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Abstract 

 

Smithy: A Bioinformatics Web Service for the Design and Comparison of Different DNA 

Cloning Procedures 

 

Henri-Morgan Thomas 

 

The field of Synthetic Biology has seen many recent developments in DNA assembly protocols, 

software tools in aide of assembly design and experiment planning, standardization of parts, and 

automation of complex and high-throughput DNA assembly and cloning processes. These 

software tools reduce human-introduced errors and the need for highly-skilled labor, cut-down the 

total cost of assembly experiments, and diminish the overall time expended in designing, planning 

and executing reliable cloning experiments. Shortcomings of these efforts, however, exist in their  

usability and accessibility, support for major cloning methods, the incorporation of both part 

repositories and direct-synthesis DNA sequences in the design process, extensibility of the 

software, and the lack of a comparison of assembly design options offered by different assembly 

methods. Here, Smithy is presented: a web-application automating DNA assembly project design 

for scar-less assemblies, incorporating existing sequences from major repositories (e.g., AddGene 

and iGEM) and synthetic DNA sequences into the assembly design process. Currently, the 

supported cloning methods are Gibson, Golden Gate, PCR-SOE, SLIC and BioBricks. Smithy 

software architecture utilizes a new DNA cloning methods abstraction hierarchy, which facilitates 

effective and extendible application implementation and extendibility. Smithy’s graphical user 
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interface and overall user experience are simpler and more informative than existing DNA 

assembly design tools. As a service, Smithy is open-source, free, and widely accessible for users 

of all experience levels. The core software features exist as independent modules that are portable 

to future automation projects. Furthermore, an analytical feature for creating assembly bundles, 

has been developed. Assembly bundles comprise of multiple assembly solutions for the same 

target construct; this facilitates quick comparison and selection of the most appropriate assembly 

solution by and for a particular user. To exemplify the usefulness of Smithy, two detailed case 

studies are presented: a single Gibson assembly for a riboswitch-modulated fluorescent genetic 

circuit, and another bundle assembly for an expanded riboswitch-modulated fluorescent genetic 

circuit, employing Gibson, Golden Gate and PCR-SOE methods. Finally, Smithy is a highly usable, 

future-oriented tool, which can be improved and expanded in response to future developments in 

cloning methodologies, standardization, and software tools, in the highly promising field of 

Synthetic Biology. 

  



v 
 

Acknowledgments 

 

The completion of this project would not be possible without the contributions, challenge, and 

support from several sources. First, I would  like to acknowledge my advisor Nawwaf Kharma for 

guiding and challenging me through the graduate research and thesis writing, during my journey 

in the NSERC Create SynBioApps graduate training program at Concordia University. Next, I 

would like to thank Jonathan Ouellet at Monmouth University for partnering with my professor 

and me, serving critically as an advisor for biological aspects of my thesis and performing 

validation experiments for my work. Lastly, I would like to thank my close friends and family, all 

around the world. They know who they are, and I present them with my sincerest, highest 

appreciation for supporting and encouraging me along the way, as I pursued this graduate degree.   



vi 
 

Table of Contents 
 

List of Figures ............................................................................................................................... ix 

List of Tables ................................................................................................................................ xi 

List of Terms and Acronyms ..................................................................................................... xii 

Chapter 1: Introduction ............................................................................................................... 1 

1.1 DNA ................................................................................................................................. 2 

1.2 Primers ............................................................................................................................. 2 

1.3 PCR .................................................................................................................................. 3 

1.4 Cloning ............................................................................................................................. 3 

1.5 Contemporary Cloning Methods ...................................................................................... 7 

1.5.1 Restriction Endonuclease Cloning – 70s/80s ............................................................ 7 

1.5.2 Polymerase Chain Reaction Splicing by Overlap Extension – 90s .......................... 9 

1.5.3 Sequence and Ligation Independent Cloning – 2007 ............................................. 11 

1.5.4 Golden Gate Assembly – 2008 ............................................................................... 12 

1.5.5 Gibson Assembly – 2009 ........................................................................................ 14 

1.5.6 BioBricks Assembly – 2000s .................................................................................. 15 

Chapter 2: Review of Existing DNA Assembly Design Tools ................................................. 17 

2.1 Biopython – 2000 ........................................................................................................... 18 

2.2 Pydna – 2015 .................................................................................................................. 19 

2.3 J5 – 2012 ........................................................................................................................ 20 

2.4 REPP – 2020 .................................................................................................................. 21 

2.5 Benchling ....................................................................................................................... 22 

2.6 Cloning Methodology Study & Taxonomy .................................................................... 23 

2.7 Smithy ............................................................................................................................. 25 

Chapter 3: Computational and Biological Methods ................................................................ 31 

3.1 Input ............................................................................................................................... 33 

3.1.1 Assembly Selection ................................................................................................. 33 

3.1.2 Assembly Form and Submission ............................................................................ 33 

3.2 Assembly Design............................................................................................................ 35 

3.2.1 Assembler Classes .................................................................................................. 35 

3.2.2 BLAST Sequence Databases .................................................................................. 38 



vii 
 

3.2.3 SQL Database Tables and Models .......................................................................... 38 

3.2.4 Algorithms .............................................................................................................. 46 

3.2.5 Time, Cost, and Risk Calculations .......................................................................... 86 

3.3 Output ............................................................................................................................. 91 

3.3.1 Assembly Detail ...................................................................................................... 91 

3.3.2 Solution Detail ........................................................................................................ 91 

3.3.3 Part Detail ............................................................................................................... 92 

3.3.4 Primer Detail ........................................................................................................... 92 

3.4 Assembly Bundles .......................................................................................................... 94 

3.4.1 Bundle Input............................................................................................................ 95 

3.4.2 Bundle Creation ...................................................................................................... 95 

3.4.3 Bundle Detail .......................................................................................................... 96 

Chapter 4: Bioinformatics Contributions; Claims and Case Studies .................................... 97 

4.1 Cloning Methods Abstraction Hierarchy ..................................................................... 100 

4.2 Simplified and Improved UI/UX.................................................................................. 101 

4.3 Support for Major Contemporary Cloning Methods .................................................... 102 

4.4 Optimal and Comprehensive Assembly Solutions ....................................................... 102 

4.5 Open and Easily Accessible Tool................................................................................. 102 

4.6 Bundle Dashboard for Comparison of Methods .......................................................... 103 

4.7 Portability of Core Features ......................................................................................... 103 

4.8 Case Study 1: Riboswitch Gibson Assembly ............................................................... 103 

4.8.1 Input ...................................................................................................................... 104 

4.8.2 Process .................................................................................................................. 108 

4.8.3 Output ................................................................................................................... 110 

4.8.4 Biological Results ................................................................................................. 116 

4.8.5 Biological Methods ............................................................................................... 117 

4.8.6 Summary ............................................................................................................... 118 

4.9 Case Study 2: Modified Riboswitch Bundle Assembly: Gibson, Golden Gate, PCR-SOE

 118 

4.9.1 Input ...................................................................................................................... 118 

4.9.2 Process .................................................................................................................. 124 

4.9.3 Output ................................................................................................................... 127 

4.9.4 Summary ............................................................................................................... 131 



viii 
 

4.10 Discussion .................................................................................................................... 131 

Chapter 5: Conclusion and Future Work ............................................................................... 135 

References .................................................................................................................................. 139 

Appendix .................................................................................................................................... 143 

6.1 Application Architecture .............................................................................................. 143 

6.1.1 Virtual Environment ............................................................................................. 143 

6.1.2 Django & Model-View-Template ......................................................................... 144 

6.1.3 Django Apps ......................................................................................................... 145 

6.1.4 Assemblers, Fragments, and Queries .................................................................... 147 

6.2 Detail Pages .................................................................................................................. 148 

 

  



ix 
 

List of Figures 

 

Figure 1: General cloning procedure ............................................................................................. 4 

Figure 2: Restriction endonuclease cloning ................................................................................... 7 

Figure 3: PCR cloning for three fragments. ................................................................................... 9 

Figure 4: SLIC assembly for three fragments. ............................................................................. 11 

Figure 5: Golden Gate assembly for three fragments. ................................................................. 12 

Figure 6: Gibson assembly for three fragments. .......................................................................... 14 

Figure 7: BioBricks assembly for two fragments ........................................................................ 15 

Figure 8: Sample Biopython code execution from publication25. ............................................... 18 

Figure 9: Sample Pydna code execution from publication27. ...................................................... 19 

Figure 10: Figure 1 from j5 paper showing user interface28. ....................................................... 20 

Figure 11: REPP algorithmic flowchart from Figure 1-C of publication29. ................................ 21 

Figure 12: Cloning methods abstraction and mapping ................................................................ 23 

Figure 13: Visual representation of the Smithy assembly design process ................................... 32 

Figure 14: Smithy SQL models breakdown for Gibson assemblies. ........................................... 39 

Figure 15: Assembly bundle many-to-many model relationships ............................................... 45 

Figure 16: BLAST single-entry query with three hypothetical alignments................................. 47 

Figure 17: BLAST multi-entry query for three hypothetical insert sequences. ........................... 51 

Figure 18: Assembly solution graph network with depth-first-search. ....................................... 53 

Figure 19: Determining node adjacencies with two FragmentNodes. ......................................... 59 

Figure 20: Primer complements design for a single fragment using a target Tm ......................... 67 

Figure 21: Primer overlap extensions design ............................................................................... 68 

Figure 22: Primer Golden Gate non-scar-less extensions design for two fragments ................... 71 

Figure 23: Primer Golden Gate scar-less extensions design for two fragments. ......................... 73 

Figure 24: An example of the time, cost, and risk estimates charts for a Gibson assembly 

solution .......................................................................................................................................... 86 

Figure 25: Visual organization of the assembly bundle feature and its workflow ...................... 94 

Figure 26: Assembler class hierarchy ........................................................................................ 100 

Figure 27: Assembly sequence inputs ....................................................................................... 106 

Figure 28: Overlap length and BLAST query parameters ......................................................... 107 

Figure 29: Experimental values and melting temperature input for primer design ................... 107 

Figure 30: Assembly cost inputs ................................................................................................ 108 

Figure 31: General information about the riboswitch assembly ................................................ 110 

Figure 32: Time, cost, and risk charts for the riboswitch assembly .......................................... 111 

Figure 33: Assembly solution general information ................................................................... 111 

Figure 34: Summary table for assembly insert sequences (parts) for the solution .................... 112 

Figure 35: Summary information for the AddGene 50458 plasmid part for mCherry .............. 113 

Figure 36: Summary table for assembly primers of the solution ............................................... 113 

Figure 37: Detail page for the forward primer of the AddGene 50458 plasmid sequence for 

mCherry ...................................................................................................................................... 114 

Figure 38: Case Study 1 results ................................................................................................. 116 



x 
 

Figure 39: Beginning form entries for the assembly bundle: title, description, and method 

selection ...................................................................................................................................... 121 

Figure 40: Backbone and insert sequence inputs for the bundle ............................................... 122 

Figure 41: Gibson inputs for the bundle .................................................................................... 123 

Figure 42: Golden Gate inputs for the bundle ........................................................................... 123 

Figure 43: Gibson inputs for the bundle .................................................................................... 124 

Figure 44: The title section of the assembly bundle dashboard ................................................. 127 

Figure 45: Time, cost, and risk charts of the bundle dashboard for Gibson, Golden Gate, and 

PCR-SOE assemblies .................................................................................................................. 128 

Figure 46: The Gibson, Golden Gate, and PCR-SOE solution components of the dashboard 

providing access to the individual solution pages....................................................................... 129 

  



xi 
 

List of Tables 

 

Table 1: Comparison of different cloning design tools................................................................ 29 

Table 2: Listing of Psuccess for experiment types of each supported cloning method ................... 90 

Table 3: Summary of advantages ................................................................................................. 97 

Table 4: Input sequences for the Gibson riboswitch fluorescence construct ............................. 104 

Table 5: Complementary and extension primer sequences for the Gibson assembly ................ 109 

Table 6: Complete primer designs with Tm for all sequences in the assembly case study......... 113 

Table 7: Primer3 thermodynamic computations for the Gibson assembly primers. .................. 114 

Table 8: Sizes of DNA parts, with and without Gibson amplification. ..................................... 117 

Table 9: Input sequences for the modified riboswitch fluorescence construct for the assembly 

bundle .......................................................................................................................................... 119 

Table 10: Complementary and extension primer sequences for the bundle’s Gibson assembly 124 

Table 11: Complementary and extension primer sequences for the bundle’s Golden Gate 

assembly ...................................................................................................................................... 125 

Table 12: Complementary and extension primer sequences for the bundle’s PCR assembly ... 126 

Table 13: Complete primer designs with Tm for all sequences in the bundle’s Gibson assembly

..................................................................................................................................................... 129 

Table 14: Complete primer designs with Tm for all sequences in the bundle’s Golden Gate 

assembly ...................................................................................................................................... 130 

Table 15: Complete primer designs with Tm for all sequences in the bundle’s PCR assembly . 130 

  



xii 
 

List of Terms and Acronyms 

Acronym/Term Definition 

PCR Polymerase chain reaction 

MCS Multiple cloning site 

RE Restriction endonuclease enzyme 

Type 2S RE Type 2S restriction enzyme 

BsaI Default Golden Gate Type 2S RE 

EcoRI Restriction enzyme used in BioBricks cloning 

XbaI Restriction enzyme used in BioBricks cloning 

SpeI Restriction enzyme used in BioBricks cloning 

PstI Restriction enzyme used in BioBricks cloning 

ssDNA Single-stranded DNA 

dsDNA Double-stranded DNA 

nt Nucleotide  

CLI Command line interface 

  

  



1 
 

Chapter 1: Introduction 

This chapter serves as an introduction to the research context of Smithy. It begins by detailing the 

fundamental concepts behind DNA cloning (Sections 1.1-3). Then, the general methods of DNA 

cloning are outlined (Section 1.4). Finally, the six major cloning methods used in the field and 

supported by Smithy are presented in order of their publication times (Section 1.5).   
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1.1 DNA 

Deoxyribonucleic Acid (DNA) is a large, polymer that holds heritable information, influencing all 

aspects of function and development of living organisms. The four molecular compounds that 

genetic information is written in are adenine (A), thymine (T), cytosine (C), and guanine (G).   

DNA exists in two major forms: double-stranded DNA (dsDNA) and single-stranded DNA 

(ssDNA). Double stranded DNA is composed of two complementary polymer strands with a 

specific directionality. This directionality is based on the molecular structure of the strands’ sugar-

phosphate backbones: the start of a strand being the 5’ end and the end of a strand the 3’ end. 

Complementary strands are formed through the bonding of adenine to thymine and cytosine to 

guanine. dsDNA is the form in which genes and plasmids exist, and single-stranded DNA is the 

form in which PCR primers exist. In the context of synthetic biology, novel DNA sequences are 

rationally designed and created by obtaining sequences from organisms or through chemical 

synthesis. These new genes can then be introduced to organisms for augmentation of existing 

processes or the addition of completely new features. 

1.2 Primers 

Primers are short sequences of ssDNA used for targeting specific sequences of DNA or RNA for 

amplification via a polymerase chain reaction (PCR) described in Section 1.3. For a typical PCR 

experiment, a dsDNA is targeted by two primers: one called the forward primer, the other called 

the reverse primer. These sequences of ssDNA are short, from about 20-50nt long. The forward 

primer will partially or wholly bind to the beginning of the target sequence and the reverse primer 

will bind to its end.  
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1.3 PCR 

The polymerase chain reaction (PCR) is an effective and reliable process to amplify a target 

sequence of DNA exponentially for a diverse range of applications. The DNA is quickly amplified 

through thermocycling using a DNA polymerase enzyme. Thermocycling will cause the target 

DNA complementary strands to unbind and allow for the primers to bind as temperature cools. 

Then, the polymerase will extend the bound forward and reverse primer sequences to complete the 

target dsDNA sequence. This process is repeated until the desired target dsDNA concentration is 

achieved1,2. PCR is crucial to the field of synthetic biology as it is a fundamental procedure for the 

early stages of most DNA cloning projects.   

1.4 Cloning 

Molecular DNA cloning has been an existing biological experimental technique for several 

decades, since the 70s and 80s. There are several differing methods for performing cloning 

experiments, and they each use a different set of enzymes to extend, cut, and ligate DNA to 

facilitate in vitro creation of rationally designed genetic constructs that are later introduced to host 

cells.  
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Figure 1: General cloning procedure. A plasmid backbone is shown with an MCS (blue) that is 

linearized by an enzyme. Three fragments (F1, F2, and F3) to be inserted into this backbone are 
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shown with assembly extension sequences added. The three fragments are then shown inserted 

into the backbone through, in general terms, a digestion-ligation or chewback-ligation procedure. 

These methods are used to take sequences of DNA from external sources or organisms and 

assemble them together in vitro into a coherent genetic construct, often referred to as an “insert”. 

DNA inserts created in this fashion are called recombinant DNA. With a genetic construct created, 

the experimenter will insert this new sequence into another large sequence of DNA that serves as 

a chassis for expression in the host cell, and this chassis is referred to as a “plasmid backbone”3,4. 

Backbone plasmids are a way to contain the DNA in a structure that allows reliable and repeated 

introduction into test cells/organisms, and these are selected based on the desired host organism 

and specifications of the experimental research study. Two crucial, required features of backbones 

are a replication of origin and selectable markers. After assembly of the insert and its incorporation 

into a backbone, a completed plasmid is achieved that is ready for expression. This complete 

construct is then introduced into a selected host organism that will express the assembled sequence. 

The introduction of a genetic construct into a host organism is called transformation or 

transfection. 

There exist several sources of DNA for cloning endeavors. Organisms, synthetic DNA 

manufacturers, plasmid repositories selling scientifically published sequences, and a lab’s local 

“database” (a large collection of freezers) of previously used and catalogued sequences from past 

experiments can all be used. When setting out to design a cloning experiment the researcher must 

acquire all sequences necessary for their genetic construct while also optimizing and minimizing 

the cost (and risk) of securing the sequences and assembling them together. The different sources 

of DNA sequences have different costs. For example, using DNA from a home lab is cheaper than 
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using sequences from a plasmid repository such as AddGene, and using DNA from a plasmid 

repository is cheaper and faster than purchasing completely synthesized DNA sequences.  

DNA cloning spans an effective and important suite of experimental methods and tools for 

contemporary synthetic biology applications, including but not limited to: Gibson Assembly5, 

Golden Gate Assembly6, MoClo7, SLIC8,9, BioBricks10,11, and PCR-SOE12–14. The applications of 

DNA cloning involve novel, rational designs, and modifications to the genomes of the host 

organisms. Additionally, these methods are independent of the genetic constructs’ function and 

use, thus applicable to a broad range of research projects. The array of cloning experimental 

techniques began with what’s called “Traditional Cloning” which uses restriction enzymes to “cut-

and-paste” a single insert sequence into a single plasmid backbone. However, the methodologies 

have evolved and improved since to accomplish large, complex, and scalable assemblies that have 

ultimately led to the development of high throughput genome foundries15,16. Furthermore, not only 

have these methods evolved for scale, but they have also evolved for increased and improved 

standardization of parts, plasmid entry vectors, plasmid backbones, and experimental 

methodologies4–7,17–22.  
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1.5 Contemporary Cloning Methods 

1.5.1 Restriction Endonuclease Cloning – 70s/80s 

 

Figure 2: Restriction endonuclease cloning 

Restriction endonuclease cloning involves the combination of a single insertion DNA sequence 

with a plasmid backbone. The insert sequence is digested with two unique restriction 
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endonucleases (RE), one for each end of the DNA molecule. Using different restriction 

endonucleases is necessary as it ensures the exposed overhang sites, resulting from the digestions, 

will be different from one another. In the same fashion as the insert fragment, the plasmid backbone 

is digested using the same two restriction endonucleases at its Multiple Cloning Site (MCS). An 

MCS is a specialized part of a plasmid that contains a large set of cut-sites, for a usually popular 

set of REs. 

Once the insert and plasmid backbone are digested, the plasmid backbone is linearized which 

allows the insert sequence to be added. The insert is added through complementary binding of the 

cut-site overhangs facilitated by a ligase. With successful ligation, the insert is contained in the 

backbone and the newly constructed plasmid can be transformed/transfected into a host cell for 

expression23.  

It is useful to understand traditional cloning before covering newer methods because these 

contemporary methods all build and iterate upon the same fundamental ideas and methodologies 

present in this strategy. The core methodologies, specifically, are the use of insert sequences, a 

plasmid backbone to contain the genetic construct, and various enzymes that facilitate the cloning 

assembly process. Newer methods have become dominant because they not only improve on the 

strategies of traditional cloning but also scale up the capacity of experiments to large, multi-

sequence assemblies of complex genetic constructs. 
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1.5.2 Polymerase Chain Reaction Splicing by Overlap Extension – 90s 

 

Figure 3: PCR cloning for three fragments: F1, F2, and F3. (A) Each fragment is extended using 

PCR to add overlaps at junctions for a total overlap length (i and ii). (B) The extended fragments 

are denatured and then annealed together based on the overlap sequences at the junctions. (C) 

After cycles of PCR the full construct is achieved.  
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After the development of traditional cloning, a competing method for the creation of recombinant 

DNA sequences was created that takes advantage of PCR. This new method is commonly known 

as PCR-SOE12. With this new method, two insert fragments are combined during PCR using 

primers that have extension sequences adding homology (shared nucleotide sequences) between 

the two insert fragments. During the PCR process, the primers first add homology to each insert 

fragment through their extension sequences. After the homologies are added, the two sequences 

then anneal together and act as large primers for each other, leading to a final and complete 

sequence. Initially PCR-SOE was only able to combine two fragments at once, however over time 

the methodology has been improved to allow up to four (4) large, several thousand base long 

sequences to be recombined24.  
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1.5.3 Sequence and Ligation Independent Cloning – 2007 

 

Figure 4: SLIC assembly for three fragments: F1, F2, and F3. (A) Each fragment is extended 

using PCR to add overlaps at junctions for a total overlap length (i and ii). (B) Fragments 

undergo exonuclease chewback to reveal 5’ single stranded sequence overlaps that can be ligated 

together. (C) After ligation and repair of the chewback reaction the final construct is achieved. 

A newer cloning method created in the late 2000s is called sequence and ligation-independent 

cloning, known as SLIC8,9. This method is unique compared to traditional and PCR-SOE cloning. 

It allows for multiple (5-10) insert fragments to be recombined in vitro using exonuclease reactions 

and incubation-initiated recombination. The recombination of insert fragments is produced 

through the exonuclease chewing back the ends of each fragment to expose homologies with left 
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and right neighboring fragments for every fragment in the assembly. Similar to PCR-SOE, the 

homology sequences are added during a set of PCR extension reactions and are roughly 30nt in 

length. The original study states that this method is a way that the researchers were able to mimic 

in vivo homologous recombination in vitro for complex genetic assemblies8,9.  

1.5.4 Golden Gate Assembly – 2008 

 

Figure 5: Golden Gate assembly for three fragments: F1, F2, and F3. (A) Each fragment is 

extended using PCR to add the BsaI cut-site and selected 4 nt overhangs at junctions (i and ii). 

(B) The three fragments are digested using BsaI to expose the 4 nt overhangs. (C) A ligase is 

used to recombine the fragments at the correct junctions at the overhang sequences. 

