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Abstract：Detonation wave surface is composed of lead shock and reactive front, which are difficult 14 

to be measured simultaneously, so it is necessary to reconstruct the detonation surface. In this study, 15 

a reconstruction method is proposed for predicting lead shock from reactive front to obtain a full 16 

cellular detonation surface. The reconstruction uses a convolutional neural network (CNN) with the 17 

advantages of feature extraction and data dimensionality reduction, and the proposed method has 18 

been verified by data from numerical simulations in this work. The results indicate that this method 19 

performs much better than the traditional multi-layer perceptron (MLP), benefiting from the 20 

advanced architecture of CNN. Furthermore, effects of hyper-parameter choice have been tested, 21 

and the generalization capability of trained CNN for different activation-energy cases are also 22 

discussed.  23 
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1. Introduction 26 

Combustion is an important approach for energy conversion, playing a crucial part of energy 27 

industry. The industry is exploring a combustion mode with the advantage of high-efficiency and 28 

environmental-friendly constantly. A detonation wave is an extreme combustion process with rapid 29 

release of energy behind a strong shock wave front. Due to its destructive nature from the severe 30 

pressure rise and chemical reaction heat release, the detonation phenomenon has attracted wide 31 

interest for safety engineering, terrestrial and astrophysical explosions [1-4]. On the other side, 32 

benefiting from its pressure gain and intense energy release, the detonation process has attracted 33 

increasing attention for propulsion applications, leading to several types of detonation-based 34 

engines [5-11]. These engines have the potential to be a revolutionary technology in aerospace, and 35 

their development requires a renewed effort for detonation research to aid interpretation of 36 

detonation flow data and unsteady dynamics of detonation in various combustors. 37 

Gaseous detonation waves are inherently unstable, consisting of transverse shocks sweeping 38 

across the detonation wave front and thus, forming cellular instabilities. By analyzing the records 39 

of triple point trajectories using the smoked foil technique, quantitative measurement of 40 

characteristic detonation cell width could intuitively reflect cellular instabilities. The cell width 41 

represents a key dynamic parameter and provides a characteristic length scale of detonation wave 42 

[12]. Correlation models on the cell width have been proposed to obtain this dynamic parameter 43 

with parameters determined from chemical kinetics [13-15]. A recent study also applied the deep 44 
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artificial neural network approach to develop a model for detonation cell size prediction [16]. 45 

The traditional experimental techniques used to observe the gaseous detonation dynamics are 46 

the smoked foils technique, recording tracks of triple points showing the cellular patterns, and high-47 

speed schlieren photography, visualizing the cellular detonation flow structure. Recently, some 48 

advanced optical technologies, such as PLIF (Planar Laser Induced Fluorescence) [17-21] or CTC 49 

(Computed Tomography of Chemiluminescence) [22-24], have been developed for combustion 50 

diagnosis, which have been employed to examine the inside cellular structure, shedding light on 51 

research beyond the cell analysis of static smoked foils. Advanced optical technologies, such as 52 

PLIF or CTC, are usually designed to capture the combustion front by capturing 53 

a particular transition to deduce the concentration field of a particular species, so schlieren 54 

photography is still necessary simultaneously to get the complete wave surface. Furthermore, 55 

although CTC has proven its potential to study and reconstruct three-dimensional (3D) flame 56 

structures, corresponding 3D shock measurement technology is still not available. To describe fully 57 

the unstable cellular detonation structure which composes of both the reaction front and lead shock, 58 

a reconstruction method using the information from the combustion measurement is desirable to 59 

obtain the lead shock shape and position. 60 

Using the basic theory of compressible reaction flow, the parameters of post-shock heat release 61 

could be calculated easily given the lead shock and pre-shock conditions. However, the reverse 62 

process, i.e. the calculation from the heat release region or flame to the lead shock, cannot be easily 63 

achieved to close the coupling. Nowadays, large datasets of detonation flow fields have been 64 

generated from numerical simulation and experiments, which provides enough data for AI 65 

