,...,T, that include the number of occupants n' and other information (e.g.
calendar, sensor features, etc), the problem is to predict the number of occupants nft2 at
time interval (¢ + A) for some prediction horizon A. In this study, the following horizons
in terms of hours were considered, A € {1,12,24}. Predicting the future occupancy will
be based on previously collected time series using several well-known approaches from the
literature that we shall investigate namely support vector regression (SVR), Multi-Layer
Perceptrons (MLP) [31] and Recurrent Neural Network (RNN) [32]. In particular, different
RNN variants namely Long short-term memory (LSTM), CNN-LSTM, and Gated Recurrent
Unit network (GRU) were considered[32]. In addition, an investigation was carried out to

explore Light Gradient Boosting Machine (Light GBM) which is a gradient boosting open-
source framework for gradient boosted machines [33].

2.2.4.1 multilayer perceptron (MLP)

The field of artificial neural networks (ANNSs) is often referred to as neural networks or
multi-layer perceptrons, the avanillad neural networks. The power of neural networks comes
from their ability to deduct the relation between the inputs and outputs, in other words,
comprehend the representation in the training data and how to best relate it to the output
variable to predict, which is in this case the occupancy.

While a single layer perceptron can only learn linear functions, an MLP is capable
to learn both linear and non-linear functions. At each layer, the neurons transform their
inputs x; by calculating a weighted sum z over them (w;: weights, b: bias), and then this
transformation is subjected to a non-linear function ¢, known as activation function, in
order to obtain an intermediate state a. Simply put, an MLP can be defined by the weights
between its layers of neurons, the output of which is mostly computed using a nonlinear
function. MLPs are popularly known as Universal Function Approximators. They are
capable of learning weights that map any input to any output.

z=zi:wi-:ci+b (1)
a= ¢(2) (2)

However, this simple architecture faces a lot of challenges, such as the Vanishing and
Exploding Gradient. An issue related to the back-propagation algorithm, which is a
technique used to update the weights of a neural network by calculating the gradients. In
the case of an extremely deep neural network (a large number of hidden layers), the gradient
vanishes or bursts as it propagates backward, resulting in disappearing and exploding
gradients. Another major defect for this type of architecture is that the latter cannot
capture sequential information in the input data which is required for dealing with sequence
data which makes it not a great fit for time series forecasting.

2.2.4.2 RNN: LSTM & GRU & bi-LSTM

A looping constraint on the hidden layer of ANN turns to RNN. That is to say that an
RNN has an additional looping constraint on the hidden layer than the simple ANN. This
addition gives RNN a sense of time context which ensures that sequential information is
captured in the input data, hence, overcome one of the ANN major issues. However, this
was not sufficient to suppress the other problem, the vanishing gradients. Therefore, new
models, such as Long Short Term Memory (LSTM) and Gated recurrent units (GRUS),
were introduced. For instance, LSTM relies on a new state called cell state and has a CEC
(Constant Error Carousel) which allows the error to propagate back without vanishing.
The cell state and its many gates are at the heart of LSTMs. The latter serves as a carrier
for relative information to transfer it all the way down the sequence chain. It acts more
like the network’s "memory", carrying meaningful information throughout the sequence’s
processing. As a result, knowledge from earlier time steps can be used in later time steps,
lessening the impact of short-term memory. As the cell state travels, information is added
or deleted from the cell state via gates. The gates are neural networks that determine which

information remains in the cell state. During training, the gates have the capability to learn
which information is relevant to keep and which to discard.

As previously stated, the LSTM contains complex dynamics that allow it to easily
"memorise" information over a long period of time. The “long term” memory is kept in a
vector of memory cells ¢; € R™. The LSTM architecture used in our experiments is given
by the following equations [34]:

o(Wilhi—1, x¢] + bi),

f o(Wylhe—1, @] + by),

ot = o(Wolhi—1, 2] + bo),

g = tanh(w¢[hi—1, 4] + be),
=fod +iog,

hy = 0 ® tanh(cy),

where i; represents the input gate, f; the forget gate, o; the output gate, o the sigmoid
function, w, the weight for the respective gate (x) neurons, h;—1 the output of the previous
LSTM block (at timestamp t-1), x; the input of current timestamp, b, the bias for the
respective gates (x), g the candidate for cell state at timestamp (t), and ¢; the cell state
(memory) at timestamp (t).

GRU shares similar characteristics with LSTM. To manage the memorizing process, both
algorithms include a gating mechanism. GRU, on the other hand, is less complicated than
LSTM and substantially faster to calculate. Later on, other architectures were introduced,
for example, bidirectional-LSTM, which is unlike LSTM that only preserves information
from previously processed inputs, Bi-LSTM runs the inputs in both ways (from past to
future and from future to past), which allow it to preserve information from the past and
future.

2.2.4.3 LightGBM

According to [33], Light GBM is a revolutionary gradient boosted decision tree (GBDT)
method that arose as a result of the previous implementation of GBDT’s lack of efficiency
and scalability while dealing with high dimensional features and large data size.

LighGBM is a high-performance gradient boosting framework that utilizes gradient-
based one-side sampling (GOSS) and exclusive feature bundling (EFB) to enhance
computational efficiency without sacrificing accuracy. GOSS is used to split the optimal
node by calculating variance gain, whereas EFB can speed up the GBDT training process
by grouping numerous exclusive features into fewer dense features [35].

As illustrated in Fig. 2.2, Light GBM develops trees vertically, whilst other algorithms
do that horizontally, indicating that Light GBM grows trees leaf-by-leaf, whereas other
algorithms grow trees level-by-level, for instance, XGBoost. Light GBM grows the leaf with
the greatest delta loss. The Leaf-wise technique minimizes loss more than the Level-wise
procedure while extending the same leaf.

2.3 Experimental results

This section is mainly divided into three sections, each of which is strongly influenced by
the nature of the estimated data. A discrete occupancy prediction study is presented in

- —
® 000

(1) XGBoost Level-wise tree growth

e

(b) LightGBM Leaf-wise tree growth

Figure 2.2: XGBoost vs Light GBM tree growth

the first section, where the problem is initially treated with only two classes (0: absence
of occupant and 1: the presence of occupant(s)), leading to the second section with three
classes (0: absence of occupant, 1: the presence of one occupant, and 2: the presence of
more than one occupant). In the second part, the problem’s complexity is increased by
transforming it into a regression problem rather than a classification problem (continuous
data, i.e, the average number of occupants per hour in the office, instead of discrete one).
The data was originally collected every 5 minutes, thus we have a 5 min sampled data.
Judging that working with hourly sampled data is more efficient (reduced input size), the
necessary changes were performed (resampling the data at a 1-hour rate by averaging the
sensors reads per hour.)

2.3.1 Additional features extraction

Before diving into the prediction problem, as mentioned before, relying only on occupancy
measurements is not enough to feed the prediction model with the necessary information
to produce accurate outputs, hence, an investigation of the usage of different features was
made to improve the process.

2.3.1.1 DateTime features

Date and time components (month, day of week, and hour) were extracted from the available
date-time variable. Such features might seem simple, but in reality, they provide the model
with significant information. For instance, as depicted in Fig.2.3(a), it is clear that the
highest occupancy levels are spotted at the hour interval between [10 am, 9 pm|. In
Fig.2.3(b), the highest occupancy levels were scored on the weekdays as for the weekend,
hardly any occupancy was detected. Such features help the prediction model to be more
aware of the temporal circumstances.

2.3.1.2 Calendar features

The office calendar is directly connected with the presence of occupants and their activities
inside the office which makes calendar features an interesting addition to improve the

10

"Average occupancy at different levels"
(a) hour level (b) weekday level (c) Month level

\ L]
\ - \.\ \ / \
\ v /o
\

0.2 \o\) ~ / /

o

0.8

0.4

mean
O L
O

23

Figure 2.3: Average occupancy at different time levels: (a) hourly level, (b) daily level, and
(c) monthly level.

performance of the prediction model. Luckily, such information could be extracted
from the Gmail calendar of the main office, which contains all office events (meetings,
presentations...), their starting and ending times. Requests were written in a python
function to decode the calendar information to be introduced in a data frame that has
the same structure as the occupancy data frame to be able to link.