Golden Gate cloning is a breakthrough method published in 20086, one that has seen widespread 

use because of its efficiency and precision. This cloning method utilizes Type 2S restriction 
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enzymes and ligases to facilitate the recombination of one or multiple DNA insert sequences and 

their insertion into a backbone plasmid. The restriction enzyme, typically BsaI, will digest the 

fragments to expose sequence overhangs, and the ligase will repair the nicks, joining the sequences 

into the desired construct.  

Type 2S restriction enzymes are advantageous in Golden Gate cloning because they (as with most 

restriction enzymes) cut DNA to produce overhangs, which can be exploited for sequence 

recombination. However, these enzymes cut outside of their recognition sequence to expose a 4 nt 

5’ or 3’ overhangs, depending on the orientation of the cut-site. In addition, the 4 nt overhang 

sequence is independent of the enzyme’s recognition sequence and is thus customizable. These 

customizable overhangs are used to design assemblies where one or several insert sequences can 

be assembled together, and then into the backbone plasmid, in an effective and predictable way. 

Additionally, Golden Gate cloning is performed in a one-pot reaction, compared to earlier methods 

requiring multiple reaction volumes. Therefore, large assemblies of several fragments can be 

performed in the span of 1-6 hours, depending on the insert count6.  
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1.5.5 Gibson Assembly – 2009 

 

Figure 6: Gibson assembly for three fragments: F1, F2, and F3. (A) Each fragment is extended 

using PCR to add overlaps at junctions for a total overlap length (i and ii). 

Gibson cloning is similar to SLIC but uses different enzymes for assembling several fragments. 

Like Golden Gate cloning, it is also a one-pot assembly reaction method. Fragments are 

recombined in vitro by using a T5 exonuclease to chew-back the sequences, exposing 3’ single-

stranded DNA that is homologous with neighboring fragments. As with PCR-SOE and SLIC, 

homology sequences are added during a set of PCR extension reactions for each insert fragment. 

The fragments then anneal together according to their shared homologies, finishing with a filling 

and repair of gaps and nicks in the recombined sequences by Phusion polymerase and Taq ligase, 
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respectively. The entire procedure for Gibson cloning is an isothermal reaction, taking place at 

50°C and in a single pot. This renders it another efficient and convenient method for large, complex 

assemblies of up to several 100kb5.  

1.5.6 BioBricks Assembly – 2000s 

 

Figure 7: BioBricks assembly for two fragments: F1 and F2 
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In an attempt to standardize assembly parts and procedures, researchers at Massachusetts Institute 

of Technology (MIT) created the BioBricks assembly standard for pairwise, iterative assembly of 

insert sequences10. This method uses a standardized pair of flanking sequences for every used part. 

The creators of this method call these flanking sequences the “prefix” and “suffix” of each part. 

Insert fragments are flanked by these prefix and suffix sequences in entry vectors. The prefix 

contains two restriction enzyme cut-sites for EcoRI and XbaI, and the suffix contains one 

restriction cut-site for each of SpeI and PstI. Following a specific protocol for digestion-ligation 

reactions (similar to traditional cloning and Golden Gate) these cut-sites allow for pairwise 

recombination of two insert sequences. This results in the recombined sequence being flanked by 

the same prefix and suffix sequences. Thus BioBricks allows for iterative, pairwise assembly of 

several insert fragments into a reusable destination vector.  
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Chapter 2: Review of Existing DNA Assembly Design Tools 

A handful of design tools for cloning projects have been developed over the past few decades. 

These tools span a broad range of applications, from code libraries that can be imported into 

software development projects, to full programs seeking to optimize designs and protocols for 

cloning experiments. As cloning methods became more efficient, robust, and scalable, DNA 

assembly design automation tools also evolved, for similar reasons. What follows is an overview 

of the major cloning design automation and aid tools that inspired or were utilized in the 

development of this project. 
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2.1 Biopython – 2000 

 

Figure 8: Sample Biopython code execution from publication25. This short script shows the use 

of a Biopython Seq class instance with simple molecular biology functions executed on it: 

transcription and translation. 

Biopython is a set of bioinformatics tools for use in Python, and it has been updated continually 

since its initial release in 200025. There are several useful features in Biopython to bioinformatics 

projects, however a select few have been utilized for the purposes of Smithy. These features are 

the local BLAST interface and BLAST query results datastructures. The rest of the capabilities of 

this library cover sequence records, input/output interfaces for popular bioinformatics file types, 

sequence alignments, population genetics, and structural bioinformatics. Biopython is a useful tool 

for using, recording, and managing large amounts of biological data.  

With BLAST+26 installed on the local machine with created sequence databases, Biopython has 

built-in tools that allow a programmer to call BLAST queries from a Python script using simple 

syntax. Additionally, there is a query results parser that will translate BLAST results into usable 

datastructures within Python so that these data can be utilized Smithy. The data structure for a 

given query result holds all of the information produced by the BLAST query in the Biopython 

Alignment object. For the purposes of Smithy, only the DNA sequence query command is used, 

but all of the BLAST+ commands are available for use.  
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2.2 Pydna – 2015 

 

Figure 9: Sample Pydna code execution from publication27. This sample code demonstrates the 

Pydna in silico PCR simulation capabilities for two sequences: CYC1 and GFP. For The two 

sequences, each is amplified using pydna.pcr(). Then the PCR amplicon for CYC1 is used to 

print its figure and program, which respectively show the primer bindings and a recommended 

PCR procedure. 

The Pydna project is another Python code library that expands greatly on the efforts of Biopython 

into the realm of DNA assembly projects27. Pydna’s main focus is on rough simulations and project 

documentation in a transmissible form for programmers and biologists alike. DNA sequence 

records can be stored in linear or circular formats, common molecular biology functions such as 

reverse complements and transcriptions can be performed on sequences, restriction enzyme 

digestions, and more can be done in a very simple fashion within a Pydna script. Additionally, a 

suite of tools is available for primer design, PCR simulation, and overlap-extension based 

assembly simulations are also possible in Pydna. A major contribution of the Pydna project is its 

ability to allow biologists and bioinformaticians to transmit project ideas and designs in a highly 

repeatable, reliable, and amendable fashion27.  
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This library has been used extensively in the development of Smithy, notably the primer design 

capability, which uses a customizable multiparameter melting temperature function, and the 

various sequence record objects available.  

2.3 J5 – 2012 

 

Figure 10: Figure 1 from j5 paper showing user interface28. (A) Selection of the desired cloning 

method. (B) The file inputs for every design aspect of the assembly for the j5 software. (C) User 

manual for the software. 

First published in 2011, j5 provides a web service for design automation of SLIC, Gibson, CPEC, 

and Golden Gate assemblies28. With user specified design rules, j5 will help create scar-less 

assembly designs for a selected cloning method. Furthermore, the application will suggest direct 

part synthesis and hierarchical assembly strategies where necessary. An assembly design is 

generated after a user submits a collection of input files for parameters, sequences, design rules, 

and more. Results of the solution generation are found in another set of output files with extensive 

details of the assembly strategy determined by the software. The application employs 5 core 

algorithms to accomplish its tasks, which cover determining optimal PCR strategies, assembly 
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primer extension sequences (flanking homology sequences for Gibson Assembly, for example), 

finding incompatible assembly parts, and cost-optimized sequence sets for assembly28. J5 

presented a useful tool for aiding assembly designs as cloning objectives and methodologies grew 

in scale and complexity.  

2.4 REPP – 2020 

 

Figure 11: REPP algorithmic flowchart from Figure 1-C of publication29 detailing how assembly 

solutions are designed. 

Repository-based plasmid design (REPP) is a recently published project that, like j5, provides 

cloning design automation for Gibson assemblies only29. The software is a command line tool that 
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takes a different approach to design generation than j5. While j5 provides a large suite of 

information and protocol suggestions for different types of assembly methods, it requires user-

submitted sequences. With REPP, the objective plasmid is submitted by either its full sequence or 

by a list of feature names. In response, the program will find existing sequences for the plasmid, 

using BLAST queries, in available local copies of major DNA databases, being AddGene, iGEM, 

and DNASU. Then, given the set of sequences found for the plasmid, gaps in the query results will 

be filled in with sequences to be purchased through direct synthesis. Cost optimization between 

synthetic and database parts is then performed and the rest of the Gibson assembly designed. 

Similar to j5, REPP utilizes a collection of several algorithms for its sequence queries, synthetic 

sequence determinations, cost optimizations, and more. This project offers a unique approach to 

design automation for Gibson assemblies by using queries on local copies of popular sequence 

repositories and performing cost optimizations based on synthetic sequence count, repository 

sequence count, overall cost, and total amount of assembly fragments29.  

2.5 Benchling 

Benchling is a powerful cloud-based platform for academic and industrial research and 

development efforts30. It is a centralized service providing several different applications for users 

to take advantage of, such as project collaboration, project management, analytics, and 

experimental resource tracking. Part of their Molecular Biology toolset includes primer design aid 

and in silico execution of PCR amplification along with digestion-ligation, Gibson assembly, and 

Golden Gate assembly protocols30. Also included are primer secondary structure prediction and 

sequence design management. Paired with the overall feature set of Benchling, these primer and 

assembly features provide convenient and reliable design functionalities for contemporary, 

complex Synthetic Biology projects.     
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2.6 Cloning Methodology Study & Taxonomy 

A core theoretical component of the Smithy project is the taxonomy of cloning. This taxonomy 

groups and organizes cloning methods into a hierarchy based on abstract attributes of each method. 

The concept arose from a motivation to limit the amount of algorithmic implementation of 

supported cloning methods for Smithy. After careful study and analysis of several different 

methods and reviews of the methodologies3,4,18,21,31,32, developed over the entire timeline of the 

field, the taxonomy was discovered.  

 

Figure 12: Cloning methods abstraction and mapping 

The first group contains restriction enzyme (RE) based methods and begins with the traditional 

cloning and BioBricks methods. The next level of this category is Golden Gate assembly, as this 

method expands on the traditional RE method to use Type2S REs for more control, efficiency, 
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scalability, and reliability of assembly constructs. Finally, the last level is built on top of the Golden 

Gate category and is composed of the MoClo and GoldenBraid methods. These two methods 

expand further on those seen in Golden Gate for greater standardization, scalability, and 

complexity of assembly endeavors through hierarchical cloning strategies via additional Type2S 

enzymes7,19,20.  

The next major group is concerned with overlap-based assemblies that rely on sequence 

homologies between neighboring DNA fragments. The first sub-category developed contains 

methods that use enzymes to chew back, ligate, and repair multiple DNA sequences for assembly 

based on shared sequence homologies. The most well-known method of this type is Gibson 

assembly. Its relatives in the group are SLIC and In-fusion33, which operate under the same 

methodological concepts and approach. The next sub-category does not contain methods utilizing 

chew back, ligation, and repair but rather overlap extension and ligation through polymerase chain 

reaction (PCR) procedures. Contained in this group are the methods PCR-SOE and CPEC34.  

The last two groups are independent of each other, one containing TOPO cloning and the other 

Gateway cloning35,36. These two methods are not included in the application, but they were added 

to the taxonomy, so it covers all popular methods. It is, however, possible to add them to Smithy, 

and efficiently, without disturbing Smithy’s overall software architecture. 

As stated, not all of the methods under study for the taxonomy are implemented in Smithy, however 

they were mentioned because they were crucial to developing the categories of the hierarchy. This 

taxonomy is a fundamental design aspect of features in Smithy, namely the Assembler software 

class hierarchy, that are described later.  
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2.7 Smithy  

We’ve created Smithy, a web application for automated design of complex DNA assembly 

experiments. The application is written in Python and uses the Django web application framework 

library. Several other Python libraries are used for efficient and precise automated design, along 

with the BLAST+ CLI program26 for sequence alignment queries, JavaScript and the UI/UX tools 

of Bootstrap5 and Chart.js37,38. The important core functionalities of Smithy are contained in seven 

algorithms, and they will be described in order of processing, starting with BLAST queries and 

concluding with assembly primer design.  

The first two algorithms involve performing BLAST queries using the BLAST+ command line 

interface (CLI) through Python for obtaining DNA sequence alignments from DNA databases. 

These are what we call single-entry and multi-entry queries, each having a separate unique 

algorithm for running the BLAST query and organizing the results properly. Single-entry queries 

use a FASTA input file containing one entry for the entire insert sequence to query over, while 

multi-entry queries also use a single input file, but with multiple entries of the insert’s 

subsequences in proper order. Results of these two query modes are structured differently, so they 

need different organizational approaches for the data, approaches that are usable in the rest of the 

application’s pipeline. The user, at the input, decides whether to use a single- or multi-query 

format.  

Next, a single algorithm has been developed to obtain BLAST query results and build solutions. 

Here a solution is any ordered set of BLAST alignments that result in the exact same DNA 

sequence as the input query with no errors; effectively a rebuild of the input sequence. Solutions 

are created using the FragmentTree class that has been developed for the Smithy project. This class 

uses the entire set of query results from BLAST to construct a graph network, which contains every 
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possible solution for a given insert in a tree data structure. Any solution obtained from this network 

can be used for running specific assembly method design algorithms to produce a completed 

solution that facilitate experimental construction of the genetic assembly.  

There are three algorithms used for the assembly design, given a particular solution from the 

previous step. Only one is used in each assembly method’s design procedures as they describe 

different primer design approaches. Thus there is one for overlap extension assemblies, Gibson, 

PCR, and SLIC, which is found in the OverlapExtensionAssembler class. Then there is a single 

algorithm for Golden Gate assembly primers found in the GoldenGateAssembler class, and there 

is a single algorithm for BioBricks assemblies found in the BioBrickAssembler class. These primer 

design algorithms take a solution built by the FragmentTree and generate complete assembly 

primers for each part in the solution including the backbone. As a result, the full solution is 

comprised of the parts, sourcing listing, and the complete set of primers that needed for sequence 

extension and in vitro experimentation. Additionally, thermodynamic analysis through Primer3 is 

added to each primer and solution-level metadata is computed for analytical charts to be presented 

to the user. These charts determine the predicted approximate cost, risk, and time associated with 

the experimental DNA assembly39. Lastly, the design functions used by the assembler classes are 

described. These perform the full design procedure for a single solution generated by the software. 

More on these algorithms with be described in the Computational and Biological Methods chapter, 

along with further detailing the front-end, middleware, and backend architecture of the project. 

The various databases used in the software will also be described, those being the BLAST DNA 

sequence databases and SQL tables, for assemblies, parts, and primers, used for the Django web 

application component of the project.   
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After critical review and analysis of relevant design tools in the field, shortcomings and gaps in 

features provided by existing tools, and new contributions in these areas providable by Smithy 

were identified. J5 is presented in its publication as a software tool available online. However, 

when navigating to its original link (j5.jbei.org) no assembly design tool is available, and visitors 

are referred to various other tools and publications for biological parts registries and formats40,41, 

a deprecated tool called VectorEditor42, a linked tool to j5 called DeviceEditor that is 

inaccessible43, and a new plasmid editing tool called Open Vector Editor44. In addition, while j5 

proposes strong design capabilities for popular cloning methods, there was no feature allowing for 

comparison of multiple assembly strategies. REPP presents itself as a strong DNA assembly design 

tool utilizing BLAST sequence searches, however major shortcomings were identified when it was 

installed for use. Following the instructions of the publication and online documentation, the full 

advertised feature set for the various ways a target construct could be submitted and designed was 

not completely functional. Designing a plasmid from feature names or insert subsequences did not 

function29,45. As a command line interface (CLI) tool, its use is prone to user errors and difficulties 

unless users are already familiar with the tool or working in the command line of a computer. 

Additionally, the installation and execution of the software was unsuccessful when attempted on 

various systems. Furthermore, the design software is implemented in the Go programming 

language46 and only supports Gibson assemblies. The Go programming language is not one seen 

widely within scientific and academic communities and strong, highly developed scientific 

software libraries exist within other software communities, particularly Python and R. Having 

support for only Gibson assemblies greatly limits the range of researchers who will be attracted to 

use the tool. Pydna provides excellent DNA sequence manipulation, management, and annotation 

features while including in silico PCR and general overlap extensions assembly designs. However, 

j5.jbei.org
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like REPP, having support for only a single DNA assembly methodology limits the applications 

of the software library, where assembly design is concerned. The shortcomings and lacking 

features of these existing tools provide several opportunities to contribute improvements and 

expansions. 

Smithy addresses the opportunities identified in these projects in various ways. First, it addresses 

the issues in j5 by existing as an openly accessible, simple-to-use web application with minimal 

user inputs. Additionally, Smithy allows comparison of multiple assembly options for single 

constructs through a feature called assembly bundles. These allow users to make informed 

decisions on the optimal cloning methodology to use for a given target construct. The shortcomings 

of REPP are addressed by avoiding a CLI tool altogether by providing a webservice runnable by 

any common browser. REPP only support Gibson assemblies, but in Smithy Gibson, Golden Gate, 

PCR-SOE, SLIC, and BioBricks assemblies are implemented. These five methods were realized, 

amongst the greater set of existing cloning methods, based on a few key criteria. First, they hold 

significant popularity within the synthetic biology cloning community. Second, compared to the 

whole collection of cloning methods studied, these all showed opportunity for design aid that 

would benefit researchers in their cloning projects. Third, apart from BioBricks, these methods do 

not operate under existing, strict standardization in the methodology for primer designs and entry 

vectors. The methods of MoClo and GoldenBraid have very clearly defined plasmid entry vectors, 

overhang sequences to use, and overall procedures for assembling complex target constructs. In 

sum, we focused the efforts of implementing methods on Gibson, Golden Gate, SLIC, PCR-SOE, 

and BioBricks, though others, particularly MoClo and GoldenBraid, could be implemented in the 

future.    
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The software of Smithy is also written in Python, which is broadly accessible to many different 

groups in industry and academia with a highly diverse open-source community for scientific 

libraries. The use of Biopython25, Pydna27, and Primer3-py39 in Smithy demonstrate this point. The 

assembly design features seen in Pydna are expanded upon in the assembly design classes 

implemented in Smithy.  

With regards to Benchling, while their toolset and quality are thorough and high-quality, there are 

limitations to the assemblies they provide and differences in approach for assembly designs. First, 

only RE cloning, Gibson assembly, and Golden Gate assembly methods are supported. These three 

are also present in Smithy, but in addition, the PCR-SOE, SLIC, and BioBricks methods are also 

implemented. Second, the assembly design approach of Benchling utilizes plasmid constructs 

created by users within the application, without BLAST queries, synthetic fragment gap-filling, or 

solution candidate generation. Smithy implements these strategies for providing optimal target 

construct options to users. In addition, Benchling only offers only a limited set of its tools in a free 

version, which does include their Molecular Biology suite. Smithy, however, is open-source and 

free, with reusable software modules for other Python Bioinformatics and Synthetic Biology 

software developers.  

Table 1: Comparison of different cloning design tools 

 Biopython Pydna J5 REPP Benchling Smithy 

Sequence sourcing No No No Yes No Yes 

Cloning method support No No Yes No Yes Yes 

Comparison of methods No No No No No Yes 

Reusability  Yes Yes No Yes No Yes 
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Extensibility  Yes Yes No Yes No Yes 

Simple UI/UX No No No No Yes Yes 

 

Overall, Smithy collects a range of advantageous features for DNA cloning design automation seen 

in different projects, such as support for multiple methods, BLAST database sequence queries, 

openly accessible interfaces, and implements them into a single product that is not bound to simply 

being a web application. Smithy provides complete and usable primer designs, sequence sourcing 

from large DNA databases, thorough analytics for assembly solutions, and comparison of multiple 

assembly method options for individual solutions. The core functionality of Smithy can be 

imported into other synthetic biology software projects apart from the Django web application 

implementation. Furthermore, these features are expanded upon with reusable, extendible, and 

future-oriented software that can handle the addition of new cloning methods and features with 

ease.   

 

Smithy is available online at: rs-loy-smithy.concordia.ca 

  

rs-loy-smithy.concordia.ca
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Chapter 3: Computational and Biological Methods 

In this chapter, the complete workflow of Smithy for assembly design generation is presented 

(Figure 13). The chapter begins by explaining the inputs required for creating assembly designs 

(Section 3.1). Assembly selection and input forms are described in detail. Second, the software 

that processes user inputs for generating target assembly construct designs, is explained (Section 

3.2). Here, the Python classes that perform assembly designs, the databases containing DNA 

sequences and the web-application’s data, and the full suite of design algorithms for generating 

comprehensive assembly designs are described. These components of Smithy are responsible for 

accepting the user inputs (mainly, desired assembly), and producing all the information needed for 

the (wet lab) construction of a complete DNA assembly solution. Third, how assembly solutions 

and their information are presented to the user on the web pages of the application is detailed 

(Section 3.3). Fourth, the key feature of assembly bundles is presented; it generates multiple design 

solutions, utilizing different assembly methods, leading to the same target construct (Section 3.4).  
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Figure 13: Visual representation of the Smithy assembly design process 
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3.1 Input 

This section covers the input requirements and procedures for Smithy. The description will start at 

selecting a desired assembly, then the assembly form inputs are detailed. Differences between the 

input forms for different assemblies are also clarified.  

3.1.1 Assembly Selection 

The web page for assembly selection can be accessed from the home page and global site 

navigation bar. A page for selecting the assembly method is loaded, and used for project type 

selection. Current assembly options are Gibson, Golden Gate, PCR-SOE, BioBricks and assembly 

bundles. Once a selection is made, an input form is displayed, which requests the information 

needed for the assembly and for solution building.  

3.1.2 Assembly Form and Submission 

The input forms are similar across all supported cloning methods; 

• Title 

• Backbone sequence FASTA file 

• Insert sequence FASTA file, either single- or multi-entry 

• Boolean selection for single- or multi-entry BLAST query 

• Overlap amount, if using Gibson, SLIC, or PCR-SOE 

• High-fidelity overhang set, if using Golden Gate assembly 

• Boolean selection of BLAST databases to query (AddGene, DNASU, iGEM) 

• Minimum and maximum BLAST sequence sizes 

• Minimum and maximum synthetic sequence sizes 

• Monovalent and divalent ion concentrations (for Primer3 calculations) 
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• dNTP concentration (for Primer3 calculations) 

• DNA oligo concentration (for Primer3 calculations) 

• Target melting temperature (Celsius) 

• Primer cost per nucleotide (0-100nt) 

• Part cost per nucleotide (100-1000nt) 

• Gene cost per nucleotide (>1000nt) 

Some differences between the forms do exist, reflecting different methodological requirements 

and materials costs. Overlap extension assemblies (Gibson, SLIC, and PCR-SOE) ask for overlap 

lengths. Golden Gate assembly requires selection of a high-fidelity overhang set of which there 

are four47. BioBricks does not ask for either of these parameters or any other unique input for 

assembly design. Apart from these special design inputs, there are additional cost parameters for 

the methods’ enzyme requirements. Users select each enzyme they need to perform the 

experiments, and only when selected, will a dollar cost value be inputted. The different enzyme 

cost inputs available for each assembly type are: 

• Gibson: exonuclease, ligase, and polymerase  

• Golden Gate: BsaI and ligase.   

