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Abstract 
 

Single channel speech enhancement based on U-Net 
 

Bengbeng He 

 
Speech enhancement has found many applications in various fields involving speech processing. 

It aims to remove the background noise from the acquired speech signals to efficiently improve 

the speech intelligibility and quality. The development of deep learning approaches in recent years 

has significantly promoted the advancement of speech enhancement by treating it as an estimation 

problem with or without supervision. Many existing neural networks are based on U-Net structure, 

where the encoder of U-Net transforms the input speech into compressed features via removing 

the noise information and the decoder of U-Net reconstructs the enhanced speech from the speech 

features with a symmetric structure. However, the contextual information of speech sequences 

cannot be fully captured due to the intrinsically local operation of commonly used convolution in 

U-Net, which is extremely crucial for improving the performance of speech enhancement. To 

improve the capability of U-Net in extracting the long-term dependency of speech sequences, this 

thesis investigates different attention-based U-Nets to capture the abundant contextual information 

of long-range speech signals.  

In the first contribution of this thesis, a dual-branch attention-assisted U-Net is proposed for 

single-channel speech enhancement, which consists of a dilated-dense encoder-decoder structure 

and a dual-branch attention mechanism in between. In the encoder, the high-level speech features 

are obtained by adopting multiple groups of a dilated-dense block and a down-sampling layer, 

where the densely dilated convolutions are employed to enlarge the receptive field and aggregate 

previous features. Next, the dual-branch attention utilizes the spatial-wise attention and channel-

wise attention to parallelly extract spatial and channel information of speech features, which are 

then averaged to form the contextual feature representation. The decoder, as a symmetric structure 

of encoder, is adopted to transform the features back to denoised speech via multiple pairs of a 

dilated-dense block and an up-sampling layer, where the skip connection from encoder layers is 

used to boost the feature reconstruction. By comparing with other U-Net based methods, our 
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proposed dual-branch attention-assisted U-Net achieves a comparable performance of evaluation 

metrics but with fairly low trainable parameters.    

To further improve the performance of proposed attention-based U-Net, in the second 

contribution of this thesis, we incorporate the multi-head attention (MHA) mechanism into U-Net 

for extracting the features from different representation subspaces. First, we propose a two-stage 

MHA block to replace the dual-branch attention block in the U-Net structure proposed before, 

where the MHA block employs tandemly connected sample MHA and frame MHA to successively 

extract sample-level features of each individual frame and frame-level features among different 

frames, respectively, leading to better contextual speech features. However, the convolutional 

encoder-decoder used in the proposed U-Net still constrains the potentials of U-Net model to 

extract long-range dependency of speech sequences because of the local operation performed in 

convolution. To overcome this drawback, we further replace the convolution-based encoder and 

decoder layers by proposed two-stage MHA blocks to extract long-range relationship of speech 

sequences in the encoder-decoder level. Experimental results on a benchmark dataset shows that 

our two proposed MHA based U-Net models achieve a competitive performance among existing 

methods in all evaluation metrics while exhibiting a much lighter model complexity than other 

state-of-art networks.  
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Chapter 1  

Introduction 
 
Speech enhancement (SE) can improve speech quality by supressing unexpected noises from noisy 

environment. It has many important applications in various areas relating to acoustic signal 

processing, including communications, hearing aids and automatic speech recognition. 

Researchers have investigated a large number of conventional approaches for speech enhancement 

including Wiener filter [1], statistical models [2], spectral subtraction [3] and noise-subspace 

algorithms [4]. In recent years, deep learning algorithms have been broadly explored in speech 

enhancement as powerful data-driven tools, making an impressive achievement on speech 

processing.  

Deep learning-based SE systems are investigated to learn a complex mapping function from 

noisy speech to clean one by using neural networks like fully-connected neural network (FCNN) 

[5-6], convolutional neural networks (CNNs) [7-8], and recurrent neural networks (RNNs) [9-10]. 

Generally speaking, current deep learning-based SE systems can be divided into time-domain 

methods and time-frequency (T-F) domain methods. Time-domain methods operate on one-

dimensional noisy speech waveform to directly estimate the enhanced speech waveform, which is 

inspired from sequence models for natural language processing (NLP). T-F domain methods 

process two-dimensional image-like spectrograms obtained from short-term Fourier Transform 

(STFT) that contain both temporal and frequency information. Moreover, the attention mechanism 

is widely introduced to improve the performance of existing SE systems [11-12], which can 

efficiently capture the long-range global dependency of speech sequences. Compared with CNNs 

and RNNs, the attention-based system can effectively extract the contextual information.    

In this thesis, we explore two attention-based U-Net neural networks for single-channel speech 

enhancement in the time domain. The U-Net structure adopts the encoder to extract the compressed 

speech features and then employs a decoder that is symmetric to the encoder to reconstruct the 

target enhanced speech, where the noise component in the noisy speech is eliminated or suppressed. 

To capture the long-term dependency of speech signals, we propose attention-based modules as a  
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part of U-Net architecture to build a contextual sequence modeling for further promoting the 

performance of speech enhancement. In addition, we attempt to design lightweight SE systems 

while having promising denoising performance for potential mobile applications. In the following, 

we will introduce some popular deep neural networks and their application for speech 

enhancement. 

 

1.1 Deep-learning models for speech enhancement 
 

1.1.1 Brief review of speech enhancement problem 
 

Deep learning based SE system aims to build a mapping function between noisy speech and clean 

speech, which commonly takes the raw speech waveform or speech spectrogram as the input. The 

speech waveform is one-dimensional sequential data, where the length of sequence depends on the 

sampling rate and each sample point represents the strength of voice. The noisy speech waveform 

can be modelled as: 

𝑦(𝑡) = 𝑥(𝑡) + 𝑛(𝑡)                                                   (1-1)  

where 𝑦(𝑡), 𝑥(𝑡), 𝑛(𝑡) denote the sequence of noisy speech, clean speech and noise speech at time 

step 𝑡, respectively.  

Different from speech waveform, the speech spectrogram has more obvious harmonics of 

speech signal, which is very useful to distinguish between clean speech and noisy speech. The 

representation of noisy spectrogram can be obtained by implementing the STFT on the waveform, 

which can be formulated as:  

𝑌(𝑡, 𝑓) = 𝑋(𝑡, 𝑓) + 𝑁(𝑡, 𝑓)                                            (1-2) 

where  𝑌(𝑡, 𝑓), 𝑋(𝑡, 𝑓) and 𝑁(𝑡, 𝑓) denote the spectrogram of noisy speech, clean speech, and 

noise speech, with 𝑡 being the frame index and 𝑓 being the frequency bin. 

According to the type of input speech, the SE systems can be categorized into time domain and 

time-frequency (T-F) domain. The time-domain methods take the noisy speech waveform as input 

and directly estimate the enhanced speech waveform, where both magnitude and phase information 

of speech are naturally considered while avoiding the STFT computation. The T-F domain SE 

systems are implemented on the spectrogram of speech to learn the harmonic structures for 
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generating the enhanced spectrogram via mapping- or masking-based methods, which can 

efficiently capture the characteristics of speech signal like temporal and frequency correlations. 

Magnitude spectrogram is the most popular speech feature for T-F domain SE systems, where the 

noisy magnitude is enhanced during the training and phase information is retrained for speech 

reconstruction. To obtain the enhanced spectrogram, the mapping-based methods directly 

transform the noisy spectrogram into enhanced spectrogram by using regression-based models. 

Different from that, the masking-based methods predict the T-F masks which are used to suppress 

the noise components of noisy spectrogram, producing the enhanced spectrogram which will be 

transformed to the enhanced waveform by inverse STFT.  

There are several types of masks commonly used for speech enhancement. The ideal binary 

mask (IBM) is of value either 0 or 1 via comparing the local criterion (LC) versus signal-to-noise 

ratio (SNR) of per time-frequency unit [13]. It is assigned 1 when the SNR of T-F units surpasses 

LC, otherwise, it is 0, defined as: 

                   𝐼𝐵𝑀(𝑖, 𝑗) = {1     |𝐶(𝑡, 𝑓)|2 − |𝑁(𝑡, 𝑓)|2 > 𝐿𝐶,
0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                           (1-3) 

where 𝐶(𝑡, 𝑓) and 𝑁(𝑡, 𝑓) denote the clean speech and noises at time index 𝑡 and frequency index 

𝑓, respectively. Based on the orthogonal assumption, 𝐶(𝑡, 𝑓) ∙ 𝑁(𝑡, 𝑓) = 0, the ideal ratio mask 

(IRM) is the ratio of signal power of the clean and mixture signals [14], formulated as: 

                                                          𝐼𝑅𝑀(𝑡, 𝑓) = ( |𝐶(𝑡,𝑓)|2

|𝐶(𝑡,𝑓)|2+|𝑁(𝑡,𝑓)|2)𝛽                                      (1-4) 

where 𝛽 is an adjustable factor, generally set as 0.5. The output of IRM is between 0 and 1, where 

a higher value of IRM means more proportion of the clean speech in the mixture audio at each T-

F unit. Additionally, the IRM with 𝛽 = 2 is the Wiener filter, which is the best filter at mean square 

error (MSE). The complex ideal ratio mask (cIRM) can simultaneously enhance the amplitude and 

phase [15], which is a version of IRM in complex field, expressed as: 

                                                         𝑐𝐼𝑅𝑀 = 𝑀𝑟𝐶𝑟+𝑀𝑖𝐶𝑖
𝑀𝑟

2+𝑀𝑖
2 + 𝑖 𝑀𝑟𝐶𝑖−𝑀𝑖𝐶𝑟

𝑀𝑟
2+𝑀𝑖

2                                       (1-5) 

where 𝑀 denotes the mixture of clean speech and noises, and 𝑟 and 𝑖 are the real and imaginary 

part, respectively. The ideal amplitude mask (IAM) [16] also depicts the energy ratio of the clean 

speech and the noisy mixture without orthogonal assumption: 

                                                              𝐼𝐴𝑀(𝑡, 𝑓) = |𝐶(𝑡,𝑓)|
|𝐶(𝑡,𝑓)+𝑁(𝑡,𝑓)|

                                            (1-6) 
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The theoretic range of IAM is [0, +∞ ]. The phase sensitive mask (PSM) [17] makes an 

improvement on IAM by adding a cosine similarity of the clean and noisy speech, defined as: 

                                             𝑃𝑆𝑀(𝑡, 𝑓) = |𝐶(𝑡,𝑓)|
|𝐶(𝑡,𝑓)+𝑁(𝑡,𝑓)|

cos (𝜃𝐶 − 𝜃𝑀)                                   (1-7) 

where 𝜃𝐶 − 𝜃𝑀 is the phase difference of the clean and mixture speech. The value of PSM varies 

in [-∞, +∞]. Using PSM tends to obtain a better performance since it takes advantage of the phase 

information that is very important for the speech recovery. The optimal ratio mask (ORM) [18] is 

similar to IRM except for the orthogonal assumption of clean speech and the noise: 

                                    𝑂𝑅𝑀(𝑡, 𝑓) = |𝐶(𝑡,𝑓)|2+𝑅(𝐶(𝑡,𝑓)𝑁∗(𝑡,𝑓))
|𝐶(𝑡,𝑓)|2+|𝑁(𝑡,𝑓)|2+2𝑅(𝐶(𝑡,𝑓)𝑁∗(𝑡,𝑓))

                                (1-8) 

where 𝑅 and * denote the real part of the complex and conjugate calculation, respectively. 

 

1.1.2 Commonly used neural networks for speech enhancement 
 

Some popular DNNs are commonly used for speech enhancement, including fully-connected 

neural network (FC-NN), convolutional neural network (CNNs) and recurrent neural networks 

(RNNs). Generally, a DNN is comprised of multiple layers, where each one contains some 

necessary components like neurons, weights, biases, activation functions and normalization 

operation. By backpropagation algorithm during training stage, the parameters of neurons are 

updated to build a suitable mapping function between inputs and outputs of a DNN. In the 

following, we will introduce these commonly used DNNs and their constituent components.  

 
Fully-connected neural network 

 
The fully-connected neural network is the simple and initial architecture of DNNs, simply called 

as FC-NN, which has been widely used in speech enhancement. The FC-NN normally contains 

one input layer, multiple hidden layers and one output layers, which are comprised of neurons to 

perform the basic non-linear computation among its inputs. An example as the Fig. 1-1 shows, 𝑥1 

and 𝑥2 are inputs of a neuron, which are multiplied with corresponding weights 𝑤1 and 𝑤2 to 

produce the outputs involving the bias. The output of this neuron can be denoted as: 

                                              𝑌 = 𝑓(𝑤1 × 𝑥1 + 𝑤2 × 𝑥2 + 𝑏)                                                (1-9) 

where 𝑓 is a nonlinear activation function to provide the non-linearity for neurons. Since the most 
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scenarios in real world are nonlinear, it is important to introduce nonlinearity into the output to 

encourage neural networks to simulate and solve more complex and practical problems. 

 

!
Figure 1-1: An illustration of a neuron 

 

Activation function as an indispensable component for efficient neural networks, is applied for 

introducing the non-linearity and it should be continuous and differential so as to be incorporated 

into backpropagation algorithm. Three types of activation functions are commonly used in neural 

networks, including sigmoid, tanh and ReLU function [19] as shown in Fig. 1-2. 

 

!
Figure 1-2: Sigmoid, Tanh and ReLU function 

 

The sigmoid function is a smoothed curve with output value ranging from 0 and 1, which can 

be used for binary classification tasks, formulated as the follow: 

                                                                  𝑓(𝑥) = 1
1+𝑒−𝑥                                                          (1-10) 

When using it as activation function, training error would be rising as the number of hidden 

layers increases, where hidden layers close to output layer have big gradient and hidden layers 

near input layer get small gradient, which may lead to gradient vanishing problem in very deep 

model. The tanh function depicts a curve of hyperbolic tangent, with an output score between -1 
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and 1. Compared with sigmoid function, it alleviates gradient vanishing problem and performs 

faster computationally for training.   

                                                                 𝑓(𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                                                         (1-11) 

The ReLU (rectified linear unit) function steadily outputs zero with input values below zero 

and output is the same as the input above zero, where gradients are respectively zero and a constant 

value, avoiding the gradient vanishing. Besides, it has much fewer complexity of computation, 

leading to a fast training. However, it might deactivate partial neurons if big gradients pass through, 

which may lose important information during training. 

                                                              𝑓(𝑥) = max (0, 𝑥)                                                     (1-12) 

 

!

Figure 1-3: An illustration of the feed-forward neural network 

 

As shown in Fig. 1-3, the FC-NN is built based on three types of neurons: input neurons, hidden 

neurons and output neurons. Input neurons absorb input signals into the neural network without 

any computation operation, and the output neurons compute and give out the final information to 

the outside. The hidden neurons are responsible for the computation and transmit computational 

output from input units to output ones. The three groups of neurons are used to construct the 

corresponding input layer, hidden layer, and output layer. To learn the complex transformation 

function between inputs and outputs, a FC-NN typically employs sufficient hidden layers to 
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explore the high-level features of input signals. It is worth mentioning that the gradient vanishing 

problems may potentially happen in a very deep FC-NN since the input layer is far from output 

layer, providing a very smaller gradient for the beginning few layers during the backpropagation.     

