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Abstract

Vorticity-Based Polynomial Adaptation for Unsteady Flows

Seyedramin Ghoreshilangrodi, Ph.D.

Concordia University, 2022

Aerospace applications, including but not limited to the aerodynamics of slats and flaps,

the aeroacoustics of complete landing gear configurations, and the performance prediction of

air brakes, spoilers, fans, and turbines, benefit from high-fidelity scale resolving approaches

such as direct numerical simulation and large eddy simulation. These approaches are

shown to be accurate in complex unsteady flow regimes where current industry-standard

Reynolds-averaged Navier-Stokes methods often fail. For example, recent research has

demonstrated that direct numerical simulation can be utilized for analysis of complete jet

engine low-pressure turbine cascades at their designed operating condition. High-order

unstructured spatial discretizations such as flux reconstruction are particularly appealing

for large eddy simulation of unsteady turbulent flows as they are capable of resolving the

flow more efficiently; however, their computational cost remains relatively high, preventing

their industrial use. Therefore, given the inherent computational cost of high-order methods,

it is crucial to deploy strategies to minimize the overall computational cost of large eddy

simulation while attaining comparable accuracy. A practical approach is to limit the use of

high-order elements to regions where higher resolution is required for an accurate discrete

approximation of the solution, reducing the total number of degrees of freedom. This can

be achieved by locally increasing or decreasing the solution polynomial degree to adjust

resolution and order of accuracy to achieve an accurate and cost-efficient simulation, a practice

called polynomial adaptation or p-adaptation. Large eddy simulation can also benefit from

the computational power of state-of-the-art hardware architectures by taking advantage of
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parallel computing, which can achieve a significant speed-up by decomposing the domain and

solving the problem concurrently. Parallel computing also provides a larger memory capacity

and higher bandwidth, resulting in better performance. However, combining polynomial

adaptation with a massively parallel computation can cause overhead because p-adaptation

tends to change the degree of solution polynomials locally, leaving the computational domain

unbalanced. To maintain parallel efficiency, dynamic load balancing techniques have been

exploited. The current work introduces a novel dynamically load-balanced polynomial

adaptation method for simulations of unsteady flows in the vicinity of complex geometries

using the flux reconstruction scheme. This approach is applied to both two-dimensional and

three-dimensional studies, while for the latter, we make use of implicit large eddy simulation,

which relies on the dissipation error of the numerical scheme to act as a subgrid-scale model

to dissipate the kinetic energy from the smallest turbulent scales in the flow.

We verify the utility of our dynamically load-balanced adaptation approach when applied

to the arbitrary Lagrangian–Eulerian form of the compressible Navier–Stokes equations for a

range of applications on moving and deforming domains. Specifically, we verify the arbitrary

Lagrangian–Eulerian and dynamic load balancing implementation by performing simulations

of an Euler vortex, and then illustrate the accuracy and efficiency of the adaptation routine

by performing simulations of flow over an oscillating circular cylinder with two different

flow settings, dynamic stall of a 2D NACA 0012 airfoil undergoing heaving and pitching

motions, and flow over a vertical axis wind turbine composed of two NACA 0012 airfoils. We

further illustrate the accuracy and efficiency of the routine when applied to transitional and

turbulent flows by performing simulations of a shallow dynamic stall of a 3D SD 7003 airfoil

undergoing heaving and pitching motions and transitional flow over a 3D circular cylinder.

Results demonstrate that the dynamically load-balanced adaptation algorithm can track

regions of interest, such as vortices and boundary layers, and yields a significant speed-up

when applied to parallel simulations. We also demonstrate the scalability of the algorithm

and the capability of dynamic load balancing technique to distribute uniform computational

load among processors.
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"My life lasts but a day or two, and fast

Sweeps by, like torrent stream or desert blast,

Howbeit, of two days I take no heed,—

The day to come, and that already past."

Omar Khayyam
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Chapter 1

Introduction

This work introduces a novel dynamically load-balanced polynomial adaptation method for

simulations of unsteady flows in the vicinity of complex geometries. We start by giving moti-

vation for this study and explaining the need for improvement in the field of Computational

Fluid Dynamics (CFD) in the aerospace industry. We then outline the general characteristics

of turbulence. Furthermore, we present common simulation approaches and explain why

Large Eddy Simulation (LES) is particularly appealing for aerodynamics analysis. Then we

will discuss high-order methods used for LES, particularly the Flux Reconstruction (FR)

scheme, which is the numerical method used in the current work. Finally, we discuss the

necessity of parallel computing for CFD.

1.1 Motivation

The environmental impacts of aviation have been rising since the adoption of jet engines

on commercial aircraft. Global demand for air transportation is proliferating. Although

the COVID-19 outbreak caused a 47 percent decline in industry-wide Revenue Passenger-

Kilometres (RPKs) within two years [12], it is anticipated to be a temporary downturn. Based

on the International Civil Aviation Organization (ICAO) annual report, 4.5 billion passengers

were carried on 38.3 million flights in 2019 [13], and by 2040, the International Air Transport

Association (IATA) predicts a 200 percent growth in the yearly number of flights [12]. This

demand growth can potentially raise the CO2 and other greenhouse gases emitted by aviation
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industry by up to 400 percent [14]. To prevent this drastic emission increase and to move

forward to complete decarbonisation, a collective commitment was announced by the Airports

Council International (ACI), Civil Air Navigation Services Organisation (CANSO), IATA,

and International Coordinating Council of Aerospace Industries Associations (ICCAIA) on

behalf of the international air transport industry to decrease carbon emissions to 50 percent

of 2005 levels by 2050 [15]. In line with this decision, the European Union (EU), the United

States (US), and Canada have embarked on multi-billion dollar research programs to reduce

the environmental impacts of aviation. These include the Clean Sky program [16], the

Environmentally Responsible Aviation (ERA) program [17], and the Green Aviation Research

& Development Network (GARDN) [18], respectively. In order to meet the targeted fuel

efficiency goals outlined by ACI, CANSO, IATA, and ICCAIA, critical aviation infrastructure

and technology advancement is required [19], beyond the capabilities of current tube-and-wing

commercial aircraft.

The National Aeronautics and Space Administration (NASA) announced the N + 3 quest

in 2008 to develop enabling technologies to provide step change improvements in fuel efficiency

over current state-of-the-art commercial aircraft, targeting aircraft three generations ahead

of its current fleet. Some proposed designs include, but are not limited to, blended wing

bodies configurations [20, 21] with and without distributed propulsion system [22, 23], shown

is Figures 1.1 and 1.2, and the double bubble D8 concept [24, 25], shown in Figure 1.3.

Designing these aircraft will require a modern engineering approach, including simulation.

With the advent of digital computers, CFD became a vital instrument for engineers to

understand, design and analyse not only aerospace products but also any product interacting

with a fluid, including automotive, marine, heating and cooling, architecture, power generation,

and pharmaceutical. Although CFD is being widely used in the design of commercial aircraft,

there are still many emerging areas where CFD is expected to provide step improvements in

the future. The primary role of CFD is to approximate the flow field on a computational grid

by discretizing the Partial Differential Equations (PDEs) governing fluid flow, namely the

inviscid Euler equations [26] or the viscous Navier-Stokes equations [27, 28]. CFD allows for

comprehensive access compared to an experimental study which is limited to a finite number

of locations where measuring instruments are placed. It also significantly reduces design
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Figure 1.1. Boeing’s sub-scale X-48B blended wing body aircraft without distributed propul-
sion flew over the edge of Rogers Dry Lake at Edwards Air Force Base during its fifth flight
on Aug. 14, 2007 [2].

costs as it does not require a physical model nor prototype and experimental apparatus.

Furthermore, with the recent development of Micro Air Vehicles (MAVs) and more flexible

airframes, wind tunnel set-ups are becoming less capable of providing the required conditions

to study an object experimentally. These have turned CFD into an indispensable component

in aerospace design. However, based on the NASA Vision 2030 [29], in order to study the

conceptual designs mentioned earlier, we need radical improvement in the CFD prediction of

unsteady flow in the vicinity of complex geometries. This is because there are always some

degrees of uncertainty and error associated with CFD simulations, primarily introduced by

physical approximation and discretization errors. In fact, the governing equations and physical

models used in CFD are usually simplified either because the physics is not completely known

or for the sake of computational efficiency. However, one of the primary sources of error is
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Figure 1.2. NASA N3-X blended wing body aircraft concept with turbo-electric distributed
propulsion system [3].

due to spatial discretization, which is sensitive to the number of Degrees of Freedom (DOF)

used for the computation. CFD simulations require large numbers of DOF to capture the

complex physics governed by the Navier-Stokes equations with a high level of accuracy, which

with the current hardware architectures is inherently expensive. This challenge motivates the

current work, aiming to investigate methods to make CFD more accurate and computationally

efficient.

1.2 Turbulence in Fluid Mechanics

Understanding turbulence is a critical prerequisite in the process of aircraft design using

CFD. Although there is no definitive definition for turbulence, we can describe it as a chaotic

distribution of vorticity in time and space, with a wide range of length and time scales,

ranging from large high-energy vortices to small dissipative eddies [30, 31]. Turbulent flows are

characterized by three-dimensional chaotic velocity fluctuations, where a small perturbation

in the initial condition can exponentially grow with time and significantly affect the flow
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Figure 1.3. The double bubble D8 aircraft concept with engines flush mounted on the top
rear of the fuselage, designed based on a concept known as Boundary Layer Ingestion (BLI),
claimed to achieve a 36% reduction in fuel burn from its configuration [4]. This aircraft is
designed to fly at Mach 0.74 and carry 180 passenger for domestic flights [5].

structure at a later time. Turbulence is a natural state of most flows, from the liquid core of

our planet, oceanic and atmospheric flows on the surface of the Earth, solar flares on the sun

to galaxy clusters billions of light-years away [30]. This makes turbulence an integral part of

practical engineering applications. Turbulent flows consist of a wide range of length scales,

where the largest turbulent length scale is proportional to the characteristic length scale [30]

and the smallest is dictated by the fluid viscosity µ and the dissipation rate ε through the

dissipation length scale, known as the Kolmogorov length scale η̂ [32]

η̂ =

(
µ3

ε

) 1
4

. (1.1)

The large turbulent length scales within a flow are inertially unstable tending to break into

smaller-scale eddies. In other words, energy cascades from large scale eddies to smaller ones

until the Reynolds number reaches approximately unity. At this point, viscous effects become

dominant, and kinetic energy starts to dissipate. A diagram of the turbulent kinetic energy
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cascade with a distribution of different scales is shown in Figure 1.4 where the kinetic energy

is plotted against the wavenumber.

The relationship between the largest eddy and the smallest turbulent length scales can be

expressed as a function of the Reynolds number according to [30]

L

η̂
= Re

3
4 , (1.2)

where L is the characteristic length scale. Hence the larger the Reynolds number, the greater

the ratio of the largest to smallest turbulent scales, necessitating a finer resolution in space

to capture the smallest eddies. In fact, the fidelity of a CFD simulation of turbulent flow is

determined based on the range of length scales resolved by the simulation approach. The

following subsections provide further details regarding the simulation approaches in CFD.

1.3 Simulation Approaches

Common simulation approaches include Reynolds-Averaged Navier-Stokes (RANS) meth-

ods [33], Direct Numerical Simulation (DNS), and LES [34]. As mentioned earlier, turbulent

flows consist of a wide range of length scales. DNS numerically resolves the entire range of

the turbulent length and time scales. The number of degrees of freedom required to resolve

all eddies in a cube can be estimated as [30]

DOF =

(
Lc

∆x

)3

≈
(
Lc

L

)
Re

9
4 , (1.3)

where Lc is the edge length of a cubic domain of equal sides, and ∆x is the numerical grid

spacing required to resolve the smallest length scales. Hence, the total number of degrees of

freedom increases rapidly as Re increases. Furthermore, from Equation 1.2, a larger Reynolds

number requires a finer grid resolution, which dictates a smaller time step size. All these

make DNS computationally expensive. Consequently, although DNS is the most accurate

approach, its application is limited by the Reynolds number, and may not be feasible for

flows with moderate to high Reynolds numbers in terms of computational cost with current

computing hardware.
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Figure 1.4. Diagram of the turbulent kinetic energy cascade. Blue lines denotes modelling
and orange lines denotes simulation.

In contrast, RANS methods model the entire range of the turbulent length scale by

utilizing the concept of Reynolds decomposition in which the instantaneous velocity field is

decomposed into time-averaged and fluctuating components

v(x, t) = v̄(x) + v(x, t)
′
, (1.4)

where v̄(x) and v(x, t)
′ are the time-averaged and fluctuating components of the velocity field

v(x, t) respectively. Following the Reynolds decomposition, the conservation of momentum
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equations for incompressible flow can be expressed as [35]

ρ
D(vj)

Dt
=

∂

∂xi

[
µ

(
∂vi
∂xj

+
∂vj
∂xi

)
− p̄δij − ρv

′
iv

′
j

]
, (1.5)

where δij is the Kronecker delta and ρv
′
iv

′
j , arising from the fluctuating velocity field, represents

the Reynolds stresses, which is computed by eddy-viscosity models [35]. This results in a

time-averaged expression of Navier-Stokes equations. The turbulence models used by RANS

methods are formulated for specific types of applications and are not accurate for all classes

of flows [35]. Furthermore, they only predict the largest length scales in the flow and neglect

the unsteady nature of the flow. These make RANS inaccurate when approximating unsteady

separated flows and narrow their use to a relatively small region of the operation design

space [30, 35].

To reduce the computational burden of DNS, but benefit from a higher numerical accuracy

than RANS, high-fidelity scale resolving approaches such as LES can be used. LES resolves the

larger length scales, while modelling the effect of smaller eddies. Recent research has shown

that scale-resolving techniques such as LES are able to obtain accurate results in complex

unsteady flow regimes where current industry-standard RANS methods often fail [36, 37].

Based on accuracy considerations, industrial deployment of LES will be critical in achieving

the step-change CFD technology requirements of Clear Sky, ERA, and GARDN as outlined

by NASA [29]. Figure 1.4 indicates the resolution limits of different simulation approaches.

The cut-off wavenumber for LES is usually indicated by the grid size, which indicates the

scale after which the small-scale information is filtered from the solution. The effects of these

filtered smaller eddies are then modelled using a Subgrid-Scale (SGS) model. SGS models

primarily account for the under-resolution of LES by dissipating the energy from the smallest

resolved scales. This is typically done by introducing an artificial viscosity to the numerical

simulation, which mimics the dissipative nature of the smaller-scale eddies, a practice known

as explicit LES. As mentioned earlier, there is also another approach known as Implicit

LES (ILES). In this approach the dissipation error of the numerical scheme acts as an SGS

model when coupled with appropriate high-order temporal schemes [38, 39]; hence, no extra

terms are included in the Navier-Stokes equations which alleviates the potentially expensive
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implementation costs of SGS models and avoids complexity in linearization of the system

of equations. The accuracy of the ILES approach has shown consistency with experimental

and DNS studies [40, 41, 42]. Further studies on stabilization of high-order ILES have been

performed by means of filtering the solution polynomials [43]. In the current work, we are

particularly interested in using ILES for three-dimensional studies.

1.4 High-Order Methods

As discussed earlier, aerospace applications benefit from high-fidelity unsteady solution

techniques, such as LES and DNS. The traditional Finite Volume Methods (FVM) represent a

continuous PDE using a discrete number of volumes where inside each volume the solution is

represented by a constant cell average. FVM are proven to be robust for non-linear problems

such as simulations of detonation and shock waves, especially when coupled with the Essentially

Non-Oscillatory (ENO) [44] and Weighted Essentially Non-Oscillatory (WENO) [44, 45, 46]

procedures. While FVM are suitable for unstructured meshes, higher-order accuracy can only

be achieved by increasing the computational stencil representing the continuous PDE, which

poses significant computational cost. Furthermore, although FVM has an explicit form, it

is dominated by point-wise indirect operations, which requires interactions with adjacent

elements. Hence FVM are bounded by the memory bandwidth and are capable of achieving

only about 3% of peak FLoating Point Operations per second (FLOP/s) [47].

On the other hand, the Finite Difference Methods (FDM) approximate a PDE using a

discrete number of points. Although FDM are computationally efficient and can be extended

to high orders of accuracy, they are generally not conservative since they represent the solution

with a divergence form. Furthermore, FDM requires curvilinear meshes. This makes them

less suitable for complex geometries.

The classical Finite Element Methods (FEM) combine the appealing features of being an

unstructured method and achieving high-order accuracy. The solution is represented using

higher-degree polynomials on an element-wise basis. The solution is globally continuous

in FEM, with the same solution value on both sides of element interfaces. This requires

inversion of a global mass matrix which is computationally expensive and limits the FEM to
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implicit solvers only with direct global coupling.

Recent research has led to the development of new high-order unstructured spatial

discretizations by combining the element-wise high-order accuracy of the FEM with the

localized solution representation of the FVM, such as the Discontinuous Galerkin (DG) [48, 49],

Spectral Volume (SV) [50], Spectral Difference (SD) [51], and Staggered Grid (SG) [52]. These

schemes benefit from the high-order accuracy of the FEM, as they use an element-wise high-

order representation of the solution, yet allow for the solution to be discontinuous on element

interfaces, reducing their computational cost by not requiring inversion of a global mass

matrix. Furthermore, they are suitable for unstructured meshes and have an explicit form. It

has been demonstrated previously that these methods are particularly appealing for scale-

resolving LES/DNS simulations of unsteady turbulent flows, and that they are particularly

well-suited for modern many-core hardware architectures [47]. Table 1.1 lists pros and cons

of each spatial discretization method.

Recently an unstructured scheme was introduced by Huynh [53] which operates on the

differential form of the conservation equations. This scheme is particularly appealing as it can

recover different high-order methods including the DG, SD, and SV depending on the choice

of a correction function. FR is capable of achieving about 55% of the peak FLOP/s [47] since

almost all operations are matrix multiplies when the scheme uses higher polynomial orders.

This study utilizes the FR scheme which is explained thoroughly in Chapter 3.

Table 1.1. Comparison of spatial discretization methods, adapted from Hesthaven and
Warburton [11], where ✓ represents the capability of the methods, ✗ indicates that the
method is incapable of solving such problems, and (✗) reflects inefficiency or limitations.

Scheme Unstructured High-order Explicit Conservative Cost p-adaptivity
Meshes accuracy Form Efficient

FDM ✗ ✓ ✓ ✗ ✓ ✗

FVM ✓ (✗) ✓ ✓ ✗ ✗

FEM ✓ ✓ ✗ ✓ (✗) ✓

DG/FR ✓ ✓ ✓ ✓ ✓ ✓
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1.5 Parallel Computing

Microprocessor technology has been developing exponentially over the past decade. Processor

clock rates have increased by a factor of 200 from 40 MHz in 1988 (MIPS R3000) [54] to

8.79 GHz in 2012 (AMD FX-8350). Furthermore, processors are now capable of executing

multiple tasks simultaneously. The average number of Cycles Per Instruction (CPI) has

improved by an order of magnitude [54]. These result in a higher peak FLOP/s of several

orders of magnitude. However, the ability of the Dynamic Random Access Memory (DRAM)

to feed the Central Processing Unit (CPU) data has lagged behind, causing a performance

bottleneck. In fact, DRAM access time has improved only at a quarter the rate of clock

speeds in the past decade.

Concurrency plays an important role to accelerate computation. Decomposition of a

computation to smaller tasks and assigning them to different processors to be executed in

parallel is called parallel computing. The simultaneous execution of smaller tasks yields

a significant speed-up. Furthermore, parallel computing provides larger memory capacity

and higher bandwidth, resulting in better memory system performance. These have made

parallel computing a vital component of engineering and scientific numerical studies including

aerodynamic optimization, charge distribution optimization of combustion engines, design

of high-speed circuits, structural integrity optimization, bioinformatics, and astrophysics

among others [54]. In the current work, we use the Message Passing Interface (MPI) for

parallel computation, which is a standard library created to unify different message passing

operations into a single global library.

1.6 Research Objectives and Contributions

This study aims to investigate methods to make simulation of unsteady flows computationally

efficient, specifically by introducing a novel dynamically load-balanced polynomial adaptation

algorithm suitable for unsteady flows. This is performed using an in-house High-ORder

Unstructured Solver (HORUS) developed at the Concordia Computational Aerodynamics

Laboratory, which is based on the flux reconstruction scheme. The accuracy and efficiency
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of our adaptation approach are illustrated for a range of applications on fixed and moving

domains. To do this, we start by introducing a novel non-dimensional vorticity-based

polynomial adaptation indicator and explain how we alleviate the computational burden

caused by adaptation by deploying a Dynamic Load Balancing (DLB) algorithm. We then

verify the utility of this approach when applied to the arbitrary Lagrangian–Eulerian form

of the compressible Navier–Stokes equations, and the DLB implementation by performing

simulations of an Euler Vortex (EV). To illustrate the accuracy, speed up factor, and

efficiency of the adaptation approach, we perform simulations of flow over an oscillating

circular cylinder with two different flow settings, dynamic stall of a two-dimensional NACA

0012 airfoil undergoing heaving and pitching motions, shallow dynamic stall of a three-

dimensional SD 7003 airfoil undergoing heaving and pitching motions, flow over a Vertical

Axis Wind Turbine (VAWT) composed of two NACA 0012 airfoils, turbulent flow over a

three-dimensional circular cylinder, and turbulent flow over a three-dimensional SD 7003

airfoil at a fixed angle of attack.

The primary contribution of this work is the introduction, verification, and validation of

a novel dynamically load-balanced polynomial adaptation algorithm suitable for unsteady

turbulent flows using a high-order unstructured spatial discretization, which represents

significant speed up for high-order accurate LES of turbulent flows using the FR scheme. We

expect this will reduce the daunting simulation cost of LES and allow us to apply CFD to

a greater range of practical studies, specifically optimization and redesign of conventional

aircraft to reduce the carbon footprint of aviation.

1.7 Thesis Outline

Chapter 1 presents an introduction to this work and motivations. It then explains fundamen-

tals, including turbulence, simulation approaches, and parallel computing. Furthermore, it

outlines the objectives and contributions of the current work.

Chapter 2 presents the governing equations for fluid flow, including conservation of mass,

momentum, and energy. It then derives the Euler and Navier-Stokes equations for static as

well as moving and deforming domains.
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Chapter 3 introduces the FR scheme as the primary spatial discretization scheme used

in this study, with a thorough numerical derivation for one-dimension along with the multi-

dimensional and Arbitrary Lagrangian–Eulerian (ALE) extensions. It also discusses the

advantages of the FR scheme compared to classical discretizations.

Chapter 4 introduces different adaptation strategies and discusses their pros and cons. It

then introduces a novel polynomial adaptation algorithm. Furthermore, it outlines the load

balancing technique employed in this study to improve the efficiency of adaptive simulations.

Chapter 5 provides a set of verification and validation test cases for the FR scheme and

the in-house solver.

Chapter 6 explores the utility of the novel non-dimensional vorticity-based indicator for

p-adaptation for a range of applications on moving and deforming domains.

Chapter 7 explores the performance of the p-adaptation algorithm coupled with dynamic

load balancing for turbulent flows over three-dimensional bodies.

Chapter 8 finalizes this work by summarizing the conclusions and presenting recommen-

dations for future work.
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Chapter 2

Governing Equations

In this chapter, we present the conservation of mass, momentum and energy in the differential

form to suit the FR scheme, presented in Section 3.1. We then conclude by deriving the

Euler and Navier-Stokes equations, which are the governing equations in this study, from the

conservation equations.

2.1 Conservation of Mass

Conservation of mass states that the mass of a closed system is constant. Using a control

volume approach for a finite control volume Ω(t) bounded by a control surface S(t), we can

derive a general form of conservation law using the Reynolds transport theorem as [55]

dNsystem

dt
=

∂

∂t

∫
Ω(t)

ρηdΩ +

∫
S(t)

ρηv · n̂dS, (2.1)

where N is the property to be conserved within the system, η is the amount of the conserved

property per unit mass, ρ is density, v is the velocity vector, n̂ is the outward pointing normal

vector on the control surface, and t is time. The first term on the right-hand side of Equation

2.1 is the rate at which the conserved property is generated or used in the control volume,

while the second term represents the rate of transport of property in or out of the control

volume. Equation 2.1 can be expressed in terms of volume integral using the divergence
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theorem
dNsystem

dt
=

∫
Ω(t)

[
∂ρη

∂t
+∇ · (ρηv)

]
dΩ. (2.2)

Conservation of mass requires the rate of change of the system mass to be zero

dm

dt
= 0. (2.3)

We do not consider any source term in the current work, hence there must be no transfer

of conserved variable through boundaries of the domain as it moves through the flow field.

Combining Equations 2.2 and 2.3 with the conserved property to be the system mass N = m

and η = 1
dm

dt
=

∫
Ω(t)

[
∂ρ

∂t
+∇ · (ρv)

]
dΩ = 0. (2.4)

Considering the Equation 2.4, the integrand must be zero since the integral holds true for

any domain size. Hence, conservation of mass can be expressed as

∂ρ

∂t
+∇ · (ρv) = 0. (2.5)

2.2 Conservation of Momentum

Newton’s second law of motion for a system states that the sum of forces acting on a system

is equal to the time rate of change of momentum of that system as

∑
FΩ = ma =

d

dt
(mv), (2.6)

where FΩ is the sum of forces acting on the control volume, and a is the acceleration vector.