• PCR: polymerase 

• SLIC: exonuclease and ligase 

• BioBricks: EcoRI, XbaI, SpeI, PstI 

Once the input form is complete, a single Assemble button is clicked and the user is shown a simple 

loading screen while Smithy runs the design pipeline (Section 3.2.4). When the design procedure 

is complete, results will be available through the assembly detail pages.  
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3.2 Assembly Design 

Each major aspect of the solution generation process is explained in this section. Section 3.2.1 

describes the Python classes that implement the full design procedure of Smithy. Sections 3.2.2-3 

provides an overview of the databases for the application. One of these is the BLAST DNA 

sequence database used for target construct alignment searches, and the other is the Django 

application’s SQL database where complete cloning assembly solution data is stored. Section 3.2.4 

explores the seven core algorithms used for generating solution designs. Section 3.2.5 details the 

assembly solution cost, time, and risk estimates that are useful in determining whether or not a 

particular solution and its methodology is to be carried out in real experiments.  

3.2.1 Assembler Classes 

This cloning method class structure has a base class named Assembler, seen in Figure 24. The 

Assembler class implements the core functionality for achieving the objectives of Smithy, to 

automate the design pipeline of DNA assembly projects. Assembler contains the majority of the 

code, parameters, functions, algorithms, and variables. This class implements the following 

functionalities and data items: 

• Building and running of BLAST queries 

• Collecting and ordering BLAST results 

• Building assembly insert solutions with BLAST results 

• Assembly primer designs 

• Primer thermodynamic analysis 

• Parts annotations 

• Analytical metadata calculation for assembly solutions 
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Two main child classes are inherited from the Assembler class, and they are used to further 

implement more child classes that are used within the Smithy application. These two classes are 

TraditionalREAssembler and OverlapExtensionAssembler. TraditionalREAssembler begins the 

branch from base functionality to specify restriction endonuclease based cloning methods: 

traditional cloning, Golden Gate, and BioBricks. OverlapExtensionAssembler begins another 

branch off base functionality to implement overlap based cloning methods: PCR-SOE, SLIC, and 

Gibson. With these two main branches in the class hierarchy, all the major cloning methods used 

for the project were implemented in Python, as their own child classes via minimal additional code. 

These child classes control initial parameters (restriction enzyme type, overlap amount, overhang 

sets, etc.), the primer extension algorithms, and solution design procedures (Figure 24). 

Starting with TraditionalREAssembler, this class extends the base class to allow for the addition 

of two restriction enzymes, a ligase, and a polymerase. Two functions are implemented for adding 

cut-sites to assembly parts, one for adding a single RE cut-site to both ends of a part, and another 

for adding two unique cut-sites to a part: one for the forward and one for the reverse primer. 

Additionally, this class implements four basic cloning functions for different traditional cloning 

approaches: three different single digest functions, and one double digest function48. These 

functions allow this class to operate on its own for traditional cloning designs, using a single insert 

sequence. 

The first child class of TraditionalREAssembler is the GoldenGateAssembler class. It has two main 

modes of operation that are chosen for any assembly, whether utilizing scar-less or non-scar-less 

assembly primer design. The overhangs used within the GoldenGateAssembler class originate 

from a comprehensive high-fidelity profiling of 4 nt overhang sequences, for Type 2S restriction 

enzyme cloning methods, that avoid assembly mismatches as much as possible.47. Four different 
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sets are available for use: the first containing 15 overhangs at 98.5% fidelity, the second with 20 

overhangs for 98.1% fidelity, the third with 25 overhangs for 95.8% fidelity, and the last with 30 

overhangs for 91.7% fidelity47. Utilizing these profiled overhang sets allows users to select the sets 

that best match the number of expected insert fragments to use and fulfill expectations of assembly 

accuracy. These design algorithms are detailed in Section 3.2.4.5. Additionally, this class has its 

own design algorithm for complete (forward and reverse) assembly primer design, for each part, 

in an assembly solution. The last implemented child class of TraditionalREAssembler is the 

BioBrickAssembler class. As with the other assembly classes, it designs appropriate forward and 

reverse primers for each part, to perform a BioBricks assembly experiment (Section 3.2.4.6). 

Primer extensions are static, according to the BioBricks standards: the same suffix sequence for 

reverse primers and two prefix sequences for forward primers, one for coding sequences and one 

for all others. The Golden Gate and BioBricks assembler classes are the only restriction enzyme-

based classes in Smithy. 

Moving on from the TraditionalREAssembler branch is the OverlapExtensionAssembler class and 

its child classes. After studying the methodologies of overlap-based cloning methods, it was 

determined that they ultimately do not require much unique implementation. So 

OverlapExtensionAssembler implements all the current features for its child classes, which are 

PCRAssembler, SLICAssembler, and GibsonAssembler. Similar to the Golden Gate assembler 

class, OverlapExtensionAssembler takes all parts in a solution, and adds primer extensions for 

assembly, but based on overlap extensions, using the overlap length parameter provided by users 

(Section 3.2.4.4). The Gibson, SLIC, and PCR classes do not add more features/functionality on 

top of what is already defined in their parent class. These three additional assembler classes 

complete the suite of cloning methods supported by Smithy.  
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3.2.2 BLAST Sequence Databases 

With a local installation of BLAST+, BLAST databases can either be downloaded from the NCBI 

site, or created using multi-entry FASTA files26. Smithy makes use of the latter feature of BLAST+ 

to implement the local sequence databases for solution building from three popular DNA sequence 

and plasmid providers: AddGene, DNASU, and iGEM. Large FASTA files containing entries for 

the current state of these repositories’ datasets were created. Then, the makeblastdb command was 

executed for each repository’s FASTA file to generate local, queryable BLAST databases for the 

individual repositories. The sequence data for each provider was obtained upon direct request and 

is the most current available datasets as of 2021 - though regular updates should be made. Once 

created, these databases are accessible through the BLAST+ functionality used extensively in 

Smithy (Section 3.2.4.1).  

3.2.3 SQL Database Tables and Models  

The Django application framework for Smithy relies on a collection of SQLite database tables 

containing unique entries for each assembly with their parts, primers, and solutions. Bundled 

assemblies are also entered into the database when created by users. Each of these model types 

have their own SQL tables for each type of supported cloning method. For example, Gibson 

assemblies have a two-part table for solutions, one part for parts, and one for primers; this pattern 

applies to all assembly methods including: Golden Gate, SLIC, PCR-SOE, and BioBricks. See 

Figure 14 for this model relationship pattern. Every entry in these tables represents a unique 

component of a single assembly created by the user.  
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Figure 14: Smithy SQL models breakdown for Gibson assemblies. The model types are in bold 

in the box headers with their parent classes in lighter text within the box. 

The hierarchical order of the database model types used in the application is: bundles, assemblies, 

solutions, parts, and primers. An assembly is created, and any number of solutions for that 

assembly is then associated with it in the database. Each solution has any number of parts added 

to its associations, which in total compose the full solution. Likewise, each part for a solution has 

primers associated with it, which are added to the database; Smithy only utilizes two primers: a 

forward one and a reverse one. When assembly bundling is chosen, the organization of data within 

each assembly is the same, but an AssemblyBundle model is created for each assembly selected by 

the user, using many-to-many relationships; see Figure 15 for the bundle relationships. 

To reduce new code, the Django models used for these assembly components were first designed 

and implemented abstractly, both theoretically and practically. Django allows for database models 

to be defined abstractly without the creation of actual tables; tables are only created from new 

model class definitions, which inherit from the abstract class. This inheritance structure is seen in 

Figure 14. Thus, for the assembly, solution, part, and primer models are first defined using this 

abstract model class feature, named Assembly, AssemblySolution, AssemblyPart, and 



40 
 

AssemblyPrimer. Hence, every cloning method type can be defined using these abstract model 

classes for their own model. For example, for Gibson assemblies its models are GibsonAssembly, 

GibsonSolution, GibsonPart, and GibsonPrimer-- all inherited from their respective parent classes 

(Figure 14).  

3.2.3.1 Assemblies 

Assembly models are defined through inheritance from the Assembly abstract model class. This 

class defines most attributes, for all other child assembly models, of supported cloning 

methodologies. The attributes of this abstract class are:  

• Title  

• Date created 

• Backbone sequence 

• Insert sequence 

• Multi-query (true/false), used for determining if multi-query functionality is used 

• AddGene (true/false), for selecting this BLAST database for query 

• iGEM (true/false), for selecting this BLAST database for query 

• DNASU (true/false), for selecting this BLAST database for query  

• The minimum BLAST sequence size 

• The maximum BLAST sequence size 

• The minimum synthetic sequence size 

• The maximum synthetic sequence size 

• Monovalent ion concentration ([Na+]) 

• Divalent ion concentration ([Mg2+]) 
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• dNTP concentration 

• DNA oligo concentration  

• Melting temperature (°C) 

• The backbone record file 

• The insert record file 

This abstract class does not result in the creation of a SQL table. When child classes are defined, 

these are used for creating tables and saving unique model entries. When child classes inherit from 

this base class, they contain all parent attributes, and thus only need to specify new attributes 

unique to the assembly type. This idea applies to all other abstract parent and child models, defined 

for the application. The assemblies created using the Assembly parent class are the supported 

cloning methods of Smithy: GibsonAssembly, GoldenGateAssembly, PCRAssembly, 

SLICAssembly, and BioBricksAssembly. These classes are used to implement the assembly forms 

at user input, and when submitted these forms allow the unique instances of the Assembler class 

to be created, used, and saved to the SQL database. After the bundle model, which is only used for 

specific situations, these assembly classes are the highest level of relationships within the SQLite 

database. 

3.2.3.2 Solutions 

The design and implementation of assembly solution models follows the same approach as the 

Assembly models. An abstract base model class is defined for child solution classes called 

AssemblySolution. The specific classes simply need to define their relations to specific Assembler 

classes they are associated with, as the attributes needed for Smithy are predefined in 

AssemblySolution. For example, the Gibson solution model is called GibsonSolution and it inherits 

from this base class. It defines a foreign key relationship with the GibsonAssembly model for a 
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many-to-one relationship of solutions to assemblies. This implementation style is also seen for the 

other cloning methods’ solution models. Due to this many-to-one relationship, several different 

solutions can be designed for a single assembly model, solutions that are all accessible to each 

other via Django and SQL functionalities.  

Solution models hold unique data about a single solution, as designed by the assembler class, using 

the design methodologies described in Section 3.2.4.  

The direct, descriptive information on a solution are: 

• Name 

• Date created 

• Backbone sequence 

• Query sequence 

• Solution sequence (can be different from the query sequence) 

• Parts count 

• Primers count 

In addition, the following analytical attributes are defined:  

• BLAST nucleotide match percentage 

• Synthetic nucleotide percentage 

• A graphical plasmid map 

• Required restriction enzymes for assembly  

• Average part length 

• Average primer length 

• Longest part length 
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• Shortest part length 

• Average primer melting temperature 

• Number of BLAST database parts 

• Number of synthetic parts 

Each of the assembler models defined for the supported cloning methods, has one implemented 

solution model, which is inherited from the parent model class. As such, GibsonSolution is defined 

for GibsonAssembly, GoldenGateSolution for GoldenGateAssembly, and so on.  

3.2.3.3 Parts and Primers 

As with the other models, the database models for parts and primers are defined in the same 

fashion. First, abstract parent classes are defined, and then unique child classes for the individual 

cloning methodologies are defined. The abstract class for parts is called AssemblyPart, while the 

one for primers is called AssemblyPrimer. 

The attributes defined for AssemblyPart are:  

• Name 

• Date created 

• Origin database 

• Original length 

• Assembly extension length 

• Original nucleotide sequence 

• Assembly extension sequence 

• Positional index in the solution 

• BLAST query start index 
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• BLAST query end index 

• BLAST subject start index 

• BLAST subject end index 

• Graphical part map 

• Number of Type2S restriction enzyme cuts (Golden Gate only) 

• Locations of Type2S restriction enzyme cuts (Golden Gate only) 

The attributes for AssemblyPrimer are: 

• Name 

• Date created 

• Primer type (forward or reverse) 

• Full sequence 

• Annealing sequence 

• Extension sequence 

• Total melting temperature (Celsius) 

• Annealing sequence melting temperature (Celsius) 

• GC percentage 

• Hairpin found (true/false) 

• Hairpin melting temperature 

• Hairpin delta Gibbs 

• Hairpin delta H (enthalpy) 

• Hairpin delta S (entropy) 

• Homodimer found (true/false) 
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• Homodimer melting temperature 

• Homodimer delta Gibbs 

• Homodimer delta H (enthalpy) 

• Homodimer delta S (entropy) 

3.2.3.4 Bundle 

 

Figure 15: Assembly bundle many-to-many model relationships 

The assembly bundle is a feature of Smithy used to consolidate into a single procedure, all of the 

computation needed for the creation of multiple (user-selected) assemblies. The model class is 

used for a many-to-many relationship between selected assemblies and the AssemblyBundle model 

(Figure 15). A new bundle is created with relationships to the selected assemblies, which all follow 

the standard relational hierarchy. The attributes of AssemblyBundle are:  

• Title 

• Date created 

• Description 

• Gibson, a many-to-many attribute for GibsonAssembly 
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• Golden Gate, a many-to-many attribute for GoldenGateAssembly 

• SLIC, a many-to-many attribute for SLICAssembly 

• PCR, a many-to-many attribute for PCRAssembly 

• BioBricks, a many-to-many attribute for BioBricksAssembly 

3.2.4 Algorithms 

Here, Smithy’s core algorithms for generation of assembly solutions are presented. Section 3.2.4.1 

explains the two different methods of performing BLAST sequence alignment queries for finding 

DNA sequences of the target assembly construct. The target construct sequence is provided and 

DNA sequence alignments from selected databases are obtained to be used for creating solutions. 

The way in which Smithy uses BLAST alignments for generating these candidate solutions is 

shown in Section 3.2.4.2. All of the alignments from the BLAST queries are used to generate a 

comprehensive set of combinations of sequences that compose candidate solutions, reconstructing 

the target assembly construct sequence. Section 3.2.4.3 describes the beginning stages of assembly 

primer design for a single solution candidate where non-extension primer sequences are created 

using a target melting temperature. These three main algorithms are used in each DNA cloning 

methodology’s software implementation. 

The next three sections, Sections 3.2.4.4-6, present the three different primer extension sequence 

design procedures for the different cloning methods supported by Smithy. Using  a single solution 

with its non-extension primers, the primer extension sequences that facilitate cloning assemblies 

during experiments for specific methodologies (e.g., Gibson or Golden Gate assembly) are created. 

The three primer extension design algorithms cover overlap extension assemblies (Gibson, PCR-

SOE, SLIC), Golden Gate assemblies, and BioBrick assemblies.   
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Lastly, Section 3.2.4.7 shows how the algorithms of Sections 3.2.4.1-6 are used to execute the full 

assembly solution design process of Smithy. 

3.2.4.1 Blast Single-Entry and Multi-Entry Queries  

 

Figure 16: BLAST single-entry query with three hypothetical alignments: a1, a2, and a3. The 

first (a1) is from AddGene and spans the query sequence within the a and b indices. The second 

(a2) is from iGEM and spans the query sequence within the c and d indices. The last alignment 

(a3) is from DNASU and covers the query sequence within the e and f indices 

The single-entry and multi-entry queries use BLAST+ for sequence alignment searches of (user-

selected) local copies of DNA databases. The databases used in the current version of Smithy are 

the AddGene, iGEM, and DNASU sequence repositories-- with the possibility of extension to lab-

specific DNA sequence databases. A new Python class, named Blaster, has been developed to 

manage execution of the BLAST queries using the Biopython wrapper functionality. This 

functionality of Biopython allows rapid command building, via a Python script, for purpose of 

local BLAST queries. Given the focus of Smithy, only the blastn tool is used for performing 
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nucleotide alignment searches. To run queries, an instance of the Blaster class is created, with user 

parameters provided through the assembly input form. 

The Blaster class provides an interface used by the Assembler classes for several aspects of the 

assembly design pipeline. First, the building of parameterized queries for each user-selected 

database, according to the blastn format and execution of these queries on each database. Second, 

the collection and combination of the query results, stored as Biopython Alignment objects, and 

filtered according to user preferences (such as minimum and maximum sequence lengths). Lastly, 

the combined and filtered query results are provided to the calling script, an instance of the 

Assembler classes—though the Blaster functionality can be used independently. 

In addition to this interface provided by the Blaster class, there are two different modes of querying 

available. These query modes are for single-entry or multi-entry FASTA input files. Single- and 

multi-entry queries differ in their input format and management of results, but both use a FASTA 

file for the input sequence(s). A single-entry query uses an input file with one single FASTA entry, 

for the whole insert DNA sequence. The multi-query uses one input file, but with multiple FASTA 

entries representing the insert’s contiguous subsequences, in proper order. These two query types 

are important, as they dictate how the provided insert is used for performing and managing query 

results from BLAST.  

To begin the procedure, a simple and limited set of inputs is required from the user, gathered in 

the assembly creation form on the site, for creating a Blaster object. These values are the selected 

databases to query, a FASTA input file for the insert sequence, a Boolean value for design around 

a single- or multi-entry query and the minimum and maximum fragment sizes (to allow past the 

query). With these inputs, the local BLAST queries can be performed.  
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3.2.4.1.1 Query Building 

Creating the query commands is a process performed separately for each selected database. Given 

a list of databases, a set of parameters necessary for blastn queries is created for each database. 

Values for these parameters include the database’s name, a file path for the FASTA query 

sequence(s), declaring an XML output format, and standard BLAST+ parameters guiding the 

query algorithms. This procedure of building the parameter sets for the queries is done within a 

single Python function, which returns these parameters, for use by the Biopython blastn command 

line wrapper functions.   

3.2.4.1.2 Single-Entry Query 

With the query commands properly created and formatted, a single-entry query can be done. Each 

BLAST local database for the assembly is queried through the Biopython blastn interface. In 

addition to this interface, for BLAST queries the Biopython library has a separate tool for parsing 

BLAST results (in XML format) to place them in their Python Alignment objects. Each of these 

Alignment objects contains all the information provided by BLAST but accessible through a 

Python object-oriented datastructure form. This information includes the score, alignment indices 

for the query and subject sequence, length, and database origin. When the query is completed and 

parsed, a large list of these alignment results is obtained for each database query.  

In brief, a standard BLAST sequence alignment query will find matches to the provided input 

sequence, within the databases selected for the problem at hand. When a match is found between 

a sequence in the database on the input sequence, the individual result will contain where on each 

of these sequences the match was found (e.g., indices a and b in Figure 16). There are various 

parameters that can be used to determine matching strength. Mismatches can be tolerated if the 

user and/or project permits them. Sequence matches also do not necessarily span the entire query 
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sequence but can be subsequences. Given this, results from these queries will contain sequence 

alignments of various sizes and, ideally, of 100% homology between input and output sequences. 

The size variance seen in query results is important to note for the discussion of the solution graph 

network (Section 3.2.4.2) and is constrained to the user-provided minimum and maximum sized 

sequences (Section 3.1.2). The graph network will generate all possible combinations of sequence 

alignments that reconstruct the submitted insert, while compensating for gaps between alignments 

by adding filler sequences (indicating spans of the insert that will be purchased through direct 

DNA synthesis). These sequence combinations are then sorted by total BLAST alignment 

matching, and hence sequences from the databases that cover the most of the target construct are 

prioritized  

After each query is performed and results collected, they must be combined into a single list, for 

use in latter stages of the design pipeline. To merge the results, each list of blastn alignments is 

combined, to form a single list of all the results for each database. This merged list is then cleared 

of unusable sequences. 

Filtering the query alignments employs three simple attributes: sequence redundancy (according 

to the query sequence), minimum sequence size, and maximum sequence size. The minimum and 

maximum size values are provided by the users via the input forms. These values are important, 

as they signify the range of sequence sizes a user will tolerate for their lab assembly experiment(s). 

When filtering alignments, sequences are checked for redundancy in the results set, based on their 

start and end indices on the query sequence. For example, given two sequence alignments that 

match the same sequence and location on the query, only the first alignment is retained. After 

redundancy checks, alignments are checked for valid size within the minimum-maximum range 

specified. Finally, the sequence alignments are sorted in ascending order according to their start 
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indices on the query sequence. This is done so that during the solution generation protocol 

sequences at the start of the query input sequence are encountered first. 

Once the query results are completed for single-entry queries, they can be used in the creation of 

the solution graph network. This network is built from these alignments, using their start and end 

indices, and has all valid candidate solutions for the assembly, embedded within it.  

3.2.4.1.3 Multi-Entry Query 

 

Figure 17: BLAST multi-entry query for three hypothetical insert sequences: F1, F2, and F3. 

The first insert sequence, F1, has one alignment from AddGene (a1). The second, F2, has two 

alignments: one from iGEM and another from DNASU (a2 and a3). It is shown in this figure that 

the alignments span the entire insert sequences. 

The multi-entry query procedure requires a different input format and manages results differently 

than those seen in the single-entry procedure. With the input file containing multiple FASTA 

entries, each of these subsequence entries are queried individually with blastn. The results are then 

parsed in the same way followed for single-entry results, but with separate lists containing 
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alignments for each of the subsequence entries. Results from each of the databases are then 

combined, according to the subsequences of the query. The alignments are filtered based on full 

matches with the query’s subsequences (Figure 17). Alignments that do not match a subsequence 

100% are discarded. The crucial difference between the two query modes is the structure of the 

results with alignments for each insert subsequence stored in separate lists. Since there are strict 

bounds on the sequences used for composing the assembly insert, variations on sequence 

alignments cannot be tolerated, and only full matches with the insert subsequences can be used. 

This changes the solution design process significantly, because multi-entry query assemblies do 

not use the solution graph network, used by single-entry queries, that assumes BLAST alignments 

are varied in length and location on the single, full target construct sequence. While the approach 

to gathering and storing the alignments differs, the class that implements the solution network 

(FragmentTree, Section 3.2.4.2.2) stores BLAST results in a general way that is the same for 

single- or multi-entry queries. These multi-entry assemblies are advantageous for users who 

require strict bounds on assembly sequences, such as when Golden Gate scars can only occur at 

certain junctions between sub-fragments.  
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3.2.4.2 Solution Graph Network 

 

Figure 18: Assembly solution graph network with depth-first-search shown from the root node 

to node 9 (Root, 7, Filler, and 9). The Root node is an empty node that provides starting points 

for sequence alignments at the start of the target construct, shown as nodes 2, 7, and 13. Filler 

nodes contain sequence data not found in BLAST searches (Section 3.2.4.2.6). Node List is the 

full set of FragmentNodes, containing individual BLAST alignments, used for creating the 

solution network. Adjacency Set contains all adjacencies between nodes of Node List, using the 

index of each node in the set. Node Ends is a set of all alignment end indices of entries in Node 

List for avoiding redundant filler node additions (Section 3.2.4.2.7). The tree network structure 

seen here is created through a depth-first-search over the Adjacency Set. 

The graph network is a critical component of the Smithy design process and requires the most 

computational resources. At the highest level, the network is designed using standard concepts 

from computer science. A graph network, implemented by the FragmentTree class, is comprised 

of network nodes, implemented by the FragmentNode class that contains individual BLAST 

alignment data used for establishing connections between nodes. Connections between 
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FragmentNodes in the network are used to find assembly solutions through a depth-first-search 

process (Figure 18). 