(Artificial Intelligence) to analyze and figure out the physical laws. Especially for machine learning, 66 

https://www.sciencedirect.com/topics/engineering/detonation
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whose application is becoming increasingly common in energy field [25-29]. Using machine 67 

learning techniques thus provide also a good opportunity to develop a new strategy for detonation 68 

modelling. An example is the study reported in [30] for predicting the wave configurations of 69 

cellular detonations. The method is based on feedforward artificial neural network (ANN) or the 70 

MLP (Multi-Layer Perceptron), but POD (Proper Orthogonal Decomposition) modal analysis is 71 

used to extract the features of the flow fields, which in turn becomes involved and requires big data 72 

to be accumulated for increasing accuracy. Another preliminary work [31] uses only MLP to 73 

construct the detonation surface, demonstrating the MLP performs much better than classic 74 

regression methods. However, due to the large number of parameters, the traditional MLP approach 75 

is hard to cover the two-dimensional characteristics of the flow field for more accurate 76 

reconstruction. Fortunately, CNN (Convolutional Neural Network) has the advantages of parameter 77 

sharing and sparsity of connection, and it is expected to provide a solution to detonation wave 78 

surface reconstruction with more spatial physics consideration.  79 

In this investigation, one new reconstruction method is proposed based on a deep learning-based 80 

network, i.e., CNN (Convolutional Neural Network), which is trained to build up the linkage of the 81 

lead shock front and reactive front. As a preliminary step, unstable detonations obtained by solving 82 

numerically the reactive Euler equations are used to train the CNN, which provides mapping and 83 

feedback from the heat release zone to the lead shock. The choice of hyper-parameters and the 84 

generalization capability of the proposed CNN approach for reconstructing shock front motion are 85 

discussed. The proposed CNN-based shock front reconstruction method is found to be a general 86 

method of reconstructing detonation surfaces, and in principle is not restricted by the physical and 87 

chemical reaction models used in this work.  88 
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2. Datasets and reconstruction method 89 

2.1 Datasets 90 

 The structure of two-dimensional (2D) cellular detonations are modeled by the reactive Euler 91 

equations with a one-step Arrhenius kinetics and the non-dimensional governing equations are given 92 

as follows:   93 
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All flow variables have been made dimensionless by reference to the uniform unburned state 94 

ahead of the detonation front, 95 
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The variables 𝜌, 𝑢, 𝑣, 𝑝, 𝑒 and 𝑄 are the density, velocities in x- and y- direction, pressure, total 96 

energy, and the amount of chemical heat release, respectively. For the chemical reaction,  is the 97 

reaction progress variable which varies between 0 (for unburned reactant) and 1 (for product). The 98 

reaction is controlled by the activation energy Ea and the pre-exponential factor k, which is chosen 99 

to define the spatial and temporal scales. The half-reaction zone length L1/2, i.e. the distance required 100 

for half the reactant to be consumed in the steady ZND detonation wave, is scaled to unit length, 101 
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which is controlled by pre-exponential factor k with the different Ea [32]. Ea and corresponding k 102 

are shown in Table. 1. 103 

Table 1 Pre-exponential factor k used in different cases. 104 

Ea k 

10 3.64 

14 6.59 

16 8.92 

18 12.09 

20 16.44 

22 22.43 

24 30.70 

26 42.15 

Cartesian uniform grids are adopted to discretize the governing equations, which are solved 105 

numerically using the MUSCL-Hancock scheme with Strang’s splitting [33]. The 2D cellular 106 

detonation fields are obtained from the simulation results of detonation wave propagating in a 107 

rectangular tube. For the simulation boundary conditions, both the upper and bottom walls of the 108 

tube use the slip boundary conditions, while zero-gradient boundary conditions are implemented on 109 

the left and the right boundaries. The whole tube is initialized by static unburned gas with unity 110 

