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Abstract 

Operating room planning with the pooling of downstream beds among 

specialties: A stochastic programming approach 

Arian Andam 

 

In this research, we study a stochastic operating room planning problem with the possibility of 

restricted pooling of downstream beds among different specialties. Here, we suppose that there is 

a limited number of beds that can be shared among specialties. In this problem, surgical durations 

and patients’ length of stay are stochastic. We developed a two-stage stochastic integer 

programming model, where in the first-stage we decide on 1) the number of ICU and wards beds 

to be allocated to each specialty, and 2) the allocation of surgeries to operating rooms during the 

planning horizon. In the second stage, we decide on 1) how many shared beds in ICU and wards 

are allocated to which specialties on each day during the planning horizon, 2) the surge capacity 

required to satisfy downstream service to patients, and 3) the overtime incurred in each operating 

room during the planning horizon. The proposed model aims at minimizing the total cost including 

the patients’ waiting cost, postpone cost, overtime and fixed cost of operating rooms, and the cost 

of downstream surge capacity.  

We have implemented the proposed stochastic programing model in a sample average 

approximation framework. We have carried out extensive computational experiments to evaluate 

the effectiveness of several pooling policies for downstream beds and also the efficiency of the 

proposed sample average approximation algorithm. We have also performed an extensive 

sensitivity analysis of cost and the stochastic parameters to provide managerial insights. Our 

results demonstrated that the sharing policy among different specialties in the downstream units 

enhance the functionality of the system up to 19.53%. Moreover, the results indicated that the 

solutions obtained by proposed stochastic model outperforms the solutions from the corresponding 

deterministic problem by 17.43% on average. 

 

 



iv 
 

Dedication 

 

To Reza and Rahimeh who taught me how to dream limitlessly 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Acknowledgments 

 

I would like to appreciate the sincere efforts and the countless time that my supervisor, Dr. Hossein 

Hashemi Doulabi put in to guide me through my Master’s degree. Besides the lessons I learned 

from him in my academic life, he is the one who teaches me how to be a better person, generally. 

Returning his favors would be a lifetime attempt. 

I want to acknowledge the heartwarming supports that my parents, Rahimeh Mehdizadeh and Reza 

Andam gave me over these years. They made my dreams come true and they taught me always try 

to be a better version of myself. I wish they can feel my gratitude even though they are thousands 

of kilometers far from me. I am proud to call myself their son. 

  

 

 

 

 

 

 

 

 

 

 

 



vi 
 

Table of Contents 
 

List of Tables  .............................................................................................................................................. vii 

List of Figures  ........................................................................................................................................... viii 

Chapter 1: Introduction and literature review ............................................................................................. 1 

1.1 Introduction .................................................................................................................................... 1 

1.2 Literature review ............................................................................................................................. 3 

1.2.1 - Literature review of deterministic models ....................................................................... 3 

1.2.2 - Literature review of stochastic optimization models ....................................................... 4 

1.2.3 - Literature review of robust optimization models ............................................................. 6 

Chapter 2: Problem definition and two-stage stochastic programming model ............................................ 8 

2.1 Problem definition .......................................................................................................................... 8 

2.2 Two-stage stochastic programming model ..................................................................................... 9 

2.2.1 - First-stage model ........................................................................................................... 10 

2.2.2 - Second-stage model ....................................................................................................... 12 

Chapter 3: Solution methodology ............................................................................................................... 15 

Chapter 4: Computational experiments ...................................................................................................... 18 

4.1 - Instance generation .................................................................................................................... 18 

4.2 - Computational results ................................................................................................................ 20 

4.2.1 - Sharing policy analysis .................................................................................................. 20 

4.2.2 - Parameter tuning of sample average approximation method ........................................ 24 

4.2.3 - Performance of SAA algorithm ...................................................................................... 27 

4.2.4 - Sensitivity analysis ......................................................................................................... 32 

Chapter 5: Conclusion and future work ..................................................................................................... 43 

References ................................................................................................................................................... 45 

 

 

 

 

 

 

 



vii 
 

List of Tables 
 

Table 1-The list of specialties and details of their corresponding surgical time and length of stay (LOS) 20 

Table 2- Comparison of different bed sharing policies. ............................................................................. 23 

Table 3- Computational results of the SAA algorithm. ............................................................................... 29 

Table 4- Sensitivity analysis on cost coefficients. ....................................................................................... 33 

Table 5- Sensitivity analysis on the coefficients of uncertain parameters. ................................................. 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

List of Figures 
 

Figure 1 - Optimality gap (%) for different combinations of |𝑀| and |𝑁| ................................................. 25 

Figure 2 - The RSD of LB for different combinations of |𝑀| and |𝑁| ........................................................ 25 

Figure 3 - Solution times (sec) for different combinations of |𝑀| and |𝑁| ................................................. 26 

Figure 4 - The RSD and solution time of upper bound problem (sec) for different values of |𝑃| .............. 27 

Figure 5 - Surge capacity used in downstream 1 in the planning horizon ................................................. 30 

Figure 6 - The number of shared beds in downstream 1 occupied by patients of different specialties ...... 31 

Figure 7 - Surge capacity used in downstream 2 in the planning horizon ................................................. 31 

Figure 8 - The number of shared beds in downstream 2 occupied by patients of different specialties ...... 32 

Figure 9-a - The distribution of cost components for different values of 𝛼𝑊𝑎𝑖𝑡𝑖𝑛𝑔 .................................... 34 

Figure 9-b - The values of cost indicators for different values of 𝛼𝑊𝑎𝑖𝑡𝑖𝑛𝑔 ............................................... 35 

Figure 10-a - The distribution of cost components for different values of 𝛼𝑂𝑅 .......................................... 35 

Figure 10-b - The values of cost indicators for different values of 𝛼𝑂𝑅 ..................................................... 36 

Figure 11-a - The distribution of cost components for different values of 𝛼𝑆𝑢𝑟𝑔𝑒 ..................................... 37 

Figure 11-b - The values of cost indicators for different values of 𝛼𝑆𝑢𝑟𝑔𝑒 ................................................ 37 

Figure 12-a - The distribution of cost components for different values of 𝛼𝑃𝑜𝑠𝑡𝑝𝑜𝑛𝑒 ................................ 38 

Figure 12-b - The values of cost indicators for different values of 𝛼𝑃𝑜𝑠𝑡𝑝𝑜𝑛𝑒 ............................................ 38 

Figure 13-a - The distribution of cost components for different values of 𝛼𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒 ................................ 39 

Figure 13-b - The values of cost indicators for different values of 𝛼𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒 ............................................ 39 

Figure 14-a - The distribution of cost components for different values of 𝛼𝐷𝑂𝑆 ........................................ 41 

Figure 14-b - The values of cost indicators for different values of 𝛼𝐷𝑂𝑆 ................................................... 41 

Figure 15-a - The distribution of cost components for different values of 𝛼𝐿𝑂𝑆 ........................................ 42 

Figure 15-b - The values of cost indicators for different values of 𝛼𝐿𝑂𝑆 .................................................... 42 

 

 



1 
 

Chapter 1 

Introduction and literature review 

In this chapter, we cover the introduction and the literature review that are relevant to our work. 

1.1 Introduction 

Despite all the shocks and abnormalities, which have influenced healthcare industry in these years, 

this sector has successfully managed to keep its essence and structure. In any healthcare system, 

managers try to keep the expenses and the revenue at the minimum level. In this regard, they use 

mathematical models to identify the bottlenecks of their systems and remove them. Based on the 

existing literature, operating rooms are the most crucial part of a hospital which bears the burden 

of the majority of expenses and revenue. Umali and Castillo (2020) and Research and Markets 

(2019) state that almost two-thirds of revenue of each hospital comes from operating rooms while 

taking account for 40% of its expenses. 

In this context, the main role of health practitioners is to allocate surgeries to operating rooms 

over a planning horizon such that medical resources including the available times of operating 

rooms are used as efficiently as possible. This planning procedure is a very difficult task because 

the health practitioners must take into account many other restrictive details such as the limited 

number of beds in ICU and wards. Efficient management of operating rooms considering the 

limited downstream resources is even a more complicated task because the patients’ length of stay 

(LOS) are uncertain and therefore the health practitioners have a hazy view of the available number 

of beds in ICU and wards within the next few days. 

In the practice, ICU and wards beds are divided between different specialties to avoid any 

conflict between the surgical groups. However, a fixed and inflexible allocation of downstream 

resources to specialties could cause inefficient use of them. For instance, a waste of recourses 

happens when the patients of one specialty happen to stay shorter than expected in ICU beds while 

patients of another specialty require to stay in ICU longer than expected. In this case, the future 

surgeries of the latter specialty could be cancelled due to unavailable ICU beds, while extra ICU 

beds are available for the other surgical group. A questions that arise in this context is whether 
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having some shared downstream beds could improve the management of operating rooms and if it 

does by what margin it enhances the efficiency of the system. 

In the literature, several researchers have studied the operating room management considering 

the limited number of beds in downstream, while addressing the stochastic essence of patients’ 

length of stay. Min and Yih (2010) proposed a two-stage stochastic programming model for an 

operating room planning problem with a limited number of ICU beds. They formulated the limited 

number of beds as a hard constraint. Jebali and Diabat (2015, 2017) extended this work to the case 

of limited number of beds in wards, with and without considering emergency patients. Zhang et 

al. (2019) developed a similar two-stage stochastic programming model for the operating room 

planning problem, where patients are denied from admission to ICU when all beds are occupied. 

They proposed an approximate dynamic programming model as the solution approach. Also, 

Zhang et al. (2020) proposed a column-generation-based heuristic to solve a modified version of 

model proposed by Min and Yih (2010). None of these works have specifically studied the effect 

of downstream-bed pooling in the presence of uncertain length of stay. We refer the reader to 

Section 2 for a more comprehensive review of the existing works including those proposing robust 

optimization models.  

Although there is a rich literature on stochastic operating room planning problem, to the best of 

our knowledge, there is no paper studying the effect of downstream-bed pooling in the presence 

of uncertain length of stay. The main contributions of this research are as follows: 

 For the first time, we study the pooling of downstream beds in ICU and wards among 

different specialties in an operating room planning problem where surgical durations and 

patient’s length of stay are stochastic. Our goal is to determine whether pooling of 

downstream beds results in enhancing the efficiency of the operating room planning and if 

so by what margin. The possibility of sharing beds in ICU and wards among specialties has 

not been studied in the stochastic programming models in the literature.  

 We formulate the problem as a two-stage stochastic programming model where surgical 

durations and patients’ length of stay in downstream resources are stochastic. We embed the 

proposed stochastic programming model in a sample average approximation framework. 

