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Abstract 

Numerical simulations were performed to study reflection of a stable detonation wave with 

regular cellular patterns over a cylindrical concave wedge. The dynamics of this reflection 

phenomenon was described by the two-dimensional reactive Euler equations with a two-step 

induction-reaction kinetic model and solved numerically using the adaptive mesh refinement 

code AMROC. The effects of various parameters on the reflection evolution were analyzed in 

detail. The results indicate that the reflection-type transition of a stable cellular detonation is 

similar to that of a planar shock wave over a concave wedge. The triple-point trajectory resulted 

from the Mach reflection when the cellular detonation first encounters the concave wedge 

coincides with that of the planar shock propagating for the case with the same incident Mach 

number. As the effective wedge angle continuously increases, the Mach reflection of cellular 

detonation deviates from that of a planar shock with a reduced Mach stem height, and the 

transition from Mach to regular reflection occurs at a smaller angle. This observation is further 

explored by adopting the length-scale (or “corner-signal”) concept, examining the velocity 

variation of corner signals generated by fluid particles around the wedge tip. The reflection 

dynamics is described qualitatively by the ratio of two length scales characterizing the detonation 

structure, namely, the induction-zone and reaction-zone lengths. The increase of these length 

scales raise the Mach stem height and transition angle. Apart from the detonation length scales, 

the wedge curvature radius is found to have an opposite effect since the increase of radius 

expands the region where the corner signals are generated by the particles behind the induction 

zone, and makes the corner signals persist in a state with attenuating velocity. 
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effects  

1. Introduction 

A rotating detonation engine (RDE) is a detonation-based propulsion device which can 

realize continuous detonative combustion and provide high-frequency stable thrust once initiated. 

It has become the principal focus in the recent development of hypersonic propulsion systems [1-

2]. A number of fundamental research closely related to RDE can also be found in the literature 

analyzing the dynamics of gaseous detonations bounded by an inert compressible layer, e.g., [3-

4]. In the annular combustion chamber of a rotating detonation engine (RDE), as conceptually 

illustrated in Fig. 1(a), a circumferentially propagating detonation wave experiences lateral 

expansion in the axial direction of the engine under the confinement of two cylindrical chamber 

walls. To better examine the effect of wave-wall interaction on the propagation behavior in three-

dimensional RDE geometries, some recent studies [5-12] have focused on detonation 

propagation in a two-dimensional curved channel, see Fig. 1(b). A detonation wave propagating 

in such a curved channel, as shown in Fig. 1(c), is subject to a diffraction along the convex inner 

wall and a compression along the concave outer wall. Kudo et al. [5] and later researchers [6-8, 

10, 12] have repeatedly demonstrated that the criterion for a steady propagation is governed by 

the inner wall curvature (or, equivalently, arc radius) determining whether the diffraction is 

sufficiently intense to locally quench the detonation wave. In the cases where detonation failure 

occurs near the inner wall, the detonation might be re-initiated as a result of wave reflection from 

the concave outer wall [9]. Thus, an in-depth investigation on the dynamics of a cellular 

detonation wave being reflected from a concave surface is motivated.  

In the current study, the reflection of a weakly unstable incident detonation wave with regular 

cellular patterns over a 90  cylindrical concave wedge (as shown in Fig. 2) is placed under 

scrutiny via computational simulations. It is worth mentioning that a number of investigations 
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can be found in the literature on the detonation wave reflection over wedges, but mostly in the 

planar geometry. For this configuration, the early studies treated the detonation front as a strong 

reactive discontinuity neglecting the reaction zone thickness [13-15] and employed the reactive 

three-shock theory [16-17] or Chester–Chisnell–Whitham (CCW) [18-20] theory to examine the 

detonation reflection characteristics. Nevertheless, experimental observations have shown that 

the Mach reflection triple-point trajectory of a detonation wave is curved, indicating that the 

Mach reflection is not self-similar [21-22] and thus, the aforementioned theories for pseudo-

steady flow cannot fully describe the reflection of detonation waves. Shepherd et al. [23] 

explained the self-dissimilarity of detonation wave reflection by introducing the concept of 

frozen and equilibrium limits. They assumed that the Mach reflection process of a detonation 

wave was controlled by the non-reactive or “frozen” dynamics in the near field, but in the far 

field, the process was controlled by the reacted or “equilibrium” dynamics. The effect of frozen 

and equilibrium limits was confirmed by Fortin et al. [24] and Li et al. [25-27] with experiments 

and numerical simulations, respectively. Li et al. [27] also pointed out that if the reaction zone 

length is sufficiently small compared with the propagation distance, the Mach reflection would 

approach to self-similarity in the far field, and the distance from the wedge tip to where the 

triple-point trajectory becomes straight, i.e., the Mach reflection approaches self-similarity, was 

quantified to be 6-10 times the characteristic detonation cell width. 