density and pressure. The ignition zone with high temperature and pressure is used to initiate the 111 

detonation, and a self-sustained detonation propagating at nearly Chapman-Jouguet velocity is 112 

generated after traveling a certain distance. In the simulations, the dimensionless parameters Q = 50 113 

and γ = 1.2 are adopted, which are used traditionally in numerical simulations as canonical values 114 

to investigate detonation wave phenomena [34]. About 10 grids per L1/2 is used for the following 115 

simulations of cellular detonations, which is sufficient to simulate the unstable structures for the 116 

activation energy Ea considered in this work. A resolution study on the same results was previously 117 

conducted and reported in [31], indicating that this mesh scale is fine enough to reconstruct the 118 
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shock front. A sufficiently large domain width is set to 80 to ensure enough detonation cells are 119 

present. Corresponding to the grid number along y-direction, we get 801 pairs of parameter values 120 

for each transient flow field, i.e. one transient detonation field can generate 801 training samples. 121 

 122 

Fig. 1 Pressure (left) and temperature (right) fields of cellular detonations with Ea = 10 (a) and 20 123 

(b), and schematic diagram of wave surface division (c).   124 

The stability of the detonation is sensitive to the activation energy Ea. In this study, the training 125 

set is composed of simulation results with Ea = 10 or 20, the corresponding CNN is named as Ea-10 126 

CNN and Ea-20 CNN, respectively. The pressure and temperature fields with Ea = 10 and 20 are 127 

shown in Fig. 1. The self-sustained detonations are featured by cellular structures made up of 128 

reactive front, lead shock and transverse waves. The interaction between the transverse and lead 129 

shock will distort the reactive front and the shock front. This complex dynamic response makes the 130 

distance between the reactive front and the lead shock difficult to predict theoretically. In the 131 

partially zoomed flow field as illustrated by Fig. 1(c), the black dashed curve represents the reactive 132 

front, corresponding to the reaction index  = 0.5, while the white dashed curve refers to the shock 133 

front, corresponding to the location achieving twice of pre-shock pressure. In essence, the goal of 134 

the shock front reconstruction is to predict the location of the white dashed curve according to the 135 

reactive front parameters of the black one.  136 
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Numerical results show that the detonation will become unstable and the lead shock front will 137 

be more distorted when the activation energy increases to 20. According to our recent study [31], 138 

this makes the relation of the shock and reactive front more involved and raises the difficulty to 139 

reconstruct the shock. Moreover, only the red circle on the reactive front (black dashed line in Fig. 140 

1(c)) is fed as inputs into the multi-layer perceptron in [31], neglecting the effects of the neighboring 141 

reactive front on the lead shock. In order to consider the influence of 2D transverse waves on the 142 

lead shock, more spatial features on the reactive front should be provided to the neural network. 143 

Motivated by this purpose, the wave surface is divided into multiple parts, as shown in Fig.1(c). The 144 

white circle on the lead shock front represents the point to be reconstructed. Each sample ensures 145 

that there are K grid points above and below the “red point”. For this purpose, the grids of reactive 146 

front on the upper and lower boundaries are mirrored respectively, so that all points to be 147 

reconstructed can still correspond to 2K+1 input feature grids. The data set consisting of many 148 

transient shock-reactive front data is generated from the transient detonation flow fields from 149 

simulations. In this study, we use M to denote the number of transient detonation flow fields. For 150 

most cases, M is equal to 80. Furthermore, the data set is randomly divided into the training set and 151 

validation set, with the ratio 75% and 25%. The validation set can provide a guide for adjusting the 152 

CNN architecture and its hyperparameters. In this study, K is equal to 20 in most of the cases. A 153 

few cases with different K values aim to test the effects of input grid numbers on the reconstruction.  154 