Each node is checked with every other node, in pairs, in the FragmentNode set used for creating 

assembly solutions. When a valid link between any two nodes is found a network adjacency is 

added to the FragmentTree adjacency set (Figure 19, Pseudocode 1). Adjacencies are set between 

nodes when their sequences are able to reconstruct portions of the insert query in correct sequential 

order. With all adjacencies found between nodes, a vast graph network is created. Traversing this 

tree in a depth-first-search fashion will allow all valid solutions contained within the tree to be 

found (Figure 18, Pseudocode 2).  

As mentioned with the BLAST single- and multi-entry modes, the FragmentTree class has two 

types of control flow and logic for these two query types. These two query methods have different 

approaches to utilizing sequences acquired from the various databases. The single-entry queries 

require the creation of the FragmentTree network, while the multi-entry queries do not. For the 

multi-entry query mode, the FragmentTree is still used, but only for storage and retrieval of 

alignments. The multi-entry queries have lower complexity than single-entry query solution 

building, when considering the requirements for obtaining alignment results, and using them for 

assembly solutions. A graph network is not created in this method, and instead query results for 

each insert sub-sequence are collected into individual lists, with the same format as that of a multi-

sequence FASTA input file. Then, solution sequences are retrieved from each of these lists in the 

same order, retrieving the alignments, so a correctly ordered solution can be generated. 
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3.2.4.2.1 FragmentNode 

The FragmentNode class is responsible for containing information about a single BLAST 

sequence alignment. These data are limited and used for access to essential information on a 

particular alignment, when constructing the FragmentTree network. These data include:  

• data: a variable containing the actual Biopython BLAST Alignment object of a query 

result 

• start: the start index of the alignment on the query sequence 

• end: the end index of the alignment on a query sequence 

• score: the BLAST score value, a one-to-one scoring for the number of nucleotide matches 

in an alignment (100% matches used) (this value can be tuned with advanced query 

parameters) 

• node_id: a simple name for identifying the given node  

• db: the name of the database from which a given node originates 

• query_seq: BLAST query sequence for the FragmentNode 

• subject_seq: BLAST subject sequence for the FragmentNode 

• coordinates:  a Python tuple of the FragmentNode's start and end values 

Further information about the BLAST alignment can be accessed through the node’s data attribute. 

The FragmentNode class, as it currently stands, contains little functionality apart from data 

fetching of the node’s data.  

3.2.4.2.2 FragmentTree 

The FragmentTree class is responsible for building assembly solution candidates from the BLAST 

insert query results, which are contained in the FragmentNodes. This class utilizes a few input 
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parameters from the user assembly form to guide the solution tree network building algorithms. 

These parameters are: 

• query sequence, being the insert’s full DNA sequence 

• length of the query sequence 

• minimum nucleotide size of synthetic fragments for assembly designs 

• maximum nucleotide size of synthetic fragments for assembly designs 

• assembly costs 

• assembly experiment probabilities of success 

The query length is used for the solution generation stage, which checks the end of each fragment 

set acquired by the network for its completion of the insert query. Based on the last node’s index, 

if the solution ends before the end of the query sequence, then a filler sequence is added to the 

solution to complete the query sequence (Section 3.2.4.2.8). It is important to note that filler 

sequences are only added to solution ends if the length of the missing segment fulfills the minimum 

and maximum synthetic DNA size parameters, provided by the user.  

In order to fully describe the functionality of the FragmentTree class, it helps to list out its class 

attributes. These are crucial to building and reporting solutions, and they are: 

• node_list: a list of FragmentNodes for building a solution tree 

• min_synth: minimum nucleotide size of synthetic fragments for assembly designs 

• max_synth: maximum nucleotide size of synthetic fragments for assembly designs 

• adjacency_set: a set of adjacencies between FragmentNodes for building insert solutions 

• node_end: a set of FragmentNode ends used for avoiding redundant filler nodes  

• visited: a list of visited nodes to use when building solution 
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• solutions: a list of lists, where each list is a collection of indices of FragmentNodes in the 

nodes list that make an ordered solution for the assembly 

• scores: a list of scores for each respective solution. Indices of the scores list correspond to 

those of the solutions list. 

• query_len: length of the query sequence 

• query: the insert’s full DNA sequence 

• max: the maximum total score of all solutions 

• part_costs: list of nucleotide costs for part size groups 

• pcr_polymerase_cost: per-reaction cost for PCR polymerase 

• polymerase_cost: per-reaction cost for assembly polymerase 

• exonuclease_cost: per-reaction cost for assembly exonuclease 

• ligase_cost: per-reaction cost for assembly ligase 

• biobricks_digest_cost: per-reaction cost for BioBricks assembly digestion 

• restriction_enzyme_cost: per-reaction cost for Golden Gate assembly Type2S RE 

• parts_preference: user parts count preference 

• cost_preference: user cost preference 

• pcr_ps: PCR probability of success 

• gibson_ps: Gibson assembly probability of success 

• goldengate_ps: Golden Gate assembly probability of success 

• ligation_ps: Ligation reaction probability of success 

• biobricks_digest_ps: BioBricks digestion probability of success 

• slic_exonuclease_ps: SLIC exonuclease reaction probability of success 
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3.2.4.2.3 Network Building 

To build the fragment network several procedures take place. First, the BLAST alignments are 

used to build the node_list and node_end lists for the FragmentTree instance. Then the node list is 

extensively used to determine adjacencies between every node in the list and add filler nodes 

(Figure 19), indicating synthetic sequences for the assembly, where and when needed. Adjacencies 

are stored within the adjacency_set and are represented by indices of nodes within node_list. With 

adjacencies found and collected a depth-first-search is performed on the adjacency set to find 

solutions and store them with their individual scores in solutions (Pseudocode 2). This solution 

search builds a tree network representing all possible unique solutions, which are contiguous sets 

of insert subsequences (Figure 18). 

With the solution search complete, the max solution score, as determined by total database 

nucleotide matches, is found by accessing the maximum score value in the solutions list. Solutions 

are then sorted, in descending order, according to their scores. This ensures that the better solutions 

are used first during assembly design. Hence, solutions that do not complete the submitted insert 

sequence are completed, using filler fragments, respecting the user-provided maximum and 

minimum synthetic sequence values. Finally, those solutions that fully represent the insert 

sequence are retained; all others are deleted.  

3.2.4.2.4 Node Adjacency 

Here a single function is described, build_edge_set(), which is the class’s core algorithm for 

determining the network tree adjacencies.  
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Figure 19: Determining node adjacencies with two FragmentNodes i and j. (A) representation of 

the start and end indices of each node being checked for a filler node gap (Pseudocode 1). (B) An 

example of inserting a filler node between nodes i and j. 

 

Pseudocode 1: Node Adjacency 

Inputs: 

NONE 

Variables: 

node_A: The first node in the pair for comparison 

node_B: The second node in the pair for comparison 

start_index: The node’s starting index on the query sequence 

end_index: The node’s ending index on the query sequence 

min_synth_seq: The length of the smallest tolerable synthetic sequence 

max_synth_seq: The length of the largest tolerable synthetic sequence 

 

 

build_edge_set(): 1 
    for every i, j combination in node_list  2 
        get node_A start_index, end_index from node_list at index i 3 
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        get node_B start_index, end_index from node_list at index j 4 
         5 
        if node_B start_index > node_A end_index + min_synth_seq  6 
            and node_B start_index < node_A end_index + max_synth_seq  7 
                and node_B start_index is not in node_ends 8 
            create filler node using node_A end_index + 1 and node_B start_index - 1 9 
            add node_B start_index – 1 to node_ends 10 
     11 
 12 
        if node_A start_index > node_B end_index + min_synth_seq  13 
            and node_A start_index < node_B end_index + max_synth_seq  14 
                and node_A start_index is not in node_ends 15 
            create filler node using node_B end_index + 1 and node_A start_index - 1 16 
            add node_A’s start – 1 to node_ends    17 
        endif   18 
    endfor 19 
 20 
    for every i, j combination in node_list 21 
        get node_A start_index, end_index from node_list at index i 22 
        get node_B start_index, end_index from node_list at index j 23 
 24 
        if node_B start_index equals node_A end_index 25 
            and node_A does not already have an adjacency to node_B 26 
            add adjacency from node_A to node_B 27 
        endif 28 
        if node_A start_index equals node_B end_index 29 
            and node_B does not already have an adjacency to node_A 30 
            add adjacency from node_B to node_A 31 
        endif          32 
    endfor 33 

 

The algorithm begins by finding all valid filler nodes to create and add to node_list. Given the 

node list, all pairwise combinations of nodes are inspected for possible filler node gaps (Figure 19-

A, Pseudocode 1 lines 2-19). If a valid filler node is added to node_list, this new node represents 

the sequence between the original node pair. Each pair is tested against every pair. Given two 

nodes, A and B, node A is tested against node B and vice versa. The conditional logic for these 

two checks is similar, and the references are simply swapped.  

Next, the algorithm sets node adjacencies. With all valid and necessary filler nodes added, 

adjacencies between all possible pairwise combinations of the fragments in node_list can be found 
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(Figure 19-B, Pseudocode 1 lines 21-33). Similar to the filler node steps, each pair has two 

FragmentNodes, A and B, that are tested against each other. With two nodes A and B, if B’s start 

is equal to A’s end without being a repeated adjacency add an adjacency from A to B.  

With these two procedures complete, all filler nodes for the network are created and all possible 

valid adjacencies between nodes would have been determined.  

3.2.4.2.5 Normal Node 

A typical FragmentNode contains a small but crucial set of attributes necessary for building the 

network. These values are used for identification, adjacency searching, database origin, BLAST 

score value, and the complete BLAST result information. Specifically, this information is:  

• the BLAST alignment data, stored in a Biopython Alignment 

• start index on the query sequence 

• end index on the query sequence 

• score, determined by the BLAST alignment match  

• descriptive title and id 

3.2.4.2.6 Filler Node 

Filler nodes contain similar data to normal nodes, though it is more limited. The creation and 

addition of filler nodes to node_list is straight forward. First, an empty Biopython Alignment 

instance is created, and then it is filled with the proper filler node values: start and end. The data 

stored in this alignment object are:  

• descriptive title and id, beginning with “Synthetic” 

• length 

• score, which is 0 since it is compensating the lack of a BLAST alignment 
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• insert subsequence extracted from the insert query sequence using start and end as index 

bounds 

• start index 

• end index 

Once the Alignment instance is completed, it is stored in a new FragmentNode’s data attribute, 

and this new node is added to the node_list. The attributes used to create the FragmentNode for a 

filler node are similar to those of normal nodes, but particular to the filler at hand. 

3.2.4.2.7 Solution Searching 

 

Pseudocode 2: Solution Searching 

Inputs: 

node: The starting node index of node_list for the depth-first-search 

path: The current list of node_list indices for a solution path in the FragmentTree 

 

Variables: 

visited: A list of visited nodes to use when building solution 

adjacency_set: A set of adjacencies between FragmentNodes for building insert solutions 

scores: A list of scores for each respective solution. Indices of the scores list correspond to those of the 
solutions list 

solutions: A list of lists, where each list is a collection of indices of FragmentNodes in the nodes list 

that make an ordered solution for the assembly 

 

 

dfs(node, path) 1 
    visited[node]  True 2 
    append node to path 3 
 4 
    if empty adjacency_set for node 5 
        score  solution score for current path 6 
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        append score to scores 7 
        p  copy path 8 
        prepend score to p 9 
        add p to solutions 10 
    else 11 
        for each i in adjacency_set at node   12 
            if visited[i] is False 13 
      dfs(i, path) 14 
            endif 15 
        endfor 16 
 17 
    pop last node from path 18 
    visited[node]  False 19 

 

The adjacency_set is an abstract representation of the nodes in node_list. It does not contain any 

node data, just integers of node indices of node_list, stored in sets for each node’s one-to-one 

adjacency mapping. This approach reduces space and time for building the solution tree, as the 

actual node data is separated from the network building logic. In the initial stages of creating this 

approach, the entire FragmentNode object was used within the network instead of index-based 

abstract representation. Using full FragmentNodes in this way caused their data to be copied 

whenever multiple adjacencies existed for a single node, severely consuming memory resources 

and causing the code to run unacceptably slow.  

The networks created can be large and complex, containing hundreds of solution paths. The search 

for solutions uses a depth-first-search (DFS) algorithm that visits each path of adjacencies in the 

network, down to its leaf nodes (FragmentNodes with no remaining adjacencies). Each path is 

composed of the node indices gathered from traversing the adjacencies. When a node is visited, its 

index is appended to the current path. When a leaf node is found, the path to the leaf is added to 

solutions, and the solution’s score is added to the scores list (Pseudocode 2 lines 5-10). The score 

value is calculated by summing the number of parts and probability-adjusted cost of the assembly 

for the solution, each weighted by coefficients provided by users that express their weight of 
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consideration for these components of the calculation. In the input forms, users see a cost 

preference and parts count preference fields to enter these weightings. The cost value is calculated 

by summing the PCR amplification costs for each part with the cost of the assembly experiments 

on a per-reaction cost basis, all adjusted by their probabilities of success which are also user-

provided values. For example, the score for a Gibson assembly solution candidate would sum the 

number of parts in the solution, scaled by the user’s parts count preference, with the sum of the 

PCR amplification cost with the one-pot assembly cost, scaled by the user’s cost preference. In 

sum, the solutions are scored by their parts count and total assembly cost, scaled by the users’ 

weighting of these attributes of the calculation. Solution searching is complete when all nodes have 

had their adjacencies exhausted by the DFS search.   

After the solution search, the maximum score is found from scores, and the solutions list is sorted 

in descending order, according to their individual scores. With these two procedures complete, the 

solutions can be inspected to determine completion (or not).  

3.2.4.2.8 Completing Solutions 

During the solution completion procedure, each solution’s end index, found through its terminal 

node, is used to determine if it can be completed according to user specifications. Every solution 

of the Blaster instance is tested by taking their end index and subtracting it from the length of the 

query sequence. If this difference falls in the user’s synthetic sequence minimum-maximum range, 

a filler node is added to the end of the solution. In this case, the filler node’s start and end indices 

would be the original end index and the query sequence length, respectively. However, if a solution 

fails, this test its index in solutions is added to a deletion list, which contains all the indices to be 

removed from solutions. This is done after all the (candidate) solutions have been vetted.  
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3.2.4.2.9 Multi-Entry Query Solutions 

Solutions for multi-entry queries are implemented quite differently from those of single-entry 

queries. This is because the blastn results are structured differently and thus require different 

handling.  

First, the blast results are organized in a list of lists called multi_query_node_list. Each list here 

contains the alignments for each subsequence in the FASTA input file (provided by the user). If 

there happened to be no results for a given subsequence, then a filler node is created (see 

Completing Solutions). Otherwise, each alignment is used to create a FragmentNode to hold its 

query result information.  

Next, a large set of solutions are generated using multi_query_node_list with a size determined by 

an inputted maximum size value. No FragmentTree is created for multi-entry queries and instead, 

solutions are generated by sampling nodes from each list in the multi_query_node_list. This is 

done to provide an alignment for each subsequence’s portion of the query. These solutions have 

the same form as that of single-entry queries, but with each index in the solution indicating a node 

in the respective multi_query_node_list sub-list. Additionally, solutions here are added to a 

different list in the Blaster instance, this being multi_query_solutions. When solutions are sampled, 

they appear like those of single-entry queries. Solutions here form a compact lists of node indices, 

which are used to obtain alignment data.  

*** 

The Blaster class is designed in such a way that the use of single- or multi-entry query solution 

building produces solutions in identical format. This is useful because the higher-level scripts, in 

the case of Smithy the use of the Blaster in the Assembler objects, the distinction between these 
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two solutions generating modes do not affect the way solutions appear. Thus, both types of 

solutions can be used interchangeably without downstream barriers in the assembly solution design 

process. Once candidate solutions for an assembly have been generated, through either of the two 

modes, primer design can take place. For primer design, a single solution is retrieved from the 

FragmentTree and used to obtain the sequences from each FragmentNode in the solution. These 

sequences are then stored in Pydna Dseqrecord objects, which are convenient for the primer design 

procedures, as they make extensive use of Pydna’s features27.  

The full set of solutions are not outputted to a script, but rather individual solutions are retrieved 

and used for assembly design within a cloning method-specific Assembler class instance, such as 

GibsonAssembler or GoldenGateAssembler. The assembler will first design primer 

complementary sequences for each fragment in a solution and then add the appropriate extension 

sequences to these primers that facilitate proper assembly. The method for generating the 

complementary primer sequences is the same for all assembler classes, but the extension sequence 

design is specific for each class. For example, the primer extension design for a Gibson assembly 

is quite different than that of Golden Gate assembly.  

3.2.4.3 Primer Complements 
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Figure 20: Primer complements design for a single fragment using a target Tm of 55°C. The 

forward and reverse primers are shown to be designed up to the target Tm. Then the resulting 

amplicon dsDNA sequence from PCR with these primers is drawn. 

 

Pseudocode 3: Primer Complement Design 

Inputs: 

fragments: A list of the assembly insert subsequences 

backbone: The assembly backbone sequence 

 

Variables: 

pcr_fragments: A list of the PCR amplified assembly insert subsequences  

pcr_backbone: The PCR amplified assembly backbone 

 

primer_complement(fragments, backbone) 

    pcr_fragments  call Pydna primer_design() for each fragment in fragments using  

        melting temperature and custom melting temperature function 

    pcr_backbone  call Pydna primer_design() for backbone using melting temperature  

        and custom melting temperature function 

    return pcr_fragments, pcr_backbone 

 

 

This initial step in the primer design process creates non-extension primers for all the fragments 

and the backbone of an assembly. The procedure uses the Pydna primer_design function27, with 

user provided target melting temperature, and a customized melting temperature function, which 

is initialized with user parameters. The target melting temperature is a single Celsius value, and 

the parameters used for the custom melting temperature function are: DNA oligo concentration, 

monovalent ion concentration, divalent ion concentration, and dNTP concentration. Using this 
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primer design function will generate forward and reverse PCR primers, with the target melting 

temperature (Figure 20). When primer_design is used it will output a Pydna Amplicon object 

containing the simulated PCR amplified fragment, with its forward and revers primers, as Pydna 

Primer class instances27. When each fragment’s and backbone’s simulated amplicons are 

generated (Pseudocode 3), they are used in the next stage of the assembly design, to create primer 

extension sequences particular to the chosen cloning method. The collection of amplicons 

generated at this step serve as a strong base for the following primer extension design.  

3.2.4.4 Primer Overlap Extensions 

 

Figure 21: Primer overlap extensions design with the overlap length spanning the junctions 

between the two fragments F1 and F2 (Pseudocode 4). The overlap extensions are added to these 

sequences by extending the forward primer of F2 (F2_fwd) and the reverse primer of F1 

(F1_rvs). 

 

Pseudocode 4: Overlap Extensions 

Inputs: 

fragments_pcr: A list of Pydna Amplicons used for a given assembly solution 

backbone_pcr: The backbone Amplicon for a given assembly 
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Variables: 

Forward_overlap: The overlap sequence for the forward primer extension 

reverse_overlap: The overlap sequence for the reverse primer extension 
 
 
overlap_extensions(fragments_pcr, backbone_pcr) 1 

    assembly  empty list 2 

    append backbone_pcr to fragments_pcr 3 

    end_index  length of fragments_pcr – 1 4 

    overlap  total_overlap / 2 5 

     6 

    for i, amplicon in enumerated fragments_pcr 7 

        if i equals 0 8 

            forward_overlap  last sequences of watson strand of 9 

                fragments_pcr[end_index] with length overlap 10 

        else 11 

            forward_overlap  last sequences of watson strand of 12 

                fragments_pcr[i - 1] with length overlap 13 

        endif 14 

 15 

        if i equals end_index 16 

            reverse_overlap  last sequences of crick strand of 17 

                fragments_pcr[0] with length overlap 18 

        else 19 

            reverse_overlap  last sequences of crick strand of 20 

                fragments_pcr[i + 1] with length overlap 21 

        endif 22 

    23 

        extended_amplicon  call add_extensions with forward_overlap, 24 

            reverse_overlap, and amplicon 25 

        append extended_amplicon to assembly 26 

    endfor 27 
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The overlap extension based cloning methods currently supported by Smithy are Gibson, PCR-

SOE, and SLIC assemblies. Since these methods share similar sequence homology overlap based 

assembly methodologies, their primer extension design is implemented within the 

OverlapExtensionAssembler class and shared across these three methods’ assembler class 

implementations. These specific class implementations are GibsonAssembler, SLICAssembler, and 

PCRAssembler. They are defined uniquely by inheriting from OverlapExtensionAssembler, but so 

far only specify default parameters unique to the individual methodologies. For the purpose of 

primer overlap extensions the parameter of interest is overlap. The default values for overlap differ 

across the three overlap extension assemblers, but its purpose is singular: to specify the amount of 

sequence homology shared by assembly fragments. This value is fundamental for designing the 

overlap extensions. 

To generate the overlap extensions, each amplicon has sequences of its neighbors at their junctions 

added to its ends (Figure 21). Half of the user’s overlap value is used to obtain sequences so that 

the resulting overlap length at any junction totals the length defined. So, from a given amplicon’s 

left neighbor half of overlap is used to copy sequences from this neighbor’s 3’ end and add them 

to the amplicon’s forward primer. Similarly, with the right neighbor half of overlap is used to copy 

sequences from this neighbor’s 5’ end and add them to the amplicon’s reverse primer. Next, the 

current amplicon is used for re-amplification using Pydna, using the new extension sequences. As 

a result, a new Amplicon is created where the sequence has been extended. This procedure occurs 

for every amplicon in the assembly solution as well as the backbone. Each new amplicon is added 

to a new Python list and hence, returned to the calling script, to conclude assembly design 

(Pseudocode 4).  
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3.2.4.5 Primer Golden Gate Extensions 

Depending on the user’s selection for non-scar-less (default) (Figure 22) or scar-less (Figure 23) 

Golden Gate assembly, one of two routes for primer extension design is chosen. Another aspect of 

the design controlled by the user is the overhangs set used. There are four sets to choose from and 

they differ in number of overhangs and their correlated fidelity (for proper ligation during 

assembly). These overhang sets were obtained from an overhang sequence profiling study 

conducted by Potapov et al47. By default, these Golden Gate extensions are designed for BsaI 

restriction enzyme assembly. 

3.2.4.5.1 Default Non-Scar-less Extensions 

 

Figure 22: Primer Golden Gate non-scar-less extensions design for two fragments, F1 and F2. 

