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Abstract

Classification of Breast Cancer Cytological Images using Transfer

Learning and Deep Convolutional Neural Networks

Mohammad Amin Shamshiri

Microscopic analysis of breast cancer images is the primary task in diagnosing cancer

malignancy, which requires high expertise and precision. Recent attempts to auto-

mate this highly subjective task have employed deep learning models whose success

has depended on large volumes of data while acquiring annotated data in biomedical

domains is time-consuming and may not always be feasible. A typical strategy to

address this is to apply transfer learning using pre-trained models on a large natural

image database (e.g., ImageNet) instead of training a model from scratch. This ap-

proach, however, has not been effective in several previous studies due to fundamental

differences in patterns, size, and data features between natural and medical images. In

this study, we propose and compare several transfer learning approaches that, in the

pre-training phase, use both unrelated natural images and related histopathological

images to our target data (i.e., cytological images) in order to classify breast cancer

cytological biopsy specimens. To our best knowledge, this is the first reported effort

to employ a histopathology data source in transfer learning to classify cytological

images of breast cancer. Despite intrinsic differences between histopathological and

cytological images, we demonstrate that the features learned by the deep networks

during the pre-training are compatible with those obtained throughout fine-tuning

with the target data set. To thoroughly investigate this assertion, we explore three

different strategies for training as well as two different approaches for fine-tuning
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deep learning models. The proposed method is compared with five state-of-the-art

studies previously conducted on the same data set of cytological biopsy images, and

we demonstrate that the proposed approach significantly outperforms all of them in

terms of classification accuracy. Specifically, the proposed method boasts of improved

classification accuracy by 6% to 17% compared to the state-of-the-art studies which

were based on traditional machine learning techniques, and also enhanced accuracy

by roughly 7% compared to those who utilized deep learning methods, eventually

achieving 94.55% test set accuracy and 98.73% validation accuracy. Experimental re-

sults show that our approach, despite using a very small number of training images,

has achieved performance comparable to that of experienced pathologists and has the

potential to be applied in clinical settings.
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Chapter 1

Introduction

In this chapter, we first briefly state the subject under study and explain the

motivation behind this thesis (Section 1.1). Next, the main objectives pursued in this

research are summarized in Section 1.2. The contributors to this study are then listed

in Section 1.3. Lastly, we present the organized structure of this thesis (Section 1.4),

and the published articles are mentioned in Section 1.5.

1.1 Motivation

Breast cancer is the most common invasive cancer among women and has long

been recognized as a major public health burden worldwide (Sung et al. (2021) [79]).

Curing cancer is strongly dependent on the early detection of the disease and the

implementation of appropriate treatment. One reliable way to effectively diagnose

breast cancer is to analyze cell samples acquired by the Fine-needle Biopsy (FNB)

(Mitra et al. (2016) [52]). FNB involves obtaining material directly from a tissue

suspected of having cancer. The collected biopsy specimens are examined under a

microscope by a pathologist to determine the prevalence of cancer cells. Nevertheless,

even for qualified and experienced pathologists, the task is tedious, time-consuming,

and susceptible to error. Performing this task automatically can potentially improve
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efficiency and reliability, allowing it to be accomplished on a large scale.

Advances in medical imaging techniques, on the one hand, and the development

of computer-aided diagnosis systems in recent years, on the other, have enabled the

automatic analysis of medical images, helping physicians to expedite performing the

task. Despite some successes, it has not been feasible to develop a universal sys-

tem that could be used in routine diagnostics. Due to the complex nature of the

problem (image segmentation, feature extraction, classification, etc), the approaches

are mainly based on Machine Learning (ML) and Deep Learning (DL) techniques.

Especially, DL has proved to be effective in the segmentation and classification of

histopathological and cytological images [14, 15, 35, 86].

Given the capability of deep Convolutional Neural Networks (CNNs) to learn

generalizable descriptors directly from images, many previous studies have employed

them to perform image analysis tasks. Despite the CNNs’ high potential for analyz-

ing pattern recognition problems, their application in biomedicine does not always

yield state-of-the-art (SOA) results. The success of CNNs in achieving satisfactory

results depends on the availability of large volumes of data, while acquiring annotated

data in the biomedical domain is time-consuming and may not always be possible.

Furthermore, training deep CNNs from scratch is computationally expensive and re-

quires extensive memory resources, and more importantly, it is often associated with

over-fitting problems. An approved idea to address this is to apply Transfer Learning

(TL) using pre-trained models on a large natural image database (e.g., ImageNet

[21]) instead of training a model from scratch. This approach, however, has not been

effective in several previous studies [4, 7, 60] due to primary divergences in pattern,

size and data feature between natural and medical images. All of these issues moti-

vated us to propose a new TL approach that, by addressing the challenges outlined

above, could achieve SOA accuracy in classifying cytological images of breast cancer.
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The scope of this dissertation concerns a fully automated breast cancer classifi-

cation using the TL approach. The work includes issues related to all stages of data

acquisition, data preprocessing, nuclei segmentation, and binary image classification.

This research was carried out on real-case cytological images of breast cancer prepared

by the specialists of the Regional Hospital in Zielona Góra, Poland.

1.2 Main Goals

The main goal of this work is to develop an efficient medical decision framework

based on DL models for classifying cytological images of breast cancer. Our focus

is on designing a new TL approach that can address the weaknesses of the methods

presented in the literature and achieve satisfactory performance in the classification

task. The performance of the proposed framework is tested on real-life medical data

accumulated from a number of anonymous patients. The dissertation thesis can be

formulated as follows:

Automatic binary classification of breast cancer images with high accuracy (more

than 98%) is possible even with the availability of a small amount of annotated data

using the TL technique. The main idea is to use an auxiliary data set compatible with

cytological images, instead of using natural images (e.g. ImageNet), which makes the

features learned by the model useful for deciding on cancer malignancy.

The task at hand is challenging, seeing that several sub-tasks must be performed,

each with its own complexities:

• Accumulating medical images taken from biopsy specimens and constructing a

database of cytological images of breast cancer.

• Performing all required preprocessing operations on the collected images.
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• Performing the segmentation task and preparing corresponding binary maps

in order to isolate meaningful regions of the image (cell nuclei) from other

background patterns that are not worth analyzing.

• Experimentally evaluating different thresholding techniques as part of the seg-

mentation task in order to select the most efficient one. If existing solutions do

not yield satisfactory results, a new approach needs to be developed.

• Designing a pipeline for binary classification of breast cancer cytological images,

which includes the stages of data acquisition, image patching, patch selection,

network pre-training, and image classification.

• Operating six SOA deep CNNs for the classification task and comparing their

performance to find the most efficient network in terms of accuracy.

• Exploring three different scenarios for training, as well as two different ap-

proaches for fine-tuning deep CNNs.

To demonstrate the superiority of the proposed framework over those presented in

previous studies, the experimental results obtained from this research are finally com-

pared with five SOA studies previously conducted on the same data set. The next

section outlines the main contributions of this thesis.
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1.3 Novel Contributions

The main novel contributions of this thesis can be summarized as follows:

(1) Elimination of the need to have a large number of annotated cytological images

for the binary classification;

(2) Significant reduction of the model training time and ability of the model to

achieve high accuracy early in the training process;

(3) Examining nine different thresholding techniques to perform the segmentation

task and determining the most efficient algorithm by comparing the results of

their application on sample images.

(4) Employing six SOA deep CNNs and determining the most efficient network for

the binary classification of breast cancer cytological images.

(5) Exploring five different scenarios for training, as well as fine-tuning networks

and determining the most effective approach by analytical comparison of the

results obtained.

(6) Implementation of several pre-trained deep CNNs on histopathological datasets

and making their weights publicly available for use by researchers in this field

to initialize the network;

(7) Effective learning by any DL model with a very limited number of labeled

images;
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1.4 Thesis Structure

This dissertation consists of five chapters which are organized as follows:

❒ Chapter 1; briefly explained the subject under study and stated the motivation

for conducting this research. The main objectives and novel contributions of

this research were summarized in the continuation of this chapter. Meanwhile,

the last part of this chapter was dedicated to mentioning the published articles.

❒ Chapter 2; provides the necessary background on the subject of diagnosing

breast cancer using computer-aided systems, and then reviews recent related

works in this area to outline the contributions each has made. The application

of transfer learning to solve medical image classification problems, specifically

breast cancer images, is discussed later in this chapter, and related studies in

this area are reviewed.

❒ Chapter 3; is dedicated to a comprehensive explanation of the proposed method.

In this chapter, we describe all the stages of the designed pipeline separately.

❒ Chapter 4; presents the experimental results of all the strategies applied in this

research and then discusses the results analytically.

❒ Chapter 5; outlines conclusions of the work along with future research directions.

❒ Appendix A; in addition to all the chapters mentioned, this thesis also includes

an appendix, in which the confusion matrices for different scenarios are pre-

sented.
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Chapter 2

Background and Literature Review

2.1 Introduction

This chapter consists of two main sections. In the first part (Section 2.2), we briefly

introduce breast cancer and further refer to the global statistics of this disease among

women. The screening and diagnosis methods of breast cancer are also explained in

the very last part of this section. In the second part (Section 2.3), we review the latest

techniques presented on the subject of Computer-aided Diagnosis (CAD) systems for

breast cancer. The application of TL for medical image analysis is also explained in

the last part of this section.

2.2 Breast Cancer

2.2.1 Basic Concepts

Cancer is caused by abnormal changes or mutations in the genes responsible for

cell growth [8]. These genes are located in the nucleus of cells and are constantly

active. Cells also have a specific lifespan in which they multiply and divide to replace

old cells with new ones. The unrestrained cell growth in the body prevents the proper
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Benign Benign Malignant Malignant

a b c d

Figure 1: Four examples of biopsied breasts, the first two specimens (a and b) being
identified as benign masses and the last two samples (c and d) being diagnosed as
malignant masses (the image is taken from [73]).

replacement of dead cells with new ones, and as a result, the process of cell growth

in the body gets out of control and leads to further problems. This may occur in

one cell or a small group of cells in the body that eventually form a mass of tissue,

so-called a tumor.

Although all tumors are caused by uncontrolled cell growth in the body, not all of

them are necessarily cancerous. A tumor can be benign or malignant. A malignant

tumor (cancerous tumor) spreads through the lymphatic system to various organs in

the body and extracts nutrients from the body’s tissues. While a benign tumor (a

non-cancerous tumor) does not invade neighboring tissue and is therefore controllable

(Mahmood et al. (2020) [49]). Figure 1 shows benign and malignant masses on breast

mammography images.

Breast cancer is a type of cancer that includes a group of diseases in which cells

in the breast tissue are affected and divided uncontrollably, eventually leading to a

mass or tumor. There are four main subtypes of breast cancer that have different

characteristics and therefore require different treatments (Yersal et al. (2014) [93]).

The female’s breast structure is mainly composed of 3 components, namely lobules,

ducts, and fatty tissue. Lobules are milk-producing glands. The milk is carried to the

nipple through small tubes called ducts. All these components (lobules and ducts) are
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covered with fat that gives the breast shape and size. This structure is illustrated in

Figure 2. Research has shown that most breast cancers start in the lobules, and have

the potential to spread to other parts of the body, most commonly the liver, lungs,

bones, and/or brain (Shumway et al. (2020) [75]). This highlights the importance of

early detection of breast cancer, as the effectiveness of treatment largely depends on

the timely detection of cancer.

2.2.2 Epidemiology

According to the World Health Organization (WHO) [79], in 2020, cancer was

the second most common cause of death worldwide after cardiovascular disease, ac-

counting for every sixth death across the world. In terms of new cases, breast cancer

was the most common type of disease worldwide, with 2.26 million cases. Among

women, breast cancer is the most frequently diagnosed cancer (Ji, et al. (2020) [37]),

lobules

ducts

nipple

fat, ligaments,

and connective tissue

Figure 2: Female breast structure consists of lobules, ducts and adipose tissue.
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accounting for 1 in 4 cancer cases and, according to Xu, et al. [90], ranked first in 155

countries (out of 185 countries) in 2018. Mortality profile among women shows that

breast cancer is the fifth leading cause of cancer death in women and is recognized as

the most important cause of cancer death in 103 countries in 2018.

Over the past 30 years, even with the rapid development of prevention and treat-

ment methods, the incidence of breast cancer has steadily increased globally (Ruan,

et al. (2021) [66]). Despite the increase in incidence, breast cancer survival rates have

improved over the past three decades thanks to effective diagnostic and therapeutic

methods (Tabár, et al. (2019) [83]). However, there are still areas in the world where

the mortality rate due to breast cancer is increasing. This reflects the fact that breast

cancer mortality rates vary around the world for a variety of reasons, the analysis of

which is beyond the scope of this study.

2.2.3 Screening and Detection

Breast cancer is usually diagnosed either before the onset of symptoms, during

screening, or after a lump is detected in a patient’s breast (Shumway, et al. (2020)

[75]), which is the most common symptom of this cancer. Since breast cancer is

usually asymptomatic in the early stages (Siegel, et al. (2021) [76]), early detection

of breast cancer with mammography plays an important role in reducing the risk of

mortality. Delays in the diagnosis and treatment of breast cancer, on the other hand,

necessitate the use of more invasive treatment procedures and potentially increase

the mortality risk.

One of the most reliable and accurate methods of evaluating breast masses is

known as the triple test, which is based on three medical examinations including

physical examination (palpation), mammography, and fine-needle biopsy. Fine-needle

biopsy without aspiration, which is one of the most popular modalities for diagnosing

breast cancers [91], consists in obtaining material directly from the breast tumor.

11



This method offers fast results without significant discomfort and scarring, and also

allows treatment options to be clarified for the physician before any surgery [8]. The

collected material is finally examined under a microscope by a cytologist to determine

the prevalence of cancer cells, which is clearly a task that requires extensive knowl-

edge and experience. This is exactly where a CAD system, along with the medical

imaging techniques, can help cytologists as an assistant to accurately diagnose cancer

cells. The advantage of such a system is that it allows the analysis of biopsy images

on a large scale automatically, leaving only the uncertain cases that require further

examination to the cytologists. In this regard, we intend to employ the TL technique

to design a new DL-based framework for classifying breast cancer biopsy specimens

into benign and malignant categories, which can perform this task as accurately as

possible and achieve SOA results.

2.3 Related Literature

This section is divided into two parts. In the first part, the motivation of designing

a computer-aided system for diagnosing breast cancers is summarized, and then we

review recent related works in this area to reveal the contributions each has made.

The second part explains the idea of using the TL technique in medical imaging, and

then it deals with recent related works in the literature.

2.3.1 Computer-Aided Diagnosis Systems

Computer-aided diagnosis systems are widely used in biomedical engineering and

have been developed to assist physicians in the early detection of breast cancer. As

the population ages, epidemics increase, and medical personnel decline, the devel-

opment of computer-based systems that support and expedite the diagnostic pro-

cess has become essential. Thanks to advances in electronics, computer science, and
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physics, various medical imaging technologies such as digital mammography (DM),

ultrasound (US), and magnetic resonance imaging (MIR) have been introduced into

modern health care systems. As a result, it is now possible to visualize pathogenic

changes with great precision. Paradoxically, high-resolution imaging poses new prob-

lems due to the fact that physicians must carefully analyze large volumes of raw data.

