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Abstract: The advent of new drug therapies has resulted in a need for drug delivery that can deal
with increased drug concentration and viscosities. Needle-free liquid jet injection has shown great
potential as a platform for administering some of these revolutionary therapies. This investigation
explores the detonative combustion phenomenon in gases as a simple and efficient means of powering
needle-free liquid jet injection systems. A preliminary, large-scale prototype injector was designed
and developed. In contrast with the widely used air-powered and electrical driven needle-free
injectors, the proposed detonation-driven mechanism provides equivalent liquid jet evolution and
performance but can efficiently provide a controllable power source an order magnitude higher in
strength by varying combustible mixtures and initial conditions. The simplicity and power output
associated with this concept aid in improving current needle-free liquid injector design, especially for
delivery of high volume, high viscosity drugs, including monoclonal antibodies, which target precise
locations in skin tissue.

Keywords: needle-free technology; liquid jet injection; detonative combustion; drug delivery;
controlled release

1. Introduction

Drug delivery without the use of hypodermic needles has been a long-term objective within the
medical field [1]. Among different needle-free technology, liquid jet injectors can deliver medication
to a target area by rupturing the skin through the pressure exerted by a liquid jet. The basic
mechanism involves the use of a power source to compress a liquid and expel it through an orifice [2].
This technology has been in existence since the early 20th century, and during that period the
effectiveness in eliminating bio-hazardous waste and delivering a broad range of medication have
made this technology ideal for mass immunization [3]. However, drawbacks such as pain, bruising,
splash back, hematomas, excessive penetration and cross contamination have limited the use of
needleless jet injection for both mass immunization as well as individual use [4–6].

Recently, the technology has gained renewed interest for delivering both micro- and
macromolecules and advancements in fluid dynamic research have aided in propelling this technology
as an ideal platform for newly developed drug therapies, including monoclonal antibodies [7,8].
Notably, jet injectors are capable of targeting shallow layers of the skin such as the epidermis as well as
sensitive organs [9]. Furthermore, liquid jet injectors can also be used for targeting diseases which
benefit from localized treatment techniques.

Parametric studies and technological advancements throughout the years have enhanced the
performance and controllability of needleless injectors. A better understanding of the driving force
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and the fluid mechanics have also led to better optimization of the device in terms of delivery depth
and controllability of drug flow, resulting in better drug distribution. The majority of engineering
studies analyze spring- or gas-powered injectors, e.g., [10–19], whilst experimental prototypes utilize
electrically driven power sources in order to provide real-time control of jet pressure, e.g., [20–22].
Highly experimental techniques also include electrical current discharge and laser-based systems, to
generate highly focused, pulsed liquid microjets from vapor bubble collapse [23–26].

However, new emerging trends in needle-free technology are creating a need for delivering higher
volume as well as highly viscous injections [3]. The needle-free injector’s precision as well as its ability
to target deep areas of tissue such as muscle, provide good building blocks for use with new drug
therapies. Nevertheless, there is a need for power sources that are sufficiently strong, and which can
be accurately controlled in order to provide a liquid jet with velocities on the order of 100–200 m/s,
predictable penetration depth, large-volume delivery efficiency, as well as cope with an increase in
drug viscosities observed with new drug formulations used for emerging medical treatments [27,28].

Apart from drug delivery in humans, needle-free liquid jet injection technology also attracts
significant interest for animal vaccination [29–32]. It provides an efficient mean to achieve continuous
injection for mass vaccination of farmed livestock. It is worth noting that different livestock such as
cattle or swine have rather different skin properties and often require different vaccine doses, therefore,
flexible power must be provided to the needle-free injection system.

This study explores the use of combustion to generate the required power in order to drive the
needle-free injector. Specifically, the detonative combustion mode is considered in this work. It makes
use of the pressure increase across the detonation wave in order to drive the injection piston and
pressurize the medication. The present study serves to highlight the feasibility of using gaseous
detonation-driven power sources as a convenient and efficient means of powering liquid jet injections.