 

Pseudocode 5: Non-Scar-less Golden Gate Extensions 

Inputs: 

fragments_pcr: A list of Pydna Amplicons used for a given assembly solution 

backbone_pcr: The backbone Amplicon for a given assembly 

  

Variables: 

forward_overhang: The overhang sequence for the forward primer extension 

reverse_overhang: The overhang sequence for the forward primer extension 
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forward_site: The full cut-site with overhang for the forward primer 

reverse_site: The full cut-site with overhang for the reverse primer 

extended_amplicon: The full PCR extended amplicon ready for Golden Gate assembly 

 

goldengate_extensions(fragments_pcr, backbone_pcr) 1 

    assembly  empty list 2 

    append backbone_pcr to fragments_pcr 3 

    set_size  length of fragments_pcr 4 

 5 

    for i, amplicon in enumerated fragments_pcr 6 

        forward_overhang  overhang_set[i] 7 

       if i equals set_size – 1 8 

           reverse_overhang  reverse complement of overhang_set[0] 9 

       else 10 

           reverse_overhang  reverse complement of overhang_set[i + 1] 11 

       endif 12 

        13 

       forward_site  cut-site + ‘n’ + forward_overhang 14 

       reverse_site  cut-site + ‘n’ + reverse_overhang 15 

       extended_amplicon  call add_cut-sites with forward_site, reverse_site,  16 

           and amplicon 17 

 18 

       append extended_amplicon to assembly 19 

    endfor 20 

 

As with the overlap extensions procedure the fragments and backbone are iterated over once in a 

circular fashion. For each new junction between parts, the overhang used is taken from the 

overhangs set selected. An overhang sequence is selected for the forward primer from the set, then 

an overhang sequence, for the reverse primer, is selected from the next sequence in the set. For the 

last part in the solution, its reverse primer overhang is the first overhang in the set, so that circular 

plasmid assembly is achieved. Finally, the fragments and backbone have their forward and reverse 
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primer extensions added to them through reamplification by simulated PCR (courtesy of Pydna) 

(Pseudocode 5). 

3.2.4.5.2 Scar-less Extensions 

 

Figure 23: Primer Golden Gate scar-less extensions design for two fragments, F1 and F2, 

following Pseudocode 6. (A) The overhang is shown to be found within the search window on 

F1. (B) Adjustments of the two fragments is shown through extension of F2 with F1 sequences 

(F2_fwd) and the shortening of F1 equivalent to the F2 extension (F1_rvs). 

Designing Golden Gate scar-less extensions requires more control over the primer design by 

GoldenGateAssembler and adds new functionality.  The new functionality is independent primer 

complement and extension design for facilitation of scar-less Golden Gate assembly. Most of the 

critical work for this design approach is handled by the new primer complement design procedure 

(Pseudocode 6).  

 

Pseudocode 6: Scar-less Golden Gate Complements 

Inputs: 
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fragments: A list of fragment sequences for the assembly 

backbone: The backbone sequence 

interval: Half the length of the search window, the amount of each sequence used for finding scar-
less overhangs 

  

Variables: 

pcr_intervals: A list of lists, each list containing the updated start and end locations for PCR for each 
sequence of the assembly 

extensions: A list of lists, each list containing forward and reverse primer extension sequences for PCR 
for each sequence of the assembly 

i: The index in fragments for the current fragment to inspect 

i_next: The index in fragments for the current fragment to inspect 

test_sequence: A search window of nucleotide sequences within which an overhang from 
overhang_set is attempted to be found 

test_overhang: An overhang found in test_sequence to check for being in the overhang_set 

overhang_start: The start index for the overhang 

overhang_end: The end index for the overhang 

 

goldengate_scar-less_complements(fragments, backbone, interval) 1 

    append backbone to fragments 2 

    pcr_intervals  list of [0, record length] for every record in fragments 3 

    overhang_set  overhang sequences from assembler 4 

    extensions  list of lists of two empty strings for each fragment 5 

 6 

    for i in range of length of fragments 7 

        found  False 8 

        if i equals length of fragments – 1 9 

            i_next  0 10 

        else 11 

            i_next  i + 1 12 
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        endif 13 

        test_sequence  subsequence of last nucleotides in watson strand of  14 

            fragments[i] with length interval + subsequence of first nucleotides in  15 

            watson strand of fragments[i_next] with length interval 16 

     17 

        for j in range of length of test_sequence 18 

            test_overhang  four nucleotides from test_sequence starting at j 19 

         20 

            if test_overhang in overhang_set 21 

                found  True 22 

                remove test_overhang from overhang_set 23 

                break 24 

            endif 25 

 26 

        if not found 27 

            j  interval – 4 28 

        endif 29 

     30 

        if j is greater than interval – 1 31 

            overhang_start  j – interval 32 

            overhang_end  (j + 4) – interval 33 

 34 

            pcr_intervals[i_next][0]  overhang_start 35 

 36 

            extensions[i][1]  BsaI cut-site + ‘N’ + last sequences of crick strand  37 

                of fragments[i_next] of length overhang_end 38 

            extensions[i_next][0]  BsaI cut-site + ‘N’ 39 

        elif j equals interval -1 40 

            overhang_start  -(interval – j) 41 

            overhang_end  -(interval – (j + 4)) 42 

 43 
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            pcr_intervals[i_next][0]  overhang_end 44 

 45 

            extensions[i][1]  BsaI cut-site + ‘N’ + last sequences of crick strand  46 

                of fragments[i_next] of length overhang_end 47 

            extensions[i_next][0]  BsaI cut-site + ‘N’ 48 

        else 49 

            overhang_start  -(interval - j) 50 

            overhang_end  -(interval – (j + 4))          51 

         52 

            if overhang_end not 0 53 

                pcr_intervals[i][1]  overhang_end 54 

            endif 55 

 56 

            extensions[i][1]  BsaI cut-site + ‘N’ 57 

            extensions[i_next][0]  BsaI cut-site + ‘N’ + first sequences of watson  58 

                strand of fragments[i] of length overhang_start 59 

        endif 60 

    endfor 61 

    for each fragment in fragments 62 

        call primer_design using new pcr_intervals for fragment, target_tm, and 63 

            tm_function 64 

    endfor 65 

 

Every neighboring pair of solution sequences uses a sequence window as a search space for 4nt 

overhang sequences. An equal number of nucleotides is taken from each of the sequences at the 

junction, summing up to a search space size parameter, which defaults to 40 nt (Pseudocode 6 lines 

14-16). When the search window is obtained, it is iterated over in 4nt groups to check each of these 

subsequences for a match in the user’s selected overhang set. When an overhang is found in either 

the current fragment or its right neighbor, the indices of the overhang are recorded (Pseudocode 6 
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lines 18-25). If no overhang sequence is found, the search defaults to using the last four bases of 

the current fragment for the overhang sequence (Pseudocode 6 lines 27-29). These indices are used 

for extracting sequences that extend either the current or neighboring fragment with the overhang 

at the end (Pseudocode 6 lines 31-61). Indices of the overhangs are also used for properly 

amplifying each fragment if it must be trimmed to allow for the neighboring fragment to extend 

into the trimmed sequences, while the removed sequence will be added to the neighbor. This will 

possibly lead to the found overhang within the search window to shift the junction between the 

two sequences. (Figure 23, Pseudocode 6 lines 62-65). Designing overhangs in this way ensures 

that 4 nt scars are not added at part junctions which may result in mutant proteins, due to 

(unwanted) additional nucleotides within exons of the transcript.  

 

Pseudocode 7: Scar-less Golden Gate Extensions 

Inputs: 

pcr_fragments: A list of Pydna Amplicons used for a given assembly solution that are not extended yet 
and adjusted for scar-less assembly 

extensions: A list of lists for each assembly fragment’s scar-less Golden Gate extension sequences: one 
for the forward primer extension, the other for the reverse primer extension 

  

Variables: 

extended_amplicon: A list of scar-less Golden Gate assembly prepared PCR amplicons 

 

goldengate_scar-less_extensions(pcr_fragments, extensions) 1 

    assembly  empty list 2 

 3 

    for extension, amplicon in zipped (extensions, pcr_fragments) 4 

        extended_amplicon  call add_cut-sites with extension[0], extension[1], and  5 

            amplicon 6 
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        append extended amplicon to assembly 7 

    endfor 8 

 9 

    return assembly 10 

 

Once the overhang search is complete, each fragment is re-amplified in silico with the edits 

determined by the search, to provide new Pydna Amplicons and Primers for each assembly 

fragment. Additionally, given the new junctions, the sequences are then extended with the Type2S 

RE cut-site, the default case being for BsaI (GGTCTC). The extensions will either be just the RE 

cut-site or the shifted subsequence at the junction plus the RE cut-site. As with the other 

assemblers’ extension methods, each assembly part will be re-amplified so all the parts are 

complete hence ready for assembly (Pseudocode 7).  

3.2.4.6 Primer BioBricks Extensions 

Assembly extensions from the BioBricksAssembler are created in a simple way, following the 

method’s protocols. The BioBricks methods defines specific 5’ and 3’ additions to a given 

sequence, named prefixes and suffixes, respectively. The prefix sequence has two options, one for 

coding sequences and one for any other part. The coding sequence prefix is gaattcgcggccgcttctag, 

and the default prefix is gaattcgcggccgcttctagag. Prefix sequences contain EcoRI and XbaI 

restriction endonuclease sites. The suffix is constant for any assembly part, and its sequence is 

ctgcagcggccgctactagta. Suffixes contain SpeI and PstI restriction endonuclease sites. Every 

assembly sequence in a solution will have these prefix and suffix sequences10,11.  

Generating these BioBricks extensions involves iterating over each amplicon of the assembly’s 

solution, adding either the coding sequence prefix or the standard prefix, adding the suffix, and 

then reamplifying the amplicon so it obtains the extensions. As with the other extension 
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procedures, this occurs for every amplicon in the assembly solution and the backbone. The rest of 

the assembly design process occurs after these extensions are added. 

3.2.4.7 Assembler Design Function 

3.2.4.7.1 Overview 

Each Assembler subclass has a design function, for executing a complete design procedure, given 

a provided solution. This function is a collection of method calls and logic, which implement these 

algorithms (Section 3.2.4) of the different cloning methods. Each of these algorithms have been 

implemented as single functions within their Assembler classes. As such, each function is a 

container for each of these algorithms to be used for a single solution. Within that function, a 

solution is fetched from the FragmentTree, and primer complements are created, assembly primer 

extensions are designed for the given cloning methodology, annotations are added for each part, 

and analytical thermodynamic calculations are performed using Primer339 for every primer 

(Pseudocode 8 and 9). Golden Gate assemblies differ only by a Boolean control variable, 

indicating if scar-less assembly design is required. If true, the function will utilize the Golden Gate 

scar-less primer complement and extension design functions (Pseudocode 9 lines 10-14). Upon 

completion, a completed assembly solution of parts and primers is returned to be saved and 

presented to the user through the Django framework. All of the solution components are translated 

to SQL database models, to be stored, and are then retrieved for detailed viewing on the Smithy 

website.  

 

Pseudocode 8: Assembler Design Function – Gibson Cloning 

Inputs: 

solution: The solution in solution_tree of the assembler to design  
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Variables: 

fragments: List of sequences for the assembly solution that comprise the construct 

nodes: List of FragmentNodes for each sequence in sequences that contain BLAST alignment data 

pcr_fragments: List of PCR amplicons of fragments ready for assembly extensions 

pcr_backbone: PCR amplified backbone ready for assembly extensions 

assembly: The completed assembly solution   

 

design(solution) 1 

    if multi_query  2 

        fragments  call get_multi_query_solution with solution 3 

        nodes  call solution_tree multi_query_solution_nodes function with solution 4 

    else  5 

        fragments  call get_solution with solution 6 

        nodes  call solution_tree solution_nodes function with solution 7 

    endif 8 

 9 

    pcr_fragments, pcr_backbone  call primer_complement with fragments and backbone 10 

    assembly  call primer_extension with pcr_fragments and pcr_backbone 11 

    assembly  call annotations with assembly and nodes 12 

    assembly  call assembly_thermo with assembly, monovalent ion concentration,  13 

        divalent ion concentration, DNA oligo concentration, and Tm function 14 

 15 

    return assembly and nodes 16 

 

3.2.4.7.2 Solution Network 

To begin, a solution’s sequences and FragmentNodes are extracted from the solution tree 

(Pseudocode 8 lines 2-8, Pseudocode 9 lines 2-8). The solution sequences are used during the 
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primer design procedures using Pydna27. The nodes are for extracting BLAST data (database 

origin, start index, end index, etc.) from the sequence alignments and adding this data to 

annotations for each part after assembly design is complete. Both of these sets of assembly solution 

data are used later, when translating to Django webapp data.   

3.2.4.7.3 Primer Complements 

Using the solution and backbone sequences, primer complements are designed and created 

(Pseudocode 8 line 10, Pseudocode 9 lines 11 or 16). These complements must satisfy the user-

supplied experimental parameter for melting temperature(s). Here the Pydna melting temperature 

calculation function is used. Thus for each sequence, non-extension primers are created and in 

silico PCRs are performed to provide amplicons, which are used in latter stages of extension primer 

design.  

 

Pseudocode 9: Assembler Design Function – Golden Gate Cloning 

Inputs: 

solution: The solution in solution_tree of the assembler to design  

 

Variables: 

scar-less: Boolean control variable whether to run scar-less design 

extensions: Scar-less assembly extension sequences 

fragments: List of sequences for the assembly solution that comprise the construct 

nodes: List of FragmentNodes for each sequence in sequences that contain BLAST alignment data 

pcr_fragments: List of PCR amplicons of fragments ready for assembly extensions 

pcr_backbone: PCR amplified backbone ready for assembly extensions 

assembly: The completed assembly solution   
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design(solution) 1 

    if multi_query  2 

        fragments  call get_multi_query_solution with solution 3 

        nodes  call solution_tree multi_query_solution_nodes function with solution 4 

    else  5 

        fragments  call get_solution with solution 6 

        nodes  call solution_tree solution_nodes function with solution 7 

    endif 8 

 9 

    if scar-less 10 

        pcr_fragments, extensions  call primer_complement_scarless with 11 

            fragments, backbone, and interval 12 

        assembly  call primer_extension_scarless with pcr_fragments and 13 

            extensions 14 

    else 15 

        pcr_fragments, pcr_backbone  call primer_complement with fragments and 16 

            backbone 17 

        assembly  call primer_extension with pcr_fragments and pcr_backbone 18 

    endif 19 

 20 

    assembly  call annotations with assembly and nodes 21 

    add cut-site annotations for the assembly 22 

    assembly  call assembly_thermo with assembly, monovalent ion concentration,  23 

        divalent ion concentration, DNA oligo concentration, and Tm function 24 

 25 

    return assembly and nodes 26 
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3.2.4.7.4 Primer Extensions 

With the complement primers, extension primer sequences are added to every amplicon for 

assembly. If Gibson, SLIC, or PCR-SOE has been selected, then the overlap extension method is 

used from OverlapExtensionAssembler (Pseudocode 8 line 11). If Golden Gate is selected, then 

the Golden Gate extensions method is used in GoldenGateAssembler performing either scar-less 

or non-scar-less assembly design (Pseudocode 9 lines 13 or 18). If BioBricks is selected, then the 

BioBricks method is used in BioBricksAssembler. After completion of the assembly extensions, 

the solution contains all parts in assembly-ready form. 

3.2.4.7.5 Annotations 

Once an assembly solution has been designed each FragmentNode is given annotations from the 

BLAST alignment data of each node (Pseudocode 8 line 12, Pseudocode 9 lines 21-22). These 

annotations are useful and necessary for creating SQL database entries that will eventually be 

presented to the user. The specific annotations added to each part are: 

• database origin  

• BLAST query_start  

• BLAST query_end  

• BLAST subject_start 

• BLAST subject_end 

These annotations for each part are further expanded in the next stage of primer thermodynamic 

analysis. 
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3.2.4.7.6 Primer Thermodynamic Analysis 

Here the annotated assembly and user-provided concentrations of monovalent ions, divalent ions, 

and DNA oligos are used for computing primer thermodynamic values via Primer3-py39. Hairpin 

and homodimer secondary structures and thermodynamic information are computed for each part’s 

forward and reverse primers. Total and “footprint” (primer sequences binding to the non-extended 

sequence) melting temperatures are found, along with GC nucleotide percentage. Each part’s 

annotations are updated by adding this information to the forward and reverse primers (Pseudocode 

8 lines 13-14, Pseudocode 9 lines 23-24). Overall, the following data are created for each primer: 

• Total melting temperature 

• Footprint melting temperature 

• GC percentage 

• Boolean value for a hairpin structure 

• Hairpin melting temperature 

• Hairpin Gibbs free energy 

• Hairpin enthalpy 

• Hairpin entropy 

• Boolean value for a homodimer structure 

• Homodimer melting temperature 

• Homodimer Gibbs free energy 

• Homodimer enthalpy 

• Homodimer entropy 
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With these calculations concluded and annotations completed, the complete assembly-ready 

solution can be utilized by the rest of the software. 

 

Pseudocode 10: Assembly Create Service – Gibson Cloning 

Inputs: 

NONE  

 

Variables: 

results: A list of BLAST query alignments for the insert 

error: Error messages from BLAST if errors occurred  

assembly: The fully designed assembly solution 

fragments: A list of FragmentNodes to extract more information about each assembly sub-sequence 

 

create gibson assembler with user form inputs 1 

 2 

if multi_query 3 

    results, error  call assembler run_multi_query function 4 

    call assembler multi_query_solution_building function with results 5 

else 6 

    results, error  call assembler query function 7 

    call assembler solution_building function with results 8 

endif 9 

 10 

assembly, fragments  call assembler design function with solution (default 0) 11 

 12 

save all assembly solution data to SQL database 13 
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3.2.5 Time, Cost, and Risk Calculations 

This section explains how assembly cost, time, and risk estimates are calculated for a single 

solution after the design procedures of Section 3.2.4 are complete.  

 

Figure 24: An example of the time, cost, and risk estimates charts for a Gibson assembly 

solution. The total time estimate is 20.37 hours, and the total cost estimate is $2332.78. PCR log 

odds of failure is -0.602, and for the assembly reactions (chewback, ligation, and repair) the log 

odds of failure is -0.368. 

Each solution for an assembly has values for cost, time, and risk calculated using user-provided 

inputs and calculated attributes of the assembly (Figure 24). The time values show users expected 

experimental times for major steps in their assembly, such as PCR amplification, RE chewback, 

and ligation for Golden Gate assemblies. Cost values are important for indicating an expected cost 

for assemblies, accounting for small, medium, and large DNA sequence costs and enzymes used 

in the experiments (e.g., BsaI or ligase for Golden Gate). Risk values are also computed for major 

steps in the assembly experiments, representing log odds of failure, based on the log-based odds 

of success formula49. These analytical computations are then displayed as charts on the front-end 

(UI) of the web service. The log-based odds of success is calculated using the formula, with the 

different Psuccess values for different procedures (Table 1):  
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𝑟𝑖𝑠𝑘 = log⁡(
1 − 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠
𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠

) 

Time values are split into PCR amplification and assembly method-specific experiment times. The 

PCR time is calculated for all assembly types using Q5 DNA polymerase in minutes, uses 

nucleotide lengths of all subsequences of the assembly, groups lengths of assembly sequences in 

ranges of 1kb, and is based on general PCR amplification protocols1,2. Grouping the assembly 

sequences into clusters allows a practical PCR time to be computed. With the clusters created, a 

single time can be determined that expresses the time for parallel PCR amplification of all 

sequences in that cluster. Sequences in the size range of 0-1000 nt are in cluster 1, 1001-2000 in 

cluster 2, etc. The total PCR time is the summation of the times needed to PCR the clusters of the 

sequences. The exact form of calculation follows: 

𝑠𝑡𝑒𝑝 = 0.5⁡ ∗ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

𝑑𝑒𝑛𝑎𝑡𝑢𝑟𝑒 = 𝑠𝑡𝑒𝑝 + 0.4 

𝑎𝑛𝑛𝑒𝑎𝑙 = 𝑠𝑡𝑒𝑝 + 0.4 

𝑝𝑜𝑙𝑦𝑚𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑡𝑒𝑝 + 0.4 

𝑡𝑖𝑚𝑒 = 1.0 + 30 ∗ (𝑑𝑒𝑛𝑎𝑡𝑢𝑟𝑒 + 𝑎𝑛𝑛𝑒𝑎𝑙 + 𝑝𝑜𝑙𝑦𝑚𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛) + 10.0 

 

In addition to PCR time, specific times for each assembly type are added. Golden Gate assemblies 

have the digestion-ligation experiment times added, using the New England Biolabs (NEB) 

protocol50. Gibson assemblies have chewback-ligation-repair time added according to the NEB51. 

SLIC assemblies have individual chewback and ligation times calculated, according the published 

methodology8,9. PCR assemblies do not have additional time calculations. BioBrick assemblies 

have digestion and ligation experiment times added using the Ginkgo Bioworks and NEB 

guidelines52. Once the PCR time and method-specific times are calculated, they are summed up to 



88 
 

provide the total expected time for a particular assembly, for each assembly method. This result is 

presented as a stacked bar chart on the solution’s front-end detail page (Figure 24). The total height 

of a reflects the total time, and the heights of its subdivisions reflect the times of the components’ 

experimental procedures (e.g., PCR).  

Assembly costs are in US dollars are determined by: 

• Short, medium, and long length DNA sequences 

• Repository plasmids 

• Enzyme costs, particular to each assembly type  

Repository plasmid costs are currently a flat $75, enzyme costs are added by users only where 

needed, via custom cost inputs, and DNA sequence costs are for primers and assembly sequences 

not found in the BLAST databases (Pseudocode 11). We define short DNA sequences as those ≤ 

100 nt and called oligos. Medium length sequences are ˃100 nt and ≤ 1000 nt and called blocks. 

Sequences ˃ 1000 nt are considered large and are called mega-blocks. Nucleotide lengths for each 

of the assembly sub-sequences have their individual costs calculated and summed according to 

these three categories, with the cost per nucleotide for each category provided by the users. The 

total cost of the assembly solution is the summation of the costs for plasmids and other DNA 

sequences of varying length, plus the costs of enzymes. This grand total and its components are 

displayed on the solution’s front-end detail page in a donut chart (Figure 24). The costs of the 

various components are shown as slices of the donut, with relative sizes proportional to their 

relative original dollar costs.  

 

Pseudocode 11: Assembly Cost Calculations 
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Inputs: 

nt_costs: list of individual user-submitted per-nucleotide costs for oligos, blocks,     

    and genes, ex. [0.1, 0.2, 0.2] 

nt_lengths: list of lengths of non-repository plasmid insert sequences 

plasmid_count: number of repository plasmid insert sequences 

enzyme_costs: list of user-submitted costs for assembly experiment enzymes  

 

Variables: 

nt_totals: list of individual total costs for oligos, blocks, genes, plasmids.  

    Initialized to: [0.0, 0.0, 0.0, 0.0]  

 

costs(nt_costs, nt_lengths, plasmid_count, enzyme_costs) 1 

    for length in nt_lengths 2 

        if length <= 100 3 

            add length * nt_costs[0] to nt_totals[0] 4 

        elif length > 100 and length <= 1000 5 

            add length * nt_costs[1] to nt_totals[1] 6 

        else 7 

            add length * nt_costs[2] to nt_totals[2] 8 

    endfor 9 

    add plasmid_count * 75.0 to nt_totals[3] 10 

    total_cost  sum of nt_totals + sum of enzyme_costs 11 

    individual_costs  combined lists of nt_totals and enzyme_costs 12 

 

Risk values are calculated for each major experiment of an assembly type, similar to time values. 