For the unsteady shock reflection over cylindrical concave wedges, both the modified 

Chester-Chisnell-Whitham (CCW) theory and the length-scale (or “corner-signal”) concept [28] 

were employed to construct models to predict the Mach stem height mH  as well as the transition 

wedge angle of Mach-to-regular reflection (MR-RR)  [29-32], and the reflection of a weak shock 

wave was investigated [33]. In essence, the length-scale concept considers a corner signal 
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generated from the initial point on the cylindrical surface communicating with the incident shock 

wave in determining the MR-RR transition process. Apart from single cylindrical wedges, the 

reflection process over combined wedges, e.g., combination of convex-concave cylindrical 

reflectors, has also drawn more attention in recent years [34-37].  

In this study, the objective is to analyze in detail the reflected detonation wave structure and 

the transition between various types of reflection. Aforementioned studies on unsteady shock 

reflection over a concave wedge provide benchmark scenarios for the current problem of 

detonation reflection [26]. The simulation results of detonation reflection were thus compared 

with those of an inert shock. The length-scale concept developed by Hornung et al. [28] was 

invoked to interpret the evolution of the reflected detonation structure. The effects of various 

chemical kinetic parameters and wedge curvature radii on the dynamics of detonation reflection 

were further examined and discussed.  

2. Computational model and numerical scheme 

2.1 Computational model 

It is worth noting that the effects of viscosity and diffusion are found to influence self-similar 

shock wave solutions [38] and the propagation dynamics of highly unstable detonation [39-41]. 

For instance, recent research [38] has indicated that for the Mach reflection of a detonation wave, 

the viscosity near the wall can affect the flow by generating a small vortex behind the Mach stem. 

However, the effect on the global structure of Mach reflection triple-point and the triple-point 

trajectory is minimal compared with the inviscid case. In this study, the focus is on the length-

scale effects and a weakly unstable detonation is considered. Hence, viscous and diffusion effects 

are neglected in the detonation flow. Thus, the two-dimensional reactive Euler equations were 

used as the governing equations, and in order to investigate the effect of the detonation reaction 
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structure, a two-step chemical kinetic model was applied for the chemical reaction, which allows 

one to vary independently the characteristic reaction length scales. All flow variables were non-

dimensionalized with respect to the unburned mixture states ahead of the detonation front as 

follows: 

 
0 0 0 00 0

= , , , ,
RR R

p T u v Q
p T u v q

p T TT T




 
    ，  (1) 

where the symbol (~) represents dimensional quantities and the subscript (0) denotes the 

quantities ahead of the detonation front. The variables  , p , u , v , T , and Q  represent the 

density, pressure, velocity in x-direction and in y-direction, and the heat release parameter, 

respectively.  

The non-dimensional governing equations have the form: 

 
   

0
u v

t x y

   
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  (2) 
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  
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
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     R R R

R
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
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  
 (7) 

the parameters Iy  and Ry  indicate the induction and reaction progress variables of the reaction 
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model.  

The total energy E  is given by 

 
 2 2

R

+

1 2

u vp
E y q





  


 (8) 

The flow system consists of a calorically perfect gas with a constant ratio of specific heat 

and an equation of state: 

 p T  (9) 

For this ideal flow model, the CJ detonation Mach number can be obtained by 

 

1

22
2 2

CJ

0

1 1
= 1 1+ 1

D
M q q

c

 

 

                     

 (10) 

Details of the two-step induction-reaction kinetic model used in this work are described in 

[42]. The first step is a thermally neutral induction step with no energy release. The Arrhenius 

rate I  is given by 

  I I I I

S

1 1
= 1 expH y k E

T T
 

  
   

  
 (11) 

where ST  is the post-shock temperature behind the leading front, and  I1H y  is a step 

function defined as 

   I

I

I

11 if
1 =

=10 if

y
H y

y


 


 (12) 

As the induction step terminates, the reaction step with energy release starts. The rate of this 

step R  is given by 

      R
R I R R= 1 1 1 exp

E
H y k y

T
 

 
    

 
 (13) 
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The variables IE , RE  correspond to the activation energies of each step. Consistent with the 

previous study [25, 42], we define the dimensionless activation energies as I
I

S

=
E

T
  and R

R

S

=
E

T
 , 

and generally I > R . The terms Ik  and Rk  represent the induction and reaction pre-exponential 

rate constants, which control the thickness of the induction and reaction zones, i.e., I  and R , 

respectively. In this paper, the length of the induction zone I  is chosen as the unity reference 

length scale, i.e., I =1, so it has the relation that I vnk u  , where vnu  is the particle velocity 

behind the shock front in the shock-fixed frame for the CJ detonation. As there is no specific 

definition of the reaction zone, the reaction length R  is defined as the distance between the end 

of the induction zone and the location where the reaction progress Ry reaches 99.9%. Hence, the 

thickness of a detonation wave   is given by I R=    , and the ratio of the length I  and R  

is defined as R

I

=



. The state parameters of a ZND detonation wave based on the two-step 

chemical kinetic model are shown schematically in Fig. 3. Using the aforementioned chemical 

kinetic parameters, the stability parameter   defined as I
I

R

 





 by Ng et al. [42] can be 

evaluated. Detonation waves with a small value of   are generally stable. In the present study, 

the condition R >> I  were ensured to form a stable cellular detonation wave with a low degree 

of cellular instability. 