2.2 CNN architecture and training settings 155 

  Due to the input dimension is too large, it is difficult for the traditional MLP method [31] to 156 

take the 2D spatial feature of reactive front into account, which may hinder the further optimization 157 
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of reconstruction results with MLP approach. For CNN, the convolution combined with the pooling 158 

operation is an effective method of feature extraction and dimensionality reduction, which makes it 159 

feasible to input more spatial features into the neural networks. The CNN architecture in this study 160 

contains the convolution part and the fully connected layer (FCL) as shown in Fig. 2. The 2D feature 161 

data include six input features on 2K+1 grid points, i.e. density ρ, temperature T, velocity u, v and 162 

corresponding gradients of temperature and density, T' = ∂T/∂x, ρ' = ∂ρ/∂x. These six features have 163 

been proven to achieve good reconstruction results for MLP method [31]. Practically, the flame 164 

surface information obtained from experiment results are usually very limited and too many input 165 

features will cause difficulties in CNN training. More input features may lead to a better 166 

reconstruction performance, but it will also increase the difficulty of practical applications. So, this 167 

study still uses six major features as input. Convolution layers are set 16 1D convolution kernels 168 

with a size of 3 and following a max-pooling layer aim to reduce the dimensionality of the feature 169 

maps. Two same convolution-pooling layers form the convolution part. After the convolution part, 170 

fewer spatial information and more physical feature combination can be provided for the FCL to 171 

reconstruct the shock front. Take K = 20 as an example, neuro-computed by the convolution part, 172 

the grid point dimension of the data is reduced from 41 to 8, while the feature dimension is increased 173 

from 6 to 16, which is conducive to the subsequent prediction of LCNN. Then the 2D feature maps 174 

are converted into the 1D vector by the flatten layer and fed into the fully connected layers, which 175 

will then figure out the prediction value LCNN, i.e., the distance between the reactive front and leak 176 

shock. The FCL is composed of three hidden layers and the number of neurons in each layer is 128, 177 

64 and 32, respectively. For different cases, the CNN architecture remains unchanged in this study. 178 

A suitable activation function can enhance the nonlinear expression ability of the neural networks. 179 
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In this study, the activation function all use the LeakyReLU [35], whether for the convolutional 180 

layer or the fully connected layer.  181 

 182 

Fig. 2 Schematic of the convolutional neural network (CNN). 183 

 To speed up the training and improve the performance of CNN, normalization of the input data 184 

is carried out, which can zero out the mean and normalize the variance. Batch Normalization is 185 

applied during each gradient descent, which has been proven to be effective for avoiding the gradient 186 

vanishing and the overfitting [36]. The loss function adopts the mean square error (MSE) function 187 

as listed in Eq. (7), where N stands for the total number of the training sample. In order to intuitively 188 

evaluate the reconstruction accuracy, the relative error between the CNN reconstruction length LCNN 189 

and the true distance between shock and reactive front Ltrue is defined as shown in Eq. (8). 190 

 
𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸 =  

1
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 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
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 Training settings often play an important role in the prediction performance of CNN. In this 191 

study, we use the Nadam algorithm [37] to perform the gradient descent optimization and update 192 

the weight and bias, which is useful to accelerate convergence. For all the neurons and convolution 193 

kernels, the weight and bias are initiated by the method by Glorot and Bengio [38], and L2 194 

regularization is added to the neurons to avoid overfitting. To check the training effect of CNN, the 195 
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average error has been calculated by meaning the absolute value of error on each epoch. Fig. 3 196 

demonstrates the loss value and average error in each epoch of the Ea-20 network. The results 197 

demonstrate that the loss function has converged to a quite small value after 400 epochs. On the 198 

other hand, the learning curve of the training set and validation set almost overlap, indicating that 199 

there is hardly any overfitting phenomenon for the training process.  200 

 201 

Fig. 3 Loss (a) and error (b) curve of the Ea-20 CNN.  202 

 203 

3. Results and discussion 204 

3.1 Basic reconstruction results 205 

 206 

Fig. 4 Reconstructed shock (red curve in pressure field) and relative error of shock distance with 207 