These values are log odds of failure, determined by taking the logarithm of the quotient of a given 

reaction type’s probability of failure divided by the probability of success. These probability values 

are determined by a rough estimate of the number of successful experiments in a set of ten trials 
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(Table 1). This approach provides values in the range of -1 to 1, with -1 containing the least risk 

and 1 the most risk. PCR amplification is present in all assemblies. PCR assemblies have no risk 

values besides the risk of PCR amplification. Gibson assembly has risk values for one-pot 

chewback, ligation, and repair. Golden Gate has risk values for one-pot digestion and ligation. 

BioBrick assemblies have one value for digestion and another for ligation reactions. SLIC 

assemblies have a risk value for chewback and another for ligation. The risks for a solution’s 

reactions are displayed on the solution’s front-end detail page, as a bar chart ranging from -1 to 1, 

where the risk of each type of reaction has its own (separate) bar (Figure 24).  

Table 2: Listing of Psuccess for experiment types of each supported cloning method 

Method PCR Chewback Digestion Ligation Digestion, 

Ligation 

Chewback, 

Ligation, 

Repair 

Gibson 0.8 - - - - 0.7 

Golden Gate 0.8 - - - 0.9 - 

SLIC 0.8 0.8 - 0.8 - - 

BioBricks 0.8 - 0.9 0.8 - - 

PCR-SOE 0.8 - - - - - 

 

These cost, time, and risk calculations are useful when inspecting a single assembly solution but 

are critical when choosing between different assembly methods for the realization of a construct. 

This is the purpose of assembly bundles: to provide the user with information that would assist 

him/her in making the best choice. When an assembly bundle is viewed, each different assembly 

in the bundle is displayed in a column with their cost, time and risk charts shown first. The charts 

have a structure that allows the user to compare the costs, times, and risks of the various assembly 

methods, by quick visual inspection.  
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3.3 Output 

Detail pages for the site present all the models’ data fields in an organized and attractive manner 

for users. This section describes these front-end pages for assemblies (3.3.1), solutions (3.3.2), 

parts (3.3.3), and primers (3.3.4), where various interactive and static elements allow users to 

explore all aspects of assemblies and their solutions.  

3.3.1 Assembly Detail 

Assembly detail pages first display general, BLAST query, and experimental information that is 

mostly a reflection of input values. Next, the solution for the assembly is displayed, first with its 

time, cost, and risk charts. Below these charts is the access to the solution itself. Within the page 

element displaying the solution, general analytical information is shown for informative points 

such as average primer melting temperature, average primer size, number of parts (Figure 2S).  

3.3.2 Solution Detail 

The solution pages contain most content of all the pages across the site for assembly details (Figure 

3S). Extensive details about the solution’s parts and primers are displayed. Starting with parts, a 

table listing their general information for the solution is shown for (Figure 5S): 

• Database 

• Length 

• Extended length 

• BLAST query-start and query-end values 

• BLAST subject-start and subject-end values 

• Solution positional index 
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Below this table is a plasmid graphical map showing a high-level representation of the theoretical 

solution construct with part labels (Figure 4S). After this plasmid map each of the parts are 

concisely displayed in individual HTML elements with links to their individual detail pages 

(Figure 6S).  

3.3.3 Part Detail 

Detail pages for solution parts show exact sequence data for a single part (Figure 9S). General info 

is displayed first for date created, database origin, length, and extended length. A part map, using 

the same plotting library as the solution plasmid maps, is then displayed that shows the part within 

the plasmid construct with its neighbors and assembly primers. This map is useful for providing 

users with an intuitive idea of how each part fits into the construct. Under the graphic the part’s 

assembly and non-assembly sequences are displayed. Forward and reverse primer sequences are 

also shown after the part sequences, and their detail page links are found at the top of this part 

detail page.  

3.3.4 Primer Detail 

Primer detail pages have the same approach as the part pages, displaying general info for date 

created primer type (forward or reverse), sequence, and their individual thermodynamic analysis 

calculations from Primer3 (Section 3.2.4.7.6) (Figure 10S). Solution primers are displayed in a 

similar format as the parts, with a table listing shown first (Figure 7S). As with the parts, this table 

contains general information with Primer3 thermodynamic calculations: 

• Melting temperature 

• GC% 

• Hairpin presence (true/false) 
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• Hairpin melting temperature 

• Hairpin free Gibbs energy 

• Homodimer presence (true/false) 

• Homodimer melting temperature 

• Homodimer free Gibbs energy 

As with the parts, each primer is then displayed below this table with links to their individual detail 

pages (Figure 8S). Summary information is also added to the individual primer elements for primer 

type, melting temperature, and presence of hairpin or homodimer structures that potentially need 

inspection.  
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3.4 Assembly Bundles 

 

Figure 25: Visual organization of the assembly bundle feature and its workflow 

Within this section, the creation, execution, and outputs of the assembly bundles are described. It 

is shown how the input form for this approach gathers identical data as the single assemblies. The 

internal procedures for creating these collections of independent assemblies with single solutions, 

following the algorithms in Section 3.2.4, for comparison and optimal selection is then described. 

Lastly, the way in which these multiple assembly solutions are presented in a dashboard is shown.  
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3.4.1 Bundle Input 

Assembly bundle forms are essentially identical to the other assemblies (Section 3.1.2), however 

without the assemblies’ specifics. An added section is at the beginning of the form where users 

will select the methods they desire for inclusion in the bundle. When specific assemblies are, only 

then will their unique parameter inputs be added to the end of the form. Otherwise, the assemblies 

and their unique parameters are ignored. 

3.4.2 Bundle Creation 

Assembly bundles utilize all the functionality described in Sections 3.2 and 3.3. Using input data 

collected by the bundle input form, an instance of the Assembler class is created for BLAST queries 

and solution building. An instance of Assembler is created since it will not be used for cloning 

method-specific designs. Then, following the methodology in Sections 3.2.4.1 and 3.2.4.2, the 

appropriate single- or multi-entry BLAST query and solutions generation will take place. With the 

sequence alignments gathered and solution candidates created, an AssemblyBundle SQL database 

model is created (Section 3.2.3.4). This bundle object is used for association of the selected 

assemblies’ Assembly SQL models (Section 3.2.3.1) that will be created. Next, for each assembly 

method selected their individual design procedures following Sections 3.2.4 and 3.2.5 are run in 

series. Following a single example if Gibson assembly was included in a bundle, first, the 

appropriate Assembly model (GibsonAssembly) and Assembler class instance is created 

(GibsonAssembler) that will utilize the solutions generated from the first base Assembler created 

earlier in the bundle procedure. Next, the top scoring solution is used for the design procedure to 

create assembly primers, Primer3 thermodynamic analysis, and part annotations (Section 3.2.4.7). 

Then, the cost, time, and risk estimates are computed for the solution according to the methods in 

Section 3.2.5. For this example, all the data created for the assembly and its solution will be 
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contained within the GibsonAssembly model instance. Finally, this GibsonAssembly model is 

associated to the AssemblyBundle model created. This full solution design procedure is repeated 

for the other selected assembly methods, following their specific design processes. Once complete, 

there will be multiple Assembly SQL models associated to the single AssemblyBundle model 

created for this procedure (Figure 15), each containing complete information for their individual 

assembly and solution that will be presented to the user at the output.  

3.4.3 Bundle Detail 

Bundles are displayed with a dashboard approach for the collection of candidate assemblies created 

by the user. The dashboard is organized in a column-wise fashion, with each column containing a 

single assembly. For each assembly’s column their time, cost, and risk charts are displayed in rows 

that allow for quick comparison between the different assemblies. For example, each of the time 

charts are within the same row and so on for the cost and risk charts. The assembly detail pages 

are accessible through links at the tops of each column, and their solutions through links below the 

charts (Sections 3.3.1 and 3.3.2). With the assembly bundles organized in this way users can decide 

based on experience, resources, and information of the dashboard which assembly method would 

be most advantageous for their objectives. 
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Chapter 4: Bioinformatics Contributions; Claims and Case Studies 

This chapter describes and establishes the significance of Smithy as a practical tool in the field of 

Synthetic Biology and Bioinformatics (Table 2). Each major contribution of the web application 

will be justified in its own section (Sections 4.1-7). Next, the two case studies performed that 

exemplify Smithy’s strengths are described in detail (Sections 4.8-9), where their inputs, internal 

processing, and outputs for their assembly solutions are thoroughly reported. Finally, a discussion 

of Smithy as a whole is given in Section 4.10.     

Table 3: Summary of advantages 

Claim Substantiation 

1. Categorization and 

mapping of cloning 

methods to an abstraction 

hierarchy that facilitates 

effective and extendible 

software design  

Section 4.1 

 

• Implementation of cloning taxonomy (Section 2.5) 

• The assembler class hierarchy is designed around the 

abstractions embedded into these groupings 

• The assembler class and its descendants used for 

specific cloning method implementations 

• The Assembler class can be seen as a natural addition 

to the context of assembly design code libraries for 

Synthetic Biology 

• Smooth development of existing methods 

• Additions of unsupported methods, and the creation of 

new class definitions for breakthrough methods  

• OOP class-based design for assemblers which 

combine all of the major contributions of the project 

that can be extended with minimal code 

• New components and features of the Django 

application can be added with ease 

  
2. Simplified UI/UX over 

the j5 and REPP 

approaches 

Section 4.2 

 

UI UX 

Unified inputs for all 

methods 

 

No download and 

installation necessary 

  

Solution results are 

presented in highly 
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Unique inputs, and input 

types are only present in 

forms where necessary 

 

Minimal, essential user 

input requirements: only 

two file uploads and a 

simple form unlike j5 

requiring several input files 

and configurations 

 

Bundles are a strong feature 

for quickly running multiple 

assembly types without 

redundant input 

requirements 

structured web-page 

organization for assemblies, 

solutions, parts, primers 

  

All solution data is 

downloadable in files (parts, 

primers, materials orders)  

that users can take and use 

for running experiments 

 

3. Improved UI/UX over the 

j5 and REPP approaches 

Section 4.2 
 

UI UX 

Usage of contemporary 

UI/UX front-end tools for 

implementing web pages: 

Bootstrap5, JavaScript, 

Chart.js 

 

Interactive pages 

for viewing solution data 

 

No CLI requirements like 

REPP that are prone to 

difficulties and errors 

An openly accessible 

website 

 

Solutions have analytical 

charts for cost, time, and 

risk estimate to determine 

feasibility and strength of 

solutions 

 

Form submission checks for 

correct and usable input 

values, correct values saved, 

and correctable values are 

alerted to the user when 

form is returned 
 

4. Support for major cloning 

methods 

Section 4.3 

 

• Like j5 but an improvement on REPP: Gibson, Golden 

Gate, PCR, SLIC, BioBricks have been implemented

        

5. Comprehensive assembly 

solutions for optimal 

choices 

Section 4.4 

 

• The fragment network can take nodes and organize 

100s of solutions is fractions of a second 

• FragmentTree (Section 3.2.4.2) contains every 

possible solution combination of fragments in the 

query results set 
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• Assembly solutions are executable in the lab 

  
6. Open and accessible tool Section 4.5 

 

• Free, open source, and hosted on GitHub  

• Simple, widely accessible website  

• User accounts can be added later for extra features and 

exclusivity of assembly solutions 

  
7. Analytical dashboard for 

comparison of assembly 

candidates for user-

selected cloning methods 

Section 4.6 

 

• The assembly bundle (Section 3.4) and its dashboard 

• Multiple assembly types are run in succession to 

provide different solution types for a single set of 

assembly fragments 

• The results of the bundle are combined, individual 

assemblies that contain all the same data seen in 

individual assemblies 

• Bundle results are shown in the bundle dashboard with 

the initially displayed data being the cost, time, and 

risk charts for quick analysis and comparison (Section 

3.4.3) 

  
8. Reusability of core 

features 

Section 4.7 

 

• Each major component of the project (Blaster, 

Assembler, and primer analysis) are all designed, 

implemented, and used as independent Python 

modules 

• The Django Smithy sub-application is also, by nature 

of Django, portable to other existing Django 

applications 

• These major algorithmic components can be used in 

any Python software project outside of a web-

application 
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4.1 Cloning Methods Abstraction Hierarchy 

 

Figure 26: Assembler class hierarchy 

The detailed study of contemporary cloning methods described in Chapter 2 led to an abstract 

grouping of cloning methods according to previous reviews and personal analysis (Figure 26). The 

groupings were made to satisfy relationships between cloning methods from experimental and 

procedural perspectives. Once the grouping of the studied cloning methods (e.g., Traditional 

Cloning, PCR-SOE, SLIC, Gibson, Golden Gate, GoldenBraid, and MoClo) was complete, the 

group were utilized to implement a robust class hierarchy in Python, following object-oriented 

design principles. This software implementation of the abstract groupings allows extension and 

modification of existing classes. The creation of new classes to describe newly invented cloning 

methods can be done with ease and minimal coding, while avoiding redundant code, as much as 

possible. At the core, the motivation is to follow the programming principle of “don’t repeat 

yourself” (DRY) to the fullest.   
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4.2 Simplified and Improved UI/UX 

Compared to the j5 and REPP projects, Smithy provides a simplified and improved user interface 

and experience.  

The user interface has been simplified in several ways. First, inputs for all cloning method types 

have been unified. Unique inputs and input types are only present in individual assembly type 

forms, as appropriate, such as overlap amount for Gibson cloning or overhangs’ set for Golden 

Gate cloning. Otherwise, similar forms exist for the different assembly methods. User inputs are 

also minimized with only two file uploads needed, one for an insert sequence and one for a 

backbone sequence. This is, unlike j5, where several input and configuration files are required. 

Additionally, the assembly bundle is a strong feature, which allows the execution of multiple 

assembly types, following a single input procedure.  

Smithy provides improvements to the kinds of user interfaces seen in the previous projects. This is 

done through the use of contemporary UI/UX front-end tools for implementing webpages: 

Bootstrap5, JavaScript, Chart.js. Furthermore, there is no command line interface (CLI) 

requirements for initiating assemblies, such as REPP’s. CLIs are generally more permissive to 

input errors and are not as easy to use as graphical UIs.  

In contrast to REPP and j5, Smithy’s user experience has been simplified in multiple ways. First, 

no application need be downloaded and installed, as seen with REPP. Second, assembly solution 

results are presented in a structured webpage organization for assemblies, solutions, parts, and 

primers. Third, all solution data for parts, primers, and materials orders are downloadable in files, 

which users can utilize for running actual experiments. In addition, Smithy also has other, more 

subtle, improvements to user experience: it provides an openly accessible web application, which 

is not the case for REPP and is no longer the case for j5; solutions for single and bundle assemblies 
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have analytical charts for cost, time, and risk attributes, to assist users in selecting between multiple 

solutions; finally, form submissions are always verified for correct and usable input values. This 

last embellishment is standard practice in web application development, but is important for 

ensuring that researchers submit assembly parameters that yield usable solutions.  

4.3 Support for Major Contemporary Cloning Methods 

Similar to j5, but an improvement to REPP (supporting only Gibson assemblies), Smithy supports 

the major contemporary cloning methods used in synthetic biology: Gibson, Golden Gate, PCR-

SOE, SLIC, and BioBricks. With support for these experimental methods, Smithy appeals to a 

broad range of researchers in synthetic biology and can be useful for many different projects.  

4.4 Optimal and Comprehensive Assembly Solutions 

Smithy’s core algorithms generate assembly solutions that are comprehensive and optimal. 

Selected databases are used for sequence queries using the submitted insert and all alignments are 

returned by these queries for use in constructing candidate solutions. Searching for existing sub-

sequences of a desired construct using BLAST ensures that users can utilize as many pre-existing 

sequences as possible to reduce cost. Given the full set of BLAST query results for a given insert, 

all possible combinations of fragments, including gap-filling synthetic fragments, are contained in 

the FragmentTree. The solution tree is also created in fractions of a second, providing hundreds 

of solutions, and time bottlenecks are dominated by the time to perform BLAST queries for each 

sequence database.   

4.5 Open and Easily Accessible Tool 

Smithy is free to use, is open source, and fully downloadable from GitHub53 for those who wish to 

make contributions to the project. Smithy also exists as a simple web application openly accessible 
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to any researcher with internet access. The project is written in Python using popular 

bioinformatics libraries, so other synthetic or computational biologists, who are also developing 

similar applications, can contribute to and improve upon the software with relative ease.  

4.6 Bundle Dashboard for Comparison of Methods 

The bundling feature and its resulting dashboard allows for comparison of multiple assembly 

solutions, respecting different assembly methods. Multiple cloning method types are run in 

succession, to provide different solutions for making one construct, using a single set of assembly 

fragments. A bundle is run similarly to any other assembly, but in addition, the user must select 

the cloning methods he/she is interested in. In response, the application displays requests for 

parameter values, particular to each and every chosen method. Bundle results are displayed in the 

bundle dashboard, whose front page includes cost, time, and risk charts, for a quick view of and 

comparison between the different assembly methods – all leading to the same final construct.  

4.7 Portability of Core Features 

Smithy has been designed for portability of its core features. Each major component of the project, 

Blaster, Assembler, Primer Analysis, are designed as independent Python modules. These modules 

can also be used in other Python programs outside of web application development, and 

independently of each other (e.g., using the Blaster class for sequence queries). The Django 

“smithy" sub-application is also, by nature of Django, portable to other existing Django 

applications.  

4.8 Case Study 1: Riboswitch Gibson Assembly 

The objective of this case study is to demonstrate Smithy’s ability to generate all necessary 

information, including repository and synthetic DNA insert sequences, to build a target construct, 
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following a single assembly method, chosen from a menu of available methods. In this study, a 

riboswitch-modulated fluorescent gene circuit solution was generated for construction via Gibson 

assembly.  

4.8.1 Input 

The target construct is composed of mCherry, a theophylline riboswitch (theoRs), and GFP, in that 

order, within a pUC18 plasmid backbone (sequences in Table 3). The mCherry will provide a 

constant fluorescent signal with the GFP signal modulated by the riboswitch once activated. For 

the assembly design, the pUC18 backbone sequence was inputted in a FASTA file and the insert 

sequences (mCherry, theophylline riboswitch, and GFP) in a multi-entry FASTA file (insert.fasta 

and pUC18.fasta, in supplementary information). It is important to note that backbone sequences 

are expected to be in 5’ to 3’ form, already linearized at the location, where the construct is to be 

inserted.  

Table 4: Input sequences for the Gibson riboswitch fluorescence construct 

Part Sequence 

mCherry ATGGTGAGCAAGGGCGAGGACGACAACATGGCCATCATCAAGGAGTTCATGCGCTTC

AAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGG

CGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGCG

GCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGC

CTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGG

CTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCA

GGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAA

CTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTC

CGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGA

AGCTGAAGGACGGCGGCCACTACGACGCCGAGGTCAAGACCACCTACAAGGCCAAG

AAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGCTGGACATCACCTCC

CACAACGAGGACTACACCATCGTGGAACAGTACGAGCGCGCCGAGGGCCGCCACTC

CACCGGCGGCATGGACGAGCTGTACAAGTAA 

 

theoRs GGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCTGCTAAGGTAACAACAAG 

 

GFP ATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATG

GTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCAACAT

ACGGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCC

AACACTTGTCACTACTTTCTCTTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCATA
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TGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACGCA

CTATATCTTTCAAAGATGACGGGAACTACAAGACGCGTGCTGAAGTCAAGTTTGAAG

GTGATACCCTTGTTAATCGTATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAA

ACATTCTCGGACACAAACTCGAGTACAACTATAACTCACACAATGTATACATCACGG

CAGACAAACAAAAGAATGGAATCAAAGCTAACTTCAAAATTCGCCACAACATTGAA

GATGGATCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGC

CCTGTCCTTTTACCAGACAACCATTACCTGTCGACACAATCTGCCCTTTCGAAAGATC

CCAACGAAAAGCGTGACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGATTAC

ACATGGCATGGATGAGCTCTACAAATAA 

 

pUC18 ATGACCATGATTACGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACCTGC

AGGCATGCAAGCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCT

GGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATA

GCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAAT

GGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATG

GTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCG

CCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGAC

AAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGA

AACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGA

TAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCC

CTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCC

TGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGT

GTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC

GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGA

ACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCA

ATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCG

GGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACT

CACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTG

CTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAG

GACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTG

ATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACG

ATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACT

CTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCA

CTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTG

AGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTA

TCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGA

TCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTC

ATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAG

ATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAG

CGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGT

AATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGA

TCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACC

AAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCA

CCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATA

AGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGT

CGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCG

AACTGAGATACCTACAGCGTGAGCTTTGAGAAAGCGCCACGCTTCCCGAAGGGAGAA

AGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAG

CTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGAC

TTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCA

GCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTT

CCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATA

CCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAA

GAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGC

TGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTG
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AGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGT

TGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCT 

 

With Gibson assembly selected as the method for Smithy to use, the assembly form is ready to fill 

in. The title for the assembly was Gibson Riboswitch Assembly, a multi-entry query solution was 

selected, and the insert file (insert.fasta; Figure 27) containing the mCherry, theophylline 

riboswitch, and GFP sequences, as individual entries, was named. The pUC18 backbone sequence 

was contained in another FASTA file (pUC18.fasta; Figure 27).  

 

Figure 27: Assembly sequence inputs 

All three supported BLAST DNA sequence databases (AddGene, iGEM, and DNASU) were 

selected (Figure 28). An overlap amount of 30 nt, a minimum BLAST sequence size of 50 nt, a 

maximum BLAST sequence size of 5000 nt, minimum synthetic sequence size of 50 nt, and a 

maximum synthetic sequence size of 5000 nt were entered for the Overlap and BLAST Query 

inputs in the form (Figure 28).  
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Figure 28: Overlap length and BLAST query parameters 

Default Experiment inputs were used for this Gibson assembly: monovalent ion concentration of 

50 nM, divalent ion concentration of 1.5 mM, a 0.8 mM dNTP concentration, 50 nM DNA oligo 

concentration, and a 60 °C target melting temperature (see Figure 29).  

 

Figure 29: Experimental values and melting temperature input for primer design and Primer3 

thermodynamic analysis 
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For calculating an estimate of assembly costs (Section 3.2.5) the cost for short oligo sequences 

was $0.80, for medium sequences $0.39, long sequences $0.65, and $125 for the enzymes (Figure 

30).  

 

Figure 30: Assembly cost inputs 

Once the Assemble button is clicked (Figure 29) Smithy began the solution generation and design 

processes. 

4.8.2 Process 

First, a multi-entry BLAST query was performed over the individual insert sub-sequences, with 

their results collected independently according to the multi-entry query methodology in Section 

3.2.4.1.3. For this particular solution, each of the three insert sequences were found in the BLAST 

databases: mCherry from AddGene, and the riboswitch and GFP from iGEM. As this was a multi-

entry assembly design, no solution tree was created. From the three BLAST databases, 1726 

sequence alignments were found for mCherry, 45 for the riboswitch, and 335 for GFP. For this 

case study’s solution alignments (from BLAST), 50458-addgene corresponds to mCherry, 

BBa_J119317-igem to the theophylline riboswitch (theoRs), and BBa_M45123-igem to GFP. 
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With the BLAST alignments collected for each sub-sequence, primers were designed for the first 

solution created by Smithy. First, primer complementary (footprint) sequences for each insert and 

backbone sequence, as Pydna Dseqrecord objects, were created. A 60 °C target melting 

temperature as a constraint for forward and reverse primers was used, following the methodology 

in Section 3.2.4.3 (Table 4). This process produced Pydna Amplicons for each sequence, via in 

silico PCR simulations these amplicons are used for the rest of the design process27. Then, using 

the algorithm of Section 3.2.4.4, extension (tail) sequences were added to each primer for 

achieving a 30 nt combined overlap for each pair of contiguous sequences of the assembly (Table 

4). 