2.2 Numerical method and computational setup 

In order to capture the detailed detonation structure, the simulations require a high-resolution 

mesh distributed around the wave front, while other areas with relatively mild flow behavior can 

be resolved with a coarser grid to reduce computational cost. In this work, the structured 
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adaptive mesh refinement (SAMR) code AMROC developed by Deiterding [43] was employed 

for the high-resolution simulations. As to the numerical methodology, the second-order accurate 

MUSCL-TVD method with the Van Albada limiter was adopted for the spatial discretization, 

and the second-order accurate Runge-Kutta technique [44] was applied for the temporal 

discretization with the Courant-Friedrichs-Lewy (CFL) number of 0.95. The first-order accurate 

Godunov splitting method was used to integrate the reaction source term. 

The simulations of detonation reflection over a cylindrical concave wedge were conducted in 

a two-dimensional computational domain, as shown in Fig. 4. Reflecting boundary with slip 

conditions were used on both the upper and bottom wall as well as the concave wedge. Since the 

Cartesian grids created by the SAMR method cannot line the curved boundary completely, the 

walls of the curved section were encircled by several layers of ghost cells [45], and the 

corresponding boundary conditions were constructed by interpolating these cells. The cells 

around where the detonation wave front stands were refined with the highest refinement level, as 

presented in Fig. 5 (ghost cells are invisible). Transmissive conditions were adopted on the left 

and right boundaries. 

In the present study, a constant isentropic exponent of  = 1.44 was used. The variables 

investigated in this work include the activation energy I  and R , the CJ detonation Mach 

number CJM , the length ratio  , and the curvature radius of the concave wedge 0R . To initialize 

the computation, a one-dimensional ZND detonation wave under the specified initial conditions 

was placed initially at a distance three times the detonation thickness Δ from the left boundary in 

order to insure the state parameters on the inlet to be the values behind the sonic plane. A buffer 

section in the computational domain allows the detonation wave to propagate approximately a 

hundred detonation thicknesses Δ for the cellular instability to be fully developed before entering 
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the curved wedge and ensures that the left boundary does not influence the detonation wave front 

dynamics. Figure 6 shows the numerical soot foil developed by the incident cellular detonation 

wave under the conditions of I = 4, R = 1, CJM = 5.4, and  = 25, giving a stability parameter 

of 0.16  . The approximate sizes of one detonation cell are also provided in the figure. 

Referring to [42], this corresponding low stability parameter should give rise to a detonation 

wave with regular cellular structure, which is consistent with the regular cellular patterns 

observed on the numerical soot foil. 

2.3 Grid resolution study 

Since the overall computational cost cannot be underestimated even when the SAMR method 

is applied, an optimal combination of mesh adaption flag parameters should be established. Here, 

we used the threshold values on density, temperature, and pressure of 0.05  , 25 10T   , 

and 45 10p   , respectively, where   represents the scaled gradient of each parameter. A 

flagging efficiency [43] of 0.9, representing the percentage of flagged cells against the entire 

level cells, was used for SAMR grid generation. 

To investigate the effect of grid resolution on the simulations, a series of verification 

computations for detonation reflection over a concave wedge with different mesh refinement 

strategies were conducted with the conditions of I = 4, R = 1, = 5.4,  = 25, and 0R = 750. In 

this paper, the trajectory of Mach reflection triple-point and the angle of Mach reflection-regular 

reflection (MR-RR) transition are most significant for analyzing the reflection characteristics, so 

the accuracy of these parameters should be insured primarily. Figure 7 presents the numerical 

soot foils, the corresponding trajectories of the triple-point as well as the pressure curves along 

the fixed height of y = 140 at the same time instant (crossing the Mach stem) for three different 

resolutions, and Table 1 lists the MR-RR transition angle as well as the CPU time for each 
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resolution with 36 CPU cores. It can be observed that both the triple-point trajectory and the 

pressure curve are not very sensitive to these three chosen grid resolutions, and the transition 

angles of all cases are essentially equivalent. Considering the computational cost, the second-

highest resolution of min I32 pts/x   was applied for all the following simulations. 

3. Results and analysis 

3.1 Detonation reflection process over a cylindrical concave wedge 

The detonation wave reflection process and parameters defined for the present study are 

described schematically in Fig. 8. It should be noted that, to define different parameters, the 

Mach stem is assumed to be straight and perpendicular to the wedge in the present work. 

Therefore, mH  and w  are equal to the length of the Mach stem and the tangential wedge angle 

corresponding to where the Mach stem stands, respectively. The parameters mH , w , and *

w , 

which reveal basic characteristics of the reflection process, are the key features for measurement 

and analysis. 