The FC-NN is a basic learning machine for speech enhancement. Some works have 

investigated the FC based models to estimate the enhanced magnitude of speech signals or learn 

the estimated mask for multiplying with noisy speech to generate the enhanced speech. As shown 

in Fig. 1-4, the authors of [5] adopted a FC-based network for mask estimation in speech 

enhancement, which includes one input layer, one output layer and five hidden layers in between. 

In contrast, the authors of [6] directly mapped the noisy speech spectrogram into enhanced speech 

spectrogram by adopting the FC neural network as a regression model as shown in Fig. 1-5.   

 

 
Figure 1-4: A FC model for masking [5] 

 
Figure 1-5: A FC model for spectra mapping [6] 

 

 

Convolutional neural network 

 

Different from FC-NNs involving redundant trainable parameters, CNNs can avoid the overfitting 

problems since they perform local operations and share the weights. The CNNs are originally used 
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to extract the spatial information of images, which has presented an impressive achievement in 

image processing tasks like image classification. Typically, as shown in Fig. 1-6, the CNN takes 

the 2-D image as input signal and employs several cascaded pairs of convolutional layer and 

pooling layer to extract the spatial information of image, where the convolutional layer extracts 

the local features within a limited window and the pooling layer aggregates the features to decrease 

the resolution of feature maps [20].  

Generally, the beginning CNN layers can learn some simple features including textures, colors 

and edges. As the CNN becomes deeper, more complex and contextual features are extracted for 

the following processing in the classifier. The feature maps from CNN layers are flatten so as to 

be processed by the FC layers for classifying the input image.  

 

 
Figure 1-6: An illustration of a CNN for image classification [20] 

 

In CNNs, the convolutional operation is achieved by employing multiple kernels applied in a 

sliding window across the entire input image via the weight sharing. Fig. 1-7 indicates the specific 

procedures of convolutional operation [21]. For the 5x5 feature map of input as represented in the 

blue grids, a 3x3 convolutional kernel is first assigned to the left-top region, whose values are 

shown in smaller fonts in blue grids. Then, the elements of kernel are multiplied with 

corresponding ones of feature maps, whose results are summed to produce the outputs of one 

location. By sliding the kernel window across the entire input feature map through weight sharing, 

the local correlations among all locations are learnt, generating the final result of one-kernel 

operation as shown in the green grids.  
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Figure 1-7: An example of the convolutional operation [21] 

 

The CNN normally adopts multi-kernel operation to parallelly capture the features from 

different aspects, where outputs of each kernel operation are concatenated along the channel 

dimension to construct the generated feature maps. As shown in Fig. 1-8, three kernels are used to 

extract features in parallel, resulting in the 3-channel feature map.  

 

 
Figure 1-8: A mapping from two to three channels of convolution [21] 
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Apart from the basic convolutional computation itself, the pooling layer is usually associated 

with the convolution to perform the down-sampling operation, including maxing pooling and 

average pooling. The maxing pooling is used to select the maximum element representing the 

output feature of the kernel window. Compared to maxing pooling, the average pooling computes 

the average value among the kernel window to generate the output feature. The whole pooling 

operation performs as the convolution to consider all the locations of feature maps while no 

trainable parameters are involved. 

Inspired by effectiveness of the CNNs on extracting features of 2-dimensional data, many SE 

systems widely adopt the CNNs to process the image-like spectrogram of speech signal. The 

authors of [7] proposed a CNN-based model to estimate the complex spectrogram as shown in Fig. 

1-9. First, the real and imaginary spectrogram are concatenated along the channel dimension to 

form the 2-channel image-like data, which are then passed through a series of CNN layers to 

generate the contextual information. Finally, two FC layers are employed to separately estimate 

the enhanced real and imaginary spectrogram.  

 

 
Figure 1-9: CNN on complex spectrogram estimation [7] 

 

Apart from operating on the T-F domain to process the image-like spectrogram, the CNN-

based models can be also directly implemented on the speech waveform by using one-dimensional 

convolutional layers. For long-range speech waveform, the stacked conventional 1-D convolution 

will only make receptive field grow linearly, which limits extracting global dependency of speech 
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sequences. To solve this problem, the authors of [8] proposed a WaveNet for time-domain speech 

enhancement with 1-D dilated convolutional layers, leading to an exponential growth of receptive 

field. As shown in Fig. 1-10, some stacked 1-D convolutional layers with exponential dilation 

values are adopted into noisy speech waveform for generating multi-scale features, which will be 

connected to be pass through 2-D convolutional layers for outputting the target fields.     

     

 
Figure 1-10: WaveNet for time-domain speech enhancement [8] 

 

Recurrent neural network  
 

Due to the intrinsic local operation of convolution, the CNNs require to be deep enough to extract 

the contextual information of long-range speech sequences, which constrains the performance of 

speech enhancement. To tackle this issue, the RNNs are proposed to model the temporal 

information of long-range sequences via sequential processing. In the vanilla RNN, the output of 

each time step will be saved in memory cell and then adopted by next time step, which means the 

information of previous time steps will affect the one of current time step. Benefited from the 

memory mechanism, the RNN can naturally process the tasks related to sequential signals like 

language processing and speech processing. As shown in the left part of Fig. 1-11, the vanilla RNN 

adopts the RNN cell to process the input of the current time step and the output of the last time 

step, whose procedure is recurrently conducted along the various time steps. By unfolding its 

recurrent structure as indicated in the right part of Fig. 1-11, the vanilla RNN can be treated as a 

DNN with many layers based on the length of input sequence. In addition, the output of the current 

time step will be used to update the memory cell which will be used again by the next time step. 

The procedure of each time step can be defined as follows:   



 12 

                                   ℎ𝑡 = 𝜎(𝑥𝑡 × 𝜔𝑥𝑡 + ℎ𝑡−1 × 𝜔ℎ𝑡 + 𝑏)                                        (1-13) 

                                             �̂�𝑡 = 𝜎(ℎ𝑡 × 𝜔𝑡 + 𝑏)                                                      (1-14) 

where 𝑥𝑡 and ℎ𝑡 are the input and the hidden state at time step 𝑡, 𝜔𝑥𝑡 and 𝜔ℎ𝑡 are transformation 

matrices for the input at time step 𝑡 and the hidden state of the last time step, respectively,  𝜔𝑡 

denotes the transformation matrix for generating the output of RNN cell, 𝜎(∙) means the sigmoid 

activation function, 𝑏 denotes the bias, and �̂�𝑡 is the output of RNN cell at time step 𝑡. 

 

!
Figure 1-11: A basic structure of RNN 

 

However, in the vanilla RNN, the hidden states of current time step only have an impact on the 

neighboring time steps due to its mechanism of memory cell, leading to a long-term dependency 

problem. More specifically, a certain time step is difficult to affect the long-distance positions 

since the information of memory cell is refreshened for each time step, in dealing with long-range 

input sequences. Therefore, the long-short term memory (LSTM) [22] is proposed to tackle the 

problems preventing the vanilla RNN from learning the long-range dependency.  

Different from vanilla RNN, the LSTM is comprised of one memory cell and three gates to 

control the information flow shown in Fig.1-12, including the input gate, forget gate and output 

gate, respectively. The input gate controls how much input information should be used by the 

memory cell, the forget gate decides how much previous information from memory cell should be 

eliminated, and the output gate dominates how much information of memory cell should be 

adopted to generate the output.  

By the gate mechanism, the LSTM can flexibly remember the important information and erase 

the! inconsequential information from previous states, which dynamically learns the long-term 

dependency of input sequence. The three gate operations are given by: 

𝑧𝑜 = 𝜎(𝑤𝑜[𝑥𝑡; ℎ𝑡−1])                                                     (1-15) 

𝑧𝑓 = 𝜎(𝑤𝑓 [𝑥𝑡; ℎ𝑡−1])                                                     (1-16) 
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!
Figure 1-12: LSTM & GRU 

 

 𝑧𝑖 = 𝜎(𝑤𝑖[𝑥𝑡; ℎ𝑡−1])                                                     (1-17) 

where 𝑥𝑡 and ℎ𝑡−1 denote the input at time step 𝑡 and hidden states at time step 𝑡 − 1, 𝑤𝑖 , 𝑤𝑓  and 

𝑤𝑜 mean the transformation for input gate, forget gate and output gate, respectively, 𝜎(∙) means 

the sigmoid activation function,  𝑧𝑖, 𝑧𝑓 and 𝑧𝑜 denote the outputs of three gate operations. All the 

gates have a value between zero and one to control how much the corresponding information 

should be remained or eliminated, whose procedures can be formulated as: 

𝑧 = 𝑡𝑎𝑛ℎ(𝑤[𝑥𝑡; ℎ𝑡−1])                                                  (1-18) 

𝑐𝑡 = 𝑧𝑓⨀𝑐𝑡−1 + 𝑧𝑖⨀𝑧                                                     (1-19) 

                                               ℎ𝑡 = 𝑧𝑜⨀𝑡𝑎𝑛ℎ(𝑐𝑡)                                                       (1-20) 

                                                  𝑦𝑡 = 𝜎(𝑤𝑡ℎ𝑡)                                                             (1-21) 

where 𝑤 denotes the transformation matrix for input sequence, 𝑧 is the feature representation of 

transformed input data, 𝑐𝑡 denotes the hidden state in memory cell,  𝑤𝑡  is the transformation matrix 

for obtaining the final outputs 𝑦𝑡 at time step�𝑡��𝑡𝑎𝑛ℎ(∙) is the hyperbolic tangent function to curve 

the inputs between -1 and 1, and ⨀ denotes the element-wise dot product operation. 

Another efficient variant of RNN architecture is the gated recurrent unit (GRU) [23], which is 

modified based on LSTM by combining the forget gate and input gate into one update gate. 
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Compared to LSTM, the GRU involves less parameters and computational complexity while 

maintaining a similar performance in sequence modeling. In the GRU as shown in Fig. 1-12, the 

reset gate is introduced to control whether the hidden states at the previous time step should be 

used as the input. Furthermore, the update gate simultaneously controls how much the information 

of the previous time step should be employed and how much hidden states at current time step are 

outputted. The whole operations are defined as: 

𝑧𝑡 = 𝜎(𝑤𝑧[ℎ𝑡−1; 𝑥𝑡])                                                      (1-22) 

                                                         𝑟𝑡 = 𝜎(𝑤𝑟[ℎ𝑡−1; 𝑥𝑡])                                                      (1-23) 

                                                      ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤[𝑟𝑡⨀ℎ𝑡−1; 𝑥𝑡])                                            (1-24) 

                                                       ℎ𝑡 = (1 − 𝑧𝑡)⨀ℎ𝑡−1 + 𝑧𝑡⨀ℎ̃𝑡                                          (1-25) 

where 𝑤𝑧 and 𝑤𝑟 are the transformation matrices for update gate 𝑧𝑡 and reset gate 𝑟𝑡, respectively, 

𝑤 denotes the linear transformation matrix for generating the transitional hidden state ℎ̃𝑡  at time 

step 𝑡, and  ℎ𝑡 means the final output at time step 𝑡. 

Considering the effectiveness of RNNs in extracting the temporal information of sequential 

sequences, many works adopted the RNN-based layers as a part of neural network for speech 

enhancement. It is worth mentioning that the RNN-based layers can be unidirectional or bi-

directional, where the former strictly captures the long-range dependency in temporal sequence to 

build a causal SE system, and the latter decides the output of certain time step by considering its 

previous and future positions.  

In addition, the RNN-based layers can be flexibly incorporated into CNNs to construct a hybrid 

structure named convolutional recurrent network (CRN). Authors of [9] proposed a composite 

CNN-RNN based models for speech enhancement as shown in Fig. 1-13, where the RNN layers 

are used to explore the contextual information from the feature maps of CNN layers.  

More specifically, the stacked convolutional layers are used to extract the abundant spatial 

features, generating the multi-channel feature maps with temporal and frequency information. 

Next, the features are concatenated along the frequency dimension to be passed through the bi-

directional RNN layer, where the long-range dependency of speech sequence is explored to obtain 

the contextual features. Finally, the FC neural network is used to transform the features into 

enhanced speech spectrogram.  

Authors of [10] proposed a fully RNN-based model for waveform-based speech enhancement, 

where the GRU layers are used to construct the hourglass architecture to process the high-
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resolution sequences as shown in Fig. 1-14. In the proposed model, the GRU layers of the lower 

pyramid aim to decrease the number of time steps and increase the feature dimension, while the 

ones of the upper pyramid are used to perform the inverse operation. In addition, the residual 

connection is inserted into corresponding layers from the lower pyramid to the upper one to avoid 

the gradient vanishing problem. 

 

 
Figure 1-13: A convolutional RNN for speech enhancement [17] 

 

 
Figure 1-14: A fully RNN-based model for waveform-based speech enhancement [18] 
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1.1.3 Attention mechanism for sequence processing 
 

Although the RNN-based models have achieved an impressive performance in sequence modeling, 

the sequential operation of RNNs brings high computational burdens for processing long-term 

speech sequences. In addition, the long-term memory is still difficult to be saved by RNNs, making 

the long-range dependency problem exists in the RNN-based SE systems. Recently, self-attention 

mechanism is proposed to efficiently capture long-term dependency of sequences with parallel 

operation, which has promoted the advancement on NLP and computer vision tasks. The attention 

mechanism comes from the observation behavior of creatures. For example, when looking at a 

picture, people may catch a specific area where more attention is paid, as opposed to a global view 

on the picture. This allows us to focus on the important part to learn more details about it and 

suppress less important information at the meantime.  

The self-attention, as one of the attention mechanisms, is operated on the input sequence itself, 

where each sample position in the sequence will be affected by remaining ones with various 

attention weight. For example, when the state of certain sample point depends on the neighboring 

positions, more attention weights will be assigned to regional scope around the sample to perform 

the local attention. In contrast, assigning most attention weights to the distant sample regions will 

build a global attention, which extracts the contextual information of long-range speech sequences. 

In the self-attention mechanism as shown in Fig. 1-15, the input sequences are first transformed 

into keys, queries and values representation by using three different linear layers. Next, the 

attention weight matrix is obtained by calculating the similarity between each query and all keys. 

Then, the softmax function is adopted to transform the similarity values into probability 

distribution between 0 and 1. Finally, the output of self-attention is obtained by summing the 

multiplying results between each value and the corresponding attention weight.   

To calculate the attention weights on the queries and keys representation, some practical 

approaches have been proposed: 

Dot-product attention: Dot-product attention is a simple method to compute the similarity 

between query and key matrices, which requires the two matrices to have the same dimension. 

Due to the capacity of efficient computation, the dot product method is commonly used for 

attention calculation while not involving any trainable parameters, whose formula is indicated as: 

  𝐴(𝑞, 𝑘) = 𝑞𝑇𝑘                                                        (1-26) 
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!
Figure 1-15: A common framework of attention mechanism 

 

where 𝑞 and 𝑘 mean the query and key representation, respectively.  