We can apply the Reynolds transport theorem to calculate the total momentum within the

system, with the conserved property to be the system momentum N = mv, and the amount

of the conserved property per unit mass to be η = v

d

dt
mv =

∫
Ω(t)

[
∂ρv

∂t
+∇ · (ρv ⊗ v)

]
dΩ. (2.7)
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The sum of the forces acting on the system can be expressed as a composition of external or

body forces acting on the control volume and internal or surface forces acting on the control

surface ∑
FΩ =

∫
Ω(t)

FbdΩ +

∫
S(t)

σ · n̂dS, (2.8)

where Fb is the vector of body forces and σ is the stress tensor defined as

σ =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 , (2.9)

where σii is the normal stress acting on a plane perpendicular to the i-axis, and τij is the

shear or viscous stress acting on a plane perpendicular to the i-axis in direction of the j-axis.

We can express Equation 2.8 in terms of volume integral using the divergence theorem as

∑
FΩ =

∫
Ω(t)

FbdΩ +

∫
Ω(t)

∇ · σdΩ. (2.10)

In Cartesian coordinates for a Newtonian fluid, normal and shear stress terms are defined as

σii = −p− 2

3
µ(∇ · v) + 2µ

∂vi
∂xi

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
,

(2.11)

where p is the pressure and µ is the dynamic viscosity. The stress tensor can be broken into

pressure and viscous terms [27, 28] in a compact form as

σ = −pI + τ , (2.12)

where I is the identity matrix. Viscous terms τ can be expressed as a summation of a full

matrix and a diagonal matrix as

τ = λ̄(∇ · v)I + 2µT , (2.13)
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where λ̄ = −2µ/3, and Tij is defined as

Tij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (2.14)

Considering Equations 2.6, 2.7, 2.10, and 2.12, we can express conservation of momentum as

∫
Ω(t)

[
∂ρv

∂t
+∇ · (ρv ⊗ v + pI − τ )

]
dΩ =

∫
Ω(t)

FbdΩ. (2.15)

In the current work there are no external forces acting on the body, therefore, Fb = 0.

Furthermore, since the integral holds true for any domain size with smooth solution, the

conservation of momentum can be written in differential form as

∂ρv

∂t
+∇ · (ρv ⊗ v + pI − τ ) = 0. (2.16)

2.3 Conservation of Energy

The first law of thermodynamics for a system states that the time rate of change of a closed

system’s energy is equal to the net rate of heat transferred into the system plus the net rate

of work done on the system as
dE

dt
= Q̇+ Ẇ , (2.17)

where E is the total energy of the system, Q̇ is the net rate of heat added to the system, and

Ẇ is the net rate of work done on the system. Q̇ can be computed across the control surface

as

Q̇ =

∫
S(t)

−q · n̂dS, (2.18)

where q is the surface heat flux per unit area, which can be written as q = −k∇T using

Fourier’s Law of Heat Conduction, where k is the thermal conduction coefficient and T is the

temperature. Other sources of heat such as radiation, or heat released by chemical reactions

are not considered in the current work. Furthermore, Ẇ is net rate of work done on the

system by body forces as well as normal and shear stresses acting on a fluid particle, where

the former is equal to the dot product of body forces and the particle’s velocity v integrated
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on the control volume, and the latter is equal to the dot product of stress tensor σ and the

particle’s velocity integrated across the control surface

Ẇ =

∫
Ω(t)

FbvdΩ +

∫
S(t)

σv · n̂dS. (2.19)

Hence, by applying the divergence theorem, and using Equations 2.18 and 2.19, Equation

2.17 can be rewritten in terms of a volume integral as

dE

dt
=

∫
Ω(t)

∇ · (σv)dΩ +

∫
Ω(t)

FbvdΩ +

∫
Ω(t)

∇ · (k∇T )dΩ. (2.20)

We apply the Reynolds transport theorem with the conserved property to be the system’s

total energy N = E, and the intensive property to be the total energy per unit mass η = e

dE

dt
=

∫
Ω(t)

[
∂ρe

∂t
+∇ · (ρev)

]
dΩ. (2.21)

From Equation 2.20 and 2.21, we can express the general form of the conservation of energy

as ∫
Ω(t)

[
∂ρe

∂t
+∇ · (ρev)

]
dΩ =

∫
Ω(t)

∇ · (σv + k∇T )dΩ +

∫
Ω(t)

FbvdΩ. (2.22)

Breaking the stress tensor into pressure and viscous terms using Equation 2.12, we can express

conservation of energy as

∫
Ω(t)

[
∂ρe

∂t
+∇ · (ρev + pv − τv − k∇T )

]
dΩ =

∫
Ω(t)

FbvdΩ. (2.23)

Body forces are included in equations for generality; however, as mentioned in the previous

section, external forces are not considered in the current work, so Fb = 0. Since the integral

holds true for any domain size, the final form of conservation of energy can be written in

differential form as
∂ρe

∂t
+∇ · (ρev + pv − τv − k∇T ) = 0. (2.24)
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2.4 General Conservation Law

Considering the conservation Equations 2.5, 2.16, and 2.24 discussed in previous sections, we

can derive a general conservation law in differential form as

∂u

∂t
+∇ · F = 0, (2.25)

where u is the vector of conserved variables taken as ρ, ρv, and ρe, and F is a tensor of fluxes

of the conserved variables taken as ρv, (ρv ⊗ v + pI − τ ), and (ρev + pv − τv − k∇T ) for

conservation of mass, momentum, and energy respectively.

2.5 Euler and Navier-Stokes Equations

The Navier-Stokes equations [27, 28] are a set of coupled equations that describe the relation

between density, velocity, temperature, and pressure of a moving fluid. They can be obtained

by rewriting conservation of mass, momentum, and energy in a compact form as

∂u

∂t
+∇ · (Fe(u)− Fv(u,∇u)) = 0 (2.26)

where u is a vector of conserved variables, Fe(u) is the inviscid flux, and Fv(u,∇u) is the

viscous flux, defined as

u =



ρ

ρvx

ρvy

ρvz

ρe


, (2.27)
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Fe,j(u) =



ρvj

ρvjvx + δjxp

ρvjvy + δjyp

ρvjvz + δjzp

(ρe+ p) vj


, (2.28)

Fv,j(u,∇u) =



0

τjx

τjy

τjz

vxτjx + vyτjy + vzτjz + k ∂T
∂xj


, (2.29)

where j = [x, y, z], and δij is the Kronecker delta, and the thermal conduction coefficient is

determined as

k =
µcp
Pr

, (2.30)

where Pr is the Prandtl number taken as 0.71 for air in the current work. We notice that

we only have five equations for six unknowns. An equation of state for a perfect gas, which

relates the pressure, density and temperature of the gas, is required to complete the set of

equations

p = ρrT, (2.31)

where r is the specific gas constant, which is related to the specific heat coefficient at constant

volume cv, and the specific heat coefficient at constant pressure cp as

r = cp − cv. (2.32)

The total energy of a system E is composed of internal energy and kinetic energy, which per

unit mass can be expressed as

e = ei + ek = ei +
v · v
2

, (2.33)
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where ei is the internal energy per unit mass, which is related to the gas temperature as

ei = cvT. (2.34)

Considering Equations 2.32, 2.33, and 2.34, we can rewrite the equation of state for a perfect

gas 2.31 as

p = ρ(γ − 1)
(
e− v · v

2

)
, (2.35)

where γ = cp/cv is the ratio of specific heat coefficients which is taken as 1.4 for air in the

current work. The surface heat flux q used in the viscous flux Fv(u,∇u) can be expressed in

terms of pressure, density, and the total energy by using Equations 2.33, 2.34, and 2.35 as

q = −µcp
Pr

∇T = − µ

Pr
∇
(
e+

p

ρ
− v · v

2

)
. (2.36)

Equation 2.26 reduces to the Euler equations by neglecting the effect of viscosity and thermal

conduction. The Euler equations describe the relation between density, velocity, and pressure

of a moving fluid [26] as
∂u

∂t
+∇ · Fe(u) = 0, (2.37)

where u is a vector of conserved variables and Fe(u) is the inviscid flux taken from Equations

2.27 and 2.28 respectively.

2.6 Arbitrary Lagrangian-Eulerian Formulation

The ALE form of the Navier–Stokes equations can be derived for a moving domain Ω(t) by

adding ALE fluxes and the local mesh velocity to Equation 2.26 as

∂u

∂t
+∇ · (Fe(u)− Fv(u,∇u) + Fg(u,vg)) + u(∇ · vg) = 0, (2.38)

where u is a vector of conserved variables defined in Equation 2.27, vg is the vector of grid

velocity defined as vg = dxg/dt, xg is coordinates of a mapping point used to define the

element, Fe(u) is the inviscid fluxes defined in Equation 2.28, Fv(u,∇u) is the viscous flux
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defined in Equation 2.29, and Fg(u,vg) is the ALE fluxes defined as

Fg(u,vg) = −vgu =



−ρvg

−ρvxvg

−ρvyvg

−ρvzvg

−ρevg


, (2.39)

where v is the vector of fluid velocity. The additional source term u(∇.vg) is added to

Equation 2.38 whenever the divergence of the velocity field is not zero, which is generally the

case for mesh deformation other than solid body translation, and accounts for local volume

change within an element [56].

2.7 Advection Equation

Linear advection describes the motion of a scalar quantity carried by a flow at constant

velocity. It can be defined by the general form of conservation of mass as

∂u

∂t
+∇ · F = 0, (2.40)

where u = u(x, t) is the scalar variable and F = F (u) = Au is its flux. We can also express

the advection equation using the gradient of the scalar quantity as

∂u

∂t
+A∇u = 0, (2.41)

where the Jacobian matrix A = ∂F /∂u is the advection velocity.
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2.8 Diffusion Equation

Linear diffusion describes the changes in concentration of a scalar variable towards equilibrium

with zero velocity. It can be defined by the general form of conservation law as

∂u

∂t
+∇ · F = 0, (2.42)

where u = u(x, t) is the scalar variable and F = F (u,∇u) = −Df∇u is its flux, and Df is

the diffusion coefficient. We can also express the diffusion equation using the second gradient

of the scalar quantity as
∂u

∂t
−Df∇ · (∇u) = 0, (2.43)

The following chapter presents the numerical discretization used in this study. We start

by introducing the flux reconstruction scheme, followed by its arbitrary Lagrangian-Eulerian

extension. We then conclude the chapter by presenting temporal schemes used in this study.
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Chapter 3

Numerical Schemes

In this chapter, we present the FR scheme for linear advection and diffusion, and extend it to

multidimensional and ALE forms. We then discuss the temporal schemes used to advanced

the fully-discrete scheme in time.

3.1 The Flux Reconstruction Scheme

This study is based on the FR scheme, originally introduced by Huynh [53] in 2007 as a

new approach for high-order accuracy for the numerical solution of conservation laws when

solving them in differential form. This scheme can recover other high-order methods including

the DG, SD, and SV schemes. In this section, we describe the original one-dimensional

formulation of the FR scheme for the linear advection and diffusion equations.

3.1.1 Linear Advection

Consider a general one-dimensional conservation law of the form

∂u

∂t
+

∂F

∂x
= 0, (3.1)

where u = u(x, t) is the solution with a given initial distribution u(x, 0) = u0, the flux

depends on u as F = F (u). We start by partitioning the computational domain into NE

non-overlapping elements Ej, where j = 1, ..., NE, with left and right element boundaries of
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Figure 3.1. Spatial discretization of a one-dimensional domain.

xL and xR, as shown in Figure 3.1. On each element, the solution is then approximated at

K + 1 points xj,k, where k = 1, ..., K + 1 and uj,k is the approximated solution at point k of

element j. These points are known as solution points xj,k. There is no limitation in specifying

their locations, but they are typically the Gauss or Lobatto points. However, for the sake of

efficiency, it is wise to define the first and last points at the element boundaries xL and xR.

In this case, no extrapolation is needed to compute values at the boundaries of elements.

Following the flux reconstruction approach, the solution is represented by a discrete

approximation on each element such that [53, 57]

u(x, t) ≈ uh(x, t) =

NE⊕
j=1

uj(x, t), (3.2)

where uh(x, t) is the global piecewise approximation of the solution and uj(x, t) is a continuous

representation of the solution on one of NE elements in the domain. We take the approximate

solution on each element to be a polynomial nodal basis representation of degree K polynomial

such that

uj(x, t) =
K+1∑
k=1

uj,k(t)ϕj,k(x), (3.3)

where uj,k(t) is the value of the solution at one of K + 1 solution nodal basis points on a

given element, as shown by the red points in Figure 3.6, and ϕj,k(x) is its corresponding

nodal basis function of degree K. Figure 3.2 shows solution nodal basis points and solution

polynomials for a one-dimensional case with degree K = 2. This approach ensures the

solution is continuous on each element but allows the solution to be discontinuous on the

interfaces between elements [53], meaning that the value of the solution on the left boundary

of element Ej can differ from the value of the solution on the right boundary of element

Ej−1. The Lagrange polynomials are commonly used as the nodal basis functions, due to

their convenient property of taking on the value of one at the solution point xj,k, and value
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of zero at other solution points. A Lagrange basis function is generated according to

ϕj,k(x) =
K+1∏

l=1,l ̸=k

x− xj,l

xj,k − xj,l

. (3.4)

Since the solution polynomial is approximated using K + 1 solution points, the degree of the

solution polynomial will be K. Following the same approach, the flux is also represented by

a discrete approximation on each element as

f(x, t) ≈ fh(x, t) =

NE⊕
j=1

fj(x, t), (3.5)

where fh(x, t) is the global piecewise approximation of the flux and fj(x, t) is a continuous

representation of the flux on one of NE elements in the domain. The approximate flux of the

degree K polynomial on each element is constructed using the same Lagrange basis function

as

fj(x, t) =
K+1∑
k=1

fj,k(t)ϕj,k(x), (3.6)

where fj,k(t) is the value of the flux evaluated at one of K + 1 solution nodal basis points on

a given element, as shown by the blue points in Figure 3.6. It is often more convenient to

deal with a reference domain with an interval of LR = [−1, 1] rather than a physical domain,

hence, as a standard practice in finite element methods, the physical element Ej is mapped

into a reference space with ξ varying on LR and x on Ej. The transformation is done by a

point-to-point mapping function as

x(ξ) =
1

2
(xL + xR + hjξ) ,

ξ(x) =
2

hj

(
x− xL + xR

2

)
,

(3.7)

where hj is the element width in the physical domain. The mapping metric is then computed
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Figure 3.2. Schematic representation of solution polynomials along with the discontinuous
and continuous flux functions.

as

∂x

∂ξ
=

hj

2
,

∂ξ

∂x
=

2

hj

.
(3.8)

Mapped into the reference space, we can define the solution and flux functions as

uj(ξ, t) =
K+1∑
k=1

uj,k(t)ϕk(ξ), (3.9)

fj(ξ, t) =
K+1∑
k=1

fj,k(t)ϕk(ξ), (3.10)

where

ϕk(ξ) =
K+1∏

l=1,l ̸=k

ξ − ξl
ξk − ξl

. (3.11)

As an advantage of mapping to the reference space, the Lagrange basis functions are defined

only once when computing a solution of uniform polynomial degree. Figure 3.3 shows the

Lagrange polynomials for different polynomial degrees generated using Gauss points.

In order to solve the conservation law, we need to calculate the derivative of the flux. Note

that although the flux function has the same polynomial degree as the solution, its derivative

will be one order lower and lives in the polynomial space of K − 1. Furthermore, as shown in
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Figure 3.3. One-dimensional nodal basis functions with different polynomial orders using
Gauss points (black points).
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Figure 3.2, the flux polynomials form a continuous function within each element, yet they

can have different values on the element interfaces making a discontinuous global piecewise

approximation of the flux. The discontinuity of the piecewise flux leads to erroneous results

when calculating its derivative. This is due to the fact that the discontinuous flux is not

capable of evaluating the flux when applied to the conservation law, as it does not include

the interactions between neighbouring elements. To circumvent this, Huynh [53] proposed a

continuous flux function which approximate the flux function on each element fj(ξ, t), yet

forcing continuity on element interfaces. The continuous flux function is constructed by

adding a correction term to the flux function fj(ξ, t) as

f̂j(ξ, t) = fj(ξ, t) + [f c
L − fL] gL(ξ) + [f c

R − fR] gR(ξ), (3.12)

where f̂j(ξ, t) is the corrected continuous flux function, f c
L , f c

R are the common Riemann

fluxes on the left and right boundaries of element, fL , fR are the values of the flux on the

left and right boundaries, and gL(ξ) , gR(ξ) are the correction functions for the left and right

boundaries. Figure 3.2 shows the discontinuous and corrected continuous flux functions for

a one-dimensional case with degree K = 2. Common Riemann fluxes, shown by the green

points in Figure 3.6, are calculated by applying a Riemann solver such as upwind or central

schemes. The choice of Riemann solver dictates the dominant error of the numerical method.

For instance, an upwind Riemann solver introduces predominantly numerical dissipation,

while a central Riemann solver introduces numerical dispersion error. In this study, we

used a Rusanov Riemann solver to compute the common inviscid interface fluxes. Note

that [f c
L − fL] and [f c

R − fR] are simply calculating the jumps on the left and right element

boundaries.

To construct the correction term, we also need to define the correction functions with

two important characteristics. First, in order for the corrected global flux function to be

continuous on the element interfaces, they need to take on value of one at their respective
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interface and value of zero on the other interface, such that

gL(−1) = 1, gL(1) = 0,

gR(−1) = 0, gR(1) = 1.
(3.13)

Furthermore, they must be defined in a way to correct the jumps on the left and right

interfaces while minimizing changes to the values of the flux within an element; hence, they

must approximate zero at the solution points within the element. Second, they must belong to

the polynomial space of K+1 so that the derivative of the continuous flux function would have

the same polynomial degree K as the solution function. The distribution of the flux within

an element depends on the choice of the correction function. As mentioned earlier, FR unifies

several high-order schemes including the DG, SD, and SV schemes. This is done through the

choice of the correction function. For example, the correction functions constructed based

on the Radau polynomials reduce the scheme to the DG method. Huynh [53] shows that

Radau polynomials provide the most accurate solution when used to construct the correction

functions. Hence, in this study, the right Radau polynomials RR are used to define the

left correction function gL(ξ), and left Radau polynomials RL are used to define the right

correction function gR(ξ). They can be defined as a function of Legendre polynomials PK(ξ)

as

gL(ξ) = RR,K+1(ξ) =
(−1)K+1

2
(PK+1(ξ)− PK(ξ)),

gR(ξ) = RL,K+1(ξ) =
(−1)K+1

2
(PK+1(−ξ)− PK(−ξ)),

(3.14)

where the set of Legendre polynomials used in this study to construct the Radau polynomials

are shown in Table 3.1. The right Radau polynomials used in this study are shown in Figure

3.4.

Now that we have the continuous flux function, we can compute its derivative as

∂f̂j(ξ, t)

∂ξ
=

∂fj(ξ, t)

∂ξ
+ [f c

L − fL]
∂gL(ξ)

∂ξ
+ [f c

R − fR]
∂gR(ξ)

∂ξ
, (3.15)
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Table 3.1. Legendre polynomials used in the current work.

Degree K PK(ξ)
0 1
1 ξ
2 1

2
(3ξ2 − 1)

3 1
2
(5ξ3 − 3ξ)

4 1
8
(35ξ4 − 30ξ2 + 3)

5 1
8
(63ξ5 − 70ξ3 + 15ξ)

6 1
16
(231ξ6 − 315ξ4 + 105ξ2 − 5)
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Figure 3.4. Right Radau polynomials necessary for the K = 0 to K = 5 numerical schemes.
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where
∂fj(ξ, t)

∂ξ
= Dfj(ξ, t) (3.16)

where D is the derivative matrix of size K +1×K +1 computed for the reference element as

D =


∂ϕ1(ξ1)

∂ξ
. . . ∂ϕK+1(ξ1)

∂ξ
... . . . ...

∂ϕ1(ξK+1)

∂ξ
. . . ∂ϕK+1(ξK+1)

∂ξ

 .

Finally, the conservation equation at each solution point in physical space becomes

∂uj(x, t)

∂t
+

∂f̂j(ξ, t)

∂ξ

∂ξ

∂x
= 0, (3.17)

where ∂ξ/∂x is the mapping metric from the reference to physical space defined in Equation

3.8. The solution uj(x, t) can then be updated in time using a suitable temporal scheme.

To validate the FR scheme, one-dimensional linear advection of a sine wave through a

periodic domain with a wave speed of one is considered. The domain is defined on the interval

x ∈ [0, 1], with initial distribution u(x, 0) = sin(2πx). Time integration is carried out with

the classical RK4,4, a fourth-order four-stage explicit Runge-Kutta scheme, with the time

step size ∆t = 1×10−4, and the total advection time of t = 1. Radau polynomials are used to

construct the correction functions. The common fluxes on the element intervals are calculated

with an upwind Riemann solver. The exact solution of the function is u(x, t) = sin(2π(x− t)),

which will be identical to the initial solution when t = 1. Four levels of mesh refinement with

4, 8, 16, and 32 elements, with five polynomial degrees of K = 1 to K = 5 are considered.

Note that K + 1 solution points are required to generate a polynomial of degree K. Figure

3.5 shows the exact and numerical solutions of the four-element mesh for different polynomial

degrees. It is evident that the higher polynomial degrees are capable of approximating

the solution more accurately. Additionally, we notice the dissipation error, inherent in the

upwind Riemann solver, for lower-order schemes. Table 3.2 shows the L2 error norm for each
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polynomial degree and mesh, where the L2 error norm is defined as

∥ (ue − uh) ∥2=
√∑K+1

k=1 (ue,k − uh
k)

2

(K + 1)NE

, (3.18)

where ue is the exact solution. These results show that, for a K degree polynomial, the FR

scheme is K + 1 order accurate for advection. Furthermore, they show that, for the same

mesh, higher-order schemes are capable of approximating the solution orders of magnitude

more accurately than lower-order schemes.
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−0.5
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x
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t)

uh , K = 1

uh , K = 2

uh , K = 3

uh , K = 4

uh , K = 5
ue

Figure 3.5. Exact and approximate solutions for a one-dimensional linear advection test case
with an initial solution distribution u0 = sin(2πx) at t = 1 for different polynomial degrees
using a four-element mesh.
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Table 3.2. L2 norm of the solution error for a one-dimensional linear advection test case with
an initial solution distribution u0 = sin(2πx) at t = 1 for different polynomial degrees and
meshes.

Polynomial Degree Mesh Size L2 Error L2 Order of Accuracy
K = 1 4 1.856× 10−1 -

8 3.331× 10−2 2.48
16 6.279× 10−3 2.41
32 1.384× 10−3 2.18

K = 2 4 1.132× 10−2 -
8 1.277× 10−3 3.15
16 1.564× 10−4 3.03
32 1.947× 10−5 3.01

K = 3 4 9.561× 10−4 -
8 5.791× 10−5 4.05
16 3.627× 10−6 4.00
32 2.266× 10−7 4.00

K = 4 4 6.980× 10−5 -
8 2.232× 10−6 4.97
16 6.959× 10−8 5.00
32 2.156× 10−9 5.01

K = 5 4 4.540× 10−6 -
8 7.097× 10−8 6.00
16 1.108× 10−9 6.00
32 1.730× 10−11 6.00

3.1.2 Linear Diffusion

Consider a general conservation law of the form

∂u

∂t
+

∂F

∂x
= 0, (3.19)

where u = u(x, t) is the scalar solution variable with a given initial distribution u(x, 0) = u0(x),

and F = F (u, ux) is the flux which is a function of the solution and its gradient. We can also

express the diffusion equation using the second gradient of the scalar quantity as

∂u

∂t
+Df

∂2u

∂x2
, (3.20)

where Df is the diffusion coefficient. Hence, we need to approximate both the first and second

derivatives of the solution. Following Huynh [58], as in the linear advection problem, the
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computational domain is divided into NE non-overlapping elements with physical coordinates

x ∈ [xL, xR] and width hj within each element, and reference coordinates ξ ∈ [−1, 1].

Following the same procedure outlined in the previous section, the K degree Lagrange

polynomial representation of the solution on each element, which is continuous within the

element, yet discontinuous on element intervals, is defined in physical space as

uj(x, t) =
K+1∑
k=1

uj,k(t)ϕj,k(x), (3.21)

or in the reference space as

uj(ξ, t) =
K+1∑
k=1

uj,k(t)ϕk(ξ), (3.22)

where ϕk(ξ) is defined as in Equation 3.11. We then define the continuous solution function

by applying the correction procedure as

ûj(ξ, t) = uj(ξ, t) + [uc
L − uL] gL(ξ) + [uc

R − uR] gR(ξ), (3.23)

where ûj(ξ, t) is the corrected continuous solution function with K degree polynomial, uc
L,

uc
R are the common solution values on the left and right element boundaries, and gL(ξ),

gR(ξ) are the correction functions constructed using the Radau polynomials. The common

Riemann solutions can be evaluated using several techniques such as the Local Discontinuous

Galerkin (LDG) approach [59], and Bassi and Rebay’s first order (BR1) and second order

(BR2) methods [60]. The drawback of BR1 schemes is that they achieve the expected order

of accuracy of K + 1 only for odd values of K when applied to FR. Hence the BR2 method

is used to evaluate the common viscous fluxes in the current work. The common interface

solution for the BR2 scheme is defined as the average of the solution values on the left and

right sides of an interface. Therefore, the common solution values on the interfaces of element

Ej are defined as

uc
L =

1

2
(uR,j−1 + uL,j), uc

R =
1

2
(uR,j + uL,j+1). (3.24)
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Having all the necessary values to construct the correction term in Equation 3.23, we can

proceed to calculate the first derivative of ûj(ξ, t) as

∂ûj(ξ, t)

∂ξ
=

∂uj(ξ, t)

∂ξ
+ [uc

L − uL]
∂gL(ξ)

∂ξ
+ [uc

R − uR]
∂gR(ξ)

∂ξ
, (3.25)

where ∂ûj,k(t)/∂x is the corrected continuous first derivative function, which then can be

mapped to the physical space to compute the value of the first derivative at each solution

point as

u
′

j,k(t) =
∂uj,k(t)

∂x
=

2

hj

(
∂ûj(ξk, t)

∂ξ

)
, (3.26)

where u
′

j,k(t) is the value of the first derivative of the solution evaluated at solution point xj,k.