Ea = 10 (a) t = 85, (b) t = 90.  208 

 For testing the reconstruction performance of CNN, the test data used consists of transient 209 
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detonation flow fields at the later moments, which is independent of the training & validation set. 210 

Typical reconstruction results from the test set for the cases of Ea = 10 are shown in Fig. 4. It is 211 

observed that the reconstructed shock, plotted by the red curve in the flow fields, locates around the 212 

simulated lead shock, demonstrating that a well-trained CNN can predict the shock shape influenced 213 

by the reactive front precisely. Results of two different instants are displayed with different locations 214 

of transverse waves, and both of them illustrate good reconstruction result. The error is below 5% 215 

at most part of the surface, and the large errors usually appear, at where the transverse waves collide 216 

with each other. For the reconstructed detonation surfaces of Fig. 4, the mean relative errors are 217 

2.25% and 2.35%, demonstrating good performance in predicting the shock distance.  218 

 219 

Fig. 5 Relative error of shock distance with Ea = 10, t = 85 (a) relative error frequency distribution 220 

histogram, (b) boxplot. 221 

 According to the statistical results, more than 600 results among 801 pairs of data have an 222 

absolute value of the relative error of less than 3.5%. The boxplot of Fig. 5(b) shows the dispersion 223 

and skewness of the error data through their quartiles. Where, quantile refers to arrange all values 224 

from small to large and divide them into four equal parts. The value at the position of three dividing 225 

points are called quartile, marked as q1, q2, q3. The upper and lower boundaries of box are 226 

determined by q1 and q3 respectively and the outliers are set to be less than 𝑞1 − 3∆𝑞 or more than 227 

𝑞3 + 3∆𝑞 in this study. Fig. 5(b) indicates the box is quite narrow, revealing that the error data is 228 
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concentrated in a small range. On the whole, the outliers are mostly within ±20%, which still 229 

supports the reasonable performance of this CNN-based reconstruction approach. 230 

 231 

Fig. 6 Reconstructed shock (red curve in pressure field) and relative error of shock distance with 232 

Ea = 20 (a) t = 85, (b) t = 90.  233 

 234 

Fig. 7 Relative error of shock distance with Ea = 20, t = 85 (a) relative error frequency distribution 235 

histogram, (b) boxplot. 236 

Typical reconstruction results from the test set for the cases of Ea = 20 are shown in Fig. 6 and 237 

the corresponding relative error of Fig. 6(a) is shown in Fig. 7. Due to increased activation energy, 238 

the detonation surface becomes more unstable, with curved shock and less but strong transverse 239 

waves. Generally speaking, the well-trained CNN can predict the shock precisely, although the 240 

magnitude of reconstruction error increases compared with the results with Ea = 10. The averaged 241 

relative errors are 5.25% and 6.03% in Fig. 6(a) and 6(b), respectively. Similar to the last case, a 242 

large error appears, at where the transverse waves collide. In future investigation, adding the 243 
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gradient along y-axis as an input feature may be helpful to reduce these local errors. Like the results 244 

of Ea = 10, most of the errors are concentrated in a small interval (within ±5%). In contrast to Ea-10 245 

networks, however, the outliers and the quartiles of Ea-20 networks reconstruction error are larger, 246 

indicating that the error data of Ea = 20 is more dispersed. 247 

3.2 Effects of hyper-parameter choice  248 

The results in Sec. 3.1 are obtained by the default hyper-parameters, i.e. M = 80 and K = 20, 249 

which represent the number of input transient flow fields and the number of input grid points, 250 

respectively. The number of training data often plays a crucial role in the prediction performance of 251 