Similar to shock reflection [17], the transition between various reflection types, from direct-

Mach reflection (DiMR) to stationary-Mach reflection (StMR) to inverse-Mach reflection (InMR) 

and finally to transitioned regular reflection (TRR), occurs throughout the whole detonation 

reflection process. The numerical soot foil in Fig. 9 presents the transition between different 

reflection types as well as the variation of the Mach stem, corresponding to the conditions of I = 

4, R = 1, CJM = 5.4,  = 25, and 0R = 750. Initially the detonation cells have almost the same 

size, forming a stable cellular detonation wave. Upon reflection, as the cellular patterns are being 

affected by the compression, the cells created by the Mach stem near the wedge have a smaller 

size while the cell size in the upper area remains unchanged. Thus, an evident boundary line on 

the soot foil separating these two areas represents the trajectory of the Mach reflection triple-
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point. In this paper, the Mach stem height mH  was obtained by extracting the coordinates of 

points on this trajectory at fixed distance intervals, and the transition angle *

w  can also be 

confirmed since the MR-RR transition makes the pressure at the transition point reach a 

maximum, as the partially enlarged detail in Fig. 9 shows. 

The specific detonation wave structure of all different reflection types in one simulation case 

is displayed in Fig. 10. When the detonation wave just propagates through the wedge tip, the 

Mach stem position corresponds to a small tangential wedge angle w , leading to the reflection 

type DiMR. As shown in Fig. 10(a), the angle between the flow vector under the Mach reflection 

triple-point and the wedge surface where the Mach stem stands has a positive value, which 

indicates that the fluid behind the Mach stem has a direction deviating from the wedge. 

Therefore, the Mach stem is growing while the detonation wave propagates, i.e., m

w

d
0

d

H


 . As 

the propagation continues, the increase of w  makes the direction of the flow vectors begin to 

deviate towards the wedge correspondingly, and the Mach stem cannot grow further when the 

flow vectors are parallel to the wall, i.e., m

w

d
0

d

H


 , forming a structure of StMR, as presented in 

Fig. 10(b). Due to the constant change of w  along with the wave propagation, the StMR 

structure is transient and has a maximum Mach stem length. As w  increases further, the angle 

between the flow vectors and the wall becomes negative, which shortens the Mach stem with 

m

w

d
0

d

H


 . The InMR is then realized as illustrated in Fig. 10(c). Finally, the Mach stem 

disappears as the Mach reflection transits to regular reflection, as shown in Fig. 10(d).  

3.2 Comparison between detonation and planar shock wave reflection 
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As introduced in Sect. 1, using the length-scale (or “corner-signal”) concept [28], Ben-Dor 

and Takayama et al. [17, 30-32] predicted the transition angle *

w  of shock wave reflection over 

cylindrical concave wedges. The length-scale (or “corner-signal”) concept suggests that to form a 

Mach reflection structure with finite length, a corner signal, which is a physical length scale 

signal generated by the fluid particles around the wedge tip, must be communicated to the 

reflection triple-point, otherwise regular reflection will result. 

Figure 11 illustrates schematically a shock wave Mach reflection prior to its MR-RR 

transition occurring at the point Q. Since the transition occurs where the Mach reflection cannot 

exist, the Mach reflection in the vicinity of point Q (just before transition) represents the extreme 

position where the corner-generated signals can communicate with the triple-point. The signals 

propagate with a velocity of su u a  , where u  is the flow velocity and a  is the local speed of 

sound. Considering that the reflected shock wave becomes very weak when it approaches the 

wedge surface, it implies that the flow properties do not change significantly while passing 

through the reflected wave. Therefore, the velocity su  can be approximated by a fixed value as: 

 s 1 1u u a   (14) 

where 1u  and 1a  are the flow velocity and the local sound speed behind the incident shock wave, 

respectively. If t  is the time required for the incident shock wave to travel from the wedge tip A 

to the transition point Q, then the distance S  that the corner-generated signals have propagated 

can be obtained by: 

  1 1=S u a t   (15) 

In Ben-Dor’s model, the propagation path of the corner-generated signals is assumed to be 

along the wedge surface, which indicates that 

  *

0 w 1 1S R u a t     (16) 

Simultaneously, the incident shock wave with velocity of 0u  also propagates to point Q in the 
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same time interval. Thus, Eq. (16) can be rewritten as: 

  
*

* 0 w
0 w 1 1

0

sinR
R u a

u


    (17) 

and the transition angle *

w  can be calculated by: 

 
*

w 0

*

w 1 1

sin u

u a







 (18) 

The previous research [17, 30-32] has proven that the *

w  predicted by Ben-Dor’s model 

agrees well with the experiment results. However, the model still has its limitations that the 

effect of the radius 0R  is out of consideration, and it is inadequate to predict the triple-point 

trajectory of a strong shock wave. Moreover, for the ZND detonation model, the velocity 1u  and 

1a  vary along the distance even behind the incident wave and hence, Ben-Dor’s model cannot be 

applied directly to predict the 
*

w  of detonation wave reflection over a cylindrical concave wedge. 

To further investigate the detonation reflection characteristics, the shock wave reflection 

under the Mach number of 5.4 was simulated as the reference case. Its reflection process is 

shown in Fig. 12. The triple-point trajectory for the shock wave reflection was recorded by 

tracking the density schlieren with constant time intervals, compared with the trajectory from the 

detonation Mach reflection under the same condition that is analyzed in Sect. 3.1 (the latter is 

referred to as the reference reactive case). The comparison of results are displayed in Fig. 13. 