Scaled dot product attention: The scaled dot-product attention is an attention mechanism where 

the dot products are scaled down by a factor. Assuming that the query and key are 𝑑-dimensional 

vectors whose elements are independent random variables with mean 0 and variance 1. After 

applying the dot-product attention, the generated output will have mean 0 and variance 𝑑, which 

will have a potentially bad influence on the model training. Thus, the result of dot product attention 

is divided by a factor √𝑑 , producing the values having a variance 1. The scaled dot-product 

attention can be defined as: 

 𝐴(𝑞, 𝑘) = 𝑞𝑇𝑘
√|𝑘|

                                                         (1-27) 

Neural network based attention: Attention can also be realized by a trainable neural network 

such as FC neural network. More specifically, the query and key vectors are concatenated together 

to form the input, which are passed through a two-layer FC neural network with tanh activation 

function to generate the attention. This method can make FC layers dynamically generate the 

efficient attention weight by training on the large-scale datasets, whose definition can be found as: 

𝐴(𝑞, 𝑘) = 𝑊2tanh (𝑊1[𝑞; 𝑘])                                           (1-28) 

where 𝑊1 and 𝑊2 denote the transformation matrixes of two FC layers.  

Authors of [11] proposed an attention-based architecture for speech enhancement as shown in 

Fig. 1-16, where the attention mechanism is incorporated into CNN layers to extract contextual 
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information. The proposed model takes the speech spectrogram as input and adopts stacked 

attention-based convolutional blocks (ACBs) to capture the abundant speech features. Each ACB 

consists of a 2-D convolutional block and attention block, where the convolution block is used to 

extract spatial features of spectrogram through a convolution with kernel size of (11, 9) with stride 

1, which is then followed by batch normalization and a Leaky ReLU activation.  

 

 
Figure 1-16: CNN with attention mechanism. (a) The whole framework of the model called 
attention-based redundant convolutional network (ARCN), where the parameter on each block 
means the order number of the blocks and the time-frequency shape of input-output feature maps 
for each block, respectively. (b) The attention-based convolutional block (ACB) that builds the 
ARCN [11]. 
 

The feature maps from convolutional operation are passed through attention block comprised 

of channel-wise attention and spatial attention, where the former captures which features are 

important, and the latter focuses on where is informative. In the channel-wise attention as shown 

in Fig. 1-17, the input features are first processed by the global average pooling along the time and 

frequency axis, generating a vector descriptor of channels where each component is the average 

value among each T-F feature space.  

Next, the bottleneck FC neural network is adopted to generate the channel-wise attention 

weights, which are multiplied with each spatial pixel along the channel dimension to produce the 

final outputs of channel-wise attention. Different from the channel attention squeezing the T-F 

dimensional size while keeping the channel size, the spatial attention first squeezes the channel 

dimension but maintains the spatial T-F dimension by using two pooling layers and three dilated 
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convolutions, creating the five-channel T-F feature which will be processed by a convolution with 

one kernel to create the spatial attention weights. In the following, the attention weights are 

assigned to the spatial pixel along the T-F axis to capture the crucial spatial features. Note that the 

work explores different combination methods to connect the channel-wise attention with spatial 

attention, yielding parallel and cascaded connections.   

 

 
Figure 1-17: Attention mechanism in ARCN model [12] 

 

Authors of [12] proposed a dual-path attention block to extract the contextual information of 

speech sequences. As shown in Fig. 1-18, the features are first fed into two residual blocks to learn 

the local correlations by using several CNN layers. In the subsequent processing, the self-attention 

mechanism is separately applied into temporal and frequency dimension of speech features to 

simultaneously extract global contextual information of temporal and frequency features, leading 

to the frequency-wise self-attention and temporal self-attention flow, respectively. Finally, the 

outputs of residual blocks and two attention blocks are concatenated to pass through a 2-D 

convolution for obtaining the feature representations of proposed attention method. 
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Figure 1-18: A dual-path attention block for speech modeling [12] 

 

1.2 Datasets and evaluation criteria for SE neural networks 
 
The neural networks are trained based on a number of audio segments to distinguish features of 

clean and noisy speech, where a collection of audio pieces is called speech dataset. Here are some 

speech datasets often adopted for speech enhancement.  

1) TIMIT corpus [24]: The dataset is designed by Texas instruments and Massachusetts 

institute of technology (TIMIT), providing 8 types of dialects of American English from 

630 speakers of 10 spoken sentences for each one. 

2) LJ speech dataset [25]: The dataset is recorded by the LibriVox project, including 13,100 

utterances with a length between 1 and 10 seconds, which is totally about 24 hours recorded 

from a female speaker reading 7 non-fiction books. 

3) WSJ0 SI-84 dataset [26]: It consists of reading speech of texts from Wall Street Journal 

news, which is a machine-readable corpus containing 7138 utterances from 83 speakers 

including 41 females and 42 males. 

4) VCTK dataset [27]: A public dataset provided by Valentini et.al., which contains 30 

speakers chosen from Voice Bank corpus [28]. It provides well-prepared training set and 

testing set of 11572 audios from 28 speakers and 824 audios from 2 speakers, respectively. 

The noisy speech for training involves 10 noises at SNRs of 0, 5, 10 and 15 dB, where 2 
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types of noises are artificially generated and 8 real noises. There are 5 unseen noises with 

SNR levels of 2.5, 7.5, 12.5 and 17.5 dB for testing. The noises are selected from the 

DEMAND [29]. 

Except for the VCTK dataset above, the other three datasets cannot be applied for training 

directly due to the lack of noises. Researchers require to mix clean audios with other noise sources 

to produce their own training set and testing set. All experiments in this thesis are conducted on 

the VCTK dataset. VCTK dataset is open to the public and has been adopted by many researchers 

to evaluate their models. Therefore, a direct comparison of model performance on the same dataset 

will be given in the later chapters.  

 

Table 1-1: Evaluation criteria for speech enhancement [30] 

 
 

A number of evaluation criteria have been proposed to measure speech quality as shown in 

Table. 1-1. There are six criteria used in my research work. I adopt these commonly used criteria 

to compare my research work with existing methods for demonstrating the performance:  

• Perceptual evaluation of speech quality (PESQ) [31]: a very popular metric computed by 
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comparing clean speech and denoised speech with a score between -0.5 and 4.5. 

• Short-time objective intelligibility (STOI) [32]: a metric calculated on correlation 

coefficient of clean speech and enhanced speech in temporal envelopes on short-time and 

overlapped pieces, which has a value ranging from 0 to 1. 

• Segmental signal-to-noise ratio (SSNR) [33]: It computes the SNRs and energies of 

segments from the estimated and clean speech, giving a score usually between -10 and 35. 

• Three composite objective metrics: CBAK, CSIG and COVL are for noise distortion, 

signal distortion and overall speech quality, respectively. Their score varies between 0 and 

1 [34].  

 

1.3 Training strategies 
 
A deep-learning model is trained via a large dataset based on the loss function to approximate the 

target output, where the loss function aims to provide the gradients for updating the weights and 

biases by back-propagation algorithm. By iteratively updating the model parameters, the distance 

between model outputs and ground truth is decreased. However, sometimes the loss in the testing 

data is still unexpectedly large even though the one in the training data has been very low, which 

is potentially caused by the overfitting problem. To address this issue, the normalization 

technologies are introduced to promote the model training and generalization capacity. Here I 

briefly introduce some commonly used loss functions and efficient normalization methods for 

efficiently training neural networks. 

 

1.3.1 Loss function 
 

The loss function is a measurement of the distance between the estimate and the expected result 

for each output, which is used to transit the gradients for updating model parameters by back-

propagation algorithm. Here are some loss categories commonly used for training models with 

deterministic target.  

1) Mean average error (MAE): a loss in L1 norm, computes the average of absolute difference 

between the ground truth 𝑦𝑖 and the prediction �̂�𝑖: 
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                                                𝑙𝑜𝑠𝑠𝑀𝐴𝐸 = 1
𝑁

∑ |�̂�𝑖 − 𝑦𝑖|𝑁
𝑖=1                                            (1-29) 

2) Mean square error (MSE): a loss in L2 norm, computes the average of square difference 

between estimate and target: 

                                               𝑙𝑜𝑠𝑠𝑀𝑆𝐸 = 1
𝑁

∑ (�̂�𝑖 − 𝑦𝑖)2𝑁
𝑖=1                                          (1-30) 

Generally, it converges faster than the MAE loss during training while the robustness of 

the MSE becomes a little worse due to it sensitive to outliers. 

3) Loss regularization: It is to add a penalty term of L1/L2 norm into loss function to restrain 

the considerable weight, which is often used for avoiding overfitting problem. The 

regularized loss functions of L1 and L2 norm are defined below: 

                                                   𝐿𝐿1 = 𝐿(�̂�, 𝑦) + 𝛼 ∑ |𝑤|𝑀
𝑖=1                                        (1-31) 

                                                   𝐿𝐿2 = 𝐿(�̂�, 𝑦) + 𝛼 ∑ (𝑤)2𝑀
𝑖=1                                      (1-32) 

where 𝑀 is the number of the weights 𝑤 and 𝛼 is a hyperparameter to control the scale of 

regularization.   

4) Signal distortion rate (SDR) loss: 

                                                    𝑙𝑜𝑠𝑠𝑆𝐷𝑅 = 10𝑙𝑜𝑔10
||𝑦||2

||𝐸||2                                           (1-33) 

where 𝑦 and 𝐸 = 𝑦 − �̂� denote the ground truth and the error between 𝑦 and estimate �̂�.  

 

1.3.2 Normalization 
 

Normalization techniques are commonly used in each network layer to make outputs of each layer 

have similar mean and variance, which could solve the challenges of training models and help 

network converge faster by gradient descent. Here are several types of normalization methods that 

have been proven effective and widely used in deep neural networks as shown in Fig. 1-19.  

1) Batch normalization (BN) [35]: It computes the mean and deviation of input features based 

on the batch scale, thus is called the batch normalization. Suitable utilization of the BN can 

usually assist model to obtain expected results based on the considerably large batch size, 

where the hardware with abundant memory is required. 

2) Layer normalization (LN) [36]: Different from BN, LN operates on the individual samples 

and normalize the input of each layer, which can be used in mini-batch training without 

interference from data distribution. LN does not have to store the mean and deviation of 
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the batch thus it can save memory during training.  

3) Instance normalization (IN) [37]: It operates on the channels to obtain the mean and 

deviation of feature maps within each sample. The processing along channels is found 

affecting the style of generated images thus the IN is initially applied to generative models 

used for the image style transfer. Like the LN, IN can also be used for mini-batch training 

to improve performance with little memory occupied. 

4) Group normalization (GN) [38]: It is a trade-off between LN and IN, which first divides 

the channels of each sample feature maps into several groups, then computes the mean and 

deviation independently in each group of channels. GN is often recommended for the task 

occupying large memory such as image segmentation and complicated attention-based 

models. 

 

 
Figure 1-19: Normalization methods [38] 

 

1.4 Objective and organization of the thesis 
 
The objective of this thesis is to propose efficient attention-based U-Net models for single-channel 

speech enhancement in the time domain. In the first contribution, we propose a self-attention based 

U-Net with dual-branch attention, where the spatial attention is used to capture the spatial 

information and the channel-wise attention is employed to extract channel information of speech 

features. By incorporating the dual-branch attention between encoder and decoder, the contextual 

information of long-range speech sequences is learnt, which indicates a comparable performance 

to existing U-Net based structures.  
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In the second contribution, we propose two multi-head attention based U-Nets, where the 

attention mechanism can learn the correlations of speech sequences from different aspects. In the 

first U-Net model, we propose sample-wise and frame-wise attentions with cascaded structure, 

which are inserted between encoder and decoder, leading to a context-aware U-Net. More 

specifically, the sample-wise attention is adopted to extract samples features of each individual 

frame, whose outputs are then processed by the frame-wise attention to capture the relationship 

between different frames. By using multiple stacked cascaded attentions, the contextual 

information of long-term sequences is efficiently explored. Most U-Net based SE systems adopt 

the convolutional encoder-decoder structure, which requires deep enough encoder and decoder to 

extract the large receptive fields while bringing the overfitting problem and parametric overhead. 

To tackle this issue, we further propose multi-head attention based encoder and decoder layers, 

where both of them are based one sample and frame attention except that the encoder uses the 

down-sampling block before attention while the decoder adopts the up-sampling block. By 

building attention-based encoder and decoder layers, the extraction of contextual information can 

perform on the encoder and decoder, which can solve the intrinsic locality of convolution and 

optionally remove the inserted block between encoder and decoder. We have demonstrated that 

our proposed multi-head attention U-Nets achieve an impressive performance of speech 

enhancement among current SE model while involving fewer trainable parameters.  

The rest of this thesis is organized as follows: 

Chapter 2:  Previous U-Nets for speech enhancement are first introduced, based on which we 

propose a novel U-Net with dilated-dense convolutional layers as encoder and decoder and a 

dual-branch attention block before decoder. Experiments on a benchmark dataset indicates that 

the proposed models provided competitive performance among existing methods.  

Chapter 3: This chapter first introduces multi-head attention mechanisms used in previous SE 

works. It then presents two efficient U-Nets incorporating the proposed multi-head attention 

block at the center of U-Net structure and inside each encoder-decoder layer, respectively. To 

demonstrate the performance of our proposed methods, we carry out simulation-based 

experiments on a standard dataset and show that most evaluation results of our models are 

better than that of the comparison models. 

Chapter 4: It gives the conclusion of this thesis and suggestions for future work. 
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Chapter 2  

Proposed Dual-branch Attention U-Net for speech 

enhancement 
 
In this chapter, we propose a dual-branch attention U-Net (DBAUNet) for speech enhancement. 

This new architecture is comprised of encoder, decoder and dual-branch attention block in between. 

In the dual-branch attention block, the channel attention and spatial attention are proposed to 

extract spatial and channel information, which are then fused to obtain the contextual information. 

In the first section, some previous works about initial U-Net structure are first introduced, 

including a couple of existing U-Net based methods for speech enhancement and some efficient 

components related to our proposed model. In the second section, we elaborated each component 

of our proposed model in details. In the experimental result section, we demonstrate the efficiency 

of our proposed models by setting various groups of comparison models using different 

configurations and parameters. It is shown that our proposed model achieve a comparable 

performance in speech enhancement.  

 

2.1 Previous work 

 
2.1.1 Introduction of U-Net neural network 
 

The U-Net structure was first introduced in biomedical image segmentation, which is generally 

comprised of a down-sampling part in the left side and an up-sampling part in the right side of the 

U-shape architecture [39]. As the convolutional neural network achieves an impressive 

performance in image recognition, convolutional blocks are usually adopted in U-Net to perform 

down-sampling and up-sampling operations.  

As shown in Fig. 2-1, the input images are processed by multiple down-sampling convolutional 

blocks to obtain the compressed feature representations in which some redundant information is 

removed. The up-sampling convolutional blocks are employed to reconstruct the compressed 



 27 

features to output segmentation map which has the same size as the input image. The feature size 

is halved while the number of feature channels is doubled by each down-sampling convolutional 

block, which involves two 2D-convolutional layers using a filter of size (3, 3) and a max pooling 

layer using kernel of size (2, 2) with 2 strides. The ReLU nonlinearity is inserted between two 

convolutional layers to avoid overfitting. On the contrary, each up-sampling convolutional block 

doubles feature size and halves feature channels by using two up-convolution layers with ReLU 

nonlinearity in between.  