 We provide extensive computational results to evaluate the improved efficiency as a result 

of sharing beds among specialties and provide managerial insights. We also perform a broad 
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sensitivity analysis to evaluate the behavior of the proposed model with different parameter 

settings. 

The remainder of this research is structured as follows: In the rest of this Chapter, we have 

provided an extensive literature review. In Chapter 2, we have described the problem definition. 

In the same Chapter, we have proposed a two-stage stochastic model for the stochastic operating 

room planning problem with the possibility of downstream-bed pooling. In Chapter 3, we have 

provided a sample average approximation method that we have implemented to obtain statistical 

bounds from the proposed stochastic programming model. In Chapter 4, we have carried out an 

extensive computational experiments. Finally, we have concluded this research in Chapter 5 and 

have provided some suggestions regarding future studies.  

1.2 Literature review  

In operating room planning problem with downstream resource constraints, it is vital to recognize 

the main critical factors. Among them, uncertainty in surgical durations and patients’ length of 

stay in downstream beds play a significant role. Handling these uncertainties by developing 

appropriate model is the main challenge. Regarding the randomness of these two parameters, we 

can categorize the papers in the literature into three categories. Some researchers have considered 

these parameters deterministic and proposed heuristics or mixed integer programming models to 

solve the problem. On the other hand, there is a stream of works that have assumed these 

parameters to be uncertain with known or unknown probability distributions and have developed 

stochastic optimization and robust optimization accordingly.  

1.2.1 - Literature review of deterministic models 

At first, we discuss the deterministic models in the literature for operating room planning problems 

with limited downstream resources. In this category, Beliën and Demeulemeester (2008) targeted 

human resources including nurses and operating room scheduling, simultaneously. They 

developed an integer programming model and two sets of solutions for two pricing problems. They 

used a standard dynamic programming approach and a mixed integer programming model to solve 

these subproblems. Blake and Donald (2002) proposed an integer programming model for the 

surgery planning in Toronto’s Mount Sinai hospital. They performed a heuristic to assign different 

surgical categories to operating rooms. Their model resulted in significant improvements such as 



4 
 

reduction in political maneuvering, reduction in conflict between department and between 

surgeons and better communication and cooperation between departments in terms of allocation 

of surgical blocks. Cardoen et al. (2007) considered an operating room scheduling problem and 

solved it by a branch-and-price approach. Then, they developed two pricing algorithms to solve 

subproblems. Their proposed dynamic programming model was resulted in higher quality 

solutions in a more reasonable time. By using a realistic data set, they tested their model with both 

exact and heuristic algorithms.  

Fei et al. (2008) developed an integer programming model to formulate a surgical case 

assignment problem and then used Dantzig-Wolf decomposition to reformulate it. They ran a 

branch-and-price algorithm on the set partitioning problem that was formulated as the master 

problem. Fei et al. (2006) studied a weekly planning for operating theatres and developed a 

heuristic method to solve it. Consequently, they performed a hybrid genetic algorithm in order to 

solve the daily planning based on the result obtained from the first step. Guinet and Chaabane 

(2003) broke the overall scheduling problem into two steps. First, they assigned patients to 

different operating rooms and then scheduled the allocated surgeries in each room separately to 

allocate sufficient resources to them. They mainly focused on the first step and used an extension 

of Hungarian method to solve their model heuristically.  

1.2.2 - Literature review of stochastic optimization models 

The next category of papers in operating room planning are the ones developing stochastic 

optimization models. In this direction, researchers consider one or multiple sources of uncertainty 

to make their model more realistic. Some of the most common origins of uncertainty are stochastic 

surgical durations, patients’ length of stay in downstream beds, and random arrival times of 

patients. Beliën and Demeulemeester (2007) considered the number of patients in ORs and the 

length of stay of patients to be uncertain. They mainly concentrated on two kinds of models: mixed 

integer programming approach and metaheuristic approach. They eventually stated that the best 

results are obtained by metaheuristic models while MIP models are more comfortable to use. In 

another effort, Kumar et al. (2018) developed a stochastic mixed integer programming model to 

manage the patient flow in master surgery scheduling, assuming the length of stay is not 

deterministic. Then they considered multiple planning horizons and scenarios for length of stay to 

evaluate their model. 
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Lamiri et al. (2008) concentrated on patient and OR scheduling based on their arrival and 

registration for being operated. They considered two groups of emergency and elective patients. 

They proposed a stochastic programming model at first. Then, they implemented a combination 

of Mont Carlo simulation and MIP to solve the model. Saadouli et al. (2014) mainly focused on 

surgical durations as the main source of uncertainty. First, they allocated different surgeries to 

different days and operating rooms. Then, they developed two MILP models such that each of 

them dealt with the overtime and underutilization problems. They observed that both models 

performed significantly great comparing to manual assignment in different instances. While some 

researches have targeted a single uncertain parameter, some others considered more than one. 

Molina-Pariente et al. (2016) developed a stochastic OR scheduling model with uncertain surgical 

durations, the arrival time of emergency surgeries, and surgeons’ capacity. They presented a Monte 

Carlo method based on sample average approximation (SAA) method. They eventually, compared 

the results of their model with the exact model and two heuristics developed for solving the 

deterministic version of the model. 

Compared to our work, the most relevant works in the literature are Min and Yih (2010), Jebali 

and Diabat (2015, 2017), Zhang et al. (2019, 2020). The problem setting in these works are more 

similar to ours compared to existing works in the literature. In all of these works, researchers have 

studied an operating room planning problem considering the limited number of beds in 

downstream, while addressing the stochastic essence of patients’ length of stay. Min and Yih 

(2010) developed a two-stage stochastic programming model for allocation of patients to surgical 

blocks over a planning horizon, while considering a limited number of ICU beds. They supposed 

that the restriction on the limited number of ICU beds is a hard constraint and cannot be violated 

in any scenario. They evaluated their stochastic programming model in a SAA framework. Jebali 

and Diabat (2015) developed Min and Yih (2010)’s model by considering both ICU and wards 

beds. They also evaluated the improved stochastic programming model using the sample average 

approximation approach. Jebali and Diabat (2017) also studied an extension of the same research 

stream by modeling the constraint of the limited number of ICU beds as a chance constraint and 

used the SAA approach proposed by Luedtke and Ahmed (2008) as the solution method. Zhang et 

al. (2019) also proposed a similar two-stage stochastic programming model for the operating room 

planning problem. In their model, patients are denied from admitting to ICU when all beds are 

occupied. They developed an approximate dynamic programming model to solve the model. 
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Zhang et al. (2020) considered the same operating room planning problem and extended the 

stochastic programming model proposed by Min and Yih (2010). They developed a Dantzig-Wolf 

decomposition and offered a column-generation heuristic to solve it.  

As discussed earlier in this Chapter, none of these works have considered the possibility of 

pooling of ICU and wards beds among different specialties where length of stay are uncertain. In 

this research, we focus on the improvement in the efficiency of operating room planning resulted 

from a restricted sharing of downstream beds among surgical groups. 

1.2.3 - Literature review of robust optimization models 

The third group of papers on operating room planning are the ones which developed robust 

optimization models. Robust optimization is a conservative approach that is independent from the 

probability distributions of the uncertain parameters. Shehadeh and Padman (2021) proposed a 

distributional robust optimization model to allocate elective surgeries to various surgical blocks. 

They assumed surgical duration and length of stay are uncertain, but with given information on 

their mean values and ranges. They reformulated the problem as an exact nonlinear mixed integer 

programming model and then linearized it. Shanshan et al. (2017) developed a robust chance-

constrained framework to schedule surgeries over a planning horizon such that the total cost is 

minimized, while the restrictions in the downstream are not violated. In this work, researchers 

considered uncertain surgical duration, while length of stay were deterministic. Furthermore, 

Moosavi and Ebrahimnejad (2018) offered a multi-objective model that minimized the number of 

deferred patients, waiting cost, and ORs idleness, and overtime. Then, they developed its robust 

counterpart with uncertain surgical durations and length of stay, considering upstream and 

downstream units in addition to emergency demands.  

Moosavi and Ebrahimnejad (2020) also have used a new two-stage heuristic algorithm that is 

implemented both on a deterministic multi-objective model and the model with uncertainty. The 

main concern in their work was determining the number of operating rooms to open and how to 

assign surgeries to different operating rooms. The heuristic algorithm showed some significant 

improvement in both cases especially in the case of uncertainty. Neyshabouri and Berg (2017) 

proposed a two-stage robust optimization model to allocate patients to multiple surgery blocks. 

They considered uncertainty for surgical durations and length of stay. In formulating, the second-
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stage model, they considered penalties for the violation of the ICU bed constraint. Then, they 

developed a column-and-row generation algorithm to solve it.  
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Chapter 2 

Problem definition and two-stage stochastic 

programming model 

In this chapter, first we provide the problem definition and then we represent the two-stage 

stochastic programming model. 

2.1 Problem definition 

We study an operating room planning problem where several patients are going to be allocated to 

operating rooms over a planning horizon. In each operating room, there is a limited regular time 

available for performing surgeries. The durations of surgeries are stochastic and therefore there is 

a possibility to have overtime at the end the available time of operating rooms. There is a fixed 

cost associated with opening each operating room for each day. Patients belong to different 

surgical specialties that do not share operating rooms. This means that patients allocated to the 

same operating room must belong to the same surgical specialty. Each patient has a time window 

that indicates the earliest and the latest days on which the surgery can be performed. If the latest 

day is within the planning horizon, we refer to the patient as a mandatory patient that must be 

operated in the planning horizon before the deadline. Otherwise, the patient is an optional patient 

that can be postponed to the next planning horizon for the operation. 

After surgeries, the patients are transferred to ICU and wards consecutively and usually stay in 

each area for a few days. Each surgical specialty has its own number of beds in ICU and wards. 

For example, cardiovascular, neurology, and orthopedic may have 12, 10, and 9 beds in ICU, 

respectively. As in the common practice, we suppose that these beds are reserved for the 

corresponding specialty and will not be occupied by the patients of other specialties in any case. 

Besides, to study the effect of pooling for downstream beds in this research, we suppose that there 

is a limited number of ICU beds that are shared between specialties. Therefore, in the case that a 

new cardiovascular patient is operated and needs an ICU bed, but all beds of this specialty are 

already occupied, the patient may be allocated to one of the available shared ICU beds. If there is 

not any available ICU bed in the cardiology part of ICU or the shared ICU area, the patient will 
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use a surge capacity at an extra cost, which refers either to hiring a part-time ICU nurse, or paying 

an existing ICU nurse overtime to take care of the patient, or transferring the patient to another 

hospital with available ICU beds. We consider that there is the same limited bed capacity for 

different specialties in wards area with the possibility of having shared beds as well. In this 

problem, management of downstream beds is specifically more difficult because the patients’ 

length of stay are stochastic and therefore the number of patients occupying beds does not follow 

a clear trend as patients may stay longer or shorter than expected.  