The pressure curves in Fig. 13(a) show that for the reference reactive case, the dimensionless 

pressure p  in the induction zone of detonation wave reaches 34.24, which is equal to that behind 

the shock front in the reference case. However, as the reaction step begins with heat release, the 

pressure of detonation decreases sharply in the reaction zone, and finally reaches 17.98 when the 

chemical reaction is completed. On the other hand, the comparison of the mH – w  relation in Fig. 
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13(b) and the deviation ratio   calculated by m-ref. m-ref.reactive

m-ref.

H H

H


 in Fig. 13(c) indicate that the 

triple-point trajectories of detonation and inert shock wave are close and even coincide in a range 

of w  from 0  to 30 . For greater values of w , a noticeable deviation can be observed and the 

mH  of reference reactive case is always shorter than that of reference case at the same w  

position, resulting in a smaller transition angle *

w  for detonation reflection, and the deviation 

ratio   also has the increase trend along with w . The values of *

w  for the reference case and 

reference reactive case are 76.45° and 71.18°, respectively. 

Although Ben-Dor’s model cannot be used to predict the reflection of a detonation wave, the 

essence of the model can still be invoked to describe the mechanism of the similarities and 

differences between detonation and shock reflection. The model implies that the velocity of 

corner-generated signal su  determines the reflection characteristics, which is mainly related to 

the flow and thermodynamic states behind the wave front. Sketches showing the variation of su  

in the reflection process are given in Fig. 14. For a detonation wave, the flow velocity 1u  in the 

induction zone is essentially equal to that behind the shock wave under the same Mach number. 

Therefore, when this region of detonation wave first propagates over the wedge, the corner 

signals generated by particles in the induction zone have an approximately equivalent value of 

su  as with a planar shock wave (see Fig. 14(a)), thus resulting in a similar reflection trajectory at 

the beginning. Whereas the flow velocity 1u  decreases as the reaction zone and the region behind 

it (or the sonic plane) approach and sweep over the wedge tip afterward, leading to the 

attenuation of su , see Fig. 14(b). Consequently, the signal separates from the wave front earlier, 

which results a shorter length of Mach stem for the same w  and a smaller value of 
*

w . The 
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interpretation reveals a significant fact that the existence of the detonation thickness, i.e., the 

induction and reaction zones, plays a major role in determining how much the characteristics of 

detonation reflection differ from those of shock wave reflection. 

3.3 Effects of various parameters on detonation reflection 

It is shown that the finite reaction structure of a cellular detonation, i.e., with induction and 

reaction zones, plays a significant role in the reflection process. A parametric study was thus 

carried out to investigate the effect of various parameters which affect these two regions in detail. 

These parameters include the dimensionless activation energies I  and R , CJ detonation Mach 

number CJM , the induction and reaction zone length ratio   varied by the pre-exponential 

constants, and the curvature radius of the concave wedge 0R . 

3.3.1 Effect of activation energies I  and R  

Considering that the activation energies I  and R  are mutually independent in the present 

two-step chemical kinetic model, their effects can be analyzed separately. In the simulations with 

various I , I  was varied from 3 to 5.5 with an increment of 0.5, keeping the other parameters 

R = 1, CJM = 5.4, and 0R   750 the same. While in another group of simulations, R  was varied 

from 0.5 to 3 with an increment step of 0.5 for the same conditions of I = 4, CJM = 5.4, and 

0R   750. The parameters Ik  and Rk  were fixed for all these cases, with the value making the 

length ratio  = 25 under the conditions of I = 4, R = 1 and CJM = 5.4. The resulting one-

dimensional pressure curves, length ratio  , and reflection parameters for the cases with various 

I  and R  are shown in Figs. 15 and 16, compared with the inert shock reflection results of the 

same incident Mach number. 
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Shown in Figs. 15(a) and 15(b), the change of I  has no influence on the state parameters of 

the steady ZND detonation as well as the induction and reaction zones based on the present 

chemical kinetic model. As a consequence, the mH – w  relation curves are almost coincident 

with each other and the *

w  is essentially equal for all I  cases, see Figs. 15(c) and 15(d). These 

results imply that these cases with various I  have the same reflection characteristics, which 

means the change of I has little effect on the reflection dynamics of the detonation wave. 

Compared with the cases with various I , the variation of R  does not affect the induction zone, 

but the reaction zone length R  as well as the length ratio   are positively related with it, as 

shown in Figs. 16(a) and 16(b). The relation can be explained by Eq. (13) that the increase of R  

reduces the reaction rate R  and extends the duration of the heat release reaction step, thus 

lengthening R . Differences can also be seen in the results of Figs. 16(c) and 16(d). Although 

the trajectories coincide with that of the shock wave at the early stage, the deviation becomes 

apparent as w  increases. The case with greater value of R  corresponds to longer mH  at the 

same w  position, and larger 
*

w  at the end. 

3.3.2 Effect of CJ detonation Mach number CJM  

The Mach number of the CJ detonation wave, CJM  can affect the flow state in the induction 

and reaction zones directly. To examine its effect on the reflection process, simulations with 

various Mach number CJM  were conducted. In the simulations, CJM  ranged from 4.6 to 6.4 with 

an incremental step of 0.2, while the value of   was fixed at  = 25 by adjusting the values of Ik  

and Rk . The other parameters are constant with I = 4, R = 1, and 0R   750. The shock wave 

reflection with each corresponding Mach number was also simulated. All the results are 
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displayed in Fig. 17. 