These K + 1 derivatives can form a polynomial of degree K, which, similar to the polynomial

representation of the solution, is continuous within an element yet discontinuous on element

boundaries. Polynomial representation of the solution’s first derivative can be defined as

u
′

j(ξ, t) =
K+1∑
k=1

u
′

j,k(t)ϕk(ξ). (3.27)

To define a second derivative function of the solution, we first need to construct a first

derivative function that is continuous through the domain by applying the reconstruction

procedure as

û
′

j(ξ, t) = u
′

j(ξ, t) +
[
u

′c
L − u

′

L

]
gL(ξ) +

[
u

′c
R − u

′

R

]
gR(ξ), (3.28)

where û
′
j(ξ, t) is a continuous function within the entire domain which approximate the

discontinuous first derivative of the solution u
′
j(ξ, t), and u

′c
L , u′c

R are the common gradients

that are specified using the BR2 method by averaging the partially corrected gradients on

the left and right interfaces of element Ej as

u
′c
L =

1

2

(
u

′

R,j−1 + [uc
L − uR,j−1]

∂gL(ξ)

∂ξ
+ u

′

L,j + [uc
L − uL,j]

∂gR(ξ)

∂ξ

)
,

u
′c
R =

1

2

(
u

′

R,j + [uc
R − uR,j]

∂gL(ξ)

∂ξ
+ u

′

L,j+1 + [uc
R − uL,j+1]

∂gR(ξ)

∂ξ

)
.

(3.29)
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Additionally, the second derivative can be calculated as

∂û
′
j(ξ, t)

∂ξ
=

∂u
′
j(ξ, t)

∂ξ
+
[
u

′c
L − u

′

L

] ∂gL(ξ)
∂ξ

+
[
u

′c
R − u

′

R

] ∂gR(ξ)
∂ξ

, (3.30)

where ∂û
′
j(ξ, t)/∂ξ is the corrected continuous second derivative function, which can be

mapped to the physical space to compute the value of the second derivative on each solution

point as
∂u

′

j,k(t)

∂x
=

2

hj

(
∂û

′
j(ξ, t)

∂ξ

)
. (3.31)

Finally, we use ∂u
′

j,k(t)/∂x to update the conservation law and march in time with a temporal

scheme.

3.1.3 Multidimensional Extension

Following the one-dimensional flux reconstruction approach, consider the multidimensional

conservation law of the form
∂u

∂t
+∇ · F = 0, (3.32)

where u = u(x, t) is the vector of conserved variables with a given initial distribution

u(x, t) = u0, F = F (u,∇u) is the viscous flux. Following Huynh [58], similar to the

one-dimensional approach, the computational domain is divided into NE non-overlapping

elements with physical coordinates x ∈ [xL,xR], and reference coordinates ξ ∈ [−1, 1].

Following the flux reconstruction approach, the solution is represented by a discrete

approximation on each element such that [53, 57]

u(x, t) ≈ uh(x, t) =

NE⊕
j=1

uh
j (x, t), (3.33)

where uh(x, t) is the global piecewise continuous approximation of the solution and uh
j (x, t)

is a continuous representation of the solution on one of NE elements in the domain. We take

the approximate solution on each element to be a polynomial nodal basis representation such
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that

uh
j (x, t) =

NDOF∑
k=1

uj,k(t)ϕj,k(x), (3.34)

where uj,k(t) is the value of the solution at one of NDOF solution nodal basis points on a

given element, as shown by the red points in Figure 3.6, and ϕj,k(x) is its corresponding

nodal basis function. Figure 3.7 shows the two-dimensional Lagrange polynomials for K = 3

polynomial degrees generated using Gauss points. This approach ensures the solution is

continuous on each element but allows the solution to be discontinuous on the interfaces

between elements [53].

Following the flux reconstruction extension to simplex element types [57, 61], the physical

conservation law that must be satisfied in the discrete sense on each element is

∂uh
j

∂t
+∇ · F h

j + δj = 0, (3.35)

where F h
j = F h

j (u
h
j ,∇uh

j ) and δj is a correction field on the element that is in the same

polynomial space as the solution. This correction field is analogous to the divergence of the

penalty functions introduced in the original FR scheme for tensor product elements [53].

Finally, by applying the conservation law at each of the solution points we obtain

duh
j,k

dt
+
(
∇ · F h

j

)∣∣∣∣
xj,k

+ δj,k = 0, (3.36)

where xj,k is the location of corresponding solution point k on element j with k = 1, ..., NDOF ,

where NDOF is the number of degrees of freedom for a specific degree polynomial, which was

simply K + 1 for a one-dimensional element. Formulas to calculate the number of degrees of

freedom for different element types are shown in Table 3.3. Following the FR formulation

δj,k =
1

|Ωj|
∑
f∈S

∑
l

α̂j,k,f,l[F̂ ]j,f,lSf , (3.37)

where |Ωj| is the element volume, f is one of the faces on the element surface S, l is one

of the flux points shown in blue in Figure 3.6, α̂j,k,f,l is a constant lifting coefficient, [F̂ ]j,f,l

is the difference between a common Riemann flux at the flux point, and the value of the
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internal flux, and Sf is the area of the face. Depending on the specification of these lifting

coefficients, a number of different energy stable schemes can be obtained for general element

types, including the spectral difference, spectral volume, and discontinuous Galerkin methods.

In this study, we use lifting coefficients based on the nodal basis functions to recover the DG

method [53, 57].

In the case of polynomial adaptive simulations using the FR approach, refer to Section

4.1, the faces of elements of different orders do not have consistent numbers of flux points.

Hence, in the current study, we introduce an additional set of points on the faces of each

element, referred to as Riemann points, as shown in green in Figure 3.6. In the case that

the two elements at an interface are of the same order, these Riemann points are taken

to be the same as the flux points, which are consistent between both elements. However,

in the case of unmatched polynomial degrees, these Riemann points are taken to be those

of the higher-degree element. On the lower-degree side, the common Riemann flux at the

Riemann points is then least squares projected down to the lower-degree flux points. This is

similar to de-aliasing, or overintegration, of the common flux on the lower-degree element.

This approach was found to be more readily generalizable to different element types and

interface orders than the interface element approaches previously used with FR [62]. At the

interfaces we used a Rusanov Riemann solver and the second method of Bassi and Rebay [60]

to compute the common gradient for the viscous fluxes.

Figure 3.6. An example of a K = 2 quadrilateral element and a K = 3 triangular element
including mapping points (grey), solution nodal basis points (red), flux points (blue), and
Riemann points (green) on the interface between the elements. Elements are shown separated
for clarity.

39



−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

ξ1
ξ2

φ(
ξ)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

ξ1
ξ2

φ(
ξ)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

ξ1
ξ2

φ(
ξ)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

ξ1
ξ2

φ(
ξ)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

ξ1
ξ2

φ(
ξ)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

ξ1
ξ2

φ(
ξ)

40



−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

ξ1
ξ2

φ(
ξ)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

ξ1
ξ2

φ(
ξ)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

ξ1
ξ2

φ(
ξ)

Figure 3.7. Two-dimensional nodal basis functions for a degree K = 3 polynomial using
Gauss points.

3.1.4 Arbitrary Lagrangian Eulerian Extension

In this subsection, we present an ALE extension to the FR scheme for moving and deforming

domains. Following the multi-dimensional flux reconstruction, consider the ALE form of the

Navier–Stokes equations [56]

∂u

∂t
+∇ · F + u (∇ · vg) = 0, (3.38)

where vg is the local mesh velocity, u is the vector of conserved variables, and F is the total

flux consisting of the inviscid Euler fluxes, the viscous Navier–Stokes fluxes, and the ALE

fluxes.

Following the flux reconstruction approach, as in the previous subsection, the solution is
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Table 3.3. Number of degrees of freedom for different element types for degree polynomial K.

Element type Dimensions NDOF

Line 1 K + 1
Triangular 2 (K + 1) ∗ (K + 2)/2

Quadrilateral 2 (K + 1) ∗ (K + 1)
Prism 3 (K + 1) ∗ (K + 2)/2 ∗ (K + 1)

Tetrahedral 3 (K + 1) ∗ (K + 2) ∗ (K + 3)/6
Hexahedral 3 (K + 1) ∗ (K + 1) ∗ (K + 1)

represented by a discrete approximation on each element such that [53, 57]

u(x, t) ≈ uh(x, t) =

NE⊕
j=1

uh
j (x, t), (3.39)

where uh(x, t) is the global piecewise continuous approximation of the solution and uh
j (x, t)

is a continuous representation of the solution on one of NE elements in the domain. We take

the approximate solution on each element to be a polynomial nodal basis representation such

that

uh
j (x, t) =

NDOF∑
k=1

uj,k(t)ϕs,j,k(x), (3.40)

where uj,k(t) is the value of the solution at one of NDOF solution nodal basis points on a

given element, as shown by the red points in Figure 3.6, and ϕs,j,k(x) is its corresponding

nodal basis function. This approach ensures the solution is continuous on each element but

allows the solution to be discontinuous on the interfaces between elements [53]. We also use a

polynomial nodal basis representation to map the mesh velocities from the element mapping

nodes to the interior of the element as

vh
g,j(x, t) =

Ng∑
m=1

vg,j,m(t)ϕg,j,m(x), (3.41)

where Ng is the number of mapping points that define the element, as shown by the grey

points in Figure 3.6, and ϕg,i,j(x) is the corresponding nodal basis function of the mapping

points.

Following the flux reconstruction approach [53] and its extension to simplex element

42



types [57, 61], the physical conservation law that must be satisfied in the discrete sense on

each element is
∂uh

j

∂t
+∇ · F h

j + δj + uh
j

(
∇ · vh

g,j

)
= 0, (3.42)

where F h
j = F h

j (u
h
j ,∇uh

j ) and δj is a correction field on the element that is in the same

polynomial space as the solution. This correction field is analogous to the divergence of the

penalty functions introduced in the original FR scheme for tensor product elements [53].

Finally, by applying the conservation law at each of the solution points, we obtain

duh
j,k

dt
+
(
∇ · F h

j

)∣∣∣∣
xj,k

+ δj,k + uh
j,k

(
∇ · vh

g,j

)∣∣∣∣
xj,k

= 0, (3.43)

where xj,k is the corresponding solution point location and δj,k is defined as in Equation 3.37.

As explained in the previous subsection, at the interfaces we used a Rusanov Riemann

solver and the second method of Bassi and Rebay [60] to compute the common gradient

for the viscous fluxes. Furthermore, for efficiency, and following Liu et al. [56], we map the

solution and discrete system of governing equations into a reference element with coordinates

ξ using a one-to-one mapping x = M(ξ) such that ξ = M−1(x). The mapping points are

used to define a nodal polynomial representation of the mapping function M such that

xh
j (ξ, t) =

Ng∑
k

xg,j,k(t)ϕg,j,k(ξ), (3.44)

where xh
j (ξ, t) is the interpolated physical location, Ng is the number of mapping points that

define the element, as shown by the grey points in Figure 3.6, ϕg,i,j(x) is the corresponding

nodal basis function of the mapping points, and xg,j,k(t) is the physical location of the

mapping points as a function of time. The determinant of this mapping can be found at any

location and time from

J =

∣∣∣∣∂x∂ξ
∣∣∣∣ . (3.45)

This allows all operations to be performed on the reference element and mapped back to the

physical element as required [56]. In the current study we use quadratic mappings for all

elements. We also note that in the case of pure translational motion the mapping metrics
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themselves are not a function of time. Hence, these metrics are only recomputed in this study

for rotating or deforming domains.

3.1.5 Advantages of Flux Reconstruction

Flux reconstruction is appealing as it can recover several high-order methods depending

on the choice of correction functions within a single framework. The FR method requires

three computational operations, known as element-wise, point-wise direct, and point-wise

indirect operations. Element-wise operations are performed on all solution points locally

within each element by applying matrix multiplies, such as differentiation of polynomials.

Point-wise direct operations are also performed locally within each element yet applied to

every solution point on a point-by-point basis, such as evaluation of the flux on each solution

point. Point-wise indirect operations, on the other hand, are performed on element interfaces

on a point-to-point basis yet require interactions with adjacent elements, such as calculation

of Riemann solvers on the element interfaces. While element-wise and point-wise direct

operations are performed locally on each element, which enables rapid computations on the

CPU, point-wise indirect operations require information from other elements, which comes

with relatively slow indirect memory access. This is due to the fact that they require accessing

multiple locations in memory before performing a calculation, a process that limits their

performance by the memory bandwidth. In order to make a high-order numerical method

efficient, we want the computations to be dominated by the element-wise and point-wise

direct operations. The FR scheme is capable of adapting this behaviour as the number of

solutions points within an element surpasses the number of points on element interfaces

when the scheme uses higher polynomial orders. This allows the FR scheme to achieve about

55% of peak FLOP/s, while the traditional FV methods, dominated by point-wise indirect

operations, are capable of achieving only about 3% of peak FLOP/s [47]. This characteristic

makes the FR scheme promising for high-order simulations.

Furthermore, the FR scheme can be extended to multi-dimensions and different structured

and unstructured elements. It was extended to three-dimensional problems by Haga and

Wang [61] and to mixed element types by Wang and Gao [63]. These extensions enable the FR

scheme to be used for LES and DNS simulations of transitional and turbulent flows. Figure
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3.8 shows the schematic view of solution points on different element types for K = 2 degree

polynomial. Finally, since FR uses an element-wise approach, it enables the application of

polynomial adaptation to achieve high-order accuracy locally on each element. Please refer

to Section 4.1 on adaptation techniques.
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Figure 3.8. Two-dimensional and three-dimensional schematic view of solution points for a
K = 2 degree polynomial for different reference element types.

3.2 Temporal Schemes

In the previous chapter, we explained the spatial discretization using the FR scheme. The

semi-discretized conservation law reads the form

∂u

∂t
= R, (3.46)
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where u = u(x, t) is the vector of conserved variables, R = R(u) is the residual, which is

our semi-discrete space operator, and t is time. Ultimately, we want to advance the solution

in time as
∂u

∂t
=

ut+1 − ut

∆t
, (3.47)

where ut+1 is the solution at the next time level, ut is the solution at the current time

level, and ∆t is the time step size. Hence, a temporal discretization is required to obtain a

fully-discrete scheme to advance in time.

Two distinct temporal discretization approaches can be used, namely explicit and implicit

schemes. Explicit temporal discretization schemes use a-priori solutions from the current

time level to approximate the solution at the next time level. These schemes are widely used

partly due to their simple implementation and their efficiency in terms of computational cost

and memory requirements when extended to higher orders of temporal accuracy. However,

they have the disadvantage of conditional stability, making them unsuitable for stiff problems.

In other words, for a stable solution, the time step size is limited by a Courant-Friedrichs-

Lewey (CFL) condition where CFL = a∆t/∆x, and a is the characteristic wave speed of

the system. Hence, for a fixed advection velocity and grid size ∆x, the maximum time step

size is limited by a maximum CFL number, which increases the cost of the scheme as a

trade-off for acquiring a stable scheme. Implicit temporal schemes, on the other hand, use the

unknown solution from the following time level to approximate the solution at the next time

level, requiring solving a coupled system of non-linear equations at every iteration. Hence,

implicit time-stepping schemes are computationally more expensive per step and require a

larger amount of memory compared to explicit temporal schemes. However, they have the

advantage of being unconditionally stable, which allows for a relatively larger time step. This

advantage makes them suitable for stiff problems.

The most common explicit temporal schemes are multistep explicit Runge-Kutta (ERK)

methods. They use s intermediate stages to approximate the solution at the next time level.

Considering Equations 3.46 and 3.47, we can form the fully discrete scheme as

ut+1 − ut

∆t
= R(ut), (3.48)
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Table 3.4. Butcher tableau for a general Runge-Kutta scheme used in the current study.

c A
b

=

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

...
cs as1 as2 . . . ass

b1 b2 . . . bs

where the residual is evaluated at the current time level. By rearranging, we can obtain the

solution at the next time level as

ut+1 = ut +R(ut)∆t, (3.49)

where as explained earlier, we only need the vector of solutions and evaluated residual at

the current time level to update the solution at the following time level. Following the

Runge–Kutta formulation [64], the solution at the next level can be expressed as

ut+1 = ut +∆t
s∑

m=1

bmR(um), (3.50)

where R(um) is the residual evaluated with the solution um at an intermediate Runge–Kutta

stage m, such that

um = ut +∆t
s∑

n=1

amnR(un), (3.51)

where Equations 3.50 and 3.51 are the general form of an s-stage Runge–Kutta method, bm

is the weight coefficient, and coefficient amn can be obtained from the stage coefficient matrix

A. The Runge-Kutta reference Butcher tableau is shown in Table 3.4 where c is a vector

containing the intermediate time steps and cm =
∑s

m=1 amn.

The stage coefficient matrix A is strictly lower triangular for explicit Runge–Kutta

methods, amn = 0 for m ≤ n, since explicit temporal schemes only rely on solutions from

previous stages. On the other hand, for implicit Runge–Kutta methods, the stage coefficient

matrix A is not strictly lower triangular, which, as mentioned earlier, forms a system of s

non-linear equations that need to be solved at every iteration, making them computationally

expensive. If A is a lower triangular matrix with identical diagonal elements, amn = 0 for
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m < n and amm = γ∗, the temporal scheme is called a Singly Diagonally Implicit Runge-Kutta

(SDIRK) method [64, 65]. The general Butcher tableaus for the SDIRK2,2 and SDIRK3,3

methods are shown in Table 3.5, where γ∗ is defined as (2−
√
2)/2 for SDIRK2,2 [65], and is

a root of x3 − 3x2 + 3x/4 − 1/6 = 0 for SDIRK3,3 [66]. The other parameters are defined

Table 3.5. Butcher tableaus for the second two-stage and three-stage third order singly
diagonally implicit Runge-Kutta methods.

c A
b

=
γ∗ γ∗

1 (1− γ∗) γ∗

(1− γ∗) γ∗

(a) SDIRK2,2 method.

c A
b

=

γ∗ γ∗

c (c− γ∗) γ∗

1 (1− b− γ∗) b γ∗

(1− b− γ∗) b γ∗

(b) SDIRK3,3 method.

as [65]

b =
−3α2

4β
,

c =
2− 9γ∗ + 6γ∗2

3α
,

(3.52)

where α = (1 − 4γ∗ + 2γ∗2) and β = (−1 + 6γ∗ − 9γ∗2 + 3γ∗3). For the SDIRK methods,

Equation 3.51 requires the solution of a non-linear system of equations. For this, we use a

quasi-Newton approach with the Generalized Minimal Residual Method (GMRES) and an

additive-Schwarz preconditioner in the Portable, Extensible Toolkit for Scientific Computing

(PETSc) [67, 68, 69]. The Butcher tableaus for the RK4,4, SDIRK2,2, and SDIRK3,3 used in

the current study are given in Table 3.6.

An optimized Runge-Kutta temporal scheme with more RK stages is introduced for the

FR scheme by Hedayati Nasab et al. [70]. This scheme is optimized to allow for a larger

time step size without jeopardizing stability. Hence, it has the advantage of reducing the

final computational cost by using fewer time-steps with a relatively large time-step size. A

speed-up factor of 2 is achieved compared to classical RK4,4 scheme, making them suitable for
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Table 3.6. Butcher tableaus for Runge-Kutta methods.

c A
b

=

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6
(a) Classical RK4,4 method.

c A
b

=
0.2928932188 0.2928932188
1 0.7071067811 0.2928932188

0.7071067811 0.2928932188
(b) SDIRK2,2 method.

c A
b

=

0.4358665215 0.4358665215
0.7179332607 0.2820667392 0.4358665215
1 1.2084966490 -0.644363171 0.4358665215

1.2084966490 -0.644363171 0.4358665215
(c) SDIRK3,3 method.

three-dimensional turbulent test cases in this study. The Butcher tableaus for second-order

and forth-order optimized Runge-Kutta methods with 12 stages used in this study can be

found in the electronic supplementary material provided by Hedayati Nasab et al. [70].

The following chapter introduces the load-balanced adaptation technique used in this

work. We start by discussing the state-of-the-art adaptation strategies, including the adjoint,

truncation-error, and feature-based adaptation techniques. We then introduce a novel

vorticity-based adaptation indicator. Finally, we conclude the chapter by discussing the

method employed in the study for load balancing.
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Chapter 4

Dynamically Load Balanced Adaptation

Algorithm

In this chapter, we discuss different adaptation strategies, and advantages and disadvantages

of each method. We then introduce a novel non-dimensional vorticity-based indicator used in

this study for p-adaptation. Finally, we present the load balancing technique employed when

adaptation is performed.

4.1 Adaptation Techniques

In the context of massively separated turbulent flows, such as slats, flaps, and landing

gear, a-priori information about the flow-field and its related mesh resolution requirements

are often not readily available. Furthermore, resolution requirements may change as the

simulation evolves. In the absence of a-priori information about the flow field, a prohibitively

large total number of DOF can be required to capture the complex physics governed by

the Navier-Stokes equations, making such simulations inherently computationally expensive.

Although a simulation with a greater number of DOF usually benefits from improved accuracy,

it can suffer considerably from higher computational costs. In practice, a relatively large

number of DOF is needed only in regions where higher resolution is required for an accurate

discrete approximation of the solution. Hence, the number of DOF can be increased or

decreased locally in order to minimize the overall computational cost, yet attaining almost

50



the same level of accuracy, a practice which is called adaptation. Adaptation can be classified

into three types that could be used independently or combined: r-adaptation, in which grid

points are rearranged to change the element size according to the complexity of the flow

field; h-adaptation, in which the mesh connectivity is modified to increase or decrease the

number of elements; and p-adaptation, in which the order of accuracy of the scheme is locally

increased or decreased by changing the degree of the solution polynomials [71]. In this study,

we are specifically interested in element-wise polynomial representations of the flow using

the FR approach, owing to the fact that such a representation allows us to dynamically

adapt the degree of the solution polynomial, p-adaptation, simultaneously increasing the

local resolution of an element and its order of accuracy without requiring any complex mesh

splitting operations. An important prerequisite to deploying any adaptation strategy is a

resolution indicator, which, in the case of p-adaptation, is a technique to indicate elements

where the use of higher degree polynomials is needed for an accurate numerical approximation

of the solution. These techniques can be classified into three main categories of adjoint-

based [72, 73, 74], truncation-error-based [75, 76, 77], and feature-based [71, 78, 79, 80, 81]

adaptation indicators. Whereas some are designed to resolve turbulent features of the flow,

such as the separated wake and the turbulent boundary layer regions, most have been applied

primarily to steady flow problems. It should be noted that, although using a good adaptation

strategy will either minimize the error for a given number of DOF, or provide the same level

of accuracy with fewer DOF, the cost allocated to compute the adaptation indicator should

be reasonable so that the adaptation process stays efficient. In this section, state-of-the-art

adaptation strategies and their pros and cons are discussed.

4.1.1 Adjoint-Based Adaptation Indicators

Scalar outputs such as lift or drag coefficients approximated using numerical methods have

always been interesting in an engineering context. In fact, the main goal of CFD is often to

estimate these outputs with minimal error. An adjoint solution can link the local residual to

these scalar outputs. Adjoints have been used in a wide variety of applications, including

design optimization, optimal control, and error estimation [72, 82, 83]. It can also be used

as a reliable adaptation indicator by estimating the error and then adapting the solution
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polynomial degree if the error exceeds a predefined constant. One of the advantages of

adjoint-based indicators is that the adjoint solution is linked to the output function of

interest; hence, it is guaranteed that they detect the elements that directly contribute to the

error. Consequently, the algorithm will not tend to flag regions that could have no effect

on accuracy improvement. Definitely, there are some drawbacks to this method. First, the

adjoint solution could be inherently expensive to solve because of the inverse of the Jacobian

matrix embedded in its formulation, so it conflicts with the main objective of the adaptation

concept to develop an algorithm that itself will be cheap to solve and will not add considerable

extra computational burden to the simulation. Furthermore, adjoint-based indicators can not

be used for chaotic turbulent flows [83, 84, 85, 86, 87, 88], which narrows their applications

and makes them unsuitable for our purpose, which is to develop a general package that could

be applied to all flow regimes.

4.1.2 Truncation-Error-Based Adaptation Indicators

In this section, a recently proposed truncation error adaptation methodology, known as

τ -estimation, introduced by Rubio et al. [77] is reviewed. In this technique, regions that

require refinement are flagged by estimating the truncation error. Rubio et al. introduced

this method and went through different scenarios to compare the accuracy as well as the

simulation cost [76]. Results included two test cases of an inviscid NACA 0012 and a viscous

flat plate boundary layer. The accuracy of the flow solution and the required total number of

degrees of freedom are compared. It is shown that the truncation error adaptation technique

provides meshes with polynomial order distribution that leads to a smaller number of DOF,

yet provides almost the same level of accuracy as if a high uniform degree had been applied.

Consider the following conservation law

∂u

∂t
+∇ · F (u) = 0. (4.1)

It is assumed that the solution converged in time such that ut = 0, so the residual is

independent of time.

If we define the truncation error as the difference between the discrete PDE and the exact
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PDE operator, both applied to the exact solution ue [89], we get

τK = RK(ue)−R(ue) (4.2)

where τK is the truncation error for polynomial order K, R is the exact partial differential

operator, RK is the discrete spatial partial differential operator of order K, and ue is the

exact solution.