Table 5: Complementary and extension primer sequences for the Gibson assembly 

Primer Complementary 

(footprint) Sequence 

Extension (tail) 

Sequence 

mCherry_fwd (50458-addgene) atggtgagcaagggc acacaggaaacagct 

mCherry_rvs (50458-addgene) ttacttgtacagctcgtcc gatgctggtatcacc 

TheoRs_fwd (BBa_J119317-igem) ggtgataccagcatcg gagctgtacaagtaa 

TheoRs_rvs (BBa_J119317-igem) cttgttgttaccttagcag ttctcctttactcat 

GFP_fwd (BBa_M45123-igem) atgagtaaaggagaagaactttt taaggtaacaacaag 

GFP_rvs (BBa_M45123-igem) ttatttgtagagctcatccat cgtaatcatggtcat 

pUC18_fwd atgaccatgattacgaattcg gagctctacaaataa 

pUC18_rvs agctgtttcctgtgtgaa gcccttgctcaccat 

 

For each part, annotations for BLAST data were then added and Primer3 thermodynamic analysis 

for each primer was calculated. Once Primer3 calculations were complete, the thermodynamic data 

for each primer of every part was added to the part’s annotations (Table 6). 

Lastly, the solution cost, time, and risk values were determined using user inputs and the solution.  
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4.8.3 Output 

With the design complete for this construct, the assembly, solution, every part, part annotations, 

and every primer were saved to the Django SQL database for access by users. The assembly detail 

page first provides general information about the submitted construct: title, downloadable input 

files for the backbone and insert, and a listing of the form inputs the user entered (Figure 31). The 

solution for the assembly is accessible below this posted information. 

 

Figure 31: General information about the riboswitch assembly 

The solution had a total expected time of 12.07 hrs: 11.07 hrs for PCR and 1.00 hrs for Gibson 

assembly. Total cost was $817.60: $219.20 for short DNA sequences, $225 for plasmids, $125 for 

exonuclease, $125 for ligase, and $125 for polymerase. PCR amplification risk is -0.602 (low risk) 

and -0.368 (moderate-low risk). See Figure 31 for the time, cost, and risk charts generated for these 

values for this assembly solution, seen on the assembly and solution detail pages. 



111 
 

 

Figure 32: Time, cost, and risk charts for the riboswitch assembly 

In the solution page, general information, much like that seen for the assembly detail page, is 

shown at the top: parts counts, average primer melting temperature, average primer length, and 

other information (Figure 33). For this example, the solution has 3 parts, 6 primers, an average 

primer Tm of 60.42 °C, and an average primer length of 34 nt. This portion of the page is also 

where the solution insert and primer sequence data files in CSV format can be downloaded. 

Another file is available for download via the Download Order button, a file that contains concise 

information about all repository plasmids, primers, and  enzymes that need to be purchased for the 

assembly.  

 

Figure 33: Assembly solution general information 

Following this general information, is a display of the time, cost and risk charts, identical to those 

of Figure 32. Parts details are then listed, with an overview of their attributes shown in a table 
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containing: part names, BLAST database origin, original and assembly extension lengths, indexes 

on the construct that the parts fall into, and indexes on the originating plasmids where the 

sequences were found using BLAST. For this example assembly, each insert sequence was found 

in the BLAST databases: mCherry within the AddGene 50458 plasmid, the riboswitch in the iGEM 

BBa_J119317 sequence, and GFP in the iGEM BBa_M45123 sequence (Figure 34). 

 

Figure 34: Summary table for assembly insert sequences (parts) for the solution 

After this table of parts information, each part’s detail page can be accessed. Summary information 

is displayed along with links to the part’s primers, and a part mapping is shown that shows that 

part’s neighboring sequences. Additionally, the sequences of the part and of its primers are 

presented. For example, the summary information for the AddGene 50458 plasmid part details 

page for mCherry is shown in Figure 35. 
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Figure 35: Summary information for the AddGene 50458 plasmid part for mCherry 

The assembly’s primers are then shown and as with the parts sections a summary table of primer 

information is given with individual primer detail pages. The table in Figure 36 shows the Primer3 

thermodynamic calculations for each forward and reverse primer in the assembly.  

 

Figure 36: Summary table for assembly primers of the solution 

Table 6: Complete primer designs with Tm for all sequences in the assembly case study 
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Primer Sequence  Tm 

mCherry_fwd (50458-addgene) acacaggaaacagctatggtgagcaagggc 62.01 

mCherry_rvs (50458-addgene) gatgctggtatcaccttacttgtacagctcgtcc 61.92 

TheoRs_fwd (BBa_J119317-igem) gagctgtacaagtaaggtgataccagcatcg 59.47 

TheoRs_rvs (BBa_J119317-igem) ttctcctttactcatcttgttgttaccttagcag 58.73 

GFP_fwd (BBa_M45123-igem) taaggtaacaacaagatgagtaaaggagaagaactttt 60.17 

GFP_rvs (BBa_M45123-igem) cgtaatcatggtcatttatttgtagagctcatccat 59.62 

pUC18_fwd gagctctacaaataaatgaccatgattacgaattcg 60.71 

pUC18_rvs gcccttgctcaccatagctgtttcctgtgtgaa 60.70 

 

The full primer sequences designed by Smithy for this riboswitch fluorescence assembly are listed 

in Table 5, together with their melting temperatures (calculated with Primer3). As with each part 

in the assembly solution, each primer has a detail page where its unique data can be inspected. The 

forward primer for the AddGene 50458 plasmid part for mCherry is shown in Figure 37, and all 

other primer detail pages are in the same format. 

 

Figure 37: Detail page for the forward primer of the AddGene 50458 plasmid sequence for 

mCherry 

Table 7: Primer3 thermodynamic computations for the Gibson assembly primers. HP is short for 

hairpin, and HD is short for homodimer. 
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4.8.4 Biological Results 

 

 

Figure 38: Case Study 1 results. A) The inserts mCherry, Theophylline riboswitch and GFP 

were inserted by the Gibson assembly after the pUC18 Lac promoter, immediately before the 

sequence corresponding to the regular AUG initiation codon from LacZa. B) 1% agarose gel of 

the PCR products where each DNA part was amplified with Smithy-designed primers containing 

the compatible tails for Gibson assembly. Lanes 1: Quickload Purple 1Kb plus DNA ladder 

(NEB), 2: mCherry, 3: Theophylline riboswitch, 4: GFP_UV, 5: PCR-amplified pUC18, 6: 
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supercoil/circular pUC18, 7: EcoRI-linearized Gibson Assembly plasmid and 8: 

supercoil/circular Gibson Assembly plasmid. 

Table 8: Sizes of DNA parts, with and without Gibson amplification. 

DNA Part Size (nt) Gibson-Amplified Size 

mCherry 711 741 

Theophylline Riboswitch 124 87 

GFP_UV 717 747 

pUC18 2686 2716 

Gibson Assembly 4226  

 

4.8.5 Biological Methods  

The PCR reactions to add the corresponding overlapping tails on each DNA parts and vector were 

performed using synthetic DNA oligonucleotides (Integrated DNA Technologies). The primer 

sequences and lengths were exclusively determined by Smithy. PCR reactions were carried out 

using Q5 DNA polymerase (New England Biolabs), with 100 µM primers and 0.5 ng of plasmid 

(Addgene) for 30 cycles with an annealing temperature ranging from 55 C to 63 C. The size and 

homogeneity of the PCR products were verified on agarose gel electrophoresis, followed by 

extraction and silica gel column purification (IBI Scientific). The optical density of the gel-purified 

PCR products was determined with a nanodrop to calculate its concentration.  

The Gibson assembly of the tailed-vector (pUC18) and 3 tailed-DNA parts (mCherry, 

Theophylline riboswitch and GFP_UV) were performed according to the NEB procedures where 

75 ng of plasmid and 0.5 pmol of each DNA parts were mixed together with the NEB’s Gibson 

Assembly Master mix. It is recommended to incubate at 50 C for 1 hour when 4 pats or more are 

used and for 15 minutes for less than 3 DNA parts. The mixture was incubated for 30 minutes. 

The assembled plasmid DNA were transformed into NEB 5-alpha Competent E. coli (New 

England Biolabs) according to the manufacturer, followed by 1 hour incubation while shaking at 
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37 C and then plated onto IPTG-spread LB-agar ampicillin petri dish for overnight incubation at 

37 C. 

Pink colonies were picked and put in 3 ml LB culture overnight with shaking. The plasmids were 

extracted from the bacteria using silica gel column mini-prep kit (IBI Scientific). The plasmids 

were sequenced at Genewiz. 

4.8.6 Summary 

This example demonstrates Smithy’s abilities to efficiently produce DNA cloning assembly 

designs for a target construct, on that implements a theophylline riboswitch-modulated fluorescent 

circuit. The target construct, the plasmid backbone, and parameters for guiding the solution design 

were taken from user input and a comprehensive collection of necessary information was 

generated, information that allows users to perform successful assembly experiments in the lab. 

4.9 Case Study 2: Modified Riboswitch Bundle Assembly: Gibson, Golden Gate, PCR-

SOE 

This second case study is intended to demonstrate the assembly bundle features of Smithy for 

comparison of three different assembly options for a single construct. The theophylline riboswitch 

modulating fluorescent gene circuit from Case Study 1 was the target construct, and had an added 

lactose operator and modifications to the original riboswitch. Gibson, Golden Gate, and PCR-SOE 

assembly methodologies were selected for the exercise. 

4.9.1 Input 

The target construct is composed of a lactose operator (LacO), mCherry, a theophylline riboswitch, 

and GFP within a pBR322 plasmid backbone (Table 7). All sequences excepting the new lactose 

operator are the same as in Case Study 1. The backbone sequence is inputted in an individual 
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FASTA file, and the insert sequences in a separate multi-entry FASTA file (theoRs_LacO.fasta 

and pBR322.fasta).  

Table 9: Input sequences for the modified riboswitch fluorescence construct for the assembly 

bundle 

Part Sequence 

LacO GTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAG

GAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATT

AATGCAGCTGGCACGAC 

 

mCherry ATGGTGAGCAAGGGCGAGGACGACAACATGGCCATCATCAAGGAGTTCATGCGCTTCA

AGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCG

AGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGCGGCC

CCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTAC

GTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAA

GTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCC

TCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTC

CGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATG

TACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAAGCTGAAGGAC

GGCGGCCACTACGACGCCGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGC

TGCCCGGCGCCTACAACGTCAACATCAAGCTGGACATCACCTCCCACAACGAGGACTA

CACCATCGTGGAACAGTACGAGCGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGAC

GAGCTGTACAAGTAA 

 

TheoRs GGTGATACCAGCATCGTCTTGATGCCCTTGGCAGCACCCTGCTAAGGTAACAACAAGAT

GAGTAAAGGAGAAGAACTTTTCACTGCTGGAGTTGTCCCAATTCTTGTTGAAT 

 

GFP ATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGG

TGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCAACATAC

GGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAAC

ACTTGTCACTACTTTCTCTTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCATATGAA

ACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACGCACTATAT

CTTTCAAAGATGACGGGAACTACAAGACGCGTGCTGAAGTCAAGTTTGAAGGTGATAC

CCTTGTTAATCGTATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATTCTCG

GACACAAACTCGAGTACAACTATAACTCACACAATGTATACATCACGGCAGACAAACA

AAAGAATGGAATCAAAGCTAACTTCAAAATTCGCCACAACATTGAAGATGGATCCGTT

CAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACC

AGACAACCATTACCTGTCGACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGCGT

GACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGATTACACATGGCATGGATGA

GCTCTACAAATAA 

 

pBR322 CTTATCATCGATAAGCTTTAATGCGGTAGTTTATCACAGTTAAATTGCTAACGCAGTCA

GGCACCGTGTATGAAATCTAACAATGCGCTCATCGTCATCCTCGGCACCGTCACCCTGG

ATGCTGTAGGCATAGGCTTGGTTATGCCGGTACTGCCGGGCCTCTTGCGGGATATCGTC

CATTCCGACAGCATCGCCAGTCACTATGGCGTGCTGCTAGCGCTATATGCGTTGATGCA

ATTTCTATGCGCACCCGTTCTCGGAGCACTGTCCGACCGCTTTGGCCGCCGCCCAGTCC

TGCTCGCTTCGCTACTTGGAGCCACTATCGACTACGCGATCATGGCGACCACACCCGTC

CTGTGGATCCTCTACGCCGGACGCATCGTGGCCGGCATCACCGGCGCCACAGGTGCGG
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TTGCTGGCGCCTATATCGCCGACATCACCGATGGGGAAGATCGGGCTCGCCACTTCGGG

CTCATGAGCGCTTGTTTCGGCGTGGGTATGGTGGCAGGCCCCGTGGCCGGGGGACTGTT

GGGCGCCATCTCCTTGCATGCACCATTCCTTGCGGCGGCGGTGCTCAACGGCCTCAACC

TACTACTGGGCTGCTTCCTAATGCAGGAGTCGCATAAGGGAGAGCGTCGACCGATGCC

CTTGAGAGCCTTCAACCCAGTCAGCTCCTTCCGGTGGGCGCGGGGCATGACTATCGTCG

CCGCACTTATGACTGTCTTCTTTATCATGCAACTCGTAGGACAGGTGCCGGCAGCGCTC

TGGGTCATTTTCGGCGAGGACCGCTTTCGCTGGAGCGCGACGATGATCGGCCTGTCGCT

TGCGGTATTCGGAATCTTGCACGCCCTCGCTCAAGCCTTCGTCACTGGTCCCGCCACCA

AACGTTTCGGCGAGAAGCAGGCCATTATCGCCGGCATGGCGGCCGACGCGCTGGGCTA

CGTCTTGCTGGCGTTCGCGACGCGAGGCTGGATGGCCTTCCCCATTATGATTCTTCTCGC

TTCCGGCGGCATCGGGATGCCCGCGTTGCAGGCCATGCTGTCCAGGCAGGTAGATGAC

GACCATCAGGGACAGCTTCAAGGATCGCTCGCGGCTCTTACCAGCCTAACTTCGATCAT

TGGACCGCTGATCGTCACGGCGATTTATGCCGCCTCGGCGAGCACATGGAACGGGTTG

GCATGGATTGTAGGCGCCGCCCTATACCTTGTCTGCCTCCCCGCGTTGCGTCGCGGTGC

ATGGAGCCGGGCCACCTCGACCTGAATGGAAGCCGGCGGCACCTCGCTAACGGATTCA

CCACTCCAAGAATTGGAGCCAATCAATTCTTGCGGAGAACTGTGAATGCGCAAACCAA

CCCTTGGCAGAACATATCCATCGCGTCCGCCATCTCCAGCAGCCGCACGCGGCGCATCT

CGGGCAGCGTTGGGTCCTGGCCACGGGTGCGCATGATCGTGCTCCTGTCGTTGAGGACC

CGGCTAGGCTGGCGGGGTTGCCTTACTGGTTAGCAGAATGAATCACCGATACGCGAGC

GAACGTGAAGCGACTGCTGCTGCAAAACGTCTGCGACCTGAGCAACAACATGAATGGT

CTTCGGTTTCCGTGTTTCGTAAAGTCTGGAAACGCGGAAGTCAGCGCCCTGCACCATTA

TGTTCCGGATCTGCATCGCAGGATGCTGCTGGCTACCCTGTGGAACACCTACATCTGTA

TTAACGAAGCGCTGGCATTGACCCTGAGTGATTTTTCTCTGGTCCCGCCGCATCCATAC

CGCCAGTTGTTTACCCTCACAACGTTCCAGTAACCGGGCATGTTCATCATCAGTAACCC

GTATCGTGAGCATCCTCTCTCGTTTCATCGGTATCATTACCCCCATGAACAGAAATCCC

CCTTACACGGAGGCATCAGTGACCAAACAGGAAAAAACCGCCCTTAACATGGCCCGCT

TTATCAGAAGCCAGACATTAACGCTTCTGGAGAAACTCAACGAGCTGGACGCGGATGA

ACAGGCAGACATCTGTGAATCGCTTCACGACCACGCTGATGAGCTTTACCGCAGCTGCC

TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGT

CACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCG

GGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGT

ATACTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGT

GTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTCCGCTTC

CTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACT

CAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGT

GAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTT

CCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGG

CGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGC

GCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAA

GCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCT

CCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGT

AACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCAC

TGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGG

TGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCC

AGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGT

AGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAG

AAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAA

GGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAA

ATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAAT

GCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCT

GACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCT

GCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGC

CAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCT

ATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGT

TGTTGCCATTGCTGCAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAG

CTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCG
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GTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACT

CATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTC

TGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTT

GCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGT

GCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGA

GATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCA

CCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAA

GGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTT

ATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAA

ATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTAT

TATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAAG 

 

 

For this assembly bundle Gibson, Golden Gate, and PCR-SOE methods were selected. The title 

for the assembly was LacO Riboswitch Bundle and a description of Thesis Case Study 2.  

 

Figure 39: Beginning form entries for the assembly bundle: title, description, and method 

selection 

A multi-entry query solution was selected, the insert sequences (LacO, mCherry, theoRs, and GFP) 

were contained in theoRs_LacO.fasta, and the backbone sequence contained in pBR322.fasta. 
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Figure 40: Backbone and insert sequence inputs for the bundle 

All three BLAST databases were selected: AddGene, DNASU, and iGEM. As with Case Study 1, 

a minimum BLAST sequence size of 50 nt, a maximum BLAST sequence size of 5000 nt, 

minimum synthetic sequence size of 50 nt, and a maximum synthetic sequence size of 5000 nt 

were entered for the BLAST Query inputs of the bundle form. Default Experiment inputs were used 

for this assembly bundle: monovalent ion concentration of 50 nM, divalent ion concentration of 

1.5 mM, a 0.8 mM dNTP concentration, 50 nM DNA oligo concentration, and a 60 °C target 

melting temperature. Assembly cost estimate parameters (Section 3.2.5) were $0.80 for short 

sequences, for medium sequences $0.39, and for long sequences $0.65. Enzyme prices were 

entered at $125. Form components for the BLAST query, experiment, and nucleotide inputs are 

identical to those Case Study 1 and of individual assemblies. 

The selection of the three cloning methods at the beginning of the form (Figure 37), reveals the 

form components for each of these methods, including their unique inputs. Gibson parameters 

were then entered for an overlap length of 30 nt, and enzyme costs of $125 for exonuclease, ligase, 

and polymerase. 
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Figure 41: Gibson inputs for the bundle 

With the Gibson component of the form completed, the Golden Gate inputs  were entered. The 

98.5% fidelity overhang set47 and scar-less primer design were selected. Enzyme costs for BsaI 

and ligase were entered at $125. 

 

Figure 42: Golden Gate inputs for the bundle 

Inputs for PCR-SOE were then entered. This cloning method uses the same overlap amount as 

Gibson assemblies: 30 nt. The cost for polymerase was entered at $125. 
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Figure 43: Gibson inputs for the bundle 

The bundle design procedure began when the Assemble button was clicked. 

4.9.2 Process 

A shared multi-entry BLAST query was performed for the bundle insert sequences, following 

Section 3.2.4.1.3. Each of the sequences except the modified riboswitch were found in the public 

databases. The count of BLAST sequence alignments, for each part, coming from the three 

databases were: 2231for LacO, 1726 for mCherry, no alignments for the riboswitch, and 335 

alignments for the GFP. For the particular solution of this case study, the BLAST alignment names 

for the insert sequences are: 120399-addgene for LacO, 37760.1-addgene for mCherry, Synthetic-

1.112 for the riboswitch (not found in BLAST databases), 99831-addgene for GFP. These 

sequence query results were used for each of the Gibson, Golden Gate, and PCR-SOE assembly 

designs. 

With these BLAST sequences, Gibson primers were designed. Primer complementary sequences 

for the insert and backbone sequences were created using a target melting temperature of 60 °C 

(Section 3.2.4.3). Then, extension sequences were generated for a 30 nt combined overlap between 

each of the assembly’s pairs of contiguous sequences (Section 3.2.4.4). 

Table 10: Complementary and extension primer sequences for the bundle’s Gibson assembly 
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Primer Complementary (footprint) Sequence Extension (tail) Sequence 

120399-addgene-fwd gtgagctgataccgct cctttcgtcttcaag 

120399-addgene-rvs gtcgtgccagctgc gcccttgctcaccat 

37760.1-addgene-fwd atggtgagcaagggc tgcagctggcacgac 

37760.1-addgene-rvs ttacttgtacagctcgtcc gatgctggtatcacc 

Synthetic-1.112-fwd ggtgataccagcatcg gagctgtacaagtaa 

Synthetic-1.112-rvs attcaacaagaattgggaca ttctcctttactcat 

99831-addgene-fwd atgagtaaaggagaagaactttt caattcttgttgaat 

99831-addgene-rvs ttatttgtagagctcatccat cttatcgatgataag 

pBR322-fwd cttatcatcgataagctttaatgc gagctctacaaataa 

pBR322-rvs cttgaagacgaaagggc gcggtatcagctcac 

 

Next, Golden Gate assembly primers were designed. Primer complementary sequences for the 

insert and backbone sequences were created using a target melting temperature of 60 °C (Section 

3.2.4.3). Then, extension sequences were generated for scar-less overhang ligation between each 

of the assembly’s sequences (Section 3.2.4.5.2). 

Table 11: Complementary and extension primer sequences for the bundle’s Golden Gate 

assembly 

Primer Complementary 

(footprint) Sequence 

Extension (tail) Sequence 

120399-addgene-fwd cgaacgaccgagcg ggtctcn 

120399-addgene-rvs gaatcggccaacgc ggtctcn 

37760.1-addgene-fwd atggtgagcaagggc ggtctcnattcattaatgcagctggcacgac 
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37760.1-addgene-rvs cggttgagtggcgg ggtctcn 

Synthetic-1.112-fwd ggtgataccagcatcg ggtctcnaccggcggcatggacgagctgtacaagtaa 

Synthetic-1.112-rvs attcaacaagaattgggaca ggtctcncctttactcat 

99831-addgene-fwd aaggagaagaacttttcactg ggtctcn 

99831-addgene-rvs gctcatccatgccatg ggtctcn 

pBR322-fwd cttatcatcgataagctttaatgc ggtctcngagctctacaaataa 

pBR322-rvs cttgaagacgaaagggc ggtctcnttcggctgcggcgagcggtatcagctcac 

 

Lastly, PCR primers were designed. Primer complementary sequences for the insert and backbone 

sequences were created using a target melting temperature of 60 °C (Section 3.2.4.3). Then, 

overlap extension sequences were generated for 30 nt overlaps between each of the assembly’s 

sequences, identical to the Gibson assembly (Section 3.2.4.4). 