 

 
Figure 2-1: Original U-Net for image segmentation [39] 

 

Moreover, the output of each down-sampling layer is concatenated to the corresponding up-

sampling layer, called skip connections, to reuse the useful information from encoder layers to 

help information recovery at decoder. A common practice of up-sampling operation is the 

transposed convolution, which is an approach to recover information in signal processing through 

convolving padded feature maps to obtain output signal with the same size as input. 
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2.1.2 U-Net for speech enhancement 
 

Inspired by the effectiveness of U-Net architectures in medical image processing, some U-Net 

based methods are adopted in speech enhancement and separation tasks. Wave-U-Net is a classic 

U-Net application solving speech separation, exclusively implemented on the waveform in the 

time domain at different time scales [40]. The goal is to obtain 𝐾 sources of audio waveform 

separate 𝑊1, 𝑊2, …, 𝑊𝐾from the input mixture of waveform 𝐼 ∈ [−1, 1]𝑆×𝐶 , where 𝑆 is the 

number of speech samples and 𝐶 denotes the number of speech channels. Based on this method, 

the authors of [41] applied the Wave-U-Net on the speech enhancement (Fig. 2-2) by replacing the 

multi-source audio of input with a noisy mixture and separating it into the denoised target speech 

and the noise. In terms of single-channel speech enhancement task, here 𝐶 = 1 and 𝐾 = 2.  

 

 
Figure 2-2: Wave-U-Net for speech segmentation [40] 

 

In speech enhancement, the U-Net based structure usually employs a convolutional encoder-

decoder with skip connection to estimate the clean waveform from noisy speech mixture. However, 
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a CNN based model requires very deep convolutional layers to enlarge receptive field since the 

convolution operation only focuses on the information within local region. Capturing long-range 

and global contextual information is really critical for speech sequence modeling. To boost the 

effectiveness of the U-Net, another popular practice is to embed other types of neural networks as 

partial components between the encoder and the decoder of U-Net to further extract the features 

after down-sampling operation. The authors of [42] inserted the Bi-directional LSTM between the 

encoder and decoder of U-Net to further extract the long-term information of speech sequences, 

which is modified from a U-Net based model for music source separation [43].  

As shown in Fig. 2-3, the DEMUCS model is composed of encoder, decoder and two LSTM 

layers in between. The input noisy waveform is first down-sampled by several encoder layers to 

obtain the compressed features, which will be further extracted by two LSTM layers to learn the 

long-range dependency from the past. After that, the decoder layers convert the output features of 

LSTM to the enhanced speech waveform. More specifically, for the encoder, each layer comprises 

a 1D-convolution with 2𝑖−1𝐻 kernels of size 𝐾 and stride 𝑆 and a one-by-one convolution with 

2𝑖𝐻 kernels of size 1 and stride 1, where 𝑖 denotes the index of encoder layer. Note that, the two 

convolutions are followed by ReLU and GLU [44] function, respectively.  

 

!
Figure 2-3: The DEMUCS and an illustration of layer connections of the model [42] 

 

To extract global contextual information, the sequence mapping model then processes the 

outputs from the encoder 𝐸𝑜 and outputs 𝐿𝑜 = 𝐿𝑆𝑇𝑀(𝐸𝑜) + 𝐸𝑜, where LSTM has two layers and 
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the number of hidden units is 2𝐿−1.  Next, the decoder takes 𝐿𝑜 as input and operates reversely to 

the encoder by using 1D transposed convolution, thus generating the enhanced speech waveform. 

Note that, 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 respectively denote the number of input and output channels of each layer. 

𝐻 is the number of initial hidden channels of encoder layers and the number of the final hidden 

channels of decoder layers due to the symmetrical structure of the U-Net and 𝐿 means the layer 

number of both the encoder and the decoder. 

Although the LSTM achieves impressive performance in sequence modeling tasks, it cannot 

perform parallel processing, thus leading to low-speed processing especially for long speech 

sequences. The temporal convolutional network (TCN) based on the dilated convolution, as an 

alternative of RNN layer, has been proposed for the sequence model [45] as shown in Fig. 2-4.  

 

 
Figure 2-4: TCN block [45] 

 

Each TCN block applies a residual connection from the input to the output which is 

experimentally proven to benefit for networks with very deep layers, where a 1-D convolution is 

optionally used in between to match the shape of input to the output. Within each TCN block, two 

pairs of a dilated casual convolution and a ReLU nonlinearity are used, and weight normalization 

and dropout are added for normalization and regularization, respectively. Additionally, zero-
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padding is always applied to ensure each hidden layer has the same length as input layer.  

There are several advantages using the TCN: The structure incorporating casual convolutions 

can avoid information leakage from the past of the sequence. Second, TCN can output sequence 

of any length identical to that of the input as the RNN does, but TCN processes all input sequences 

in parallel unlike sequential processing in RNN, which means the TCN is more efficient compared 

with basic RNN structure. On the other hand, this parallelism enables TCN have lower requirement 

of training memory because it does not have to save partial results while training. 

Dilated convolution is an efficient alternative of conventional convolution to obtain the output 

that is able to extract broader range of feature representations from the input. It utilizes inflated 

kernels with spaces among elements, expanding the receptive field to extract more features with 

fewer convolutional layers. The rate of dilation is commonly set as an exponential increasing trend. 

Fig. 2-5 shows the process of the general convolution and the dilated convolution with one-

dimensional sequence input. Compared with the conventional convolution, a dilated convolution 

enlarges the receptive field from 𝐾 to (𝐾 − 1) × (𝑅 − 1) + 𝐾, where 𝐾 is kernel size and 𝑅 is 

dilation rate [46].  

 

!
Figure 2-5: An illustration of conventional convolution and dilated convolutions with 

exponentially increasing rate [43] 
 

Inspired by TCN and dilated convolution described above, the authors of [47] proposed a 

temporal convolutional neural network (TCNN) for speech enhancement, which combines the U-

Net structure and TCN block. As shown in Fig. 2-6, this TCNN includes an encoder, an decoder 

and a TCM, where the TCM consists of multiple TCN blocks. In TCNN, the encoder takes the 

noisy speech waveform as input and decreases the input frame size from 320 to 4 while increases 

channel dimension from 1 to 64 by using 2D-convolutional layers, thus generating the two-

dimensional signal of size (4, 64). The output of encoder is then reshaped to a one-dimensional 

signal, which will pass through the TCM to learn the long-range dependency. Different from [45], 
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authors in [47] constructed TCN blocks using a 1×1 input convolution, 1D-dilated convolution, 

output 1×1 convolution and residual connection from inputs. And also, the parametric ReLU 

(PReLU) and batch normalization are utilized to replace the ReLU and weight norm, respectively, 

for better performance.   

 

!
Figure 2-6: Temporal convolutional neural network [47] 

 

2.1.3 U-Net with attention mechanism for speech enhancement 
!

Since attention mechanism has been proven highly efficient for modeling sequences, recent 

methods in a variety of fields including the speech enhancement incorporates an attention 

component in previous neural networks. For the U-Net, generally, there are three ways of 

employing attention: combining attention with skip connections, inserting attention between the 

encoder and the decoder, and incorporating attention to encoder-decoder layers of the U-Net.  

The attention Wave-U-Net (Fig. 2-7) is modified from the Wave-U-Net by implementing an 

attention mechanism on the skip connections, which help decoder layers efficiently reuse the 

important information from corresponding encoder layers [48]. In other words, the attention 

mechanism incorporated into skip connection can help decoder to learn which features from 

encoder are useful instead of using all of them.   

As shown in Fig. 2-8, the attention block in attention Wave-U-Net aims to generate an attention 

mask to filter the redundant information from encoder layers, which produces more important 

information for decoder layers. Two steps of computations are involved to obtain an attention mask.  
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Figure 2-7: Attention Wave-U-Net [45] 

 

 
Figure 2-8: Attention mechanism in attention Wave-U-Net [48] 

 

The first step is to sum up information from down-sampling layer and corresponding up-

sampling layer, and the second step is to conduct a convolution with a kernel of size 1 on the 

outputs of the first step. The two steps are followed by an activation function. The whole attention 

method can be expressed as: 

                                            𝑆1 = 𝜎(𝑊1𝐶 + 𝑊2𝑈 + 𝑏1)                                                (2-1) 
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                                                 𝑆2 = 𝜎(𝑊3𝑆1 + 𝑏2)                                                      (2-2) 

                                                       𝑂 = 𝐶⨀𝑆2                                                               (2-3) 

where 𝑆1, 𝑆2 and 𝑂 denote the outputs of two steps and the concatenated outputs, respectively. 𝐶 

and 𝑈 are the down-sampling layer and the corresponding up-sampling layer. 

The authors of [49] proposed a nested U-Net with self-attention for speech enhancement, which 

introduces the self-attention mechanism into encoder and decoder of U-Net to further extract 

contextual information as shown in Fig. 2-9. The detailed illustration of the attention mechanism 

of this model is shown in the left side of the Fig. 2-9.  

 

!
Figure 2-9: Nested U-Net with attention for speech enhancement [49] 

 

The self-attention here is characterized by the input 𝑋 and three matrices 𝑄, 𝐾, 𝑉 transformed 

from 𝑋  by using three one-by-one convolutions. Then, the matrix 𝑄  is multiplied with the 

transposed version of matrix 𝐾, yielding the attention matrix which passes through the softmax 

function for generating the attention scores ranging from 0 to 1. Finally, the outputs of self-

attention are obtained by the concatenation between inputs of the self-attention and multiplied 

results of attention scores and matrix 𝑉. The procedures can be formulated as follows:  

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇)𝑉                                                     (2-4) 

                                   𝑌 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑋, 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝐴))                                          (2-5) 
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where 𝐴 and 𝑌 denote the self-attention score and final output of the attention block.  

Different from two mentioned attention-based SE models, authors of [50] proposed a dense 

convolutional network (DCN) with self-attention for speech enhancement shown in Fig. 2-10, 

where the self-attention mechanism is introduced in encoder and decoder layers of U-Net. Each 

layer in the encoder and decoder is composed of a self-attention block and dense block, where the 

self-attention is adopted for extract global information and dense block is used to aggregate 

features of previous layers.   

 

 
Figure 2-10: Dense convolutional network with attention for speech enhancement [50] 

 

In addition, the dense block is built based on densely connected convolutional networks 

recently proposed in [51]. The densely connected convolutional network is designed to reuse the 

features at the current layer multiple times for the subsequent layers. In other words, a layer of 

dense block takes the input of dense block and the outputs from the previous layers. This dense 

connection can strengthen and reuse feature propagation. Meanwhile, it alleviates the vanishing 

gradient problem as CNNs become increasingly deep. An illustrative diagram of the dense block 

is shown in Fig. 2-11. 
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!
Figure 2-11: Dense block [51] 

 

2.2 Proposed dual-branch attention U-Net 
 

In this section, we propose a dual-branch attention U-Net (DBAUNet) for speech enhancement. 

As shown in Fig. 2-12, the proposed model consists of an encoder, a dual-branch attention block 

and a decoder. Moreover, a preprocessing unit is set before input feeding into the encoder and a 

postprocessing operation is set after decoder to reconstruct the enhanced speech as shown in Fig. 

2-13. 

 

!
Figure 2-12: Proposed DBAUNet 
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2.2.1 Preprocessing and postprocessing  
 

The preprocessing stage is to process the input signal before it is fed into the neural network. The 

input signal is a mixture of noisy utterances, which is cut into small frames with appropriate 

overlap of each two adjacent frames. The postprocessing before reconstruction of speech is an 

inverse process of the preprocessing to recover frames back to utterances with their original lengths. 

 

!
Figure 2-13: Preprocessing and postprocessing stage 

 

More specifically, preprocessing stage splits an original speech mixture  𝑀1 × 𝐿 into overlapped 

𝐾 frames as shown in Fig. 2-13, where each frame has the length of 𝑆 and adjacent frames have a 

hop size of 𝐻 . Then all the frames are packed together to form a 3D tensor 𝐼 ∈  ℝ1 × 𝐾× 𝑆  if 

considering channel dimension. Here 𝐾 is defined as: 

                                                  𝐾 =  ⌈ (𝐿 − 𝑆)/(𝑆 − 𝐻) + 1⌉                                              (2-6) 

where�𝐿 is the length of original speech mixture, the operator ⌈ ∙ ⌉ means rounding up to the nearest 

integer. Frames with smaller size than 𝑆 will be padded with zero to match the equal frame size. 

Inversely, the postprocessing is adopted to recover the enhanced waveform from 3D tensor. 

 

2.2.2 Encoder  
 

The encoder is comprised of 5 layers, containing an input layer and 4 down-sampling layers. each 

down-sampling layer consists of a dilated-dense block and a 2-D convolution. The dilated-dense 

block is the combination of dense connection and dilated 2-D convolution. Different from the 
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densely connected convolutional network. All the conventional convolutions in dense block are 

replaced by dilated convolutions.  

Dilated convolution is used to increase the receptive field of CNN, which has been proved to 

be an efficient alternative to recurrent neural networks (RNNs) for modeling long-range sequences. 

An illustrative diagram of the dilated dense block is shown in Fig. 2-14. 

 

!
Figure 2-14: Dilated dense block 

 

Each dilated-dense block includes N layers of 2-dimensional depthwise separable convolutions 

with exponentially increasing dilation rates 1, 2, 4, …2N as shown in Fig. 2-14. Each convolution 

layer is followed by the layer normalization [37] and parametric ReLU (PReLU) nonlinearity. For 

the encoder processing in the model, the first layer uses 2-D convolution with 64 filters of size (1, 

1) to increase the number of channels of input mixture from 1 to 64.  

In each down-sampling layer, the dilated-dense block has 4 dilated convolution layers where 

each one uses filter of size (2, 3) with 64 output channels to keep its output in the same shape as 

the input. Then, the dilated-dense block is followed by a 2-D convolution with filters of size (1, 3) 

and a stride of (1, 2) which halves last feature dimension. All convolutions are followed by the 

layer normalization and PReLU non-linearity. After 4 down-sampling layers, the last dimension 

of feature representation will have 16 times reduction compared with the input of down-sampling 

layers.    

To further increase the receptive field as well as decrease parameters of convolutional neural 

network, the depthwise separable convolution is applied in the dilated-dense block. It generally 

includes two parts: depthwise (DW) and pointwise (PW) to extract feature maps as shown in Fig. 
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2-15 for example. For DW convolution, each channel input is convolved with one kernel separately 

and the number of feature maps is the same as channels. Here the number of parameters in DW 

step is computed by multiplying the number of kernels and the kernel size, which is 27 in this 

example. The PW convolution uses kernels with size of (1, 1) to convolve along the depth of 

feature maps from DW convolution to produce new feature maps, which is the final output of the 

depthwise separable convolution.  

 

!
Figure 2-15: Depthwise separable convolution 

 

The number of parameters generated by the DW step in Fig. 2-15 is 9. The total number of the 

parameters in the depthwise separable convolution is the parameters from PW and DW steps, 

which is 36 in this example. However, conventional convolution needs to use a group of three-

kernel filters and create 81 parameters, which is much more than that of the depthwise separable 

convolution.  