3
2
1
0

o

Event occurancy
N

[}

Figure 2.4: The most freciuent office events and their count.

ija
ier
isa

reporting
point Dung
point Lisa
point Audrey
point Dung + Khadi
énale de I'habitat durable
point papi
point Involved
point Carlos
rendez-vous Li
pléniere INVOLVED
point TIMELAPS
point Mahendra
point PREDIS

Fig.2.4 shows a clear look at the event repetition, where the maximum occurrence is
seven times (occurrence) for the event called “reporting" and then most recurrent events are
the ones with “point" in their names; these events were coinciding with strong occupancy
in the building. After further analysis, it seemed that the calendar events could be divided
into 2 categories based on the occupancy levels of the events. Accordingly, in case of the
occurrence of an event, the events with “point" or “reporting" were grouped as category
referred to as “g2" and all the remaining events were embedded as category “gl", otherwise,

11

in case there was no event, the sample was reported as category “g0". As shown in Fig.2.5,

‘

0 1 2
calendrier

Figure 2.5: Box-plots of the occupancy as a function of calendar categories.

compared to the events in “g2" which match strongly with the occupancy, the “gl" events
have an inferior impact on the occupancy in the office. Still, the presence of an event,
whether from “gl" or “g2", has a great influence on the occupancy level in the office.

The time and calendar features were both used as lag features (about the historical
data) and for the lead features (for the time horizon to be predicted).

2.3.2 Discrete prediction
2.3.2.1 Binary occupancy estimation

The first step in validating the prediction framework is to use an interactive learning
approach. Four criteria are used to interact with the user, as detailed in [16]: 1) data
quality (spread-rate), 2) density of the neighborhood, 3) minimum class weight, and 4)
classifier estimation error.

Six relevant features are used in this experiment as input to the estimation model (1-
motion counting, 2-acoustic pressure, 3-power consumption, 4-Co2 concentration, 5- door
position, 6-calendar). Considering the case study presented in section 2.2.2; the real-time
system was launched for one year. As mentioned previously, for the case of binary prediction,
the output of the estimated occupancy data should follow the prediction objective. In
other words, the data should consist of just two classes. Different experiments have been
done and three methods have been considered and compared for occupancy estimation
with interactive learning namely logistic regression, Support Vector Machine (SVM), and
Random Forest using just two occupancy levels. According to the results in table 2.2, which
shows the quantitative measures for the three models, it is clear that all the three models
provided great results, but Random Forest performs the best.

Table 2.2: Estimation results.

ML-algo precision (%) recall (%) fl-score (%)
SVM 95.17 92.99 94.03
Logistic regression 99.25 96.88 98.01
Random Forest 100.0 100.0 100.0

12

2.3.2.2 Binary occupancy prediction

LightGBM classifier was chosen as a baseline model for this section. The advantage of
LightGBM is that even with quick training, it provides accurate results. Hyperparameters
tuning was also employed with a 6 fold cross-validation that enabled us to find the best
LightGBM model. Coupled with the additional features, the outputs of the estimation
model were fed to the prediction model. The preliminary results were not satisfying due
to the fact that the data is unbalanced (class 0 covers more than 80% of the total dataset
samples) as shown in Fig. 2.6.

occurence per hour

7000
6000
5000

4000

label

3000

2000

1000

0 1
accurance

Figure 2.6: Binary Data distribution.

Therefore, more advanced configurations were explored to overcome such challenges.
One of the solutions that considerably improved the preliminary results was the use of the
class weights. When computing the loss function, classes weights are employed to avoid the
model from favoring the major class. If one class dominates the dataset, the model will be
biased to learn that class better, because the loss is primarily determined by the model’s
performance on that dominant class. Weighting involves raising a class contribution to
the loss function. As a result, the contribution of the gradient for that specific class will
be greater as well. So, instead of using the target values, the gradient and Hessian were
multiplied by the weights, which are calculated based on the distribution of the classes.

The final results for the 1/12/24h ahead in time is summarized in table 2.3, where a
comparison is carried out between the actual occupancy values with the one provided by the
Light GBM model. It is shown that the prediction model learned how to efficiently predict
class 0 the dominant class, and also have decent results for the minor class 1 predictions
for the different window sizes, especially for the 1h prediction, where the overall precision
reached 94%.

The framework performance could be validated by the use case displayed in Fig. 2.7
which shows an 24 hours ahead prediction of one of the weekdays. The model successfully
predicted the absence and presence of occupants in the office for almost all 24 hours, except
for hour 20, when it incorrectly predicted the presence of the occupant. Following further
investigation, it appears that the model has a lacking when it comes to accurately point
the time of departure of occupants after lengthy periods of presence which is affecting the
metrics shown previously in table 2.3, for the 24h ahead predictions.

13

Table 2.3: Binary prediction results.

ML-algo

precision (%)

recall (%)

fl-score (%)

1h window

0: absence of occupants 97.06 97.78 97.42
1: presence of occupants 95.71 94.37 95.04
Overall (macro avg) 96.06 95.42 96.24
12h window

0: absence of occupants 94.41 93.75 94.08
1: presence of occupants 85.71 87.10 86.40
Overall (macro avg) 90.06 90.42 90.24
24h window

0: absence of occupants 91.60 92.48 92.04
1: presence of occupants 81.12 79.19 80.14
Overall (macro avg) 86.36 85.84 86.09

0.8

0.6

real

04

02

0.0 °

0 5

10

2.3.2.3 Multi-level occupancy estimation

15

Table 2.4: Estimation results.

9——e —eo— prediction
real

20

Figure 2.7: The framework prediction versus reality (24h ahcad) for the case of binary data

For the case of multi-level occupancy prediction, the complexity of the problem was
increased by adding another level of occupancy. As a result, we have a total of three
classes (0: absence of occupant, 1: the presence of one occupant, and 2: the presence of
more than one occupant). This change made the estimation part a bit trickier, as evidenced
by the results in table 2.4.

ML-algo precision (%) recall (%) fl-score (%)
SVM 79.0 76.21 75.16
Logistic regression 94.38 85.19 87.51
Random Forest 95.12 93.4 92.0

14

e
°
100 ® e
°
80)
(0]
2 60 e e © go
9 ° o
= O .’ .V;.. 60
40 io‘zi.‘vvg 9"\ °
20 b ..‘3 ‘?’io 8
e
o occup
2.0 . 0
° o 1
o ® 2
» 1.5 ® o o
s Se
2 e e o o
g o“@ °
o 10 e
[0}
5 [°
k)
205 oo,
°
0.0 N
0 50 100 150 0 1 2
power detected_motions

Figure 2.8: Pairplot of power vs detected motions (avg per hour).

The performances of the three chosen models, in the case of multi-level occupancy, were
inferior to theirs while facing binary data. As shown in Fig. 2.8, finding the boundaries to
accurately separate the two classes is a bit complicated, especially for classes 1 and 2.

2.3.2.4 Multi-level occupancy prediction

As mentioned previously in the case of binary data, we are facing a problem of unbalanced
data where class 0 is dominant, and dividing the occupancy class into two levels, as shown
in Fig. 2.9, raised the difficulty bar for the prediction framework.

occurence per hour

1 2
occurance

Figure 2.9: Multi-level Data distribution

Table 2.5 summarises the final results for the 1/12/24h ahead in time predictions. It
is demonstrated that the prediction model learned how to efficiently predict the dominant
class, class 0, but the results for the occupancy levels were unsatisfactory. As shown in
Fig. 2.8 and table 2.5, despite effectively learning how to distinguish absence from presence
of occupants, the framework is having difficulty specifying the level of occupants, whether

15

the presence of one or more occupants in the office.

Table 2.5: Multi-level prediction results.