2. Fundamentals and Methods

A detonation is a supersonic, combustion-driven compression wave across which there is a
significant pressure increase. It has been suggested that by properly harnessing the potential of the
detonative combustion, the energy release from such a process can be used for power generation and
propulsion applications [33,34]. The previous works by Golub et al. [35] and Krivokoritov et al. [36]
have demonstrated the potential of using detonation waves in stoichiometric hydrogen-air mixtures
at atmospheric conditions for needle-free injections and delivering 0.2 mL of liquid water at a drop
speed on the order of 70 m/s by means of a deformable diaphragm. In this study, a conventional
piston-driven jet generation mechanism is employed. The reason is two-fold: to design a device capable
for large volume drug delivery and to compare other types of injector systems (e.g., gas-powered or
Lorentz-force actuated) which use the same impact mechanism. A more sensitive combustible mixture,
namely, pre-mixed stoichiometric acetylene-oxygen mixture at sub-atmospheric initial pressure in the
range of 25 to 60 kPa is used to provide safe operating conditions. The combustible is prepared using
the method of partial pressures in a separate mixing tank.

A schematic of the experimental detonation-driven liquid jet injection prototype is shown in
Figure 1. The setup combines a detonation tube made of a 590-mm long, circular, steel tube with an
inner diameter D = 26.4 mm with a custom-made needle-free liquid jet injector module. The injector
module is made of a moving plunger and a metering screw used to adjust the drug delivery volume.
An orifice micronozzle (O’Keefe Controls Co.) is threaded at the end of the injector for the jet generation.
Table 1 illustrates the important physical characteristics of the injector module.
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at different initial pressures, the CJ detonation pressure is plotted in Figure 3 (dotted line). 
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Figure 1. Schematic of the experimental setup consisted of the detonation tube and the needle-free
liquid jet injector module.

Table 1. Injector module parameters.

Injector Parameters

Orifice nozzle diameter, Do 200 µm
Driver diameter, Dd 44.4 mm
Piston diameter, Dp 6.35 mm

Mass of the piston, Mp 150 g
Liquid column, L 20 mm

The injector is filled with water as its working fluid, densityρo = 1000 kg/m3 and fluid bulk modulus
B = 2.18 × 109 N/m2. In this investigation, the delivery volume is set at 0.6 mL. A Chapman–Jouguet
(CJ) detonation is initiated at the closed end of the tube via a high-voltage capacitor spark discharge and
propagates along the tube until it impacts the injector’s piston, which in turn generates the high-speed
liquid jet through the orifice nozzle. A PCB Model 209C11 miniature force sensor is used for the jet
pressure measurement. This is accomplished using the orifice nozzle diameter, i.e., by dividing the
force sensor reading of the jet impact stagnation surface by the exit orifice area. The force sensor is
clamped perpendicular to the injector’s nozzle exit. The output of the transducer is amplified and
gathered using a RIGOL DS1102E oscilloscope with 1G sample/second.

A sketch of the detonation reflection gas dynamic process is shown in Figure 2. Properties across
a detonation wave can be computed thermodynamically using an equilibrium control volume analysis.
By solving the one-dimensional conservation equations together with the tangency requirement
between the Rayleigh line and the equilibrium Hugoniot curve, (i.e., Chapman–Jouguet criterion),
the detonation velocity DCJ and its thermodynamic equilibrium states can be computed. Chemical
equilibrium software such as the NASA Computer program, Chemical Equilibrium with Applications
(CEA) [37], provide such calculations. For the stoichiometric acetylene-oxygen mixture at different
initial pressures, the CJ detonation pressure is plotted in Figure 3 (dotted line).
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Figure 3. Incident Chapman–Jouguet (CJ) detonation pressure, reflected pressure and expansion
pressure for stoichiometric C2H2/O2 mixture at various initial pressures.