CNN. To assess the effect of the training set size, a comprehensive study has been carried out to 252 

ensure that 80 transient flow fields are enough to make the CNN achieve a good performance. The 253 

number of transient flow fields in the training & validation set, i.e. M, varies from 40 to 100 and the 254 

corresponding average reconstruction errors are listed in Table 2. The results show that the 255 

reconstruction error does decrease with larger M. But when M increases from 80 to 100, the 256 

reconstruction error changes little, indicating that M = 80 is sufficient to make CNN achieve 257 

satisfactory performance. 258 

Table 2 Average reconstruction errors for Ea = 20 in the cases of different M. 259 

M Average error 

40 10.16% 

60 7.24% 

80 5.79% 

100 5.45% 

The robustness of hyper-parameters is also a critical factor for the application and the 260 

promotion of CNN. Another parameter K, the number of input grid points is also an important hyper-261 
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parameter to be discussed, corresponding to the spatial scale of the features provided to the CNN. 262 

K is set to 20 in the previous cases, i.e. feeding the feature on 2K+1 = 41 grids into CNN. Here we 263 

change the value of 2K+1 from 21 to 81. To facilitate comparison with the previous results, the 264 

architectures of convolution part and fully connected layers keep the same as mentioned by Sec. 2.2, 265 

although different K values will change the total amount of CNN training parameters. Then, the 266 

CNNs are trained and tested through the same settings as mentioned above. The average errors of 267 

reconstruction results are shown in Fig. 8. What stands out in this figure is the insensitivity of 268 

reconstruction error to the different values of K. Regardless of Ea = 10 or 20, the reconstruction 269 

errors only fluctuate in the range of 0.8% while 2K+1 varies from 21 to 81. These results show that 270 

the CNN is robust for the selection of K, which further supports the application of this CNN-based 271 

reconstruction approach. 272 

 273 

Fig. 8 Error of reconstruction results with different K. 274 

3.3 Generalization for reconstruction at different activation energies 275 

The primary problem of shock front reconstruction based on CNN is the generalization 276 

capability. Although a well-trained network can accurately reconstruct the lead shock surface given 277 

a fixed activation energy Ea, further tests should be performed to examine the generalization 278 

capability at different activation energies, which may vary in practical applications. If the proposed 279 
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method is robust in the lead shock reconstruction for different activation energies, it will be a flexible 280 

and powerful tool for future application on shock front reconstruction for detailed chemical 281 

reactions based numerical simulation and experimental results. 282 

 283 

Fig. 9 Error of reconstruction results of four different Ea test set. 284 

 285 

 286 

Fig. 10 Average reconstruction errors and standard deviation in the cases of each Ea. 287 

Based on the well-trained CNN with Ea = 20, the shock front with six other activation energies, 288 

Ea = 14, 16, 18, 22, 24, 26, are reconstructed. The test set for each Ea has consisted of 50 different 289 

transient flow fields extracted from different instants, and the testing results are shown in Fig. 9. For 290 

different samples of each Ea, the relative error fluctuates around a mean value. The mean value and 291 

the standard deviation of error for each Ea have been plotted in Fig. 10. Generally speaking, the 292 

relative error increases when Ea deviates from 20, the activation energy used to train the CNN. In 293 
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the cases of Ea = 16~22, all the error points locate below 10% and the average errors are less than 294 

8%. In contrast, the errors are relatively higher and more scattered in the cases of Ea = 14, 24 and 295 

26. Especially for the last two high activation energy flow fields, the average errors have a noticeable 296 

growth as shown in Fig. 10. This should be attributed to the fact that the mapping relationships 297 

between the reactive front and the corresponding lead shock are very sensitive to Ea. For the high 298 

Ea flow fields, the detonation waves are more unstable, which raises the difficulty to reconstruct the 299 

shock. But in general, from the perspective of reconstruction error, the well-trained CNN still has a 300 

certain generalization ability for flow fields with different activation energies.  301 

Table 3 Testing results of same Ea as training set by CNN and MLP. 302 

 MLP CNN 

Ea-10  4.10% 2.37% 

Ea-20 7.04% 5.79% 

Table 4 Generalization testing results of each Ea by CNN and MLP based on Ea = 20. 303 