In the next section, we propose a two-stage stochastic programming model to formulate this 

problem. In the first stage, the decision maker determines 1) the number of ICU and wards beds to 

be allocated to each specialty, and 2) the allocation of surgeries to operating rooms during the 

planning horizon. Here, we suppose that there is a limited number of beds that can be considered 

shared between different specialties. This is necessary in practice to avoid conflict between 

specialties. In the second stage, the decision maker determines 1) how many shared beds in ICU 

and wards are allocated to which specialties on each day during the planning horizon, 2) the surge 

capacity required to satisfy downstream service to patients, and 3) the overtime incurred in each 

operating room during the planning horizon. These variables are computed based on first-stage 

decision on the allocation of surgeries to operating rooms and downstream beds to specialties. The 

objective function is to minimize the total cost including the patients’ waiting cost, postpone cost, 

overtime and fixed cost of operating rooms, and the cost of downstream surge capacity. 

2.2 Two-stage stochastic programming model 

In this chapter, we developed a two-stage stochastic programming model. In the first stage, we 

decide on the allocation of the downstream beds to specialties, which operating rooms to open on 

each day, and also set the allocation of surgeries in the planning horizon. In the second stage, we 

determine how to allocate the shared beds in ICU and wards to different specialties on each day in 

the planning horizon. We also compute the incurred overtime in operating rooms and the surge 

capacity in ICU and wards. The first-stage objective function minimizes the patients’ waiting cost, 

postpone cost, and fixed cost of operating rooms, while the second-stage objective function 

consider overtime cost of operating rooms and the cost of downstream surge capacity. 
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2.2.1 - First-stage model 

The sets, parameters, and variables in our model are as follow. 

Sets: 

𝐼 : The set of surgeries (or patients). We have 𝐼 = 𝐼1 ∪ 𝐼2. 

𝐼1 : The set of mandatory surgeries (or patients) with latest surgery days within the planning 

horizon. 

𝐼2 : The set of optional surgeries (or patients) with latest surgery days out of the planning 

horizon.  

𝑆 : The set of specialties. 

𝐷 : The set of days in the planning horizon. 

𝐷𝑖 : The set of days on which surgery 𝑖 can be operated with respect to its time window. 

𝑅 : The set of operating rooms. 

𝑅𝑖 : The set of operating rooms in which surgery 𝑖 can be operated in the case that operating 

rooms are not identical and special equipment is available in some operating rooms. 

𝐻 : The set of downstream units. Here, we consider 𝐻 = {1,2} where 1 and 2 refer to ICU 

and wards, respectively. It is a general setting which can consider cases with more than 

two post-surgical recovery areas. 

 

Parameters: 

𝑀ℎ : The total number of beds in downstream ℎ. 

𝛼ℎ
𝑠ℎ𝑎𝑟𝑒𝑑 : The percentage of beds in downstream ℎ that are shared between specialties. 

𝛼𝑖
𝑤𝑎𝑖𝑡𝑖𝑛𝑔 : The daily waiting cost of patient 𝑖. 

𝑒𝑖 : The earliest day in the time window of surgery 𝑖. 

𝑠𝑖 : The specialty corresponding to surgery 𝑖. 

𝑐𝑖𝑑
𝑤𝑎𝑖𝑡𝑖𝑛𝑔 : The waiting cost of surgery 𝑖 if it is performed on day 𝑑. It is pre-computed by 

𝑐𝑖𝑑
𝑤𝑎𝑖𝑡𝑖𝑛𝑔

= 𝛼𝑖
𝑤𝑎𝑖𝑡𝑖𝑛𝑔(𝑑 − 𝑒𝑖). 

𝑐𝑖
𝑝𝑜𝑠𝑡𝑝𝑜𝑛𝑒 : The cost of postponing surgery 𝑖 to the next planning horizon. 

𝑐𝑂𝑅 : The fixed cost of opening an operating room. 
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𝐴𝑠
𝑚𝑖𝑛 : The minimum number of operating rooms that must be allocated to specialty 𝑠 

in the planning horizon. 

𝐴𝑠
𝑚𝑎𝑥 : The maximum number of operating rooms that can be allocated to specialty 𝑠 in 

the planning horizon. 

 

Variables: 

𝑥𝑖𝑟𝑑 : 1 if we allocate surgery 𝑖 to operating room 𝑟 on day 𝑑, 0 Otherwise. 

𝑥′𝑖 : 1 if we postpone surgery 𝑖 to the next planning horizon, 0 Otherwise. 

𝑦𝑟𝑑 : 1 if we open operating room 𝑟 on day 𝑑, 0 Otherwise. 

𝑧𝑠𝑟𝑑 : 1 if specialty 𝑠 is allocated to operating room 𝑟 on day 𝑑, 0 Otherwise. 

𝑢𝑠ℎ : The number of beds in downstream ℎ assigned to specialty 𝑠. 

 

Based on the given notation, we introduce the first-stage model as follows: 

min
𝑥,𝑥′,𝑦,𝑧,𝑢

 ∑ ∑ ∑ 𝑐𝑖𝑑
𝑊𝑎𝑖𝑡𝑖𝑛𝑔

𝑥𝑖𝑟𝑑

𝑟∈𝑅𝑖𝑑∈𝐷𝑖𝑖∈𝐼

+ ∑ 𝑐𝑖
𝑃𝑜𝑠𝑡𝑝𝑜𝑛𝑒

𝑥𝑖
′

𝑖∈𝐼2

+ ∑ ∑ 𝑐𝑂𝑅𝑦𝑟𝑑

𝑑∈𝐷𝑟∈𝑅

+ 𝑄(𝑥, 𝑥′, 𝑦, 𝑧, 𝑢) 
(1) 

Subject to:   

∑ ∑ 𝑥𝑖𝑟𝑑

𝑟∈𝑅𝑖𝑑∈𝐷𝑖

= 1 𝑖 ∈ 𝐼1 
(2) 

∑ ∑ 𝑥𝑖𝑟𝑑

𝑟∈𝑅𝑖𝑑∈𝐷𝑖

+  𝑥𝑖
′ = 1 𝑖 ∈ 𝐼2 

(3) 

∑ 𝑧𝑠𝑟𝑑

𝑠∈𝑆

= 𝑦𝑟𝑑 𝑟 ∈ 𝑅, 𝑑 ∈ 𝐷 
(4) 

𝑥𝑖𝑟𝑑  ≤  𝑧𝑠𝑖𝑟𝑑 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖 , 𝑑 ∈ 𝐷𝑖 (5) 

𝐴𝑠
𝑚𝑖𝑛  ≤ ∑ ∑ 𝑧𝑠𝑟𝑑

𝑟∈𝑅𝑑∈𝐷

≤  𝐴𝑠
𝑚𝑎𝑥 𝑠 ∈ 𝑆 

(6) 

∑ 𝑢𝑠ℎ

𝑠∈𝑆

 ≤  (1 − 𝛼ℎ
𝑠ℎ𝑎𝑟𝑒𝑑)𝑀ℎ ℎ ∈ 𝐻 

(7) 

𝑥𝑖𝑟𝑑  ∈ {0,1} 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖 , 𝑑 ∈ 𝐷𝑖 (8) 

𝑥𝑖
′ ∈ {0,1} 𝑖 ∈ 𝐼2 (9) 
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𝑦𝑟𝑑  ∈ {0,1} 𝑟 ∈ 𝑅, 𝑑 ∈ 𝐷 (10) 

𝑧𝑠𝑟𝑑  ∈ {0,1} 𝑠 ∈ 𝑆, 𝑟 ∈ 𝑅, 𝑑 ∈ 𝐷 (11) 

𝑢𝑠ℎ  ≥ 0 𝑠 ∈ 𝑆, ℎ ∈ 𝐻 (12) 

 

Objective function (1) consists of four parts. The first three of them calculate patients’ waiting 

cost, postpone cost, and the opening cost of opening operating rooms, respectively. In the last 

segment, we have 𝑄(𝑥, 𝑥′, 𝑦, 𝑧, 𝑢) that represents the expected second-stage cost. Constraint (2) 

indicates that each mandatory surgery must be allocated to one operating room on a single day in 

the planning horizon. Constraint (3) implies that optional surgeries are either allocated a surgical 

block or postponed to the next planning horizon. Constraint (4) states if an operating room is 

opened on a day, it must be assigned to exactly one specific specialty. Constraint (5) guarantees 

that surgery 𝑖 can be operated in operating room 𝑟 on day 𝑑 only if this block is assigned to the 

specialty of surgery 𝑖 denoted by 𝑠𝑖. Constraint (6) restricts the number of operating rooms that 

each specialty can have in the planning horizon. Constraint (7) indicates that, in each downstream, 

the number of non-shared beds allocated to different specialties cannot be more than the total 

number of available non-shared beds. 

2.2.2 - Second-stage model 

In the following, we present the sets, parameters, and variables used in the second-stage model. 

Sets:  

Ω : The set of stochastic scenarios.  

𝐼𝑠 : The set of surgeries that belong to specialty 𝑠. 

 

Parameters: 

𝑐ℎ
𝑏𝑒𝑑 : The cost one unit of surge capacity in downstream ℎ. 

𝑐𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒 : The per-minutes cost overtime in an operating room. 

𝐴 : The total regular available time in each operating room. 

𝑂𝑀𝑎𝑥 : The maximum allowed overtime in each operating room on each day. 

𝑡𝑖𝜔 : The duration of surgery 𝑖 in scenario 𝜔. 
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𝑙𝑖ℎ𝜔 : The length of stay for patient 𝑖 in downstream ℎ in scenario 𝜔. 

ξ(𝜔) : The vector of uncertain parameters including surgical durations and length of stay 

in Scenario 𝜔. 

 

Variables: 

𝑜𝑟𝑑𝜔 : The overtime of operating room 𝑟 on day 𝑑 in scenario 𝜔. 

𝑣𝑠ℎ𝑑𝜔 : The number of patients belonging to specialty 𝑠 that use a surge capacity in 

downstream ℎ on day 𝑑 in scenario 𝜔. 

𝑞𝑠ℎ𝑑𝜔 : The number of shared beds that occupied by patients of specialty 𝑠 in downstream 

ℎ on day 𝑑 in scenario 𝜔. 