ML-algo precision (%) recall (%) fl-score (%)
1h window

0: absence of occupants 97.06 93.62 95.31
1: presence of 1 occupant 66.07 86.05 74.75
2: presence of more than 1 occupant 64.29 40.91 50.00
Overall (macro avg) 75.81 73.52 73.35
12h window

0: absence of occupants 93.60 91.99 92.79
1: presence of 1 occupant 55.09 68.56 61.09
2: presence of more than 1 occupant 57.61 39.85 47.11
Overall (macro avg) 68.76 66.80 67.00
24h window

0: absence of occupants 93.00 91.61 92.30
1: presence of 1 occupant 42.37 53,76 47.39
2: presence of more than 1 occupant 52.19 39.53 44.99
Overall (macro avg) 62.52 61.63 61.56

This could be validated by the use case displayed in Fig. 2.10, which shows a 24-hour
prediction of one of the weekdays. The model accurately predicted the absence and presence
of occupants in the office for almost the entire 24 hours, but it failed to predict the correct
number of occupants for a couple of hours. For example, instead of predicting 2, the
framework predicted 1 in hours 9, 13, and 16, and in hours 14 and 15, the framework
output was 2 instead of 1.

2.00 *o—o —e— prediction

real
1.75
1.50
1.25 / \

g 1.00 o—b6—o—06—o o——o—9
0.75
0.50
0.25

0.00 C 3 e—eo—=o 3 ® 3 ¢ ® 3 o—e °
0 5 10 15 20

Figure 2.10: The framework predictions for multi-level occupancy versus reality (24h ahead).

2.3.3 Continuous occupancy

In this part, instead of the use of discrete data as in the previous part, continuous data were
used. In other words, the faced problem was transformed from a classification one into a
regression one.

16

2.3.3.1 Continuous occupancy estimation

Several experiments were conducted, and three methods for occupancy estimation with
interactive learning were considered and compared: linear regression, a gradient boosting
regressor, and a Random Forest regressor with five occupancy levels. Furthermore, two
evaluation measures were used: 1) Mean Squared Error (MSE), a risk metric corresponding
to the expected value of the squared (quadratic) error or loss, and 2) R2 score (R2S), a
coefficient of determination (R2) between 0 and 1, with 1 being the best value. Table 2.6
displays the quantitative measures, while Fig.2.11 displays the graphical evaluations of the
Random Forest regressor, which outperforms the gradient Boosting regressor and linear
regression.

Table 2.6: Estimation results.
MlL-algo MSE R2S

Linear regression 0.136 0.82
Gradient Boosting 0.084 0.89
Random Forest 0.063 0.91

w
o
0
cew@® oo
0

N}

oo one

Estimated Occupancy

oo
© @eirw@wo@® o o o

* weewesce 0y

oo o e

woneerme ® 00 o

DR
oo
e o

oneess o
° o
0
.
0
.

0 1 2 3 4 5
Real Occupancy

Figure 2.11: Plot of the estimation occupancy and real occupancy when considering Random
Forest.

An important parameter in the Random Forest regressor model is the number of trees
in the forest. In the presented results this parameter was set by default to 100. Fig. 2.12
depicts the estimation error as a function of the number of trees and shows that changing
the number of trees did not significantly reduce the error. When compared to the other
two methods, the Random Forest regressor produces the best results. It took 21 requests
for training data to create an acceptable estimator. Table 2.7 shows how the 21 questions
are distributed across the days using the Random Forest regressor.

Table 2.7: Number of asks each day.
Day 112(3|4(5(6|7(8[9]|10
Number of asks 1004)10|12|2|0|2|1|0|0

17

7.2

7.0

6.8

Mean Squared Error (%)

6.4

60 80 100 120 140
Number of trees (n_estimators)

Figure 2.12: Mean squared error as a function of the number of trees.

2.3.3.2 Continuous occupancy prediction.

occurence per hour

BN [abel

4000

3000

Count

2000

1000

2 3 4
occurance

o Il.ll----l-]
1

0

Figure 2.13: Continuous Data distribution (avg number of occupants per hour).

Occupancy estimation using Random Forest regressor and interactive learning provides
us with accurately labeled occupancy data to use in the prediction models with an average
error of 0.06. In this subsection, different known algorithms were tested to visualize the
impact of the additional features on the efficiency of the models. For this study, the
occupancy data was used as it is, i.e, continuous data as seen in Fig.2.13. The results for
the prediction of the three-time windows (1h/12h/24h ahead) are summarized in table 2.8.

As shown in table 2.8, although the prediction results were close due to the lack in
terms of data, Light GBM outperformed the other algorithms, especially for the 12h and
24h ahead predictions. As mentioned previously, LightGBM has the benefit of being able
to achieve accuracy with less training time. Furthermore, we decided to investigate the
impact of the additional features on the Light GBM performance. As shown in Fig. 2.14,
the added features improved the prediction, yet the results were yet not so satisfying for the
12h/24h prediction compared to the ones obtained while using discrete data as expected.
After all, the use of discrete data instead of continuous ones would decrease the complexity

18

Table 2.8: R2 score for different ML-approaches.

ML-regressor 1h 12h 24h
LightGBM 0.831 0.505 0.502
LSTM 0.814 0.360 0.380
CNN_LSTM 0.813 0.367 0.371
Bidirectional LSTM 0.817 0.363 0.378
GRU 0.805 0.370 0.318
MLP 0.785 0.330 0.370
Regression 0.800 0.400 0.162

of the problem and consequently improve the final results which makes sense since there is
less fluctuation in the data.

0.9
Variable
== | GBM_Cal

B LGBM
0.49
. -Ol45
1h 24]

12h h
Window

0.8

R2 score
°© o o
(%] o ~

N
~

0.3

Figure 2.14: Additional features impact on Light GBM predictions.

19

Chapter 3

T-DPnet: Transformer-based deep
Probabilistic network for load
forecasting

3.1 Related work

Different studies for load forecasting have been presented in recent years. For instance,
the authors in [36] presented several statistical and artificial intelligence techniques for load
forecasting, such as support vector machines and linear regression, as well as an analysis
to identify the factors that have a significant impact on accuracy, such as weather. The
authors in [37] provided an overview of load forecasting, with an emphasis on regression-
based models such as regression trees and support vector regression. However, when dealing
with large amounts of data, these traditional machine learning techniques seemed to suffer.
They are confronted with critical challenges such as scalability [38].

Deep learning algorithms came to the rescue in order to overcome such challenges. Deep
Learning algorithms are extremely useful for learning from large amounts of unsupervised
data, analyzing data with a logic structure similar to how humans draw conclusions [39].
In [40], the authors evaluated the efficacy of several multi-step techniques on a Multi-
Layer Perceptron (MLP), as well as the influence of various factors on bias and variance,
such as time series length, and forecasting horizon. The authors in [41], performed a
comparison of the prediction performance of various RNNs, such as LSTM, GRU, and
NARX, for short-term load forecasting. In [42], the authors introduced an attention
model for sequence-to-sequence (Seq2Seq) recurrent neural networks on both univariate and
multivariate time series. In [43], The authors developed an encoder-decoder architecture
inspired by WaveNet, a model originally built by Google DeepMind for raw audio waveforms
that employ dilated causal convolutions and skip-connection to use long-term knowledge to
do load demand forecasting 24 hours ahead. In [44], PLCnet, a hybrid deep learning model
that combines long short-term memory networks (LSTM) and convolutional neural networks
(CNN) models were introduced for short-term load forecasting.

However, the majority of these studies focus on point forecasting, ignoring information
on prediction uncertainty, which is critical in time-series forecasting, particularly for
demand or load forecasting. In recent years, several studies have been carried out to
provide probabilistic forecasting such as the Deep Autoregressive model (DeepAR) that
was introduced by Flunkert et al. [45]. DeepAr is a Seq2Seq architecture with an identical

20

encoder and decoder that estimates the future probability distribution of time series rather
than their future values. DeepAR has proven to be one of the most efficient state-
of-the-art forecasting models. Under a similar scheme, Ng et al. proposed an MLP-
based model to estimate Gaussian parameters with the goal of predicting surgery case
duration [46]. Later, Ruofeng et al. proposed Multi-Horizon Quantile Recurrent Forecaster
(MQ-RNN) [47]. Relying on its Seq2SeqC architecture and the forking-sequences training
scheme that improved the stability and performance of encoder-decoder architecture, MQ-
RNN delivers probabilistic multi-step predictions. Rangapuram et al presented deep state
space models (DeepState), that combine state space models with deep learning and can
retain data efficiency and interpretability while learning the complex patterns from raw
data [48]. In 2019, SQF-RNN, a probabilistic framework was proposed by Gasthaus et al. to
model conditional quantile functions using monotonic regression splines, allowing for more
flexible output distributions [49]. In [50], DeepTCN-Quantile, a probabilistic forecasting
approach based on convolutional neural networks (CNN), was proposed by Chen et al. that
employs stacked residual blocks based on dilated causal convolutional nets to capture the
temporal relationships of the series.

