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Nomenclature 

= Mach stem height 

= maximum Mach stem height 

= intersection point for triple-point trajectories of insert shock wave and Mach stem at the i-th wedge 

= Mach number of incident shock wave 

= quantity of small wedges 

= tip of the i-th wedge 

= dimensionless wall curvature radius 

= Mach reflection triple-point of insert shock wave at the i-th wedge  

= Mach reflection triple-point of Mach stem 
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= specific heat ratio 

= wedge angle difference 

= wall tangential angle 

= wall tangential angle for maximum Mach stem height 

= wall tangential angle for Mach reflection-regular reflection transition 

= planar wedge angle 

= the i-th wedge angle 

= critical wedge angle of Mach reflection calculated by the two-shock theory 

= critical wedge angle of Mach reflection calculated by the three-shock theory 

= triple-point trajectory angle 

= triple-point trajectory angle for insert shock wave at the i-th wedge 

= triple-point trajectory angle for Mach stem 

= corresponding trajectory angle when  approaches to zero in  relation 

= corresponding trajectory angle of  in  relation 

I. Introduction 

The study of unsteady shock wave reflection over curved surfaces draws much attention due to its practical 

importance for various applications, such as propulsion system design and aviation safety [1-4]. As the 

foundation of this study, the reflection problem with the simplest cylindrical concave walls has been investigated 

for several decades. The relevant studies were also applied for explosion and detonation ignition in recent years, 
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since this phenomenon involves drastic changes in pressure and temperature [5-6]. In previous research, the 

reflection process over a cylindrical concave wedge was described as a series of continuous variations of 

reflection types: direct-Mach reflection to stationary- Mach reflection to inverse-Mach reflection and finally to 

transitioned regular reflection [7]. To predict the trajectory of the Mach reflection triple-point and the transition 

angle of Mach-to-regular reflection, both the Chester–Chisnell–Whitham theory [8] and the “corner-signal” 

concept [9] were employed to construct models [10, 11]. Although the results indicated that the theoretical 

transition angle agrees with the experimental observation, the triple-point trajectory, however, cannot be 

predicted precisely, especially for strong shock waves with high Mach numbers. 

In contrast to the shock wave reflection over a curved surface, the pseudo-steady shock reflection over a 

planar wedge is self-similar, so the classic two-shock and three-shock theories [12] can be adopted to predict 

the triple-point trajectory as well as the critical wedge angle for Mach reflection with reasonable accuracy [13]. 

Furthermore, the shock wave reflection over a double wedge with different conditions can also be analyzed by 

these theories [14]. Based on these theoretical studies, a model was constructed to predict the triple-point 

trajectory of strong shock wave reflection over a cylindrical concave wedge in this work. The detailed 

calculation process as well as a validation of the model was presented, and the characteristics of the triple-point 

trajectory were then analyzed by applying the model. 

II. Model setup 

The two-shock and three-shock theories were first proposed by von Neumann to describe the regular 

reflection and the flow field near the Mach reflection triple-point, respectively [12]. By giving two constraining 

conditions, the three-shock theory can be used to describe the entire Mach reflection process [13]: (1) the Mach 

stem is straight and normal to the wedge; (2) the triple-point trajectory originates from the tip of the wedge. 

Since the pseudo-steady Mach reflection of a shock wave can be regarded as a steady Mach reflection by 
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transforming the coordinates, as Fig. 1 shows, the flow field parameters as well as the trajectory angle  can 

be obtained by applying the three-shock theory with given shock wave Mach number  and wedge angle 

. Figure 2 plots the calculated  relation for 5.4 and 1.44, the detailed calculation process is 

introduced in [7]. It is worth noting that the part behind the critical wedge angle  of Mach reflection is 

meaningless for pseudo-steady Mach reflection because the regular reflection is formed with the wedge angle, 

but the negative trajectory angle  exists in the unsteady reflection process over a cylindrical concave wedge, 

which corresponds to the inverse-Mach reflection. To verify the accuracy of the theoretical  relation, 

the shock wave reflection process with  was simulated under the condition of 5.4 and 1.44, 

and the density schlieren overlays with a red line showing the triple-point trajectory are displayed in Fig. 3. The 

theoretical trajectory angle  for  is , approaching to the numerical result of . 

  

Figure 1. Schematic of pseudo-steady Mach reflection 

structure over a planar wedge. 

Figure 2.  relation for 5.4 and 1.44. 

( : Critical wedge angle of Mach reflection by the 

three-shock theory) 
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Figure 3. Density schlieren overlays of shock wave reflection over a planar wedge with . 