 

We formulate the second-stage model as follows: 

𝑄(𝑥, 𝑥′, 𝑦, 𝑧, 𝑢, 𝜔) =  min
𝑞,𝑣,𝑜

 ∑ ∑ ∑ 𝑐ℎ
𝑏𝑒𝑑𝑣𝑠ℎ𝑑𝜔

𝑑∈𝐷ℎ∈𝐻𝑠∈𝑆

+ ∑ ∑ 𝑐𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒𝑜𝑟𝑑𝜔

𝑟∈𝑅𝑑∈𝐷

 (13) 

Subject to: 

∑ ∑ ∑ 𝑥𝑖𝑑′𝑟

𝑑′∈𝐷𝑖: 𝑑′+∑ 𝑙𝑖ℎ′𝜔
ℎ−1
ℎ′=1

 ≤ 𝑑 𝑎𝑛𝑑  

𝑑′+∑ 𝑙𝑖ℎ′𝜔
ℎ
ℎ′=1

 > 𝑑

𝑟∈𝑅𝑖

 ≤  𝑢𝑠ℎ + 𝑞𝑠ℎ𝑑𝜔 + 𝑣𝑠ℎ𝑑𝜔

𝑖∈𝐼𝑠

 ℎ ∈ 𝐻, 𝑑 ∈ 𝐷, 𝜔

∈ Ω , 𝑠 ∈ 𝑆 
(14) 

∑ 𝑞𝑠ℎ𝑑𝜔

𝑠∈𝑆

 ≤ 𝛼ℎ
𝑠ℎ𝑎𝑟𝑒𝑑𝑀ℎ ℎ ∈ 𝐻, 𝑑 ∈ 𝐷, 𝜔

∈ Ω 

(15) 

∑ 𝑡𝑖𝜔𝑥𝑖𝑑𝑟

𝑖∈𝐼:𝑑∈𝐷𝑖 𝑎𝑛𝑑 𝑟∈𝑅𝑖

 ≤  𝐴 + 𝑜𝑟𝑑𝜔 𝑟 ∈ 𝑅, 𝑑 ∈ 𝐷, 𝜔

∈ Ω 

(16) 

0 ≤  𝑜𝑟𝑑𝜔  ≤  𝑜𝑀𝑎𝑥 
𝑟 ∈ 𝑅, 𝑑 ∈ 𝐷, 𝜔

∈ Ω  

(17) 

𝑣𝑠ℎ𝑑𝜔  ≥ 0  𝑠 ∈ 𝑆, ℎ ∈ 𝐻, 𝑑

∈ 𝐷, 𝜔 ∈ Ω 

(18) 

𝑞𝑠ℎ𝑑𝜔  ≥ 0 𝑠 ∈ 𝑆, ℎ ∈ 𝐻, 𝑑

∈ 𝐷, 𝜔 ∈ Ω 

(19) 
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Objective function (13) minimize the total second-stage cost including the cost associated with 

using the surge capacity in different downstream by patients of different specialties and the 

overtime cost in operating rooms. The second-stage cost  

𝑄(𝑥, 𝑥′, 𝑦, 𝑧, 𝑢) in objective function (1) is calculated by 𝐸𝜔∈Ω[𝑄(𝑥, 𝑥′, 𝑦, 𝑧, 𝑢, ξ(𝜔))] where 

𝐸𝜔∈Ω[. ] computes the expected value over scenarios 𝜔 ∈ Ω. 

Constraint (14) implies the restriction on the number of available beds in different downstream. 

In this constraint, ∑ 𝑥𝑖𝑑′𝑟𝑑′∈𝐷𝑖: 𝑑′+∑ 𝑙𝑖ℎ′𝜔
ℎ−1
ℎ′=1

 ≤ 𝑑 𝑎𝑛𝑑  

𝑑′+∑ 𝑙𝑖ℎ′𝜔
ℎ
ℎ′=1

 > 𝑑

 is equal to 1 if patient 𝑖, that is operated in 

operating room 𝑟, is in downstream ℎ on day 𝑑. This is because 𝑑′ + ∑ 𝑙𝑖ℎ′𝜔
ℎ−1
ℎ′=1  ≤  𝑑 indicates 

that the patient has left the previous downstream (ℎ − 1) not later than day d and 𝑑′ +

∑ 𝑙𝑖ℎ′𝜔
ℎ
ℎ′=1  >  𝑑 shows that he/she will leave downstream ℎ after day 𝑑. Therefore, the left-hand 

side of Constraint (14) computes the total number of patients that are in downstream ℎ on day 𝑑 

in scenario 𝜔. Whenever the left-hand side of this constraint is larger than 𝑢𝑠ℎ, the model prefers 

to compensate the shortage by giving positive values to 𝑞𝑠ℎ𝑑𝜔 and then 𝑣𝑠ℎ𝑑𝜔. This is because the 

shared ICU beds are available free of cost, while the surge beds, denoted by 𝑣𝑠ℎ𝑑𝜔, are penalized 

in the Objective function (13). 

Constraint (15) shows that the total number of shared beds allocated in each downstream cannot 

be more than the total number of beds available for sharing. Constraint (16) declares that a limited 

regular time 𝐴 is available in each operating room on each day. If the total surgical time on the 

left-hand side of Constraint (16) is more than the regular available time, then the overtime is 

considered by giving a positive value to 𝑜𝑟𝑑𝜔. Furthermore, Constraint (17) confines the allowed 

overtime.  
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Chapter 3 

Solution methodology 

One of the main challenge in using stochastic programming models is that solving them becomes 

exponentially more difficult as the number scenarios increases. Therefore, in this research, we 

develop a sample average approximation algorithm (SAA). This method uses Monte Carlo 

simulation to estimate the expected value of objective function based on a number of random 

independent identically distributed (i.i.d.) samples. It generates these samples iteratively and solve 

the extensive form of the stochastic programming model for a limited number of scenarios in each 

iteration separately. Then, the lower and upper bounds of the objective function is estimated using 

the outputs of all iterations. Here, we use |𝑁| to denote a number of randomly generated scenarios 

where, N = {𝜔1, … , 𝜔|𝑁|} is the set of scenarios. In SAA, we approximate the second-stage 

objective value  

𝔼𝜔 [∑ ∑ ∑ 𝑐ℎ
𝑏𝑒𝑑𝑣𝑠ℎ𝑑𝑤

𝑑∈𝐷ℎ∈𝐻𝑠∈𝑆

+ ∑ ∑ 𝑐𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒𝑜𝑟𝑑𝑤

𝑟∈𝑅𝑑∈𝐷

] 

subject to (14)-(19) 

(20) 

by 

min
1

|𝑁|
[∑ ∑ ∑ 𝑐ℎ

𝑏𝑒𝑑𝑣𝑠ℎ𝑑𝑛

𝑑∈𝐷ℎ∈𝐻𝑠∈𝑆

+ ∑ ∑ 𝑐𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒𝑜𝑟𝑑𝑛

𝑟∈𝑅𝑑∈𝐷

] (21) 

subject to (14)-(19). 

Here, for each sample 𝑛 ∈ 𝑁 constraint (14)-(19) are repeated instead of 𝜔 ∈  Ω. 

The privilege of using SAA is that by increasing the number of samples, the obtained solution 

and objective value we approach the optimal solution and objective value (Kleywegt, Shapiro and 

Homem-de-Mello 2002). The only issue here is that using a massive number as the number of 

sample works against the initial intention of using SAA since it becomes a time consuming 

procedure. To avoid that, we solve the SAA problem |𝑀| times for a reasonable number of samples 
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|𝑁|. Then, we calculate the average and variance of the lower and upper bound using the objective 

values obtained in all iterations.  

The procedure of SAA can be explained as follows: 

 We solve Model (21) |𝑀| times independently. In each iteration, we consider |𝑁| samples 

of scenarios and save the obtained first-stage solution �̂�𝑁
𝑚 and the objective value 𝑓𝑁

𝑚 for 

each iteration 𝑚 ∈ {1, … , |𝑀|}.  We refer to the problem that we solve in this iteration as 

the lower bound problem. 

 We calculate the average and variance of the lower bound of the objective value using the 

following formulas: 

𝐿𝐵̅̅̅̅ =  
1

|𝑀|
 ∑ 𝑓𝑁

𝑚

|𝑀|

𝑚=1

, (22) 

𝜎𝐿𝐵
2 =  

1

|𝑀|(|𝑀| − 1)
 ∑ (𝑓𝑁

𝑚 −  𝐿𝐵̅̅̅̅ )

|𝑀|

𝑚=1

. (23) 

 

 Then, we solve Model (21) again for |𝑀| iterations for the corresponding fixed first-stage 

solutions �̂�𝑁
𝑚  𝑚 ∈ {1, … , |𝑀|} obtained in the previous step. We refer to the problems 

solved in this step as upper bound problems. In each iteration, we consider |𝑃| samples of 

scenarios and save 𝑓𝑝(�̂�𝑁
𝑚) that denotes the objective value of the upper bound problem in 

iteration 𝑚 for sample 𝑝.  

 Next, the average and the variance of the upper bound of the objective value is calculated 

by: 

𝑈𝐵̅̅ ̅̅ =  
1

|𝑃|
 ∑ 𝑓𝑝(�̂�𝑁

𝑚)

|𝑀|

𝑚=1

, (24) 

𝜎𝑈𝐵
2 =  

1

|𝑃|(|𝑃| − 1)
 ∑ (𝑓𝑝(�̂�𝑁

𝑚) −  𝑈𝐵̅̅ ̅̅ )

|𝑀|

𝑚=1

. (25) 
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 We consider the minimum of average upper bound values 𝑈𝐵̅̅ ̅̅  obtained by (24) over 

different iterations as the best upper bound value and denote it by 𝑈𝐵̅̅ ̅̅
𝐵𝑒𝑠𝑡. Then we use 𝐿𝐵̅̅̅̅  

and 𝑈𝐵̅̅ ̅̅
𝐵𝑒𝑠𝑡 to calculate the optimality gap by 

𝐺𝑎𝑝 =  100 (𝑈𝐵̅̅ ̅̅
𝐵𝑒𝑠𝑡 − 𝐿𝐵̅̅̅̅ ) 𝐿𝐵̅̅̅̅⁄  . (26) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

Chapter 4 

Computational experiments 

We used IBM ILOG CPLEX Optimization to solve the integer programming model we 

implemented our code in Visual Studio V12.8 in C++. The experiments were run on a computer 

with two AMD Rome 7502 processors, 2.50 Ghz, and a total of 64 cores. We used a single core to 

run each instance. 