The majority of these probabilistic forecasting frameworks are autoregressive models
that use a recursive technique to produce multi-step forecasts and are based on either
recurrent neural networks, convolutional neural networks, or both. There are two
fundamental issues with such models: The first is the accumulated prediction error caused
by training/prediction procedures, while the second is architecture-related issues. To begin,
by relying on tactics such as teacher forcing (feeding the model the true value at each
successive step in the training phase), minor errors that were not crucial during training
quickly get exacerbated over longer sequences during inference. Second, models that rely on
recurrent nets are challenging to train due to gradient vanishing and explosion difficulties.

Following its huge success, considered as the new state-of-the-art solution for Natural
language processing (NLP) problems, Transformers made their appearance as a solution for
time series forecasting. Overcoming the architecture-related issues in recurrent neural nets,
a number of Transformers-based solutions have emerged. Wen et al. conducted a thorough
review of the most recent transformer schemes for time series modeling, demonstrating
transformers’ capacity to capture long-range dependencies and interactions, which is a
valuable feature for time series modelling [51].

Our method is a parametric approach that estimates the parameters of a probabilistic
distribution across predictions, inspired by models such as DeepAr. In addition, our
proposed approach is an encoder-decoder architecture that uses the expressiveness of
transformer encoders to collect relevant information from historical data in order to make
accurate future predictions.

3.2 Background

3.2.1 Sequence models

Traditional machine learning assumes that data points are distributed independently and
identically (iid), but when dealing with time-series data, one data item is dependent on those
that come before or after it, i.e., the data order is meaningful in such a way that earlier data
points or observations provide information about later data points or observations, which
inspired researchers to develop sequence models, a more appropriate solution to analyze
sequential data [52].

21

3.2.1.1 Recurrent Neural Network (RNN)

RNN is a type of artificial Neural Network designed for sequential data processing. RNN,
unlike standard artificial neural networks (ANN), has internal memory. The design of RNN
is inspired by the human brain, in which each cell makes its decision not just on its immediate
input but also on the information gained from preceding cells. This enhancement provides
RNN with a sense of time context, ensuring that sequential information is captured in the
input data [53].

y Yt Yt Y1

— | T T

a > - ——> —»} —-{ —
a

atp At t At

| I I T

X Xt-1 Xt Xt+1

Figure 3.1: Folded and unfolded representations of recurrent neural network.

As illustrated in Fig. 3.1, given x4, a time-indexed observation vector, for each time-step
t, the activation a; and the output g; are expressed as follows:

atg = gl(Waaatfl + Worxe + ba)a
Y= 92(Wyaat + by)a

where Wy, Waa, Wya, ba, by are coefficients that are shared temporally and gl,g2 are
activation functions.

3.2.1.2 Long Short-Term Memory (LSTM)

RNN tended to suffer while dealing with long sequences as it relied solely on its internal
memory to handle sequential data (also known as gradient vanishing and exploding
problems). As a result, new models such as Long Short Term Memory (LSTM) were
developed. LSTM relies on hidden and gate states to store long-term information [54].

As illustrated in Fig. 3.2, given x;, LSTM computes a sequence of hidden states h;, and
cell state ¢; using a complex architecture which is mainly composed by:

A forget gate f; that determines what is retained/lost from the preceding cell state.

e An input gate i; that determines which sections of the new cell content are written to
the cell.

¢ An output gate o; determines what parts of cell are output to hidden state.

e A new cell content ¢.

22

i\ v
Input \,/o.) Output o
Gate \ Gate
Cell
> P ¢
Input
Modulation
; Gate
Xt Forget

hey | > 0 Cell

Figure 3.2: Long Short-Term Memory network cell

o A cell state ¢; which is responsible on forgetting part of the previous cell state content
and inputting some new cell content.

e A hidden state h; which represents the cell output.

fe =o(Wylhe—1, 3] + by),
o(Wilhs—1, 2] + b;),

ot = a(Wo[hi—1,] + bo),
¢t = tanh(welhe—1, z¢] + be),
cc=fOc1+i0&,

ht = oy ® tanh ¢,

1

where o is the sigmoid function, w, is the weight for the respective gate (x) neurons, and
b, is the bias for the respective gates (z).

3.2.1.3 Encoder—Decoder

An encoder-decoder architecture is a popular model that was introduced by Cho et al. to
solve sequence to sequence problems [55]. As illustrated in Fig. 3.3, the encoder-decoder
model, as the name states, mainly consists of two networks: Encoder and Decoder. The
first network learns a representation of the input sequence that captures its features or
context and outputs a vector which is referred to as the context vector. The context vector
is passed to the decoder network, which learns to read it and generate the required outputs.

3.2.2 Transformers

Vaswani et al. were the first to introduce transformers [14]. A deep learning model that
employs a self-attention mechanism to weight the inter-relevance of each input data element.
One of this model’s strong points is its capacity to provide valuable information about
distant tokens, i.e. a high capability of learning sequence dependencies such as seasonality
in the case of time series.

23

Yi+1 Yt+2 Yt+A

m

=]

0

o

o

)

-

)
Context

Figure 3.3: Encoder-decoder model.

3.2.2.1 Self-Attention

The transformer’s most significant component is the unit of multi-head self-attention
mechanism, where Self-attention, also known as intra-attention, is an attention mechanism
that relates different positions of a single sequence in order to compute a representation of
the same sequence. This mechanism has three significant components:

e Query Q: The query is a representation of the current vector x; (from the current
time-step ¢) that is used to score against all the other sequence values (using their
keys).

¢ Key K: The key vectors function as labels for all of the values in the segment.

e Value V: Value vectors are the real value representations; once the importance of each
value in the sequence is determined, these values are concatenated to represent the
current value.

The transformer adopts the scaled dot-product attention which is given by [51]:

Attention(Q, K, V) = softmax (Q—KT> \% (3)
)) - \/m)

where Q € RM*Pr K € RN*Pr v € RNXDPv and M, N, Dy, and D, denote the lengths
and the dimensions of queries (or keys) and values, respectively.

3.2.2.2 Multi-head attention

Instead of doing the calculations only once, it was proven that the use of the attention
mechanism in parallel, i.e., running the attention mechanism multiple times is beneficial
to the learning process of the model. Learning from different representations of Q, K,
and V, helps the model to have a general and a better understanding of the used data.
As illustrated in Fig. 3.4, the independent attention outputs are simply concatenated and
linearly transformed into the expected dimensions. As a result, the final attention process
can be stated as follows:

MultiHead(Q,K, V) = Concat(heady, ..., head,)W,
where head; = Attention(QWiQ, KWE vwY),

and WO, WZ-Q, Wf(, W}/ are the parameter matrices to be learned.

24

Multi-Head Attention

.

‘ Linear ‘

——

Concat
TA
‘ Scaled Dot-Product Attention /Z h

[N

‘ Linear | ‘ Linear ‘ Linear
T T T
Q K Vv

Figure 3.4: Multi-head Attention consists of several attention layers running in parallel.

3.2.2.3 Feed forward and residential network

The vanilla Transformer encoder is composed of multiple identical blocks. Each block, in
addition to the multi-head attention layer, contains a fully connected feed-forward network
as illustrated in Fig.3.5. Furthermore, each encoder has a residual connection around it
and is followed by a layer-normalization step. The residual connections primarily help
to alleviate the vanishing gradient problem. The signal is multiplied by the derivative of
the activation function during back-propagation. In the case of ReLU, this indicates that
the gradient is zero in around half of the situations. If the residual connections were not
there, a significant percentage of the training signal would be lost during back-propagation.
Because summing is linear with respect to derivatives, each residual block likewise receives
a signal that is not impacted by the diminishing gradient. The residual connection summing
techniques give a path in the computation graphs that does not lose the gradient.