Flux reconstruction allows a separation between the interior and inter-element contribu-

tions. This allows us to define the isolated discrete PDE operator by not solving the Riemann

problem on element interfaces. So every element would be isolated from its neighbours.

The advantage of calculating the isolated discrete PDE is that it only considers the interior

element contributions of the truncation error, which is shown to perform better than the

truncation error [77].

To approximate the truncation error, the problem is solved with a higher polynomial degree,

P , on each element. Then the error is estimated for all lower orders, K = 1, 2, 3, ..., P − 1, for

example, τKP would be the truncation error on a coarse mesh K using a finer simulation with

order P . To obtain the estimated solution on the fine mesh, a quasi-a priori method is used

for the sake of time efficiency. It means that the simulation is continued until the convergence

tolerance is reached. Consequently, the fine solution is a non fully time-converged solution.

The approximated truncation error is defined as

τKP ≡ RK(IKP ũP )− I
K

P RP (ũP ) (4.3)

where ũP is the non fully time-converged solution estimated on the fine mesh, I
K

P is the

transfer operator of the residual from order P to K, and IKP is an operator to interpolate

from a fine mesh of order P to a coarse mesh of order K.

If we substitute the definitions of the discretization and iteration errors into Equation 4.3

and expand it using the Taylor series, the truncation error will read

τKP ≡ τK − ∂RK

∂ue
K

∣∣∣∣
uK

ϵPh +O
(
ϵPh
)2

+O
(
ϵPitr
)2 (4.4)
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where ϵPh is the discretization error defined as the difference between the exact solution of the

PDE and the exact solution of the discretized PDE, and ϵPitr is the iteration error defined as

the difference between the fully time-converged solution and the non fully time-converged

solution, both applied to the discretized PDE. The same procedure can be applied to the

isolated truncation error.

ϵPh = ue − uP

ϵPitr = uP − ũP
(4.5)

As mentioned, the truncation error would be accurate only if the asymptotic rate of

convergence is reached. So, we only proceed with the simulation until we reach a solution

that is not fully converged in time yet stable enough to be used as an accurate reference

for truncation error estimation. Obviously, the cost of computing the solution on the fine

mesh uP is huge. In fact, the sole purpose of adaptation strategies is to avoid solving for the

fine mesh. It is shown in [90] that although computing the matrix inversion embedded in

equation 4.3 is dramatically high, the error estimation cost is negligible compared to the cost

of converging the solution on the fine mesh.

The second term on the right hand side of Equation 4.3 acts as a correction term for the

iteration error ϵPitr . Notice the high cost of its computation since it requires the solution of a

linear system. A quasi-a priori estimation without the correction term has been performed

by Kompenhans et al. [76] in order to compare the accuracy and the computation cost.

If the correction term is not computed, the difference between the exact and estimated

truncation error would be defined as

τKP ≡ τK − ∂RK

∂uK

∣∣∣∣
uK

(
ϵPh + ϵPitr

)
+O

(
ϵPh
)2

+O
(
ϵPitr
)2 (4.6)

One might think the computational cost could be reduced if we neglect this term. However,

in reality, by neglecting the correction term, not only is the accuracy sacrificed but also

the computational cost gets higher [76]. It is simply because of the fact that by using

a poor estimation of the truncation error, the adaptation algorithm will flag the regions

where adaptation is not really necessary, leading to a larger number of DOF and a higher
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computational cost. Consequently, although computing the correction term is computationally

expensive, it will lead to a lower number of DOF, making the algorithm more cost-efficient.

As stated, the main idea for this adaptation strategy is to apply a quasi-a priori method

by obtaining a non fully time-converged solution with a high polynomial order P , and then

interpolating it to estimate the truncation error for all lower polynomial degrees K < P . The

elements in the adapted mesh then use the lowest possible polynomial order that satisfies

the required refinement criteria. So if we define the maximum polynomial degree used in the

simulation as Km, we first begin by integrating in time on the fine mesh with a uniform Km

polynomial degree until the asymptotic rate of convergence is reached. Then we calculate the

truncation errors using Equation 4.3 and perform the adaptation as

K = 1,

get τ 2P if
∣∣∣∣∣∣τ 2P ∣∣∣∣∣∣∞ ≤ τmax then K = 2,

get τ 3P if
∣∣∣∣∣∣τ 3P ∣∣∣∣∣∣∞ ≤ τmax then K = 3,

...

get τP−1
P if

∣∣∣∣∣∣τP−1
P

∣∣∣∣∣∣
∞

≤ τmax then K = Km

(4.7)

where τmax is the desired maximum threshold. The solution is then interpolated to the new

adapted mesh, and the simulation continues.

For the test case in [77], it is shown that the truncation error approach provides satisfactory

resolution near the trailing and leading edge, as well as the wake region, while it lowers the

simulation runtime by avoiding high polynomial degrees in elements that have no contribution

to the truncation error. Also, it is shown in [76] that although the quasi-a priori method with

the correction function is more expensive per iteration, the total run time is lower compared

to the quasi-a priori method without the correction function.

This technique has been applied only to steady flows, a limitation that inherently narrows

its application. Furthermore, this algorithm requires us to compute/approximate the fine-

mesh solution, which is not only expensive, it also requires a relatively large Random-Access

Memory (RAM) to store the fine solutions.

55



4.1.3 Feature-Based Adaptation Indicators

Feature-based adaptation methods developed based on physical quantities such as pressure,

entropy, density, velocity, temperature, or vorticity have been used broadly to improve the

accuracy of numerical solutions for unsteady flow. These methods tend to flag regions that

need adaptation by calculating the physical quantities or their gradients. Feature-based

adaptation methods are very popular because of their simplicity and their ability to solve

unsteady problems; however, they have some drawbacks. These indicators do not rely on

the direct relation between the computed gradient and numerical errors and, therefore, the

resulting mesh does not guarantee a reduction of error [77]. In other words, they might

indicate regions to be adapted, which would not contribute to accuracy improvement and

would only make the simulation more expensive. For instance, if an unsteady flow around

an airfoil is the case study, then a vorticity-based indicator could be a good choice as an

adaptation indicator if the output function of interest is mostly sensitive to the vorticity

magnitude. However, if there were shocks generated along the airfoil, they would not be

captured by this indicator which could result in a numerical error if one wants to study

the pressure distribution, for instance. However, this can be addressed by defining multiple

gradient indicators to capture various flow features based on the output function of interest.

As mentioned earlier, the main drawback of the feature-based indicators is that the choice

of physical quantity depends on the purpose of the simulation. An example of a feature-based

adaptation indicator is an entropy residual indicator studied by Ching et al., borrowed from

an approach developed by Fidkowski and Roe [74], which has developed an entropy adjoint

approach in which the residual weighted by the entropy variables provides an error estimate

for a global entropy balance, to illustrate how the entropy residual performs as a general

feature-based indicator in different configurations. The entropy residual is defined as [71, 91]

Rent =
∂(ρS)
∂t

+∇ · (ρSv)− p

ρ
[∇ · (k∇T ) + σ ◦ ∇v], (4.8)

where the first term on the right-hand side corresponds to the inviscid Euler term, while

the second term corresponds to the viscous term. The fourth term is a Hadamard product
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σ ◦ ∇v = σij∂vj/∂xi. The physical entropy, S, is defined as

S = ln
p

ργ
. (4.9)

The entropy residual, Rent(u), can be used as a good indicator to determine how well

the numerical solution approximates the true solution. For a sufficiently smooth solution,

|Rent(u)| is expected to be very close to zero. Having defined the entropy residual, we can

calculate the maximum residual within an element j with a cell volume of Ωj and time

interval of length Tint as

Rent,j =
1

Tint|Ωj|

∫ t+Tint

t

∫
Ω

|Rent|dΩdt. (4.10)

At each time interval of length Tint, Y% of all elements with the highest Rent,j are subject to

a higher resolving power by increasing the degree of solution polynomial. Of these elements,

only those with polynomial order less than Km can be adapted to higher degree polynomials.

So, at each step, a fixed number of elements are refined. This will continue until the target

number of degrees of freedom is reached. From this point onward, at each time interval, F%

of all elements with the highest Rent,j are selected for further refinement. Again, only those

elements that have not reached the maximum polynomial degree, Km, can be refined further.

In order not to waste the computational power, elements with the lowest Rent,j and Kn

greater than Kmin, are coarsened. The number of elements that are selected for coarsening is

defined such that the DOF is maintained. At every adaptation stage, the polynomial order

increment is set to one. Tint, Y , F , Km, Kmin, and DOF are all inputs that could differ for

any simulation. Usually, the initial polynomial order is set to Kmin, which itself is defined

as one in most simulations. Although the entropy residual polynomial adaptation indicator

provides an accurate approximation for 2D LES, the computational cost of Equation 4.10

is quite high as it requires an integral in space and time. Hence, it is not in line with the

objectives of our research. Furthermore, Ching et al. have only assessed this strategy for

2D simulations, so the cost efficiency of this algorithm for 3D LES, which is expected to be

relativity low due to the high computational cost of Equation 4.10, remains unknown.
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4.2 Vorticity-Based Polynomial Adaptation

As mentioned earlier, feature-based adaptation methods are popular due to their simplicity,

low computational cost, and their applicability to unsteady problems. This study explores the

utility of a novel non-dimensional vorticity-based indicator for p-adaptation when solving the

unsteady Navier-Stokes equations. We begin by computing the maximum non-dimensional

vorticity magnitude at any solution point within an element according to

κj = max
1≤k≤NDOF

ωj,k, (4.11)

where ωj,k is the non-dimensionalized counterpart of vorticity magnitude

ωj,k =
|ωj,k|∆xmax,j

U∞
, (4.12)

where ∆xmax,j is the maximum mesh dimension of the element, NDOF is the number of

solution points within the element, U∞ is the free-stream velocity, and ωj,k is the vorticity at

solution point k on element j defined as

ωj,k = ∇vj,k =


∂vz/∂xy − ∂vy/∂xz

∂vz/∂xx − ∂vx/∂xz

∂vy/∂xx − ∂vx/∂xy


j,k

. (4.13)

We then adapt the solution polynomial degree on any element using Algorithm 1, where

Kj,c is the current degree polynomial of element j, before applying the adaptation, Kj,r

is the required degree polynomial of element j for an accurate solution determined by the

p-adaptation algorithm, ϵ is a constant a-posteriori resolution threshold, ϑ is a constant

that controls the relative threshold for different solution polynomial degrees and Km is

the maximum polynomial degree. Following this approach, elements with large vorticity

magnitudes relative to the effective mesh resolution are adapted to higher-degree polynomials,

increasing their resolving power. To minimize the aliasing errors induced by the change of

higher-order solutions to lower orders, it is important to keep the polynomial adaptation

within increments of one at each adaptation call.
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for j ∈ [1, 2, . . .NE] do
Read the current polynomial degree;
Kj,c = Kj;
Find the required polynomial degree;
Compute κj;
if κj < ϑ1ϵ then

Kj,r = 1;
else

for n ∈ {1, 2, ..., Km − 1} do
if κj > ϑn+1ϵ then

Kj,r = n+ 1;
end

end
end
Set the adaptation increment to one;
if Kj,r −Kj,c > 1 then

Kj = Kj,c + 1;
else if Kj −Kj,c < −1 then

Kj = Kj,c − 1;
else

Kj = Kj,r;
end

end
Algorithm 1: Vorticity-based p-adaptation algorithm.

4.3 Load Balancing

4.3.1 Introduction

In the context of massively parallel computing, where we tend to exploit the computational

power of state-of-the-art hardware architectures, the maximum efficiency of an adaptation

algorithm can only be reached if the overheads of parallel computation are minimized. One of

the primary sources of overhead is the time spent idle by processors due to unbalanced load

distributions. This is because upon applying p-adaptation, the degree of solution polynomials

will be increased or decreased locally, leaving the initial mesh unbalanced. Figure 4.1 shows

a mesh initially partitioned with METIS allocating almost the same number of elements to

each processing unit. Recently, dynamic load balancing techniques have been exploited to

enhance the effect of adaptation techniques [92, 93, 94]. In this study, we circumvent this

overhead by dynamically balancing the computational load throughout the domain as the
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Figure 4.1. Schematic view of the initial mesh partition for a polynomial adaptive simulation
with an unbalanced computational load distribution.

simulation evolves. Figure 4.2 shows different regions in terms of computational load and

compares the initial load-unbalanced mesh with the load-balanced mesh.

4.3.2 ParMETIS

In this study, a load balancing technique is employed using the repartitioning routine of

the ParMETIS Parallel Graph Partitioning and Sparse Matrix Ordering library developed

by Karypis et al. [95] to circumvent the overhead due to an imbalanced mesh. Using this

approach, the mesh is considered as a weighted graph, where elements and the computational

burden are its vertices and weight accordingly. The computational burden varies based on the

element type, solution polynomial degree, number of dimensions, and number of conserved

variables. The compute time for a single element is used as the reference to define the element

weight.

ParMETIS repartitioning routine takes the adjacency structure of the mesh, xadj and

adjncy, weight of elements vwgt, and element distribution among processors vtxdist. It

then gives a vector of the locally-stored vertices, part, as the output. ParMETIS uses

Compressed Storage Format (CSF) to represent the graph structure. In a parallel simulation,

each processor stores the adjacency of its elements into an array of size Nd,C , adjncy[Nd,C],
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Figure 4.2. Schematic view of an unbalanced mesh partition (top) with highly , moderately
, lightly , and barely expensive regions along with a balanced mesh (bottom) with equal

computational load distribution for a polynomial adaptive simulation. Black lines denote the
partition boundaries.

where Nd,C is the number of total edges between local elements contained by processor C.

Some of the edges may be counted twice as there is a two-way adjacency for elements within

a processor. However, for those elements located on the interface of two processors, the edges

would be listed once as the adjacent element belongs to another processor. Furthermore, an

array of size NE,C+1, xadj[NE,C+1], is required for each processor to point to where each of

the local elements adjacency lists begin and end, where NE,C is the number of local elements

allocated to processor C. An array of size NP +1, vtxdist[NP +1], where NP is the number

of processors used in the parallel simulation, indicates which elements are allocated to each

processor. This array is the same for all processors. Finally, local element weights are stored
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Figure 4.3. Schematic view of a mesh with 16 elements partitioned over four processors.

in an array of size NE,C , vwgt[NE,C + 1], which is used as the balance factor. The output

of the ParMETIS repartitioning routine is an array of size NE,C , part[NE,C + 1], which

indicates the desired vector of the locally-stored elements. In the DLB algorithm, elements are

transferred from over-loaded to under-loaded processors based on the part[NE,C + 1] array.

As an example, Figure 4.3 shows a mesh with 16 quadrilateral elements that is partitioned

over 4 processors. The corresponding input arrays are reported in Table 4.1. The ParMETIS

adaptive repartitioning is a multi-objective optimization problem and performs based on

tuning parameters. A thorough explanation along with other set parameters can be found in

ParMETIS manual [95].

4.3.3 Implementation

As mentioned earlier, there is a direct relation between the element weight and the element

type, solution polynomial degree, number of dimensions, and number of conserved variables

to be solved at each time step. In this study, the element weight WE is defined for all element

types with different degree polynomials, based on the required wall clock time to solve a

single iteration on a single Intel Skylake core (2.4GHz, AVX512) of the Niagara, a Compute

Canada cluster. The table of weights relative to the weight of a K = 1 triangular element is

included in Appendix A for different element types and degree polynomials. As shown in
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Table 4.1. Arrays of xadj, adjncy, and vtxdist for the schematic mesh with 16 elements
shown in Figure 4.3.

Processor 0 xadj 0 2 5 8 12
adjncy 1 2 0 3 4 0 3 8 1 2 6 9
vtxdist 0 4 8 12

Processor 1 xadj 0 3 5 9 12
adjncy 1 5 6 4 7 3 4 7 12 5 6 13
vtxdist 0 4 8 12

Processor 2 xadj 0 3 7 9 12
adjncy 2 9 10 3 8 11 12 8 11 9 10 12
vtxdist 0 4 8 12

Processor 3 xadj 0 4 7 10 12
adjncy 6 9 13 14 7 12 15 11 12 15 13 14
vtxdist 0 4 8 12

Part A - Define the initial parameters;
Define the vtxdist[NP + 1] array;
for c ∈ [1, 2, . . .NP ] do

Find the local number of elements NE,C ;
for i ∈ [1, 2, . . .NE,C ] do

Find the total number of edges Nd,E,C ;
end
Define the xadj[NE,C + 1] pointer using Nd,E,C ;
Define the adjncy array size, Nd,C , using Nd,E,C ;
Define the adjncy[Nd,C] pointer;
Write element weights to vwgt[NE,C] array;

end
Part B - Call Load balancing;
Call ParMETIS and pass the parameters;
Read the array of locally-stored elements part[NE,C + 1];
Part C - Transfer elements;
Flag the elements to be transferred;
Transfer information of flagged elements to the destination processor using
part[NE,C + 1];

Create the transferred elements on the destination processors;
Delete the transferred elements on the original processors;

Algorithm 2: Dynamic load balancing algorithm for polynomial adaptation.

Algorithm 2, the algorithm starts by defining arrays of vtxdist[NP + 1], xadj[NE,C + 1],

adjncy[Nd,C], and vwgt[NE,C] for each processor. It then passes the input to the ParMETIS

AdaptiveRepart routine to get the part[NE,C + 1] array, which indicates the optimised

distribution of elements within processors based on the predefined weights to achieve a
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balanced domain. Finally, the algorithm transfers elements from over-loaded to under-loaded

processors based on the part[NE,C + 1] array.

The following chapter verifies the ALE and DLB implementations by solving problems

for which an analytical solution exists, and validates them by solving different known two-

dimensional test cases for which we have reference results. This is to ensure the discrete

model and the adaptation algorithm are accurate if applied to larger-scale turbulent test

cases we are ultimately trying to solve.
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Chapter 5

Verification and Validation Test Cases

The objective of the current chapter is to verify and then validate the FR scheme and HORUS

to solve the problems we are interested in, when coupled with non-dimensional vorticity-based

polynomial adaptation and DLB algorithms. Verification determines if the discretized system

of equations, being the Euler and Navier-Stokes equations, are capable of approximating

the continuous equations accurately. On the other hand, validation focuses on comparing

numerical results of the verified discretized systems against experimental or other numerical

results to ensure that they match physical observations.

The FR scheme and HORUS were verified and validated for numerous test cases as shown

in reference [96]. In this chapter, we verify the ALE and DLB implementations by solving

problems for which an analytical solution exists. Furthermore, we validate the p-adaptation

algorithm by solving different known two-dimensional test cases and compare the numerical

results against reference data to ensure the adaptive simulations will be accurate when applied

to the larger-scale turbulent test cases we are ultimately trying to solve.

5.1 ALE Verification

Advection of an isentropic vortex in a deforming periodic domain using the Euler equations is

considered for verification of the ALE implementation. This problem has an exact analytical

solution, which is simply the propagation of the initial isentropic vortex with the mean flow.
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The initial flow field is specified similar to previous studies as [97, 98]

ρ =

[
1− S2

vM
2(γ − 1)e2f

8π2

] 1
γ−1

,

vx = 1 +
Svye

f

2πRc

,

vy = −Svxe
f

2πRc

,

p =
ργ

γM2
,

(5.1)

where f = (1 − x2 − y2)/2R2
c , Sv = 13.5 is the strength of the vortex, Rc = 1.5 is the

characteristic vortex radius, and γ = 1.4. This allows the vortex to advect at unit velocity

vertically in the domain. A 20× 20 two-dimensional domain centred at the origin was used

with periodic boundary conditions on all four edges using 5 × 5, 10 × 10, 20 × 20, and

40× 40 element meshes. Initially isotropic, this mesh is perturbed using a prescribed mesh

deformation xg = [xg, yg] where

xg = x0 +
3

2
sin

(
πt

10

)
sin
(πy0
10

)
,

yg = y0 +
3

2
sin

(
πt

10

)
sin
(πx0

10

)
,

(5.2)

and x0 = [x0, y0] is the initial mesh position. This significantly deforms the original mesh up

to t = 5, reverses this deformation at t = 15, and then returns it to its original shape at the

final solution time t = 20. Solution polynomials of degree K = 1 to K = 5 were considered

for each level of mesh resolution. The solution and flux points were located at Gauss points,

Rusanov fluxes were used at the interfaces between elements, and the classical RK4,4 scheme

was used in time. To evaluate the accuracy of each scheme, the L2 norm of the density error

was evaluated at the end of each simulation in a 4× 4 region at the center of the domain.

This area normalized L2 error is defined as

σ =

√∫ 2

−2

∫ 2

−2
(ρδ(x)− ρe(x))

2 dx

8
, (5.3)
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where ρδ(x) is the final numerical solution and ρe(x) is the exact analytical solution, which is

identical to the initial condition. To get a good approximation of the true L2 error we used

an 81-point Gaussian quadrature rule within each element.

The shape of the deformed mesh is shown in Figure 5.1 for the initial condition, time of

maximum mesh deformation, and final solution time for a K = 5 polynomial degree on the

20 × 20 element mesh. Corresponding contours of density are shown in Figure 5.2 for the

same simulation. This shows that the mesh undergoes a significant deformation, reverses this

deformation, and then returns to its original shape by the end of the simulation. There is

no difference qualitatively between the initial and final solutions for this polynomial degree

and, even at the time of maximum deformation, the solution remains smooth and similar to

the initial condition. Table 5.1 shows the measured error for each polynomial degree and

mesh, with and without the mesh deformation applied. All of the schemes achieve their

designed orders of accuracy on the deforming mesh, with only a small penalty incurred in

terms of accuracy relative to the static mesh cases. This is also demonstrated in Figure 5.3,

which plots the convergence for each polynomial degree and element mesh on the static and

deforming meshes. We see that all of the deforming mesh cases achieve similar error levels to

those in the static mesh cases, obtain their designed high-order accuracy, and demonstrate

the benefits of using a higher-order scheme for a given number of elements.

5.2 DLB Verification

Advection of an isentropic vortex in a periodic domain using the Euler equations is re-

considered for verification of the DLB implementation. The initial flow field is specified,

similar to the previous section. We first consider a 20× 20 two-dimensional domain centred

at the origin with periodic boundary conditions on all four faces using a 40× 40 grid mesh.

The mesh is initially partitioned poorly over 4 and 32 processors to explore the utility of

the dynamic load balancing algorithm with and without weight allocation for elements with

different degree polynomials. The solution and flux points were located at Gauss points,

Rusanov fluxes were used at the interfaces between elements, and the classical RK4,4 scheme

was used in time. Simulations were carried out on Intel Skylake cores (2.4 GHz, AVX512).
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(a) Mesh at t = 0. (b) Mesh at t = 5.

(c) Mesh at t = 15. (d) Mesh at t = 20.

Figure 5.1. Mesh deformation for the isentropic vortex case on the 20× 20 element mesh.

68



(a) Density contours at t = 0. (b) Density contours at t = 5.

(c) Density contours at t = 15. (d) Density contours at t = 20.

Figure 5.2. Density contours for the isentropic vortex case on the 20× 20 element mesh with
solution polynomials of degree K = 5.

69



Table 5.1. Density error for the deforming and static isentropic vortex cases.

Scheme Mesh Deforming σ Order Static σ Order
k = 1 5× 5 2.001× 10−1 - 2.074× 10−1 -

10× 10 1.656× 10−1 0.27 1.708× 10−1 0.27
20× 20 5.880× 10−2 1.49 4.574× 10−2 1.90
40× 40 1.185× 10−2 2.31 8.244× 10−3 2.47

k = 2 5× 5 1.297× 10−1 - 1.408× 10−1 -
10× 10 2.794× 10−2 2.21 2.426× 10−2 2.53
20× 20 4.225× 10−3 2.72 5.198× 10−3 2.22
40× 40 3.931× 10−4 3.42 3.885× 10−4 3.74

k = 3 5× 5 6.533× 10−2 - 6.243× 10−2 -
10× 10 1.505× 10−2 2.11 1.054× 10−2 2.56
20× 20 4.141× 10−4 5.18 3.425× 10−4 4.94
40× 40 1.521× 10−5 4.76 1.629× 10−5 4.39

k = 4 5× 5 4.961× 10−2 - 1.797× 10−2 -
10× 10 2.692× 10−3 4.20 2.228× 10−3 3.01
20× 20 5.125× 10−5 5.71 2.314× 10−5 6.58
40× 40 7.657× 10−7 6.06 8.592× 10−7 4.75

k = 5 5× 5 2.862× 10−2 - 5.099× 10−2 -
10× 10 5.729× 10−4 5.64 2.765× 10−4 7.52
20× 20 1.192× 10−5 5.58 5.833× 10−6 5.56
40× 40 8.801× 10−8 7.08 8.892× 10−8 6.03

The mesh was initially partitioned over 4 and 32 processors, MPI was used for parallel

communication [99].

A total of three adaptive simulations were carried out on each mesh to verify the utility

of the dynamic load-balanced polynomial adaptation algorithm, including a simulation with

static load balancing, where the dynamic load balancing routine is not called throughout the

simulation, and two simulations with dynamic load balancing with and without assigning

a computational burden to elements with different degree polynomials. Table 5.2 shows

different load balancing schemes used in this verification study. As mentioned in Chapter

4, the computational burden varies based on the element type, solution polynomial degree,

number of dimensions, and number of conserved variables. The compute time for a single

triangular element with the polynomial degree of K = 1 is used as the reference to define

the element weight in the algorithm for all element types and different degree polynomials.