4.1 - Instance generation 

In this section, we explain how we generated the instance sets. We set the number of weeks in the 

planning horizon to {2,3,4}. In our instances, four operating rooms available on each day. We 

considered 8 hours as the daily regular available time of each operating room. Also, the maximum 

allowed overtime for each operating room is set to three hours. Furthermore, we have considered 

ICU and wards two consecutive downstream units. We set the number of available ICU and wards 

beds to 35 and 65, respectively. For instances with two, three, and four weeks, we set the number 

of patients to {120,180,240}, respectively. The earliest days of time windows for surgeries are 

randomly generated within the planning horizon. Also, the length of time window for each patient 

varies from one to seven days.  

In addition, each patient randomly belongs to one the seven specialties listed in Table 1. This 

Table also reports the average surgical time of surgeries corresponding to each specialty (Costa Jr, 

2017). To generate the surgical time of patient 𝑖, we considered normal distribution 

𝑁(𝜇𝑖
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝜎𝑖

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) where 𝜇𝑖
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 and 𝜎𝑖

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 refer to the average surgical duration of 

the corresponding specialty and its standard deviation, respectively and set 𝜎𝑖
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =

(1/6)𝜇𝑖
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛. The coefficient of (1/6) ensures that the surgical times are generated in 

[𝜇𝑖
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 3 (

1

6
𝜇𝑖

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) , 𝜇𝑖
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + 3 (

1

6
𝜇𝑖

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛)] with a probability of 99.73%. 

Moreover, the last two columns of Table 1 reports the averages total length of stay in hospitals 

and its standard deviations for patients of different specialties. To randomly generate the length of 

stay for each patient 𝑖, we use a normal distribution 𝑁(𝜇𝑖
𝐿𝑂𝑆, 𝜎𝑖

𝐿𝑂𝑆). In this distribution, 𝜇𝑖
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

and 𝜎𝑖
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 respectively refer to the average length of stay of patient 𝑖 and its standard deviation. 
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To generate a further perturbation in our instances, we supposed that the 𝜇𝑖
𝐿𝑂𝑆 of different patients 

corresponding to the same specialty are not necessarily the same. To address this point, we set 

𝜇𝑖
𝐿𝑂𝑆 = [0.75𝐿𝑂𝑆𝑠𝑖

𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑡𝑦
, 1.25𝐿𝑂𝑆𝑠𝑖

𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑡𝑦
] where 𝐿𝑂𝑆𝑠𝑖

𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑡𝑦
 denotes the average of length of 

stay for all patients of the corresponding specialty reported under the third column of Table 1. The 

patients’ length of stay generated from 𝑁(𝜇𝑖
𝐿𝑂𝑆, 𝜎𝑖

𝐿𝑂𝑆) are corresponding to all downstream units. 

Therefore, at the end we divide the generated length of stay 𝐿𝑂𝑆𝑖
𝑝𝑎𝑡𝑖𝑒𝑛𝑡

 between ICU and wards 

using 𝐿𝑂𝑆𝑖
𝐼𝐶𝑈 = 0.4 𝐿𝑂𝑆𝑖

𝑝𝑎𝑡𝑖𝑒𝑛𝑡
 and 𝐿𝑂𝑆𝑖

𝑤𝑎𝑟𝑑𝑠 = 0.6 𝐿𝑂𝑆𝑖
𝑝𝑎𝑡𝑖𝑒𝑛𝑡

.  

There are also several cost coefficients in our model to be set. We set the fix cost of opening 

operating rooms and also the per-minute overtime cost to $4,437 and $12.37, respectively. To set 

the cost parameters, we consider that each patient 𝑖 has an urgency level 𝛼𝑖
𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

 which are 

randomly picked from {1,2,3,4,5}. Then we set the daily waiting cost of patient 𝑖 to 𝛼𝑖
𝑤𝑎𝑖𝑡𝑖𝑛𝑔

=

𝛼𝑖
𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

× $1000. Also, the postpone cost of patients are computed by 𝑐𝑖
𝑃𝑜𝑠𝑡𝑝𝑜𝑛𝑒

= 𝛼𝑖
𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

×

$15000. We also set the cost of using one of surge capacity in wards (𝑐1
𝑏𝑒𝑑) to $62.94. To compute 

this value, we first divided the annual salary of a wards nurse ($54,549 as reported on 

www.ziprecruiter.com) by the total annual workhours (estimated by 52 weeks multiplied by 40 

hours) and then divided it by 10, supposing that each nurse takes care of 10 patients on average. 

The obtained value represents the hourly cost of serving an extra patient in wards. Therefore, we 

multiplied the recent value by 24 hours and obtained $62.94 as the daily cost of one unit of surge 

capacity in wards. Also, for the ICU, we use the same method with the only difference that $54,549 

was replaced by $95,000 (reported on www.ziprecruiter.com) as the annual salary of an ICU nurse 

and obtained 𝑐2
𝑏𝑒𝑑 = $109.58 as the daily cost of one extra surge capacity in ICU. 

To generate our instance set, we considered that the number of specialties in each instance 

belongs to {1,2,3,4,5,6,7}. Consider all possibilities for the number of weeks in the planning 

horizon and the number of specialties, we have 21 combinations. For each combination, we 

generated 5 instances for a total of 105 instances.  
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Table 1-The list of specialties and details of their corresponding surgical time and length of stay (LOS) 

Specialty Surgical time (min) Average LOS Standard deviation of LOS 

General 150.95 7.75 4.48 

Neurology 135.06 7.23 5.19 

Cardiovascular 189.34 5.84 3.01 

Orthopedic 151.95 7.69 4.51 

Urology 94 5.22 3.68 

Plastic and reconstructive 157.72 6.71 4.54 

Obstetrics and gynecology 79.32 5.22 2.21 

 

4.2 - Computational results 

We have separated this section of our study into four different subsections. In subsection 6.2.1, we 

computationally evaluate the importance of sharing beds in downstream units using our proposed 

stochastic programming model. In subsection 6.2.2, we tune the main parameters of our sample 

average approximation. Then, in subsection 6.2.3, we evaluate the performance of our model 

within the framework of sample average approximation. Finally, in subsection 6.2.4, we perform 

an extensive sensitivity analysis for cost parameters in order to measure the efficiency of our model 

in different situations and extract managerial insights. 

4.2.1 - Sharing policy analysis 

The computational experiments of this section analyze the improvement obtained by sharing beds 

in downstream units. We have considered three level of bed sharing in our computational analysis. 

In the first one, we suppose that no sharing is allowed among specialties. This means that 𝛼ℎ
𝑠ℎ𝑎𝑟𝑒𝑑 

for ℎ = 1,2 is set to 0. In the second setting, we considered a “Midlevel Sharing” case where 50% 

of all available beds are shared among specialties. This setting refers to 𝛼ℎ
𝑠ℎ𝑎𝑟𝑒𝑑 = 0.5 for ℎ = 1,2. 

In the last setting, referred to as “Full Sharing”, we assume that all beds are shared among 

specialties without any limitation. In this case, we have 𝛼ℎ
𝑠ℎ𝑎𝑟𝑒𝑑 = 1 for ℎ = 1,2. 

To obtain the results of these three settings, we used the extensive version of our proposed 

stochastic programming model without SAA, to avoid confusion due to the statistical nature of 

SAA outputs. For each instance, we have generated 30 scenarios. We have presented the results 
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out the above sharing policies in Table 2. In this Table, we have 18 combinations of instances with 

different values of the number of weeks and the number of specialties presented under the first two 

columns. We have ignored instances with one specialties as sharing beds is meaningless in this 

case. Each row of Table 2 presents the average results of five instances. 

In Table 2, we have presented the results of Midlevel Sharing (setting 2) and Full Sharing 

(setting 3) in comparison to No Sharing (setting 1) separately. The columns of “Imp. (%)” denote 

the total improvement in the objective value obtained by the corresponding sharing policy 

(Midlevel Sharing or Full Sharing) in comparison to No Sharing policy. For instance, under the 

Column of Midlevel Sharing, we have 𝐼𝑚𝑝. (%) = 100(𝑂𝑏𝑗𝑁𝑜 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 − 𝑂𝑏𝑗𝑀𝑖𝑑𝑙𝑒𝑣𝑒𝑙)/

𝑂𝑏𝑗𝑁𝑜 𝑠ℎ𝑎𝑟𝑖𝑛𝑔, where 𝑂𝑏𝑗𝑁𝑜 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 and 𝑂𝑏𝑗𝑀𝑖𝑑𝑙𝑒𝑣𝑒𝑙 denote the objective values of Midlevel 

Sharing and No Sharing settings, respectively. Similarly, Columns “Overtime cost Imp. (%)”, 

“Surge cost Imp. (%)”, “Waiting cost Imp. (%)”, “Postpone cost Imp. (%)”, and “OR cost Imp. 

(%)” demonstrate the contributions of each type of cost in the total improvement. This means that 

the sum of the recent five columns is equal to the value of “Imp. (%)”. 

The results of Table 2 demonstrate that the higher volume of sharing results in more 

improvement in the objective function. In the largest instances with seven specialties and four 

weeks, we observe that the values of “Imp. (%)” are 16.97% and 19.53% for Midlevel Sharing and 

Full Sharing, respectively. Besides, the average values of “Imp. (%)” in the last row of the Table 

show that Midlevel Sharing and Full Sharing lead to 11.29% and 12.38% improvement compared 

the No Sharing Policy. The results also show that the average improvement from Midlevel Sharing 

to Full Sharing is marginal around 1.09% and therefore a Midlevel Sharing could be enough to 

significantly improve the performance of operating room planning.  

Moreover, we observe a strictly increasing trend of improvement in each set of weeks as the 

number of specialty rises. For example, the results of Midlevel Sharing shows that the average of 

total cost improvement changes from 4.56%, 4.84%, and 4.99% to 15.93%, 16.85%, and 16.97% 

as the number of specialties increases from 2 to 7 in instances with 2, 3, and 4 weeks, respectively. 

Besides, it is noteworthy that, for a fixed number of specialty, we have higher value of 

improvement in longer planning horizons.  
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Finally, the values under columns “Surge cost Imp. (%)” and “Postpone cost Imp. (%)” has the 

highest role in the total cost improvement. More specifically, in “Midlevel” and “Full” sharing 

policies, the average saving in the surging capacity are 9.18% and 9.92%, respectively. Also, the 

average saving obtained in postpone cost are 1.84% and 2.01% for Midlevel and Full sharing 

policies, respectively. For the remaining sections of this research, we run the computational 

experiments for the case of Midlevel Sharing policy.  



23 
 

Table 2- Comparison of different bed sharing policies. 

Data Info.  Midlevel Sharing  Full Sharing 

No. of 

Weeks 

No. of 

Spec. 
  

Imp. 

(%) 

Overtime 

cost Imp. 

(%) 

Surge 

cost 

Imp. 