The detonation propagates at DCJ into the unburned reactants and impinges upon the plunger
of the injector module at x = L. The detonation wave reflection results in an even higher pressure on
the injector’s piston. The resulting maximum pressure occurring at the moment of reflection can be
estimated using a simple gas dynamic analytical model based on the Rankine–Hugoniot equations for
a constant-γ ideal gas [38,39], i.e.:

PR0

PCJ
=

5γ+ 1 +
√

17γ2 + 2γ+ 1
4γ

(1)

where PCJ is the CJ detonation pressure, PR0 the immediate reflected-detonation shock pressure, γ the
ratio of specific heats. Taking an average γ = 1.275 at the detonation CJ state, PR0 ≈ 2.54 PCJ. The CJ
pressure and reflected pressure versus initial pressure of the combustible are plotted in Figure 3 shown
by dotted and solid lines, respectively.

Due to the solid boundary at x = 0, a non-steady expansion wave—also referred to as the
Taylor–Zel’dovich wave—follows behind the detonation lowering the pressure and temperature to
match the boundary conditions. As shown in [40,41] and also recently in [42], the immediate reflected
pressure PR0 will decay exponentially toward the final expansion pressure, i.e.,:

PR(t) =
(
PR0 − P f

)
exp

[
−

t
τ

]
+ P f (2)
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where τ is a time decay constant and PR(t) asymptotes to Pf within the typical injection period. Pf is the
pressure behind the Taylor–Zel’dovich wave, which can be calculated using the isentropic relationship
across the expansion:

P f = PCJ

( c f

cCJ

)2γ/(γ−1)

(3)

where the sound speed cf can be obtained by noting uf = 0 at x = 0 end wall and using the Riemann
invariants along the C− characteristics for the detonation:

Γ− = uCJ −
2cCJ

γ− 1
= −

2c f

γ− 1
(4)

where uCJ is the flow velocity immediately behind the detonation. According to the Chapman–Jouguet
criterion, uCJ is equal to the detonation velocity DCJ minus the sound speed at the CJ state, cCJ. Hence:

c f =
γ+ 1

2
cCJ −

γ− 1
2

DCJ (5)

The expansion pressure Pf is also plotted in Figure 3 given by the dashed line. The initial
reflected shock pressure PR0 provides a sufficiently large driving force to punch the skin and generate
the injection jet with high inertia and pressure after the expansion process Pf for the rate constant
drug delivery.

To model the jet evolution and obtain its flow properties, a model was developed by Baker and
Sanders [10] by performing a mass balance and force analysis on the injection device. Assuming that
the water is incompressible, the jet pressure can be described by integrating the following expression:

dP jet

dt
=

(
B + P jet

) dxp
dt −

BAo
Ap

√
2P jet
ρo

L− xp
(6)

where the piston acceleration driven by the detonation wave reflection is given by the following
equation of motion derived from a force balance:

d2xp

dt2 =
AdPR(t)

Mp
−

ApP jet(t)

Mp
−

FO−rings(t)

Mp

∣∣∣∣ dxp
dt

∣∣∣∣
dxp

dt
(7)

It consists of the driving force generated by the reflected shock pressure (Equation (2)), the fluid
pressurization, as well as frictional losses due to the O-ring sealing in the plunger, FO-rings(t). The
latter term is difficult to model because the frictional forces due to O-ring sealing consist of a complex
phenomenon as there are many factors in play that have reciprocal influence [18,19]. To simplify the
modelling, FO-rings(t) is obtained through the following phenomenological approach:

FO−rings(t) = Fs·H(tR − t) + β·PR(t)·(1−H(tR − t)) (8)

where H(tR-t) is the Heaviside function and tR is a time constant. The frictional force takes on this
simple expression with the first term modeling the separation friction Fs, which consists of an initial
force that is overcome under the initial high load in order to break static friction and generate piston
movement. The second term is required for diminishing friction after the piston reaches the sliding
value once static friction is overcome.