1= Add & Normalize
'
: A A
)
' ‘ Feed Forward Feed Forward
)
lecccsssafisssssssssscscseses
* A
- Add & Normalize

Figure 3.5: Encoder unit architecture.

25

3.3 Methodology

A general probabilistic forecasting problem can be described as follows: The objective is
to model the conditional distribution of the future time series P(y(¢4+1):(t+a)|Y1:4), Where
Y14 := [y1,- .., Y] refers to the past of the time series, t denotes the length of the historical
observations, Yri1.44A = [Yt, .., Ysra] refers to the future of the time series, and A is the
length of the forecasting horizon (The following horizons in terms of days were addressed
in this work, A € {1,7,30}, i.e, 1 day, 1 week, and 1 month). However, depending just on
past consumption is insufficient for accurate prediction, highlighting the critical importance
of including covariates z;11.11 A that carry meaningful information about the future. The
joint distribution of the future incorporating the covariates is expressed as the product of
conditional probabilities:

A
P(y(t+1):(t+A)|y1:t) = H p(y(t+k)|3/1:t7$t+k) (4)
k=1

3.3.1 Proposed Architecture

As shown in Fig. 3.6, our model, T-DPnet, is mainly composed of two parallel paths, the
backbone and the noise paths with the goal to predict the parameters of the likelihood
function, which is a score function used instead of a loss function. For this study, Gaussian
likelihood is chosen as it models well the statistical properties of the used data (real-world
data). At the core of each path lies a transformer encoder, made up of self-attention and a
feed-forward network as explained in the original transformer paper introduced by Vaswani
et al. [14], followed by a fully-connected layer that serves as a decoder that outputs the
parameters of the probability distribution 6 (in our case, it is the mean and the standard
deviation). In other words, as in equation 5, we assume that the model distribution consists
of a product of likelihood factors parameterized by l; 4 and l;:l+k»7 the latent variables
generated by the backbone and noise encoders, respectively.

A
Pasryeraylvie) = TT 0Werm0 k-1, lr1)) (5)
k=1

3.3.2 Processes
3.3.2.1 Likelihood model

The role of the two paths is to generate predictions of the parameters of the hypothetical
distribution 6 (the mean and standard variation for the case of Gaussian distribution).
Once p and o are deducted, a maximum likelihood estimation is applied to estimate the
corresponding network parameters. The loss function is then created using the negative
log-likelihood function as follows:

L= —logt(y|lu,o) (6)
= —log ((2%02)_71 exp(_(y—_'u)z)>

202

(y — p)?

1
=3 log(27) + log(o) + 552

26

Yit+1

sample
likelihood
A
u] o
Decoder Decoder
(linear) ‘ (linear)
' : A
d S e
Add & Normalize
Backbone Noise | ‘ Feed Forward ‘
Transformer Transformer
encoder ; encoder [Add & Normalize]
o T _____ N T ______ v ‘ Multi-head Attention ‘
I
‘ Embedding ‘
‘ Input 7; ‘

Figure 3.6: Architecture of T-DPnet. An Embedding layer is followed by two paths, each of
which contains: an Encoder part with stacked Transformer encoders, each of which consists
of a multi-head attention and feed-forward network, and a Decoder part that applies a linear
transformation to the encoders’ latent variables l; 4 and l;:rk that generates the designed
distribution parameters. For prediction, the final emission is generated by drawing a sample

Yea1 ~ L0, 1)

3.3.2.2 Input vector

Let I; be the model input at the " time interval. As shown in Fig. 3.6, the objective is to
predict the energy consumed y;+1 based on input I;. There are two sorts of features in the
input vectors: lags and time-dependent features. To avoid data leaking, the former is a list
of historical consumption that is determined depending on the forecast horizon size. For
example, to predict y;11 for one day, the lag features will start at y;_o4 as we step back.
The latter are time-dependent features related to the £+ 1 slot. It includes the hour, day of
the week, and month of the year that characterizes ¢ + 1, as well as a binary variable that

27

indicates holidays. For instance, the A-hour ahead prediction I; is built as follows:

It = a0y - s Yty hig1, dey1, myg1, hdiga], (7)

where € is the length of lags features, hyy1, di+1, Mys1, hdir1 are the hour of the week, day
of the week, month of the year and holiday features that describe time slot ¢ + 1.

3.3.2.3 Main process

Given Iy, the model input at the ¢ time interval, our model follows the following process:

Embedding : I; = Embedding(I;),
Backbonepath : = l;AE + by,

where [= BEncoder(Iy),

Noisepath : o = log(1 + exp(l; AT +b,)),
where [= N Encoder (1),

where A and b are the learnable weight and bias, respectively.

As previously stated, the Gaussian likelihood is parameterized using its mean and
standard deviation. The mean is produced by the backbone path, which uses a linear
function as the decoder, whereas the standard variation is given by the noise path, which
uses a softplus activation on the result of the linear decoder to verify the parameter’s
positivity.

3.3.2.4 Training vs Prediction

For training, mini-batches are randomly generated from the original time series following
the structure mentioned in 3.3.2.2. Those batches are next fed to the model, following the
main process mentioned in 3.3.2.3. For each training epoch, once the list of the distribution
parameters is generated, losses are computed against the corresponding target. The weights
are then updated using gradient descent using back-propagation.

For prediction, depending on the forecasting horizon A, inputs with one-period lag are
fed to the model. The same process as in the training is followed but with a different
final emission. After obtaining the distributions’ parameters, instead of calculating loss and
performing backpropagation, we simply produce the required quantiles (for example q10,
q50, and q90) through repetitive sampling from the resulted distributions.

3.4 Experiments

3.4.1 Real-world datasets

Two real-world datasets are utilized to incorporate the performance of the proposed
framework on two different types of data: hourly load data from the power supply company
of the city of Johor in Malaysia generated in 2009 and 2010 and hourly load consumption
data collected from one of Grenoble Institute of Technology’s buildings from 2018 until
2020. The former represents aggregated data, which makes identifying patterns and trends
easier, but the latter was taken from a single building (non-aggregated), which increases
the difficulty of forecasts. As seen in Fig. 3.7, Grenoble data is significantly noisier than

28

Grenoble Hourly Consumption Malaysia Hourly Consumption

60000

o

S

50000

40000 M

{ T et

Jan Jan
2018 2009

date date

load (Mw)
w

load (Mw)

N

e
-_—

Figure 3.7: Tllustration of a sample of Grenoble and Malaysia data (January 2018 and 2009,
respectively).

Grenoble Hourly Consumption Malaysia Hourly Consumption

® 70000
o

60000

o
Q0 00 o

IS
amo

50000

load (Mw)
N w

load (Mw)

<]

2

(=}

30000

20000

0 1 2 3 4 5 6 0 1 2 3 4 5 6
day_of week day_of week

sl
H]
H
H

Figure 3.8: Boxplots for Grenoble and Malaysia data hourly electricity Loads vs Day of
Week.

Malaysia data, making it more difficult to precisely forecast all spikes when dealing with
Grenoble data compared to Malaysia smooth data.

Figs. 3.8 and 3.9 show boxplots for Grenoble and Malaysia data hourly electricity loads
for each day of the week and hour of the day, and as anticipated, working days require more
electricity than weekends. Peak loads in the Grenoble building occur between 8 a.m. and 4
p.m., whereas peak loads in Malaysia occur between 9 a.m. and 4 p.m. This validates our
decision to include time-dependent features, which offer valuable information to the model.

The proposed model performance is discussed across multiple time horizons, including
24-hour, 1-week, and 1-month predictions, versus state-of-the-art models, namely, DeepAr,
MQ-RNN, and DeepTCN-Quantile. For both datasets, we trained the models to predict
quantiles ¢ € {0.1,0.5,0.9}.