(%) 

Waiting 

cost 

Imp. 

(%) 

Postpone 

cost 

Imp. (%) 

OR 

cost 

Imp. 

(%) 

 Imp. 

(%) 

Overtime 

cost Imp. 

(%) 

Surge 

cost 

Imp. 

(%) 

Waiting 

cost 

Imp. 

(%) 

Postpone 

cost 

Imp. (%) 

OR 

cost 

Imp. 

(%) 

2 2  4.56 0.06 5.61 0.42 -1.79 0.27  4.75 0.09 5.62 0.88 -2.01 0.16 
 3  6.42 -0.14 7.29 -0.44 -0.32 0.03  6.69 -0.13 6.94 -0.04 0.00 -0.07 
 4  8.34 -0.01 9.75 0.88 -2.25 -0.03  8.62 0.08 9.54 0.79 -1.82 0.03 
 5  12.69 0.06 11.75 1.35 -0.78 0.31  13.82 0.07 12.49 1.64 -0.86 0.48 
 6  13.62 0.00 10.43 0.66 2.32 0.22  15.44 0.02 13.53 1.08 0.52 0.28 

  7   15.93 0.02 13.65 0.60 1.78 -0.11   17.79 -0.02 14.49 0.56 2.90 -0.14 

Average   10.26 0.00 9.74 0.58 -0.17 0.12   11.18 0.02 10.44 0.82 -0.21 0.12 

3 2  4.84 -0.01 5.16 -0.07 -0.06 -0.18  4.90 0.00 7.15 0.40 -2.53 -0.12 
 3  8.64 -0.21 8.21 0.54 0.14 -0.04  8.91 -0.18 6.37 0.21 2.60 -0.08 
 4  12.12 -0.03 11.49 0.44 0.21 0.02  12.62 -0.06 13.94 0.99 -2.33 0.08 
 5  13.21 -0.02 10.37 0.80 1.97 0.08  14.35 0.00 11.44 1.13 1.74 0.05 
 6  14.34 -0.04 11.73 0.48 2.06 0.11  16.08 -0.07 12.72 0.36 2.99 0.08 

  7   16.85 -0.02 11.03 -0.22 6.05 0.00   19.42 -0.04 13.03 0.70 5.65 0.08 

Average   11.66 -0.05 9.66 0.33 1.73 0.00   12.71 -0.06 10.77 0.63 1.35 0.01 

4 2  4.99 -0.03 3.58 -0.07 1.66 -0.16  5.13 -0.04 3.51 -0.05 1.82 -0.11 
 3  9.58 -0.10 5.62 -0.41 4.58 -0.11  9.98 -0.07 7.07 -0.19 3.21 -0.04 
 4  11.43 0.00 8.87 0.83 1.67 0.06  12.42 -0.20 8.72 0.51 3.19 0.19 
 5  13.82 -0.03 8.38 -0.67 5.96 0.18  15.36 -0.04 8.63 -0.49 7.14 0.12 
 6  14.90 -0.02 11.04 -0.11 3.93 0.05  16.99 -0.02 10.82 -0.19 6.35 0.04 

  7   16.97 -0.01 11.28 -0.27 6.05 -0.08  19.53 -0.09 12.48 -0.36 7.59 -0.08 

Average   11.95 -0.03 8.13 -0.12 3.97 -0.01   13.24 -0.08 8.54 -0.13 4.88 0.02 

Total Average   11.29 -0.03 9.18 0.26 1.84 0.03   12.38 -0.04 9.92 0.44 2.01 0.05 
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4.2.2 - Parameter tuning of sample average approximation method 

In this section, we carry out some computational experiments to tune of the parameters of the 

sample average approximation algorithm. These parameters include the number of iteration (|𝑀|), 

the number of sample in the lower bound problem (|𝑁|), the number of samples in the upper bound 

problem (|𝑃|). To do so, we perform some computational analysis on one of the instances with 

three weeks of planning horizon and seven specialties. The reason for choosing one of the instances 

of this combination is that our primary computational results showed that these instances are not 

too computationally demanding and their medium size let them mimic the computational behavior 

of other larger and smaller instances. Then, we first ran the model for this instance for different 

combinations of number of |𝑁| ∈ {5,10,20,30,40,50,60,70} and iterations |𝑀| ∈

{5,10,15,20,25,30,40,50}. 

We compared the combinations based on three main features: total solution time, gap, and 

relative standard deviation. In Figure 1, we study the trend of the optimality gap for different values 

of |𝑁| and |𝑀|. This figure shows that for almost all the values of |𝑁|, the amount of gap decreases 

as the number of |𝑀| increases. Although, this decrease is more drastic for larger values of |𝑁|. It 

is worth mentioning that the fluctuations of the gap value considerably fall after the value of |𝑁| 

crosses 30.  

In Figure 2, we observe the behavior of Relative Standard Deviation (RSD) under different 

circumstances. RSD is a feature that measures the significance of the deviation in the lower bound 

with respective to its average value and is calculated by 𝑅𝑆𝐷 =  𝑆𝐷𝐿𝐵/𝐿𝐵. In this formula, 𝐿𝐵 and 

𝑆𝐷𝐿𝐵 denote the estimated lower bound and its standard deviation. Figure 2 shows that, after 

crossing |𝑁| = 20, the value of 𝑅𝑆𝐷 is decreasing gradually as the number of iterations grows. 

Finally, in Figure 3, we observe that with growth in number of iterations, the solution time of the 

model increases.  

Based on the above analysis, we decide to set |𝑁| = 30 and |𝑀| = 25 because for this 

parameter setting SAA leads to stable result with a small gap and RSD, while the solution time is 

reasonable.  
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Figure 1 - Optimality gap (%) for different combinations of |𝑀| and |𝑁| 

 

 

Figure 2 - The RSD of LB for different combinations of |𝑀| and |𝑁| 
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Figure 3 - Solution times (sec) for different combinations of |𝑀| and |𝑁| 
 

Next, we have to tune number of sample in the upper bound problem, that is denoted by |𝑃|. 

For obtaining the appropriate value of |𝑃|, first we fix |𝑁| = 30 and |𝑀| = 25 and then run the 

selected instance for different values of |𝑃|. Figure 4 depicts 𝑅𝑆𝐷 and solution time of the upper 

bound problem for different values of |𝑃|. Based on Figure 4, we choose |𝑃| = 6000 as it results 
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Figure 4 - The RSD and solution time of upper bound problem (sec) for different values of |𝑃| 
 

4.2.3 - Performance of SAA algorithm 

In this section, we evaluate the efficiency of the proposed stochastic programming model 

embedded in the SAA framework using the tuned parameters. In Table 3, we have provided the 
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provided the optimality gap calculated by formula 100(𝑈𝐵 − 𝐿𝐵)/𝐿𝐵. Finally, “VSS (%)” gives 

the value of stochastic solution, that is computed by 100(𝑈𝐵𝐸𝑉𝑃 − 𝑈𝐵)/𝑈𝐵𝐸𝑉𝑃. Here, 𝑈𝐵𝐸𝑉𝑃 is 

the objective value of the solution obtained by solving the Expected Value Problem (𝐸𝑉𝑃) and 

then evaluated by the scenarios of the stochastic problem. Expected Value Problem (𝐸𝑉𝑃) is the 

deterministic version of our stochastic programming model where all random parameters are 

replaced by their corresponding average values from different scenarios. To obtain the amount of 

𝑈𝐵𝐸𝑉𝑃, we need to run the deterministic 𝐸𝑉𝑃 for an average scenario. Then, we evaluate the 

obtained first-stage solution using the same stochastic scenarios. Generally, “VSS” determines 

how better the stochastic programming model works comparing to its deterministic 𝐸𝑉𝑃 in terms 

of the objective value. 

Table 3 shows that the average optimality gap of all instances is -0.04. The negativity of this 

value is because the lower and upper bounds are statistical estimators. However, its small absolute 

value demonstrate the model is working properly and finds near-optimal solutions. Moreover, in 

the last row of the Table, we observe that the average VSS is 17.43%, which shows the solution 

obtained from our proposed stochastic programming model is significantly better than the solution 

that one would obtain by solving EVP problem. Therefore, we can conclude that considering the 

uncertainty of random parameters is a critical factor in operating room planning with the possibility 

of pooling for downstream beds. It is also noteworthy the VSS increase as the number of specialties 

increases. In the largest instances with four weeks, VSS raises from 26.70% to 81.99% as the 

number of specialties increases from 4 to 7. The results under columns “LB Time (%)” and “UB 

Time (%)” also show that the lower bound problem is responsible for major part of the 

computational time. 
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Table 3- Computational results of the SAA algorithm. 

Data Info.   Sample Average Approximation 

No. of 

Weeks 

No. 

of 

Spec. 

  
No. of 

Ite. 

Time 

(Sec) 

LB 

Time 

(%) 

UB 

Time 

(%) 

LB 𝑆𝐷𝐿𝐵  UB 𝑆𝐷𝑈𝐵  
Gap 

(%) 

VSS 

(%) 

Overtime 

cost (%) 

Surge 

capacity 

cost 

(%) 

Waiting 

cost 

(%) 

Postpone 

cost (%) 

OR 

cost 

(%) 

2 1  25 554 30.0 70.0 37319 97 37294 33 -0.06 1.71 0.37 57.81 6.38 12.47 22.96 
 2  25 852 62.3 37.7 38494 97 38440 34 -0.14 3.71 0.08 57.96 9.00 9.76 23.20 
 3  25 34038 98.6 1.4 39959 83 39993 32 0.09 5.16 0.72 52.37 10.80 11.25 24.85 
 4  24.8 32498 98.5 1.5 39530 86 39485 31 -0.12 7.51 0.43 51.37 12.84 10.64 24.72 
 5  25 46162 99.0 1.0 41826 92 41759 31 -0.16 8.50 0.35 55.11 13.43 8.26 22.84 
 6  23.2 44572 99.1 0.9 43320 85 43345 31 0.07 9.90 0.26 52.52 14.53 9.34 23.34 
 7  25 17805 98.4 1.6 40956 75 40953 29 0.00 10.02 0.16 51.51 16.19 7.33 24.81 

Average   25 25212 84 16 40200 88 40181 31 -0.05 6.64 0.34 54.09 11.88 9.86 23.82 