3. Results and Discussion

The results of the injection process using the combustible mixture at an initial pressure ranging
from 25 kPa and 50 kPa are given in Figure 4. Overall, the pressure profiles shown in the figure
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reveal a typical needle-free liquid jet evolution with a damped oscillatory behavior. For comparison, a
black-colored pressure trace obtained in [18] using an air-powered injector is shown in Figure 5 and
similar damped harmonic oscillations can be seen between these two results. However, due to a more
severe piston driving condition by the gaseous detonation wave, the damping rate primarily due to
friction forces by the O-ring seal and other losses is slower. The more pronounced oscillatory dynamics
when compared to the air-powered injection system can also be attributed to the resonant oscillations
induced by the multiple wave reflections transmitted from the piston to the water column and
impedance mismatch. Nevertheless, a pressure peak is seen upon the detonation wave impacting and
driving forward the injector’s piston. Subsequently, the jet pressure decays but oscillates. As previous
studies describe, it is the initial pressure peak which is important in the formation of a fracture in the
skin and the subsequent stabilization to the average delivery pressure determines the depth at which
the medication is delivered [43].
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Figure 4. Sample pressure traces from the experiment with combustible initial pressures of (a) 25 kPa;
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Figure 5. A picture of the in-house air-powered injector and sample pressure trace taken from the
air-powered injection experiment [18] with a driving pressure of 413 kPa and orifice nozzle diameter
of 200 µm. The pressure was obtained using a different force sensor (Honeywell FSG15N1A). Figure
reproduced with the permission of Springer Nature, Journal of Medical and Biological Engineering,
Copyright© 2015, Taiwanese Society of Biomedical Engineering.
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By increasing the initial pressure of the combustible, hence the pressure across the detonation
wave and the reflected detonation-shock, some change in the dynamic behavior of the jet pressure can
be observed. Clearly, a longer injection duration can be achieved by increasing the initial pressure
also shown by an increasing number of oscillation cycles. At high initial combustible mixture (i.e.,
above 40 kPa), the injection pressure can be maintained at a sufficient level for a reasonable time
duration, at least 5 ms for the present setup. The pressure oscillates with decreasing amplitude around
a mean value over a long period of time, which is referred to as the average injection pressure.

By numerically approximating the solutions of Equations (7) and (8) and using experimental data
to determine necessary fitting parameters (i.e., τ = 300 µs similar to the value given in [41]; tR = 0.4 ms;
Fs = 1000 to 2800 with increasing initial pressure and β = 2.0 × 10−4 for O-ring seals), Figure 6 shows
the jet pressure evolution predicted from the analytical model for the combustible initial pressures of
30, 40 and 50 kPa. The experimental results (plotted as dotted curves) are also included for comparison
in Figure 6. In general, the model result demonstrates good agreement with the experimental data. The
oscillatory evolution, as well as the two main jet properties namely the peak and average stagnation
pressures were captured clearly by the model and the values are quantitatively close to the experimental
measurements. However, it is important to note that due to the simplicity of the empirical friction
model for O-ring seals used in this work, the oscillations cannot be simulated precisely. In order to
capture these oscillations (or experimentally eliminate these oscillations), all sources leading to the
damping need to be carefully investigated and modeled.
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Figure 6. Stagnation pressure evolution from the analytical model with combustible initial pressures of
(a) 30 kPa; (b) 40 kPa and (c) 50 kPa.