 

2.2.3 Dual-branch attention block  
 

The dual-branch attention block includes two parts: spatial attention block and channel attention 

block, as shown in Fig. 2-16. Input features are simultaneously processed by these two attention 

blocks and the final output of the self-attention module will be obtained by fusing the two-stage 

outputs from two attention blocks. 
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!
Figure 2-16: Proposed DBAB 

 

The spatial attention block is proposed to extract spatial information of speech features, which 

focuses on informative spatial region. In the block, input feature 𝑋 ∈ ℝ𝐶×𝐻×𝑊 is transferred to 

three same-shaped matrices 𝐾 ,�𝑄 , 𝑉 , where 𝐶 , 𝐻 , and 𝑊  are channel, height, and width 

respectively. The attention map 1 is the multiplication of 𝑄 and transposed 𝐾, with a shape of 

[𝐻 × 𝑊, 𝐻 × 𝑊] , where the original channel dimension of input features is removed and 

information along height and width is incorporated, which is so-called spatial attention block. The 

calculation procedures can be expressed as: 

                            𝑄 =  𝐶𝑜𝑛𝑣1×1
𝑞 (𝑋),      𝐾 =  𝐶𝑜𝑛𝑣1×1

𝑘 (𝑋),      𝑉 =  𝐶𝑜𝑛𝑣1×1
𝑣 (𝑋)                    (2-7)�

𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇)𝑉�����������������������������������������(2-8) 

where 𝐶𝑜𝑛𝑣1×1
𝑞 (∙), 𝐶𝑜𝑛𝑣1×1

𝑘 (∙), 𝐶𝑜𝑛𝑣1×1
𝑣 (∙) denote three different one-by-one convolutions for 

obtaining three matrices 𝑄, 𝐾 𝑎𝑛𝑑 𝑉 of spatial branch respectively.   

The channel attention block is proposed to extract channel information of speech features, 

which focuses on what is important among channel features. In channel attention block, 𝑄, 𝐾, and 

𝑉 are created in the same way as that of spatial attention block, generating the attention map 2 with 
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a shape of [𝐶, 𝐶] which is computed on the transposed 𝑄 and 𝐾, where the channel information 

of input features is exclusively collected after passing through the channel attention block. The 

details are shown as follows:  

𝑄 =  𝐶𝑜𝑛𝑣1×1
𝑞 (𝑋),      𝐾 =  𝐶𝑜𝑛𝑣1×1

𝑘 (𝑋),      𝑉 =  𝐶𝑜𝑛𝑣1×1
𝑣 (𝑋)                         (2-9) 

𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐾𝑄𝑇)𝑉                                           (2-10) 

where 𝐶𝑜𝑛𝑣1×1
𝑞 (∙), 𝐶𝑜𝑛𝑣1×1

𝑘 (∙), 𝐶𝑜𝑛𝑣1×1
𝑣 (∙)  denote three different one-by-one convolution for 

obtaining three matrices 𝑄, 𝐾 𝑎𝑛𝑑 𝑉 of channel branch respectively. To obtain the final output of 

dual-branch attention block, the spatial-wise features from spatial branch and channel-wise 

features from channel branch are fused by the average operation along with the residual connection 

from inputs, which is shown as follows: 

𝑂𝑢𝑡𝑝𝑢𝑡 = (𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 +  𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛) / 2 + 𝑋              (2-11) 

  

2.2.4 Decoder  
 

The decoder has a symmetric representation to the encoder, which processes the feature 

representation from attention block to reconstruct the enhanced speech waveform. There are 4 up-

sampling layers where each one includes dilated-dense block, a sub-pixel convolution and the 

concatenation of output from corresponding symmetric encoder layer. The dilated-dense block is 

the same as the corresponding one in the encoder layer. Finally, the output layer uses convolution 

with filter of size (1, 1) to decrease the number of the channels of feature from 64 to 1, in order to 

obtain the enhanced speech waveform through postprocessing.  

The sub-pixel convolution is used as an efficient alternative of the transposed convolution to 

double the last dimension of feature representation without introducing checkerboard artifacts [52]. 

It is comprised of a general convolution to increase the number of output channels and a periodic 

shuffling. It is initially used for image processing to generate high-resolution images from low-

resolution ones as shown in Fig. 2-17. 

Speech enhancement on spectrograms using sub-pixel convolution for up-sampling is similar 

to the operation of increasing image resolution. With respect to the one-dimensional waveform 

implementation, as Fig. 2-18 depicts, the input first passes through a standard convolution to 

increase the channels with the upscale rate of up-sampling, which will be shuffled to form features 

with the number and the size of channels being the same as those of the input channels. There is 
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no extra information introduced during sub-pixel convolution, thus leading to a better 

reconstruction of the enhanced speech. 

 

!
Figure 2-17: An illustration of sub-pixel convolution to generate high-resolution output [52] 

 

!
Figure 2-18: An illustrative of 1-D sub-pixel convolution 

 

2.3 Experiments 
 

2.3.1 Experiment setup 
 

The experiments are conducted on the VCTK dataset proposed by Valentini et al. [27], which is 

selected from Voice Bank corpus [28]. This dataset has been widely adopted to verify deep 

learning-based speech enhancement methods in recent years, since both training set and testing set 

are provided under given noise conditions, which very much facilitates users’ experimental studies 

with comparison to state-of-the-art methods. The training set includes 11572 utterances of 28 

speakers (14 female and 14 male) with SNR levels of 15 dB, 10 dB, 5 dB and 0 dB, where 8 types 

of noises come from DEMAND dataset [29] and 2 noises are artificially generated. The testing set 

has 824 utterances of 2 speakers (one male and one female) with 5 types of unseen noises at SNRs 

of 17.5 dB, 12.5 dB, 7.5 dB and 2.5 dB.  
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In order for the neural network to suitably deal with the dataset, all utterances are resampled at 

16kHz and cut into 4-second pieces. For those small sequences shorter than 4 seconds, zero-

padding is applied to match the same length. The window size of 32 ms (512 samples) is used at 

preprocessing stage to obtain chunks of 50% overlap. We use the Adam optimizer to train our 

model for 100 epochs. The weight decay is used during the optimization to avoid gradient 

vanishing, which is set as 1𝑒−7 in our experiments. 

The loss function used here is a combination of time domain loss and frequency domain loss. 

The frequency-domain loss can supervise the model to learn more information, leading to higher 

speech intelligibility and perceptual quality [52], which is defined as: 

          LF = 1
TF

∑ ∑ [(|Sr(t, f)|+|Si(t, f )|) − (|Ŝr(t, f)|+|Ŝi(t, f)|)]F−1
f=0

T−1
t=0                     (2-12) 

where S and Ŝ denote the clean spectrogram and the enhanced estimate of spectrogram. r and i are 

the real and imaginary parts of the complex variable, T is the number of frames and F is the number 

of frequency bins. For computing the loss in time domain, we use mean square error (MSE) 

between the enhanced speech waveform and clean speech waveform, which is defined as: 

                                                              LT = 1
N

∑  (si − ŝi)2N−1
i=0                                                (2-13) 

where si and ŝi are the 𝑖-𝑡ℎ sample of clean speech waveform and the denoised speech waveform 

respectively, and 𝑁  denotes the number of samples in an utterance. The final loss function 

combines these two types of losses mentioned above, giving: 

                                                            L =  𝜆 ∗ LF + (1 − 𝜆)LT                                              (2-14) 

where 𝜆 is a tunable parameter, which is set as 0.2 in the experiments. 

 

2.3.2 Comparison with existing methods 
 

Table 2-1 shows the comparison results of the proposed DBAUNet and some existing methods 

evaluated in the same dataset with same evaluation criteria, where all scores of baseline models in 

the table are given by their original papers and values of the proposed model is from our conducted 

experiment. First, the proposed DBAUNet has an obvious improvement in PESQ value from 1.97 

to 2.84. which has a better performance than most baseline models while having the lowest model 

parameter with only 0.66 million. In view of speech intelligibility performance, the DBAUNet 

achieves the best STOI score (94%) compared with all other baseline models. Although DBAUNet 
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obtains a slightly inferior PESQ (2.84) than DCUNet (2.93) and MetricGAN (2.86), it involves 

only 2.5 times fewer trainable parameters than DCUNet (2.30 million parameters).  

Besides, our proposed DBAUNet achieves comparable performance in three MOS evaluation 

metrics with existing baselines, where DCUNet using complex neural network has best CBAK 

and COVL scores but worse CSIG than DBAUNet. In terms of SSNR performance, the DCUNet 

gets the best score. A possible reason is that it utilizes the complex inputs (magnitude and phase) 

and complex CNN to simultaneously estimate the magnitude and phase information of clean 

speech. Meanwhile, DCUNet involves much more trainable parameters.  

 

Table 2-1: Evaluation scores of the proposed model and some existing models 

Model PESQ STOI CSIG CBAK COVL SSNR Para. (Million) 

Unprocessed 1.97 0.91 3.34 2.44 2.63 1.73 - 

Wiener 2.22 - 3.23 2.68 2.67 5.07 - 

SEGAN [53] 2.16 0.93 3.48 2.94 2.80 7.73 97.47 

WaveNet [8] - - 3.62 3.23 2.98 - - 

CNN-GAN [54] 2.34 0.93 3.55 2.95 2.92 - - 

Wave U-Net [41] 2.40 - 3.52 3.24 2.96 9.97 10.00 

Att. WU-Net [48] 2.62 - 3.91 3.35 3.27 - - 

MMSE-GAN [55] 2.53 0.93 3.80 3.12 3.14 - - 

MetricGAN [56] 2.86 - 3.99 3.18 3.42 - - 

DCUNet [57] 2.93 - 4.10 3.77 3.52 14.44 2.30 

SE-Flow [58] 2.43 - 3.77 3.12 3.09 8.07 - 

CP-GAN [59] 2.64 0.94 3.93 3.29 3.28 18.10 - 

SASE [60] 2.76 0.94 4.09 3.32 3.43 - 10.35 

SADNUNet [49] 2.82 - 4.18 3.47 3.51 - 2.63 

DBAUNet 2.84 0.94 4.14 3.47 3.50 9.25 0.66 

 

Second, we further compare the proposed DBAUNet with some U-Net based models with or 

without attention mechanism to demonstrate the effectiveness of our proposed dual-branch 

attention in speech enhancement, including Wave U-Net, Attention Wave U-Net, SASE and 

SADNUNet. As introduced before, the Wave U-Net is 1-D convolutional encoder-decoder 
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structure to estimate the enhanced waveform from noisy speech waveform. Attention Wave U-Net 

applies the attention mechanism in skip connection of U-Net to make important information from 

encoder to be used by corresponding decoder for better speech reconstruction. SADNUNet inserts 

the dense block and self-attention block between encoder and decoder of U-Net to further capture 

long-range dependency of speech sequences. Similar to SADNUNet, SASE incorporates the 

LSTM layer and self-attention block into U-Net encoder and decoder to extract high-level speech 

features.  

From Table 2-1, we can observe that our proposed DBAUNet achieves superior performance 

in terms of PESQ and STOI to U-Net based models while having fewest trainable parameters. 

Specifically, DBAUNet has best PESQ improvement compared with Wave U-Net (2.40), 

Attention Wave U-Net (2.62), SASE (2.76) and SADNUNet (2.82). Wave U-Net without attention 

mechanism obtains the worst PESQ score among other U-Net based models, which indicates that 

introducing attention mechanism is relatively helpful for improving the performance of U-Net 

based denoising models. SADNUNet performs slightly better than proposed DBAUNet in terms 

of CBAK, however, it includes much more parameters (2.63 million).  For other MOS metrics, 

DBAUNet shows an impressive improvement compared with other models. 

By comparing with existing speech enhancement models, it is found in general that our 

proposed DBAUNet achieves a comparable performance in modeling long-range speech 

sequences while having lowest model complexity. The main reason is that our DBAUNet adopts 

two-branch attention block to parallelly extract spatial and channel information, which are finally 

packed together to obtain the efficient feature representations. We will carry out a further study 

below on the efficiency of the proposed two-branch attention in our model.  

 

2.3.3 Ablation study 
 

In our model, the dual-branch attention block (DBAB) is proposed to extract spatial information 

and channel information at the same time, leading to spatial-wise and channel-wise feature 

representation. To further explore the influence of proposed DBAB on speech enhancement, we 

design two reference models for comparison by removing spatial branch attention or channel 

branch attention or both of them, yielding Spatial-UNet, Channel-UNet and Pure U-Net as shown 

in Table 2-2.  
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Table 2-2: Experimental results of different configuration in proposed model 

Model PESQ STOI CSIG CBAK COVL SSNR Para. (Million) 

Unprocessed 1.97 0.91 3.34 2.44 2.63 1.73 - 

Pure U-Net 2.54 0.94 3.85 3.26 3.20 8.91 0.63 

Channel-UNet  2.73 0.94 4.11 3.37 3.43 9.16 0.65 

Spatial-UNet 2.72 0.94 4.07 3.38 3.40 9.30 0.64 

DBAUNet  2.84 0.94 4.14 3.43 3.50 9.25 0.66 

 

As indicated in Table 2-2, omitting spatial branch attention or channel branch attention would 

result in the performance reduction compared with DBAUNet containing both spatial and channel 

branch attention, showing that both spatial and channel attention are important for extracting 

abundant features of long-range speech sequences. Moreover, the Pure U-Net without any 

attention mechanism obtains the worst performance of speech enhancement compared with other 

comparison models, confirming that introducing attention mechanism is indispensable for 

improving the performance of U-Net on long-range sequence modeling.  

Additionally, in order to demonstrate the efficiency of the proposed DBAB, we explore two 

different blocks inserted between encoder and decoder of U-Net, including LSTM and temporal 

convolutional network (TCN) blocks. The LSTM and TCN are commonly used in sequence 

modeling, which has been introduced in previous chapter. To simplify the experiment, we use 2 

LSTM layers and 2 groups of TCN blocks where each group has 6 dilated convolutional layers as 

the module between encoder and decoder. These two reference models are named as LSTM-UNet 

and TCN-UNet, respectively, as shown in Table 2-3. 

 

Table 2-3: Performance of different comparison model 

Model PESQ STOI CSIG CBAK COVL SSNR Para. (Million) 

Unprocessed 1.97 0.91 3.34 2.44 2.63 1.73 - 

Pure U-Net 2.54 0.94 3.85 3.26 3.20 8.91 0.63 

LSTM-UNet 2.67 0.94 3.92 3.33 3.30 9.21 0.64 

TCN-UNet 2.55 0.94 3.81 3.27 3.17 9.20 2.02 

DBAUNet  2.84 0.94 4.14 3.43 3.50 9.25 0.66 
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From Table 2-3, we found that inserting LSTM, TCN or DUAB would have different degrees 

of improvement on U-Net based speech enhancement. Especially, the proposed DBAUNet 

achieves a superior performance in all evaluation metrics compared with reference models using 

LSTM and TCN, indicating that the proposed DBAB not only works well on long-range speech 

sequences but also extracts more efficient contextual feature by learning both spatial and channel 

information with dual-branch structure. 

 

2.4 Summary 
 
A U-Net with a dual-branch attention block incorporated, named DBAUNet, has been proposed in 

this chapter. The encoder layer of DBAUNet is comprised of a dilated dense block and a two-

dimensional convolution performing the down-sampling operation. The dilated dense block 

consists of multiple densely connected dilated convolutional layers with exponentially increasing 

dilated rates and the convolution here adopts the depthwise separable convolution. The decoder 

layer of DBAUNet comprises of a dilated dense block and a sub-pixel convolution as the up-

sampling. The dilated convolution is used to expand receptive fields and the depthwise separable 

convolution is a light-complexity alternative of the conventional convolution. The sub-pixel used 

as up-sampling approach can avoid checkboard artifacts which is introduced by common 

convolutions for up-sampling operation.  