29

Grenoble Hourly Consumption Malaysia Hourly Consumption

) gO 70000 ’L rLO
5 o © o}

o o 8 o 60000 335
488085 gg 80 J-‘ I
8g8g0 63 8 J—UL

S lyapihd fiiij i I
Ezgegg " o Ogmooni
8
piml mii -t [L
Owwﬂu Lﬁww 2000 ;;Hi o0
01234567 8 910M1M12131415161718192021 2223 01234567 8 910M1M12131415161718192021 2223

hour hour

Figure 3.9: Boxplots for Grenoble and Malaysia data hourly electricity Loads vs hour of
day.

3.4.2 Evaluation Metrics

As T-DPnet generates probabilistic forecasts, root mean squared error (RMSE), mean
absolute error (MAE), and coefficient of determination (R?) are used to assess the models’
one-point forecasting capabilities (P50), coupled with quantile loss (QL) to provide further
information about the (P90) quantiles.

RMSE = \/ %ziNzl (4i - FZ.)Q (8)
MAE = imi ~ F| (9)
i=1
R Zf\L1<Ai - Fi)z (10)
oY (4 - A))
QL = max (q(F — A;), (g — 1)(Fi — 43)), (11)

where A; and Fj refers to actual and forecasted value of the i point in data, N is the data
size, A is the average of actual data, and ¢ is the quantile ¢ € (0, 1). For the case of quantile
loss, for a set of predictions, the total loss is the average.

3.4.3 One-day-ahead Forecasting

For the case of a 1-day ahead prediction, a 1-week of historical data is fed to the different
models with the goal to predict the next 24 hours. Table 3.1 shows the results for predictions
for the next day. T-DPnet outperformed its peers, particularly the state-of-the-art DeepAr.
The R? was improved from 87.2 percent to 96.2 percent for Malaysian data and from 52.3
percent to 68.2 percent for Grenoble data for 24 hours ahead forecasting. Furthermore,
T-DPnet has the lowest error rates in terms of RMSE, MAE, and QLs. Figure 3.10 shows a
sample of the predicted test results for both data sets from T-DPnet. The proposed model
performs excellently for both data sets.

30

Table 3.1: Results for 1-day forecasts.

Malaysia Grenoble
(R?) (RMSE) (MAE) (Q90/Q50) (R?) (RMSE) (MAE) (Q90/Q50)
DeepAr 0.872 0.0963 0.068 0.022/0.034 0.523 0.177 0.127 0.040/0.064
MQ-RNN 0.865 0.109 0.0719 0.0285/0.0409 0.644 0.154 0.112 0.042/0.054
DeepTCN-Quantile 0.890 0.084 0.050 0.024,/0.0299 0.667 0.156 0.116 0.036/0.055
T-DPnet 0.962 0.053 0.041 0.010/0.021 0.682 0.149 0.103 0.047/0.0523
Malaysia 24-hours Prediction Grenoble 24-hours Prediction
10 —— P50 forecast 10 —— P50 forecast
true true
P10-P90 guantile P10-P90 guantile

08 08 ‘ 1|

0.6
0.6

04
04

Load consumption (Mhw)
Load consumption (Mhw)

02

02

0.0

0 I 50 75 100 125 150 175 0 I3 50 75 100 125 150 175
Time(h) Time(h)

(a) 1-day predictions versus actual values for Malaysia (b) 1-day predictions versus actual values for Grenoble
data. data.

Figure 3.10: T-DPnet 1-day predictions versus actual values for both data sets

3.4.4 One-week-ahead Forecasting

For the case of a 1-week ahead prediction, a 1-week of historical data is fed to the different
models with the goal to predict the next 168 hours. Table 3.2 shows the results for
predictions for the next day. T-DPnet outperformed its peers while dealing with the
Malaysia dataset as the R? increased from 87.6 percent to 90 percent versus DeepAr,
however, it seems the model is slightly lacking compared to MQ-RNN and DeepTCN while
dealing with Grenoble data. T-DPnet results are illustrated in Fig. 3.11.

Table 3.2: Results for 1-week forecasts.

Malaysia Grenoble
(R?) (RMSE) (MAE) (Q50/Q90) (R2) (RMSE) (MAE) (Q50/Q90)
DeepAr 0.876 0.090 0.065 0.0225/0.032 0.479 0.176 0.126 0.041/0.063
MQ-RNN 0.868 0.093 0.067 0.023/0.035 0.547 0.126 0.096 0.031/0.052
DeepTCN-Quantile 0.890 0.091 0.064 0.022/0.032 0.541 0.200 0.126 0.038/0.058
T-DPnet 0.900 0.081 0.059 0.023/0.03 0.523 0.179 0.119 0.066,/0.060

31

Malaysia 1-week Prediction Grenoble 1-week Prediction

10) — P50 forecast ~—— P50 forecast
true true
P10-P90 quantile 08 P10-P90 quantile

08 ‘
= = |
H H
S % 08 | r‘
= = |
S 06 S
g g
2 304
[[
S S
- 04 o
o o
9 3

02
02
0.0
0 5 50 7% 100 125 150 175 0 5 50 75 100 125 150 175
Time(h) Time(h)

(a) 1-week predictions versus actual values for (b) 1-week predictions versus actual values for
Malaysia data. Grenoble data.

Figure 3.11: T-DPnet 1-week predictions versus actual values for both data sets

3.4.5 One-month-ahead Forecasting

For the case of a 1-month ahead prediction, a 1-month of historical data is fed to the
different models with the goal to predict the next 720 hours. As shown in Table 3.3,
our model gets better results in long-term forecasting, especially in the Grenoble dataset
compared to strong baselines as the R? increased from 84.7 percent to 89.7 percent for
Malaysian data and from 45.5 percent to 57.2 percent for Grenoble data for 1-month hours
ahead forecasting. Fig. 3.12 displays a sample of T-DPnet predicted test results for both
data sets. Although the performance of the model decreased compared to shorter sequence
forecasting, the results are still considered excellent for load forecasting.

Table 3.3: Results for 1-month forecasts.

Malaysia Grenoble
(R?) (RMSE) (MAE) (Q50/Q90) (R?) (RMSE) (MAE) (Q50/Q90)
DeepAr 0.847 0.100 0.074 0.0193/0.037 0.455 0.170 0.120 0.040/0.060
MQ-RNN 0.858 0.099 0.069 0.019/0.035 0.450 0.139 0.0986 0.36/0.053
DeepTCN-Quantile 0.872 0.095 0.064 0.021/0.031 0.524 0.180 0.124 0.044/0.061
T-DPnet 0.897 0.082 0.055 0.017/0.027 0.582 0.170 0.117 0.052/0.059

3.4.6 Discussions

In this section, an analysis is performed to determine the performance of T-DPnet in relation
to some of the additional categorical features, such as holidays and days of the week, for the
case of 24 hours ahead forecast (Malaysia dataset). Firstly, as shown in Fig. 3.13 (a), box
plots describe the performance of the model during holidays and no-holidays in terms of R?
score. The median R? score for No-holidays is significantly higher than that of holidays,
and there are significant differences in the spreads between the two groups, indicating that
the proposed model performs poorly when predicting holiday load consumption. This is
due to the fact that the number of observations with holidays in the training data is less

32

Malaysia 1-month Prediction Grenoble 1-month Prediction

—— P50 forecast 10 —— P50 forecast
10 — fUS — frue
wem P10-P90 quantile s P10-P90 guantile
08
08 3
£ £
< T 06
§ S
g 06 :é
3 =
%‘ 2 04
5
T 04
| i L
02
02 .
0.0
0 10 20 M0 40 50 0 70 0 100 200 300 400 500 600 700
Time(h) Time(h)

(a) l-month predictions versus actual values for (b) l-month predictions versus actual values for
Malaysia data. Grenoble data.

Figure 3.12: T-DPnet 1-month predictions versus actual values for both data sets

than 5 percent of the total number of observations. Nevertheless, in such cases, probabilistic
forecasting comes in very handy. Because the uncertainty is higher, probabilistic predictions

cover the unexpected, and always attempt to anticipate the worst-case, scenario as shown
in Fig.3.13 (b).