To support medical staff in performing this time-consuming task, it is essential to de-

velop effective image processing methods to extract knowledge that helps diagnose

diseases. Here, we discuss the latest related research and proposed techniques in the

development of such systems, specifically designed to diagnose breast cancer.

To definitely confirm cancer and determine its type, cell material must be collected

by biopsy and analyzed by pathologists. To facilitate the work of pathologists, many

different computer methods are developed to improve and automate histopathological

and cytological diagnostics. For example, Roy, et al. (2019) [65] studied two patch-

based classification strategies for automatic classification of histopathological breast

cancer images using 5 custom CNN models. In the first strategy, in order to classify

the image without error, all image patches had to be classified correctly. In the second

strategy, a label of the image was determined by a majority voting among patches

from that image. Proposed techniques were tested on ICIAR 2018 breast cancer

histopathology image data set. For the first strategy, accuracy was 77.4% for 4-class

and 84.7% for 2-class classification problems. The second strategy based on majority

voting gave an accuracy of 90% for 4-class and 92.5% for 2-class classification. Xu,

et al. (2020) [89] developed a method of deep selective attention to select valuable re-

gions from histopathological images to facilitate the task of classifying these images.

The proposed model was composed of an LSTM-based decision network (DeNet) and

a soft attention (SaNet) classification network based on residual units. The decision

network decided where to crop and whether the cropped patch was salient, then it fed

the classification network, which in turn provided feedback to the decision network to
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adapt its selection policy. The approach’s effectiveness was evaluated on BreakHis im-

age collection, where it achieved approximately 98% classification accuracy while only

taking 50% of the training time of the hard-attention approach. Miselis, et al. (2019)

[51] explored the potential of SOA deep neural networks architectures to classify

breast cancer based on cytological images of FNBs. Five different CNN architectures

have been evaluated: AlexNet, GoogleNet, SqueezeNet, DenseNet, and Inception-V3

in terms of the binary classifications of breast cancer. They found Inception-V3 the

best model reaching 91.86% accuracy and 0.97 value for area under the ROC curve

(AUC). Most of the presented approaches classify whole images or cropped patches,

but Kowal, et al. (2021) [45] suggested an alternative approach based on the single-cell

nuclei classification. Breast cancer cytological images were first segmented using the

U-Net neural network and marker-controlled watershed transform. Then, individual

cell nuclei were classified as benign or malignant based on the set of handcrafted

features. For 2-class classification, SVM classifier reached 88.2% accuracy.

Pramanik, et al. (2015) [56] proposed an automatic CAD approach to recognize

early breast cancer by analyzing breast thermograms. The proposed system was

based on an artificial neural network and consisted of three stages: image segmen-

tation, feature extraction, and classification. Using the initial feature point image of

each breast thermogram along with principal component analysis (PCA), they were

able to extract the most important features and minimize computations and infor-

mation redundancy. A feed-forward multilayer perceptron (MLP) consisting of four

layers was finally used for the classification task. They eventually achieved 90.48%

accuracy, which was comparable to existing methods. Shi, et al. (2022) [74] proposed

an efficient multi-task network for breast cancer diagnosis in US images designed for

use on mobile devices. The great advantage of the proposed method is its lightness,

which requires only 20 Megabytes (MB) to deploy, while being able to quickly de-

tect breast cancer. They incorporated an auxiliary task (segmentation), into their
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primary task (tumor classification), which allows the network to focus only on the

regions where the tumor is present, and to extract and learn the descriptive features.

The classification task was performed on a data set of US images (consisting of four

different public data sets), and they attempted to minimize system error by proposing

a new numerically weighted cross-entropy loss function. Comparison of the results

obtained from the proposed method with a single-task classification (Single-CLF) and

segmentation model (Single-SGM) built by MobileNet-V1 showed that the proposed

method significantly increased the classification accuracy, although no improvement

was made in the segmentation task.

Unlike most studies of breast cancer classification in US images that focus on the

binary classification of benign versus malignant lesions, Behboodi, et al. (2021) [13]

came up with the idea of increasing the number of classes to achieve more satisfactory

performance. In this regard, they proposed a DL-based approach to address a multi-

class classification problem in US images having limited annotated data. In addition

to considering three subtypes of breast cancer named fibroadenoma, cyst, and invasive

ductal carcinomas (IDC) in their classification problem, they explored the idea of

considering image backgrounds as a fourth class and showed that this improved the

accuracy of the model. To evaluate the effect of adding more classes on their network

performance, they compared the results of the 4-class classification problem with

the binary (IDC vs. other classes) classification problem. Their results ultimately

showed that adding more classes improved the AUC score for the networks employed

(i.e. ResNet-34 and MobileNet-V2) by the factor of 31% and 9%, respectively. Qiu, et

al. (2017) [59] applied end-to-end DL approach to classify breast masses without their

segmentation and feature extraction. The effectiveness of the constructed classifier

was assessed for a set of 560 images (280 benign and 280 malignant) using 4-fold

cross-validation. Experimental results revealed that the proposed CAD yields an

overall AUC value of 0.79. Obtained results demonstrate that end-to-end DL models
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can avoid the potential errors or biases introduced in conventional CAD by lesion

segmentation and suboptimal feature extraction. However, authors warn that the

performance of developed DL-based CAD schemes may not be statistically higher

than the conventional schemes and further studies are necessary. Nascimento, et

al. (2016) [54] extracted and selected morphological features from 100 US images and

applied SVM and shallow neural network for binary classification of breast cancer.

The best results obtained for accuracy and AUC were 96.98% and 0.98, respectively,

both with neural networks using the whole set of features. The best AUC obtained

in this study is higher than the value of 0.942 received by Flores, et al. (2015) [25]

and the value of 0.565 obtained by Alvarenga, et al. (2007) [3]. Rasti, et al. (2017)

[61] extracted DCE-MRI (Dynamic Contrast-enhanced Magnetic Resonance Imaging)

features from segmented ROIs and classified breast cancer using a mixture of CNN

networks. ME-CNN (Mixture Ensemble Convolutional Neural Network) comprises

multiple CNN experts and one CNN gating member which combines the experts’

responses. To test the effectiveness of the proposed CAD, authors have used 112

DCE-MRI breast examinations from high- or intermediate-risk patients. The best

classification accuracy of 96.39% was obtained by the model composed of three CNN

experts and one convolutional gating network. Compared with existing classifiers

and ensemble methods, a proposed mixture of neural networks achieved competitive

classification performance while preserving a compact structure and fast execution

time.

2.3.2 Transfer Learning for Medical Imaging

Transfer learning is a widely used technique by which previously learned knowl-

edge can be intelligently applied to solve new problems more accurately. The recent

studies on TL in medical imaging have mainly adopted two different approaches to

take advantage of this technique. We can therefore divide the recent research in the
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literature into two groups and review each separately.

The first group includes research that has employed a pre-trained CNN as a fea-

ture extractor. This essentially means that an input image is given to a pre-trained

CNN and then the output of the CNN, which is a feature vector, is extracted from

a specific layer of the network. The feature extraction is typically done from the

intermediate layers of the CNN, as it has been verified that the outputs of these lay-

ers are highly discriminative features that can be used to achieve great performance

in visual classification tasks (Razavian, et al. (2014) [62]). Then, in the next step,

the extracted feature vector is given to a new classifier (e.g. SVM) and the final

prediction about the image is revealed. On this subject, Ursuleanu, et al. (2021) [85]

adopted a similar approach and utilized the high capability of DL for pathology de-

tection in chest radiograph data. For this purpose, after feeding the input image to

a CNN that had previously trained on the ImageNet data set, they extracted several

descriptors. Then, a linear kernel SVM was used for the final classification phase.

They ultimately showed that the best performance can be achieved by using the fea-

tures obtained from the deep network along with some auxiliary features. A very

similar technique was employed by Ginneken, et al. (2015) [26], who extracted 4096

features from the penultimate layer of a pre-trained (ImageNet) CNN, and then used

an SVM estimator with linear kernel for the nodule classification in computed tomog-

raphy (CT) scans. They showed that CNN features have great potential for use in

diagnostic tasks in volumetric medical data. Nevertheless, they eventually concluded

that systems built on CNN features alone performed worse than advanced optimized

CAD systems and that integrating CNN-based features with the handcrafted features

could improve the performance. As an alternative to handcrafted features to address

the classification of mass lesions in mammography images, Arevalo, et al. (2016) [9]

designed a framework in which they used a deep CNN to generate high-level features

of the input image. They finally used an SVM classifier for the classification stage and

17



showed that the proposed approach outperforms the SOA methods by 6% in terms

of AUC.

The second category involves studies that are not directly dependent on the fea-

tures extracted from the previously trained models, but in which, in addition to

replacing the final layer with a new classifier, some of the previous layers are also se-

lectively retrained. In general, the role of the initial layers in deep neural networks is

to capture generic features, while the succeeding layers focus more on the specific task

at hand. Thus, higher-order feature representations in the base model are typically

fine-tuned to be more relevant for the specific task. Fine-tuning allows the model

to apply past knowledge to the new problem and learn some task-related things by

updating the network weights. As an example of research conducted on this basis, we

can refer to Chen, et al. (2015) [16] who proposed a TL strategy for localizing fetal

abdominal standard planes in US images. To transfer knowledge, they leveraged a

CNN trained on a large database of natural images, so they fine-tuned five layers of

the base CNN, as well as trained three fully connected (FC) layers appended to the

end of the network. Compared with previous works based on low-level features, their

approach was able to represent the complicated appearance of the input data and

achieved a better classification performance. Alzubaidi, et al. (2021) [6] proposed a

novel TL approach, utilizing a large number of unlabeled images to provide a pre-

trained model compatible with the features of medical images. The idea was to use

unlabeled medical images to pre-train and adapt the model to the characteristics of

medical data in the first step, and then to train and fine-tune the model on the lim-

ited data of the target set. They then demonstrated the effectiveness of their method

in classifying histopathological images of breast and skin cancers into benign and

malignant categories. This approach significantly improved the performance of both

their classification scenarios compared to when the model was trained from scratch.

One of the most obvious advantages of their method is the elimination of the need to
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annotate large volumes of medical data, which avoids a time-consuming and costly

process. It has also been noted that their method is not limited to skin and breast

cancer scenarios and can be effective in the same-domain tasks dealing with images

with similar texture and pattern (e.g., histopathological images of colon and bone

cancer). Despite the aforementioned advantages of their method, there is still a need

to acquire large volumes of unlabeled images for the pre-training phase of the model.

Considering that obtaining high-quality medical images is not an effortless task and

in some cases may not even be feasible, proposing a method that does not depend

on a large number of unlabeled images can certainly be a major contribution to this

area. Chen, et al. (2019) [17] dealt with 3-dimensional medical data and designed

a novel DL framework to address the task of classifying pulmonary nodules as well

as segmenting CT scans of the liver. They combined multiple data sets of several

medical challenges with diverse modalities and carried out effective TL by leverag-

ing different CNNs trained on the acquired data. The results of their experiments

showed that the proposed method accelerated the training convergence speed 10 times

compared with training from scratch and also improved the accuracy of the model,

ranging from 3% to 20%. Samala, et al. (2017) [68] applied multi-task TL to classifi-

cation of mammograms by CNNs. The idea of the proposed approach was to transfer

the knowledge learned from non-medical images to medical diagnostic tasks through

supervised training, and to increase the generalization capabilities by simultaneously

learning auxiliary tasks. The study shows that multi-task TL outperforms single-task

TL in terms of AUC. The results demonstrated that learning efficiency and prediction

accuracy could be significantly improved thanks to enriching the training set with het-

erogeneous mammograms acquired from different imaging technologies. Shahidi, et

al. (2020) [72] verified the effectiveness of several DL models in the task of classifying

histopathological samples. The study identified the most accurate models in terms

of the binary, four, and eight classifications of breast cancer for publicly available
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collections of histopathological images. Fine-tuned SENet-54 model pre-trained on

ImageNet has shown the highest accuracy (99.87%) for binary classification of images

from the BreakHis database. Several other SOA models have achieved accuracies that

are only by a small fraction lower to the best result. The highest accuracy (97.5%)

for the four-class classification problem based on the BACH image collection was

achieved by as many as 5 models: SENet-154, ResNet-V2, ResNeXt-101, NASNet-

A-Large, and DPN-131. Examination for eight-class classification using BreakHis

database showed that the best, in this case, is InceptionResNet-V2 model, which

gained accuracy 97.25%. As another example of a study conducted on the BreakHis

database, Qi, et al. (2019) [58] proposed a deep active learning framework for the clas-

sification of breast cancer histopathological images. This approach aims to maximize

the learning accuracy using a limited number of annotated images. The DL model

(AlexNet pre-trained on ImageNet) was iteratively updated using the most valuable

images. Thanks to this approach, the annotation costs were reduced to 66.67%,

with almost unchanged classification accuracy at 89-91% for images and 91-93% for

patients.

2.4 Summary

The first part of this chapter (Section 2.2) provided basic knowledge about the

biology and epidemiology of breast cancer. As discussed, breast cancer has long been

a serious health problem in modern civilizations that has affected the entire world.

Then, the significance of timely detection of the disease was emphasized, and FNB

was introduced as one of the most common diagnosis methods of breast cancer.

In the second part of this chapter (Section 2.3), it has been shown that, thanks

to the use of ML/DL techniques, the task of detecting and classifying breast cancer

images can be done automatically, although in some cases the accuracy of the systems
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is still not satisfactory so that they can be operated in clinical settings. This highlights

the need to propose more efficient techniques that can be based on TL concepts. In

the last part of this section, recent studies on the application of TL for medical image

analysis were discussed. Research on this topic in the literature has been divided

into two groups, including those that utilize CNNs as feature extractors, and the

second group, which focuses on fine-tuning the networks. All of the reviewed research

confirms that the extraction of high-level features from CNNs can help improve the

performance of diagnostic systems in a variety of tasks, although as we have seen, the

use of these features alone for achieving high performance in some scenarios may not

be sufficient.
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Chapter 3

Methodology

3.1 Introduction

This chapter comprehensively explains the methodology used in this thesis. In or-

der to classify breast cancer cytological images into benign and malignant categories,

several steps need to be performed. After presenting an overview of the proposed

method (Section 3.2), we will explain each step separately. Briefly, the first step is

to acquire medical images from the biopsy specimens described in Section 3.3. In the

second step, in order to isolate important areas of the image from other background

textures, the segmentation task is performed (Section 3.4). Due to the fact that

training deep CNNs with large-sized images is computationally expensive, the images

are partitioned into smaller patches according to the specified sizes (Section 3.5).

However, not all patches generated are worth analyzing, and undesired patches must

be filtered through a mechanism (Section 3.6). At this point, aiming to train deep

CNNs and accomplish the classification task, a set of desired patches is formed, which

is split into sub-sets of training, validation, and test (Section 3.7). Finally, after ini-

tializing the networks with the updated weights obtained as a result of pre-training

on the BreakHis data set, the task of classifying the desired patches into benign and
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malignant categories is performed by deep CNNs. The architecture of each of the

deep CNNs employed in this study is described separately in Section 3.8.