The adaptation parameters Km, ϵ, and ϑ1:5 are set to 5, 6.25× 10−2, and [0.25, 0.25, 1, 4, 16]

respectively. The adaptation routine is called every 20 iterations, and the DLB routine is
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Figure 5.3. Convergence plot of the density error for the deforming and static isentropic
vortex cases.

called every 20 iterations for the LB2 and LB3 schemes, refer to Table 5.2. Contours of

density, polynomial distribution, and the corresponding repartitioned mesh are shown in

Figures 5.4 for t = 0, t = 5, t = 10, t = 15, and t = 20 for different load balancing schemes

for a mesh partitioned over 4 processors. Comparing these results confirms that the weighted
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LB3 load balancing scheme is capable of repartitioning the mesh according to the polynomial

distribution. The resulting mesh remains balanced for the entire simulation as the mesh

is repartitioned based on the computation loads allocated to processors. Furthermore, the

LB2 scheme results in an initially balanced mesh, partitioned based on the total number of

elements, which remains constant throughout the simulation. Although initially balanced,

this scheme is not capable of retaining the domain balanced as the simulation evolves. The

LB1 scheme is the most unbalanced scheme as no repartitioning is performed.

We compare the performance of load balancing schemes in terms of averaged weight

distribution WC =
(∑Nitr

1

∑NE,C

j=1 WE,j

)
/Nitr, which is the average load assigned to each

core throughout the simulation based on the element type and degree polynomials, weight

fluctuation ratio Wf which is defined as the ratio of minimum weight to the maximum weight

assigned to processors at every iteration averaged throughout the entire simulation, averaged

maximum computational burden W̄C,max which is defined as the maximum computation

load on a core in each iteration averaged throughout the simulation, and simulation time

per iteration Titr in millisecond defined as Titr = 1000Tw/Nitr, where Tw is the wall clock

time, and Nitr is the number of iterations. Table 5.3 shows the measured values of WC , Wf ,

W̄C,max, and Titr for each mesh and load balancing scheme. These results show that the

LB3 scheme results in the most balanced computation as the value of the weight fluctuation

ratio is about unity, which simply means almost an equal computational load is allocated to

each processor. Furthermore, we observe that the LB3 scheme is the fastest. This is also

demonstrated in Figure 5.5, which plots the reported values for both meshes. Finally, a set of

parallel simulations were carried out on the Compute Canada Niagara cluster with different

numbers of cores to compare the speed-up and scalability of the LB2 and LB3 load balancing

schemes. The same 20×20 two-dimensional domain using a 40×40 grid mesh was considered.

Table 5.4 shows the speed-up factor of the parallel algorithm for different numbers of cores

for LB2 and LB3 DLB schemes, where C is the number of cores, SP = TS/TC is the parallel

speed-up based on the serial simulation on a single core, Es = SP/C is the efficiency, TS is

the compute time of a serial simulation, and TC is the compute time of a parallel adaptive

simulation on C cores. These results verify the scalability of the algorithm and illustrate that

the LB3 is faster than the LB2 scheme. This is also demonstrated in Figure 5.6, which plots
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Table 5.2. Load balancing schemes employed for the isentropic vortex case on the two-
dimensional 40× 40 element mesh with adaptive solution polynomial of degree K = 1− 5.

Scheme Load Balancing Type Weight Assigned Repartitioning Call (itr)
LB1 Static - -
LB2 Dynamic No 20
LB3 Dynamic Yes 20

Table 5.3. Numerical values of W̄C,max, Wf , and Titr for the isentropic vortex case on the
two-dimensional 40× 40 element mesh with adaptive solution polynomial of degree K = 1− 5
partitioned over 4 and 32 processors.

Number of Cores Scheme W̄C,max Wf Titr [ms]
4 LB1 1.912× 104 8.397× 10−2 6.865× 101

LB2 1.126× 104 2.944× 10−1 4.090× 101

LB3 6.123× 103 9.677× 10−1 3.091× 101

32 LB1 1.915× 104 8.387× 10−3 6.811× 101

LB2 2.295× 103 1.733× 10−1 1.224× 101

LB3 7.778× 102 9.303× 10−1 9.464× 100

the compute time of each polynomial degree for different numbers of cores.

Table 5.4. Scalability metrics of the LB2 and LB3 schemes for the isentropic vortex case on
the two-dimensional 40× 40 element mesh.

Scheme Number of Cores Titr [ms] SP

LB2 1 3.668× 102 1.000
2 2.082× 102 1.762
4 1.401× 102 2.618
8 1.237× 102 2.965
16 6.789× 101 5.403
32 3.976× 101 9.226
64 2.336× 101 15.704

LB3 1 3.666× 102 1.000
2 1.965× 102 1.866
4 1.197× 102 3.064
8 6.821× 101 5.374
16 3.822× 101 9.591
32 2.270× 101 16.149
64 1.699× 101 21.576

To further verify the DLB algorithm when applied to a relatively larger three-dimensional

domain and compare the efficiency of the algorithm, a 100 × 100 × 1 three-dimensional

domain centred at the origin was used with periodic boundary conditions on all six faces
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Density Degree LB3 scheme LB2 scheme LB1 scheme

(a) t = 0.

(b) t = 5.

(c) t = 10.

(d) t = 15.

(e) t = 20.

Figure 5.4. Contours of density, polynomial distribution, and the corresponding repartitioned
mesh with different load balancing schemes at several time instants for the isentropic vortex
case on the two-dimensional 40 × 40 element mesh with adaptive solution polynomial of
degree K = 1− 5 partitioned over 4 processors.
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Figure 5.5. Plots of averaged weight distribution WC , averaged maximum computational
burden W̄C,max, simulation time per iteration Titr, and weight fluctuation ratio Wf for the
isentropic vortex case on the two-dimensional 40× 40 element mesh with adaptive solution
polynomial of degree K = 1− 5 partitioned over 4 and 32 processors.
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Figure 5.6. Plot of the speed-up of the dynamic load-balanced adaptive algorithm for the
isentropic vortex case on the two-dimensional 40× 40 element mesh with adaptive solution
polynomial of degree K = 1− 5 partitioned over different numbers of processors. The dashed
line represents the ideal efficiency of one.

using 50× 50, 100× 100, 200× 200, and 400× 400 element meshes with three elements in the

z-direction for all meshes. Uniform polynomials of degree K = 1 to K = 5 and a five-level

adaptive polynomials of degree K = 1− 5 were considered for each level of mesh resolution.

The solution and flux points were located at Gauss points, Rusanov fluxes were used at the

interfaces between elements, and the classical RK4,4 scheme was used in time. To validate

the performance of the dynamic load-balanced polynomial adaptation algorithm, a set of

parallel simulations were carried out on two nodes of Niagara, a Compute Canada cluster,

for different polynomial degrees and mesh resolutions. Each node consists of 2 sockets with

20 Intel Skylake cores (2.4 GHz, AVX512), for a total of 40 cores per node, and a total of 202

GB of RAM. The compute time is calculated for each simulation. The adaptation parameters

Km, ϵ, and ϑ1:5 are set to 5, 2.5× 10−1, and [0.25, 0.25, 1, 4, 16] respectively. The adaptation

and the DLB routines are called every 100 and 1000 iterations, respectively.

20× 20 centre-portions of different mesh resolutions are shown in Figure 5.7. Contours

of density, polynomial distribution, and the corresponding repartitioned mesh are shown in

Figures 5.8 for the initial condition, halfway through the simulation, and the final solution for

an adaptive K = 1− 5 polynomial degree on the 400× 400 element mesh. This confirms that
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elements with large vorticity magnitudes relative to the effective mesh resolution are adapted

to higher-degree polynomials. At the initial condition, the mesh is partitioned equally to

allocate almost the same number of elements to each processor. Yet, upon calling the load

balancing routine, the mesh is repartitioned to allocate almost the same computational load

to each processor. Hence, processors computing the high-order elements will have fewer

elements. There is no difference qualitatively between the initial and final solutions for

the adaptive polynomial degree, and the solution remains smooth and similar to the initial

condition. Table 5.5 shows the measured error, average total number of degrees of freedom

DOF , the compute time for each polynomial degree and mesh, and the achieved speed-up

factor of the adaptive simulations, where Titr is the compute time of one iteration of a parallel

simulation on two nodes of the Niagara cluster, SA = TU/TA is the speed-up factor based on

the uniform K = 5 simulation with the same mesh resolution, TA is the compute time of an

adaptive K = 1− 5 simulation featured with DLB, and TU is the compute time of a uniform

K = 5 simulation. The adaptive simulation is faster for all cases compared to the uniform

K = 5 simulations. Furthermore, we observe that the speed-up gets more significant as the

mesh gets finer. This is also demonstrated in Figure 5.9, which plots the compute time of

each polynomial degree for different meshes.

5.3 Validation: 2D Circular Cylinder

As a validation case for the polynomial adaptation algorithm when applied to the Navier-

Stokes equations, we consider unsteady laminar flow over a two-dimensional circular cylinder.

Several previous experimental and numerical studies have focused on flow over a circular

cylinder, both due to its simple experimental setup and its engineering significance, including

the prediction of aerodynamics forces, namely lift and drag, and the study of its vortex

shedding regimes. Its characteristics are known to be highly dependent on the Reynolds

number Re, defined as

Re =
ρU∞D

µ
, (5.4)

where U∞ is the freestream velocity, ρ is the fluid density, D is the cylinder diameter, and µ is

the fluid viscosity. At Re below about 49, the wake flow is in the laminar steady regime, which
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(a) 50× 50 element mesh (b) 100× 100 element mesh

(c) 200× 200 element mesh (d) 400× 400 element mesh

Figure 5.7. 20× 20 centre-portion of the isentropic vortex element meshes.

is comprised of symmetric vortices. As the Re increases, at Re above 49 and below about 170,

vortices start to shed, yet the wake flow is still laminar. In fact, the wake structure remains

2D for Re smaller than about 170. Hence, in this section, flow over a 2D circular cylinder at

Re = 150, which sits in the laminar vortex shedding regime identified by Williamson [100], is

studied to validate the effectiveness of the vorticity-based polynomial adaptation technique.

Inoue and Hatakeyama [101] studied the pressure waves generated by the vortex shedding
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(a) Density at t = 0 (b) Degree at t = 0 (c) Mesh partition at t = 0

(d) Density at t = 50 (e) Degree at t = 50 (f) Mesh partition at t = 50

(g) Density at t = 100 (h) Degree at t = 100 (i) Mesh partition at t = 100

Figure 5.8. Density contours, polynomial degree distributions, and mesh partitions for the
isentropic vortex case on the three-dimensional 400× 400× 3 element mesh with adaptive
solution polynomial of degree K = 1− 5.

from a cylinder surface in a flow at a range of low Mach numbers. Cagnone et al. [62] presented

a polynomial-adaptive Lifting Collocation Penalty (LCP) formulation for the compressible

Navier–Stokes equations and studied the effectiveness of their p-adaptive strategy when
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Table 5.5. Density error, mean number of degrees of freedom, simulation time per iteration,
and speed-up factor for the isentropic vortex case on the three-dimensional 400 × 400 × 3
element mesh.

Scheme Load Balancing Mesh Error σ DOF Titr [ms] SA

K = 1 Static 50× 50 2.269× 10−1 6.000× 104 0.971× 101 -
100× 100 1.307× 10−1 2.400× 105 4.843× 101

200× 200 2.817× 10−2 9.600× 105 2.078× 102

400× 400 4.894× 10−3 3.840× 106 8.300× 102

K = 2 Static 50× 50 7.348× 10−2 2.025× 105 3.479× 101 -
100× 100 1.815× 10−2 8.100× 105 1.413× 102

200× 200 8.025× 10−4 3.240× 106 5.661× 102

400× 400 6.853× 10−5 1.296× 107 2.242× 103

K = 3 Static 50× 50 4.950× 10−2 4.800× 105 7.959× 101 -
100× 100 1.646× 10−3 1.920× 106 3.125× 102

200× 200 3.348× 10−5 7.680× 106 1.236× 103

400× 400 5.911× 10−7 3.072× 107 4.862× 103

K = 4 Static 50× 50 6.924× 10−3 9.375× 105 1.676× 102 -
100× 100 5.098× 10−5 3.750× 106 6.439× 102

200× 200 1.617× 10−6 1.500× 107 2.535× 103

400× 400 4.420× 10−8 6.000× 107 1.012× 104

K = 5 Static 50× 50 7.896× 10−4 1.620× 106 3.274× 102 -
100× 100 1.557× 10−5 6.480× 106 1.283× 103

200× 200 1.643× 10−7 2.592× 107 5.061× 103

400× 400 1.876× 10−9 1.037× 108 2.012× 104

K = 1− 5 Static 50× 50 5.895× 10−3 7.634× 104 1.561× 102 2.09
100× 100 5.903× 10−4 2, 948× 105 5.955× 102 2.16
200× 200 4.278× 10−5 1.160× 106 1.515× 103 3.34
400× 400 3.859× 10−6 4.594× 106 4.359× 103 4.61

K = 1− 5 Dynamic 50× 50 5.895× 10−3 7.634× 104 8.437× 101 3.88
100× 100 5.903× 10−4 2, 948× 105 2.078× 102 6.18
200× 200 4.278× 10−5 1.160× 106 6.019× 102 8.41
400× 400 3.859× 10−6 4.594× 106 1.983× 103 10.14

applied to the unsteady laminar flow past a circular cylinder. Ching et al. [71] introduced

an entropy residual polynomial adaptation indicator, explained in detail in Chapter 4, and

evaluated its performance for viscous flow past a circular cylinder.

In this study, we demonstrate the application of our p-adaptation strategy for weakly-

compressible flow over a circular cylinder. Two two-dimensional computational domains, with

their origin located at the centre of the cylinder, one containing a total of 4342 quadrilateral

elements (hereafter referred to as mesh 1), and the other containing a total of 8684 triangle
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Figure 5.9. Plot of the compute time per iteration for the isentropic vortex cases on the
three-dimensional 400× 400 element mesh.

elements (hereafter referred to as mesh 2) were used with Riemann invariant boundary

conditions at the far-field and a no-slip adiabatic wall boundary condition at the surface

of the cylinder. The domains extend to 40D above, below, and upstream of the cylinder,

110D downstream as shown in Figure 5.10. Meshes are moderately refined in the near-

cylinder and wake regions and use quadratically curved elements at the boundaries to match

the cylinder geometry. Table 5.6 lists the computational meshes employed. The mesh is

initially partitioned over 4 processors using METIS [102], and MPI is used for parallel

communication [99].

Simulations are carried out at Mach number M = 0.1, for a total of 200tc, where

tc = D/U∞ is the time required for the flow to traverse one cylinder diameter. Time

integration is carried out with the two-stage second order singly diagonally implicit Runge-

Kutta scheme, SDIRK22, with implicit tolerance of 10−4, and the non-dimensional time

step is set to ∆t∗ = ∆tU∞/D = 1.0 × 10−2. The Jacobian matrix is calculated every 10

iterations, and the adaptation routine is called every 10 iterations. A total of four simulations

were carried out to verify the utility of the adaptation algorithm, including two uniform

simulations on Mesh 1 with solution polynomials of degree K = 1 and K = 3, and two

simulations with three-level adaptive polynomials K = 1− 3 on both meshes. The adaptation

parameters Km, ϵ, and ϑ1:3 are set to 3, 2.5× 10−1, and [0.25, 0.25, 1] respectively. Results
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are compared in terms of mean drag coefficient C̄D, the peak fluctuation in the lift ∆CL and

drag ∆CD coefficients, Strouhal number St, and the wall clock time Tw, where the lift and

drag coefficients are defined in a general form as

CL =
FL

qAf

,

CD =
FD

qAf

,

(5.5)

where Af is the frontal area, which is equal to the length of the projected line normal to the

flow, q = ρ∞U2
∞/2 is the dynamic pressure, and ρ∞ is the freestream density. For this case

study, the lift and drag coefficients reduce to

CL =
2FL

ρ∞U2
∞D

,

CD =
2FD

ρ∞U2
∞D

,

(5.6)

and the Strouhal number is defined as

St =
fD

U∞
, (5.7)

where f is the shedding frequency of the dominant vortices in the wake.

Figure 5.11 shows the polynomial degree distribution for the three-level adaptive simula-

tions (K = 1− 3) for both meshes. As mentioned earlier in Chapter 4, elements with large

vorticity magnitudes relative to the effective mesh resolution are adapted to higher-degree

polynomials. It is evident that most of the K = 3 elements are employed where the vorticity

magnitude is maximal relative to the element size, which illustrates that high-order elements

track vorticity behind the cylinder. K = 2 elements occur further downstream, out of the

wake region, leaving the far-field region for K = 1 elements. This verifies that the algorithm

successfully tracks the location of elements with large vorticity magnitude relative to their

element size. Figure 5.12 shows contours of non-dimensional velocity magnitude at the time

of a maximal lift for uniform K = 1, uniform K = 3, and adaptive K = 1 − 3 for mesh 1,

along with the adaptive K = 1− 3 for mesh 2. While we observe large inter-element jumps
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in the flow solution of the uniform K = 1 simulation, the flow solution is smooth for the

uniform K = 3 and both adaptive K = 1 − 3 simulations. Figure 5.13 shows contours of

non-dimensional spanwise vorticity at the time of maximal lift for uniform K = 1, uniform

K = 3, along with the adaptive K = 1− 3 for mesh 1, and adaptive K = 1− 3 for mesh 2,

where vorticity is defined as ω = ∇×u. Comparing these results confirms that the three-level

adaptive simulations qualitatively provide satisfactory resolution in the near-cylinder and

the wake regions while requiring fewer degrees of freedom. To further evaluate the accuracy

of the adaptive method, we turn to Table 5.7 which reports the numerical values of C̄D,

∆CL, ∆CD, St, and Tw for uniform simulations and the three-level adaptive simulations and

compares them with results from Cagnone et al. [62] and Inoue and Hatakeyama [101]. These

results show the adaptive simulations quantitatively agree the uniform K = 3 simulation

within 0.27%, 35.38%, and 0.14% numerical error for mesh 1 and 0.241%, 43.46%, and

0.14% numerical error for mesh 2 in the ∆CL, ∆CD, and C̄D values respectively, while the

adaptive simulations are 2.32 and 2.42 times faster for mesh 1 and 2, respectively. Figure

5.14 compares the lift and drag coefficient plots of the uniform and adaptive simulations,

which shows excellent agreement with small oscillations observed in the CD profile. Since the

locations of higher-order solutions are changing as the vortices are shed in the near-cylinder

and/or wake regions, the vorticity indicator continually refines and coarsens the elements

in these regions. Due to viscous effects observed only at low Reynolds numbers, continuous

change of higher-order solutions to lower orders induces aliasing errors and small oscillations

in the CD profile causing the error in the ∆CD value. However, this was not found to affect

the accuracy of C̄D, since the magnitude of the fluctuations is relatively small compared to the

mean drag coefficient. Upon increasing the Reynolds number, these oscillations are reduced.

Figure 5.16 illustrates the dependency of the CD fluctuations on the Reynolds number for

adaptive simulations on mesh 1, with the oscillations being reduced when the Reynolds

number is increased from Re = 150 to Re = 1000. Furthermore, Figure 5.15 compares the

lift and drag coefficient plots of adaptive simulations for different meshes. Although the

results obtained from both meshes are in excellent agreement, we observe that mesh 1, which

contains quadrilateral elements, is more accurate both qualitatively and quantitatively and

has a better agreement with the reference data. This is in agreement with previously observed
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Table 5.6. Computational meshes employed for the circular cylinder the circular cylinder
with Re = 150 and M = 0.1.

Mesh Type Number of Elements Element Type Polynomial Order
Mesh 1, K = 1 4342 Quadrilateral 1
Mesh 1, K = 3 2
Mesh 1, K = 1− 3 1-3
Mesh 2, K = 1− 3 8684 Triangular 1-3

Table 5.7. Numerical values of ∆CL, ∆CD, C̄D, St, Tw, and error percent for the circular
cylinder with Re = 150 and M = 0.1.

Mesh Degree ∆CL ∆CD C̄D St ε∆CL
ε∆CD

εC̄D
Tw (s)

1 K = 1 0.4862 0.0223 1.3049 0.1751 6.03% 14.23% 1.55% 10,759
1 K = 3 0.5174 0.0260 1.3255 0.1839 - - - 112,409
1 K = 1− 3 0.5160 0.0352 1.3236 0.1835 0.27% 35.38% 0.14% 48,528
2 K = 1− 3 0.5153 0.0373 1.3237 0.1860 0.41% 43.46% 0.14% 32,821
Cagnone K = 4 0.5166 0.0258 1.3246 0.1836 -
et al. [62]
Inoue - 0.52 0.026 1.32 0.183 -
et al. [101]

spectral analyses where tensor-product elements display increased accuracy with respect to

simplices [103, 104, 105].

5.4 Validation: SD 7003 Airfoil

To further validate the performance and accuracy of our p-adaptation method for the unsteady

Navier-Stokes equations, we consider unsteady laminar flow over an SD 7003 airfoil at a

Reynolds number Re = 10, 000, where Re = ρU∞c/µ, c is the airfoil chord length, and µ is

the constant dynamic viscosity. We use a Mach number of M = 0.2 and an angle of attack

of α = 4◦. This is a common test case to validate CFD solvers with high-order reference

results available from Uranga et al. [106] using a DG scheme, Lopez-Morales et al. [107], and

Vermeire [108] using the FR scheme.

At this Reynolds number, the flow is expected to be two-dimensional with negligible

variation in the span-wise direction [106]. Hence, we used a two-dimensional computational

domain, with its origin located at the leading edge containing a total of 8190 quadrilateral
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Figure 5.10. Circular cylinder quadrilateral structured mesh with 4342 elements (mesh 1), on
the top, and circular cylinder triangular structured mesh with 8684 elements (mesh 2), on
the bottom.
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Figure 5.11. Solution polynomial distribution for three-level adaptive computation (K1−K3)
based on vorticity magnitude indicator corresponding to maximal lift for the circular cylinder
with Re = 150 and M = 0.1 for mesh 1 (on the top) and mesh 2 (on the bottom).

(a) Velocity field for K = 1 for Mesh 1.
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(b) Velocity field for K = 3 for Mesh 1.

(c) Velocity field for K = 1− 3 for Mesh 1.

(d) Velocity field for K = 1− 3 for Mesh 2.

0.0 0.5 1.0 1.5 2.0

Non-dimensional Velocity Magnitude

Figure 5.12. Non-dimensional velocity magnitude for the uniform K = 1, uniform K = 3,
and adaptive K = 1 − 3 computations for mesh 1, and three-level adaptive computation
K = 1− 3 for mesh 2 based on the vorticity magnitude indicator for the circular cylinder
with Re = 150 and M = 0.1.
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(a) Vorticity field for K = 1 for Mesh 1.

(b) Vorticity field for K = 3 for Mesh 1.

(c) Vorticity field for K = 1− 3 for Mesh 1.
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(d) Vorticity field for K = 1− 3 for Mesh 2.

−5.0 −2.5 0.0 2.5 5.0

Non-dimensional Vorticity Z-Component

Figure 5.13. Non-dimensional z-component of the vorticity for the uniform K = 1, uniform
K = 3, and adaptive K = 1−3 computations for mesh 1, and three-level adaptive computation
K = 1− 3 for mesh 2 based on the vorticity magnitude indicator for the circular cylinder
with Re = 150 and M = 0.1.

elements with Riemann invariant boundary conditions at the far-field and a no-slip adiabatic

wall boundary condition at the surface of the airfoil. The computational domain extends to

20c above, below, and upstream of the airfoil, and 40c downstream, as shown in Figure 5.17.

The mesh is moderately refined near the trailing and leading edges to resolve the viscous

effects and uses quadratically curved elements at the boundaries to match the airfoil geometry.

The mesh is initially partitioned over 4 processors using METIS [102], and MPI is used for

parallel communication [99].

Simulations are carried out for a total of 100tc, where tc = D/U∞ is the time required

for the flow to traverse one chord length. Time integration is carried out with the SDIRK22

scheme, with implicit tolerance of 10−4, and the non-dimensional time step is set to ∆t∗ =

∆tU∞/c = 2.5 × 10−3. The Jacobian matrix is calculated every 10 iterations and when

adapting, the adaptation routine is called every 10 iterations. A total of three simulations

were carried out to verify the utility of the adaptation algorithm, including two uniform

simulations with solution polynomials of degree K = 1 and K = 3, and a three-level adaptive

simulations K = 1− 3. The adaptation parameters Km, ϵ, and ϑ1:3 are set to 3, 1.25× 10−1,

and [0.25, 0.25, 1] respectively. Results are compared in terms of mean lift coefficient C̄L
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Figure 5.14. Drag and lift coefficient profiles of uniform and adaptive simulations for the
circular cylinder with Re = 150, M = 0.1, and quadrilateral elements.
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Figure 5.15. Drag and lift coefficient profiles of mesh 1 and mesh 2 adaptive simulations for
the circular cylinder with Re = 150 and M = 0.1.
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Figure 5.16. Drag coefficient profile of adaptive simulations of mesh 1 with different Reynolds
numbers for the circular cylinder with M = 0.1.

and drag coefficient C̄D, the peak fluctuation in the drag ∆CD coefficients, Strouhal number

St, and the wall clock time Tw, where Equation 5.5 is used to calculate the lift and drag

coefficients, where Af is equal to the airfoil chord length.

Figure 5.18 shows the polynomial degree distribution for the three-level adaptive simula-

tions (K = 1− 3). It is evident that high-order elements track vorticity behind the airfoil,

meaning most of the K = 3 elements are employed where the vorticity magnitude is maximal

relative to the element size, in the vicinity of the trailing edge, on the airfoil surface before

the separation point, and in the wake region. K = 2 elements occur further downstream,

out of the wake region, leaving the far-field region for K = 1 elements. Figure 5.19 shows

contours of non-dimensional velocity magnitude at the time of a maximal lift for uniform

K = 1, uniform K = 3, and adaptive K = 1− 3. While we observe unresolved regions in the

flow solution of the uniform K = 1 simulation, the flow solution is smooth and well-resolved

for the uniform K = 3 and the adaptive K = 1− 3 simulation. Figure 5.20 shows contours of

non-dimensional spanwise vorticity at the time of a maximal lift for uniform K = 1, uniform
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Figure 5.17. SD 7003 airfoil quadrilateral structured mesh with 8190 elements.