3 1  25 2380 23.7 76.3 61728 153 61735 47 0.01 1.70 0.33 55.09 5.51 18.95 20.12 
 2  25 2253 49.8 50.2 67989 146 67872 49 -0.17 3.78 0.05 58.10 6.91 15.91 19.02 
 3  21.6 54109 98.1 1.9 68451 127 68487 45 0.06 10.86 0.61 55.05 8.69 15.11 20.54 
 4  23.6 61443 97.6 2.4 69761 129 69804 46 0.06 11.30 0.51 53.77 8.32 16.55 20.85 
 5  25 19033 95.1 4.9 68105 115 68088 43 -0.03 11.72 0.25 54.90 9.75 13.66 21.44 
 6  25 37081 97.4 2.6 71893 124 71909 44 0.02 19.48 0.25 52.03 10.94 15.85 20.92 
 7  25 17567 96.6 3.4 69732 116 69601 42 -0.19 25.74 0.18 53.54 12.49 12.50 21.29 

Average   24 27695 80 20 68237 130 68214 45 -0.03 12.08 0.31 54.64 8.94 15.50 20.60 

4 1  25 2625 20.4 79.6 88940 155 89034 57 0.11 1.58 0.28 50.51 4.18 27.29 17.74 
 2  25 2567 43.0 57.0 98904 187 98854 62 -0.05 5.50 0.05 55.91 4.69 22.15 17.19 
 3  25 36284 93.6 6.4 93645 138 93534 55 -0.12 11.47 0.51 53.61 7.27 18.44 20.16 
 4  25 45490 96.7 3.3 95393 166 95352 55 -0.04 26.70 0.43 51.07 9.52 18.88 20.10 
 5  25 17512 91.9 8.1 99644 170 99543 55 -0.10 39.98 0.20 53.20 7.96 19.74 18.90 
 6  24.4 60674 97.0 3.0 103410 148 103435 54 0.03 67.66 0.21 52.44 10.82 17.40 19.13 
 7  25 16103 89.6 10.4 98570 149 98549 53 -0.02 81.99 0.13 53.62 11.45 14.46 20.35 

Average   25 25893 76 24 96929 159 96900 56 -0.03 33.56 0.26 52.91 7.98 19.77 19.08 

Total Average   25 26267 80 20 68456 126 68432 44 -0.04 17.43 0.30 53.88 9.60 15.05 21.17 
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Beside the above analysis, we depicted the insightful Figures 5, 6, 7, and 8 to illustrate how the 

specialties use the shared beds and surging capacities in ICU and wards. These figures help us 

better understand the dynamics of resource allocation in downstream by our proposed model to 

various specialties.  

We have drawn these figures using the average results on the instances with four weeks of 

planning horizon and seven specialties. Figure 5 shows the surge capacity in ICU used by different 

specialties. The sinusoidal trend of required surge ICU beds is a very fascinating event; As we can 

see the cumulative used surge capacity increases during the workdays of the week and then 

decrease during the weekends. This makes sense because we supposed that our operating room 

planning problem is related to elective surgeries that are performed during the workdays. It is also 

very interesting to see that the model forces the specialties to use the surge capacity around the 

same level even though there is no explicit constraint in this regard in this proposed model. 

 

Figure 5 - Surge capacity used in downstream 1 in the planning horizon 
 

Figure 6 depicts the number of shared ICU beds that specialties use during the planning horizon. 

As we can see in this figure, all shared ICU bed become occupied very quickly at the beginning of 

the planning horizon after three days. It is also very interesting the all specialties use fairly the 

same level of shared ICU beds in the planning horizon. 
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Figure 6 - The number of shared beds in downstream 1 occupied by patients of different specialties 
 

Figure 7 shows the surge capacity used by different specialties in the wards area during the 

planning horizon. Compared to Figure 5, the surge capacity in wards increase more slowly and 

also has less fluctuation. This is because we have more beds in wards and therefore the uncertainty 

in patients’ length of stay in this downstream can be better mitigated using the available resources.  

 

Figure 7 - Surge capacity used in downstream 2 in the planning horizon 
 

Figure 8 shows the number of shared beds in wards used by various specialties. We can observe 

that the cumulative usage increases fairly slowly at the beginning until it reaches the maximum 
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available capacity. Again, we observe that all specialties are fairly using the shared beds during 

the planning horizon. 

 

Figure 8 - The number of shared beds in downstream 2 occupied by patients of different specialties 
 

4.2.4 - Sensitivity analysis 

In this section, we perform some sensitivity analysis on the costs and uncertain parameters of the 

proposed model to observe the behavior of the obtained results and provide managerial insights. 

In Table 4, we have summarized the results obtained by performing sensitivity analysis on costs 

parameter independently. In this table, Column “Parameter” shows the name of the cost parameter 

that we have analyzed. Under Column “Value”, we have different settings for the value of the cost 

parameters. In our sensitivity analysis, we have modified the values different cost parameters by 

𝑐𝑖𝑑
𝑊𝑎𝑖𝑡𝑖𝑛𝑔

≔ 𝛼𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝑐𝑖𝑑
𝑊𝑎𝑖𝑡𝑖𝑛𝑔

, 𝑐𝑂𝑅 = 𝛼𝑂𝑅𝑐𝑂𝑅, 𝑐ℎ
𝑏𝑒𝑑 ≔ 𝛼𝑆𝑢𝑟𝑔𝑒𝑐ℎ

𝑏𝑒𝑑, 𝑐𝑖
𝑃𝑜𝑠𝑡𝑝𝑜𝑛𝑒

=

𝛼𝑃𝑠𝑜𝑡𝑝𝑜𝑛𝑒𝑐𝑖
𝑃𝑜𝑠𝑡𝑝𝑜𝑛𝑒

, and 𝑐𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒 = 𝛼𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒𝑐𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒. The next five columns show the 

contribution of each cost component in the total cost. “Waiting Time” indicator shows the total 

number of days that all the patients waited before they were operated. “No. of Postpone” indicator 

specifies the number of patients who have been postponed to the next planning horizon. Under 

“No. of ORs”, we have the total number of operating rooms that the model has decided to open in 

the planning horizon.  
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Table 4- Sensitivity analysis on cost coefficients. 

Parameter Value 

 Cost components  Indicators 

  

Waiting 

cost 

(%) 

Postpone 

cost (%) 

OR 

cost 

(%) 

Overtime 

cost (%) 

Surge 

capacity 

cost 

(%) 

 
Waiting 

time 

(Day) 

No. of 

postpone  

No. 

of 

ORs 

Overtime 

(min) 

𝛼𝑊𝑎𝑖𝑡𝑖𝑛𝑔 

1   12.49 12.50 21.29 0.18 53.54  79 12 66.8 10 

3  21.41 18.38 17.86 0.11 42.23  44 18 67.0 8 

5  23.75 26.58 15.68 0.09 33.90  31 25 66.2 7 

7  22.10 35.33 14.01 0.07 28.50  23 31 63.8 6 

10   16.98 47.48 12.74 0.06 22.74  11 40 62.2 5 

𝛼𝑂𝑅 

1   12.49 12.50 21.29 0.18 53.54  79 12 66.8 10 

3  11.24 12.21 40.59 0.14 35.82  90 16 59.2 11 

5  10.45 12.88 49.69 0.11 26.87  97 20 54.8 11 

7  10.11 14.92 54.56 0.11 20.29  105 25 51.2 13 

10   9.30 16.63 58.89 0.11 15.07  116 32 47.4 16 

𝛼𝑆𝑢𝑟𝑔𝑒 

1   12.49 12.50 21.29 0.18 53.54  79 12 66.8 10 

3  12.08 38.40 11.70 0.05 37.77  105 45 62.4 5 

5  10.82 53.43 9.31 0.03 26.42  97 62 59.0 3 

7  10.64 60.83 8.11 0.02 20.40  93 72 55.4 2 

10   9.99 67.27 7.66 0.01 15.07  86 80 54.8 1 

𝛼𝑃𝑠𝑜𝑡𝑝𝑜𝑛𝑒 

0.5   9.45 29.03 22.73 0.13 38.66  44 37 62.2 6 

0.75  12.23 16.93 21.96 0.15 48.72  71 19 65.8 8 

1  12.49 12.50 21.29 0.18 53.54  79 12 66.8 10 

1.25  13.17 5.28 21.51 0.17 59.87  93 4 68.8 10 

1.5   14.24 1.99 21.95 0.15 61.66  103 1 69.8 7 

𝛼𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒 

1   12.49 12.50 21.29 0.18 53.54  79 12 66.8 10 

3  11.82 12.70 21.51 0.43 53.54  75 12 67.6 8 

5  12.20 13.31 21.28 0.72 52.49  78 12 67.0 8 

7  12.36 13.07 21.36 0.70 52.52  77 12 67.4 6 

10   12.69 12.80 21.20 1.05 52.26  82 12 67.2 6 

 

The first parameter that we analyze is 𝛼𝑊𝑎𝑖𝑡𝑖𝑛𝑔. Figure 9-a illustrates the contribution of 

different cost components in the total cost for different values of 𝛼𝑊𝑎𝑖𝑡𝑖𝑛𝑔 ∈  {1,3,5,7,10}. The 

interesting point in Figure 9-1 is that the waiting cost has a concave shape. This is because by the 

initial increase in the value of 𝛼𝑊𝑎𝑖𝑡𝑖𝑛𝑔 the total waiting cost increases as expected. However, at 

the same time, the model postpones a higher number of patients to avoid excessive waiting cost. 

Therefore, the increase in the total postpone cost results in decrease of the contribution of the total 
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waiting cost in the total cost. Also, with increase of 𝛼𝑊𝑎𝑖𝑡𝑖𝑛𝑔, the OR cost and surge capacity cost 

decrease due to the growth in the number of postponed surgeries. Perhaps, tracking the amount of 

overtime cost in all the Figures seems a little irrelevant due to its insignificancy, but knowing the 

trend of its change could be useful. In this case, rising the value of 𝛼𝑊𝑎𝑖𝑡𝑖𝑛𝑔 reduces the portion of 

overtime cost gradually. 

 

Figure 9-a - The distribution of cost components for different values of αWaiting 
 

In Figure 9-b, we depict trends for numbers of important indicators in our model for different 

values of 𝛼𝑊𝑎𝑖𝑡𝑖𝑛𝑔. We can observe that increase in 𝛼𝑊𝑎𝑖𝑡𝑖𝑛𝑔 reduces the total number of days that 

patients. This event occurs due to the higher number of postponed surgeries. Also, the number of 

operating rooms and overtime decrease a little in this process. 
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Figure 9-b - The values of cost indicators for different values of 𝛼𝑊𝑎𝑖𝑡𝑖𝑛𝑔 
  

The next parameter we analyze is 𝛼𝑂𝑅 that is used to analyze the sensitivity of the model to the 

fixed opening cost of operating rooms. Figure 10-a and Figure 10-b shows that increase in 𝛼𝑂𝑅 

makes the model postpone more patients while the total opening cost of ORs increases. With fewer 

patients in the system, we have fewer surge capacity used in downstream. In Figure 10-b, we 

observe that the number of waiting days increase strictly. However, Figure 10-a shows that the 

contribution of the waiting cost in the total cost drops as 𝛼𝑂𝑅 increases. This is justified by consider 

the fact that the total OR cost increases excessively with increase in 𝛼𝑂𝑅. Also, Figure 10-b shows 

that the amount of overtime raises because of reduction in the number of operating rooms. 