Based on the pseudo-steady reflection and  relation, the reflection structure and the triple-point 

trajectory over a double planar wedge can also be predicted [14]. Figure 4 displays the reflection process over 

a double wedge under the condition of . As Fig. 3(a) shows, when the incident shock wave propagates 

to wedge A with wedge angle , the Mach reflection is formed and triple-point  moves along the straight 

trajectory with angle . As the Mach stem reaches wedge B along with the incident shock, another Mach 

reflection is also formed on the Mach stem, generating the triple-point . Since the Mach stem is 

perpendicular to wedge A, the newly formed triple-point trajectory angle  actually corresponds to the 

wedge angle difference . Then the trajectories of triple-points  and  finally intersect at point , 

as shown in Fig. 4(b). A single Mach stem perpendicular to wedge B is formed, and the triple-point will then 

propagate along the trajectory with the angle of  generated by the wedge with the angle of . According 

to the reflection process, the triple-point trajectory over the double wedge can be predicted by obtaining the 

trajectory angles ,  and  and determining the location of the intersection point . 
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(a) Mach reflection on incident shock wave and Mach 

stem simutaneously 
(b) Mach reflections intersect 

Figure 4. Schematic of reflection process over a double planar wedge with . 

For a shock wave reflection over a cylindrical concave wedge, the wedge can be approximated by a larger 

number of small planar wedges with equivalent length, as displayed in Fig. 5, so the original reflection process 

is transformed to the reflection over a multiple segments wedge. From the reflection over a double wedge, it is 

inferred that the triple-point trajectory over a multiple segments wedge can be obtained by determining the 

location of K for each adjacent double wedge. For instance, by defining that the tip of the i-th small wedge has 

the coordinates of , the coordinates of the first intersection  can be obtained by the 

simultaneous equations of the incident shock and Mach stem triple-point trajectories: 

   (1) 

Then the i-th intersection  can be confirmed by: 

   (2) 

where  represents to the triple-point trajectory angle for the insert shock wave at the i-th wedge, which 

corresponds to the i-th wedge angle  in the  relation. Hence, if the quantity of the constituent small 

wedges is sufficient, the triple-point trajectory over a cylindrical concave wedge can be calculated 

approximately by confirming all the coordinates of . It is worth noting that, since  is the trajectory angle 
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of the Mach stem, theoretically the calculation of  should use the Mach number of the Mach stem instead 

of the incident shock. However, considering that the deviation of the trajectory angle formed by the Mach stem 

and the incident shock is minimal under such a high Mach number, the  can be approximated by using 

 in the calculation. Furthermore, since the concave wedge is divided equally by the small incremental 

wedges, the  between each two adjacent wedges is equal, resulting a constant  for all the composed 

double wedges, thus simplifying the calculation. 

 

Figure 5. Schematic of cylindrical concave wedge approximated by multiple wedges with equivalent length. 

III. Results and discussions 

A. Theoretical triple-point trajectory and validation 

A model to predict the trajectory of the reflection triple-point can be built by MATLAB based on the 

analysis above. To verify the accuracy of the model, a simulation of shock wave reflection over a cylindrical 

wedge was conducted with 5.4, 1.44 and wall curvature radius  750. The density schlieren of 

the reflection process is shown in Fig. 6. The trajectory was recorded by tracking the coordinates of the triple-

point with constant time intervals. Simultaneously, the theoretical trajectory was calculated by the model under 

the same condition with the quantity of small wedges 2000. The comparison of the trajectories as well as 

the converted Mach stem height  are presented in Fig. 7. It can be observed that the trajectories converge 
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in the range of the wall tangential angle , whereas the  calculated by the model deviates from the 

simulation result with larger value for increasing . Additionally, the calculated trajectory does not realize 

Mach-to-Regular (MR-RR) transition, which is unreasonable. The reason is supposed that the  relation 

inferred by the three-shock theory is imprecise for large . Indeed, the previous research has reported that the 

calculated  becomes inaccurate compared with the experiment results as  increases [15], and the study 

of Hornung claimed that the critical wedge angle of the Mach reflection, i.e., the corresponding wedge angle of 

, approaches to the result calculated by two-shock theory instead of three-shock theory, where the critical 

wedge angle  and  for these two theories can be obtained by plotting the shock-polar curves 

of the incident and reflected shock [16]. Simulations were also conducted to verify the report of Hornung. The 

shock wave reflections with  and  were simulated, and the results are shown in Fig. 8. It is found 

that a Mach reflection is still formed in the case of , while as  increases to , a regular reflection 

is formed, indicating that the critical wedge angle is between  to . Since the  and  

for 5.4 and 1.44 are  and , respectively, it is confirmed that the critical wedge angle is 

close to the theoretical  instead of , which agrees with Hornung’s study. 