K = 3, and the adaptive K = 1− 3. Comparing these results confirms that the three-level

adaptive simulations qualitatively provide satisfactory resolution in the boundary layer and

the wake regions, while requiring fewer degrees of freedom. The accuracy of the adaptive

simulation is further illustrated in Table 5.8, which reports the numerical values of C̄L, C̄D,

∆CD, St, and Tw for all simulations and compares them with the reference data. These results

quantitatively show agreement within 0.18%, 0.20%, and 3.33% in the C̄L, C̄D, and ∆CD

values respectively between the adaptive and uniform K = 3 simulations, while the former is

2.17 times faster. Figure 5.21 compares the lift and drag coefficient plots of the uniform and

adaptive simulations, which shows excellent agreement. Due to a higher Reynolds number

compared to the circular cylinder case, the viscous drag makes up a smaller percentage of

the total drag; thus, almost no spurious oscillations are observed in the CD profile.

The following chapter will further validate the ALE implementation and exploit the utility

of the novel p-adaptation algorithm for a range of applications on moving and deforming

domains, including two classical problems of oscillating circular cylinders and dynamic stall

of a heaving and pitching NACA 0012 airfoil, a shallow dynamic stall of a three-dimensional

SD 7003 airfoil undergoing a heaving and pitching motions, and a practical test case of flow

over a vertical axis wind turbine.
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Figure 5.18. Solution polynomial distribution for three-level adaptive computation (K = 1−3)
based on vorticity magnitude indicator corresponding to maximal lift for the SD 7003 airfoil
with Re = 10000 and M = 0.2.

Table 5.8. Numerical values of ∆CL, ∆CD, C̄D, St, Tw, and error percent for the circular
cylinder with Re = 150 and M = 0.1.

Degree C̄L C̄D ∆CD St εC̄L
εC̄D

ε∆CD
Tw (s)

K = 1 0.3559 0.0490 0.0028 1.2327 7.03% 1.8% 6.67% 53,132
K = 3 0.3828 0.0499 0.0030 1.2924 - - - 615,545
K = 1− 3 0.3821 0.0498 0.0029 1.2966 0.18% 0.20% 3.33% 283,108
Uranga et al. 0.3755 0.04978 - - -
Grid 2, 2D [106]
Lopez-Morales 0.3719 0.04940 - - -
et al. [107]
Vermeire 0.3841 0.0499 - - -
K = 3 [108]
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(a) Velocity field for K = 1.

(b) Velocity field for K = 3.

(c) Velocity field for K = 1− 3.
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Figure 5.19. Non-dimensional velocity magnitude for the uniform K = 1, uniform K = 3,
and adaptive K = 1− 3 computations based on the vorticity magnitude indicator for the SD
7003 airfoil with Re = 10000 and M = 0.2.
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(a) Vorticity field for K = 1.

(b) Vorticity field for K = 3.

(c) Vorticity field for K = 1− 3.

−40.0 −20.0 0.0 20.0 40.0

Non-dimensional Vorticity Z-Component

Figure 5.20. Non-dimensional z-component of the vorticity for the uniform K = 1, uniform
K = 3, and adaptive K = 1− 3 computations based on the vorticity magnitude indicator for
the SD 7003 airfoil with Re = 10000 and M = 0.2.
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Figure 5.21. Drag and lift coefficient profiles of uniform and adaptive simulations for the SD
7003 airfoil with Re = 10000 and M = 0.2.
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Chapter 6

Polynomial Adaptation for Moving and

Deforming Domains

A large number of engineering applications involve moving and deforming domains, such as

wind turbines, dynamic stall prediction, or deploying slats, flaps, and landing gear. These

applications benefit from high-fidelity unsteady solution techniques, such as LES and DNS.

As mentioned in previous chapters, it has been demonstrated previously that high-order

unstructured spatial discretizations methods such as the discontinuous Galerkin [109, 110,

111], spectral volume [50], spectral difference [112], and flux reconstruction approaches [53]

are particularly appealing for scale-resolving LES/DNS simulations of unsteady turbulent

flows [41, 113, 114, 115, 116], and that they are particularly well-suited for modern many-core

hardware architectures [47, 117, 118]. Furthermore, since they use an element-wise polynomial

representation of the solution and are able to obtain arbitrarily high-order accuracy on mixed-

element unstructured meshes, they are suitable for p-adaptation. This being said, in the

current work, we are specifically interested in element-wise polynomial representations of

the flow using the FR approach, owing to the fact that such a representation allows us

to dynamically adapt the degree of the solution polynomial simultaneously increasing the

local resolution of an element and its order of accuracy without requiring any complex

mesh splitting operations, inherent to h-adaptation. FR approaches have been developed

for moving and deforming domains with uniform polynomial degrees [119, 120]; however, in
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the case of moving and deforming domains, it is particularly appealing to be able to locally

increase or decrease the number of DOF to maximize accuracy and, simultaneously, reduce

computational cost.

The implementation of the ALE form of the Navier-Stokes equations was verified earlier in

Chapter 5. In this chapter, we explore the utility of the novel non-dimensional vorticity-based

indicator for p-adaptation for a range of applications on moving and deforming domains. The

rest of this chapter is organized as follows. In Section 6.1 we validate the adaptation algorithm

by studying the cross-flow over an oscillating cylinder with two different configurations. We

continue validation by studying dynamic stalls of a 2D NACA 0012 airfoil, in Section

6.2. Furthermore, we demonstrate the performance of the adaptation routine in a real-life

application on moving and deforming domains by studying a vertical axis wind turbine

composed of two NACA 0012 airfoils in Section 6.3. Finally, we present conclusions in Section

6.4.

6.1 Oscillating Circular Cylinder

6.1.1 Introduction

Cross-flow over an oscillating circular cylinder is considered to illustrate the effectiveness of

the vorticity-based polynomial adaptation technique on moving domains. This problem has

been the focus of several previous studies, for example, Sarpkaya [121] and Bearman [122] who

studied the Vortex-Induced Vibration (VIV) of bluff bodies, an oscillation excited by the lift

fluctuations due to asymmetric vortices formed around a body interacting with a flow. Bishop

and Hassan [123] studied the forced oscillation of a cylinder in a water channel. Williamson

and Roshko [6] extended the previous works by studying forced cross-flow oscillation of a

circular cylinder for a wide range of amplitude and frequency to investigate different vorticity

patterns. Blackburn et al. [124] studied the wake structures of two-dimensional flows past

a cylinder for Re = 500 for a range of oscillation frequencies close to the natural shedding

frequency of the fixed cylinder. Guilmineau et al. [125] studied the vorticity patterns of a

two-dimensional forced-oscillating cylinder in a uniform flow at Re = 185 for a range of
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excitation frequencies.

When a bluff body oscillates in the cross-flow direction by means of a driven force, the

oscillation frequency fe can synchronize with the vortex shedding frequency fs to form the

lock-in regions [6]. Williamson and Roshko mapped the lock-in regions based on different

amplitude ratios A/D and wavelength ratios λ/D, where A is the oscillation amplitude, D

is the cylinder diameter, and λ is the wavelength of the corresponding oscillation function

defined as λ = feU∞. The wavelength ratio correlates with Te/Ts as

Te

Ts

= St

(
λ

D

)
, (6.1)

where Te = 1/fe is the excitation or oscillation period, Ts = 1/fs is the vortex shedding

period, and St = Dfs/U∞ is the Strouhal number. The constructed A-λ plane mapping the

synchronization patterns is shown in Figure 6.1, where the critical curve separates different

modes of vortex formation. Williamson and Roshko categorized the vortex patterns in the

wakes based on a combination of Single vortex S and vortex Pair P . Hence a P + S vortex

mode is a pattern where a single vortex and a vortex pair are shed at each oscillation cycle.

Since the transition happens from one mode to another mode when getting close to the

critical curve, an oscillation with a set of amplitude and wavelength close to the transition

can result in an unrecognizable pattern. Different vortex modes are shown in Figure 6.2.

Major vortex patterns observed by Williamson and Roshko near the lock-in region are 2S,

2P , and P + S modes, where the 2S is the natural Karman vortex shedding. They mapped

the vortex patterns based on the assumption that St = 0.2. This is how the Te/Ts axis is

related to the λ/D axis in Figure 6.1. Although ideally, the A-λ plane should be constructed

for different Reynolds numbers, Williamson’s assumption to set St = 0.2 seems to be precise

enough for all Re < 10000. Furthermore, Williamson and Roshko observed that the defined

boundary between 2P and P + S modes in Figure 6.1 holds true for 300 < Re < 1000, and

for Re < 300, the P + S mode occurred instead of the 2P mode.
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Figure 6.1. Map of vortex synchronization patterns near the fundamental lock-in region [6].
S represents a single vortex, P denotes a vortex pair, and P + S indicates combination of a
vortex pair and a single vortex shed at each oscillation cycle.

6.1.2 Computational Details

In this section, we study the forced-oscillation of a circular cylinder with two different sets of

parameters to create different vortex patterns. In the case of a circular cylinder oscillating

transversely in the free stream, the coordinates of the center of the cylinder are defined as

x(t) = 0,

y(t) = A cos (2πfet) ,
(6.2)

where A and fe are the oscillating amplitude and excitation frequency respectively, which

are non-dimensionalized by the cylinder diameter D and the fixed-cylinder vortex shedding
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Figure 6.2. Schematic of major vortex patterns observed near the fundamental lock-in region
adapted from Williamson and Roshko [6]. The dashed circle shows the vortices shed in one
complete oscillation cycle.

frequency fs = StU∞/D, known also as the Strouhal frequency. The Reynolds number is

defined as Re = ρU∞D/µ. The location function y(t) is defined as a cosine function so that

the velocity function will be a sine function. This prevents a high velocity at the onset of

simulation. A two-dimensional computational domain, with its origin at the center of the

cylinder, consisting of 2668 quadrilateral elements moderately refined in the near-cylinder

and wake regions was used with Riemann invariant boundary conditions at the far-field and a
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Table 6.1. Numerical values of C̄D, CLrms, and St for a fixed circular cylinder at Re = 185.

Scheme C̄D CLrms St
Current study, K = 5 1.333 0.4489 0.1928
Guilmineau et al. [125] Mesh=120× 100 1.287 0.443 0.195
Numerical results Lu and Dalton (1996) [127] 1.31 0.422 0.195
“Universal” Strouhal Williamson (1988) [126] - - 0.193

no-slip adiabatic wall boundary condition at the surface of the cylinder. The domain extends

to 40D above, below, and upstream of the cylinder, and 80D downstream, as shown in

Figure 6.3. Quadratically curved elements were used at the boundaries to match the cylinder

geometry. The mesh is initially partitioned over 96 processors using METIS [102], and MPI

is used for parallel communication [99]. Simulations are performed with two different flow

settings, both with the Mach number set to M = 0.1, to validate the ALE implementation

and the algorithm’s ability to reduce the global DOF count.

6.1.3 Numerical Results

2S Vortex Mode

The first case is carried out at Re = 185, A/D = 0.2, and fe/fs = 1.1 to recover the

results of Guilmineau et al. [125]. The total simulation time is set to 400tc, where tc = D/U∞

is the time required for the flow to traverse one cylinder diameter. Time integration is

carried out with the classical RK4,4 scheme, and the non-dimensional time step is set to

∆t∗ = ∆tU∞/D = 2.5 × 10−4. We first find the static Strouhal number by running a

preliminary simulation of flow past a fixed cylinder at Re = 185. Then, using fs and the

frequency ratio fe/fs, we find the cylinder oscillation frequency fe. Table 6.1 shows the results

for the fixed cylinder at Re = 185, results from previous studies, and the "Universal" Strouhal-

Reynolds number relation given by Williamson [126], which shows excellent agreement. This

also shows that Williamson’s assumption to set St = 0.2 for the mentioned range of Re is

acceptable.

Using the fixed-cylinder vortex shedding frequency fs, we specify the excitation frequency

from fe/fs = 1.1. In order to validate the utility of the adaptation algorithm, six simulations

are performed, five uniform simulations with solution polynomials of degree K = 1 to K = 5,
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Figure 6.3. Circular cylinder quadrilateral structured mesh with 2668 elements.
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Figure 6.4. Polynomial distribution for the adaptive computation (K = 1− 5) based on the
vorticity magnitude indicator at the time corresponding to maximal lift for the oscillating
circular cylinder with Re = 185, A/D = 0.2, and fe/fs = 1.1.

and one adaptive simulation with parameters Km, ϵ, and ϑ1:5 set to 5, 6.25 × 10−3, and

[0.25, 0.25, 1, 4, 16] respectively. The adaptation routine is called every 10 iterations. Results

are compared in terms of mean drag coefficient C̄D, root mean square of the lift coefficient

CLrms, root mean square of the drag coefficient CD rms, Strouhal number St, and the average

total number of degrees of freedom DOF , where the lift and drag coefficients are defined as

CL =
2FL

ρ∞U2
∞L

,

CD =
2FD

ρ∞U2
∞L

,

(6.3)

where L is the characteristic length which, for this case study, is taken to be the cylinder

diameter D. The average and the root mean square (rms) value of any time dependant

variable v(t) over a time interval Tint = tn − t1 are defined as

v̄ =
1

n

tn∑
t1

v(t),

vrms =

√√√√ 1

n

tn∑
t1

(v(t)2 − v̄2)

(6.4)
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(a) Velocity field for K = 1.

(b) Velocity field for K = 5.

(c) Velocity field for K = 1− 5.

0.0 0.5 1.0 1.5 2.0

Non-dimensional Velocity Magnitude

Figure 6.5. Non-dimensional velocity magnitude for the uniform K = 1, uniform K = 5,
and adaptive K = 1 − 5 computations based on the vorticity magnitude indicator for the
oscillating circular cylinder with Re = 185, A/D = 0.2, and fe/fs = 1.1.
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(a) Vorticity field for K = 1.

(b) Vorticity field for K = 5.

(c) Vorticity field for K = 1− 5.

−5.0 −2.5 0.0 2.5 5.0

Non-dimensional Vorticity Z-Component

Figure 6.6. Non-dimensional z-component of the vorticity for the uniform K = 1, uniform
K = 5, and adaptive K = 1− 5 computations based on the vorticity magnitude indicator for
the oscillating circular cylinder with Re = 185, A/D = 0.2, and fe/fs = 1.1.
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respectively, and the Strouhal number is defined as

St =
fsD

U∞
(6.5)

where fs is the shedding frequency of the dominant vortices in the wake. Figure 6.4 shows

the polynomial degree distribution for the five-level adaptive simulation (K = 1 − 5). As

mentioned earlier, elements with large vorticity magnitudes relative to the effective mesh

resolution are adapted to higher-degree polynomials. It is evident that most of the K = 5

and K = 4 elements are employed where the vorticity magnitude is maximal relative to the

element size, which illustrates high-order elements track vorticity behind the cylinder. The

K = 3 and K = 2 elements occur further downstream, out of the wake region, leaving the

far-field region for K = 1 elements. This verifies that the algorithm successfully tracks the

location of elements with large vorticity magnitude relative to their element size. Figure 6.5

shows contours of non-dimensional velocity magnitude at the time of maximal lift for uniform

K = 1, uniform K = 5, and adaptive K = 1 − 5. While we observe large inter-element

jumps in the flow solution of the uniform K = 1 simulation, the flow solution is smooth

for the uniform K = 5 and adaptive K = 1− 5 simulations. Figure 6.6 shows contours of

non-dimensional spanwise vorticity at the time of maximal lift for uniform K = 1, uniform

K = 5, and adaptive K = 1 − 5, where vorticity is defined as ω = ∇× u. Observing the

vortex pattern, we see a von Karman vortex street defined as the 2S mode. Comparing the

vortex pattern for A/D = 0.2 and Te/Ts = fs/fe ≈ 0.91 against Williamson’s vortex map,

we can see the pattern sits in the 2S mode region close to a critical curve, which validates

the ALE implementation and the computer code. Furthermore, comparing these results

confirms that the five-level adaptive simulation qualitatively provides satisfactory resolution

in the near-cylinder and the wake regions, while requiring fewer degrees of freedom. To

further evaluate the accuracy of the adaptive method, we turn to Table 6.2, which reports

the numerical values of C̄D, CLrms, CD rms, St, and the average total number of degrees of

freedom DOF for all uniform simulations and the five-level adaptive simulation and compares

them with results from Guilmineau et al. [125]. These results quantitatively show agreement

within 0.03%, 0.21%, and 0.30% in the C̄D, CD rms, and CLrms values respectively between
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Table 6.2. Numerical values of C̄D, CLrms, CD rms, St, DOF , and error percent for the
oscillating circular cylinder at Re = 185 with A/D = 0.2 and fe/fs = 1.1.

Degree C̄D CD rms CLrms St εC̄D
εCDrms

εCLrms
DOF

K = 1 1.2872 0.0720 0.7685 0.2121 8.09% 49.22% 13.93% 10672
K = 2 1.3784 0.1411 0.8822 0.2120 1.58% 0.49% 1.20% 24012
K = 3 1.4065 0.1444 0.8916 0.2120 0.43% 1.83% 0.15% 42688
K = 4 1.4001 0.1414 0.8928 0.2120 0.03% 0.28% 0.01% 66700
K = 5 1.4005 0.1418 0.8929 0.2120 - - - 96048
K = 1− 5 1.4009 0.1421 0.8902 0.2119 0.03% 0.21% 0.30% 27816
Guilmineau 1.420 0.149 0.897 0.24 - - - -
et al. [125]
Mesh=240× 200

the adaptive and uniform K = 5 simulations, while the adaptive simulation requires 3.45

times fewer degrees of freedom. Figure 6.7 compares the lift and drag coefficient plots of our

adaptive simulation with the results of Guilmineau et al. [125], and Figure 6.8 compares the

lift and drag coefficient plots of the uniform and adaptive simulations, which show excellent

agreement.

P + S Vortex Mode

The effect of the amplitude and frequency of the oscillation on the vortex shedding modes

has been studied previously [6]. To validate the ability of the adaptation algorithm to capture

more complex shedding modes, a different set of oscillation amplitude and frequency are

selected to produce the P + S wake mode, with Re = 200, A/D = 1, and fe = 0.0193.

Unlike the previous case, we have directly selected the excitation frequency, hence there is

no need to find the static Strouhal number by running an extra simulation for the fixed

cylinder. As in the previous case, a p-refinement study with five uniform simulations with

solution polynomials of degree K = 1 to K = 5, and a five-level adaptive simulation with

the same adaptation parameters are performed. The mesh, boundary conditions, total

simulation time, time integration scheme, and non-dimensionalized time step are the same as

in the first case. Results are compared again in terms of mean drag coefficient C̄D, CLrms,

CD rms, Strouhal number St, and the average total number of degrees of freedom DOF .

Figure 6.9 shows the polynomial degree distribution of the five-level adaptive simulation

(K = 1 − 5), which confirms that the algorithm successfully tracks elements with large
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Figure 6.7. Drag and lift coefficient profiles of the adaptive and reference simulations performed
by Guilmineau et al. for the oscillating circular cylinder with Re = 185, A/D = 0.2, and
fe/fs = 1.1.
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Figure 6.8. Drag and lift coefficient profiles of uniform and adaptive simulations for the
oscillating circular cylinder with Re = 185, A/D = 0.2, and fe/fs = 1.1.
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Table 6.3. Numerical values of C̄D, CLrms, CD rms,St, DOF , and error percent for the
oscillating circular cylinder at Re = 200 with A/D = 1 and fe = 0.0193.

Degree C̄D CD rms CLrms St εC̄D
εCDrms

εCLrms
DOF

K = 1 1.9981 0.7700 1.0417 0.1632 1.32% 7.24% 6.85% 10672
K = 2 2.0135 0.8239 1.0772 0.1632 0.56% 0.75% 3.68% 24012
K = 3 2.0194 0.8276 1.1119 0.1632 0.27% 0.30% 0.57% 42688
K = 4 2.0251 0.8304 1.1186 0.1632 0.01% 0.04% 0.03% 66700
K = 5 2.0249 0.8301 1.1183 0.1632 - - - 96048
K = 1− 5 2.0240 0.8302 1.1190 0.1632 0.04% 0.01% 0.06% 30864

vorticity magnitude relative to element size behind the cylinder. Figure 6.10 shows contours

of non-dimensional velocity magnitude at the time of maximal lift for uniform K = 1, uniform

K = 5, and adaptive K = 1 − 5. The flow solution is smooth for the uniform K = 5

and adaptive K = 1 − 5 simulations, and large inter-element jumps are not observed in

the adaptive simulation. Figure 6.11 shows the non-dimensionalized z-component of the

vorticity field at the time of maximal lift for uniform K = 1, uniform K = 5, and adaptive

K = 1− 5. Comparing these confirms that the five-level adaptive simulation qualitatively

provides satisfactory resolution in the boundary layer and the wake region while requiring

fewer degrees of freedom. Additionally, based on A/D = 1 and Te/Ts = fs/fe ≈ 1.23 1, the

vortex mode must be P + S 2 from Williamson’s vortex map. We see that our results also

show a P + S vortex mode, which validates the ALE implementation and the computer

code in capturing more complex shedding modes. Table 6.3 reports quantitative values of

the p-refinement study and the adaptive simulation, which shows the adaptive simulation

quantitatively agrees with the uniform K = 5 simulation within 0.04%, 0.01%, and 0.06%

numerical error in the C̄D, CD rms, and CLrms values respectively, while requiring 3.11 times

fewer degrees of freedom. In order to better observe the required DOF, we can turn to Figure

6.12 which compares the mean number of degrees of freedom for the uniform and adaptive

simulations for both oscillating cylinder cases. This shows that the adaptive simulation

consistently requires significantly fewer degrees of freedom for comparable levels of accuracy.
1Based on Williamson’s assumption of St = 0.2 which gives Ts ≈ 42.26 from Ts = D/StU∞.
2For Re < 300, P + S vortex mode appears instead of the 2P mode.
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Figure 6.9. Solution polynomial distribution for the adaptive computation (K = 1− 5) based
on the vorticity magnitude indicator at the time of maximal lift for the oscillating circular
cylinder with Re = 200, A/D = 1, and fe = 0.0193.

6.2 2D Dynamic Stall of a NACA 0012 Airfoil

6.2.1 Introduction

Static stall happens when the flow separates from the wing due to a high angle attack.

This causes a sudden decrease in the lift, which in the case of an aircraft, means losing

altitude with the nose up. The angle at which stall happens depends on the wing geometry

and varies for different airfoils. Dynamic stall, on the other hand, occurs when an airfoil

undergoes a rapid pitch manoeuvre and produces high lift for a short time interval, followed

by a sudden drop [128]. The high lift, which is caused by the formation of a Leading-Edge

Vortex (LEV) due to the pitch manoeuvre, plateaus as the LEV traverses along the airfoil.

As soon as the vortex passes the trailing edge, the airfoil suffers a dramatic decrease in lift

and a stall happens. This is typical of fixed-wing aircraft. However, flapping wings can

create a second LEV before the first vortex passes the trailing edge. This way the high lift

period continues which prevents the wing from stalling. In fact, the leading-edge vortex has

been identified as the main lift enhancing mechanism of flapping wings, which is produced

consecutively in each stroke and prevents the wing from stalling [129]. This phenomenon,

with the recent development of micro air vehicles, has attracted numerous authors to study
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(a) Velocity field for K = 1.

(b) Velocity field for K = 5.

(c) Velocity field for K = 1− 5.
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Figure 6.10. Non-dimensional velocity magnitude for the uniform K = 1, uniform K = 5,
and adaptive K = 1 − 5 computations based on the vorticity magnitude indicator for the
oscillating circular cylinder with Re = 200, A/D = 1, and fe = 0.0193.
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(a) Vorticity field for K = 1.

(b) Vorticity field for K = 5.

(c) Vorticity field for K = 1− 5.
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Figure 6.11. Non-dimensional z-component of the vorticity for uniform K = 1, uniform
K = 5, and adaptive K = 1− 5 computations based on vorticity magnitude indicator for the
oscillating circular cylinder with Re = 200, A/D = 1, and fe = 0.0193.
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Figure 6.12. Degrees of freedom profiles for the uniform and adaptive simulations for the
oscillating circular cylinder with Re = 185, A/D = 0.2, fe/fs = 1.1 on the top, and with
Re = 200, A/D = 1, and fe = 0.0193 on the bottom.
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2D airfoils undergoing pure heaving or pitching motions [130, 131, 132, 133, 134, 135], where

the effect of leading and trailing edge vortices are of interest.