The pressure curve in Fig. 17(a) implies that varying CJM  has a noticeable influence on the 

state properties behind the detonation and shock wave front. The peak pressure and the pressure 

after reaction completion rise evidently along with the increase of CJM . However, it can be 

observed from Figs.17(c) and 17(d) that both the trajectories of the reflection triple-point and the 

transition angles *

w  are almost independent of CJM . This equivalent reflection observation for 

strong shock waves with high Mach number has been verified by previous experimental research 

[46] and predicted by Ben-Dor’s model [17, 30-32]. In addition, the reflection parameters of the 

detonation wave, i.e., mH  and *

w , also converge when the length ratio   of the detonation wave 

is kept constant, regardless of the varying flow state behind the wave front. This result is similar 

with the reflection characteristics of strong shock waves. Combining the analysis in Sect. 3.3.1, it 

can be confirmed that for stable cellular detonation waves with a relatively large Mach number, 

the flow state of a detonation wave has minimal influence on the reflection characteristics, 

whereas the critical parameters are the two length scales of the reaction structure, i.e., I  and 

R , whose effect is represented by the length ratio   in this study. 

3.3.3 Effect of induction and reaction zone length ratio   

As shown in the previous section, the length ratio   is the key element in determining the 

reflection process of detonation waves. The effect of   thus needs to be investigated in detail. In 

the present work, the rate constant was used as the means to vary  . The change of Rk  can 

modify this length ratio directly with little influence on the state parameters behind the wave. 

The   values varying from 10 to 30 with an interval of 5 were employed in the simulations. 

The other conditions are again I  = 4, R  = 1, CJM  = 5.4, and 0R   750. The results are 
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provided in Fig. 18. It can be observed that the pressure curve, mH  and *

w  variation with Rk  

presented in Fig. 18 are similar to that of various R  (see Fig. 16), i.e., the reflection parameters 

show positive relation with  . Referring to the analysis in Sect. 3.2, this tendency can be 

interpreted as that the increase of  , i.e., the elongation of R , delays the attenuation of signal 

velocity su . Hence, the corner-generated signals can propagate over a longer distance for the 

same duration of time. Consequently, the triple-point (as the extreme point where the signals can 

reach) can appear at a higher position on the incident wave, and the separation between the 

signals and the wave front is thus postponed. 

From the above analysis, the length ratio   has significant influence on the reflection 

characteristics of the detonation wave. To a certain extent, the detonation reflection parameters, 

mH  and 
*

w , can be described by this length ratio. Any parameters in the reaction model that can 

change this length ratio   will thus affect the reflection characteristics. Theoretically, at the limit 

when   approaches infinity, the detonation will behave as a shock wave, so the limiting value of 

mH  and *

w  for detonation reflection is the value for shock wave reflection with the same Mach 

number. 

3.3.4 Effect of wedge curvature radius 0R  

The radius of wedge curvature 0R  does not belong to the parameters in the chemical reaction 

model, so it has no direct influence on the induction or reaction zone of the detonation wave. 

However, varying 0R  may change the transmission path or distance of the corner-generated 

signal, and in turn affect the reflection characteristics. 

In the present research, 0R values of 250 and 500 were applied to simulate the detonation 
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reflection and corresponding shock reflection cases with various CJM  as in Sect. 3.3.2. In 

addition, the 0R values ranging from 250 to 1500 with an increment of 250 were chosen to 

simulate the detonation reflection cases with various   as in Sect. 3.3.3. The numerical soot foils 

for some sample cases are given in Fig. 19, and the results of *

w  for all the cases are displayed in 

Fig. 20. 

The results reveal that even for different 0R , the transition angles *

w  present similar 

variation regularities as a function of CJM  or  . The results further support the conclusion of the 

previous analysis that the length ratio   is the key parameter in affecting the reflection 

characteristics of the detonation wave and has a positive correlation with the reflection 

parameters. Meanwhile, an evident tendency can be observed from Fig. 20(a) that the *

w  for 

both detonation and shock reflection decrease along with the increase of 0R . The variation trend 

for shock reflection has been confirmed by experiments [46], and Geva et al. [35] argued that the 

physical length scale which connects the triple-point and wedge tip is actually the curvature 

radius 0R , so the change of 0R  certainly will affect the reflection process. According to this 

interpretation, it is supposed that the 
*

w  for detonation reflection will have the similar trend to 

shock reflection under the effect of 0R . However, it is also observed in Fig. 20 that for a fixed 

CJM  and  , the variation of 
*

w  for detonation reflection is significantly greater than that for 

shock reflection with the same variation of 0R . This result suggests that there are some 

additional aspects leading to this trend deriving from the inherent characteristics of detonation 

waves. 