It is worth noting, that unlike the water hammer effect, which describes pressure variations in a
pipeline of which the pressure wave dynamics and damped oscillatory behavior can be accurately
obtained using the method of characteristics [44,45], the present liquid jet injection phenomenon also
involves a detailed analysis of complete system dynamics, i.e., the fluid-structure interaction between
the rapidly moving piston, water column and the flow behind the reflected shock, after the detonation
impact. Typically, the water hammer effect is a result of a rapid closing of valves in a flow stream,
causing a pressure wave to propagate upstream in the pipe. For such a situation, the numerical solutions
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to the water-hammer equations governing the propagation of the pressure surge can predict the wave
velocity and damping of the pressure oscillations. It is worth mentioning that an equivalent analysis
has been considered by Baker and Sanders [10], referred to as “wave analysis”. This study illustrates
that the wave analysis results were only valid over a very short time span, i.e., the short duration
over which the first pressure spike occurs and when piston movement is negligible and assumed to be
zero. Unlike the water-hammer effect, the present phenomenon involves piston acceleration to a high
velocity which is no longer negligible, and the water-hammer equations are not sufficient to describe
the full dynamics of the injection pressure profile evolution. The continuum analysis approach detailed
in Baker and Sanders has become a standard model with continuous improvement for different types
of needle-free liquid injection devices driven by a high-velocity plunger, e.g., [15,18,28,32] and thus, is
also used in this work. It is important to note that the oscillatory behavior, i.e., both the amplitude and
damping of the jet pressure variation are not simply wave dynamics within the liquid column, moreover,
they do not solely depend on the liquid acoustic and thermodynamic properties. The oscillatory
behavior is a result of system dynamics, which must be modeled considering piston movement caused
by the driving force and subsequently countered by the frictional and fluid forces which arise due
to the piston movement [10]. All these aforementioned effects are taken into consideration in the
continuum analysis, although more accurate quantitative sub-models, e.g., O-ring seals and piston
driving force by the detonation wave, are needed to precisely capture the damping of the jet pressure
oscillation. Despite the simplicity, the model does capture the two main jet properties, namely, the peak
and average stagnation pressure values, and the period of oscillations correlate well to experimental
observations. Qualitatively, in our previous work, the effects that strongly influence damping are
identified [18]. The friction from sealing is found to be dominant and the oscillations are caused
primarily by the piston dynamics. Nevertheless, the liquid viscosity, as can be seen in this study, is also
another damping parameter which affects the oscillatory behavior [19,46]. In order to further improve
the continuum analysis and obtain more accurate predictions of the jet pressure oscillation, future
work will implement an improved quantitative description of the arising frictional force due to the
O-ring seals and the detonation reflection process interacting with an accelerating piston.

The pressure traces from both the experimental measurement and analytical results depict both
the peak and average jet pressures for different acetylene-oxygen gas mixtures and initial pressures, as
can be seen in Figure 7. The solid line represents the analytical model results. For each initial pressure
condition, at least five experimental shots were performed. From Figure 7, one can observe immediately
that using a detonation-driven controlled release mechanism, the peak stagnation pressure values
achieved are much larger than those obtained by air-powered or spring-loaded injector devices which
are typically limited in the range below 50 MPa. It is also worth noting that from [47], it is reported that
a threshold of 14 MPa is needed for the injection pressure before the jet is able to penetrate into human
skin. The present detonation-driven injector easily reaches this threshold and in fact provides initially
a much stronger penetration capability compared to the conventional air-powered or spring-loaded
devices. The stagnation pressure also makes the computation of jet velocity over the diameter of the
orifice possible by using the Bernoulli’s equation Vjet = (2Pjet/ρo)1/2. The peak jet velocity and average
injection velocity correspond to approximately 250–420 m/s and 130–190 m/s range, respectively.
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Figure 7. Results of the (a) peak pressure; and (b) average stagnation pressures as a function of the
combustible initial pressure, respectively. The solid lines represent the model results.

As discussed previously, modeling the frictional losses due to the O-ring seal is very challenging.
Because of the high-pressure loading condition due to the detonation reflection, experienced by the
piston mechanism, it is difficult to establish an exact expression for the level of friction involved and
hence, explain the noticeable discrepancy observed in Figure 7 at higher initial pressure. In fact, the
average injection pressure is closely related to the piston displacement and hence, a better agreement
can perhaps be achieved by modeling the dynamic friction as a function of the piston velocity. This is a
future work to improve the accuracy of the present modelling approach.