3.2 Overview

We propose a new TL approach to classify breast cancer cytological images into

two categories: benign and malignant. Taking into account the ineffectiveness of

employing natural images in TL to solve biomedical-domain problems, we propose

the idea of compatible-domain TL. This means that instead of using natural images

(i.e. ImageNet) that are not essentially compatible with medical data, the pre-training

phase of the model is performed employing histopathological images. We then fine-

tune pre-trained models on the target data set containing limited cytological images.

Figure 3 illustrates a schematic of the typical approach to using the TL technique,

along with the approach presented in this thesis.

Despite the fact that histopathological and cytological images are inherently in-

consistent in some respects, they both belong to the same image modality (i.e., micro-

scopic images), and we demonstrate in this study that following the proposed method

makes the features learned by deep CNNs during the pre-training procedure relevant

to what is obtained from the target images. Given that many collections of histopatho-

logical images have become publicly available in recent years, acquiring this type of

medical data for pre-training models is not problematic. Hence, this approach helps

to address the sparsity of training data as we no longer need to allocate a significant

portion of the target data set (i.e. cytological images) to train the model. We will

explore three distinct scenarios for training deep CNNs and will apply two different

approaches to fine-tuning the models, and finally compare and analyze the results of

these five different approaches to find the best and most efficient strategy. The six

networks we used in this study include 1) DenseNet-169, 2) InceptionResNet101-V2,
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3) Inception-V3, 4) ResNet-101, 5) VGG-16, and 6) VGG-19. These are well-known

deep CNNs that have already proven their capability to solve classification tasks in

ImageNet Challenge.

To demonstrate the effectiveness of the proposed approach, we propose and com-

pare various scenarios for pre-training and fine-tuning the models, which are listed

below:
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Figure 3: Representation of a typical strategy alongside our proposed approach
(CDTL) to apply TL technique in the classification of breast cancer cytological im-
ages. In the typical approach (upper one), a set of natural images is used as a
data source for the pre-training phase, while in the proposed method (lower one),
histopathological images are employed as an auxiliary data source for this purpose.
The network fine-tuning is also performed differently in these two approaches.
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(1) Pre-training six SOA deep CNNs using breast cancer histopathological database,

then fine-tuning the networks with cytological images of the target data set.

(2) Pre-training six SOA deep CNNs using ImageNet data set, then fine-tuning the

networks with cytological images of the target data set.

(3) Training six SOA deep CNNs from scratch with cytological images of the target

data set.

We also perform complete and partial fine-tuning approaches over the networks in

each of scenarios 1 and 2, the former meaning the weights of all layers are updated,

and the latter meaning that the backpropagation operation is performed only over

the last few fully connected layers of the network.

To be more precise, as shown in Figure 4, we perform the pre-training phase

of the models using two separate data sets, namely BreakHis and ImageNet. It

should be noted that since various DL frameworks have made multiple pre-trained

networks on the ImageNet data set publicly available, we utilize those networks, and

obviously, we do not run the model training process on the ImageNet data set again.

Then, the model weight initialization is accomplished in three different ways (modes)

and the model is fine-tuned on the cytological images of the target data set. In

the first mode, the network is initialized using the updated weights as a result of

model pre-training on BreakHis data set. In this mode, the initialized weights of the

network are frozen at first, and the fine-tuning operation is performed only on the

output FC layers attached to the end of the network. Then, the last few layers of

the network are unlocked so that they can be updated during the backpropagation

operation. Unlocking the network layers continues incrementally to witness the effect

of updating more network weights on its performance. The second mode is almost

the same as the first one, except that this time the network is initialized using the

updated weights as a result of model pre-training on the ImageNet data set. The
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Figure 4: Approaches used for initialization and fine-tuning of the network. The
network initialization is done in 3 different modes: 1: using weights updated as
a result of pre-training on histopathological images (BreakHis), 2: using weights
updated as a result of pre-training on a natural image data set (ImageNet), 3: using
random values.

fine-tuning operation is followed with the same approach adopted in the previous

mode. Finally, the third mode involves initializing the deep CNN with random values

and training from scratch on the cytological images of the target data. Investigating

this mode helps to observe the effect of using the TL technique employed in the first

two scenarios.

Addressing the problem of classifying virtual cytology slides into benign and ma-

lignant categories is done through the pipeline we designed, which consists of eight

separate modules as depicted in Figure 5. Briefly, the first step is to perform image
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Figure 5: The method pipeline consisting of eight separate stages. 1) Segmentation,
2) Image patching, 3) Patch selection, 4) Building banks of patches, 5) Pre-training
phase, 6) Wight initialization, 7) Training/validation phase, and 8) Classification.

segmentation to determine the exact location of the cancer cell nucleus in the target

images. Then, in the next step, the images are partitioned into smaller image patches

so that they can be used as input data to train the model. Seeing that not all patches

constructed contain useful features for diagnosing the type of cancer, in the third step,

the desired patches are selected through a mechanism based on the extent to which

they contain determinative pixels. The appropriate patches obtained from the previ-

ous step are then used to form the model training data set. Next, the pre-training

phase of the model is performed using histopathological image patches, as a result of

which the model weights are updated. Finally, a new deep CNN is initialized using

the updated weights, and the binary classification task is performed on cytological

image patches. The proposed method algorithm is described in Algorithm 1. In the

continuation of this section, we will explain each of these steps in detail separately.
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Notation Description

T Threshold algorithm.

S Image Segmenter: Produces a binary map of an RGB image given a threshold algorithm.

P Image Patcher: Partitions a large image into several square patches with regard to the given size.

L Patch Selector: Selects the desired patches w.r.t the given cellular coverage.

Da

I
An auxiliary data set (i.e. ImageNet), used to pre-train models.

Da

H
An auxiliary data set (i.e. BreakHis), used to pre-train models.

Dt The target data set containing cytological images of breast cancer.

WH The weights of the pre-trained models updated on ImageNet data set.

WI The weights of the pre-trained models updated on BreakHis data set.

WC The weights for networks that are fine-tuned to the target data set.

WR Random weights.

Table 1: Notations used in describing the proposed TL Framework.

Algorithm 1: Proposed TL Framework
Initialize: PatchBanks ← [EmptyList]
Initialize: FilteredPatchBanks ← [EmptyList]
for image ∈ Dt do

for size ∈ {64px, 128px, 256px} do
PatchBanks.append(P(image, size));
for PB ∈ PatchBanks do

for C ∈ {30%, 50%, 70%} do
FilteredPatchBanks.append(L(PB, C));

PHASE 1: Training deep CNNs with auxiliary data sets, Da
i , where i ∈ [ImageNet,

BreakHis] to get the updated weights.
for number of iterations do

for number of mini-batches do

Minimize Loss = − 1

N

∑N

i=1
yi · log ŷ + (1− yi) · log (1− ŷ) ;

Update parameters (weights) of the network by gradient descending;

PHASE 2: Fine-tuning the networks with cytological images of the target data set, Dt.
M = {1: ‘Histopathological’, 2: ‘ImageNet’, 3: ‘random’};
for mode ∈M.key() do

if mode == 1 then
Initialize: WC ←WH ;

else if mode == 2 then
Initialize: WC ←WI ;

else
Initialize: WC ←WR;

for number of iterations do

for number of mini-batches do

Minimize Loss = − 1

N

∑N

i=1
yi · log ŷ + (1− yi) · log (1− ŷ) ;

Update parameters (weights) of the network by gradient descending;
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3.3 Medical Image Acquisition

The first step in constructing the data set required to train the models is to

acquire medical images from extracted cytological specimens. For this purpose, a

specialized camera is placed on top of a light microscope. Then, to observe the

structure of cancer cells by a specialist, the smears of cytological material obtained

by FNB are fixed in spray fixative. The time between preparing the smears and their

preservation in fixative never exceeds three seconds. Considering that most cells are

colorless and transparent, the samples are stained in such a way that makes the cell

tissue, specifically the cell nuclei, more visible. In this regard, the cytological material

were stained with one of the most common staining agents, called Hematoxylin-Eosin

(H&E [41]). Hematoxylin is a dye called hematein that is used to stain acidic (or

basophilic) structures a purplish-blue. Eosin is an acidic dye that stains basic (or

acidophilic) structures such as the cytoplasm red or pink. This technique can either

be performed in a non-specific way, i.e., most cells are stained in almost the same way,

or specific, meaning that specific chemical groups or molecules of cells are selectively

stained. At this stage, the stained cytological material is scanned and digitized into

virtual slides using the Olympus VS120 Virtual Microscopic System [12].

The system consists of a 2/3” charge-coupled device (CCD) camera and 40×

objective, for a total of 0.172 µm/pixel resolution. A virtual slide is a massive digital

image with an average size of 200000 × 100000 pixels. Capturing slides is done by

scanning multiple times with the focus plane located at different positions along the

Z-axis. These slides are then compiled, while only retaining the regions in each frame

that are in sharp focus. Since not all parts of a slide necessarily contain useful medical

information for analysis, a cytologist manually selected 11 distinct regions of interest

(ROI) which were converted to 8 bit/channel RGB TIFF files of size 1583 × 828
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Figure 6: The process of scanning biopsy specimens using EFI, and selecting ROIs
from the virtual cytological slides (the image is taken from [24]).
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pixels.

The main criteria for selecting regions by the specialist was to ensure:

• The ROIs taken from malignant specimens contain only malignant cell nuclei

• The number of cell nuclei is sufficient (at least 10)

• Only select areas where the cell nuclei are clearly visible

It has to be acknowledged that all the materials tested in this study have been clin-

ically examined by cytologists to diagnose cancer, and therefore there is no doubt

about the type of cancer in the samples. Figure 6 summarizes the acquisition process

using the virtual microscopy system.

3.4 Segmentation

The segmentation task is of great importance in the process of analyzing med-

ical images. The purpose of this task is to isolate areas of the image that contain

useful diagnostic information from other parts that are not worth analyzing. Given

the fact that cell nuclei mostly contain useful diagnostic information, their analysis

is an essential step in recognizing cancer malignancy. Malignant nuclei differ signifi-

cantly from benign nuclei in various aspects such as shape, size, and textural pattern

(Bankes, et al. (2007) [11]). Therefore, at this stage, our main goal is to isolate the

cell nuclei from other objects on the image (e.g., red blood cells) so that the analysis

can be performed only on important parts of the image. This task, however, is not

straightforward as it is to be done automatically without the help of a human expert,

and there are challenges in between. Generally, the cell clusters seen in cytological

images overlap and their colors are mixed together so that they are not easy to distin-

guish from each other. This leaves no clear boundary between the cell nuclei, making

the segmentation task more difficult. Since all subsequent analyzes will be based on
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the results obtained from the segmentation stage, performing this step accurately will

be effective in achieving high performance in the final classification. So far, various

approaches and methods have been proposed for image segmentation [50, 96], each

of which has advantages that are appropriate to apply in specific scenarios.

Segmentation, however, is not performed in a single phase and requires steps to

pre-process the images. These steps include the following:

Color channels separation

As previously described, during the process of staining cytological images, cell

nuclei react mainly with hematoxylin (blue), while the cytoplasm and red blood

cells react mainly with eosin (red). Consequently, separating the colors of the RGB

image helps us to easily set the cell nuclei apart from other image components and

perform further analyzes solely on the cell nuclei. To extract the stain concentrations

at each pixel, we use the matrix provided by the color deconvolution plugin for FIJI

software [70], which is tuned to absorb a specific set of stains. The color deconvolution

operation involves the decomposition of the input image into its constituent channels,

each representing the concentration of each stain used (Haub, et al. (2007) [30]). As

a result of applying the deconvolution matrix, three distinct images are obtained,

including 1) deposition areas stained with hematoxylin, 2) deposition areas stained

with eosin, and 3) residual areas. Figure 7 depicts a sample of the resulting images

after the deconvolution operation.

Image normalization

There are a number of preprocessing techniques for normalizing medical images

before any image analysis. A common approach, known as standardization, is done by
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Figure 7: Representation of images obtained after performing H&E color deconvolu-
tion operation. The deconvolution matrix is first applied to the original image (RGB
color channel). The color channels of the consequent image are then separated, re-
sulting in Hematoxylin, Eosin, and Residuals images.

subtracting the mean value of the image intensity from each pixel value and then di-

viding the result by the standard deviation of the image intensity. The main purpose

of standardization is to adjust the values measured at different scales to a common

scale, since non-standard coefficients are not directly comparable. Out of the three

images obtained as a result of the color separation step, we consider only the image

stained with hematoxylin in which the cell nuclei are more prominent, so normaliza-

tion is performed only on the bluish map.
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3.4.1 Semantic Segmentation

After completing all the necessary preprocessing operations on the images, in this

stage, in order to completely isolate the cell nuclei from other components of the

image, the semantic segmentation task is performed. Semantic segmentation of an

image is essentially a sort of classification of each pixel into a predefined category.

Here we have considered 3 different categories, each pixel of the image belongs to

one of them: a) the cell nuclei interior, b) the cell nuclei edge, or c) the background.

The complex structure and heterogeneity of cell nuclei, as well as the overlap of cell

nuclei with other image textures, make the process of labeling image pixels quite

difficult and time-consuming. Doing this process based only on domain knowledge

seems practically impossible, and using some form of ML techniques can help solve

the problem. However, applying these techniques is not without its challenges and

usually requires a large amount of data. This requires us to prepare a large number

of manually segmented images, which is a very time-consuming task and requires a

great deal of human effort. Nevertheless, it has already been shown by Ronneberger,

et al. (2015) [64] that neural networks can be trained using relatively small data sets,

yet without over-fitting problems. This was made possible by the use of a special

neural network architecture called the U-Net network, along with the use of image

augmentation techniques.

U-Net is a convolutional network architecture developed by Ronneberger, et al. specifically

for the segmentation of biomedical images. The architecture won the cell tracking

challenge at the International Biomedical Imaging Symposium (ISBI) in 2015 in a

variety of categories, and has so far outperformed many of the previous methods pro-

posed for the segmentation task. These facts convinced us to use it as our baseline

to perform the segmentation task in this research. The architecture consists of two

main paths. The first path, known as the encoder or downsampling path, comprises

several convolution and max-pooling layers designed to capture the context of the
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Figure 8: Scheme of the U-Net neural network.

image. The second path, known as the decoder or upsampling path, is designed to

enable precise localization using transposed convolutions.

The U-Net neural network architecture is shown in Figure 8. As illustrated in

the figure, the spatial size of the feature map is reduced by a factor of 0.5 at each

downsampling step, and the number of feature channels is doubled. The convolutional

blocks operated in the downsampling path consist of a convolution layer (kernel size

3 × 3) with rectified linear unit (ReLU) activations followed by batch normalization

and dropout layers. Conversely, in the upsampling path, the spatial size of the feature

map is doubled and the number of feature channels is halved in each step. In the

last step of the upsampling path, the convolution layer (kernel size 3 × 3) with ReLU

activation followed by a softmax activation function is responsible for generating the

network output in the form of 3 feature maps. The spatial size of these maps is the

same as the input image, and for each pixel a class probability distribution is defined
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as shown in Figure 9.

1st channel

Nuclei interiors

2nd channel

Nuclei edges

3rd channel

Background

Hematoxylin

Input image

Figure 9: The resulting images of semantic segmentation using the U-Net network.
The image representing hematoxylin concentration is normalized and is given as input
to the network. The output of the network is the probability distribution of the classes
(i.e., nuclei interiors, nuclei edges, and background).