Malaysia 24-hours Prediction R2_score based on holidays Malaysia 24-hours Holidays Prediction
10
1 —— P50 forecast
— frue
mmm P10-P90 guantile

08 08
=z
£
<

§ 06
g 06 =3
¥, £
:

04 o 04
o
3

02 02

No Holiday Holiday 0 50 100 150 200 250
Time(h)
(a) R2 score box-plots. (b) T-DPnet predictions samples for holidays.

Figure 3.13: T-DPnet performance to predict load during holidays.

Still, the performance of the model for such special occasions can be improved by adding
features that describe the load for previous events, for example, features representing the
mean load consumption of the previous Christmases should greatly improve the load forecast
for such event. However, because we were short on data points in this case, we were unable
to implement such a solution. Secondly, an illustration of the model performance versus the
day of the week is presented in 3.14. The model clearly performs slightly worse on weekends,
which is due to the same reason indicated before about the number of observations. During

33

Malaysia 24-hours Prediction R2_score based on day of the week
10

G

v 06
S
o °
(-4

04 °

02

° °
5) 5 & S 3 =
o(\b'b e,o Z‘,&’ o&,;:a ,‘o"b Q)(o“’ f,p“b
- ~ I < @

Figure 3.14: T-DPnet p(;}formance based on day of the week.

the week, the data follows a daily pattern. In other words, the data from Monday to Friday
are comparable in that more than 70 percent of the data represents load consumption
during the weekdays. This allows the model to better learn the patterns of these days,
resulting in more accurate forecasts. Despite having a high median, R2 scores on Tuesday,
Wednesday, and Friday are noticeably spread out when compared to the remaining days.
Further investigation revealed that the holidays in this data correspond with these precise

days, which explains the anomalies.

34

Chapter 4

Conclusions and Future Work

In this thesis, we addressed two of the most challenging research topics in the field of
buildings and energy: occupancy prediction and load forecasting.

The focus of chapter 2 was building an occupancy prediction framework which holds
great benefits for building control systems to provide comfort to occupants while saving
energy. The proposed solution allows an efficient prediction of the number of occupants in
an office relying on the data collected using the interactive approach as well as additional
features extracted from the official calendar and event schedules. In the case of the use
of binary data, it is shown that the proposed framework, LightGBM-based, can achieve
satisfactory performance for different window sizes (1/12/24 hours ahead), reaching a
precision of 86% for 24 hours ahead prediction. As for the case of continuous one, extensive
simulations show that using non-aggregated data is difficult, particularly when the forecast
window size is increased, and that this is attributable to the nature of data (not as smooth as
the aggregated one). Recurrent neural network-based models such as LSTM, CNN LSTM,
and GRU can produce good results for 1h prediction, but their performance degrades as the
window size is increased, with an average accuracy of 37% for 24h prediction. LightGBM
marginally suffers from the same dilemma, nevertheless, it achieves the best results among
all the discussed models where the accuracy increase from 37% to 50%, which is a good
result dealing with this kind of data. Regardless, we believe that apart from the use of
information extracted from the office calendar, it would be worthwhile to investigate the
association between occupancy prediction and load forecasting. Future research could look
into the possibility of using future load prediction as one of the additional features to
improve the framework’s performance. Another intriguing concept to investigate is using
an interactive approach in the occupancy prediction phase, i.e. involving the end-user in
the prediction phase as well.

In chapter 3, we introduced a general Transformer-based framework for providing
probabilistic predictions for time series data. In contrast to existing sequence-oriented deep
learning approaches, our methodology models sequence data using self-attention processes,
allowing it to learn complex relationships of varying duration from time series data. Using
real-world datasets, we demonstrated that the T-DPnet improves forecast accuracy over
the state-of-the-art forecasting methods, the recent RNN, and CNN-based approaches, for
short and long-term forecasting. Nevertheless, an important future research direction can
be to consider the impact of the addition of other features, such as weather, that should
further improve the forecasts

To ensure reproducibility of the results by the research community and a potential

35

future improvement of the framework by other researchers the complete source codes
for both frameworks are provided in the following repositories: https://github.com/
OmarBouhamed/Occupancy_pred and https://github.com/OmarBouhamed/T-DPnet.

36

References

1]

2]

[4]

[5]

[6]

[7]

[9]

[10]

P.-P. Saviotti and A. Pyka, “Innovation, structural change and demand evolution: does
demand saturate?,” Journal of FEvolutionary Economics, vol. 27, no. 2, pp. 337-358,
2017.

A. Tealab, “Time series forecasting using artificial neural networks methodologies: A
systematic review,” Future Computing and Informatics Journal, vol. 3, no. 2, pp. 334—
340, 2018.

S. Kaushik, A. Choudhury, P. K. Sheron, N. Dasgupta, S. Natarajan, L. A. Pickett,
and V. Dutt, “Ai in healthcare: time-series forecasting using statistical, neural, and
ensemble architectures,” Frontiers in big data, vol. 3, p. 4, 2020.

M. Matsumoto and A. Tkeda, “Examination of demand forecasting by time series
analysis for auto parts remanufacturing,” Journal of Remanufacturing, vol. 5, no. 1,
pp. 1-20, 2015.

Q. Liu, Z. Li, Y. Ji, L. Martinez, U. H. Zia, A. Javaid, W. Lu, and J. Wang,
“Forecasting the seasonality and trend of pulmonary tuberculosis in jiangsu province
of china using advanced statistical time-series analyses,” Infection and drug resistance,
vol. 12, p. 2311, 2019.

Z. Chen, Q. Zhu, M. K. Masood, and Y. C. Soh, “Environmental sensors-based
occupancy estimation in buildings via ihmm-mlr,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 5, pp. 2184-2193, 2017.

X. Lu, F. Feng, Z. Pang, T. Yang, and Z. O7?Neill, “Extracting typical occupancy
schedules from social media (tossm) and its integration with building energy modeling,”
Building Simulation, vol. 14, pp. 25—41, 2021.

A. Pellegrino, V. R. M. Lo Verso, L. Blaso, A. Acquaviva, E. Patti, and A. Osello,
“Lighting control and monitoring for energy efficiency: A case study focused on the
interoperability of building management systems,” IEEE Transactions on Industry
Applications, vol. 52, no. 3, pp. 2627-2637, 2016.

D. Sheikh Khan, J. Kolarik, C. Anker Hviid, and P. Weitzmann, “Method for long-
term mapping of occupancy patterns in open-plan and single office spaces by using
passive-infrared (pir) sensors mounted below desks,” Energy and Buildings, vol. 230,
p- 110534, 2021.

F. Oldewurtel, D. Sturzenegger, and M. Morari, “Importance of occupancy information
for building climate control,” Applied Energy, vol. 101, pp. 521-532, 2013.

37

[11]

[12]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

T. Hong, P. Pinson, Y. Wang, R. Weron, D. Yang, and H. Zareipour, “Energy
forecasting: A review and outlook,” IEEE Open Access Journal of Power and Energy,
vol. 7, pp. 376-388, 2020.

R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent
neural networks,” in Proceedings of the 30th International Conference on International
Conference on Machine Learning - Volume 28, ICML’13, p. II1-1310-111-1318,
JMLR.org, 2013.

B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural networks for time
series classification,” Journal of Systems Engineering and FElectronics, vol. 28, pp. 162—
169, 02 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information
Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

T. Liu, Z. Tan, C. Xu, H. Chen, and Z. Li, “Study on deep reinforcement learning
techniques for building energy consumption forecasting,” Energy and Buildings,
vol. 208, p. 109675, 2020.

M. Amayri, S. Ploix, N. Bouguila, and F. Wurtz, “Estimating occupancy using
interactive learning with a sensor environment: Real-time experiments,” IEEE Access,
vol. 7, pp. 53932-53944, 2019.

Z.-H. Zhou, “A brief introduction to weakly supervised learning,” National Science
Review, vol. 5, pp. 44-53, 08 2017.

O. Bouhamed, M. Amayri, and N. Bouguila, “Weakly supervised occupancy prediction
using training data collected via interactive learning,” Semsors, vol. 22, no. 9, 2022.