Furthermore, for the average stagnation pressure driven later by the state behind the Taylor wave
expansion, the experimental measurement in general agrees well with the modeled results in the initial
pressure range of 25–40 kPa. Note that in the present study, a constant value of the time decay τ is
used to obtain the model solutions (see Equation (2)). The reflection time decay may differ and also
should be a function of the injector dimension (i.e., length) and initial pressure of the combustible
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mixture. Further pressure measurements inside the tube are also needed to accurately determine the
time decay constant.

Injections on 60-mm thick ballistics gel with a bloom number of 250 are also performed to visualize
the resulting injection and demonstrate the ability of the detonation-driven injector device for deep
penetration. Similarly, five experimental shots at each initial pressure are carried out. The results
are shown in Figure 8, which seem to depict a linear trend for penetration into the ballistic gel as
a function of initial mixture pressure. It is worth noting, that in this study, all the liquid dose in
the injection chamber is administrated. The consistent penetration depths from each shot and each
condition provide an indication that repetition of injection dosage into the gels is achieved.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 15 
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Figure 8. A liquid jet injection by the present detonation-driven injector device into a bloom 250 10%
wt. gel as a function of mixture initial pressure.

It is worth noting that the motivation for this study is to design an injector capable of injecting
highly viscous liquid. In order to verify the viability of using the present detonation-driven needleless
injection concept, tests using mixtures of glycerol/water in the injection are performed. The tested
solutions are 30%, 50% and 70% glycerol by weight. Sample jet stagnation pressure evolutions using a
combustible initial pressure of 40 and 45 kPa are illustrated in Figure 9. Overall, the injection dynamics
do not vary significantly when compared to water (see Figure 4), despite a decrease in the peak
stagnation value. Similar dynamic behavior is also observed by further increasing the glycerol content
and when using a high initial combustible pressure for detonation, as shown in Figure 10. The main
effect of viscosity with the increase of glycerol only decreases the jet stagnation pressure. The variation
of peak and average stagnation pressures as a function of % glycerol in the tested liquid solution are
plotted in Figure 11. It illustrates that the addition of glycerol content decreases the jet stagnation
pressure approximately linearly due to the effect of increasing viscosity [46].
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Figure 9. Injection of a solution with 30% (by weight) glycerol using the present detonation-driven
injector device with (a) 40kPa and (b) 45 kPa initial combustible pressure.
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4. Conclusions

This study highlights the use of the detonative combustion phenomenon as a novel, alternative
energy source to power a conventional mechanical piston-type needle-free liquid jet injector. The
comparison with jet pressure measurement of standard air-powered needle-free injectors, illustrates that
the detonation-driven device provides equivalent jet injection evolution. However, taking advantage
of the pressure rise across a detonation, the combustion-driven device can provide driving forces much
larger than those obtained by typical air-powered or spring-loaded injection devices.

Moreover, this study provides promising evidence that a gaseous detonation wave can generate
sufficient power to drive a needle-free injector, producing a strong liquid jet applicable for highly
viscous drug delivery to meet the requirements of recently emerging medical treatment. On-going work
includes the characterization of the jet as a function of the detonation properties, using a number of
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combustible mixtures at different initial conditions and its evolution with increasing fluid viscosity [46].
Furthermore, in order to improve both the device performance and modelling output, it is crucial to
investigate in more detail the damping caused by various sources and develop a more complete model
to describe all the friction losses in the system.

For proof of concept, this study relied on the initiation of the detonation wave via direct
initiation by a high-voltage capacitor discharge and the use of a large-scale device. The feasibility
of scaling or miniaturizing such a device for practical applications is possible. Recent studies on
flame acceleration and the deflagration-to-detonation transition (DDT) in microscale tubes [48–50]
provide the opportunity to develop such miniature detonation-driven needle-free injectors. To this
end, minimizing the influence of viscous effects and heat losses to the walls becomes the key issue for
practical use of this proposed technique.
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