To perform the segmentation task with U-Net, the network needs to be trained

using a number of manually segmented cytological images. Due to the fact that the

time costs associated with manually segmenting the entire set of images (550 images)

were extremely high, we decided to train the U-Net with fewer images. For this

purpose, we constructed a smaller set of images (set B) by selecting two ROIs for

each patient, resulting in 50 ROIs for the benign category and 50 ROIs for malignant

cases (a total of 100 ROIs for 50 patients). The data set was then divided into

two parts: training and validation. The training set (B1) consisted of 50 manually

segmented ROIs from 12 benign patients as well as 13 malignant patients (two ROIs

per patient). The validation set (B2) also included 50 manually segmented ROIs,
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randomly selected from 13 benign patients and 12 malignant patients. It should be

noted that due to the limited number of manually segmented images, we have not

formed any test set, as this reduces the size of the training and validation sets. The

performance of the U-Net network was evaluated on the remaining ROIs of set A,

none of which included in set B. Consequently, the quality of the segmentation can

only be assessed visually because the images in our test set (set A) have not been

manually segmented. The quantitative information of the assembled sets is shown

schematically in Figure 10.

Selection of 11 ROIs for each slide

Selection of 2 ROIs for each patient

50 Virtual Slides
(Slide size = 200000 x 100000 px)

25 Malignant patients

550 ROIs (Set A)
(ROI size = 128 x 128 px)

Random division of ROIs based on patient data

100 ROIs (Set B)
(ROI size = 128 x 128 px)

Manulally segmented by pathologist

50 ROIs (Set B1)
(ROI size = 128 x 128 px)

Training set for U-Net neural network

50 ROIs (Set B2)
(ROI size = 128 x 128 px)

Validation set for U-Net neural network

2 ROIs x 25 patients

50 Benign ROIs

2 ROIs x 25 patients

50 Malignant ROIs

2 ROIs x 12 patients

24 Benign ROIs

2 ROIs x 13 patients

26 Malignant ROIs

11 ROIs x 25 patients

275 Malignant ROIs

2 ROIs x 13 patients

26 Benign ROIs

2 ROIs x 12 patients

24 Malignant ROIs

25 Benign patients

11 ROIs x 25 patients

275 Benign ROIs

Figure 10: Schematic of the data distribution for training the U-Net network.

Despite the high capability of the U-Net network in conducting semantic seg-

mentation, performing this task using U-Net causes us to encounter challenges when

dealing with the subsequent task (i.e., classification). As mentioned earlier, using the

37



U-Net network depends on having a large amount of manually segmented images to

be trained on. This prompted us to devote a sizable portion of the data set (i.e.,

100 images out of 550 images) to network training, while not being able to use these

images in the classification stage. Although there is technically no barrier to using

the images employed for the segmentation task in the classification stage, this is not

theoretically admissible. Using the same images to train the U-Net network, as well

as to train SOA deep CNNs, the former to accomplish the segmentation task, and

the latter to perform the classification task, makes the system biased against our

data set. For the sake of this issue, we must discard those 100 images employed in

semantic segmentation and use the rest of the images to train deep CNNs for binary

classification. Obviously, as a result of this action, the number of images available to

train deep CNNs becomes more limited than before, increasing the risk of overfitting

as well as making it more difficult to achieve high classification accuracy. In addition,

as stated earlier, quantitative evaluation of U-Net performance is not attainable since

the test set images have not been manually segmented, thus the network performance

can only be assessed visually. Because of the issues outlined above, and to have a

more reliable system, we finally decided to operate an alternative solution, i.e. in-

tensity thresholding, to perform the segmentation task instead of using the U-Net

network. A detailed description of this approach is provided in the next section.

3.4.2 Intensity Thresholding

Image thresholding is a simple form of image segmentation in which each pixel

value is replaced by 0 (black) if the intensity is less than a constant value, or oth-

erwise by 255 (white). The resulting image will be a binary map in which the cell

nuclei (which are white) are completely isolated from the other components of the

image (which are black). In this study, we employ nine different thresholding algo-

rithms presented in the Scikit-learn library, namely MINIMUM (Prewitt et al. (1966)
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[57]), LOCAL (Chow et al. (1972) [18]), TRIANGLE (Zack et al. (1977) [95]), ISO-

DATA (Ridler et al. (1978) [63]), OTSU (Otsu (1979) [55]), LI (Li et al. (1993) [48]),

MEAN (Glasbey (1993) [27]), YEN (Yen et al. (1995) [92]) and SAUVOLA (Sauvola

et al. (2000) [69]). It is worth noting that the thresholding algorithms provided in the

Scikit-learn library are not limited to these nine techniques, and a number of other

algorithms are also available to make use of. The main purpose of considering several

thresholding algorithms in this study was to be able to select the most efficient one

by comparing the results, thus making the designed framework more reliable. Despite

the simplicity of the logic used by these algorithms, the effective application of these

techniques has been confirmed in many recent studies to perform the segmentation

task [20, 23, 36, 42].

To evaluate the performance of the above algorithms, we applied them to six orig-

inal sample images and then compared the obtained binary masks to select the most

efficient thresholding algorithm. Figure 13 shows the binary maps obtained by apply-

ing different thresholding algorithms to the RGB images. In order to quantitatively

evaluate the performance of the applied algorithms and select the most efficient one

for the segmentation task, we use Intersection-Over-Union (IoU), also known as the

Jaccard Index, which is one of the most commonly used metrics in semantic segmen-

tation. The Jaccard Index between two sets is the size of the intersection of the sets

divided by the size of their union, as defined in the following formula:

J (X, Y ) =
| X ∩ Y |

| X ∪ Y |
, (1)

where X is the set of binary map pixels manually segmented by the specialist (the

ground truth), and Y is the set of binary map pixels obtained as a result of applying

the threshold algorithm (see Figure 11). If the two sets are disjoint, meaning they have
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no common members, the Jacquard Index is 0, and when they are exactly identical,

it is equal to 1.

Result Set

Truth Set

TP FNFP IoU
Area of Overlap

Area of Union

=

Figure 11: Intersection over Union.

After calculating the Jacquard indices according to the above formula for all im-

ages, they were averaged, and the results are shown as a bar graph in Figure 12.

Based on the results listed in the table, the MINIMUM algorithm performed better

and more accurately than the others, so we used this algorithm in the segmentation

task. All operations performed to generate a binary map of an original image using

the intensity thresholding approach are shown as a pipeline in Figure 14. As shown in

the figure, the pipeline consists of four steps: deconvolution operation, color channel

separation, image normalization, and binary mask generation.

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

si
m

il
ar

it
y

co
ef

fi
ei

n
t

IS
O

D
ATA

TR
IA

N
G

LE
Y

EN

LO
C
A

L

M
IN

IM
U

M

SA
U

V
O

LA

O
TSU

M
EA

N LI

G
RO

U
N

D

TRU
TH

MINIMUM
LI

MEAN
ISODATA

OTSU
TRIANGLE

YEN
LOCAL

SAUVOLA
Ground Truth

Jaccard Similarity Index
Micro Macro Weighted Binary

0.7934

0.7899
0.7894
0.7926
0.6856
0.7645
0.6515
0.5645

0.7834

1.00 1.00 1.00 1.00

0.7482
0.7499
0.7464
0.7448

0.7045
0.6193
0.5506

0.7516

0.8026
0.8017
0.6964
0.7683
0.6836
0.5896

0.8014
0.7941
0.7994

0.6728
0.6654
0.6521
0.6493
0.5934
0.5843
0.5161
0.4855

0.6735

AlgorithmNo.

0.6538

1
2
3
4
5
6
7
8
9

Figure 12: Comparison of Jaccard index (Micro). The results of applying 9 thresh-
olding algorithms to sample images were averaged and are displayed as a bar graph.
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Figure 13: Thresholding techniques’ comparison in segmentation of cytological im-
ages. Each column corresponds to a thresholding technique, and each row represents
a sample of the original cytological image. The red contours are the boundaries of
the ground truth that are manually drawn by a human expert. Of all the techniques,
the MINIMUM algorithm has the best performance.

With the help of the obtained binary map, we identify the important parts of the

original (RGB) image, and the image analysis is performed only on those areas. These

RGB images, however, can not currently be fed as input data to the neural networks

due to their large size and need to be divided into smaller pieces, which we will discuss

in detail in the next section.

3.5 Image Patching

The analysis of cytological images to identify tissue characteristics is a tedious task

due to their large size. These images obviously cannot be fed directly to the neural
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network because processing such large images requires extensive memory resources

and high-capacity processing units, and will also be very time-consuming. On the

other hand, resizing and shrinking them can lead to the loss of useful information

for diagnosis, so it does not seem to be a good solution to address this problem. A

commonly used approach to deal with this issue is to segment large slides into smaller

pieces called patches, so that the analysis can be performed separately on each small

image patch.

The image patching task can be performed in such a way that the patches have

overlap, or it can be done without overlapping by considering the step size equal to

the width of each patch when segmenting the image. Partitioning the image into

overlapping patches allows for more patches to be produced of each image, although

many will eventually have the same texture. Non-overlapping patches, however, each

represent a fragment of the large original image and will have a unique texture. In

this study, in order to provide the appropriate data required for the pre-training

phase of the model, we segmented the histopathological images of the BreakHis into

overlapping patches so that we could produce a large number of images. Besides,

for the training and evaluation phases, the cytological images of the target data set

were segmented into non-overlapping square patches. Since image size may affect the

performance of the system, we decided to use different sizes for patching to observe

and evaluate this issue. Contrary to recent research (Miselis, et al. (2019) [51]) that

has segmented images into patches with dimensions of 256 × 256 pixels, we have

Hematoxylin Normalized Map Binary MaskDeconvolved ImageOriginal Image

Segmentation Pipeline

Figure 14: Segmentation pipeline using the intensity thresholding approach.
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considered three different sizes of 64, 128, and 256 pixels for patching, and then we

formed 3 separate bags of patches according to these sizes. This means that we

performed the cancer malignancy diagnosis process 3 times, each time using one of

these patch bags, and finally determined the optimal size for the patch by comparing

the results. In order to be able to partition an image into several non-overlapping

square patches with fixed dimensions (e.g. 256 × 256 px), it is obvious that the

width and height of the image must be a multiple of that constant value, otherwise,

the border patches that are close to the edge of the image will be smaller than the

others. Failure to fulfill this condition will result in the system inputs, which are

patches here, not being the same size, creating another challenge as we later plan

to feed the data to the network. To address this issue, and to have patches of the

desired width and height, one way is to crop part of the image and diminish its size,

which results in the loss of some pixels, and we may end up losing useful information.

Alternatively, we can enlarge the image to a fixed size, which allows us to partition

the image into equal-sized patches without any problems. There are generally two

ways to enlarge a small image to a fixed size: zero padding and image scaling using

interpolation. While each of these methods has its pros and cons, we decided to use

zero padding to enlarge images. The advantage of zero padding over scaling is that

there is a possibility of image pattern deformation in scaling, whereas there is no

such risk in the zero-padding approach. However, we must note that as a result of

zero padding, an area is attached to the image that contains entirely black pixels, so

we will end up with a small number of black patches. The presence of these black

patches in the data set not only does not help in diagnosing cancer malignancy, but

they will mislead the model in this regard, as these patches do not belong to any type

of cancer malignancy. To tackle this issue, we filter out unwanted patches through

a mechanism, and the model training process is done only with patches containing

useful information. The next section is where we explain in detail how to filter and

43



select the appropriate patches.

3.6 Patch Selection

The breast cancer cytological images examined in this study are mainly composed

of regions that can be grouped into three general categories. The first group belongs

to the areas where the components of the cell nuclei are located, which are the most

important part of the image in the diagnosis of cancer malignancy. The second

category is the areas where red blood cells and other background tissues are found.

And the third group consists of regions that are made up entirely of black pixels,

which have been added to the image as a result of enlarging the original image.

Therefore, after partitioning the image into small-sized patches done in the previous

step, we end up with the patches, only a few of which possess useful information,

and the rest of which contain pixels whose analysis does not help our ultimate goal

of image classification. Figure 15 illustrates an example of patches belonging to each

of these 3 regions in cytological images. This prompted us to select the desired

patches instead of using all the available patches, and to train the models only with

those that contained useful diagnostic information. Doing so obviously requires us to

set a criterion for eliminating unwanted patches. Considering that the determining

factor in choosing a patch is the presence of sufficient cellular material in that patch,

we calculated the percentage of nuclei pixels for each patch, and then by setting a

threshold, we selected only those that contained more than the specified percentage

of cellular material. Unlike previous research [51] that trained an SVM classifier

to identify suitable patches, we calculated the ratio of nuclei pixels to total patch

pixels using the corresponding binary map for each patch according to the following

equation:
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Figure 15: Patches belonging to different regions of the cytological image. a) Indicates
a patch that contains a number of cell nuclei (needs to be analyzed). b) Displays the
patch, which is mostly made up of black pixels. c) Represents the patch, which is
mainly composed of background textures.

P =
nnucleus

nall

× 100, (2)

where nnucleus is the number of pixels for which the corresponding binary map

value is 1 (the white pixels), and nall is the total number of pixels that make up the

patch.

The purpose of employing this method was to minimize system error as much

as possible, since the use of the SVM classifier in previous research was associated

with an error of about 8% in detecting cellular material for each patch. We then

continued the process of selecting the desired patches by setting different thresholds

so that only patches with cellular coverage equal to or above the specified thresholds

are selected. Accordingly, we considered three different thresholds of 30%, 50%, and

70% and formed separate sets of patches with a percentage of cellular coverage in
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accordance with the defined limits. A few examples of patches with different cellular

coverages are shown in Figure 16. Although the higher the threshold, the larger

cellular coverage the candidate patches will have, this will eventually result in fewer

patches being selected, and obviously, a smaller data set will be formed. Thus, there

seems to be a clear trade-off between the number of obtained patches and their cellular

coverage. So, the reason for considering different thresholds is to find a set of patches

that maximize system performance. Observing the fact that cell nuclei in benign

and malignant cancer specimens are not uniformly distributed across the slides, the

number of patches obtained after thresholding will not be the same in benign and

malignant cases. Basically, the pattern of benign cytology specimens is structured

in such a way that the cell nuclei are spread out in large numbers across the image,

while the cell nucleus clusters in malignant specimens are dense and usually found in

a small region of the image. This has led to the number of patches containing the

cell nuclei belonging to these two sets are not exactly equal, and there is a need for

further efforts to balance the data set.

Percentage of cancer nucleus pixels in different patches

to the number of all patch pixels

a b c

d e f

91.2 % 81.9 % 71.9 %

42.2 % 10.6 % 5.4 %

100 %

0 %

70 %
(Our threshold)

The ratio of the number of pixels, for which the binary mask value is 1,

Figure 16: Six examples of patches with different cellular coverage. The top row
patches (a, b, and c) have a percentage of cancerous pixels that exceed the threshold
value. While the cellular coverage percentages of the bottom row patches (d, e, and
f) are below the threshold value.
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The next section describes the data set we formed from the selected patches, which

are eventually fed to the models.