The dual-branch attention block in the DBAUNet contains a spatial-branch attention along the 

height-width dimension and a channel-branch attention on channel dimension respectively, and 

then the features from the two-branch attentions are fused through average computation. 

Experimental results on a benchmark dataset have shown that the DBAUNet achieves 

comparable performance to most of the comparison models in most evaluation metrics and holds 

the lightest model complexity. Additionally, U-Nets with LSTM, TCN and one-path attention are 

also investigated to demonstrate the efficiency of the proposed two-branch attention block, 

demonstrating that the proposed U-Net structure combined with proposed two-branch attention 

outperforms other U-Nets with different components and still keeps a competitively low model 

complexity. 
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Chapter 3 

Proposed Multi-head Attention U-Nets for Speech 

Enhancement 
 
In this chapter, we propose two efficient U-Net architectures with multi-head attention mechanism 

for speech enhancement, including multi-head attention U-Net-1 (MHAUNet-1) and multi-head 

attention U-Net-2 (MHAUNet-2). The MHAUNet-1 incorporates proposed attention blocks 

between encoder and decoder to further extract the contextual information of the encoder outputs, 

and MHAUNet-2 applies attention mechanism in each encoder and decoder layer to learn the 

global information of speech features. This chapter is organized as follows, the multi-head 

attention mechanism is first introduced, and some existing works using multi-head attention 

mechanism for speech enhancement are reviewed in section 3.1. Then, we present the proposed 

MHAUNet-1 and MHAUNet-2 for time-domain speech enhancement in section 3.2. Finally, 

section 3.3 provides the experimental results of the proposed MHAUNet-1 and MHAUNet-2.   

 

3.1 Previous work 
 

3.1.1 The introduction of multi-head attention  
 

Attention mechanism is proposed to focus on extracting the information or element that is most 

important for performance. Different from the self-attention mechanism mentioned above only 

considering the interested information in one aspect, the multi-head attention provides multiple 

attention operations simultaneously for the neural network to extract features in multiple 

representation subspaces [61]. Then, the extracted features of each representation subspace are 

packed together to constitute the final feature representation of multi-head attention. In other words, 

the multi-head attention is able to learn the information in different aspects, which performs a 

similar procedure to the convolutional neural network using different convolutional kernels to 

learn the features from different aspects.  
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Figure 3-1: Scaled dot-product attention and multi-head attention [61] 

 

In the multi-head attention shown in Fig. 3-1, the input features are first passed through three 

different learnable linear transformations with ℎ times to obtain ℎ representation subspaces, where 

each one has three different feature representation queries and keys with feature dimension 𝑑𝑞, 

and values with feature dimension 𝑑𝑞. Then, the query, key and value in each feature subspace 

performs the scaled dot-product attention in parallel, which is one-head attention. In terms of the 

scaled dot-product attention described in Fig. 3-1, the query matrix is multiplied with the 

transposed version of key matrix, whose result is divided by the scaled factor √𝑑𝑞 for the sake of 

normalization. Next, the softmax operation is employed to the scaled dot product to obtain the 

attention with values ranging from 0 to 1. Finally, the one-head attention is computed by 

multiplying the attention matrix with value matrix. Multiple one-head attentions are computed 

with a parallel procedure, which are eventually concatenated and projected again with a learnable 

linear layer to generate the outputs of multi-head attention. The multi-head attention forces the 

model to learn the feature representation from a different perspective. The whole procedures can 

be formulated as follows: 

                                         𝑄𝑖 = 𝑋𝑊𝑖
𝑄, 𝐾𝑖 = 𝑋𝑊𝑖

𝐾, 𝑉𝑖 = 𝑋𝑊𝑖
𝑉                                                  (3-1) 

                             ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖, 𝐾𝑖, 𝑉𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝑖𝐾𝑖
𝑇

√𝑑𝑞
)𝑉𝑖                                  (3-2)                                               

                       𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑐𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑𝑖, … )𝑊𝑜                              (3-3) 

where 𝑋 denotes the input features with dimension 𝑑𝑚𝑜𝑑𝑒𝑙,  𝑄, 𝐾, 𝑉 stand for the queries, keys 
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 and values, 𝑊𝑖
𝑄, 𝑊𝑖

𝐾, 𝑊𝑖
𝑉 denote the 𝑖th linear transformation matrix for queries, keys and values, 

respectively, and 𝑖 = 1, 2, … , ℎ, and ℎ is the number of heads, 𝑊𝑂 is the linear transformation 

matrix for obtaining the outputs of multi-head attention. 

 

3.1.2 Multi-head attention based models  
 

Inspired by the effectiveness of multi-head attention mechanism in modeling the long-range 

dependency of speech sequences, some multi-head attention based models have been proposed to 

improve the performance of speech enhancement. The authors of [62] proposed a LSTM-

augmented multi-head attention block, which consists of a Local-LSTM, a multi-head attention 

and a 1-D convolution as shown in Fig. 3-2.  

 

 
Figure 3-2: LSTM-augmented multi-head attention block [62] 

 

The Local-LSTM is proposed to learn the local structure of speech features by adopting the 

LSTM into the short-term spectrogram, which can also bring the positional information for multi-
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head attention mechanism to improve the performance of speech denoising. Then, the multi-head 

attention is used to learn the long-term relationship among speech features, generating the 

contextual feature representation by considering each position of features. Next, the 1-D 

convolutional neural network is employed to extract the local information between adjacent hidden 

states. Finally, the layer normalization and residual connection are used to boost the model training 

and avoid gradient vanishing problem.  

Authors of [63] investigated self-adaptation models for speech enhancement by using multi-

head attention mechanism as indicated in Fig. 3-3. This model has two branches, the CNN-branch 

applied to extract the spatial information of speech features, and the speaker-aware branch 

proposed to extract the auxiliary speaker-aware features. In the following, the outputs of two 

branches are concatenated to pass through a BLSTM for obtaining the time-independent speaker 

features. In this work, the multi-head attention block is used to extract the long-range dependencies 

of speech features, generating the contextual information which will be packed together with the 

time-independent speaker information to obtain the mask for denoising by following one linear 

layer. Additionally, the multi-task learning is used to improve the denoising performance by 

dealing with the speech enhancement and speaker identification tasks at the same time.   

 

 
Figure 3-3: Self-adaptation model for speech enhancement using multi-head attention [63] 

 
Recently, some works combined the multi-head attention mechanism with U-Net architecture 

to promote the performance of U-Net based models in speech enhancement. Authors of [64] 

incorporated the language model into speech enhancement framework as shown in Fig. 3-4, where 

the linguistic information from language model will benefit the speech enhancement during noisy 

environments. More specifically, the symbolic encoder is proposed to learn the linguistic 

information of spoken utterances, generating the discrete symbolic sequences to represent the high-

level phoneme features of speech sequences by using vector quantized variational autoencoder 

algorithm. Then, the encoder-decoder based U-Net is employed to perform the speech denoising, 



 52 

where the encoder is used to obtain the compressed features and decoder is applied to recover the 

intermediate features back to enhanced speech.  

To make full use of linguistic information from symbolic sequences, the multi-head attention 

block is inserted before each decoder layer to connect its inputs with the symbolic information. 

More specifically, the multi-head attention block receives the features from encoder layer or 

previous decoder layer as the query as well as the features from symbolic sequence as the key and 

value, which builds the connection between speech characteristics and corresponding content 

information to reinforce the performance of speech enhancement.  

 

 
Figure 3-4: Symbolic sequential model with multi-head attention for speech enhancement [64] 

 
Different from the work in [64], the authors of [65] investigated the multi-head attention 

method to connect information from encoder with the one from decoder in U-Net based speech 

enhancement model as shown in Fig. 3-5. First, the authors built a dual-path attention based multi-

head attention as indicated in the left part of Fig. 3.6, where one is used to extract the temporal 

information of speech spectrogram along the time-axis dimension and the other one is applied to 
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capture the frequency information along the frequency-axis dimension. By using this dual-path 

attention block, the abundant information of speech is learnt for long-range speech modeling. Then, 

the cross-attention block is applied before each decoder layer to build a better skip connection as 

shown in the right part of Fig. 3-6, where the attention block regards the information of 

corresponding encoder layer as the key and value, and treats the features from decoder layer as the 

query.  

 

!
Figure 3-5: U-Net with multi-head self-attention and cross-attention [65] 

 
 

!
Figure 3-6: Multi-head self-attention and cross-attention [65] 

 

Within the cross-attention block in this work, the query information is amended to the key 

information to obtain the attention score, which will be used to filter the encoder features. In other 

words, the proposed attention block is used to remove the redundant information of the encoder 

and only reuse the information which benefits the decoder to reconstruct the enhanced speech. 
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Finally, to utilize the time and frequency information for training the model, the mixed loss 

function is used based on the combination of time-domain loss and frequency-domain loss. 

                

3.2. Proposed multi-head attention U-Nets  
 
In this section, we propose two new U-Net based architectures for speech enhancement, which 

employ the multi-head attention to extract the contextual information of long-range speech 

sequences. The first proposed model inserts the multi-head attention block (MHAB) between the 

encoder and decoder to further extract high-level features from the encoder outputs, where the 

MHAB is comprised of a sample multi-head attention and a frame multi-head attention to 

successively capture short- and long-term information. In contrast, the second U-Net structure 

replaces the convolutional encoder-decoder layers with multi-head attention layers, which could 

effectively alleviate the limited receptive filed caused by local operation of convolution. To 

perform the down-sampling and up-sampling operation in encoder and decoder, we insert a down-

sampling block and an up-sampling block into encoder and decoder layer, respectively. Both 

proposed models will be described as follows.  

 

3.2.1 Proposed MHAUNet-1  
 

Different from the self-attention mechanism between encoder and decoder of the U-Net described 

in chapter 2, we propose here a new U-Net applying the multi-head attention after the encoder to 

further extract contextual information from different aspects, named as multi-head attention U-

Net-1 (MHAUNet-1) as shown in Fig. 3-7.  

Our proposed MHAUNet-1 consists of convolutional encoder-decoder structure and a two-

stage multi-head attention block (TSMHAB) in between, where the multi-head attention block 

employs a sample and frame multi-head attention to extract short- and long-term information. To 

form a two-stage multi-head attention block (TSMHAB), we first propose a multi-head attention 

block (MHAB-1) as a backbone. Our proposed MHAB is comprised of a multi-head attention and 

a GRU block as shown in Fig. 3-8. 
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!
Figure 3-7: Proposed MHAUNet-1  

 

!
Figure 3-8: Proposed MHAB-1 

 

Unlike self-attention we adopted in chapter 2, the multi-head attention is employed to extract 

the global dependency of time sequences from various aspects. The output of certain sample has a 

relationship with itself and other samples. The attention mechanism decides to focus on how many 

and which neighboring samples would have an impact on this sample. However, the sequential 

information is ignored in the attention procedure, which is important for the modeling of speech 
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sequence. To solve this problem, we adopt a GRU block to track the positional information of 

speech sequences, which consists of a bi-directional GRU (Bi-GRU) layer, a fully-connected (FC) 

layer and a ReLU nonlinearity in between.  

In the proposed MHAB-1, the input features 𝑋 ∈ ℝ𝑇 × 𝐹  are first passed through the MHA to 

get the attentive feature representation 𝑋𝑎𝑡𝑡 ∈ ℝ𝑇 × 𝐹  without positional information, where 𝑇 

denotes the sequency length and 𝐹 is the feature dimension of each time step. Then, the GRU block 

is used to learn the sequential information of features 𝑋𝑎𝑡𝑡, where a Bi-directional GRU layer is 

utilized to increase the feature dimension of 𝑋𝑎𝑡𝑡 from 𝐹 into 4𝐹. In that case, the feature space is 

projected into larger one for learning more useful information. Finally, the FC layer is employed 

to project the higher feature dimension 4𝐹  back to smaller one 𝐹 . Additionally, the residual 

connection and layer normalization are employed after MHA and GRU block to avoid the gradient 

vanishing and speed up the convergency.  The whole procedures can be formulated as follows: 

𝑋𝑎𝑡𝑡 =  𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋)                                         (3-4) 

𝑌𝐺𝑅𝑈 =  𝐵𝑖𝐺𝑅𝑈(𝐿𝑁 (𝑋 + 𝑋𝑎𝑡𝑡))                                          (3-5) 

𝑌 = 𝐿𝑁(𝑅𝑒𝐿𝑈(𝑌𝐺𝑅𝑈)𝑊𝑜 + 𝑋𝑎𝑡𝑡)                                         (3-6) 

where  𝑌𝐺𝑅𝑈 ∈ ℝ𝑇 × 4𝐹 is the output features from the Bi-GRU layer, 𝑊𝑜 ∈ ℝ4𝐹 × 𝐹 denotes the 

linear matrix for projecting the feature dimension, 𝐿𝑁(∙) and 𝑅𝑒𝐿𝑈 (∙) are layer normalization and 

ReLU non-linearity operation, 𝑌 ∈ ℝ𝑇 × 𝐹 means the final outputs of MHAB.  

Based on the multi-head attention block, we propose a two-stage multi-head attention block 

(TSMHAB) by using the dual-path structure to efficiently extract of contextual information of 

long-range speech sequences as shown in Fig. 3-9. The dual-path structure is proposed to solve 

the high computation problem of RNNs on modeling long-range speech separation. In this 

structure, the long speech sequences are first divided into multiple overlapped speech frames, 

where the local relationship is learnt in each individual frame and then the global information is 

captured by fusing different frames.  

We employ the multi-head attention block mentioned above to perform the dual-path extraction 

for speech enhancement. As shown in Fig. 3-9, our proposed TSMHAB consists of sample multi-

head attention and frame multi-head attention to successively extract local relationship within 

separate samples and global contextual information among different frames, respectively. In the 

proposed TSMHAB, the input features 𝐼 with a dimension format of [𝐵, 𝐶, 𝑁, 𝐹] is first reshaped 

to the data format with [𝐵 ∗ 𝑁, 𝐹, 𝐶] which can be processed by the MHA blocks. Then, the sample  
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Figure 3-9: Proposed two-stage multi-head attention block 

 

MHA is adopted to parallelly capture the local relationship in individual frames, which implements  

on the dimension 𝐹 of the features. Next, the output features from sample MHA are permuted to 

the data format with [𝐵 ∗ 𝐹, 𝑁, 𝐶] before passing through the frame MHA. Subsequently, the 

frame MHA is employed to summarize the information of different frames to extract the global 

contextual information along the dimension 𝑁. Besides, the group normalization is applied after 

each MHA block, and the residual connection from the inputs of MHA block is added with outputs 

of MHA block for avoiding gradient vanishing. The procedures can be formulated as follows:  

𝑂𝑢𝑡𝐿−𝑀𝐻𝐴 = 𝑆𝑀𝐻𝐴 (𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝐼)[: , 𝑓, : ]) + 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝐼)                      (3-7) 

𝑂𝑢𝑡𝐺−𝑀𝐻𝐴 = 𝐹𝑀𝐻𝐴 (𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑂𝑢𝑡𝐿−𝑀𝐻𝐴)[: , 𝑛, : ]) + 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑂𝑢𝑡𝐿−𝑀𝐻𝐴)        (3-8) 

where 𝑓 = 1, 2, ⋯ , 𝐹, is the index of sample in each chunk, and 𝑛 = 1, 2, ⋯ , 𝑁 denotes the chunk 

index. 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(∙) denotes the changes of feature layout, equivalent to the operation of dimension 

permutation as shown in Fig. 3-9.   