To investigate the mechanism, the dimensionless height m 0/H R  was calculated for the 
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detonation reflection cases of  = 10, 20, and 30 with 0R  from 250 to 1500. The m 0/H R – w  

relations and deviation ratio   for few cases are displayed in Fig. 20. By comparing the relation 

curves in Figs. 21(a), 21(b) and 21(c), all the detonation reflection curves are coincident with the 

shock reflection curves at the beginning and then bifurcations appear at a certain curvature angle 

w . The mechanism has been explained in Sect. 3.2 to be the variation of corner-generated signal 

velocity su . Moreover, it is noticed that for the same  , the corresponding angle 
w  of the 

bifurcation point reduces evidently as 0R  increases, and the trend can also be observed in the 

comparison of   in Fig. 21(d). 

Since the coincident part of the m 0/H R – w  relation curves represents that the corner-

generated signal velocity su  for detonation reflection equals to that of inert shock reflection, it 

can be concluded that the detonation reflection process before the Mach stem reaches the 

bifurcation angle 
w , corresponding to the coincident part of the curves, is actually controlled by 

the region in the ZND detonation structure which has the same flow velocity 1u  with that behind 

the shock front, i.e., the induction zone. Whereas the following reflection process with attenuated 

signal velocity of su , presenting as the bifurcation part of the curves, is controlled by the reaction 

zone and the region behind it (or the sonic plane). Since the induction zone lengths I  of all 

cases are equivalent (equal to 1), it is reasonable to conjecture that for all the cases with various 

  and 0R , the corner signals generated by the particles in the induction zone may travel an 

equivalent distance. According to the assumption in Ben-Dor’s model that the corner-generated 

signals propagate along the wedge surface (see sect. 3.2), the travel distance S  of corner signals 

originated from the induction zone can be estimated by 
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0 w=S R   (19) 

To verify the conjecture, 
w  was specified to be the corresponding angle of the last position 

where the deviation ratio 3%  . Thus the distance S  for various   and 0R  was calculated and 

displayed in Fig. 22. Compared with Fig. 21, It is observed that although the angle 
w  has 

significant variation for different 0R , the value of S  floats in a small range from 260 to 275, 

regardless of the variation of   and 0R , which conforms to the conjecture. 

By synthesizing the analysis above, the mechanism of the 0R  influence on the detonation 

reflection can be pinpointed. Since 0R  has no effect on the incident detonation wave, the 

structure of the induction and reaction zones is thus identical with various 0R  when the CJM  and 

  are fixed. Hence, the corner-generated signals controlled by the induction zone can propagate 

an approximately constant distance S  despite of different 0R , as shown in Fig. 22. However, if 

0R  increases, the proportional influence and importance of this constant travel distance S , which 

is controlled by the corner signals originating from the induction zone, decreases relative to the 

entire reflection distance. Relatively, in a larger part of the reflection process, the signals are 

generated by the particles behind the induction zone and persist in a state with the minimum 

velocity, which eventually makes the signal separate from the wave front earlier with a smaller 

transition angle 
*

w , as presented in Fig. 20. 

4. Conclusions 

The reflection of stable cellular detonation waves with regular cellular patterns over a 

cylindrical concave wedge was investigated through two-dimensional numerical simulations by 

solving the reactive Euler equations with a two-step induction-reaction kinetic model using the 
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adaptive mesh refinement code AMROC. The detonation reflection dynamics and its 

characteristics were studied and compared with that of a planar shock wave, and the mechanism 

was discussed by adopting the length-scale concept. The effects of various parameters on the 

reflection were also investigated in detail. 

Similar to the planar shock wave case, the stable cellular detonation reflection process also 

experiences the transition between various reflection types of DiMR-StMR-InMR-TRR. In the 

lower angle w  area near the wedge tip, the triple-point trajectory of detonation and shock 

reflection coincide with each other for the same Mach number of the leading wave front. As w  

increases, the triple-point trajectory of detonation Mach reflection deviates from that of the shock 

reflection with a reduced Mach stem height mH  and terminates at a smaller MR-RR transition 

angle 
*

w . The mechanism governing the reflection type and transition is discussed by 

considering the velocity variation of corner signals generated by fluid particles behind the 

detonation wave front around the wedge tip. Since the flow velocity in the induction zone is the 

same as that behind a shock wave of the same Mach number, the corner-generated signal velocity 

su  is essentially equivalent with that of a shock wave when the induction zone first propagates 

over the wedge tip, making the reflection behavior similar to the shock reflection. However, the 

signal velocity su  gradually attenuates as the reaction zone and the region behind the sonic locus 

approach and sweep over the tip, which results in reducing the mH  and 
*

w  afterward. 

It can be suggested that for stable cellular detonation waves, the flow state of detonation has 

almost no direct influence on the reflection process. The key parameters appear to be the 

induction and reaction zone length ratio  , which can be regarded as an indicator in evaluating 

the reflection characteristics of the detonation wave. The presence of the finite reaction structure 
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for a detonation wave and all the effects resulting from different chemical reaction parameters on 

the reflection characteristics can be synthesized into the effect of  . The ratio   has a positive 

correlation with the reflection parameters mH  and *

w . 

Lastly, the variation of wedge curvature radius 0R  has no direct influence on the structure of 

detonation wave, and hence the initial corner-generated signals controlled by the flow particles in 

the induction zone can propagate a nearly constant distance S  despite various values of 0R . 