 

Figure 6. Density schlieren overlays of shock wave reflection over a cylindrical concave wedge. 
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(a) Triple-point trajectory (b)  relation 

Figure 7. Comparison of triple-point trajectory and  for simulation and model. 

  

(a)  (b)  

Figure 8. Shock wave reflection over planar wedges with  close to the critical wedge angle. 

According to the studies above, the  relation needs to be modified to insure the  is accurate for 

small wedge angle and equal to zero when . A simple modification of adding a correction term of 

 can meet the requirement, where  represents the corresponding trajectory angle of 

 in the original  relation. For instance, the correction term for 5.4 and 1.44 is 

calculated to be . To verify the modification, the simulations of shock wave reflection over planar 

wedges was conducted with various  under the conditions of 5.4 and 1.44. The modified  
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relation as well as the trajectory angle  for each case are shown in Fig. 9. The numerical results are 

coincident with the relation curve, which indicates that the modification is valid. The trajectory and  

calculated by the modified  relation are plotted in Fig. 10. It can be observed that the modified 

theoretical trajectory agrees well with the numerical result in the entire range. The calculated MR-RR transition 

angle is , which has a percentage error of 4.55% compared with the numerical result of , 

and the maximum percentage error of  is 6.35%, indicating the modification improves the accuracy of the 

model significantly, which can be applied to predict the triple-point trajectory of the shock wave reflection over 

the cylindrical concave wedge. It is worth noting that similar with the previous models [10, 11], the present 

model cannot predict the effect of the wall curvature radius . In fact, the effect of  on the reflection 

process is controversial, and the mechanism is still uncertain so far. 

 

Figure 9. Comparison of the modified  relation and the numerical results with 5.4 and  1.44. 
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(a) Triple-point trajectory (b)  relation 

Figure 10. Comparison of triple-point trajectory and  for simulation and modified model. 

B. Characteristics of triple-point trajectory 

Using the present model to predict accurately the shock reflection over a cylindrical concave wedge, the 

characteristics of the triple-point trajectory can be analyzed. Figure 11 shows the  relations calculated 

by the model for different . It can be observed that the  for the same  and the transition angle  

decrease along with the increase of , but the deviation is negligible, which coincides with the previous 

experimental study [11]. Thus, it appears that for the shock wave reflection with high Mach number, the triple-

point trajectories for different  can actually be approximated by one trajectory with certain accuracy, which 

can simplify the analysis with varying . 
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Figure 11. Theoretical  relations for different . 

The model also indicates that the triple-point trajectory is not entirely a curve. In fact, the triple-point 

propagates along a straight line at the beginning of the reflection process. Figure 12 presents the trajectory in 

the range of  with 5.4 and 750. The data points calculated by the model represent the 

intersection points K of the triple-point trajectories generated by the Mach reflection of the incident shock wave 

and the Mach stem over each double wedge. It is found that the distance between the wedge tip (0,0) and the 

first data point  is much longer than that between each adjacent two data points. Hence, according to the 

reflection over a double wedge, the triple-point trajectory before  is a straight line with the slope of , 

where  denotes the trajectory angle when  approaches to zero in the  relation. Moreover, it is 

also found that the corresponding wall tangential angle of  is always larger than . Considering that the 

 relation curve only has one maximum point, it can be confirmed that the location of the point with the 

maximum height of Mach stem  is on the straight part of the trajectory, corresponding to the wall 

tangential angle of . Thus the  can also be obtained to be . As a 

verification, the  and  were calculated for 5.4 and 750 with the results of  and 

63.37. The theoretical results have percentage errors of 1.86% and 1.15% compared with the numerical results 

of 23.66 and 64.63, respectively, which presents high accuracy. Hence, the and  
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can be obtained just by the  relation instead of the model. 

 

Figure 12. Triple-point trajectory in the range of . 

IV. Conclusions 

In the present study, a theoretical model to predict the triple-point trajectory of strong shock wave Mach 

reflection over a cylindrical concave wedge was constructed based on the reflection over a double wedge and 

the three-shock theory. Together with a modification by applying the two-shock theory, the triple-point trajectory 

calculated by the model for the entire shock reflection is validated with the simulation result. The model denotes 

that the triple-point trajectory as well as the transition angle of Mach reflection to regular reflection are almost 

invariable with high Mach number, and the trajectory is straight at the beginning of the reflection process with 

corresponding trajectory angle when the wedge angle approaches to zero. The point with the maximum height 

of Mach stem is confirmed on the straight part of the trajectory, and the location as well as the maximum Mach 

stem height is predicted accurately. 
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