We combine the proposed TSMHAB with the encoder-decoder based U-Net to construct our 

MHAUNet-1 as shown in Fig. 3-7, which has a U-Net structure similar to the DBAUNet we 

proposed in chapter 2. More specifically, the input noisy waveform is first transformed into 
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overlapped chunks to form a 3-D tensor 𝑋 ∈ ℝ𝐶 × 𝑁× 𝐹 , where 𝐶 = 1 denotes the feature channel, 

𝑁 is the number of chunks and 𝐹 the length of each chunk. Then, the convolutional encoder is 

adopted to extract the compressed features of 𝑋 by employing one input layer and four down-

sampling layers. More specifically, the input layer increases the feature channel of inputs from 1 

into 64 by using 1×1 convolutional layer. Then the down-sampling layer decreases the chunk 

length by a factor of 2 using a dilated dense block and a shifted 2-D convolutional layer. After the 

encoder, we obtain the compressed features 𝐼 ∈ ℝ64 × 𝑁× 𝐻 , where 𝑁 depends on the length of 

original noisy waveform and 𝐻 = 𝐹/24  is the chunk size after passing through four down-

sampling layers. Next, the features 𝐼 are further extracted by the proposed TSMHAB to learn the 

contextual information, where the local and global information is successively captured by sample 

MHA and frame MHA to generate the better feature representation 𝐼𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ∈ ℝ64 × 𝑁× 𝐻.  

The decoder is to reconstruct the enhanced speech from 𝐼𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , which includes four up-

sampling layers and one output layer. Each up-sampling layer is to increase the chunk size by a 

factor of 2 using dilated dense block and sub-pixel convolution. The output layer reduces the 

feature channel from 64 into 1. To reuse the multi-scale features from encoder, the skip connection 

used in each encoder layer is also applied to the corresponding decoder layer. After decoder, we 

obtain the recovered speech features 𝑌 ∈ ℝ1 × 𝑁× 𝐹  which will be transformed into enhanced 

speech waveform by postprocessing. 

 

3.2.2 Proposed MHAUNet-2  
 

Most U-Net architectures are based on convolutional encoder-decoder structure. However, the 

intrinsic locality problem of convolutional operation makes the U-Net difficult to explore the long-

range relationship for long speech sequences. Although our proposed MHAUNet-1 employs the 

multi-head attention to further capture the long-range dependency of the encoder outputs, some 

potential information is missed in the compressed features in a convolutional encoder.  

To tackle this shortage, we construct multi-head attention based encoder layers and decoder 

layers to make an efficient and improved U-Net for speech enhancement which can capture long-

range relationship of features in the level of encoder and decoder. The whole framework of the 

proposed multi-head attention U-Net-2 (MHAUNet-2) is shown in Fig. 3-10, which consists of an 

encoding module, a decoding module, and a U-shape MHA module in between.  



 59 

!
Figure 3-10: Proposed MHAUNet-2 

!
The encoding module consists of two convolutional layers with a dilated-dense block in 

between as shown in Fig. 3-11. The first convolutional layer increases input channels from 1 to 64 

by using 2-D convolutions with a kernel of size (1, 1), followed by a dilated-dense block with four  

dilation convolution layers for extracting low-level features. We use dilated depth-wise separable 

convolutions in dense block instead of conventional convolutions for increasing the receptive field 

of features while involving lower model parameters. Then, the dimensionality of frame size and 

channel is halved by 2-D convolutions with kernel size (1, 3) using a stride of (1, 2), which could 

be helpful for decreasing the computational complexity of the following U-shape MHA module. 

All convolutional layers are followed by layer normalization and PReLU nonlinearity. 

!
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!
Figure 3-11: Encoding module 

!
The output features from encoding module are processed by the U-shape MHA module 

consisting of multiple MHA encoder layers, cascaded MHA module and multiple MHA decoder 

layers. To form the encoder and decoder layers, we first improve the MHAB-1 used in MHAUNet-

1 in some aspects as shown in Fig. 3-12. More specifically, we replace the ReLU non-linearity of 

GRU block with GELU non-linearity which avoids the zero values caused by negative inputs but 

includes all benefits of ReLU function. Additionally, we adopt a pre-norm strategy by applying 

the layer normalization before MHA and GRU block for more efficient training. Furthermore, the 

third layer normalization is added to outputs of MHAB-2 for regularization.  

Based on the MHAB-2, we constitute the MHA based encoder layer using a down-sampling 

layer, a sample MHA and a frame MHA as shown in Fig. 3-13. In details, the feature from the 

encoding module has a size of [𝐶, 𝐾, 𝑆], where 𝐶, 𝐾, 𝑆 denote the number of channels, the number 

of frames and frame length, respectively. A down-sampling block is applied to halve the dimension 

𝑆 by using 2-D convolutions with kernels of size (1, 3) and a stride of (1, 2), which is followed by 

layer normalization and PReLU nonlinearity. 

 

 
Figure 3-12: Proposed MHAB-2 
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!
Figure 3-13: MHA encoder layer 

 

After that, the sample MHA is first employed on separate frames to parallelly learn the short-

term information in each frame by performing on the dimension 𝑆 of the input feature. Next, the 

frame MHA summarizes the information of different frames to learn long-term dependencies, 

which implements on the dimension 𝐾  of the feature. After passing through 𝐷  MHA-based 

encoder layers, the shape of feature becomes [𝐶, 𝐾, 𝑆/2𝐷] when it is fed into the cascaded MHA 

blocks. Each cascaded MHA block has a pair of sample and frame MHA blocks with cascaded 

connection to further extract high-level features of long-range speech sequences. 

To recover the enhanced speech features from compressed latent features, the U-shape MHA 

module uses the same number of MHA-based decoder layers as that of encoder layers to 

reconstruct the feature representation, where each layer consists of sample and frame MHA blocks 

and the up-sampling block in front of them, as shown in Fig. 3-14.  

In each MHA decoder layer, the up-sampling block doubles the dimension of frame length by 

using the sub-pixel convolution with an expansion factor 2. There is also a residual connection 

added between the corresponding MHA encoder and decoder layers for improving signal 

reconstruction and avoiding gradient vanishing problems during training. After D decoder layers, 

the shape of feature can be recovered from [𝐶, 𝐾, 𝑆/2𝐷] to [𝐶, 𝐾, 𝑆].   
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!
Figure 3-14: MHA decoder layer 

 

The decoding module is a symmetric representation of the encoding module, including two 

convolutional layers and a dilated-dense block in between as shown in Fig. 3-15. First, the sub-

pixel convolution is used to double the last dimension of feature representation, followed by the 

dilated-dense block which has the same structure as the one in the densely encoding module. 

Finally, the second convolutional layer decreases the number of channels of the feature from 64 to 

1 by using a filter of size (1, 1), and finally obtains the enhanced speech by the postprocessing 

described in chapter 2.   

 

Figure 3-15: Decoding module 
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3.3 Experiments 
 

3.3.1 Experimental setup 
 

To verify our proposed MHAUNet-1 and MHAUNet-2 model, we conduct thorough experimental 

work with comparisons to other existing models on the VCTK dataset including female and male 

speakers. In the VCTK dataset, 11572 utterances are selected for training the model, which 

includes 14 male and 14 female speakers. A total of 10 types of noises from DEMAND and 

artificially generated noise dataset are used for generating the noisy training dataset which has four 

SNRs levels including 15 dB, 10 dB, 5 dB and 0 dB. To evaluate the trained models, 824 utterances 

spoken by one male and one female are employed by mixing with 5 types of unseen noise with 

different SNRs including 17.5 dB, 12.5 dB, 7.5 dB and 2.5 dB. Like chapter 2, some commonly 

used evaluation metrics are used to evaluate the performance of speech enhancement. PESQ and 

STOI are two most popular evaluation metrics to evaluate the speech perceptibility and speech 

intelligibility. SSNR computes the SNRs and energies of segments from the estimated and clean 

speech. We also adopt the composite metrics including CSIG for speech distortion, CBAK for 

background noise and COVL for overall speech quality.  

For preprocessing stage, we resample the utterances at 16 kHz and randomly select 4 seconds 

of each utterance for training. To construct the inputs of our models, we split each 4-second 

segment into multiple overlapped chunks, where each chunk has a length of 512 samples with a 

shift of 256 samples to the next chunk. We set batch size as 2 due to the limited hardware 

computational resources.  

To have a fair comparison, both MHAUNet-1 and MHAUNet-2 adopt four encoder and 

decoder layers. In MHA block, four heads are used for extracting features from different subspaces, 

and 64 hidden units are used in GRU block. We train our proposed models for 100 epochs by using 

Adam optimizer. We use the gradient clipping to restrain the maximum norm of gradient to 5 for 

avoiding the gradient explosion problem. The dynamic learning rate is scheduled during the 

training. Specifically, we first linearly increase the value of learning rate from 0 to 4𝑒−4 within the 

first 4000 training steps, and then decay it by 0.98 for every two epochs. The details can be 

formulated as follows: 
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𝐿𝑟 = {
k1∙ 𝑑−0.5 ∙ n ∙ n_warmups−1.5         ,         n≤n_warmups 

k2∙ 0.98⌊epoch/2⌋                              , n>n_warmups
                    (3-9) 

where n is the number of training steps, and k1 and k2 are hyperparameters, which are set as 0.2 and 

4e−4, respectively. n_warmups denotes the number of warm-ups, which is set as 4000. Finally, 

𝑑 denotes a hyperparameter which is set to 64 in our experiments. 

To train our proposed MHAUNets, the loss function calculated on waveform domain and time-

frequency domain is used, where waveform domain loss is based on the mean square error (MSE) 

between the clean and denoised waveform, and the time-frequency domain loss is based on the 

spectrograms computed by clean and enhanced waveform by STFT.  

  ℒ𝐹 = 1
𝑇𝐹

∑ ∑ [(|𝑆𝑟𝑒𝑎𝑙(𝑡, 𝑓)| + |𝑆𝑖𝑚𝑔(𝑡, 𝑓)|) − (|�̂�𝑟𝑒𝑎𝑙(𝑡, 𝑓)| + |�̂�𝑖𝑚𝑔(𝑡, 𝑓)|)]𝐹−1
𝑓=0

𝑇−1
𝑡=0            (3-10) 

ℒ𝑇 = 1
𝑁

∑ (𝑥𝑖 − 𝑥𝑖)2𝑁−1
𝑖=0                                                       (3-11) 

ℒ =  𝜑 ∗ ℒ𝑇 + (1 − 𝜑)ℒ𝐹                                                 (3-12) 

where ℒ𝑇 and ℒ𝐹 denote the loss on waveform and time-frequency domain, respectively. {𝑆𝑟𝑒𝑎𝑙 , 

𝑆𝑖𝑚𝑔} mean real and imaginary components of the spectrogram of clean waveform. {�̂�𝑟𝑒𝑎𝑙 , �̂�𝑖𝑚𝑔} 

represent real and imaginary parts of the spectrogram of enhanced waveform. 𝑇 and 𝐹 are the 

number of frames and that of frequency bins. {𝑥, �̂�} denote the samples of clean and enhanced 

speech waveform. 𝑁 is the number of speech samples. ℒ denotes the final mixed domain loss, 

which is weighted sum over waveform domain loss and time-frequency domain with factor 𝜑. We 

empirically set 𝜑 = 0.5 in our following experiments. 

 

3.3.2 Comparison with baselines  
 

We compare our proposed models with other time or T-F domain speech denoising models, all 

evaluated on the same dataset. The experimental results are presented in Table 3-1. First, the 

proposed MHAUNet-1 and MHAUNet-2 achieve an obvious improvement of PESQ score from 

1.97 to 2.96 and to 3.00, respectively, indicating a competitive performance with other methods 

while involving fewer model parameters. DEMUCS achieves the best PESQ score, however, it 

employs many data augmentation technologies and involves much more trainable parameters 
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which are about 47 times larger than MHAUNet-1 and about 31 times larger than MHAUNet-2, 

respectively.  

 

Table 3-1: Performance comparison with existing methods 

Model PESQ STOI CSIG CBAK COVL SSNR Para. (M) 

Unprocessed 1.97 0.91 3.34 2.44 2.63 1.73 - 

WaveNet [8] - - 3.62 3.23 2.98 - - 

CNN-GAN [54] 2.34 0.93 3.55 2.95 2.92 - - 

Wave U-Net [41] 2.40 - 3.52 3.24 2.96 9.97 10.00 

Att. WU-Net [48] 2.63 - 3.95 3.30 3.29 - - 

MetricGAN [56] 2.86 - 3.99 3.18 3.42 - - 

DCUNet-16 [57] 2.93 - 4.10 3.77 3.52 14.44 2.3 

PHASEN [66] 2.99 - 4.21 3.55 3.62 10.18 8.76 

MHSA-SE [63] 2.99 - 4.15 3.46 3.51 - - 

LLUNet [67] 2.90 0.94 4.22 3.32 3.58 - - 

NAAGN [68] 2.90 - 4.13 3.50 3.51 10.25 - 

DEMUCS [42] 3.07 0.95 4.31 3.40 3.63 - 33.5 

T-GSA [69] 3.06 - 4.18 3.59 3.62 10.78 110 

SASE [57] 2.76 0.94 4.09 3.32 3.43 - 10.35 

CARN [70] 2.93 0.95 4.19 3.61 3.54 - - 

SADNUNet [49] 2.82 - 4.18 3.47 3.51 - 2.63 

MHAUNet-1 (ours) 2.96 0.94 4.23 3.51 3.61 9.87 0.69 

MHAUNet-2 (ours) 3.00 0.95 4.26 3.54 3.65 9.47 1.04 

 

Regarding the speech intelligibility evaluation, the proposed MHAUNet-2 obtains the best 

STOI score of 95%. The proposed MHAUNet-1 and MHAUNet-2 obtain similar MOSs, while 

MHAUNet-2 achieving a superior performance in CSIG and COVL. The best CBAK value is 

achieved by DCUNet adopting the complex convolutional neural network and having much more 

model parameters. Moreover, from Table 3-1, we can observe that our proposed MHAUNet-1 and 

MHAUNet-2 achieve a superior performance to most U-Net based methods working on time 
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domain or T-F domain. More specifically, both MHAUNet-1 and MHAUNet-2 obtains a better 

PESQ score than WaveUNet, Attention WaveUNet, DCUNet, LLUNet, SADNUet and SASE. In 

terms of composite evaluation scores, MHAUNet-1 and MHAUNet-2 achieve a better 

performance in COVL than other U-Net based models.  

Comparing with other attention-based models, we observe that our proposed multi-head 

attention based models yield a competitive performance on speech enhancement. Especially, the 

MHAUNet-2 presents more impressive performance in all evaluation metrics than NAAGN, 

CARN and Self-Adapt MHSA. Although T-GSA achieves a slightly better PESQ value (3.06) than 

MHAUNet-2, it involves much more trainable parameters (about 110 million parameters). 

Compared with existing speech enhancement methods, our proposed MHAUNet-1 and 

MHAUNet-2 give competitive PESQ and composite evaluation metrics while having a very low 

model complexity. By introducing the sample and frame multi-head attentions to capture local 

relationship and global contextual information, the U-Net architecture can efficiently extract 

abundant contextual information of long-range speech sequences.   