 MLP CNN 

Ea = 14 10.83% 10.82% 

Ea = 16 8.77% 7.86% 

Ea = 18 

Ea = 22 

7.72% 5.65% 

7.09% 7.13% 

Ea = 24 10.21% 14.40% 

Ea = 26 12.54% 14.98% 

In Ref. [31], the multi-layer perceptron (MLP) with two hidden layers is used to reconstruct 304 

the shock surface. Compared with the results of the MLP approach [31], CNN has a better 305 

reconstruction performance. For the cases of Ea = 10 and Ea = 20, i.e. the Ea of testing sets are the 306 

same as the training set, the average reconstruction error reduced by nearly two percentage points 307 

as listed in Table 3. This should be attributed to the principle superiority of this CNN-based approach, 308 

which covers the impacts of the reactive front on the neighboring lead shock instead of only the lead 309 
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shock exactly ahead on MLP methods. Meanwhile, the convolution layer with the advantage of 310 

feature extraction is also a contributing factor for better prediction performance. Table 4 311 

demonstrates the generalization testing results of other Ea by CNN and MLP based on Ea = 20. The 312 

results reveal that CNN has better generalization performance for flow fields with lower Ea, but 313 

there is a greater error for the cases with higher Ea whose mechanism is still unclear. Generally 314 

speaking, the CNN approach has better prediction performance and considerable generalization 315 

capability compared with the MLP method, which is more promising for future application on the 316 

reconstruction for detailed chemical reactions based numerical simulations or even experimental 317 

results. 318 

 319 

4. Concluding remarks 320 

A reconstruction method based on CNN has been proposed and tested through 2D numerical 321 

results of cellular detonations. The reactive front features are used as input variables and the lead 322 

shock location is regarded as the output of CNN. With the help of reasonable data sets and advanced 323 

training methods, the proposed method based on CNN demonstrates satisfactory performance to 324 

predict lead shock evolution from details of the reactive front. The testing results show that the well-325 

trained CNN is able to reconstruct the position of the leading shock front with a quite low relative 326 

error. For Ea-20 CNN, the effects of training data size are also studied by analyzing the testing error 327 

of well-trained CNN. A hyper-parameter discussion on the number of input grids, i.e. K, is also 328 

carried out. The reconstruction results reveal that this CNN-based approach is robust to the selection 329 

of the hyperparameter K. 330 



Page 19 of 23 

 

This present method works and performs better than the previous classical MLP method. This 331 

should be attributed to the principle superiority of the CNN formulation, which feeds details of the 332 

neighboring reactive front into the neural network, instead of just considering the features of the 333 

reactive front exactly ahead of the lead shock. For detonations with two activation energy values, 334 

compared with the results from the MLP method, the CNN-based approach makes the reconstruction 335 

error reduced by nearly 2%. Meanwhile, the well-trained CNN still has a certain generalization 336 

capability for detonation flow fields with different activation energies, although the improvement in 337 

generalization performance is quite limited compared to the MLP method. 338 

The method could be extended to use in other circumstances, providing a new modelling tool 339 

for detonation research. This shock reconstruction method is universal and expandable. It should 340 

not be limited to 2D, but capable of reconstructing 3D shock. Certainly, for the application to 3D 341 

shock reconstruction, detailed chemical reactions based numerical simulations, and even the 342 

experimental results, it should depend on more comprehensive and detailed data sets and other 343 

advanced technologies in machining learning. This should be further considered in the future 344 

research. 345 
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[20] K. Chatelain, R. Mével, J. Melguizo-Gavilanes, A. Chinnayya, S. Xu, D.A. Lacoste, Effect of 

incident laser sheet orientation on the OH-PLIF imaging of detonations. Shock Waves, In press, 

https://doi.org/ 10.1007/s00193-020-00963-y 

 



Page 22 of 23 

 

 

[21] S.B.Rojas Chavez, K.P. Chatelain, T.F. Guiberti, R. Mével, D.A. Lacoste, Effect of the 

excitation line on hydroxyl radical imaging by laser induced fluorescence in hydrogen detonations, 

Combust. Flame 2021; 229: 111399. 