Table 12: Complementary and extension primer sequences for the bundle’s PCR assembly 

Primer Complementary (footprint) Sequence Extension (tail) Sequence 

120399-addgene-fwd gtgagctgataccgct cctttcgtcttcaag 

120399-addgene-rvs gtcgtgccagctgc gcccttgctcaccat 

37760.1-addgene-fwd atggtgagcaagggc tgcagctggcacgac 

37760.1-addgene-rvs ttacttgtacagctcgtcc gatgctggtatcacc 

Synthetic-1.112-fwd ggtgataccagcatcg gagctgtacaagtaa 

Synthetic-1.112-rvs attcaacaagaattgggaca ttctcctttactcat 

99831-addgene-fwd atgagtaaaggagaagaactttt caattcttgttgaat 

99831-addgene-rvs ttatttgtagagctcatccat cttatcgatgataag 

pBR322-fwd cttatcatcgataagctttaatgc gagctctacaaataa 
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pBR322-rvs cttgaagacgaaagggc gcggtatcagctcac 

 

For each of these individual assemblies, Smithy computes their cost, time, and risk estimates 

separately and displays them centrally in the assembly bundle dashboard.  

4.9.3 Output 

The design procedures finish by bringing the user to the dashboard page for the assembly bundle. 

First, the bundle’s descriptive information is shown for: title, date created, and description (Figure 

42). From this dashboard page, the bundle charts are seen, each assembly is accessible through 

links, and each of the assemblies’ solutions are directly linked for convenience. 

 

Figure 44: The title section of the assembly bundle dashboard 

The time, cost, and risk estimates charts are the main feature of the dashboard, and they are 

displayed as the first components of the page (Figure 44). The horizontal axes of the time charts 

have a maximum value equal to the greatest time estimate of all the assemblies. For the Gibson 

assembly, the time estimate was 16.22 hrs: 15.22 hrs for PCR, 1 hr for assembly. The Golden Gate 

time estimate was 16.32 hrs: 15.22 hrs for PCR, 1.1 hrs for assembly. Time for PCR-SOE was 

15.22 hrs for PCR reactions only. The cost values are normalized, to display the costs relative to 

the highest cost estimate. The total cost for the Gibson assembly was $911.68, for Golden Gate 

$798.68 and for PCR-SOE $661.68. Risk estimates for Gibson assembly were -0.602 for PCR and 

-0.368 for assembly (chewback, ligation, and repair). Golden Gate risk values were -0.602 for PCR 

and -0.954 for assembly digestion-ligation. Risk values for the PCR-SOE assembly were -0.602 

for PCR (Section 3.2.5). 
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Figure 45: Time, cost, and risk charts of the bundle dashboard for Gibson, Golden Gate, and 

PCR-SOE assemblies 
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Comparison of each assembly’s solution using these charts is what allows users to make informed 

decisions about the most suitable assembly method for their particular needs and background. The 

solution details for each assembly method are accessible directly below the charts display. The 

format of these pages is identical to those seen in Case Study 1. Each solution detail page provides 

all the information on the solution, with individual part and primer detail pages accessible via its 

components. Golden Gate solutions show a yellow badge indicating the presence of internal 

restriction enzyme cut-sites in the assembly sequences. In each of the solution detail pages, the 

parts, primers, and orders files for the assembly can be downloaded. These files are where users 

obtain full sequences for the insert fragments, sequences for each primer with its thermodynamic 

properties, and order files of materials to purchase for actual wet lab assembly.  

 

Figure 46: The Gibson, Golden Gate, and PCR-SOE solution components of the dashboard 

providing access to the individual solution pages 

Table 13: Complete primer designs with Tm for all sequences in the bundle’s Gibson assembly 

Primer Sequence Tm 

120399-addgene-fwd cctttcgtcttcaaggtgagctgataccgct 60.47 

120399-addgene-rvs gcccttgctcaccatgtcgtgccagctgc 61.68 

37760.1-addgene-fwd tgcagctggcacgacatggtgagcaagggc 62.01 
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37760.1-addgene-rvs gatgctggtatcaccttacttgtacagctcgtcc 61.92 

Synthetic-1.112-fwd gagctgtacaagtaaggtgataccagcatcg 59.47 

Synthetic-1.112-rvs ttctcctttactcatattcaacaagaattgggaca 60.13 

99831-addgene-fwd caattcttgttgaatatgagtaaaggagaagaactttt 60.17 

99831-addgene-rvs cttatcgatgataagttatttgtagagctcatccat 59.62 

pBR322-fwd gagctctacaaataacttatcatcgataagctttaatgc 60.80 

pBR322-rvs gcggtatcagctcaccttgaagacgaaagggc 60.06 

 

Table 14: Complete primer designs with Tm for all sequences in the bundle’s Golden Gate 

assembly 

Primer Sequence Tm 

120399-addgene-fwd ggtctcncgaacgaccgagcg 60.90 

120399-addgene-rvs ggtctcngaatcggccaacgc 59.84 

37760.1-addgene-fwd ggtctcnattcattaatgcagctggcacgacatggtgagcaagggc 62.01 

37760.1-addgene-rvs ggtctcncggttgagtggcgg 62.66 

Synthetic-1.112-fwd ggtctcnaccggcggcatggacgagctgtacaagtaaggtgataccagcatcg 59.47 

Synthetic-1.112-rvs ggtctcncctttactcatattcaacaagaattgggaca 60.13 

99831-addgene-fwd ggtctcnaaggagaagaacttttcactg 59.78 

99831-addgene-rvs ggtctcngctcatccatgccatg 59.84 

pBR322-fwd ggtctcngagctctacaaataacttatcatcgataagctttaatgc 60.80 

pBR322-rvs ggtctcnttcggctgcggcgagcggtatcagctcaccttgaagacgaaagggc 60.06 

 

Table 15: Complete primer designs with Tm for all sequences in the bundle’s PCR assembly 
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Primer Sequence Tm 

120399-addgene-fwd cctttcgtcttcaaggtgagctgataccgct 60.47 

120399-addgene-rvs gcccttgctcaccatgtcgtgccagctgc 61.68 

37760.1-addgene-fwd tgcagctggcacgacatggtgagcaagggc 62.01 

37760.1-addgene-rvs gatgctggtatcaccttacttgtacagctcgtcc 61.92 

Synthetic-1.112-fwd gagctgtacaagtaaggtgataccagcatcg 59.47 

Synthetic-1.112-rvs ttctcctttactcatattcaacaagaattgggaca 60.13 

99831-addgene-fwd caattcttgttgaatatgagtaaaggagaagaactttt 60.17 

99831-addgene-rvs cttatcgatgataagttatttgtagagctcatccat 59.62 

pBR322-fwd gagctctacaaataacttatcatcgataagctttaatgc 60.80 

pBR322-rvs gcggtatcagctcaccttgaagacgaaagggc 60.06 

 

4.9.4 Summary 

This second case study example demonstrates Smithy’s bundle features for generating solutions 

for multiple user-selected assembly methodologies, for one construct. Three independent assembly 

solutions were generated, each with comprehensive data, with the addition of cost, time, and risk 

estimates in the bundle dashboard. This allows quick visual inspection and evaluation of the pros 

and cons (from the user’s perspective) of using different methods of assembly (i.e., Gibson, Golden 

Gate, and PCR-SOE) of the final construct. As such, the dashboard feature facilitates selection of 

the most appropriate assembly method by and for a given user.  

4.10 Discussion 

Smithy builds and improves on previous DNA cloning automation design tools in synthetic biology 

for new and advanced researchers in DNA cloning. Given the way Smithy’s core Assembler has 
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been designed for abstraction and extendibility, Smithy does not only have wide appeal but is also 

flexible enough to handle many future demands, such as new assembly methods or improvements 

to existing method.  The assembly bundle feature is not seen in the other assembly design tools 

and aids synthetic biologists in choosing the most appropriate assembly method for them. 

Utilization of popular DNA sequence repositories implemented as BLAST databases, especially 

with the capacity to host user lab sequence datasets, ensures the minimization of synthetic 

sequence orders, which reduces overall cost. Smithy is open source, and its portability provides 

opportunities for its core features (Section 3.2, Section 4.7) to be useful for a diverse array of other 

projects and research endeavors.  

The cloning method taxonomy and resulting Assembler class hierarchy generated out of it provide 

a new way to view relationships between the contemporary cloning methods and how these 

methodologies can be implemented in code for design tools. New and modified cloning methods 

can be categorized according to the taxonomic groups (Figure 12) based on their approach to DNA 

sequence recombination. Then, if a new Assembler class is needed for generating designs for these 

novel methodologies, its definition in software can be guided by the Assembler class hierarchy for 

optimal development. For example, GoldenBraid cloning19,20 is not yet implemented in Smithy but 

is related to the Golden Gate and restriction endonuclease (RE) assembly methods. When 

designing a new Assembler class for GoldenBraid it could be defined as a child class of the 

TraditionalREAssembler class to limit the amount of new code to any necessary attributes and 

functions not already seen in the parent class. This dynamic of the Smithy Assembler classes shows 

how experimental methodologies in biology can be abstracted for translation to software 

methodologies. 
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The implementation of this project in Python provides a way for other researchers and developers 

to make use of it or expand and improve upon it. Python is already a popular programming 

language with a multitude of different applications in industry and academia with a generally 

smooth learning curve. There also exist a vast amount of code libraries, which can be incorporated 

into this project for any new or improved features, for new assembly design automation or 

statistical computations. For researchers and programmers, Smithy exists as a readily accessible 

tool for direct use in other projects, or for expansions and/or modification.  

A comprehensive set of solutions is generated for each assembly by the design software, often 

numbering in the hundreds, which is advantageous for creating several options for assembly 

subsequence sets. However, a limitation arises from the fact that Smithy in its current form only 

uses the first, most optimal solution created by the fragment solution tree. This limits the solution 

generation, as other valid but sub-optimal (from Smithy’s perspective)  may be more optimal for a 

given user, in a given context. Conversely, although only one solution at the present time is being 

used, it is the best solution found given the set of BLAST results that the software produces. 

Solutions also benefit from the thermodynamic parameters computed for each part’s forward and 

reverse primers (via the Primer3 python package)39. The full suite of thermodynamic results of 

each primer is calculated and provided by Smithy and accessible in detail on the site webpages and 

downloadable in a primers CSV file (Section 3.3.4). If a particular aspect of a primer or group of 

primers appears problematic, edits to the primer sequences can be executed or, if necessary, a 

complete change to the assembly approach can be adopted. 

The assembly bundle feature is another way in which Smithy provides users with opportunities to 

make informed decisions, based on experience and preferences, about various assembly projects 

through comparison of different candidate methodologies for a single insert solution. This way of 
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presenting candidate assemblies through a dashboard where an optimal choice is made based on 

the dimensions of cost, time, and risk of the methodology has not been seen in previous studies 

and tools. Limitations of the bundle dashboard features exist for aspects of the calculations. The 

time estimates are simple projections based on published method protocols, strictly based on listed 

procedures, and do not account for times to perform experiments within a particular lab or for 

specific overhead times a user may experience. These values are ideal times assuming success and 

efficiency in the experiment without unforeseen problems. To ameliorate that optimistic 

prediction, risk is also calculated; these reflect the possibility of failure of certain types of 

experiments and hence, the need for experiment repetition (more time). However, risk estimates 

are based on subjective and anecdotal experience-based determinations from a few experienced 

colleagues. A more robust estimate for experimental probability of success would be to obtain 

and/or test for general expectations so that a more complete statistical model could be developed. 

Finally, cost values are a rough estimate for assembly materials. Sequence costs are determined by 

flat per-nucleotide costs for categories of nucleotide size and provided by users. More accurate 

estimates for DNA synthesis could be used by obtaining actual provider costs. Repository plasmid 

costs are also given a flat value of $75 when different repositories could have varied listing prices. 

These bundle dashboard features have several opportunities for improvement that would 

strengthen Smithy’s capabilities of aiding researchers in making optimal decisions for their 

assembly projects. 
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Chapter 5: Conclusion and Future Work 

Smithy is an extensible, abstracted DNA assembly design automation tool that facilitates more 

reliable target construct design and creation. It is based on existing theoretical and practical 

knowledge of DNA cloning, along with inspiration from previous DNA cloning design automation 

efforts. As a web application, it is widely accessible to any researcher, experienced or novice. For 

DNA assembly projects, Smithy decreases the risk of error when working with large sets of DNA 

sequences for complex cloning projects. Additionally, comprehensive solutions are generated that 

contain several dimensions of analytical calculations: thorough primer thermodynamics with 

assembly cost, time, and risk estimates for major experimental procedures. Furthermore, a 

comparison of different assembly options for single target constructs, utilizing the cost, time, and 

risk assessments, is available through the assembly bundling capabilities of Smithy. In sum, the 

combined features of Smithy facilitate optimal, informed decision-making for DNA cloning 

assemblies, and the two case studies presented exemplify its practicality as a tool in the field of 

synthetic biology. Finally, as the fields of synthetic biology and DNA assembly grow and improve, 

Smithy has been designed to adapt to novel contributions in these fields. 

Several opportunities for expansion and improvement on Smithy exist. To start, unsupported DNA 

assembly methods could be added, and two are immediately clear: MoClo7 and GoldenBraid19,20 

assemblies. These two methodologies implement strategies for achieving modular, high 

throughput assembly projects with clear parts standardization and specification. Incorporation of 

these would make Smithy a much more useful, broadly applicable tool for large DNA cloning 

assemblies. The way these could be added would be by creating new Assembler classes that extend 

the GoldenGateAssembler class: MoCloAssembler and GoldenBraidAssembler. These two 

Assembler classes would need to carefully implement the hierarchical assembly strategies of these 
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two methods, because MoClo operates on hierarchical plasmid extension with standardized entry 

vectors and GoldenBraid with cycling of the target construct through two different sets of assembly 

plasmids7,19,20. The addition of user profiles would allow users of the application to control access 

to their project, providing exclusivity to assembly solutions. Next, addition of local lab sequence 

databases, queryable only by members of the lab, would expand on the sequences queryable by 

Smithy’s BLAST capabilities to incorporate into assembly solutions sequences that are directly 

available and not requiring purchase. Expanding the BLAST databases in this way would provide 

opportunities for decreased cost of assembly projects. Additionally, adding local lab sequences 

further builds the case for user profiles, because selection of these lab databases would only be 

available to users associated with the lab. 

Several improvements to this project can also be made on various fronts. A better model for risk 

assessment could be developed that incorporates more extensive data about the odds of failure of 

assembly experiment types. For example, a side project could be made to perform several trials of 

each major experiment in an assembly (e.g., chewback, ligation, and repair for Gibson assemblies 

or digestion-ligation for Golden Gate assemblies) of the supported methods in Smithy to 

thoroughly evaluate the odds of success and failure for these experiments. Additionally, risk values 

could be crowd-sourced from the scientific community of authenticated cloners, and additional 

inputs to the assemblies in  Smithy (after the experiments are complete) could be added that collect 

information about the assembly reactions’ successes. This data collection could be used to grow a 

record of risk data that could be utilized in an evolving model to calculate constantly improving 

risk estimates for assemblies. These efforts would make the risk estimates more scientifically 

sound and reliable. Cost estimates for solutions are also open to improvement. Thus far, only three 

sequence size costs are implemented, however these could be significantly expanded, for a more 
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thorough breakdown of DNA synthesis costs. For example, the company Integrated DNA 

Technologies (IDT) has three different cost breakdowns for short oligos for various sizes and 

concentrations, and, in addition, a more detailed breakdown of larger DNA sequence synthesis 

costs in ranges of 25-500 nt, 501-1500 nt, 1501-3000 nt, 3001-5000 nt, and 5000+ nt54. Expanding 

the cost input fields in this way would allow Smithy to provide more accurate assembly cost 

estimates. Furthermore, a feature could be added to the software to automatically obtain current 

prices for DNA synthesis and suggest them to the user at the assembly creation forms. The 

estimates for assembly experiment times could also be improved. While the times are calculated 

following published methodologies for the supported cloning methods, much like the suggestion 

for improving risk estimates, an extensive suite of experiments could be performed to collect 

detailed data about actual expected times for the major assembly procedures in a project. Crowd-

sourced data could also be collected, and actual experimental times inputted to Smithy for 

particular assemblies that add to an ever-improving model that calculates expected assembly times. 

Adding to Smithy in these ways would improve its abilities to facilitate informed and optimized 

decisions for assembly projects by researchers using the application.  

If possible, parallelization of certain procedures of the software would decrease the times for 

generating assembly solutions. Currently, the BLAST and assembly bundle procedures perform 

their individual tasks (querying databases in BLAST or creating multiple assemblies with the 

bundle) in series. Though if querying BLAST databases and creating the individual bundle 

assemblies could be run as parallel and independent processes the overall solution generation time 

of Smithy could significantly improve, especially for BLAST queries as these consume the most 

time.  
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Finally, the assembly solutions designed by Smithy can be translated into the Synthetic Biology 

Open Language standard (SBOL)22 which provides a framework for standardization of synthetic 

biology project designs that are broadly transferrable across applications. There also exists a 

Python implementation of the SBOL framework with a project called pySBOL55. This project is 

significant because it could be integrated into Smithy with ease as both projects are implemented 

in Python. Usage of SBOL in Smithy would broaden its capabilities as a practical tool in the 

synthetic biology field as its assembly designs could be contained in a standardized format that 

could be transferred to other modernized laboratory workflows, industrial applications, and 

software tools55. This potential for standardization is especially notable for Smithy as DNA cloning 

methodologies and projects continue to grow in scale and complexity.  
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Appendix 

6.1 Application Architecture 

 

Figure 1S: An overview of application architecture for Smithy 

The project in its entirety is composed of several interacting software components for establishing 

a programming environment, executing queries, generating assembly solutions, using solutions for 

assembly designs, running the website, and database handling. Each of these core aspects have 

been implemented in several Python modules. Full details and information on the software can be 

found by exploring the application repository on GitHub. 

6.1.1 Virtual Environment 

A Python virtual environment has been created for Smithy using the standard library’s venv 

module. Before the Smithy application is started, first its virtual environment is activated then the 

application is started and run within. For a full listing of dependencies, view the requirements.txt 

file on the project GitHub repository. Virtual environments are advantageous for software projects 
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because they manage dependencies, external Python libraries downloaded and incorporated into 

the application, and allow a project to be easily reproducible. Additionally, virtual environments 

avoid downloading project dependencies to the global operating system environment which in 

many cases causes conflicts with other projects. Any package intended to be used for a given 

application is installed directly in the virtual environment and not any global environment space. 

The notable packages used for this project are: 

• Django 3.256,57 

• Biopython 1.7825 

• Pydna 3.1.327 

• Primer3-py 0.6.139 

• DNA Features Viewer 3.0.358,59 

6.1.2 Django & Model-View-Template 

The Django framework is based on a fundamental principle of model-view-template, also known 

as MVT56. In brief, models define how the data is to be stored and structured, views manage data 

gathering and transmission to the templates, and templates dictate how such data is to be presented. 

Models will be represented in relational database tables, with individual entries represented by a 

model’s class instance. Views perform create, update, read, or delete operations on models of the 

application while also fetching the appropriate HTML templates. Templates are HTML webpages 

presented to users containing the data delivered by the views. This encompasses the core approach 

of Django web application development, and these MVT principles are seen across the Django-

based components of Smithy.   
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6.1.3 Django Apps 

A central philosophy of the Django framework is the creation of a web application based on sub-

applications for specific tasks.56 These sub-applications are structured in such a way that they are 

portable to entirely different Django applications. This design philosophy has been applied to the 

development of Smithy, with three core sub-applications comprising the complete application for 

Smithy, named “Smithy”, “proj_site”, and “assembly”. The first of these, Smithy, contains the core 

configurations and settings for the whole application, with connection to the two other sub-

applications. The second, proj_site, provides the website’s basic content, such as home, survey, 

and about webpages. Lastly, assembly contains all of the functionality and database handling 

procedures for the entire Smithy assembly design automation pipeline. 

A. Core – Smithy 

General settings and app configurations are found within the core Smithy sub-application; there 

exists no additional functionality besides: admin site access and connections to the other two sub-

apps.  

For the settings and configurations, found in settings.py, the information is not extensive. Here, 

one finds definitions of allowed server hosts, registrations of sub-applications, a list of middleware 

packages, configuration of the SQLite database, and HTML template directories. Other attributes 

such as time zone, language, template packs, media paths, and static content paths are also found 

there. All of these are necessary so the application framework can link all components, internal 

and external, in this one central file.  

Access to the other sub-applications is possible through the Django URL patterns defined within 

Smithy. The assembly app is accessed through Smithy.fungalgenomics.ca/assembly, and proj_site 

by one of its defined URLs such as Smithy.fungalgenomics.ca/about. Since very little functionality 
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exists within the Smithy sub-application it is effectively a central access point to the complete 

feature set of the project. 

B. General Site – proj_site 

As previously mentioned, proj_site is a limited sub-application that contains simple features for 

general website content. The motivation for this component was to separate the assembly and basic 

site features from each other. From proj_site the application’s home page, about page, Google 

forms survey, and glossary of terms are all accessed. JavaScript and CSS files for front-end needs 

are also contained within proj_site. These files are used for general site styling, front-end 

supplementary functionality, and assembly solution charts generation, which are especially 

important for assembly bundles.  

C. Assembly Site – assembly 

Almost all business logic for the Django web application exists here. All database models for the 

site are implemented, database migrations for the SQLite server are logged; the form for assembly 

bundles is defined; URL patterns for each cloning method are defined, Django views for each 

webpage are implemented; and the solution design scripting, with interfacing to the other software 

components of Smithy, are implemented. The database models define the project’s SQL tables 

used for managing assembly, solution, part, primer, and bundle entries. There are several URL 

patterns that dictate which views to use for every defined URL of the site. These URLs deliver 

assembly creation forms, detail forms for every model, and list pages for accessing existing 

assemblies. The Django views, one for each URL, are responsible for either gathering the assembly 

database entries for display, taking a submitted assembly form and executing the design procedure, 

or displaying pre-existing assemblies for users to explore. Combined, these features of assembly 

provide the full design automation pipeline features for assembly experiments, apart from the 
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definitions of the external Assembler, FragmentTree, and Blaster modules. Additionally, the -

assembly sub-application is defined independently of the full application’s other components, so 

in principle it can be ported to other Django projects, if desired.  

6.1.4 Assemblers, Fragments, and Queries 

External modules to the web application aspects of Smithy are those responsible for BLAST 

queries, Assembler class definitions, FragmentTree implementation, FragmentNode definition, 

and Primer3 thermodynamic calculations. However, the rest of the software is an implementation 

of general web application design principles and features within this collection of external modules 

is the feature set of the core contributions of Smithy. Explicit implementation of these modules is 

found in the service.py script of the assembly sub-application.  
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6.2 Detail Pages 

 

Figure 2S: Assembly detail page for an example Gibson assembly 
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Figure 3S: Top components of the solution detail page for an example Gibson assembly 
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Figure 4S: A plasmid map generated for an example Gibson assembly 

 

Figure 5S: The parts table on the solution detail page for an example Gibson assembly 
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Figure 6S: The parts listing on the solution detail page for an example Gibson assembly 



152 
 

 

Figure 7S: The primers table on the solution detail page for an example Gibson assembly 
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Figure 8S: The primers list on the solution detail page for an example Gibson assembly 
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Figure 9S: A part detail page for an example Gibson assembly 
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Figure 10S: The primer detail page for an example Gibson assembly 