3.7 Building Dataset

In order to take advantage of the TL technique to address image analysis tasks, two

separate phases must be performed to train the model, each of which requires a dis-

tinct data set. The first phase, known as the pre-training phase, is usually performed

on a large data set and initializes the model to a point in the parameter space, which

in a way makes the model optimization process more efficient (Erhan, et al. (2010)

[22]). Then, in the next phase, the pre-trained model is fine-tuned on the target data

set, which can potentially make significant progress by incrementally adapting the

network features to the new data. Using a pre-trained network will generally work

best when both tasks or data sets have something in common. Accordingly, in this

research, we proposed the idea of using histopathological images for the pre-training

phase of deep CNNs, and then used cytological biopsy data as the target data set for

the binary classification task. Despite the gap between histopathological and cyto-

logical data in some respects, we claim that this approach can be much more effective

in improving image classification accuracy than when employing natural image data

for the pre-training phase of the model. In the rest of this section, each data set is

described in detail separately.

3.7.1 Target Dataset

The target data set investigated in this research is digital cytology images of breast

cancer, which is an archival collection of samples taken from patients at the Regional

Hospital in Zielona Gora, Poland. As a result of the data acquisition process, a

collection of 550 ROIs related to 50 patients was formed, in which 275 ROIs belonged
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to benign patients and 275 ROIs to malignant cases.

3.7.2 Pre-train Dataset

Unlike many medical image analysis studies that use large-scale natural annotated

images for the model pre-training phase, in this study we intend to use breast can-

cer histopathological images as a data source for this purpose. In addition to this

approach, we also use CNNs already trained on the ImageNet data set to compare

the two approaches to ultimately reveal the impact of using compatible domain data

on system performance. Basically, the data set used to pre-train the model can be

selected from related domains or from unrelated fields. Research has shown that the

greater the dissimilarity and gap between the two data sets, the less effective the pre-

training [5, 88]. Although there are clear differences between histopathological and

cytological images, since the nature and structure of these two types of images are

almost identical and both come from the similar domains, it is expected that the fea-

tures extracted from them will be compatible with each other. In general, the analysis

of cytological images is easier compared to histopathological specimens due to their

special characteristics. For example, cell clusters are clearly separated in cytological

images, and more complex structures such as glands are rarely seen in these types of

images. Histopathological images, on the other hand, exhibit a more comprehensive

view of the disease and its effect on tissues, as the process of their preparation is such

that the structure of the underlying tissue is preserved. The samples of these types of

images can be found in Figure 17. Thanks to the publicly available histopathological

images, there is no problem in obtaining the images needed in our pre-training phase.

In this research, we use one of the most popular collections of histopathological images

of breast cancer, BreakHis [78], to pre-train the models.
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Cytological Image Histopathological Image

Figure 17: Sample of cytological and histopathological images. While cell nuclei in
histopathological images usually do not have clear boundaries, cell clusters are clearly
separated in cytological images.

BreakHis is a large-scale data set containing 7109 histopathological images of eight

breast cancer subtypes acquired from 82 anonymous patients. The data set is divided

into two main categories of benign tumors with 2480 samples and malignant cases

with 5429 samples, each of which has four different magnification factors: 40X, 100X,

200X and 400X. Each category of benign and malignant breast tumors is classified

into four different subgroups (i.e., a total of 8 subgroups) based on cellular aspects

identified by pathologists under a microscope. All images have the same dimensions

of 700 × 460 pixels and have three RGB channels. Figure 18 shows an example

of images belonging to each subtype in BreakHis. We do not use all the images in

ADENOSIS FIBROADENOMA PHYLLODES TUMOR TUBULAR ADENOMA MUCINOUS CARCINOMADUCTAL CARCINOMA LOBULAR CARCINOMA PAPILLARY CARCINOMA

Figure 18: Sample images belong to 8 subgroups in BreakHis. From left to right,
the first 4 images belong to the Adenosis (A), Fibroadenoma (F), Phyllodes Tumor
(PT), and Tubular Adenoma (TA) subtypes, all of which come from the benign
category. And the next 4 images extracted from the malignant category belong to
the Ductal Carcinoma (DC), Lobular Carcinoma (LC), Mucinous Carcinoma (MC),
and Papillary Carcinoma (PC) subclasses, respectively.
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BreakHis for the pre-training phase, but selectively pull out only those that are as

structurally similar as possible to cytological images.

Up to this point, all the necessary preprocessing operations have been performed

on the images, and they are now ready to be fed to deep CNNs after being par-

titioned into smaller patches and filtered based on their cellular coverage. In this

stage, we intend to build a bank of verified patches to provide the input data of the

models. Accordingly, we first create a large bank of patches generated from BreakHis

histopathology images to perform the pre-training phase. As previously described,

the BreakHis data set includes images of eight different subtypes of breast cancer

collected as benign and malignant specimens. Careful observation of the images in

the data set revealed that the structure of the images belonging to the subtypes of

Fibroadenoma and Lobular Carcinoma is the most similar to the texture of the tar-

get cytological images in comparison with the images of other subclasses. The first

subtype (Fibroadenoma) is in the benign category, while the second (Lobular Carci-

noma) belongs to the malignant group. Therefore, we selected 100 images from each

of these two specific subtypes. This actually helps to make the features extracted

by the network compatible with those to be obtained from the target data images.

After partitioning the images into overlapping patches with dimensions of 64 × 64,

128×128, and 256×256 we randomly selected 150 patches from each image and ended

up with three banks of 30,000 patches. The data set was formed in a balanced way so

that there are equal numbers of benign and malignant patches in it (15,000). Since

the patches obtained from histopathological images contain an acceptable percentage

of cellular material, we can use all the patches generated, and performing the patch

selection process is not required in this phase.

To address the problem of classifying cytological images into benign and malignant

categories, we now need to form banks of image patches of the target data set. As

discussed earlier, the target data set includes cytological images of breast cancer
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Patch Size
(pixel)

Traning Validation Test
Benign Malignant Benign Malignant Benign Malignant

64× 64 53625 53625 17875 17875 17875 17875
128× 128 15015 15015 5005 5005 5005 5005
256× 256 4620 4620 1540 1540 1540 1540

Table 2: The number of patches in benign and malignant sets after partitioning
cytological images into square patches with sizes of 64× 64, 128× 128, and 256× 256
pixels.

taken from 50 patients with an equal number of benign and malignant cases (25).

Besides, for each patient, there are 11 images available in the data set. In order

to evaluate the performance of the models, we split the images of 25 benign cancer

patients into 3 sets of training, validation, and test in such a way that the images

of 15 patients were placed in the training set (60%), and validation and test sets

each contained those of 5 patients (20%). We then repeated this process for images

of 25 malignant patients. It should be noted that we have formed the data set in

such a way that all images coming from a particular patient can either belong to the

training, validation, or test set, and there is no overlap or commonality between these

sets. Then we partitioned the images into non-overlapping patches with dimensions

of 64× 64 pixels and repeated this process with patches of 128× 128 and 256× 256

pixels. The details of the number of patches created are given in Table 2.

Traning Validation TestCellular
Coverage

Patch Size
(pixel) Benign Malignant Benign Malignant Benign Malignant
64× 64 14046 9827 4777 2754 4901 1996
128× 128 3525 2372 1196 657 1206 46430 %
256× 256 888 591 305 153 291 91
64× 64 11294 6272 4024 1766 3812 1199
128× 128 2675 1247 948 358 890 20150 %
256× 256 616 214 205 60 202 22
64× 64 7037 3115 2893 916 2063 576
128 × 128 1449 400 646 115 419 5570 %

256× 256 264 28 122 6 82 5

Table 3: The 9 data sets used to train deep CNNs. The square patches with 30%,
50% and 70% cellular coverage with different sizes of 64, 128, 256 pixels have been
used to form the data sets.
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Now, before feeding these patches to the model, the last step is to select the de-

sired patches according to the specified thresholds (30%, 50%, and 70%), which will

result in the formation of 9 separate sets of patches. You can see the details of the

assembled sets in Table 3. As can be clearly seen from the table, the number of

patches obtained as a result of patch selection is not the same for benign and malig-

nant sets. Furthermore, the number of patches available, especially for the malignant

category, has been greatly reduced, which is certainly insufficient to train the model.

This prompted us to use the image augmentation technique as a common solution

to enlarge patch sets and reduce over-fitting problems. To do so, we applied differ-

ent geometric transformations to the image patches including horizontal and vertical

flipping, horizontal and vertical shifting, and random scaling (zoom)). Also, since

microscopic images (e.g. cytological images) are rotationally invariant and can be an-

alyzed from different angles, we also employed random rotation in the augmentation

procedure. The image augmentation algorithm is shown in Algorithm 2.

Finally, to have balanced data sets, patch sampling was performed as the last

step in preparing the input data. This was done by randomly removing a number of

patches from sets that contained more than the required amount of patches. As a

result of the augmentation and patch sampling operation, the number of patches in

Algorithm 2: Image Augmentation

Input: Image patches {P}Ni=1 where N is the number of patches and ith input patch is
denoted as Pi

Output: Augmented patches
Initialize: Dj random [0.8:1.2] and Dk random [0:180]
Function ImgAug():

for i← 1 to N do

P
V flip
i ← V F lip(Pi);

P
Hflip
i ← HFlip(Pi);

P
V shift
i ← V Shift(Pi);

P
Hshift
i ← HShift(Pi);

PZoom
i ← Zoom(Pi, Dj);

PRotation
i ← Rotation(Pi, Dk);

return P
V flip
i , PHflip

i , PV shift
i , PHshift

i , PRotation
i , PZoom

i ;
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the training set eventually became 3000, and the validation and test sets each had

1000 patches, with the number of benign and malignant patches being equal.

3.8 Deep Learning Models

Deep learning techniques have been widely used by researchers as a powerful tool

in a wide range of imaging domains - such as classification [2, 10, 84], detection

[19, 29, 53], segmentation [33, 87], etc. The extensive applications of DL in various

fields have accelerated its development and progress. One of the most popular types

of DL models is known as convolutional neural network (LeCun, et al. (1995) [47]),

which has a different structure compared to a regular neural network. CNNs were

primarily developed to process image data, and are perhaps the most flexible type

of DL models for image classification problems. Given the capability of deep CNNs

to learn generalizable descriptors directly from images, they seem to be the ideal

solution to most pattern recognition problems. While CNNs were further developed

in the Computer Vision (CV) community, they have rapidly expanded into medical

imaging applications and have been introduced as a powerful tool that can assist

scientists in this field. The application of CNNs, however, is not limited to image

analysis tasks, and they have the potential to achieve SOA accuracy in a variety of

challenges such as Natural Language Processing (NLP) (Young, et al. (2018) [94]),

Human Activity Recognition (HAR) (Jiang, et al. (2015) [38]), speech recognition

(Abdel-Hamid, et al. (2014) [1]), etc, sometimes exceeding human-level performance.

The basic CNN architecture is typically composed of three types of layers (or building

blocks): convolution, pooling, and FC layers. The idea of the convolution layers is

to perform feature extraction. This is basically done by convolving the image with a

kernel designed to extract specific features. Pooling layers, on the other hand, form

another CNN building block whose task is to reduce the spatial size of feature maps,
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thereby reducing the number of learning parameters and the number of computa-

tions performed on the network. Lastly, FC layers, which are fully integrated with

all activations in the previous layer, map the extracted features into the final output.

This layered structure, consisting of several independent components, enables CNNs

to extract high-level abstract features as well as learn hierarchical levels of represen-

tations from a low-level input vector. Given all the advantages cited for CNNs in

image analysis tasks, in this study we examine 6 SOA deep CNNs that have already

proven their capability in the ImageNet challenge. With the help of these networks,

we solve the problem of classifying cytological images and by analytical comparison of

the obtained results, we ultimately introduce the most efficient network. All the deep

models used in this study were implemented in Python with Keras and Tensorflow

libraries, the architecture of each of which is described in separate sections below.

3.8.1 VGG-16

VGG-16 is a CNN architecture proposed by Simonyan, et al. (2014) [77], which

was used to win ILSVRC [67] competition in 2014. VGG-16 made the improvement

over AlexNet, another famous model submitted to ILSVRC-2012, by replacing the

relatively large 11 × 11 and 5 × 5 filters with a stack of 3 × 3 filters with a stride

1. The use of small-size filters had the advantage of low computational complexity

by reducing the number of parameters. Simonyan and Zisserman also suggested

enhancing the model capacity by deepening the network from 8 layers, previously

used in AlexNet, to 16-19 layers, which greatly helped improve model performance.

These modifications and presenting a novel deep CNN architecture resulted in a

significant increase in the top-5 test accuracy of the model and ranked VGG-16 first

in localization and second in classification. 16 in VGG-16 represents the sixteen layers

in it, which makes it a relatively large network with about 138 million parameters.

Due to the depth and large number of FC nodes, the size of VGG-16 has reached more
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224 X 224 X 3

112 X 112 X 128

56 X 56 X 256

28 X 28 X 512

14 X 14 X 512

7 X 7 X 512 1 X1 X 4096 1 X 1 X 1000

Softmax

Fully Connected + ReLU

Max Pooling

Convolution + ReLU

Figure 19: VGG-16 Architecture

than 500 MB, which has made the deployment of the model a somewhat tedious task.

Having too many parameters in the model can also increase the risk of overfitting,

as well as makes it difficult to pass gradient updates through the entire network. So,

in addition to this model, we decided to use smaller and lighter networks in terms of

the number of parameters in our experiments so that we can compare the capacity

and performance of different models. The architecture of VGG-16 is pretty simple to

understand and explain (see Figure 19). Despite the simplicity of the architecture, its

performance is such convincing that it is still used as a baseline in various CV tasks

[28, 39, 97].

3.8.2 VGG-19

VGG-19, a variant of VGG networks, is a deep CNN architecture, having been

trained in the ImageNet challenge (ILSVRC) 1000-class classification task. The ar-

chitecture of VGG-19 is pretty much similar to that of VGG-16 except that there are

three additional convolution layers distributed in the last three blocks of the VGG-19.

This brings the total number of network layers to 19, sixteen convolution layers having
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Conv5 4
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Figure 20: VGG-19 Architecture.

trainable weights followed by three FC layers. The VGG-19 network is used as one of

the deep networks for the pre-training stage in this research so that we can investigate

the effect of increasing the number of convolution layers on the model performance

in the classification task. The VGG-19 architecture is as shown in Figure 20.

3.8.3 ResNet101-V2

The Residual Network (known as ResNet) is a special type of neural network

developed by He, et al. (2016) [32] that ranked first in the 2015 ILSVRC image recog-

nition and segmentation challenges. The ResNet architecture has certainly been one

of the most pioneering works in the CV community in recent years, as it introduces

the concept of identity shortcut connections (known as skip connections). The idea

of using skip connections in ResNet was to avoid the problem of vanishing gradi-

ents in the network and to mitigate the accuracy saturation issues. In general, the

deeper a network becomes (containing more layers), the greater its capacity to solve

more complex tasks, and usually helps to improve the performance of classification

and identification tasks. On the other hand, as we continue to add more layers to

the neural network, it becomes very difficult to train, and the accuracy of the model
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begins to saturate and then decreases. This is a problem that ResNet has greatly mit-

igated with residual blocks, allowing gradients to pass through an additional shortcut

channel. As illustrated in Figure 21, the residual block has two 3×3 convolution

layers, each followed by a batch normalization layer and a ReLU activation function.