  

3.3.3 Ablation study  
 

In this section, we present some findings through ablation studies by using different model 

configurations. First, our proposed MHAUNet-1 adopts the two-stage multi-head attention block 

(TSMHAB) to extract the contextual information of the output features from U-Net encoder. To 

explore the effectiveness, we explore other different blocks inserted between the encoder and 

decoder of U-Net, including LSTM layers, temporal convolutional network (TCN) block and dual-

branch attention block (DBAB).  

To have a fair comparison, we use the same encoder-decoder structure as the MHAUNet-1. 

For simplifying the experiment, we use two LSTM layers, two TCN blocks and one DBAB as the 

inserted blocks between encoder and decoder, which are named as UNet-LSTM, UNet-TCN and 

DBABUNet, respectively. Note that, the DBABUNet is our proposed self-attention based U-Net 

structure in chapter 2, where the proposed two-branch attention is used to parallelly extract spatial- 

and channel-wise information. Moreover, we design a pure U-Net structure without inserted block 

to verify whether capturing the contextual information is required, which is termed as Pure U-Net. 
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From Table 3-2, we can observe that our proposed MHAUNet-1 achieves the best score in all 

evaluation metrics compared with other reference models with different inserted blocks. Especially, 

the Pure U-Net obtains the worst performance of speech denoising, indicating that the U-Net 

structure without inserted block is hard to extract contextual information due to the limited 

receptive filed of convolutional operation.  

Moreover, the attention-assisted MHAUNet-1 and DBAUNet outperform the reference models 

using inserted LSTM or TCN layers, showing that the attention mechanism with parallel operation 

can efficiently extract long-range dependency of speech sequences. Different from DBAUNet 

using self-attention, the new proposed MHAUNet-1 adopts the multi-head attention to extract 

abundant features from different subspaces, which further improves the quality of extracted 

contextual information.  

 

Table 3-2: Performance of different model configuration 

 PESQ STOI CSIG CBAK COVL SSNR 

MHAUNet-1 2.96 0.94 4.23 3.51 3.61 9.87 

DBAUNet 2.84 0.94 4.14 3.43 3.50 9.25 

UNet-LSTM 2.67 0.94 3.92 3.33 3.30 9.21 

UNet-TCN 2.55 0.94 3.81 3.27 3.17 9.20 

Pure U-Net 2.54 0.94 3.85 3.26 3.20 8.91 

 

Next, our proposed MHAUNet-2 applies the multi-head attention based encoder and decoder 

layers, where the down-sampling and up-sampling are incorporated in front of sample and frame 

MHA block to decrease and increase the dimension of the chunk. To explore the influence of 

down- or up- sampling position on the denoising performance, we design other two configurations 

for comparison, where one inserts the sampling block in the center of the sample and frame MHA 

block and the other employs the sampling block behind the two MHA blocks. The MHAUNets 

with different sampling positions are shown in Fig. 3-16, named F-UNet, C-UNet and B-UNet, 

respectively.  

As seen from the experimental results listed in Table 3-3, similar performances are achieved 

by the three models. It also shows that the sampling position has very limited impacts on the 

performance. Especially, the F-UNet achieves a slightly better performance in all evaluation 
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metrics than other two comparison models. One of the possible reasons is that the down- or up- 

sampling block can introduce the relative positional information by using shifted convolutional 

operation, which could supplement the positional information for multi-head attention mechanism 

performed in sample and frame MHA.   

 

 

Figure 3-16: Different configurations of encoder-decoder layer 

 

Table 3-3: Performance of different encoder-decoder configurations 

 PESQ STOI CSIG CBAK COVL SSNR Para. (M) 

Unprocessed 1.97 0.91 3.34 2.44 2.63 1.73 - 

F-UNet (ours) 3.00 0.95 4.26 3.54 3.65 9.47 1.04 

B-UNet 2.96 0.94 4.25 3.53 3.62 9.71 1.04 

C-UNet 2.97 0.95 4.23 3.54 3.62 9.58 1.04 

 

Then, in our proposed MHAUNet-2, the cascaded MHA blocks (CMHABs) are inserted 

between encoder and decoder to further extract high-level features of the encoder, which is inspired 

by the MHAUNet-1. In MHAUNet-1, the MHA blocks are incorporated between encoder and 

decoder to extract contextual information. Different from the MHAUNet-1 using convolutional 

encoder-decoder, our MHAUNet-2 builds an MHA-based encoder-decoder to generate 

hierarchical features while considering global contextual information. To further demonstrate the 

effectiveness of cascaded MHA blocks in our model, we set a reference architecture by simply 
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removing all cascaded MHA blocks between encoder and decoder in the proposed MHAUNet-1 

and MHAUNet-2. 

From Table 3-4, we can see that our proposed MHAUNet-2 has best scores in PESQ, STOI and 

composite evaluation scores compared with reference models, showing the efficiency of MHA-

based U-Net on modeling long-range speech sequences. Furthermore, compared with MHAUNet-

1 using convolutional encoder and decoder, MHAUNet-2 yields a marginal improvement in 

evaluation metrics, indicating that MHA-augmented encoder-decoder could be an efficient 

alternative of convolutional encoder-decoder.  

 

Table 3-4: Explore the efficiency of attention blocks 

 PESQ STOI CSIG CBAK COVL SSNR 

MHAUNet-2 3.00 0.95 4.26 3.54 3.65 9.47 

MHAUNet-2 (no middle MHAB) 2.90 0.94 4.22 3.49 3.58 9.15 

MHAUNet-1 2.96 0.94 4.23 3.51 3.61 9.87 

MHAUNet-1 (no middle MHAB) 2.54 0.94 3.85 3.26 3.20 8.91 

 

When we remove the CMHABs in MHAUNet-2 and TSMHAB in MHAUNet-1, there will be 

different degrees of declination in the denoising performance, showing that the MHA blocks 

inserted between encoder and decoder are efficient due to the further extraction of high-level 

contextual information from encoder features.  

It is worth mentioning that the proposed MHAUNet-2 without CMHAB still achieves 

remarkable results in PESQ (2.90) as well as other evaluation metrics. However, when omitting 

the MHA blocks from MHAUNet-1, the PESQ score decreases from 2.96 into 2.54, and other 

scores show a similar declining trend, demonstrating that our proposed MHAUNet-2 is more 

robust to intermediate MHA blocks than MHAUNet-1. The possible reason is that the proposed 

MHA-based encoder-decoder layers could extract global contextual information in each depth of 

network, while the convolution-based U-Net requires to insert extra MHA blocks after the encoder 

to further extract abundant features.   

Furthermore, we select the subset of testing data to observe the performance of our proposed 

models on given noisy conditions, where the non-stationary Café and Living noises are used to 

mix with clean utterance to generate the noisy mixtures with SNRs at 2.5 dB, 7.5 dB, 12.5 dB and 
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17.5 dB. The following tables give the results of the proposed models performed on four different 

SNR conditions. We can see that our proposed models can obviously remove the background 

noises at various degrees. Especially, our MHAUNet-2 achieves the best denoising performance 

in the condition of Café and Living noises at lower SNR levels including 2.5 dB and 7.5 dB. For 

example, under the 2.5 dB circumstance, the MHAUNet-2 improves the PESQ value from 1.15 

into 1.87 in Cafe noise and from 1.18 into 2.21 in Living noise, which impressively improves the 

speech quality in challenging noisy environments. In addition, both MHAUNet-2 and MHAUNet-

1 achieve a similar STOI improvement under two noisy conditions.  

 

Table 3-5: Performance of proposed U-Nets at 2.5 dB 

Methods 
PESQ STOI (%) 

Café Living Café Living 

Unprocessed 1.15 1.18 78.13 84.25 

DBAUNet 1.72 1.81 85.87 88.99 

MHAUNet-1 1.82 2.08 87.27 90.07 

MHAUNet-2 1.87 2.21 87.59 90.43 

 

Table 3-6: Performance of proposed U-Nets at 7.5 dB 

Methods 
PESQ STOI (%) 

Café  Living Café  Living 

Unprocessed 1.33 1.41 87.59 90.67 

DBAUNet 2.25 2.35 91.44 93.15 

MHAUNet-1 2.38 2.66 91.84 93.53 

MHAUNet-2 2.40 2.75 91.91 94.41 

 

In higher SNR conditions including 12.5 dB and 17.5 dB, both MHAUNet-1 and MHAUNet-

2 achieve a competitive performance on the speech quality and intelligibility. More specifically, 

MHAUNet-1 and MHAUNet-2 get the same PESQ value in Café condition with a SNR at 12.5 

dB. However, the best PESQ score in living noisy environment is achieved by MHAUNet-1. For 

the 17.5 dB condition, MHAUNet-2 still shows the great performance, achieving the best score in 
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two kinds of noisy situations except that the best STOI performance is obtained by MHAUNet-1 

in café environment. 

 
Table 3-7: Performance of proposed U-Nets at 12.5 dB 

Methods 
PESQ STOI (%) 

Café  Living Café  Living 

Unprocessed 1.54 1.66 91.23 91.69 

DBAUNet 2.55 2.55 93.51 93.20 

MHAUNet-1 2.74 2.92 94.15 94.04 

MHAUNet-2 2.74 2.89 94.35 94.41 

 

Table 3-8: Performance of proposed U-Nets at 17.5 dB 

Methods 
PESQ STOI (%) 

Café  Living Café  Living 

Unprocessed 1.95 2.24 94.38 95.17 

DBAUNet 2.90 3.11 95.03 96.15 

MHAUNet-1 3.11 3.37 95.62 96.80 

MHAUNet-2 3.14 3.41 95.55 96.97 

 

Finally, we present the enhanced spectrograms of our proposed model to observe whether the 

noise component is efficiently removed. Here, we select an utterance spoken by a male speaker 

under the Living noisy environment at SNR level of 2.5 dB. As shown in Fig. 3-17, three proposed 

models can effectively remove the background noises and maintain a similar harmonic structure. 

By carefully comparing the differences between the obtained enhanced spectrogram from the 

proposed models, we can find that the proposed MHAUNet-2 can remove more noises in the low 

frequency band than DBAUNet and MHAUNet-1 as presented in the yellow region. Meanwhile, 

the proposed MHAUNet-2 could restore more approximate structures than other two models as 

indicated in red region. This finding proves that the proposed MHAUNet-2 is more efficient in 

reconstructing more similar spectrum details as clean speech in poor noise environment. 
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!

Figure 3-17: Comparison of spectrograms of proposed models at 2.5 dB 

 

3.4 Summary 
 
In this chapter, we have proposed two MHA-assisted U-Nets for single-channel speech 

enhancement in the time domain, including MHAUNet-1 and MHAUNet-2. The proposed 

MHAUNet-1 is comprised of convolutional encoder and decoder, and dual-path MHA in between, 

where the dual-path MHA adopts sample MHA and frame MHA to successively extract the short-

term information of each frame and long-term dependency across different frames. However, the 

encoder and decoder of the proposed MHAUNet-1 require to be deep enough for having large 

receptive field due to the local operation of convolution, which constrains the effectiveness of 

extracting the contextual information. To tackle this problem, our proposed MHAUNet-2 

constructs MHA-based encoder and decoder layers, where the MHA combines with down- or up-

sampling to extract the global dependency of speech features in each depth of the network. 
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Different from MHAUNet-1, the MHAUNet-2 performs the extraction of contextual information 

at the encoder and decoder level.  

The experimental results demonstrate that our proposed MHAUNet-1 and MHAUNet-2 have 

outperformed most existing speech enhancement models in most evaluation criteria. Especially, 

the MHAUNet-2 obtains a better denoising performance than MHAUNet-1, indicating that the 

multi-head attention based encoder-decider is an efficient alternative to convolution-based one. 

Moreover, our proposed MHAUNet-1 and MHAUNet-2 involve comparatively fewer trainable 

parameters than existing methods. 
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Chapter 4 

Conclusion and Future Work 
 

4.1 Conclusion 
 
In this thesis, various deep-learning methods for speech enhancement have been introduced, 

especially the U-Net neural network and attention mechanism. The U-Net is a symmetric structure 

consisting of a down-sampling encoder and an up-sampling decoder, which is often combined with 

other types of neural networks as an efficient component between encoder and decoder. The 

attention mechanism has been a popular approach to deal with long-term sequences separately, 

which usually perform jointly with other neural networks. The proposed deep learning based SE 

methods in this thesis are designed based on the U-Net and the attention mechanism. 

In chapter 2, a U-Net with a dual-branch attention block between encoder and decoder is 

proposed for speech enhancement. The U-Net adopts the dense block with multiple densely 

connected convolutions in each encoder and decoder layers, where the inner convolution is the 

dilated depth-wise separable convolution with capability of reducing the number of parameters 

and expanding the receptive field. Moreover, the decoder uses the sub-pixel convolution for up-

sampling to avoid checkerboard distortion. The dual-branch attention block employs channel-path 

and spatial-path attention to respectively learn the information along these two dimensions and 

combines the features from the two paths in an average manner. Experimental results show that 

the U-Net with dual-branch attention block achieves comparable performance with much fewer 

model parameters compared to existing models, and the proposed U-Net outperforms the pure U-

Net and the U-Nets with LSTM, TCN, or one-path attentions.  

In chapter 3, two MHA based U-Nets are proposed based on the proposed U-Net structure in 

chapter 2, namely MHAUNet-1 and MHAUNet-2, where the former incorporates MHA blocks in 

the U-Net and the latter applies MHA blocks in encoder-decoder layers. For the MHAUNet-1, the 

two MHA blocks are sequentially connected to extract features within individual frames and 

contextual information between different frames, named sample MHA and frame MHA, 

respectively. In contrast, the proposed MHAUNet-2 applies MHA block as well as down- or up- 
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sampling layer to construct an MHA-based encoder-decoder layer, which can alleviate the limited 

receptive field existing in convolutional encoder-decoder of MHAUNet-1. By conducting 

extensive experiments on the public dataset, it was shown that our proposed MHAUNet-1 and 

MHAUNet-2 can further improve the performance of the dual-branch attention U-Net proposed in 

chapter 2 and moreover, they outperform most existing methods in many evaluation criteria with 

comparably light model complexities.  

 

4.2 Future work 
 
This thesis has investigated the U-Net based architectures for single-channel speech enhancement 

in the time domain. With a few modifications, our proposed models can be easily transferred from 

time domain into T-F domain, which takes the spectrogram feature of speech waveform as input. 

Moreover, in some scenarios, we need to enhance a target speech signal corrupted by background 

noises with multiple microphones, like multi-person meeting room. Our models can be flexibly 

implemented on the multi-channel speech enhancement task by adjusting a few network 

configurations. Furthermore, the speech enhancement systems are usually regarded as a 

preprocessing stage of speech recognition to improve the recognition accuracy of words. It would 

be interesting to observe the recognition performances of our proposed models combined with 

speech recognition system.  

Finally, casual speech enhancement has been gradually studied by researchers due to the 

increasing real-time applications. That means the speech denoising performs in real time when 

recording the voice of speakers, which requires the SE systems only process the current time step 

and its previous ones. To achieve this goal, we can adopt our proposed modes to build casual SE 

systems by using casual convolutions, masked attention mechanism and unidirectional RNN layers. 
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