D. Yan, X. Feng, Y. Jin, and C. Wang, “The evaluation of stochastic occupant behavior
models from an application-oriented perspective: Using the lighting behavior model as
a case study,” Energy and Buildings, vol. 176, pp. 1561-162, 2018.

J. Page, D. Robinson, N. Morel, and J.-L. Scartezzini, “A generalised stochastic model
for the simulation of occupant presence,” Energy and Buildings, vol. 40, no. 2, pp. 83—
98, 2008.

Z. Chen, J. Xu, and Y. C. Soh, “Modeling regular occupancy in commercial buildings
using stochastic models,” Energy and Buildings, vol. 103, pp. 216-223, 2015.

X. Ren, D. Yan, and T. Hong, “Data mining of space heating system performance in
affordable housing,” Building and Environment, vol. 89, 2 2015.

A. Tsanas and A. Xifara, “Accurate quantitative estimation of energy performance of
residential buildings using statistical machine learning tools,” Energy and Buildings,
vol. 49, pp. 560-567, 2012.

A. Yezioro, B. Dong, and F. Leite, “An applied artificial intelligence approach towards
assessing building performance simulation tools,” Energy and Buildings, vol. 40,
pp- 612—620, 12 2008.

38

[25]

[31]

[32]

[33]

V. L. Erickson and A. E. Cerpa, “Occupancy based demand response hvac control
strategy,” in Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems
for Energy-Efficiency in Building, BuildSys ’10, (New York, NY, USA), p. 7412,
Association for Computing Machinery, 2010.

S. Lee, Y. Chon, Y. Kim, R. Ha, and H. Cha, “Occupancy prediction algorithms for
thermostat control systems using mobile devices,” IEEE Transactions on Smart Grid,
vol. 4, no. 3, pp. 1332-1340, 2013.

C. Fan, M. Chen, R. Tang, and J. Wang, “A novel deep generative modeling-based data
augmentation strategy for improving short-term building energy predictions,” Building
Simulation, vol. 15, pp. 197-211, 2022.

M. Amayri, S. Ploix, P. Reignier, and S. Bandyopadhyay, “Towards Interactive
Learning for Occupancy Estimation,” in ICAI’16 - International Conference on
Artificial Intelligence (as part of WORLDCOMP’16 - World Congress in Computer
Science, Computer Engineering and Applied Computing), (Las Vegas, United States),
July 2016.

M. Amayri, S. Ploix, P. Reignier, and B. Sanghamitra, “Towards interactive learning for
occupancy estimation,” in Proceedings of ICAI’16 - The 18th International Conference
on Artificial Intelligence, pp. 1-9, 2016.

M. Amayri, S. Ploix, N. Bouguila, and F. Wurtz, “Database quality assessment for
interactive learning: Application to occupancy estimation,” Energy and Buildings,
vol. 209, p. 109578, 2020.

R. Collobert and S. Bengio, “Links between perceptrons, mlps and svms,” in
Proceedings of the Twenty-First International Conference on Machine Learning, ICML
'04, (New York, NY, USA), p. 23, Association for Computing Machinery, 2004.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,
“Lightgbm: A highly efficient gradient boosting decision tree,” in Advances in Neural
Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc.,
2017.

A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent
neural networks,” in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, pp. 6645-6649, IEEE, 2013.

C. Chen, Q. Zhang, Q. Ma, and B. Yu, “Lightgbm-ppi: Predicting protein-protein
interactions through lightgbm with multi-information fusion,” Chemometrics and
Intelligent Laboratory Systems, vol. 191, pp. 54-64, 2019.

V. Gupta, “An overview of different types of load forecasting methods and the factors
affecting the load forecasting,” International Journal for Research in Applied Science
and Engineering Technology, vol. V, pp. 729-733, 04 2017.

39

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

B. Yildiz, J. Bilbao, and A. Sproul, “A review and analysis of regression and machine
learning models on commercial building electricity load forecasting,” Renewable and
Sustainable Energy Reviews, vol. 73, pp. 1104-1122, 2017.

M. M. Ahsan, M. A. P. Mahmud, P. K. Saha, K. D. Gupta, and Z. Siddique, “Effect
of data scaling methods on machine learning algorithms and model performance,”
Technologies, vol. 9, no. 3, 2021.

F. Emmert-Streib, Z. Yang, H. Feng, S. Tripathi, and M. Dehmer, “An introductory
review of deep learning for prediction models with big data,” Frontiers in Artificial
Intelligence, vol. 3, 2020.

S. B. Taieb and A. F. Atiya, “A bias and variance analysis for multistep-ahead time
series forecasting,” IEFEE Transactions on Neural Networks and Learning Systems,
vol. 27, no. 1, pp. 62-76, 2016.

F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and R. Jenssen, “An
overview and comparative analysis of recurrent neural networks for short term load
forecasting,” CoRR, vol. abs/1705.04378, 2017.

Y. G. Cinar, H. Mirisaee, P. Goswami, E. Gaussier, A. Ait-Bachir, and V. V. Strijov,
“Time series forecasting using rnns: an extended attention mechanism to model periods
and handle missing values,” CoRR, vol. abs/1703.10089, 2017.

F. Dorado Rueda, J. Durdn Suéarez, and A. del Real Torres, “Short-term load
forecasting using encoder-decoder wavenet: Application to the french grid,” Fnergies,
vol. 14, no. 9, 2021.

B. Farsi, M. Amayri, N. Bouguila, and U. Eicker, “On short-term load forecasting
using machine learning techniques and a novel parallel deep lstm-cnn approach,” IEEE
Access, vol. 9, pp. 31191-31212, 2021.

D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “Deepar: Probabilistic
forecasting with autoregressive recurrent networks,” International Journal of
Forecasting, vol. 36, no. 3, pp. 1181-1191, 2020.

N. H. Ng, R. A. Gabriel, J. McAuley, C. Elkan, and Z. C. Lipton, “Predicting surgery
duration with neural heteroscedastic regression,” in Proceedings of the 2nd Machine
Learning for Healthcare Conference (F. Doshi-Velez, J. Fackler, D. Kale, R. Ranganath,

B. Wallace, and J. Wiens, eds.), vol. 68 of Proceedings of Machine Learning Research,
pp. 100-111, PMLR, 18-19 Aug 2017.

R. Wen, K. Torkkola, B. Narayanaswamy, and D. Madeka, “A multi-horizon quantile
recurrent forecaster,” arXiv preprint arXiv:1711.11058, 2017.

S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and
T. Januschowski, “Deep state space models for time series forecasting,” in Advances
in Neural Information Processing Systems (S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), vol. 31, Curran Associates, Inc.,
2018.

40

[49]

[50]

[51]

[52]

J. Gasthaus, K. Benidis, Y. Wang, S. S. Rangapuram, D. Salinas, V. Flunkert, and
T. Januschowski, “Probabilistic forecasting with spline quantile function rnns,” in
Proceedings of the Twenty-Second International Conference on Artificial Intelligence
and Statistics (K. Chaudhuri and M. Sugiyama, eds.), vol. 89 of Proceedings of Machine
Learning Research, pp. 1901-1910, PMLR, 16-18 Apr 2019.

Y. Lin, I. Koprinska, and M. Rana, “Temporal convolutional attention neural networks
for time series forecasting,” in 2021 International Joint Conference on Neural Networks
(IJCNN), pp. 1-8, 2021.

Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun, “Transformers in
time series: A survey,” arXiv preprint arXiv:2202.07125, 2022.

H. Yousuf, M. Gaid, S. Salloum, and K. Shaalan, “A systematic review on sequence
to sequence neural network and its models,” International Journal of Electrical and
Computer Engineering, vol. 11, 10 2020.

A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long short-term
memory (Istm) network,” Physica D: Nonlinear Phenomena, vol. 404, p. 132306, 2020.

O. Bouhamed, M. Amayri, and N. Bouguila, “Weakly supervised occupancy prediction
using training data collected via interactive learning,” Sensors, vol. 22, no. 9, 2022.

K. Cho, B. van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using RNN encoder—decoder for statistical
machine translation,” in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), (Doha, Qatar), pp. 1724-1734, Association
for Computational Linguistics, Oct. 2014.

41