Besides, there is a direct connection that passes through the layer in between and

connects the input x to the addition operator. The ResNet architecture is clearly

inspired by the VGG-19, except that skip connections have been added to it.
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Figure 21: Identity mapping in Residual blocks.

There are a few variants of ResNet architecture, e.g., ResNet-34, ResNet-50,

ResNet-101, ResNet-110, ResNet-152, ResNet-164 etc, the difference being essentially

the number of layers used in them. The name of the network comes with a number

that clearly indicates the number of layers used in that specific architecture. In this

research, we use ResNet-101 as another deep model to solve the classification problem

and compare its performance with other SOA networks. ResNet-101 is a 101-layer

deep network consisting of 44.6 million parameters.
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3.8.4 DenseNet-169

Dense convolutional network (DenseNet) developed by Huang, et al. (2017) [34]

is another type of CNN, similar to ResNet, was proposed to solve the vanishing gra-

dient problem. The DenseNet architecture has a narrow-layered structure that uses

cross-layer connectivity, meaning that each layer receives additional inputs from all

preceding layers and transmits its own feature maps to all subsequent layers (Khan, et

al. (2020) [40]). This operation is performed using dense connections between layers

through several dense blocks embedded in the network. A dense block itself con-

sists of multiple convolution blocks, each using the same number of output channels.

Having such a structure in the network provides direct access of each layer to the

gradients through the loss function, and also helps to share the important features

learned by each layer, which in turn boost information flow through the whole net-

work. The described mechanism, in addition to strengthening feature propagation,

significantly reduces the number of learning parameters across the network, thus

making the network training process more efficient. DenseNet has been developed

in several versions so far, including DenseNet-121, DeneNet-161, DeneNet-169 and

DenseNet-201, of which we employ DenseNet-169 variant in this study. Despite hav-

ing a depth of 169 layers, DenseNet-169 has relatively few parameters compared to

other models and is still able to handle the vanishing gradient problem well.
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Figure 22: A block diagram of DenseNet-169 consisting of two dense blocks.
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A block diagram of DenseNet-169 consisting of two dense blocks is presented in Fig-

ure 22.

3.8.5 Inception-V3

Inception networks currently have four versions, namely GoogleNet (also known

as Inception-V1) (Szegedy, et al. (2015) [81]), Inception-V2, Inception-V3 (Szegedy,

et al. (2016) [82]), and Inception-V4 (Szegedy, et al. (2017) [80]). The GoogleNet,

which achieved SOA results for classification and detection in ILSVRC-2014, was

the first network to introduce a key innovation called the Inception module. The

main objective of the Inception networks was to achieve higher accuracy and at the

same time reduce the computational cost, both in terms of the number of parameters

and memory resources. In this regard, instead of naively stacking large convolution

operations, which are obviously computationally expensive, Szegedy, et al. (2017)

came up with the novel idea of using Inception modules. The Inception module is

a block of parallel convolution layers that encapsulates filters of different sizes (e.g.,

1×1, 3×3, 5×5) along with max-pooling layers to perform convolution operations on

inputs. This, while helping to capture details at different scales, makes the network

generally a bit wider than the previously presented networks. The output feature

maps will ultimately be concatenated, and then connected to the next layer Inception

modules. In this study, we use Inception-V3, an improved version of the previously

introduced Inception networks, whose idea was to reduce the computational cost of

the network without affecting generalization. The structure of the Inception module

in this version is slightly different, and the large size filters (5×5 and 7×7) have been

replaced with small and asymmetric filters (1 × 7 and 1 × 5). The illustration of a

canonical Inception module is shown in Figure 23. Replacing larger convolutions with

smaller ones reduces learning parameters and thus speeds up the network training
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process.

ReLU Activation

ReLU Activation

1 x 1 Conv
(32)

1 x 1 Conv
(384 Linear)

3 x 3 Conv
(32)

1 x1 Conv
(32)

1 x 1 Conv
(32)

3 x 3 Conv
(48)

3 x 3 Conv
(64)

+

Figure 23: Demonstration of the inception module used in the Inception-V3 network.

3.8.6 InceptionResNet-V2

InceptionResNet is a convolutional neural architecture developed based on a com-

bination of inception structure and residual connection [80]. Inspired by ResNet per-

formance, InceptionResNet has a structure consisting of multiple-sized convolution

filters combined with residual connections and employs a hybrid inception module in

its architecture. The usage of residual connections not only avoids the degradation

problem caused by deep structures, but also reduces the model training time. There

are two sub-versions of InceptionResNet, namely V1 and V2. Both sub-versions have

the same structure for the residual blocks and the only difference is in the hyper-

parameter settings. In this study, we use InceptionResNet-V2, which is significantly

deeper than the previous Inception-V3, to classify cytological images. This model

also requires roughly twice the memory and computation compared to Inception-V3,

and has the potential to achieve higher accuracy in early epochs.
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Figure 24: The scheme for the InceptionResNet module.

3.9 Summary

This chapter was dedicated to a comprehensive description of the methodology

used in this thesis. We have addressed the problem of classifying breast cancer cyto-

logical images by proposing a new TL framework. The proposed TL framework con-

sists of eight consecutive steps: cytological image acquisition, nuclei segmentation,

image patching, patch selection, data set formation, network pre-training, weight

initialization, and image classification. All these steps were discussed in detail in sep-

arate sections. To evaluate the effectiveness of this framework, real medical images

captured from cytological biopsy specimens were employed. The process of preparing

cytological images using the classical microscope and the virtual microscopy system

was described in Section 3.3. Likewise, the task of classifying cytological images into

benign and malignant categories was performed using six SOA deep CNNs, including

VGG-16 Subsection 3.8.1, VGG-19 Subsection 3.8.2, ResNet101-V2 Subsection 3.8.3,

DenseNet-169 Subsection 3.8.4, Inception-V3 Subsection 3.8.5, and InceptionResNet-

V2 Subsection 3.8.6. In the next chapter, we present the experimental results of

exploring different scenarios for training as well as fine-tuning the networks, and we

determine the best strategy by analyzing the results.
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Chapter 4

Experimental Results

4.1 Introduction

This chapter presents the experimental results of classifying cytological images of

breast cancer and demonstrates the effectiveness of the proposed method in address-

ing the task. The experimental results are compared in terms of accuracy, as most

existing studies conducted on the same data set have used this evaluation criterion,

nonetheless, we provide a complete table that, in addition to accuracy, includes in-

formation on other criteria. As we explained earlier, in this study we examined 3

different scenarios for training as well as 2 different approaches for fine-tuning deep

CNNs, and now we describe the results obtained from each scenario separately.

4.2 Results

4.2.1 Results for the First Scenario

The first scenario is designed to investigate the classification accuracy of deep

CNNs when applying TL on a dataset of related medical images (i.e. BreakHis).

The CNN architectures we examined are listed in Table 4 (sorted from low to high
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based on the number of parameters) whose architectures have already been described

in Section 3.8. As it turns out, the selected models include networks that are very

different in terms of the number of parameters as well as the number of layers. The

deepest networks employed are InceptionResNet-V2 and DenseNet-169, each with

449 and 338 layers, respectively. Despite the large number of layers, DenseNet-169

has the fewest learning parameters among networks, as its convolutions generate

fewer output feature maps. Basically, the greater the number of network learning

parameters, the greater the model’s capacity to learn descriptive features from the

input data. However, this certainly increases the risk of overfitting in the model. To

evaluate this issue and have an alternative option, we attempted to use models with

fewer parameters in our experiments, in addition to deep CNNs with a large number

of parameters such as VGG-16 and VGG-19. Selecting DenseNet and Inception-V3

was inspired by the previous work (Miselis, et al. (2019) [51]) on the same data set,

and the other 4 networks have not yet been used as classifiers on this data set. The

pre-training phase of the models in this scenario was performed on a large bank

of patches generated from BreakHis histopathology images. The large bank includes

30,000 patches with equal numbers of benign and malignant specimens (15,000), which

are the result of partitioning 200 images into overlapping square patches. Since the

main objective of this stage is to update the networks’ parameters using a compatible

data set (i.e. BreakHis), we did not consider any test set and decided to divide the

patch bank into two parts: training and validation (with ratios of 90% and 10%).

The models’ training process was performed with 200 epochs, and we used the Adam

(adaptive moment estimation) algorithm to perform the optimization. We also set

the learning rate to 10−5 after trying a few different values, and considered the batch

size of 32. At the end of the pre-training phase, the model weights are stored to be

used for initializing the networks in the next phase.

Afterwards, in order to binary classify the images of the target data set and
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Model Parameters Depth Size
DenseNet-169 14.3 M 338 57 MB
Inception-V3 23.9 M 189 92 MB
ResNet101-V2 44.7 M 205 171 MB

InceptionResNet-V2 55.9 M 449 215 MB
VGG-16 138.4 M 16 528 MB
VGG-19 143.7 M 19 548 MB

Table 4: The SOA deep CNNs employed in this study. The networks are sorted from
low to high based on the number of learning parameters.

estimate the performance of the pre-trained models, the cytological image patch bank

was divided into three parts, namely training, including patches of 30 patients (60%),

validation, and test sets, each of which accounts for 20% of all patches. For all 5

training strategies, the same splitting pattern was operated to form the data sets.

Then the success rate of each model used in each scenario were compared. To observe

the effect of patch cellular coverage on the models’ performance in the classification

task, we formed 3 separate patch banks with cellular coverage of 30%, 50% and

70%. In addition, we considered three different sizes of 64, 128, and 256 pixels to

make patches and form data sets. Consequently, the models’ training operation was

performed using nine different data sets, as listed in Table 5.

The golden standard input size for the employed CNNs when training on the

ImageNet data set is 224× 224 pixels, although, in this study, we followed a similar

Dataset No. Cellular Coverage Patch Size

1 64× 64
2 128× 128
3

30 %
256× 256

4 64× 64
5 128× 128
6

50 %
256× 256

7 64× 64
8 128× 128
9

70 %
256× 256

Table 5: The nine data sets used for training deep CNNs. The square patches with
30%, 50% and 70% cellular coverage with different sizes of 64, 128, 256 pixels have
been used to form the data sets.
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approach to that used in previous research, using square patches of 64, 128, and 256

pixels as input data. However, there is a restriction to the minimum input size for the

networks, e.g., the minimum possible input size for Inception-V3 and InceptionResNet

is 75× 75 pixels. This made it unattainable for us to train these two networks using

64× 64 pixel patches. On the other hand, training aforesaid models using patches of

75× 75 pixels made the results incomparable with other networks, so we arranged to

train these two CNNs with only 128 and 256 pixel patches.

The CNN experimental settings and parameters used for training are displayed

in Table 6. With the exception of the learning rate, default values are selected for

network parameters. The learning rate, which is a hyperparameter for controlling

the rate at which the model weights are updated, is a factor of great importance in

converging towards the minimum loss function. Specifying the learning rate usually

requires an experimental process, so we tested 7 different values by selecting 7 numbers

with equal logarithmic intervals from the range of [10−7, 10−1], i.e. 10−7, 10−6, . . . ,

10−1. As a result, the training process of each deep CNN (excluding Inception-V3

and InceptionResNet-V2) was repeated 63 times using 7 different learning rates on

the 9 data sets listed in Table 5. Obviously, those networks that could not work

with inputs of 64×64 pixels, namely Inception-V3 and InceptionResNet-V2, were run

CNN Training Options

Parameter Value
Loss function Binary Cross Entropy
Optimizer Adam

Learning rate [10−7, 10−1]
β1 0.900
β2 0.999

Decay -
Dropout 0.3

Max epochs 100
Mini batch size 32

Execution environment GPU

Table 6: The experimental settings employed for training deep CNNs.
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42 times using only 6 data sets. What is ultimately reported as the result of model

classification is related to the best settings operated, which is a learning rate of 10−5,

128 × 128 pixels patches with 50% cellular coverage. It should also be noted that,

in order to make an acceptable comparison, the same hyperparameters were used for

training all deep CNNs. The setup was run on two Tesla v100 GPUs in the virya

cluster of Concordia University. The pre-training time for each of the deep CNNs

was about 2.40 hr, which took a total of 43 hours for the entire pre-training process.

Besides, the process of training the networks on the target data set took about 15

minutes for each model. Compared to the previous study [51] conducted on the same

dataset whose database contained 51K image patches, in this study the number of

patches in the target data set was reduced to 1/17 (3,000).

To evaluate the performance of the models more comprehensively, the classification

results are evaluated by some benchmark metrics, including precision (or positive

predictive value), recall (or sensitivity), F1-score (the harmonic mean of precision

and sensitivity), false negative rate (FNR), and false positive rate (FPR), whose

definitions are shown in Equations 3-8 below.

• Accuracy: Measures the model ability to identify the whole cases correctly,

regardless the cases are being positive or negative, and can be formed as

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

• Precision: Called positive predictive value (PPV). It shows the rate of true

positives among all positive values. It is calculated as

Precission =
TP

TP + FP
(4)

• Recall: Called the true positive rate (TPR) or sensitivity. It computes the
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fraction of the relative positive cases and is calculated as

Recall =
TP

TP + FN
(5)

• F1-score: Harmonic mean of precision and sensitivity calculated as

F1-score = 2×
Precision×Recall

Precision+Recall
(6)

• False Positive Rate (FPR): Measures the error rate when the model classifies

a patch as malignant and is calculated as

FPR =
FP

FP + TN
(7)

• False Negative Rate (FNR): Measures the error rate when the model clas-

sifies a patch as benign and is calculated as

FNR =
FN

FN + TP
(8)

The value of TP mentioned in the equations above represents the number of

image patches correctly classified as malignant in the test set. Conversely, FP is

the number of image patches in the test set that were incorrectly identified by the

model as malignant. Similar parameters are defined for the second class, i.e. benign.

Thus, TN is the number of patches that were correctly diagnosed as benign. And

FN is the number of test set patches, the model has incorrectly classified as benign.

Given these parameters, we conclude that Equation 4, i.e. precision, represents the

ratio of malignant tumor patches correctly allocated to all malignant tumor patches

recognized by the model. Recall in Equation 5 expresses the ratio of the correctly

assigned malignant tumor patches to all malignant tumor patches present in the test
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set. The F1-score in Equation 6 is the harmonic mean of the precision and recall, for

which the highest possible value is 1.0, indicating perfect precision and recall, and

the lowest possible value is 0. Besides, FPR in Equation 7 refers to the error rate

when the model recognizes a patch as a malignant tumor, and FNR in Equation 8 is

the error rate when the model identifies a patch as a benign tumor.