[22] J. Floyd, P. Geipel, A.M. Kempf, Computed Tomography of Chemiluminescence (CTC): 

Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame, Combust.  

Flame 2011; 158: 376-391. 

[23] T. Yu, C. Ruan, H. Liu, W. Cai, X. Lu, Time-resolved measurements of a swirl flame at 4 kHz 

via computed tomography of chemiluminescence, Appl. Opt. 2018; 57: 5962-5969. 

[24] C. Ruan, T. Yu, F. Chen, S. Wang, W. Cai, X. Lu, Experimental characterization of the 

spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed 

tomography of chemiluminescence, Energy 2019; 170: 744-751. 

[25] L. Wang, G. Wang, X. Ning, et al. Application of BP neural network to the prediction of coal 

ash melting characteristic temperature, Fuel 2020; 260: 116324. 

[26] L. Zhang, Y. Xue, Q. Xie, Z. Ren. Analysis and neural network prediction of combustion 

stability for industrial gases. Fuel 2021 287: 119507. 

[27] Ö. Böyükdipi, G. Tüccar, H. S. Soyhan. Experimental investigation and artificial neural 

networks (ANNs) based prediction of engine vibration of a diesel engine fueled with sunflower 

biodiesel–NH3 mixtures, Fuel 2021; 304: 121462. 

[28] J. Huang, H. Liu, W. Cai, Online in situ prediction of 3-D flame evolution from its history 2-

D projections via deep learning, J. Fluid Mech. 2019; 875: R2. 

[29] K. Malik, M. Żbikowski, A. Teodorczyk, Detonation cell size model based on deep neural 

network for hydrogen, methane and propane mixtures with air and oxygen, Nucl. Eng. Technol.2019;  

51: 424-431. 

 



Page 23 of 23 

 

 

[30] Y. Zhang, L. Zhou, H. Meng, H. Teng, Reconstructing cellular surface of gaseous detonation 

based on artificial neural network and proper orthogonal decomposition, Combust. Flame 2020; 212: 

156–164. 

[31] L. Zhou, H. Teng, H.D. Ng, P.F. Yang, Z.L. Jiang, Reconstructing shock front of unstable 

detonations based on multi-layer perceptron, arXiv 2021; 2103.12912. 

[32] Y. Zhang, L. Zhou, J. Gong, H.D. Ng, H. Teng, Effects of activation energy on the instability 

of oblique detonation surfaces with a one-step chemistry model, Phys. Fluids. 2018; 30:106110. 

[33] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd ed., Springer, 

Berlin, Germany, 2009. 

[34] H.D. Ng, F. Zhang, Detonation instability, in: F. Zhang (Ed.), Shock Wave Science and 

Technology Library, Vol. 6, Springer, Berlin, Heidelberg 2012: 107-212. 

[35] A.L. Maas, A. Y. Hannun, and A.Y. Ng, Rectifier nonlinearities improve neural network 

acoustic models, Proc. of the 30th Int. Conf. on Machine Learning 2013; 30 (1): 3. 

[36] S. Ioffe, C. Szegedy. Batch normalization: Accelerating deep network training by reducing 

internal covariate shift, Proc. 32nd International Conference on Machine Learning PMLR 2015; 37: 

448-456. 

[37] T. Dozat. Incorporating Nesterov Momentum into Adam, Int. Conf. Learning Representations 

ICLR Workshop, San Juan, Puerto Rico, 2016; May 2-4. 

[38 ] X. Glorot, Y. Bengio. Understanding the difficulty of training deep feedforward neural 

networks. Proc. 13th International Conference on Artificial Intelligence and Statistics, PMLR 2010; 

9: 249-256. 

 