 

Figure 10-a - The distribution of cost components for different values of 𝛼𝑂𝑅 
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Figure 10-b - The values of cost indicators for different values of 𝛼𝑂𝑅 
 

The next parameter to analyze is 𝛼𝑆𝑢𝑟𝑔𝑒 that stands for the relative importance of the cost of 

surge capacity in downstream compared to other cost parameters. Figure 11-a and 11-b 

demonstrate that increasing 𝛼𝑆𝑢𝑟𝑔𝑒 results in a significant raise in the number of postponed patients 

and its corresponding cost. As depicted in Figure 11-b, more postponed surgeries result in opening 

few operating rooms and therefore we have less total operating room cost in Figure 11-a. With 

fewer scheduled surgeries, one may expect fewer number of waiting days. However, the recent 

indicator does not show a strict increase or decrease in Figure 11-b. This is because while the 

number of postponed surgeries increase, the model opens fewer operating rooms, and therefore the 

waiting time of patients increases from  𝛼𝑆𝑢𝑟𝑔𝑒 = 1 to 𝛼𝑆𝑢𝑟𝑔𝑒 = 3 due to fewer available operating 

room. 
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Figure 11-a - The distribution of cost components for different values of 𝛼𝑆𝑢𝑟𝑔𝑒 
 

 

Figure 11-b - The values of cost indicators for different values of 𝛼𝑆𝑢𝑟𝑔𝑒 
 

We have also analyzed the sensitivity of the model to  

𝛼𝑃𝑜𝑠𝑡𝑝𝑜𝑛𝑒. As Table 4 shows, the values of 𝛼𝑃𝑜𝑠𝑡𝑝𝑜𝑛𝑒 are set to {0.5,0.75,1,1.25,1.5} and not 

{1,3,5,7,10} as in other parameter analysis. This is because we realized the values of 𝛼𝑃𝑜𝑠𝑡𝑝𝑜𝑛𝑒 =

{1,3,5,7,10} does not provide a meaningful analysis since the model does not postpones any 

surgery for 𝛼𝑃𝑜𝑠𝑡𝑝𝑜𝑛𝑒 = 3. This trend obviously continued for higher values of 𝛼𝑃𝑜𝑠𝑡𝑝𝑜𝑛𝑒. 

Therefore, we used 𝛼𝑃𝑜𝑠𝑡𝑝𝑜𝑛𝑒 ∈ {0.5,0.75,1,1.25,1.5}.  
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In Figure 12-a, increasing 𝛼𝑃𝑠𝑜𝑡𝑝𝑜𝑛𝑒 makes the model to postpone fewer surgeries as expected. 

This reduction in number of postpones results in more scheduled patients and therefore more 

waiting cost and surge capacity cost. Also, Figure 12-b shows that the number of opened operating 

rooms gradually increases. However, as in Figure 12-a, the contribution of the OR cost in the total 

cost is almost constant due to the significant increase in the surge capacity cost.  

 

Figure 12-a - The distribution of cost components for different values of 𝛼𝑃𝑜𝑠𝑡𝑝𝑜𝑛𝑒 
 

 

Figure 12-b - The values of cost indicators for different values of 𝛼𝑃𝑜𝑠𝑡𝑝𝑜𝑛𝑒 
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The last parameter in our analysis is 𝛼𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒. In Figure 13-a and Figure 13-b, there are not 

significant changes in cost components and the indicators for different values of 𝛼𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒. The 

only noteworthy point is that for higher volume of  𝛼𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒 we have less amount of overtime. 

 

Figure 13-a - The distribution of cost components for different values of 𝛼𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒 
 

 

Figure 13-b - The values of cost indicators for different values of 𝛼𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒 
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distributions and their actual numbers when we modify the uncertain parameters we considered in 

our model.  

Next, we intend to analyze the sensitivity of the model to the patients’ length of stay and their 

surgical durations. To do so, in the revised stochastic programming model, we set 𝑡𝑖𝜔 ≔

𝛼𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝜔  and 𝑙𝑖ℎ𝜔 ≔ 𝛼𝐿𝑂𝑆𝑙𝑖ℎ𝜔. Here, 𝛼𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 and 𝛼𝐿𝑂𝑆 are the control parameters that we 

use for sensitivity analysis. Also, as explained in Chapter 2, 𝑡𝑖𝜔 and 𝑙𝑖ℎ𝜔 denote the patients’ 

surgical durations and length of stay, respectively. In our sensitivity analysis, we set 

𝛼𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝛼𝐿𝑂𝑆 ∈ {0.5,0.75,1,1.25,1.5}. We have presented the results of both experiments in 

Table 5. 

Table 5- Sensitivity analysis on the coefficients of uncertain parameters. 

Parameter Value   
Waiting 

cost (%) 

Postpone 

cost (%) 

OR 

cost 

(%) 

Overtime 

cost (%) 

Surge 

capacity 

cost (%) 

Waiting 

time 

(day) 

No. of 

postpone  

No. 

of 

ORs 

Overtime 

(min) 

𝛼𝐷𝑂𝑆 

0.5   12.35 13.40 21.41 0.00 52.85 78 12 67.0 0 

0.75  12.81 11.64 21.30 0.00 54.25 82 11 66.8 0 

1  12.49 12.50 21.29 0.18 53.54 79 12 66.8 10 

1.25  14.50 14.08 21.05 3.27 47.09 96 14 70.8 158 

1.5   17.78 18.44 20.95 4.62 38.21 121 20 77.6 307 

𝛼𝐿𝑂𝑆 

0.5   31.47 0.52 54.40 0.43 13.18 92 0 70.6 10 

0.75  20.82 3.55 36.26 0.31 39.06 85 2 69.0 11 

1  12.49 12.50 21.29 0.18 53.54 79 12 66.8 10 

1.25  10.94 14.93 18.56 0.13 55.44 77 16 66.4 8 

1.5   10.23 15.55 15.35 0.11 58.76 87 19 65.4 8 

 

In Figure 14-a and Figure 14-b, we observe the effects of change in the surgical durations. As 

expected, the model gradually increases the number of postpones surgeries and therefore the surge 

capacity cost decreases. Also, the overtime cost increases significantly due to the increase in 

surgical times. Moreover, due the limited available times in operating rooms, the model schedules 

the patients less than before and therefore the waiting time and its cost increase.  
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Figure 14-a - The distribution of cost components for different values of 𝛼𝐷𝑂𝑆 

 

 

Figure 14-b - The values of cost indicators for different values of 𝛼𝐷𝑂𝑆 
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increased. This is because there is a trade-off between the number of opened operating rooms and 

the number of waiting days; Moving from 𝛼𝐿𝑂𝑆 = 1.25 to 𝛼𝐿𝑂𝑆 = 1.5 has been caused fewer 

number of opened operating rooms and therefore the patients’ waiting time has increases.  

 

Figure 15-a - The distribution of cost components for different values of 𝛼𝐿𝑂𝑆 
 

 

Figure 15-b - The values of cost indicators for different values of 𝛼𝐿𝑂𝑆 
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Chapter 5 

Conclusion and future work 

In this thesis, we studied an operating room planning problem with the goal of evaluating the effect 

of pooling the downstream beds among specialties. In our problem, a limited number of beds are 

available for sharing in ICU and wards. The main sources of uncertainty is the randomness of 

surgical times and length of stay. We proposed a two-stage stochastic integer programming model 

and embedded it in a sample average approximation algorithm. In the first stage of our model, the 

decision maker decides on the allocation of the non-shared beds among specialties, and the 

allocation of surgeries to operating rooms. Then, in the second stage, after the realization of 

uncertain parameters, he/she must decide on the allocation shared ICU and wards beds to 

specialties during the planning horizon, how many surge capacity beds are required for each 

specialty in downstream, and also compute the overtime incurred in operating rooms. Our model 

intends to minimize the total cost including patients’ waiting cost and postpone cost, fixed cost of 

opening operating rooms, the cost of surge capacity in downstream, and overtime cost. 

We performed extensive computational results with three goals: 1) evaluating the effect of 

different pooling policies for beds in downstream on the performance of the surgery planning, 2) 

evaluating the efficiency of the proposed sample average approximation algorithm, and 3) 

evaluating the behavior and the stability of the proposed model for a large set of instances with 

various cost and uncertainty parameters. 

In the first set of our computational experiments, we compared the results of three pooling 

policies, namely, No Sharing, Midlevel Sharing, and Full Sharing. In these three strategies, we 

allow the sharing of 0%, 50%, and 100% of the available beds. Our computational results indicated 

that the two latter policies lead to 11.29% and 12.38% improvement compared No Sharing policy 

on average, respectively. Also, in some large instances, these improvements were respectively as 

high as 19.53% and 16.97%.  

In the second part of our computational experiments, we tuned the parameters of our SAA 

algorithm by depicting the values of optimality gaps, RSD, and solution time for different values 
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of the number of scenarios in lower and upper bound problems and also number of iterations in 

SAA. 

In the third set of instances, we focused on Midlevel policy and evaluated the efficiency of the 

proposed SAA algorithm with the tuned parameters. Our results indicated that the proposed 

approach finds near-optimal solutions with an absolute optimality gap of 0.04%. Also, the average 

value of value of stochastic solution (VSS) is 17.43%. This value shows that the proposed 

stochastic programming approach outperforms its corresponding deterministic model by 17.43%. 

Moreover, VSS varies between 26.70% and 81.99% in instances with four weeks of planning 

horizon and 4 to 7 specialties. We also provided some insightful figure on the dynamic of shared-

beds surge-capacity allocation to specialties. It was very interesting to observe the sinusoidal trend 

of ICU bed usage and also the fair allocation of shared beds to specialties. 

In the last part of computational experiments, we performed a sensitivity analysis on various 

cost and uncertain parameters. We justified the behavior of cost components and system’s 

indicator in different settings. 

In this research, we focused on downstream pooling in an operating room planning problem. 

Future research can focus on an integrated surgery planning and scheduling with open scheduling 

strategies where surgeons are allowed to perform surgeries in multiple operating rooms. Moreover, 

the concept of pooling can be studied for upstream resources as well as post anesthesia care unit. 

It is also interesting to study our problem in a robust context and focus on developing a two-stage 

robust optimization model. 
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