Table 7 shows the complete results obtained by the first scenario. The results for

each model are disaggregated based on the data set used, as well as how a model is

fine-tuned. The difference between the model fine-tuning approaches is in the number

of network layers that are updated. In fact, in partial fine-tuning, only the weights of

the last few layers are updated, while in complete fine-tuning, the backpropagation

operation is applied to all network layers. In general, the early layers of a CNN learn

low-level image features, which are applicable to most CV tasks, but the late layers

learn high-level features, which are specific to the application at hand. Therefore,

fine-tuning the last few layers is usually sufficient for TL. However, if the distance

between the source and target applications is significant, one may need to fine-tune

the early layers as well. Hence, an effective fine-tuning approach is to start from

the last layer and then incrementally include more layers in the update process until

the desired performance is reached. Based on the results shown in Table 7, the

difference between the accuracies obtained as a result of complete and partial fine-

tuning is quite obvious, and all networks performed better when applying complete

fine-tuning. However, the accuracy obtained as a result of using different data sets

(with 30%, 50%, and 70% cellular coverage) are not significantly different, and for

most networks, except VGG-16 and Inception-V3, using the 50%-data set has yielded

slightly better performance. Furthermore, the best performing model in this scenario

was the DenseNet-169, which achieved 98.73% accuracy for validation data set and

94.55% accuracy for test data set using the complete fine-tuning approach.
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Classifier
Fine-tuning
Approach

Cellular
Coverage

Class type Precision Recall F1-Score Ave. Accuracy
False positive

rate
False negative

rate
B 0.979514 0.979958 0.972874

30 %
M 0.979961 0.979958 0.979959

97.99% 2.00%± 1.22% 2.00%± 1.22%

B 0.985325 0.989474 0.987395
50 %

M 0.989429 0.985263 0.987342
98.73% 1.47%± 1.05% 1.05%± 0.89%

B 0.969875 0.962782 0.969725

Complete
Fine-tuning

70 %
M 0.962133 0.962757 0.962445

96.27% 3.72%± 1.65% 3.72%± 1.65%

B 0.926317 0.925527 0.925951
30 %

M 0.936255 0.926317 0.931259
92.59% 7.36%± 2.28% 7.44%± 2.30%

B 0.922242 0.922105 0.923054
50 %

M 0.945263 0.923868 0.934443
93.29% 7.61%± 2.32% 7.78%± 2.34%

B 0.915485 0.920177 0.919522

DenseNet169

Partial
Fine-tuning

70 %
M 0.920065 0.920168 0.920116

92.01% 7.98%± 2.37% 7.99%± 2.37%

B 0.937123 0.935489 0.936357
30 %

M 0.961488 0.937123 0.949149
93.63% 6.28%± 2.12% 6.45%± 2.15%

B 0.987872 0.943158 0.964997
50 %

M 0.945619 0.988421 0.966547
96.57% 1.15%± 0.93% 5.68%± 2.02%

B 0.936687 0.936574 0.937529

Complete
Fine-tuning

70 %
M 0.965754 0.938372 0.951866

93.74% 6.16%± 2.10% 6.34%± 2.13%

B 0.918871 0.918764 0.919480
30 %

M 0.935362 0.920090 0.927663
91.94% 7.99%± 2.37% 8.12%± 2.39%

B 0.925778 0.925648 0.926590
50 %

M 0.949862 0.927405 0.938499
92.65% 7.25%± 2.27% 7.43%± 2.29%

B 0.934259 0.934224 0.934514

VGG-16

Partial
Fine-tuning

70 %
M 0.942581 0.934769 0.938658

93.44% 6.52%± 2.16% 6.57%± 2.17%

B 0.962334 0.962332 0.962368
30 %

M 0.964217 0.962402 0.963309
96.23% 3.75%± 1.66% 3.76%± 1.66%

B 0.989086 0.982105 0.985583
50 %

M 0.982105 0.989164 0.986305
98.56% 1.16%± 0.84% 1.08%± 0.90%

B 0.966058 0.966057 0.966080

Complete
Fine-tuning

70 %
M 0.967402 0.966102 0.966751

96.61% 3.38%± 1.58% 3.39%± 1.58%

B 0.921292 0.921184 0.921928
30 %

M 0.939026 0.922565 0.930723
92.18% 7.74%± 2.34% 7.88%± 2.36%

B 0.920647 0.921178 0.924275
50 %

M 0.945263 0.927394 0.934443
92.40% 7.26%± 2.27% 7.93%± 2.36%

B 0.920396 0.920387 0.920451

VGG-19

Partial
Fine-tuning

70 %
M 0.921896 0.920506 0.921200

92.04% 7.94%± 2.37% 7.96%± 2.37%

B 0.981742 0.981763 0.981194
30 %

M 0.962293 0.980647 0.975377
98.12% 1.93%± 1.20% 1.82%± 1.17%

B 0.976215 0.993684 0.984872
50 %

M 0.993569 0.975789 0.984599
98.47% 2.42%± 1.34% 0.63%± 0.69%

B 0.983962 0.983982 0.983349

Complete
Fine-tuning

70 %
M 0.983982 0.982737 0.983359

98.33% 1.72%± 1.14% 1.60%± 1.10%

B 0.940008 0.939974 0.940282
30 %

M 0.949781 0.940556 0.945146
94.02% 5.94%± 2.08% 6.00%± 2.08%

B 0.940059 0.940000 0.940526
50 %

M 0.956842 0.940993 0.948851
94.04% 5.90%± 2.06% 6.00%± 2.08%

B 0.932638 0.932592 0.932961

InceptionResNet-V2

Partial
Fine-tuning

70 %
M 0.942980 0.933285 0.938107

93.29% 6.67%± 2.18% 6.74%± 2.19%

B 0.979923 0.979927 0.979848
30 %

M 0.972411 0.979774 0.976079
97.98% 2.02%± 1.23% 2.00%± 1.22%

B 0.979936 0.980000 0.978386
50 %

M 0.979937 0.976842 0.978387
97.86% 2.31%± 1.31% 2.00%± 1.22%

B 0.970298 0.970291 0.970429

Complete
Fine-tuning

70 %
M 0.979458 0.970560 0.974989

97.04% 2.94%± 1.48% 2.97%± 1.48%

B 0.789875 0.789032 0.791456
30 %

M 0.808418 0.793044 0.800657
79.10% 20.69%± 3.55% 21.09%± 3.57%

B 0.781057 0.780000 0.782940
50 %

M 0.802457 0.784832 0.793546
78.24% 21.51%± 3.60% 22.00%± 3.63%

B 0.773544 0.772358 0.775566

Inception-V3

Partial
Fine-tuning

70 %
M 0.795925 0.777599 0.786655

77.49% 22.24%± 3.67% 22.76%± 3.64%

B 0.983049 0.976853 0.982049
30 %

M 0.979078 0.980346 0.980941
97.85% 1.96%± 1.21% 2.31%± 1.31%

B 0.989293 0.972632 0.980892
50 %

M 0.973085 0.989474 0.981211
98.10% 1.05%± 0.89% 2.73%± 1.43%

B 0.979455 0.979455 0.979471

Complete
Fine-tuning

70 %
M 0.981104 0.979488 0.980295

97.94% 2.05%± 1.24% 2.05%± 1.24%

B 0.880967 0.880293 0.909983
30 %

M 0.903017 0.885963 0.883458
88.31% 11.40%± 2.78% 11.97%± 2.84%

B 0.893117 0.892632 0.895142
50 %

M 0.896842 0.897177 0.906580
89.49% 10.28%± 2.66% 10.73%± 2.71%

B 0.883698 0.883091 0.886001

ResNet101-V2

Partial
Fine-tuning

70 %
M 0.899886 0.888317 0.898626

88.57% 11.16%± 2.76% 11.69%± 2.81%

Table 7: Classification results obtained from the models pre-trained on the histopatho-
logical images (BreakHis). The presented results are related to the validation set
containing patches of 128× 128 pixels.
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4.2.2 Results for the Second Scenario

We now turn to the results of the second scenario, which relates to utilizing TL

using pre-trained networks on the ImageNet data set. Here we used networks that

had already been trained on ImageNet and solved the cytological image classification

using complete and partial fine-tuning approaches. The results of this scenario are

summarized in Table 8. The table contains the results for using the 50%-data set

containing 128 × 128 pixel patches. The accuracy obtained by using this data set

was better than those got from other data sets, although it was negligible. As in

the previous scenario, the difference between the accuracies is quite clear when using

different fine-tuning approaches. The best performance was achieved by ResNet101-

V2 using complete fine-tuning, with 95.70% and 91.50% accuracies on the validation

and test sets, respectively. However, in partial fine-tuning mode, the best results

were acquired by DenseNet-169 with 90.98% accuracy and Inception-V3 with 87.69%

accuracy on the validation and test data sets, respectively. Comparing the results of

the most efficient models in this scenario (i.e., ResNet101-V2 and DenseNet-169) with

what was obtained by the DenseNet-169 and InceptionResNet-V2 networks in the

previous scenario, demonstrates the effectiveness of employing a compatible database

in classification performance.

Classifier Accuracy FPR FNR Classifier Accuracy FPR FNR
Complete Fine-tuning Complete Fine-tuning

ResNet101-V2 95.70% 8.60%± 2.45% 0 ResNet101-V2 91.50% 16.95%± 3.28% 0.05%± 0.19%
DenseNet169 92.80% 14.40%± 3.07% 0 Inception-V3 90.95% 17.80%± 3.35% 0.30%± 0.47%
Inception-V3 92.30% 15.40%± 3.16% 0 DenseNet169 90.57% 18.85%± 3.42% 0
VGG-16 90.70% 18.60%± 3.41% 0 InceptionResNet-V2 86.87% 24.70%± 3.78% 1.55%± 1.08%
VGG-19 88.40% 23.20%± 3.69% 0 VGG-19 85.90% 28.20%± 3.94% 0

InceptionResNet-V2 88.20% 21.60%± 3.60% 2.00%± 1.22% VGG-16 85.30% 29.40%± 3.99% 0
Partial Fine-tuning Partial Fine-tuning

DenseNet169 90.98% 16.60%± 3.26% 1.60%± 2.45% Inception-V3 87.69% 22.92%± 3.68% 1.69%± 1.13%
VGG-19 90.50% 19.00%± 3.43% 0 InceptionResNet-V2 87.07% 22.76%± 3.67% 3.07%± 1.51%

InceptionResNet-V2 88.88% 20.00%± 3.50% 2.40%± 1.34% VGG-19 86.57% 26.85%± 3.88% 0
ResNet101-V2 88.30% 21.00%± 3.57% 2.40%± 1.34% DenseNet169 85.61% 27.85%± 3.92% 0.92%± 0.84%
Inception-V3 87.90% 22.00%± 3.63% 2.20%± 1.28% ResNet101-V2 83.46% 31.23%± 4.06% 1.84%± 1.17%

V
al
id
at
io
n

VGG-16 85.60% 28.80%± 3.96% 0

T
es
t

VGG-16 82.88% 34.24%± 4.15% 0

Table 8: Classification results of fine-tuning deep CNNs pre-trained on ImageNet.
The presented results are related to the data set containing patches of 128 × 128
pixels having 50% cellular coverage. The results are sorted by the accuracy value.
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According to the results, the use of histopathological images of breast cancer

instead of natural images during the pre-training phase has improved the classification

accuracy by 3.03% when applying complete fine-tuning and by 3.6% when using

partial fine-tuning.

4.2.3 Results for the Third Scenario

The third scenario was devoted to training deep CNNs from scratch. The results

showed that, as in the previous scenarios, there was no discernible difference in models’

performance when using patches with different cellular coverage. Also, the accuracy

obtained as a result of using patches of different sizes was almost the same. What

we have presented in Table 9 is the results of models’ training using data set No. 5,

i.e. 128 × 128 patches with 50% cellular coverage, with which the best result was

obtained. The experiments performed, and the results obtained, are based on the

validation and test data sets. As can be seen in the results, the InceptionResNet-V2

outperformed other models, with an accuracy of 95.30% for the validation data set

and 93.77% for the test data set. However, in terms of FPR, DenseNet-169 had the

lowest error rates among networks.

We also provide ROC curves for the best models in training scenarios. Figure 25

Classifier Accuracy FPR FNR
Validation

InceptionResNet-V2 95.30% 6.80%± 2.20% 2.60%± 1.39%
DenseNet169 93.50% 4.40%± 1.79% 8.60%± 2.45%

VGG-16 92.50% 4.40%± 1.79% 10.60%± 2.69%
VGG-19 92.00% 9.00%± 2.50% 7.00%± 2.23%

Inception-V3 91.80% 11.60%± 2.80% 4.80%± 1.87%
ResNet101-V2 91.60% 8.20%± 2.40% 8.60%± 2.45%

Test
InceptionResNet-V2 93.77% 10.60%± 2.69% 1.85%± 1.18%

DenseNet169 92.72% 7.90%± 2.36% 6.65%± 2.18%
VGG-16 91.80% 13.95%± 3.03% 2.45%± 1.35%
VGG-19 91.47% 12.00%± 2.84% 5.05%± 1.91%

ResNet101-V2 90.82% 13.00%± 2.94% 5.35%± 1.97%
Inception-V3 90.15% 16.90%± 3.28% 2.80%± 1.44%

Table 9: Classification results of training deep CNNs from scratch using cytological
images of the target data set. The results are sorted by the accuracy value.
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Figure 25: ROC results obtained from the validation (left) and test (right) sets.

Training approach AUC (Validation) AUC (Test)
Complete FT (Histodata) 98.50%± 0.75% 97.68%± 0.93%

Partial FT (Histodata) 97.82%± 0.91% 97.04%± 1.06%
Complete FT (ImageNet) 98.44%± 0.76% 96.83%± 1.08%
Partial FT (ImageNet) 96.64%± 1.12% 92.27%± 1.65%
Training from scratch 96.33%± 1.17% 90.24%± 1.84%

Table 10: AUC results

shows the ROCs obtained by the best models in each scenario using the validation

and test data sets. For both data sets, the best result in terms of AUC was achieved

by the model pre-trained on BreakHis and completely fine-tuned (see Table 10 for

AUC results).

4.3 Discussion

Training deep CNNs from scratch to classify medical images is usually troublesome

due to the small number of training samples. Most of the approaches published so far

tackle this problem by using models pre-trained on the ImageNet data set and then

fine-tuning the top layers of the model with target images. However, other works

indicate that the low-level features learned on the ImageNet data set do not provide
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optimal classification results if the target images are from a medical domain. In this

work, we are stating a thesis that TL using a compatible data set will allow us to

build a model for the classification of cytological images that will be more accurate

than the similar model pre-trained on the ImageNet data set. Comparing the different

approaches whose results are shown in Table 12, it can be seen that our method has

clearly performed better than other benchmark approaches. This suggests that high-

precision binary classification of cytological images is possible, even when limited

annotated images are available, if the TL technique is employed with a compatible

data set (e.g. BreakHis). This, in fact, accentuates the importance of an efficient

weight initialization approach in achieving high system performance.

What can be discussed here is that applying partial fine-tuning, whether when

using BreakHis or ImageNet data set, has not worked as well as the complete fine-

tuning approach and has resulted in less accuracy. Considering ImageNet, complete

fine-tuned models have achieved an accuracy range of 85-92%, while following the par-

tial fine-tuning approach, the models’ accuracies have been in the range of 83-88%.

Similarly, according to the results, models pre-trained on BreakeHis and completely

fine-tuned to the target data set achieved better accuracy than those that were par-

tially fine-tuned. It can be argued that although the network’s early layers have

already discovered low-level image features that can potentially be applied to any

task, updating the weights in such layers is necessary to achieve higher accuracy in

our classification challenge.