6.2.2 Computational Details

In this section, a 2D NACA 0012 airfoil undergoing both heaving and pitching motions with

a phase shift at a low Reynolds number is studied in order to validate the performance of the

vorticity-based polynomial adaptation technique for moving and deforming domains at low

Reynolds numbers. The translation of the coordinates of the center of oscillation and the

pitching function are defined as

x(t) = 0,

y(t) = A cos (2πfet) ,

θ(t) = θ0 + θe cos(2πfet+ ϕe),

(6.6)

where A is the heaving oscillating amplitude, which is non dimensionalized by the airfoil

chord length, fe is the excitation frequency which is defined in terms of the reduced frequency

fK = πfec/U∞, θ0 is the mean pitch angle value, θe is the pitch amplitude, and ϕe is the

phase shift between the heaving and pitching motions. The airfoil effective angle of attack

αe(t) is defined as

αe(t) = θ(t)− tan−1

(
y

′
(t)

U∞

)
. (6.7)

Figure 6.13 shows plots of vertical location y(t), vertical velocity y
′
(t), pitching angle θ(t),

and the effective angle of attack for one cycle. The oscillation functions are defined as a

cosine function to prevent a large velocity at the onset of simulations. The pitching motion

used here is a rotation about the center of pressure, xcp, which, for the NACA 0012, is located

0.25c from the leading edge. The Reynolds number is defined as Re = ρU∞c/µ, where c is the

airfoil chord. A two-dimensional computational domain, with its origin at the leading edge,

consisting of 2722 unstructured quadrilateral and triangular elements, moderately refined

near the trailing and leading edges was used with Riemann invariant boundary condition at

the far-field and a no-slip adiabatic wall boundary condition at the surface of the airfoil. The

domain extends to 12.5c above, below, and upstream of the airfoil, and 25c downstream, as
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Figure 6.13. Plots of vertical location y(t), vertical velocity y
′
(t), oscillation pitch angle

θ(t), and effective angle of attack αe(t) for the pitching and heaving NACA 0012 airfoil with
A/D = 1, Te = 4.44c/U∞, θ0 = 10◦, θe = 30◦ and ϕe = 90◦. Dashed lines show the location
of t = 1Te/4, t = 2Te/4, and t = 3Te/4.

shown in Figure 6.14. Quadratically curved elements were used at the boundaries to match

the airfoil geometry. The mesh is initially partitioned over 96 processors using METIS [102],

and MPI is used for parallel communication [99].

Simulations were carried out at Re = 1000, M = 0.1, A/c = 1, fK = 0.708, resulting

in a period of oscillation of Te = 4.44c/U∞, θ0 = 10◦, θe = 30◦, and ϕe = 90◦ in order

to reproduce the results of Moriche et al. [7], who studied the effect of the mean pitch

angle and phase shift between the heaving and pitching motions on the aerodynamic forces.

The total simulation time is set to 200tc which was sufficient for subsequent cycles to show

nearly identical behaviour where, in this case, tc is the time required for the flow to traverse

one airfoil chord. Time integration is carried out with the two-stage second order singly

diagonally implicit Runge–Kutta scheme, SDIRK2,2, with a non-dimensional time step of

∆t∗ = ∆tU∞/D = 2.5 × 10−3. As in the previous section, six simulations, including five
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Figure 6.14. The NACA 0012 unstructured mesh with 2722 quadrilateral and triangular
elements. Dimensions are given in multiples of the airfoil chord length.
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Figure 6.15. Polynomial distribution for the adaptive computation (K = 1− 5) based on the
vorticity magnitude indicator at the time corresponding to maximal lift for the pitching and
heaving NACA 0012 airfoil with Re = 1000, A/D = 1, T = 4.44c/U∞, θ0 = 10◦, θe = 30◦

and ϕe = 90◦.
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uniform simulations with solution polynomials of degrees K = 1 to K = 5, and a five-level

adaptive simulation, have been performed to validate the utility of the adaptation algorithm.

The adaptation parameters Km, ϵ, and ϑ1:5 are set to 5, 6.25× 10−3, and [0.25, 0.25, 1, 4, 16]

respectively. The adaptation routine is called every 10 iterations.

6.2.3 Numerical Results

Results are compared in terms of C̄D, CD rms, mean lift coefficient C̄L, CLrms, Strouhal number

St, and the mean number of degrees of freedom DOF , where the lift and drag coefficients

and their mean and rms values are defined as in Equations 7.1 and 6.4. Figure 6.15 shows

the polynomial degree distribution for the five-level adaptive simulation (K = 1− 5). As in

the previous cases, this verifies that the algorithm successfully tracks elements with large

vorticity magnitude relative to their size. A blending function is defined, using Algorithm 3,

to limit the mesh movement to within a maximal radius and avoid complete deformation

of the domain while the airfoil heaves and pitches, where x is the location of any point on

the mesh, rx is the distance of the point from the mesh origin, rmin and rmax are constants

that control the mesh deformation, which are defined in a way to prevent zero element

volume when the mesh is deformed to its maximum level, fb is the blending function, vg

is the local mesh velocity, and vf is the velocity induced by the oscillating function. The

shape of the deformed mesh and contours of non-dimensional spanwise vorticity are shown in

Figure 6.16 for four instants of 0Te/4, 1Te/4, 2Te/4, and 3Te/4, which compares qualitative

results obtained by this study with the previous work of Moriche et al. [7]. Figure 6.17

shows contours of non-dimensional velocity magnitude at the time of maximal lift for uniform

K = 1, uniform K = 5, and adaptive K = 1− 5. While we observe large inter-element jumps

in the flow solution of the uniform K = 1 simulation, the flow solution is smooth for the

uniform K = 5 and adaptive K = 1− 5 simulations. Figure 6.18 shows contours of spanwise

vorticity at the instant of maximal lift non-dimensionalized by the stream velocity for uniform

K = 1, uniform K = 5, and adaptive K = 1− 5. Comparing these plots confirms that the

five-level adaptive simulation qualitatively provides satisfactory resolution in the trailing

and leading edges, as well as the wake region while requiring fewer degrees of freedom. To

further evaluate the accuracy of the adaptive method, we turn to Table 6.4 which reports the
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numerical values of C̄D, CD rms, C̄L, CLrms, St, and the mean number of degrees of freedom

DOF for all simulations, in comparison with the previous study of Moriche et al. [7]. These

results show agreement within 0.46%, 0.03%, 0.04%, and 0.32% in the C̄D, CD rms, C̄L, and

CLrms values respectively between the adaptive and uniform K = 5 simulations, while the

former requires 2.45 times fewer degrees of freedom.

Compute rx for any x;
while rx ̸= null do

fb = 0.5 cos((rx − rmin)π/(rmax − rmin)) + 0.5;
if r ≤ rmin then

vg = vf ;
else if rmin < rx ≤ rmax then

vg = fbvf ;
else

vg = 0;
end

end
Algorithm 3: Blending function for polynomial adaptation.

Figure 6.19 compares the lift and drag coefficient plots of our uniform K = 5 simulation

with the B090 case produced by Moriche at. al [7], where the dashed lines show the instants

of t = 1Te/4 = 196.47, t = 2Te/4 = 197.58, t = 3Te/4 = 198.69. Comparing these results

shows good agreement with the reference data. Furthermore, we observe two peaks of lift

coefficient, one positive, and one negative, slightly after t = 1Te/4 and t = 3Te/4 accordingly.

These are where the vertical velocity y
′
(t) and effective angle of attack αe are maximum.

Table 6.4. Numerical values of C̄D, CD rms, C̄L,CLrms, St, DOF , and error percent for the
oscillating NACA 0012 at Re = 1000 with A/D = 1, Te = 4.44c/U∞, θ0 = 10◦, θe = 30◦ and
ϕe = 90◦.

Degree C̄D CD rms C̄L CLrms St εC̄D
εCDrms

εC̄L
εCLrms

DOF
K = 1 -0.7207 0.9659 1.7715 2.8428 0.2252 0.87 1.83 1.49 0.39 10609
K = 2 -0.7110 0.9528 1.7650 2.8610 0.2252 0.49 0.45 1.12 0.25 23661
K = 3 -0.7153 0.9509 1.7517 2.8578 0.2252 0.11 0.25 0.36 0.14 41878
K = 4 -0.7148 0.9482 1.7463 2.8545 0.2252 0.04 0.03 0.05 0.02 65260
K = 5 -0.7145 0.9485 1.7455 2.8538 0.2252 - - - - 93807
K = 1− 5 -0.7112 0.9482 1.7448 2.8446 0.2252 0.46 0.03 0.04 0.32 38198
Moriche -0.7245 0.9224 1.5507 2.7743 0.2252 - - - - -
B090 [7]
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Figure 6.16. Contours of spanwise vorticity of the B090 case from Moriche et al. [7] (a,
d, g, and j) [reproduced with permission from Cambridge University Press], of the K = 5
deforming mesh NACA 0012 case (b, e, h, and k), along with the mesh deformation (c, f, i,
and l) at four time instants.
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(a) velocityelocity field for K = 1.

(b) Velocity field for K = 5.

(c) Velocity field for K = 1− 5.

0.0 1.0 2.0 3.0 4.0

Non-dimensional Velocity Magnitude

Figure 6.17. Non-dimensional velocity magnitude for the uniform K = 1, uniform K = 5,
and adaptive K = 1 − 5 computations based on the vorticity magnitude indicator for the
heaving and pitching NACA 0012 airfoil with Re = 1000, A/D = 1, Te = 4.44c/U∞, θ0 = 10◦,
θe = 30◦ and ϕe = 90◦.
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(a) Vorticity field for K = 1.

(b) Vorticity field for K = 5.

(c) Vorticity field for K = 1− 5.

−15.0 −7.5 0.0 7.5 15.0

Non-dimensional Vorticity Z-Component

Figure 6.18. Non-dimensional z-component of the vorticity for uniform K = 1, uniform
K = 5, and adaptive K = 1− 5 computations based on vorticity magnitude indicator for the
heaving and pitching NACA 0012 airfoil with Re = 1000, A/D = 1, Te = 4.44c/U∞, θ0 = 10◦,
θe = 30◦ and ϕe = 90◦.
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Figure 6.20 compares the lift and drag coefficient plots of uniform and adaptive simulations.

In order to understand the physics of dynamic stall and the effect of leading-edge vortex on

aerodynamic forces, namely lift and drag, in Figure 6.21, we illustrate contours of spanwise

vorticity at several instants of a cycle starting from a minimum lift value, continuing to the

maximum lift value, and ending at the next minimum lift value. At the instant a, the lift

coefficient is negative since the effective angle of attack is negative αe = −14.77◦. The airfoil

is moving up to the highest plunge amplitude, which happens at instant d. Through a to

d, the airfoil is in the pre-stall region where the lift increases as αe increases. At instant e,

flow reversal begins. Although αe = 27.48 has exceeded the static stall angle of attack, the

airfoil has not stalled due to the formation of the LEV. Through instant f to i, where the

maximum lift happens, we can observe the LEV contributing to delaying stall and increasing

the lift. Furthermore, at instant g, we can also observe the formation of a vortex pair in

red. This vortex continues to grow as the airfoil approaches instant i, where it cuts the LEV

and causes it to detach from the airfoil. The separation of LEV causes the dynamic stall

at instant i, and the lift starts to decrease. The lift decreases dramatically until instant m,

where it plateaus because of formation of a second LEV. This vortex slows the lift decrease

until instant o. At this moment, a trailing edge vortex starts to form, which causes the lift to

decrease with a higher pace until it is shed at about instant r. The lift reaches its minimum

value when the secondary LEV has passed the trailing edge at the final instant, which also

causes the flow reattachment.

Figure 6.29 illustrates the required DOF by comparing the mean number of degrees of

freedom for uniform and adaptive simulations for the oscillating NACA 0012 airfoil, which,

again, shows the adaptive simulation consistently requires fewer degrees of freedom for

comparable levels of accuracy.

125



196 197 198 199
−3

−2

−1

0

1

t∗

C
D

Adaptive K = 1−5

Moriche et al.

196 197 198 199
−4

−2

0

2

4

6

8

t∗

C
L

Adaptive K = 1−5

Moriche et al.

Figure 6.19. Drag and lift coefficient profiles of the uniform K = 1 − 5 and the B090
case performed by Moriche et al. [7] for the oscillating NACA 0012 airfoil with Re = 1000,
A/D = 1, Te = 4.44c/U∞, θ0 = 10◦, θe = 30◦ and ϕe = 90◦. Dashed lines correspond to
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Figure 6.20. Drag and lift coefficient profiles of the uniform and adaptive simulations for the
oscillating NACA 0012 airfoil with Re = 1000, A/D = 1, Te = 4.44c/U∞, θ0 = 10◦, θe = 30◦
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Figure 6.21. Contours of spanwise vorticity (left), lift coefficient (middle), effective angle of
attack (top-right), and airfoil vertical velocity (bottom-right) at several time instants for the
oscillating NACA 0012 airfoil with Re = 1000, A/D = 1, Te = 4.44c/U∞, θ0 = 10◦, θe = 30◦

and ϕe = 90◦.
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Figure 6.22. Degrees of freedom profile of the uniform and adaptive simulations for the
oscillating NACA 0012 airfoil with Re = 1000, A/D = 1, Te = 4.44c/U∞, θ0 = 10◦, θe = 30◦

and ϕe = 90◦.

6.3 2D Vertical Axis Wind Turbine

6.3.1 Introduction

While the previous validation cases demonstrated the ability of the non-dimensional vorticity

indicator for relatively simple applications, real-life applications often deal with multiple

moving objects. Thus, the vortices shed from one object can interact with others. Con-

sequently, dynamically adapting the entire domain would be vital for accurate numerical

results. To demonstrate this, a two dimensional VAWT composed of two NACA 0012 airfoils

is considered. This straight-bladed vertical-axis wind turbine was previously built and tested

in a tow tank by Strickland et al. [1, 9, 136]. The airfoil chord length and blade tip speed

were chosen to yield a blade Reynolds number of Reb = 40, 000. Kanner et al. [8] have

performed a numerical study based on the same VAWT model. They concluded that their

numerical results can accurately approximate the experimental data at higher Tip Speed
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Ratios (TSR) [8], λb, where λb is defined as

λb =
Ublade

U∞
. (6.8)

Consequently, among the three different TSR of 2.5, 5, and 7.5 in the experimental study,

the TSR of 7.5 is chosen here for our numerical simulation. In the experimental study, the

center of pressure xcp of the blades, which is at the quarter-chord of the NACA 0012 airfoils,

was located at a radius of Rb = 0.61m from the center of the wind turbine, the chord length

of each blade was c = 9.14cm, and the blade offset pitch angle was set to α0 = 0◦. Kanner et

al. [8] used a similar attachment angle of α0 = −2 for their numerical results based on possible

alignment uncertainty in the experiments. To compare against the original experimental

study of Strickland et al. [1, 9, 136] and the numerical results of Kanner et al. [8], we run

two sets of simulations using α0 = 0 and α0 = −2.

6.3.2 Computational Details

All simulations are carried out at a free-stream Reynolds number of Re = 5333, in order

to produce a blade Reynolds number of 40,000, when λb = 7.5, and the Mach number is

set to M = 0.025. A two-dimensional computational domain with a radius of 50c , centred

at the origin of VAWT, consisting of 16081 unstructured quadrilateral elements moderately

refined near the blades was used, as shown in Figure 6.23, with Riemann invariant boundary

condition at the far-field, periodic boundary condition in the blades span-wise direction,

and a no-slip adiabatic wall boundary condition at the surface of blades. Quadratically

curved elements were used at the boundaries to match the airfoil geometry. The mesh is

initially partitioned over 120 processors using METIS [102], and MPI is used for parallel

communication [99].

A ramp-up motion is used at the onset of simulations to increase the angular veloc-

ity gradually. The ramp-up angular displacement and angular velocity are defined as

θr(t) = 0.5ω̂t2/1000∆t∗ and ωr(t) = ω̂t/1000∆t∗, respectively. Hence, the angular velocity

incrementally reaches the required value in 1000 simulation iterations, where ω̂ is the required

VAWT angular velocity, t is time, is ∆t∗ is the non-dimensional time step. Since the experi-
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(a) Complete view of the first blade, on the bottom, and the
second blade on the top.

(b) Close-up view of the second blade

Figure 6.23. Straight-bladed, NACA0012, Vertical-axis wind turbine unstructured mesh
with 16081 quadrilateral elements and α0 = 0◦ captured at its first-quarter turn at the time
corresponding to θ = 90◦.

mental results are reported for a blade at its fourth revolution, the total simulation time is

set as the time required for the VAWT to complete 4 cycles. The first cycle starts when the

second blade passes θ = 270◦ after starting from θ0 = 0◦, and the fourth cycle ends when it

passes θ = 1710◦. The first three-quarter revolution of the simulation is not considered to

avoid errors due to initial transients and the ramp-up motion. Time integration is carried out
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with the three-stage third order singly diagonally implicit Runge–Kutta scheme, SDRIK3,3,

with a non-dimensional time step of ∆t∗ = ∆tU∞/c = 2.5×10−3. As in the previous cases, six

simulations, including five uniform simulations with solution polynomials of degrees k = 1 to

k = 5, and a five-level adaptive simulation, have been performed to validate the utility of the

adaptation algorithm. The adaptation parameters Km, ϵ, and ϑ1:5 are set to 3, 6.25× 10−3,

and [0.25, 0.25, 1, 4, 16] respectively. The adaptation routine is called every 20 iterations.

6.3.3 Numerical Results

Results are compared in terms of sectional tangential force coefficient CT , power coefficient

CP and the mean number of degrees of freedom DOF . The tangential force and power

coefficients are defined as

CT =
2FT

ρU2
∞c

,

CP = Nb
λb2Tq

ρRbAfU2
∞

= Nb
λbC̄T c

2Rb

,

(6.9)

where FT = Tq/Rb is the sectional tangential force on the blade, Tq is the torque contribution,

Af = 2R is the total projected frontal area of the rotor, and C̄T is the mean sectional

tangential force coefficient.

Figure 6.24 shows the polynomial degree distribution for the five-level adaptive simulation

(K = 1 − 5) with α0 = 0◦. As in the previous cases, this verifies that the p-adaptation

algorithm successfully tracks elements with large vorticity magnitude relative to their element

size in the boundary layer and wake region of each blade, as well as the downwind zone, where

the shed vortices from the blade in the upwind zone will interact with the downstream blade.

Figure 6.25 shows contours of non-dimensional spanwise vorticity in the fourth cycle, for

uniform K = 1, uniform K = 5, and adaptive K = 1− 5. Comparing these results confirms

that the five-level adaptive simulation qualitatively provides satisfactory resolution both in

the upwind and downwind zones, as well as the wake region of each blade, while requiring

fewer degrees of freedom.

Figure 6.26 compares the tangential force coefficient of the uniform K = 5 simulation

with α0 = −2◦ while the second blade makes its first revolution from 270◦ ≤ θ ≤ 630◦ after
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starting from θ0 = 0◦, against the numerical results of Kanner et al. [8], while Figure 6.27

compares the tangential force coefficient of the uniform K = 5 simulation with α0 = 0◦

when one of the blades completed its fourth revolution, against results from the experimental

data [1, 9, 136]. Based on phase correction reported by Strickland et al. [1] and Kanner et

al. [8], the experimental data has been shifted accordingly. The numerical results at α0 = −2◦

are almost identical, while Figure 6.27 shows a good agreement between the numerical and

experimental results α0 = 0◦. Strickland performed three experimental measurements of the

two-bladed wind turbine at a TSR of 7.5 [1], where the plots of tangential force coefficient

versus the rotor angle are included in Appendix B for all three runs. These plots show that

due to the complexity of the flow, a small perturbation in the initial conditions could result

in a slightly different force prediction in the subsequent revolutions.

Table 6.5 reports the numerical values of C̄T , CP , and DOF averaged over the fourth

cycle for all uniform simulations and the five-level adaptive simulation alongside analytical

results of Strickland et al. [136]. These results quantitatively show agreement within 5.89%

and 5.90% in the CT and CP values respectively between the adaptive and uniform K = 5

simulations, while the adaptive simulation requires 1.75 times fewer degrees of freedom.

Furthermore, the adaptive simulation quantitatively agrees with the analytical results within

8.57% in the CP value. Figure 6.28 compares the tangential force coefficient plots of the

uniform and adaptive simulations, which shows good agreement between the uniform K = 5

and adaptive K = 1− 5 simulations illustrating the capability of the adaptive simulations

to converge to a full high order result while requiring fewer degrees of freedom. To clarify

the difference between different polynomial degrees, the high-frequency noise is filtered from

the plots shown in Figure 6.28. Finally, Figure 6.29 compares the number of degrees of

freedom of the uniform and adaptive simulations for the vertical-axis wind turbine over four

cycles, which shows the adaptive simulation consistently requires fewer degrees of freedom

for comparable levels of accuracy.
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Figure 6.24. Polynomial distribution for the adaptive computation (K = 1− 5) based on the
vorticity magnitude indicator in the 4th revolution at the time corresponding to θ = 1620◦ for
the vertical-axis wind turbine composed of two NACA 0012 blades.

Table 6.5. Numerical values of CT , CP , and DOF averaged over the fourth cycle with related
error percent for the vertical-axis wind turbine composed of two NACA 0012 blades and
α0 = 0.

Degree CT CP εC̄T
εCP

DOF
K = 1 -1.1095 -1.2468 56.73% 56.73% 64324
K = 2 -0.8586 -0.9648 21.29% 21.28% 144729
K = 3 -0.6845 -0.7692 3.31% 3.31% 257296
K = 4 -0.6960 -0.7821 1.68% 1.68% 402025
K = 5 -0.7079 -0.7955 - - 578916
K = 1− 5 -0.7496 -0.8424 5.89% 5.90% 331648
Strickland et al. [136] - -0.7759 - - -

137



(a) Vorticity field for K = 1.

(b) Vorticity field for K = 5.
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(c) Vorticity field for K = 1− 5.

−10.0 −5.0 0.0 5.0 10.0

Non-dimensional Vorticity Z-Component

Figure 6.25. Non-dimensional z-component of the vorticity for the uniform K = 1, uniform
K = 5, and adaptive K = 1− 5 computations based on the vorticity magnitude indicator in
the 4th revolution at the time corresponding to θ = 1620◦ for the vertical-axis wind turbine
composed of two NACA 0012 blades.

6.4 Conclusion

We have explored the utility of our novel non-dimensional vorticity-based indicator for p-

adaptation on moving and deforming domains. This algorithm was validated for two classical

problems, specifically, a pair of oscillating circular cylinder configurations and a dynamic

stall of a heaving and pitching NACA 0012 airfoil. Results demonstrated that the adaptation

algorithm is capable of tracking salient flow features on deforming domains, such as the

boundary layer and unsteady wake regions. Qualitative results showed equivalent levels of

accuracy between the adaptive and high-order solutions, with a significant reduction in the

total number of degrees of freedom.

Finally, a practical test case of flow over a VAWT was considered. As in other test cases
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Figure 6.26. Tangential force coefficient profiles corresponding to the 1st cycle of the uniform
K = 5 simulation and the previous numerical study performed by Kanner et al. [8], for the
second blade of the vertical-axis wind turbine with α0 = −2.

−90 −45 0 45 90 135 180 225 270
−3

−2

−1

0

1

2

3

4

θ (degree)

C
T

Uniform K = 5, αo = 0

Strickland et al.

Figure 6.27. Tangential force coefficient profiles corresponding to the 4th cycle of the uniform
K = 5 simulation and the previous experimental study performed by Strickland et al. [1, 9],
for a blade of the vertical-axis wind turbine with α0 = 0.
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Figure 6.28. Tangential force coefficient profiles of the 4th cycle of the uniform and adaptive
simulations for the vertical-axis wind turbine composed of two NACA 0012 blades.
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Figure 6.29. Degrees of freedom profile over four cycles of the uniform and adaptive simulations
for the vertical-axis wind turbine composed of two NACA 0012 blades.
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it was observed that the adaptive simulations were able to track the boundary layer and

wake regions of each blade, and their subsequent interactions. Results from the adaptive

simulations also showed good quantitative agreement with parallel high-order simulations

and reference numerical, experimental, and analytical results.

Hence, the proposed non-dimensional vorticity-based adaptation indicator is a simple,

effective, and accurate approach for performing p-adaptation on moving and deforming

domains.

The next chapter will explore the extension of this indicator to three-dimensional problems

using LES, by performing dynamically load-balanced polynomial adaptation of transitional

and turbulent flows.

142



Chapter 7

Dynamically Load Balanced Polynomial

Adaptation of Turbulent Flows

The objective of this chapter is to further validate the efficiency of the load-balanced vorticity-

based adaptation algorithm when applied to three-dimensional unsteady transitional and

turbulent flows. Three-dimensional simulations typically require relatively a larger number

of degrees of freedom increasing the overhead caused by polynomial adaptation, hence p-

adaptation performance will be significantly decreased unless a DLB algorithm is applied

to repartition the mesh at run time. In this chapter, we use ILES without an explicit SGS

model, since, as explained earlier, it relies on the dissipation error of the numerical scheme to

dissipate the kinetic energy from the smallest turbulent scale in the flow. The rest of this

chapter is organized as follows. In Section 7.1, we validate the algorithm by studying shallow

dynamic stall of a three-dimensional SD 7003 airfoil undergoing heaving and pitching motions.

We then continue validation of the algorithm in the existence of turbulent transition and

turbulent wake flow by considering a three-dimensional circular cylinder at the onset of the

shear-layer transition regime in Section 7.2. Finally, we present conclusions in Section 7.3.
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7.1 3D Dynamic Stall of a SD 7003 Airfoil

7.1.1 Computational Details

In order to further verify the performance of the adaptation algorithm, a 3D SD 7003 airfoil

undergoing heaving and pitching motions at a moderately high Reynolds number is studied.

A three-dimensional computational domain, with its origin at the leading edge, consisting of

56000 structured hexahedral elements, moderately refined near the trailing and leading edges,

was used with Riemann invariant boundary condition at the far-field, periodic boundary

condition in the span-wise direction, and a no-slip adiabatic wall boundary condition at

the surface of the airfoil. The domain extends to 19c upstream, 20c above, below, and

downstream of the airfoil, and 0.4c in the span-wise direction, as shown in Figure 7.1, where

c is the airfoil chord. Quadratically curved elements were used at the boundaries to match

the airfoil geometry. The mesh is initially partitioned over 120 processors using METIS [102],

and MPI is used for parallel communication [99].