Nevertheless, the increase of 0R  makes the proportion of this distance S  resulting from the 

induction-based signals decrease relative to the entire reflection distance, and in addition 

expands the region where the corner signals can only be generated by particles behind the 

induction zone, so the corner signals persist in a state with the minimum velocity, which induces 

lower mH  and terminating the Mach reflection with decreasing *

w . 
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Figure 1: Conceptual illustration of (a) the combustion chamber of a rotating detonation engine (RDE), (b) 

detonation propagation in a two-dimensional curved channel, and (c) a detonation wave bounded by a 

convex inner wall and a concave outer wall. 

 

 

Figure 2: Illustration of the problem under consideration—the reflection of a weakly cellular detonation 

wave over a 90  concave wedge. 
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Figure 3: A sketch of the ZND detonation wave structure formed by the two-step induction-

reaction model. 

 

 

Figure 4:  Schematic of the computational domain. 
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Figure 5: Grid distribution near the wall with four levels of resolution refinement. 

 

 

Figure 6: Numerical soot foil developed by the incident detonation wave. 
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(a) min I16 pts/x    (b) min I32 pts/x    (c) min I64 pts/x    

  

(d) Trajectories of reflection triple-point (e) Pressure curves along the fixed height of  

y = 140 at the same time instant. 

Figure 7: Numerical soot foils, trajectories of Mach reflection triple-point and pressure curve for three 

different mesh resolutions. 

 

Table 1: The transition angle 
*

w  and CPU time for three different mesh resolutions. 

Resolution min I16 pts/x    min I32 pts/x    min I64 pts/x    

*

w  ( ) 71.38 71.18 71.04 

CPU time (s) 15341 31697 64934 
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Figure 8: A sketch of the detonation wave reflection process over cylindrical concave wedge: A, wedge tip; 

O, center of curvature of wedge, Q, MR-RR transition position; T, Mach reflection triple-point; 
*

w , 

transition angle; w , position angle of T; mH , vertical height from T to wedge surface; i, incident wave; r, 

reflected wave; dashed line, trajectory of reflection triple-point. 

 

 

 

Figure 9: Numerical soot foils of detonation wave reflection presenting the transition of reflection types and 
the enlarged view around the point of MR-RR transition (dotted line: trajectory of reflection triple-point). 
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(a) Direct-Mach reflection (DiMR) (b) Stationary-Mach reflection (StMR) 

  

(c) Inverse-Mach reflection (InMR) (d) Transitioned regular reflection (TRR) 

Figure 10: Overlays of density schlieren and flow vector presenting the structure of detonation wave under 

different reflection types. 
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Figure 11: A sketch of calculation model of 
*

w  for shock wave reflection: A, wedge tip; O, center of curvature 

of wedge; Q, MR-RR transition position; T, Mach reflection triple-point; 0R , radius of wedge curvature; 
*

w , 

transition angle; i, incident wave; r, reflected wave; dashed line, propagation path of corner-generated signals. 

 

 

Figure 12: Density schlieren overlays of shock wave reflection process. 
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(a) One-dimensional pressure curve  (b) mH – w  relation  

 

(c) Deviation ratio   for mH  

Figure 13: Comparison of reflection characteristics for detonation and shock waves. 
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(a) Detonation wave first propagates through the 

wedge tip 

(b) The finite reaction zone (sonic plane) reaches the 

wedge tip 

Figure 14: Sketches of the variation of su  in the detonation wave reflection process:  

P, position of the fluid particle; T, Mach reflection triple-point. 

 

   

(a) One-dimensional pressure curve (a) One-dimensional pressure curve 
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(b)  – I  relation (b)  – R  relation 

  

(c) mH – w  relation (c) mH – w  relation 
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(d) 
*

w – I  relation (d) 
*

w – R  relation 

Figure 15: Parameters for detonation reflection with 

various I . 

Figure 16: Parameters for detonation reflection with 

various R . 

 

  

(a) One-dimensional pressure curve (b)  – CJM  relation 
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(c) mH – w  relation (d) 
*

w – CJM  relation 

Figure 17: Parameters for detonation reflection with various CJM . 

 

    

(a) One-dimensional pressure curve (b) mH – w  relation 
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(c) 
*

w –  relation 

Figure 18: Parameters for detonation reflection with various  . 

 

   

 (a) 0R = 250 (b) 0R = 500 (c) 0R = 750 

Figure 19: Numerical soot foils for detonation wave reflection with various 0R . 

( I = 4, R = 1, CJM = 5.4, and  = 25) 
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(a) 
*

w – CJM  relation with  = 25 (b) 
*

w – 0R  relation with various   

Figure 20: Transition angle 
*

w  for different cases with various 0R . 

 

  

(a) m 0/H R – w  relation with 0 250R   (b) m 0/H R – w  relation with 0 750R   
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(c) m 0/H R – w  relation with 0 1500R   (d) Deviation ratio   for each case 

Figure 21: m 0/H R – w  relation and corresponding deviation ratio   for various   and 0R . 

 

 

Figure 22: S – 0R  relation for various  . 

 