It is also worth noting that among the fine-tuning approaches, the one based on

ImageNet was the least efficient and even less accurate than when the model was

trained from scratch on the target data set. The most efficient models in the clas-

sification task were those pre-trained on BreakHis and completely fine-tuned with

the target data (93-95%), followed by models trained from scratch on the cytological

images of breast cancer with accuracies in the range of 90-94%. These results indicate
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that using the ImageNet for pre-training DL models, especially in medical applica-

tions, does not have to be the optimal approach. Therefore, in scenarios where the

target data set contains a limited number of images and there is a risk of overfitting,

the proposed solution is to pre-train the model on a larger set of images compatible

with the target data. To compare the effectiveness of different deep neural network

architectures in our image classification challenge, we should focus on the results ob-

tained from complete fine-tuning on the BreakHis data set. They reveal no significant

differences between network architectures because accuracies oscillated nearby 94%

and only the VGG19 model was significantly worse, with an accuracy value of 92%.

Aiming to identify the exact area in the cytological image that is most responsible

for predicting cancer malignancy on deep CNNs, we used Gradient-weighted class ac-

tivation mapping (Grad-CAM) [71, 98], a visual explanation algorithm, to visualize

a class-specific heatmap based on the input image (See Figure 26). Heatmaps are

usually obtained using the last convolution layer of the network. Here we used a

VGG-16 network pre-trained on the BreakHis data set for this purpose.

In addition to utilizing the last convolution layer, we also generated heatmaps em-

ploying an intermediate convolution layer. Theoretically, the heat map for the last
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Figure 26: Heatmap visualizations using Grad-CAM. A VGG-16 neural network (pre-
trained on BreakHis) was employed to generate the heatmaps.
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layer should reveal the most accurate visual explanation of the object classified by

the model. This is consistent with our results because network attention worsens at

shallow layers, but the deeper layer captures more semantic concepts. We can see

from the heatmap obtained for the last convolution layer that the network mainly

focuses on cell nuclei features. This outcome is consistent with the medical knowl-

edge in this field. Thanks to the TL using a compatible data set, the neural network

extracted valuable knowledge about diagnosing breast cancer from a relatively small

number of samples.

Article Segmentation Method Classification Method Evaluation Approach
Best Results

(ACC.)

Kowal et al. (2014) [44]
Multilevel Image Thresholding

(Honey-Bees Mating Optimization (HBMO) Algorithm)
Naive Bayes, Decision Trees, SVM, KNN

(based on morphometric features of cell nuclei)
Leave-one-out patient 77.64%

Kowal et al. (2016) [43]
Image Thresholding

+
Fast Marching (unsupervised method)

Naive Bayes
(based on morphometric features of cell nuclei)

Leave-one-out patient 87.64%

Kowal et al. (2018) [46]
U-Net
+

Marker-Controlled Watershed

Naive Bayes, Decision Trees, SVM, KNN
(based on morphometric features of cell nuclei)

K-fold CV 83.13%

Miselis et al. (2019) [51] No Segmentation
Deep CNNs: AlexNet, GoogleNet,

SqueezeNet, DenseNet-121, Inception-V3
Training-Validation 91.86%

Kowal et al. (2021) [45]
U-Net
+

Marker-Controlled Watershed

LDA, QDA, SVM, Naive Bayes,
Random Forest, KNN, RPART

Hold-out, K-fold CV,
Leave-one-out CV

88.20%

Proposed method
Image Thresholding

Algorithms: ISODATA, LI, LOCAL, MEAN,
MINIMUM, OTSU, SAUVOLA, TRIANGLE, YEN

Deep CNNs: DenseNet-169, ResNet-101,
InceptionResNet-V2, Inception-V3, VGG-16, VGG-19

Training-Validation-Test
Val.: 98.73%
Test: 94.55%

Table 11: Detailed information for ML/DL-based methods used in classification of
breast cancer cytological images. The same data set has been used in all previous
articles. The data set includes a total of 275 images of benign patients and 275 images
of malignant ones.

Eventually, to demonstrate the superiority and effectiveness of the proposed method

over other approaches presented so far applied to the same data set, we compared

our results with those of five SOA studies in the literature and presented the results

in Table 11. As noted, previous studies have used a variety of approaches to evaluate

their models. In this research, as discussed earlier, we considered validation and test

sets to estimate the performance of our models. The results of the validation set

reveal an improvement of about 7% in terms of accuracy compared to the best result

obtained previously, and for the test set, we had an improvement of approximately

3%.
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Weight Initialization
Approach

Classifier Class type Precision Recall F1-Score Accuracy FNR FPR

Validation

B 0.917671 0.914000 0.915832
ResNet101-V2

M 0.914343 0.918000 0.916168
91.60% 8.20%± 2.40% 8.60%± 2.45%

B 0.957872 0.913158 0.934997
VGG-16

M 0.915619 0.958421 0.936547
93.57% 8.68%± 1.79% 4.15%± 1.26%

B 0.952105 0.952105 0.952105
VGG-19

M 0.952105 0.952105 0.952105
95.21% 4.78%± 1.35% 4.78%± 1.35%

B 0.954071 0.914000 0.933606
DenseNet169

M 0.917466 0.956000 0.936337
93.50% 4.40%± 1.79% 8.60%± 2.45%

B 0.891386 0.952000 0.920696
Inception-V3

M 0.948498 0.884000 0.915114
91.80% 11.60%± 2.80% 4.80%± 1.87%

B 0.934741 0.974000 0.953967

Random
(Training from scratch)

InceptionResNet-V2
M 0.972860 0.932000 0.951992

95.30% 6.80%± 2.20% 2.60%± 1.39%

B 0.920810 1 0.958773
ResNet101-V2

M 1 0.914000 0.955068
95.70% 8.60%± 2.45% 0.0

B 0.843170 1 0.914913
VGG-16

M 1 0.814000 0.897464
90.70% 18.60%± 3.41% 0.0

B 0.811688 1 0.896057
VGG-19

M 1 0.768000 0.868778
88.40% 23.20%± 3.69% 0.0

B 0.874126 1 0.932836
DenseNet169

M 1 0.856000 0.922414
92.80% 14.40%± 3.07% 0.0

B 0.866551 1 0.928505
Inception-V3

M 1 0.846000 0.916576
92.30% 15.40%± 3.16% 0.0

B 0.819398 0.980000 0.892532

ImageNet

InceptionResNet-V2
M 0.975124 0.784000 0.86918

88.20% 21.60%± 3.60% 2.00%± 1.22%

B 0.989293 0.972632 0.980892
ResNet101-V2

M 0.973085 0.989474 0.981211
98.10% 1.05%± 0.89% 2.73%± 1.43%

B 0.987872 0.943158 0.964997
VGG-16

M 0.945619 0.988421 0.966547
96.57% 1.15%± 0.93% 5.68%± 2.02%

B 0.989086 0.982105 0.985583
VGG-19

M 0.982105 0.989164 0.986305
98.56% 1.16%± 0.84% 1.80%± 0.90%

B 0.985325 0.989474 0.987395
DenseNet169

M 0.989429 0.985263 0.987342
98.73% 1.47%± 1.05% 1.05%± 0.89%

B 0.979923 0.979927 0.979848
Inception-V3

M 0.972411 0.979774 0.976079
97.98% 2.02%± 1.23% 2.00%± 1.22%

B 0.976215 0.993684 0.984872

HistoData
(Proposed approach)

InceptionResNet-V2
M 0.993569 0.975789 0.984599

98.47% 2.42%± 1.34% 0.63%± 0.69%

Test

B 0.879238 0.946500 0.9116300
ResNet101-V2

M 0.942068 0.870000 0.904601
90.82% 13.00%± 2.94% 5.35%± 1.97%

B 0.874888 0.975500 0.922459
VGG-16

M 0.972316 0.860500 0.912997
91.80% 13.95%± 3.03% 2.45%± 1.35%

B 0.887798 0.949500 0.917613
VGG-19

M 0.945728 0.880000 0.911681
91.47% 12.00%± 2.84% 5.05%± 1.91%

B 0.921975 0.933500 0.927702
DenseNet169

M 0.932658 0.921000 0.926792
92.72% 7.90%± 2.36% 6.65%± 2.18%

B 0.851884 0.972000 0.907987
Inception-V3

M 0.967404 0.831000 0.894029
90.15% 16.90%± 3.28% 2.80%± 1.44%

B 0.902529 0.981500 0.940359

Random
(Training from scratch)

InceptionResNet-V2
M 0.979726 0.894000 0.934902

93.77% 10.60%± 2.69% 1.85%± 1.18%

B 0.855004 0.9995 0.921623
ResNet101-V2

M 0.999398 0.8305 0.907155
91.50% 16.95%± 3.28% 0.05%± 0.19%

B 0.772798 1 0.871840
VGG-16

M 1 0.706000 0.827667
85.30% 29.40%± 3.99% 0

B 0.780031 1 0.876424
VGG-19

M 1 0.718000 0.835856
85.90% 28.20%± 3.94% 0

B 0.841397 1 0.913868
DenseNet169

M 1 0.811500 0.895943
90.57% 18.85%± 3.42% 0

B 0.848510 0.997000 0.916781
Inception-V3

M 0.996363 0.822000 0.900821
90.95% 17.80%± 3.35% 0.30%± 0.47%

B 0.799432 0.984500 0.882366

ImageNet

InceptionResNet-V2
M 0.979831 0.753000 0.851569

86.87% 24.70%± 3.78% 1.55%± 1.08%

B 0.907493 0.981000 0.942816
ResNet101-V2

M 0.979325 0.90000 0.937989
94.05% 10.00%± 2.69% 1.90%± 1.19%

B 0.912882 0.985000 0.947571
VGG-16

M 0.983713 0.906000 0.943259
94.55% 9.40%± 2.55% 1.50%± 1.06%

B 0.934917 0.905000 0.919715
VGG-19

M 0.907946 0.937000 0.922244
92.10% 6.30%± 2.12% 9.50%± 2.57%

B 0.907594 0.992000 0.947922
DenseNet169

M 0.991180 0.899000 0.942842
94.55% 10.10%± 2.64% 0.80%± 0.78%

B 0.897517 0.994000 0.943298
Inception-V3

M 0.993277 0.886500 0.936856
94.02% 11.35%± 2.78% 0.60%± 0.67%

B 0.882197 0.996000 0.935651

HistoData
(Proposed approach)

InceptionResNet-V2
M 0.995408 0.867000 0.926777

93.15% 13.30%± 2.97% 0.40%± 0.55%

Table 12: The best classification results obtained from different scenarios; 1) Complete
fine-tuning of pre-trained models on BreakHis, 2) Complete fine-tuning of pre-trained
models on ImageNet, and 3) Training models from scratch on the target data set.
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4.4 Summary

This chapter presented the experimental results obtained from different scenarios

explored in this thesis. In order to demonstrate the effectiveness of the proposed TL

approach, we examined three different scenarios for training deep CNNs and applied

two different approaches to fine-tuning the models. The first scenario was to classify

cytological images using pre-trained networks on the BreakHis data set. The second

scenario involved binary classification using pre-trained networks on the ImageNet

data set. And the third scenario was to train deep CNNs from scratch. We also

performed complete and partial fine-tuning approaches over the networks in each

of the first and second scenarios, the former meaning the weights of all layers are

updated, and the latter meaning that the backpropagation operation is performed

only over the last few layers of the network. The results showed that the use of

breast cancer histopathological images for the pre-training phase of the networks can

significantly improve the classification accuracy of cytological biopsy specimens. It

was also found that applying partial fine-tuning, either when using the BreakHis or

ImageNet data sets, does not work as well as the complete fine-tuning approach,

resulting in less accuracy.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we proposed a new TL approach that could efficiently classify cyto-

logical biopsy specimens of breast cancer using an auxiliary data source comprising

histopathological images. A significant advantage of the proposed method is its high

accuracy in the classification task despite having a limited number of annotated im-

ages. The task of classifying cytological images was performed employing six SOA

deep CNNs, and finally, by comparing the results from different aspects, we intro-

duced the most efficient network in terms of accuracy. To evaluate the effectiveness

of the proposed method, we explored three different training scenarios as well as two

different approaches for fine-tuning networks. The experimental results revealed that

the use of histopathological images can improve the system accuracy by more than 3%

compared to when using natural images (e.g., ImageNet) for the pre-training phase of

the models. In addition, it was uncovered that the proposed method is 7% superior to

training deep CNNs from scratch in terms of the AUC value. The suggested method

was finally compared with five SOA research previously conducted on the same data

set, and the results showed that the classification accuracy was improved by 6% to
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17% compared to studies using traditional ML methods. Also, compared to research

that has utilized DL techniques, the proposed method has improved the classification

accuracy by almost 7%.

5.2 Future Work

The contributions of this research have provided incentives to address other prob-

lems related to TL in medical image analysis. In future research, we intend to consider

other TL approaches such as Multi-source Domain Adaptation (He, et al. (2021) [31])

to solve the breast cancer image classification challenge. This technique is primar-

ily designed to minimize the impact of domain shift between the source and target

domains, and potentially will allow us to employ our proposed method not only to

solve the classification of breast cancer images but also to address other scenarios

designed for different diseases. Designing and operating lightweight networks to per-

form the classification task is another idea that will be pursued in future research.

This will help to assess the extent to which deep CNNs with a large number of pa-

rameters have actually contributed to achieving high performance, and whether such

performance can be achieved with restricted computational resources. We also plan

to explore image-level classification in future research, meaning that we will examine

the model performance in diagnosing cancer malignancy in each patient’s image. This

gives a more comprehensive estimate of system capabilities than when only patch-

level classification is considered. Lastly, we encourage future researchers to apply the

proposed method for different image modalities to address classification challenges,

as we believe that the compatible-domain TL technique is not limited to microscopic

(histopathological or cytological) images and can be generalized to other types of

medical images in different scenarios. We have also released our pre-trained models

in a public GitHub repository so that it can be utilized by all researchers.
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Appendix A

Confusion Matrices

Figure A.1: Confusion matrices obtained from the first scenario (complete fine-tuning
of pre-trained models on BreakHis).

80



Figure A.2: Confusion matrices obtained from the second scenario (complete fine-
tuning of pre-trained models on ImageNet).
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Figure A.3: Confusion matrices obtained from the third scenario (training deep CNNs
from scratch).

82



Bibliography

[1] O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu. Con-

volutional neural networks for speech recognition. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 22(10):1533–1545, 2014.

[2] C. Affonso, A. L. D. Rossi, F. H. A. Vieira, and A. C. P. de Leon Ferreira de

Carvalho. Deep learning for biological image classification. Expert Systems with

Applications, 85:114–122, 2017.

[3] A.V. Alvarenga, W.C.A. Pereira, A.F.C. Infantosi, and C.M. Azevedo. Complex-

ity curve and grey level co-occurrence matrix in the texture evaluation of breast

tumor on ultrasound images. Medical Physics, 34(2):379–387, 2007.

[4] L. Alzubaidi, O. Al-Shamma, M. Fadhel, L. Farhan, J. Zhang, and Y. Duan.

Optimizing the performance of breast cancer classification by employing the same

domain transfer learning from hybrid deep convolutional neural network model.

Electronics, 9(3):445, 2020.

[5] L. Alzubaidi, M.A. Fadhel, O. Al-Shamma, J. Zhang, and Y. Duan. Deep learning

models for classification of red blood cells in microscopy images to aid in sickle

cell anemia diagnosis. Electronics, 9:427, 2020.

[6] Laith Alzubaidi, Muthana Al-Amidie, Ahmed Al-Asadi, Amjad J. Humaidi, Om-

ran Al-Shamma, Mohammed A. Fadhel, Jinglan Zhang, J. Santamaŕıa, and
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