The translation of the coordinates of the center of oscillation and the pitching function are

defined as in Equation 6.6. Simulation were carried out at Re = 10000, M = 0.1, A/c = 0.5,

fK = 0.25 resulting in a period of oscillation of Te = 4π/U∞, θ0 = 8◦, θe = −8.42◦, and

ϕe = 90◦ in order to match the experimental study of Baik et al. [10] and Ol et al. [137], who

studied shallow and deep stall of SD 7003 airfoil in nominally two-dimensional conditions

for a range of Reynolds numbers. Shallow dynamic stall happens when the airfoil undergoes

pitching and heaving motions. On the other hand, deep dynamic stall happens when the

airfoil undergoes a pure heaving motion resulting in a relatively stronger leading-edge vortex.

The total simulation time is set to 8Te. This corresponds to ≈ 125tc, where, as in the previous

section, tc is the time required for the flow to traverse one airfoil chord. Time integration

was with the classical RK4,4 scheme, with a non-dimensional time step of ∆t∗ = 6.14× 10−5,

which is a fraction of the oscillation period. A three-level adaptive simulation was performed

to verify the utility of the adaptation algorithm and load balancing, which was achieved via

the adaptive repartitioning algorithm in ParMETIS [95]. The adaptation parameters Km,

ϵ, and ϑ1:5 are set to 3, 2.5× 10−1, and [0.25, 0.25, 1], respectively. The adaptation and the

DLB routines are called every 100 and 1000 iterations respectively.
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7.1.2 Numerical Results

We are interested in showing the efficiency of the load-balanced adaptation algorithm when

applied to three-dimensional test cases. Contours of non-dimensional velocity magnitude

are shown in Figure 7.5 for four instants of 0Te/4, 1Te/4, 2Te/4, and 3Te/4. Results show

that the adaptive simulation provides satisfactory resolution in the trailing and leading edges,

as well as the wake region. Figure 7.9 shows three-dimensional contours of the Q-criterion

colored by the velocity magnitude at the time instant of 1Te/4. The Q-criterion is the

second invariant of the velocity gradient tensor ∇v used to visualize vortical structure and is

defined as Q = 1/2(∥ Ω ∥2 − ∥ S ∥2) [138], where ∥ S ∥= tr(SST )1/2, ∥ Ω ∥= tr(ΩΩT )1/2,

Ω = 1/2(∂vi/∂xj − ∂vj/∂xi) is the antisymmetric component of ∇v, known as the vorticity

tensor, and S = 1/2(∂vi/∂xj + ∂vj/∂xi) is the symmetric component of ∇v, known as the

strain rate tensor. Hence it represents a balance between the strain rate and the vorticity

magnitude in the flow. Figure 7.4 shows contours of Q-criterion colored by the velocity

magnitude and the polynomial degree distribution for the three-level load-balanced simulation

(K = 1− 3) for four instants of 0Te/4, 1Te/4, 2Te/4, and 3Te/4. As in the previous cases, this

verifies that the algorithm successfully tracks elements with large vorticity magnitude relative

to their size. It is evident that most of the K = 3 elements are employed where the vorticity

magnitude is maximal relative to the element size, which illustrates high-order elements track

vorticity behind the airfoil. The K = 2 elements occur further downstream, out of the wake

region, leaving the far-field region for K = 1 elements. Figure 7.5 shows the non-dimensional

x-component of the velocity profile averaged through the span and four last cycles for three

instants of 0Te/4, 1Te/4, and 2Te/4 at chord locations of x/c = 0.125, x/c = 0.25, x/c = 0.5,

x/c = 0.75, x/c = 1.0, and x/c = 1.25, where x/c = 0 corresponds to the initial x-coordinate

of the leading edge, which is the mesh origin. y/c=0 corresponds to the y-coordinate of the

trailing edge when x/c = 1 and x/c = 1.25, while corresponds to the airfoil surface for all other

chord locations. Results are compared with the phase-averaged Particle Image Velocimetry

(PIV) velocity field data obtained by Baik et al. [10]. Comparing these plots confirms that

the three-level adaptive simulation correlates closely with the experiment results.

As mentioned in Chapter 4, p-adaptation leaves the computational domain fairly unbal-
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Figure 7.1. The SD 7003 mesh with 56000 hexahedral elements. Dimensions are given in
multiples of the airfoil chord length.

anced causing a significant overhead. This overhead is typically larger for a three-dimensional

simulations since they require relatively larger numbers of degrees of freedom, necessitating

DLB. To validate the efficiency of the DLB algorithm, a set of uniform and parallel simulations

were carried out on one node of Niagara cluster consisting 2 sockets with 20 Intel Skylake

cores (2.4GHz, AVX512), for a total of 40 cores and a total of 202 GB of RAM. Table 7.1

shows the simulation time per one iteration Titr and the speed-up factor SA = TU/TA for

uniform and the three-level adaptive simulations. The speed-up factor is calculated based on

the uniform K = 3 simulation with the same mesh resolution, where TA is the compute time

of an adaptive K = 1− 3 simulation featured with DLB, and TU is the compute time of a

uniform K = 3 simulation. The speed-up factor is 2.73 which makes the adaptive simulation

even faster than a uniform K = 2 simulation. It is worth mentioning that the adaptation

speed-up has a lower limit of 1 and an upper limit of TU,Km/TU,Kmin
, where TU,Km is the

compute time of a uniform K = Km simulation, and TU,Kmin
is the compute time of a uniform

K = Kmin simulation. Hence considering that the uniform K = 1 simulation is only 4.57

faster than the uniform K = 3 simulation, the speed-up factor of 2.73 is quite reasonable.

To validate the scalability of the DLB algorithm, a set of parallel simulations were carried

out on Niagara with different numbers of nodes. Each node consists of 2 sockets with 20 Intel
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(a) Velocity at 0Te/4.

(b) Velocity at 1Te/4.

(c) Velocity at 2Te/4.
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(d) Velocity at 3Te/4.
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Figure 7.2. Non-dimensional velocity magnitude at different time instants for the adaptive
dynamic load-balanced heaving and pitching SD 7003 airfoil with Re = 10000, A = 0.5,
fK = 0.25, θ0 = 8◦, θe = −8.42◦ and ϕe = 90◦.
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Figure 7.3. Contours of Q-criterion colored by velocity magnitude at the time instant of
1Te/4 for the adaptive dynamic load-balanced heaving and pitching SD 7003 airfoil with
Re = 10000, A = 0.5, fK = 0.25, θ0 = 8◦, θe = −8.42◦ and ϕe = 90◦.

Skylake cores (2.4GHz, AVX512), for a total of 40 cores per node, and a total of 202 GB of

RAM. Table 7.2 shows the scalability of the parallel algorithm for different numbers of cores,

where Nn is the number of nodes, C is the number of cores, SN = TN/TC is the speed-up

factor based on a one node simulation, Es = SN/C is the efficiency, TN is the compute time

of a parallel simulation on one node, and TC is the compute time of a parallel simulation on
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Figure 7.4. Contours of Q-criterion colored by velocity magnitude, and polynomial distribution
for the adaptive dynamic load-balanced heaving and pitching SD 7003 airfoil with Re = 10000,
A = 0.5, fK = 0.25, θ0 = 8◦, θe = −8.42◦ and ϕe = 90◦.

C cores. These results verify the scalability of the algorithm and the capability of the DLB

to distribute uniform computation load among processors.

Table 7.1. Computation time of the dynamic load-balanced adaptive algorithm for the heaving
and pitching SD 7003 airfoil with Re = 10000, A = 0.5, fK = 0.25, θ0 = 8◦, θe = −8.42◦ and
ϕe = 90◦.

Scheme Number of Nodes Number of Cores Titr SA

K = 1 1 40 3.832× 102 -
K = 2 8.629× 102 -
K = 3 1.750× 103 -
K = 1− 3 6.416× 102 2.73

Table 7.2. Scalability metrics of the dynamic load-balanced adaptive algorithm for the heaving
and pitching SD 7003 airfoil with Re = 10000, A = 0.5, fK = 0.25, θ0 = 8◦, θe = −8.42◦ and
ϕe = 90◦.

Number of nodes Number of cores SN Es

Nn = 1 40 1.000 1.000
Nn = 2 80 1.979 0.989
Nn = 4 160 3.946 0.986
Nn = 8 320 7.669 0.959
Nn = 16 640 13.722 0.861
Nn = 32 1280 24.258 0.758
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7.2 Turbulent Flow Over a 3D Circular Cylinder

7.2.1 Introduction

Cross-flow over a 3D circular cylinder has been the focus of several previous studies both due

to its physical significance and its arrangement simplicity in experiments. As mentioned in

Chapter 5, its characteristics are known to be highly dependent on the Reynolds number Re.

The flow is laminar with symmetric vortices for Reynolds numbers below 49. Increasing Re
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Figure 7.5. Phase averaged x-component of the velocity profile at different chord locations
and time instants (solid lines correspond to this study, and the crosses correspond to the
experiment [10]) for the heaving and pitching SD 7003 airfoil with Re = 10000, A = 0.5,
fK = 0.25, θ0 = 8◦, θe = −8.42◦ and ϕe = 90◦.

further, vortex shedding will be observed, but the wake flow remains laminar for Re < 170.

At Re larger than about 170, the wake structure becomes 3D, even though the wake flow

is in the transition regime between about 170 < Re < 300, and is not yet turbulent. As

the Re increases above about 300, there would be increasing disorder in the fine-scale

three-dimensionality and the wake flow becomes fully turbulent at Re larger than about

400 [100, 139, 140, 141], which is the case in real-life applications. Hence, in this section,

flow over a three-dimensional circular cylinder at Re = 1000, which sits on the onset of

the shear-layer transition regime identified by Williamson [100], is studied to verify the

effectiveness of the vorticity-based polynomial adaptation technique coupled with dynamic

load balancing in the existence of turbulent transition and turbulent wake flow behind a

bluff body. It has been studied previously by, for example, Braza et al. [142] using the finite

volume method, Zhao et al. [143] using Petrov–Galerkin finite element method, where the

effects of different yaw angle on the turbulent features is studied, and Pereira [96] using

the flux reconstruction method where the effect of different element types on the numerical

results are investigated.
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7.2.2 Computational Details

A three-dimensional computational domain, with its origin located at the centre of the

cylinder, containing a total of 78176 hexahedral elements with 14 elements in the span-wise

direction was used with Riemann invariant boundary conditions at the far-field, periodic

boundary condition in the span-wise direction, and a no-slip adiabatic wall boundary condition

at the surface of the cylinder. The domain extends to 40D above, below, and upstream of

the cylinder, 80D downstream, and 2πD in the span-wise direction, where D is the cylinder

diameter, shown in Figure 7.6. The mesh is moderately refined near the wall and in the

wake region, and uses quadratically curved elements at the boundaries to match the cylinder

geometry. The mesh was initially partitioned over 320 processors using METIS [102], and

MPI is used for parallel communication [99].

Simulations were run at Mach number M = 0.2, for a total of 400tc, where tc = D/U∞

is the time required for the flow to traverse one cylinder diameter. Time integration was

carried out with the fourth-order twelve-stage optimized Runge-Kutta scheme [70] mentioned

in Chapter 3, and the non-dimensional time step is set to ∆t∗ = ∆tU∞/D = 8.0 × 10−4.

As mentioned before, by having more stages, this Runge-Kutta scheme allows for a larger

time step size which relatively reduces the computational cost. A total of six simulations

were carried out to verify the utility of the dynamically load-balanced adaptation algorithm,

including five uniform simulations with solution polynomials of degree K = 1 to K = 5 and

a five-level adaptive simulation. The adaptation parameters Km, ϵ, and ϑ1:5 are set to 5,

1.25× 10−1, and [0.25, 0.25, 1, 4, 16] respectively. The adaptation and the DLB routines are

called every 100 and 1000 iterations, respectively. Simulations were carried out on eight

nodes of the Niagara cluster, each node consists of 2 sockets with 20 Intel Skylake cores (2.4

GHz, AVX512), for a total of 40 cores per node, and a total of 202 GB of RAM.

7.2.3 Numerical Results

We are interested in achieving speed-up factors relative to the higher-polynomial degree

solutions, while still maintaining accuracy with respect to the reference data. Results are

compared in terms of mean drag coefficient C̄D, root mean square of the lift coefficient CLrms,
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Figure 7.6. Three-dimensional circular cylinder structured mesh with 78176 hexahedral
elements.

154



(a) Q-criterion at a maximum lift instant.

(b) Polynomial degree a maximum lift instant.

(c) Mesh partition at a maximum lift instant.
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(d) Q-criterion at a minimum lift instant.

(e) Polynomial degree a minimum lift instant.

(f) Mesh partition at a minimum lift instant.

Figure 7.7. Contours of Q-criterion, polynomial distribution, and dynamically balanced
mesh partition for the adaptive computation (K = 1− 5) based on the vorticity magnitude
indicator at the times corresponding to maximal and minimal lift for the three-dimensional
circular cylinder with Re = 1000 and M = 0.2.
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(a) Velocity field for K = 1.

(b) Velocity field for K = 5.

(c) Velocity field for K = 1− 5.
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Figure 7.8. Non-dimensional velocity magnitude for the uniform K = 1, uniform K = 5, and
adaptive load balanced K = 1− 5 computations based on the vorticity magnitude indicator
at the times corresponding to maximal lift for the three-dimensional circular cylinder with
Re = 1000 and M = 0.2.
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(a) Contours of Q-criterion for K = 1.

(b) Contours of Q-criterion for K = 5.

(c) Contours of Q-criterion for K = 1− 5.
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Figure 7.9. Contours of Q-criterion colored by velocity magnitude for the uniform K = 1,
uniform K = 5, and adaptive load-balanced K = 1− 5 computations based on the vorticity
magnitude indicator at the times corresponding to maximal lift for the three-dimensional
circular cylinder with Re = 1000 and M = 0.2.
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root mean square of the drag coefficient CDrms, Strouhal number St, the average total number

of degrees of freedom DOF , compute time Titr, which is the simulation time of one iteration

of a parallel simulation on one nodes of the Niagara cluster, and the adaptive speed-up factor

SA = TA/TU defined based on a uniform K = 5 simulation with the same mesh resolution,

where TA is the compute time of an adaptive K = 1− 5 simulation featured with DLB, and

TU is the compute time of a uniform K = 5 simulation. The lift and drag coefficients are

defined as

CL =
2FL

ρ∞U2
∞Af

,

CD =
2FD

ρ∞U2
∞Af

,

(7.1)

where Af is the frontal area which is equal to the area of the projected surface normal to the

flow, taken to be the cylinder diameter D multiplied by the span length. The average and the

root mean square value of a time-dependant variable v(t) over a time interval Tint = tn − t1

is calculated using Equation 6.4. Figure 7.7 shows the contours of the Q-criterion colored by

the velocity magnitude, the polynomial degree distribution, and the repartitioned mesh for

the five-level adaptive simulation (K = 1− 5) for two instants of minimal and maximal lift.

This verifies that the adaptation algorithm successfully tracks elements with large vorticity

magnitude relative to their size. We observe that a relatively fewer number of high-order

elements are allocated to processors near the cylinder and in the wake region, while processors

located farther away from the cylinder and the wake contain a larger number of lower-order

elements. This illustrates the ability of the DLB algorithm to maintain the load balance.

Figure 7.8 shows contours of non-dimensional velocity magnitude at the time of maximal

lift for uniform K = 1, uniform K = 5, and adaptive K = 1 − 5. Although there are

large inter-elements jumps and unresolved regions in the flow solution of the uniform K = 1

simulation, the smoothness of the flow solution is comparable for the uniform high-order

K = 5 and adaptive K = 1− 5 simulations. Figure 7.9 depicts three-dimensional contours of

Q-criterion colored by the velocity magnitude at the time of maximal lift for uniform K = 1,

uniform K = 5, and adaptive K = 1−5. While the uniform K = 1 simulation did not capture

all vortical structures in the flow, the uniform K = 5 and adaptive K = 1− 5 simulations
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Table 7.3. Numerical values of C̄D, CLrms, CDrms, St, DOF , Titr and SA averaged over the
100 convective times for the three-dimensional circular cylinder with Re = 1000 and M = 0.2.

Degree C̄D CLrms CDrms St DOF Titr SA

K = 1 1.1946 0.4494 0.0557 0.2037 6.254× 105 7.418× 102 -
K = 2 1.0828 0.2371 0.0333 0.2080 2.111× 106 2.137× 103 -
K = 3 1.0084 0.1004 0.0221 0.2099 5.003× 106 4.744× 103 -
K = 4 1.0180 0.1036 0.0267 0.2047 9.772× 106 9.746× 103 -
K = 5 1.0141 0.0986 0.0193 0.2053 1.689× 107 1.895× 104 -

K = 1− 5 1.0549 0.1587 0.0218 0.2084 3.075× 106 4.095× 103 4.63
Pereira [96] 1.064 - - - - -

Zhao et al. [143] 1.092 0.310 - 0.202 - -

both captured turbulent structures indistinguishably, confirming that the five-level adaptive

simulation qualitatively provides satisfactory resolution near the cylinder and the wake region,

while reducing the final computational cost by requiring fewer degrees of freedom. To further

evaluate the accuracy and speed-up factor of the adaptive method, we turn to Table 7.3

which reports the quantitative values of C̄D, CLrms, CDrms, St, DOF , Titr, and SA averaged

during 100tc and compares them against the reference data. These results quantitatively

show agreement within 4.02%, 60.95%, and 12.95% in the C̄D, CLrms, and CDrms values

respectively between the adaptive and uniform K = 5 simulations, while the former is 4.63

times faster. Figure 7.10 shows the lift and drag coefficient plots for all simulations plotted

within the last 100tc.

7.3 Conclusion

We have further explored the utility of the load-balanced vorticity-based adaptation algorithm

for turbulent flows by performing simulations for a shallow dynamic stall of a three-dimensional

heaving and pitching SD 7003 airfoil, and a three-dimensional circular cylinder. In both

test studies, the adaptation algorithm was featured with a DLB technique to circumvent

the overhead caused by adaptation. Results demonstrated that the algorithm is capable of

tracking salient turbulent features. Qualitative results showed equivalent levels of accuracy

between the adaptive and high-order solutions, with a significant reduction in simulation

time. Results from the adaptive simulations also showed good quantitative agreement with
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Figure 7.10. Drag and lift coefficient profiles of the uniform and adaptive simulations for the
three-dimensional circular cylinder with Re = 1000 and M = 0.2.
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parallel high-order simulations and reference numerical, experimental, and analytical results.

In addition, results showed that the DLB algorithm was able to keep the domain balanced

by redistributing elements at runtime. Hence, the proposed non-dimensional load-balanced

vorticity-based adaptation algorithm is an effective and accurate approach for performing

p-adaptation for unsteady transitional and turbulent flows.

The following chapter will summarize the conclusions of this study and include recom-

mendations for future work.
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Chapter 8

Conclusions and Future work

In this work, we have introduced a novel dynamically load-balanced vorticity-based polynomial

adaptation algorithm for simulations of unsteady flows on both fixed and moving or deforming

domains. In this chapter, we summarize the results obtained throughout this study.

We made use of the implicit large eddy simulation turbulence modelling approach for the

three-dimensional simulations. The flux construction scheme was used for spatial discretization

due to its suitability for scale-resolving simulations of unsteady turbulent flows, as well as

modern many-core hardware architectures. Furthermore, the numerical dissipation error of

FR acts as the subgrid-scale turbulence model befitted for ILES. Among other advantages of

FR, it was particularly appealing for this study as it allows for dynamic adaptation of degree

of solution polynomials owing to its element-wise approach. To circumvent the overhead

caused by adaptation when combined with parallel computing, we borrowed and customized

the adaptive repartitioning algorithm from the ParMETIS library [95].

We first verified the FR scheme and the computer code when applied to the ALE form of

the compressible Navier–Stokes equations. Results showed that the deforming mesh cases

achieved their designed high-order accuracy. We then verified the utility of the dynamic

load-balanced p-adaptation algorithm by performing simulations of an isentropic vortex. We

observed that the algorithm achieved a significant speed-up while maintaining high-order

accuracy. The adaptation algorithm was validated on fixed domains by solving different

two-dimensional test cases, including simulation of flow over a circular cylinder and an SD

7003 airfoil. Results demonstrated that the adaptation algorithm is capable of tracking
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elements with large vorticity magnitude relative to their size. Furthermore, results of the

adaptive simulation were in excellent agreement with high-order solutions, both qualitatively

and quantitatively, while requiring a relatively fewer total number of degrees of freedom.

On moving and deforming domains, the adaptation algorithm was validated for two

classical problems, specifically, a pair of oscillating circular cylinder configurations and

dynamic stall of heaving and pitching NACA 0012 airfoil. Results demonstrated that the

adaptation algorithm is capable of tracking salient flow features on deforming domains, such

as the boundary layer and unsteady wake regions. Qualitative results showed equivalent levels

of accuracy between the adaptive and high-order solutions, with a significant reduction in

the total number of degrees of freedom. We then considered a practical test case of flow over

a VAWT. Similar to the validation test cases, it was observed that the adaptive simulations

were able to track the boundary layer and wake regions of each blade, and their subsequent

interactions. Results from the adaptive simulations also showed good quantitative agreement

with parallel high-order simulations and reference numerical, experimental, and analytical

results.

Finally, three-dimensional simulations of transitional and turbulent flows were performed

to validate the dynamically load-balanced adaptation algorithm, specifically, for a shallow

dynamic stall of a three-dimensional heaving and pitching SD 7003 airfoil, and turbulent flows

over a three-dimensional circular cylinder. Results verified the scalability of the algorithm and

also showed that the dynamically load-balanced adaptation algorithm is capable to circumvent

the adaptation overhead when applied to unsteady turbulent flows by repartitioning the mesh

at runtime. Qualitative and quantitative results showed equivalent levels of accuracy between

the adaptive and high-order solutions, with a significant speed-up.

The proposed non-dimensional vorticity-based adaptation indicator is a simple, effective,

and accurate approach for performing p-adaptation of unsteady flows. Furthermore, the

DLB algorithm is capable of increasing the efficiency of the parallel adaptive simulations by

dynamically distributing computation load among processors. It also increases the granularity

of adaptive simulations by increasing the scalability. As mentioned earlier, industrial deploy-

ment of scale-resolving techniques such as LES are avoided due to their inherently expensive

nature. However, the current work could serve toward the industrialization of high-fidelity
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scale-resolving techniques. Future works should focus primarily on applying the proposed

adaptation technique to more complex three-dimensional geometries as well as on deployment

of this algorithm to industrial problems, including but not limited to aerodynamic shape

optimization to achieve a better fuel efficiency, aeroacoustic optimization to reduce aircraft

noise, and studying new proposed alternative designs.
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Appendix A

DLB: Element Weights

Table A.1. Element weight WE defined for different element types and degree polynomials,
non-dimensionalized based on the weight of a K = 1 triangular element.

Element Type Degree WE

Triangular K = 1 1.00
K = 2 1.55
K = 3 2.10
K = 4 2.81
K = 5 3.61

Quadrilateral K = 1 1.73
K = 2 2.40
K = 3 3.14
K = 4 4.50
K = 5 5.66

Tetrahedral K = 1 3.27
K = 2 5.97
K = 3 10.59
K = 4 16.95
K = 5 26.12

Prism K = 1 6.87
K = 2 12.06
K = 3 21.49
K = 4 38.53
K = 5 65.55

Hexahedral K = 1 11.95
K = 2 19.46
K = 3 35.80
K = 4 73.41
K = 5 132.57
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Appendix B

Experimental Tangential Force

Coefficient [1]
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Figure B.1. Tangential force coefficient profiles corresponding to the 4th cycle of the experi-
mental study performed by Strickland et al. [1] for a blade of a two-bladed wind turbine at a
tip speed ratio of 0.75 with α0 = 0.

185


	List of Figures
	List of Tables
	Acronyms
	Nomenclature
	Introduction
	Motivation
	Turbulence in Fluid Mechanics
	Simulation Approaches
	High-Order Methods
	Parallel Computing
	Research Objectives and Contributions
	Thesis Outline

	Governing Equations
	Conservation of Mass
	Conservation of Momentum
	Conservation of Energy
	General Conservation Law
	Euler and Navier-Stokes Equations
	Arbitrary Lagrangian-Eulerian Formulation
	Advection Equation
	Diffusion Equation

	Numerical Schemes
	The Flux Reconstruction Scheme
	Linear Advection
	Linear Diffusion
	Multidimensional Extension
	Arbitrary Lagrangian Eulerian Extension
	Advantages of Flux Reconstruction

	Temporal Schemes

	Dynamically Load Balanced Adaptation Algorithm
	Adaptation Techniques
	Adjoint-Based Adaptation Indicators
	Truncation-Error-Based Adaptation Indicators
	Feature-Based Adaptation Indicators

	Vorticity-Based Polynomial Adaptation
	Load Balancing
	Introduction
	ParMETIS
	Implementation


	Verification and Validation Test Cases
	ALE Verification
	DLB Verification
	Validation: 2D Circular Cylinder
	Validation: SD 7003 Airfoil

	Polynomial Adaptation for Moving and Deforming Domains
	Oscillating Circular Cylinder
	Introduction
	Computational Details
	Numerical Results

	2D Dynamic Stall of a NACA 0012 Airfoil
	Introduction
	Computational Details
	Numerical Results

	2D Vertical Axis Wind Turbine
	Introduction
	Computational Details
	Numerical Results

	Conclusion

	Dynamically Load Balanced Polynomial Adaptation of Turbulent Flows
	3D Dynamic Stall of a SD 7003 Airfoil
	Computational Details
	Numerical Results

	Turbulent Flow Over a 3D Circular Cylinder
	Introduction
	Computational Details
	Numerical Results

	Conclusion

	Conclusions and Future work
	Appendix DLB: Element Weights
	Appendix Experimental Tangential Force Coefficient strickland1981vortex

